WorldWideScience

Sample records for survey quadrangles covering

  1. Index Grids - QUADRANGLES_24K_USGS_IN: Boundaries of 7.5-Minute Quadrangles in Indiana, (United States Geological Survey, 1:24,000 Polygon Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — QUADRANGLES_24K_USGS_IN is a polygon shapefile defining the boundaries of the USGS 7.5-minute (1:24,000-scale) quadrangles which cover the state of Indiana. Dates of...

  2. Index Grids - QUADRANGLES_24K_USGS_IN: Boundaries of 7.5-Minute Quadrangles in Indiana, (United States Geological Survey, 1:24,000 Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — QUADRANGLES_24K_USGS_IN is a polygon shapefile defining the boundaries of the USGS 7.5-minute (1:24,000-scale) quadrangles which cover the state of Indiana. Dates of...

  3. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Nashville quadrangle, Tennessee, and Kentucky. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The Nashville quadrangle covers a portion of the interior lowland plateau region of the Midwestern Physiographic Province. The quadrangle contains a shallow to moderately thick Paleozoic section that overlies a Precambrian basement complex. Paleozoic carbonates dominate surficial exposures. A search of available literature revealed no known uranium deposits. Fifty-five uranium anomalies were detected and are discussed briefly. Most anomalies appear to relate to cultural features. Some have relatively high uranium concentration levels that may be significant despite their correlation with culture. Magnetic data appear to illustrate complexities in the Precambrian basement.

  4. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Fort Smith quadrangle, Oklahoma, and Arkansas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The Fort Smith quadrangle in western Arkansas and eastern Oklahoma overlies thick Paleozoic sediments of the Arkoma Basin. These Paleozoics dominate surface exposure except where covered by Quaternary Alluvial materials. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. Seventy-five groups of uranium samples were defined as anomalies and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data show character that suggest structural and/or lithologic complexity, but imply relatively deep-seated sources.

  5. Results of a geochemical survey, Aban Al Ahmar Quadrangle, Sheet 25F, Kingdom of Saudi Arabia

    Science.gov (United States)

    Miller, W. Roger; Arnold, M.A.

    1988-01-01

    The interpretation of geochemical data from a regional survey of the Aban al Ahmar quadrangle resulted in the selection of areas for follow-up studies. The results of detailed geochemical studies of these areas, combined with field observation, resulted in the selection of areas of moderate to high mineral resource potential. The most important areas are (1) the Jibal Minyah area, Aban al Asmar area, Jibal Suwaj area, and Nubayah area where tin and tungsten mineralization are associated with Abanat-suite rocks or possible buried Abanat-suite plutons; (2) several areas containing rocks of the Murdama group in the northern part of the quadrangle, the Buqaya al Luaah area, and the Jabal Akkash area where precious- and base-metal mineralization are generally associated with small Idah-suite plutons; and (3) the southern periphery of Jibal Qitan associated with skarn mineralization.

  6. Airborne gamma-ray spectrometer and magnetometer survey, Roseburg Quadrangle, Oregon. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Roseburg, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1596 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  7. Airborne gamma-ray spectrometer and magnetometer survey, Medford Quadrangle Oregon. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Medford, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of three miles. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 2925 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  8. Airborne gamma-ray spectrometer and magnetometer survey: Chico quadrangle, California. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Chico, California, map area. Traverse lines were flown in an east-west direction at a line spacing of three. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 3026.4 line miles are in the quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  9. Airborne gamma-ray spectrometer and magnetometer survey: Ukiah quadrangle, California. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Ukiah, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1517 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  10. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Helena quadrangle of Arkansas, Mississippi and Tennessee. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The Helena quadrangle covers a region largely within the Mississippi River flood plain in the extreme northern Gulf Coastal Province. Tertiary sediments in this area are relatively thick, and overlie a Paleozoic basin gradually shoaling to the northeast. The Oachita Tectonic Zone strikes southeasterly through the center of the quadrangle. The exposed sequence is almost entirely Quaternary sediments of the flood plain area. Older Cenozoic deposits crop out in upland areas on the west side of the river valley. A search of available literature revealed no known uranium deposits. Sixty uranium anomalies were detected and are discussed briefly. None were considered significant, and all appeared to occur as the result of cultural and/or weather effects. Magnetic data appear to be in agreement with existing structural interpretations of the region.

  11. Aerial gamma ray and magnetic survey, Huntington quadrangle: Ohio, West Virginia and Kentucky. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    The Huntington quadrangle of Kentucky, Ohio, and West Virginia covers 7250 square miles of the easternmost Midwestern Physiographic Province. Paleozoic exposures dominate the surface. These Paleozoics deepen toward the east from approximately 500 feet to a maximum depth of 8000 feet. Precambrian basement is thought to underlie the entire area. No known uranium deposits exist in the area. One hundred anomalies were found using the standard statistical analysis. Some high uranium concentration anomalies that may overlie the stratigraphic equivalent of the Devonian-Mississippian New Albany or Chattanooga Shales may represent significant levels of naturally occurring uranium. Future studies should concentrate on this unit. Magnetic data are largely in concurrence with existing structural interpretations but suggest some complexities in the underlying Precambrian.

  12. Central Asian Snow Cover from Hydrometeorological Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Central Asian Snow Cover from Hydrometeorological Surveys data are based on observations made by personnel for three river basins: Amu Darya, Sir Darya, and...

  13. USGS map quadrangles

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS map quandrangle boundaries with names and unique identifiers for the 1:24,000 (7.5 minute) quadrangles. Additional attributes provide unique identifiers and...

  14. Surface gamma-ray survey of the Barre West quadrangle, Washington and Orange Counties, Vermont

    Science.gov (United States)

    Walsh, Gregory J.; Satkoski, Aaron M.

    2005-01-01

    This study was designed to determine the levels of naturally occurring radioactivity in bedrock from surface measurements at outcrops during the course of 1:24,000-scale geologic mapping and to determine which rock types were potential sources of radionuclides. Elevated levels of total alpha particle radiation (gross alpha) occur in a public water system in Montpelier, Vermont. Measured gross alpha levels in the Murray Hill water system (Vermont Dept. of Environmental Conservation, unpub. data, 2005) have exceeded the maximum contaminant level of 15 picocuries per liter (pCi/l) set by the Environmental Protection Agency (EPA) (EPA, 2000). The Murray Hill system began treatment for radium in 1999. Although this treatment was successful, annual monitoring for gross alpha, radium, and uranium continues as required (Jon Kim, written communication, 2005). The water system utilizes a drilled bedrock well located in the Silurian-Devonian Waits River Formation. Kim (2002) summarized radioactivity data for Vermont, and aside from a statewide assessment of radon in public water systems (Manning and Ladue, 1986) and a single flight line from the National Uranium Resource Evaluation (NURE) (Texas Instruments, 1976) (fig. 1), no data are available to identify the potential sources of naturally occurring radioactivity in the local bedrock. Airborne gamma-ray surveys are typically used for large areas (Duval, 2001, 2002), and ground-based surveys are more commonly used for local site assessments. For example, ground-based surveys have been used for fault mapping (Iwata and others, 2001), soil mapping (Roberts and others, 2003), environmental assessments (Stromswold and Arthur, 1996), and mineral exploration (Jubeli and others, 1998). Duval (1980) summarized the methods and applications of gamma- ray spectrometry. In this study, we present the results from a ground-based gamma-ray survey of bedrock outcrops in the 7.5-minute Barre West quadrangle, Vermont. Other related and

  15. Aerial gamma ray and magnetic survey: Uncompahgre Uplift Project, Montrose Quadrangle, Colorado. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-04-01

    The quadrangle includes portions of the Colorado Plateau and southern Rocky Mountains Physiographic Provinces. The entire area of the Gunnison Uplift and parts of the Uncompahgre and Sawatch Uplifts are included. A part of the Piceance Basin and a segment of the Rio Grande Rift Valley are also included. A basement complex of Precambrian metamorphic and igneous rocks is exposed in the core of the Gunnison and Sawatch Uplifts in the Southern Rocky Mountains. Jurassic and Cretaceous age sedimentary rocks lie directly on the Precambrian basement in most places. They lie on Paleozoic rocks at the west edge of the Sawatch Uplift in the north-central part of the quadrangle. Triassic beds are mapped only in the canyon of the Uncompahgre River near the southwest corner of the quadrangle. A suite of Tertiary volcanics and some sedimentary rocks occupy extensive areas. Plutonic rocks of Tertiary and laramide age occupy only a small part of the quadrangle. The literature consulted included information on about 100 separate occurrences of radioactive minerals and/or anomalous radioactivity within the quadrangle. Many fracture and stratigraphically controlled forms are reported. Most of these occurrences are clustered in three areas: Cochetopa Creek, Cebolla Creek, and Marshall Pass. Important uranium production is recorded from deposits in the Cochetopa Creek and Marshall Pass areas. A total of 220 anomalies in the uranium channel meet the minimum requirements as defined in the Interpretation methods section of Volume I of this report. A few of them appear to be related to known economic deposits, and provide examples for comparison with anomalies in other parts of the quadrangle where radioactive mineral occurrences have not been reported.

  16. Geology of the Gypsum Gap quadrangle, Colorado

    Science.gov (United States)

    Cater, Fred W.

    1953-01-01

    The Gypsum Gap quadrangle is one eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comparative study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through a arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The core consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  17. Geology of the Davis Mesa quadrangle, Colorado

    Science.gov (United States)

    Cater, Fred W.; Bryner, Leonid

    1953-01-01

    The Davis Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  18. Geology of the Anderson Mesa quadrangle, Colorado

    Science.gov (United States)

    Cater, Fred W.; Withington, C.F.

    1953-01-01

    The Anderson Mesa quadrangle is one of the eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of the southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteenth quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quarternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-tending folds. Conspicuous among the folds are large anticlines having cores of intrusive slat and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing many thousands of tons. The ore consists of largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  19. Geology of the Hamm Canyon quadrangle, Colorado

    Science.gov (United States)

    Cater, Fred W.

    1953-01-01

    The Hamm Canyon quadrangle is on eof eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  20. Geology of the Naturita NW quadrangle, Colorado

    Science.gov (United States)

    Cater, Fred W.; Vogel, J.D.

    1953-01-01

    The Naturita NW quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles were mapped by the U.S. Geological Survey on behalf of the U.S. Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear ro be related to certain sedimentary structures in sandstones of favorable composition.

  1. Results of a geochemical survey, Wadi Ash Shu'Bah quadrangle, sheet 26E, Kingdom of Saudi Arabia

    Science.gov (United States)

    Miller, W.R.; Arnold, M.A.

    1989-01-01

    The interpretation of geochemical data of a regional survey of the Wadi ash Shu'bah quadrangle resulted in the selection of areas for follow-up studies. The results of the detailed geochemical studies of these areas, combined with field observation, resulted in the identification of areas of moderate and high mineral resource potential. The most important areas are (1) the Jibal Ba'gham area for tin and tungsten resources associated with the post-Hadn Jufayfah syenogranite; (2) the Murran gossan belt, Aqab gossan area, and Rawdah gossan area for massive-sulfide mineralization associated with Hulayfah-group greenstones; (3) the Rawdat al Ba'ayith area and Jibal Abid area for precious- and base-metal mineralization associated with pre-Hadn intermediate-composition plutons; and (4) the Wadi al Qahad area for skarn and precious- and base-metal mineralization associated with pre-Hadn granodiorite.

  2. Airborne gamma-ray spectrometer and magnetometer survey: Weed quadrangle, California. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    Twelve anamolous areas attributable to gamma radiation in the uranium spectral window, and twenty-three in the thorium channel, have been recognized and delineated on the Weed quadrangle. The majority of the uranium anomalies are located in the southwestern part of the map sheet. Most of these are correlated with the pre-Cretaceous metamorphic rock system and the Mesozoic granitic rocks intrusive into it. Of the twenty-three anomalous areas of increased gamma radiation in the thorium spectral window, most are located in the northeast and the east center in a north-south trending belt. However, this apparent alignment is probably fortuitous as the individual anomalies are correlated with several different rock formations. Three are correlated with upper Cretaceous marine sediments, six with Ordovician marine sediments, two with Mesozoic granitic intrusives, and two with Silurian marine sediments. In the northwestern part of the quadrangle, four thorium radiation anomalies are delineated over exposures of upper Jurassic marine rocks. Anomaly 6, in the southwest, warrants attention as it suggests strong radiation in the uranium channel with little or no thorium radiation. The uranium/thorium and uranium/potassium ratio anomalies are also strong, supporting the likelihood of uranium enrichment. The feature is located on line 540, fiducials 7700 to 7720. Anomaly 7, on line 540, fiducials 8390 to 8420, shows similar characteristics although a minor thorium excursion is present. Anomaly 10, on line 3010 fiducials 9820 to 9840, is also characterized by a strong uranium radiation spike, with minor thorium radiation. The uranium/thorium and uranium/potassium ratio anomalies are well defined and relatively intense.

  3. Geology of the Pine Mountain quadrangle, Mesa county, Colorado

    Science.gov (United States)

    Cater, Fred W.

    1953-01-01

    The Pine Mountain quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from Paleozoic to Quaternary. Over mush of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confines to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in sizer from irregular masses containing only a few ton of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  4. Geology of the Horse Range Mesa quadrangle, Colorado

    Science.gov (United States)

    Cater, Fred W.; Bush, A.L.; Bell, Henry; Withington, C.F.

    1953-01-01

    The Horse Range Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of the quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary strictures in sandstones of favorable composition.

  5. Geology of the Red Canyon quadrangle, Montrose county, Colorado

    Science.gov (United States)

    McKay, E.J.; Jobin, D.A.

    1953-01-01

    The Red Canyon quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium, minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  6. Geology of the Paradox quadrangle, Montrose county, Colorado

    Science.gov (United States)

    Withington, C.F.

    1954-01-01

    The Paradox quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation, Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  7. Geology of the Atkinson Creek quadrangle, Montrose county, Colorado

    Science.gov (United States)

    McKay, E.J.

    1953-01-01

    The Atkinson Creek quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of the quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that rangein age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confines to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Bath". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstone of favorable composition.

  8. Geology of the Roc Creek quadrangle, Montrose county, Colorado

    Science.gov (United States)

    Shoemaker, E.M.

    1954-01-01

    The Roc Creek quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the U.S. Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan mineral belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary in sandstones of favorable composition.

  9. Geology of the Juanita Arch quadrangle, Mesa county, Colorado

    Science.gov (United States)

    Shoemaker, Eugene M.

    1954-01-01

    The Juanita Arch quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore ro large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstone of favorable construction.

  10. Geology of the Uravan quadrangle, Montrose county, Colorado

    Science.gov (United States)

    Cater, Fred W.; Butler, A.P.; McKay, E.J.; Boardman, Robert L.

    1954-01-01

    The Uravan quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of the southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to the related to certain sedimentary structures in sandstones of favorable composition.

  11. Geology of the Calamity Mesa quadrangle, Mesa county, Colorado

    Science.gov (United States)

    Cater, Fred W.; Stager, Harold K.

    1953-01-01

    The Calamity Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks the range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  12. Geology of the Gateway quadrangle, Mesa county Colorado

    Science.gov (United States)

    Cater, Fred W.

    1953-01-01

    The Gateway quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  13. Geologic Map of the Atlin Quadrangle, Southeastern Alaska

    Science.gov (United States)

    Brew, David A.; Himmelberg, Glen R.; Ford, Arthur B.

    2009-01-01

    This map presents the results of U.S. Geological Survey (USGS) geologic bedrock mapping studies in the mostly glacier covered Atlin 1:250,000-scale quadrangle, northern southeastern Alaska. These studies are part of a long-term systematic effort by the USGS to provide bedrock geologic and mineral-resource information for all of southeastern Alaska, covering all of the Tongass National Forest (including Wilderness Areas) and Glacier Bay National Park and Preserve. Some contributions to this effort are those concerned with southwesternmost part of the region, the Craig and Dixon Entrance quadrangles (Brew, 1994; 1996) and with the Wrangell-Petersburg area (Brew, 1997a-m; Brew and Grybeck, 1997; Brew and Koch, 1997). As shown on the index map (fig. 1), the study area is almost entirely in the northern Coast Mountains adjacent to British Columbia, Canada. No previous geologic map has been published for the area, although Brew and Ford (1985) included a small part of it in a preliminary compilation of the adjoining Juneau quadrangle; and Brew and others (1991a) showed the geology at 1:500,000 scale. Areas mapped nearby in British Columbia and the United States are also shown on figure 1. All of the map area is in the Coast Mountains Complex as defined by Brew and others (1995a). A comprehensive bibliography is available for this and adjacent areas (Brew, 1997n).

  14. Geologic map of the Ganiki Planitia quadrangle (V-14), Venus

    Science.gov (United States)

    Grosfils, Eric B.; Long, Sylvan M.; Venechuk, Elizabeth M.; Hurwitz, Debra M.; Richards, Joseph W.; Drury, Dorothy E.; Hardin, Johanna

    2011-01-01

    The Ganiki Planitia (V-14) quadrangle on Venus, which extends from 25° N. to 50° N. and from 180° E. to 210° E., derives its name from the extensive suite of plains that dominates the geology of the northern part of the region. With a surface area of nearly 6.5 x 106 km2 (roughly two-thirds that of the United States), the quadrangle is located northwest of the Beta-Atla-Themis volcanic zone and southeast of the Atalanta Planitia lowlands, areas proposed to be the result of large scale mantle upwelling and downwelling, respectively. The region immediately south of Ganiki Planitia is dominated by Atla Regio, a major volcanic rise beneath which localized upwelling appears to be ongoing, whereas the area just to the north is dominated by the orderly system of north-trending deformation belts that characterize Vinmara Planitia. The Ganiki Planitia quadrangle thus lies at the intersection between several physiographic regions where extensive mantle flow-induced tectonic and volcanic processes are thought to have occurred. The geology of the V-14 quadrangle is characterized by a complex array of volcanic, tectonic, and impact-derived features. There are eleven impact craters with diameters from 4 to 64 km, as well as four diffuse 'splotch' features interpreted to be the product of near-surface bolide explosions. Tectonic activity has produced heavily deformed tesserae, belts of complex deformation and rifts as well as a distributed system of fractures and wrinkle ridges. Volcanic activity has produced extensive regional plains deposits, and in the northwest corner of the quadrangle these plains host the initial (or terminal) 700 km of the Baltis Vallis canali, an enigmatic volcanic feature with a net length of ~7,000 km that is the longest channel on Venus. Major volcanic centers in V-14 include eight large volcanoes and eight coronae; all but one of these sixteen features was noted during a previous global survey. The V-14 quadrangle contains an abundance of minor

  15. Topographic Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  16. Topographic Map of Quadrangle 3670, Jam-Kashem (223) and Zebak (224) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  17. Contours - CONTOURS_24K_USGS_ADRIAN: Elevation Contours from 7.5-Minute Topographic Quadrangle Maps, Grouped into the 30' x 1째 Adrian Quadrangle, Indiana, Michigan, and Ohio (United States Geological Survey, 1:24,000, Line Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — CONTOURS_24K_USGS_ADRIAN is a shapefile containing elevation contours produced at a scale of 1:24,000, grouped into a 30' x 1째 quadrangle block. Elevation values are...

  18. Reconnaissance geologic map of the Dubakella Mountain 15 quadrangle, Trinity, Shasta, and Tehama Counties, California

    Science.gov (United States)

    Irwin, William P.; Yule, J. Douglas; Court, Bradford L.; Snoke, Arthur W.; Stern, Laura A.; Copeland, William B.

    2011-01-01

    Cretaceous (about 120 Ma) metamorphic age. Remnants of the Great Valley sequence of dominantly Cretaceous marine sedimentary strata, which once covered much of the southern fringe of the Klamath Mountains, are present at three places in the Dubakella Mountain quadrangle. Mineral production in the quadrangle has included small amounts of gold, chromite, and manganese. This map of the Dubakella Mountain 15' quadrangle is a digital rendition of U.S. Geological Survey Miscellaneous Field Studies Map MF-1808, with various improvements and additions.

  19. National Uranium Resource Evaluation: Torrington Quadrangle, Wyoming and Nebraska

    Energy Technology Data Exchange (ETDEWEB)

    Seeland, D

    1982-09-01

    The Torrington 1/sup 0/ x 2/sup 0/ Quadrangle in southeastern Wyoming and western Nebraska was evaluated to identify areas favorable for the occurrence of uranium deposits likely to contain 100 tons of uranium with an average grade of not less than 100 ppM (0.01 percent) U/sub 3/O/sub 8/. Almost all uranium occurrences reported in the literature were visited and sampled. Geochemical analyses of rock samples collected during the study were used in the evaluation. Hydrogeochemical and stream-sediment analyses were not available. Aerial-radiometric, and helium soil-gas surveys were analyzed. Much of the quadrangle is covered by Tertiary rocks. To assess the uranium potential of the Tertiary and pre-Tertiary rocks 270 well logs were studied and both contour and geologic maps made of the pre-Oligocene surface east and north of the Laramie Mountains. Five environments favorable for uranium deposits were outlined. The first is in the coarse-grained arkosic sandstone facies of the Wasatch Formation and the Lebo Member of the Fort Union Formation in the southern Powder River Basin. The second is in the Wind River Formation in the Shirley Basin, a stratigraphic and lithologic equivalent of the Wasatch. The third is the Lower Cretaceous Cloverly Formation in the northeastern part of the quadrangle. The fourth is in the Upper Cretaceous Lance (Laramie) Formation and the Fox Hills Sandstone in the southeastern corner of the quadrangle. The fifth favorable environment is in Precambrian rocks in the Laramie Mountains and Hartville uplift.

  20. Geology of the Joe Davis Hill quadrangle, Dolores and San Miguel counties, Colorado

    Science.gov (United States)

    Cater, Fred W.; Bell, Henry

    1953-01-01

    The Joe Davis Hill quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  1. Geology of the Egnar quadrangle, Dolores and San Miguel counties, Colorado

    Science.gov (United States)

    Cater, Fred W.; Bush, A.L.; Bell, Henry

    1954-01-01

    The Egnar quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  2. Geology of Bull Canyon quadrangle, Montrose and San Miguel counties, Colorado

    Science.gov (United States)

    Cater, Fred W.

    1953-01-01

    The Bull Canyon quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite depots. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tones. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  3. Geologic Map of the Weaverville 15' Quadrangle, Trinity County, California

    Science.gov (United States)

    Irwin, William P.

    2009-01-01

    The Weaverville 15' quadrangle spans parts of five generally north-northwest-trending accreted terranes. From east to west, these are the Eastern Klamath, Central Metamorphic, North Fork, Eastern Hayfork, and Western Hayfork terranes. The Eastern Klamath terrane was thrust westward over the Central Metamorphic terrane during early Paleozoic (Devonian?) time and, in Early Cretaceous time (approx. 136 Ma), was intruded along its length by the massive Shasta Bally batholith. Remnants of overlap assemblages of the Early Cretaceous (Hauterivian) Great Valley sequence and the Tertiary Weaverville Formation cover nearly 10 percent of the quadrangle. The base of the Eastern Klamath terrane in the Weaverville quadrangle is a peridotite-gabbro complex that probably is correlative to the Trinity ophiolite (Ordovician), which is widely exposed farther north beyond the quadrangle. In the northeast part of the Weaverville quadrangle, the peridotite-gabbro complex is overlain by the Devonian Copley Greenstone and the Mississippian Bragdon Formation. Where these formations were intruded by the Shasta Bally batholith, they formed an aureole of gneissic and other metamorphic rocks around the batholith. Westward thrusting of the Eastern Klamath terrane over an adjacent body of mafic volcanic and overlying quartzose sedimentary rocks during Devonian time formed the Salmon Hornblende Schist and the Abrams Mica Schist of the Central Metamorphic terrane. Substantial beds of limestone in the quartzose sedimentary unit, generally found near the underlying volcanic rock, are too metamorphosed for fossils to have survived. Rb-Sr analysis of the Abrams Mica Schist indicates a metamorphic age of approx. 380 Ma. West of Weavervillle, the Oregon Mountain outlier of the Eastern Klamath terrane consists mainly of Bragdon Formation(?) and is largely separated from the underlying Central Metamorphic terrane by serpentinized peridotite that may be a remnant of the Trinity ophiolite. The North Fork

  4. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Inmachuk, Kugruk, Kiwalik, and Koyuk River drainages, Granite Mountain, and the northern Darby Mountains, Bendeleben, Candle, Kotzebue, and Solomon quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 653 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from an area covering portions of the Inmachuk, Kugruk, Kiwalik, and Koyuk river drainages, Granite Mountain, and the northern Darby Mountains, located in the Bendeleben, Candle, Kotzebue, and Solomon quadrangles of eastern Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract

  5. Alaska map quadrangles at 1:250,000 scale

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Outlines of 1:250,000 scale map quadrangles in Alaska for use as a geographic reference within Google Earth or other software capable of interpreting KML, with...

  6. Alaska map quadrangles at 1:250,000 scale

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Outlines of 1:250,000 scale map quadrangles in Alaska for use as a geographic reference within Google Earth or other software capable of interpreting KML, with links...

  7. Digital Geologic Faults of Sherman Quadrangle, North-Central Texas

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set contains the geologic faults for the 1:250,000-scale Sherman quadrangle, Texas and Oklahoma. The original data are from the Bureau of Economic...

  8. Bedrock Geologic Map of the Bristol, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG13-1 Kim, J, Weber, E, and Klepeis, K, 2013, Bedrock Geologic Map of the Bristol, VT Quadrangle: Vermont Geological Survey Open File Report...

  9. Bedrock Geologic Map of the Essex Junction Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG12-3, Gale, M., Kim. J., and Ruksznis, A., 2012, Bedrock Geologic Map of the essex Junction Quadrangle: Vermont Geological Survey Open File...

  10. Surficial Geologic Map of the Bristol Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG13-2 Springston, G, and Kim, J, 2013, Surficial Geologic Map of the Bristol Quadrangle, Vermont: Vermont Geological Survey Open File Report...

  11. Digital Geologic Map of Sherman Quadrangle, North-Central Texas

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set contains geologic formations for the 1:250,000-scale Sherman quadrangle, Texas and Oklahoma. The original data are from the Bureau of Economic...

  12. NURE aerial gamma-ray and magnetic reconnaissance survey of portions of New Mexico, Arizona and Texas. Volume II. New Mexico-Las Cruces NI 13-10 Quadrangle. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    The results of a high-sensitivity, aerial gamma-ray spectrometer and magnetometer survey of the Las Cruces two degree quadrangle, New Mexico, are presented. Instrumentation and methods are described in Volume 1 of this final report. The work was done by Carson Helicopters, Inc., and International Exploration, Inc. The work was performed for the US Department of Energy - National Uranium Resource Evaluation (NURE) program. Analysis of this radiometric data yielded 192 statistically significant eU anomalies. Of this number, thirty-nine were considered to be of sufficient strength to warrant further investigation.

  13. Geologic quadrangle maps of the United States: geology of the Casa Diablo Mountain quadrangle, California

    Science.gov (United States)

    Rinehart, C. Dean; Ross, Donald Clarence

    1957-01-01

    The Casa Diablo Mountain quadrangle was mapped in the summers of 1952 and 1953 by the U.S. Geological Survey in cooperation with the California State Division of Mines as part of a study of potential tungsten-bearing areas.

  14. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Agua Dulce Quadrangle, Los Angeles County, California

    Science.gov (United States)

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  15. Preliminary Image Map of the 2007 Harris Fire Perimeter, Morena Reservoir Quadrangle, San Diego County, California

    Science.gov (United States)

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  16. Preliminary Image Map of the 2007 Slide Fire Perimeter, Harrison Mountain Quadrangle, San Bernardino County, California

    Science.gov (United States)

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  17. Preliminary Image Map of the 2007 Witch Fire Perimeter, Santa Ysabel Quadrangle, San Diego County, California

    Science.gov (United States)

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  18. Preliminary Image Map of the 2007 Witch Fire Perimeter, Warners Ranch Quadrangle, San Diego County, California

    Science.gov (United States)

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  19. 7.5min Quadrangle Index for Acadia National Park (index24.shp)

    Data.gov (United States)

    National Park Service, Department of the Interior — INDEX24 contains 1:24,000 scale neatlines for USGS 7.5 minute quadrangle maps covering Acadia National Park's GIS project area in Maine. The index was originally...

  20. Natural-Color-Image Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  1. False-Color-Image Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  2. Surficial geology of the Cabot 7 1/2 minute quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2016-3 Springston, G., 2016, Surficial geology of the Cabot 7 1/2 minute quadrangle, Vermont: Vermont Geological Survey Open File Report...

  3. Digital data for the Hazens Notch and a portion of the Lowell quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG03-3B Digital data for the Hazens Notch and a portion of the Lowell quadrangles, Vermont: Vermont Geological Survey Open File Report VG03-3B, The...

  4. Surficial Geologic Map of the Pico Peak, Vermont 7.5 Minute Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — "Digital data from VG12-1 Wright, S., 2012, Surficial Geologic Map of the Pico Peak, Vermont 7.5 Minute Quadrangle: Vermont Geological Survey Open File Report...

  5. USGS map quadrangle index: 1:63,360 scale maps of Alaska

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Map quadrangle boundaries for the 1:63,360-scale maps of Alaska, with unique identification codes conforming to the scheme used in the related data set quad24, which...

  6. Preliminary Image Map of the 2007 Witch Fire Perimeter, Rancho Santa Fe Quadrangle, San Diego County, California

    Science.gov (United States)

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  7. Preliminary Image Map of the 2007 Ranch Fire Perimeter, Whitaker Peak Quadrangle, Los Angeles and Ventura Counties, California

    Science.gov (United States)

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  8. Preliminary Image Map of the 2007 Ammo Fire Perimeter, Las Pulgas Canyon Quadrangle, San Diego County, California

    Science.gov (United States)

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  9. Geologic Map of the Meskhent Tessera Quadrangle (V-3), Venus

    Science.gov (United States)

    Ivanov, Mikhail A.; Head, James W.

    2008-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Meskhent Tessera quadrangle is in the northern hemisphere of Venus and extends from lat 50 degrees to 75 degrees N. and from long 60 degrees to 120 degrees E. In regional context, the Meskhent Tessera quadrangle is surrounded by extensive tessera regions to the west (Fortuna and Laima Tesserae) and to the south (Tellus Tessera) and by a large basinlike lowland (Atalanta Planitia) on the east. The northern third of the quadrangle covers the easternmost portion of the large topographic province of Ishtar Terra (northwestern map area) and the more localized upland of Tethus Regio (northeastern map area).

  10. Geologic map of the Sappho Patera Quadrangle (V-20), Venus

    Science.gov (United States)

    McGill, George E.

    2000-01-01

    The Sappho Patera quadrangle (V–20) of Venus is bounded by 0° and 30° East longitude, 0° and 25° North latitude. It is one of 62 quadrangles covering the entire planet at a scale of 1:5,000,000. The quadrangle derives its name from Sappho Patera, a large rimmed depression (diameter about 225 km) lying on top of a shield-shaped mountain named Irnini Mons. Sappho, a noted Greek poet born about 612 B.C., spent most of her life on the island of Lesbos. All of her works were burned in 1073 by order of ecclesiastical authorities in Rome and Constantinople. What little survives was discovered in 1897 as parts of papier mâché coffins in the Fayum (Durant, 1939). The Sappho Patera quadrangle includes the central portion of Eistla Regio, an elongated, moderately elevated (relief ~1 km) region extending for about 7,500 km west-northwestward from the west end of Aphrodite Terra. It is generally interpreted to be the surface manifestation of one or more mantle plumes (Phillips and Malin, 1983; Stofan and Saunders, 1990; Kiefer and Hager, 1991; Senske and others, 1992; Grimm and Phillips, 1992; Solomon and others, 1992). Eistla Regio is dominated by several large volcanic features. All or parts of four of these occur within the Sappho Patera quadrangle: the eastern flank of Gula Mons, Irnini Mons, Anala Mons, and Kali Mons. The quadrangle also includes eight named coronae: Nehalennia, Sunrta, Libera, Belet-Ili, Gaia, Asomama, Rabzhima, and Changko. A major rift extends from Gula Mons in the northwestern corner of the quadrangle to Libera Corona near the east border. East of Irnini and Anala Montes this rift is named Guor Linea; west of the montes it is named Virtus Linea. In addition to these major features, the Sappho Patera quadrangle includes numerous smaller volcanic flows and constructs, several unnamed coronae and corona-like features, a complex array of faults, fractures, and wrinkle ridges, and extensive plains that are continuous with the regional plains that

  11. Surficial geology of Hannibal Quadrangle, Oswego County, New York

    Science.gov (United States)

    Miller, Todd S.

    1981-01-01

    The location and extent of 10 kinds of surficial deposits in part of Hannibal quadrangle, Oswego County, N.Y., are mapped on a 7.5-minute U.S. Geological Survey topographic map. The map was compiled to indicate the lithology and potential for ground-water development at any specific location. (USGS)

  12. Estimation of Fractional Vegetation Cover Based on Digital Camera Survey Data and a Remote Sensing Model

    Institute of Scientific and Technical Information of China (English)

    HU Zhen-qi; HE Fen-qin; YIN Jian-zhong; LU Xia; TANG Shi-lu; WANG Lin-lin; LI Xiao-jing

    2007-01-01

    The objective of this paper is to improve the monitoring speed and precision of fractional vegetation cover (fc). It mainly focuses onfc estimation when fcmax andfcmin are not approximately equal to 100% and 0%, respectively due to using remote sensing image with medium or low spatial resolution. Meanwhile, we present a new method offc estimation based on a random set offc maximum and minimum values from digital camera (DC) survey data and a dimidiate pixel model. The results show that this is a convenient, efficient and accurate method forfc monitoring, with the maximum error -0.172 and correlation coefficient of 0.974 between DC survey data and the estimated value of the remote sensing model. The remaining DC survey data can be used as verification data for the precision of thefc estimation. In general, the estimation offc based on DC survey data and a remote sensing model is a brand-new development trend and deserves further extensive utilization.

  13. Geological Mapping of the Ac-H-11 Sintana Quadrangle of Ceres from NASA's Dawn Mission.

    Science.gov (United States)

    Schulzeck, Franziska; Krohn, Katrin; Jaumann, Ralf; Williams, David A.; Buczkowski, Debra L.; Mest, Scott C.; Scully, Jennifer E. C.; Gathen, Isabel v. d.; Kersten, Elke; Matz, Klaus-Dieter; Naß, Andrea; Otto, Katharina; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; De Sanctis, Maria C.; Schenk, Paul; Schröder, Stefanus; Stephan, Katrin; Wagner, Roland

    2016-04-01

    In December 2015, the Dawn spacecraft delivered the first images of the Low Altitude Mapping Orbit (LAMO) of the dwarf planet Ceres at a resolution of 35 m/pixel. This data will be used to finish the geological mapping of Ceres' surface in order to identify composition and surface forming processes. Mapping was already done using Survey Orbit and High Altitude Mapping Orbit (HAMO) data. With the new images, an updated map will be presented. To this point, the data material consists of a HAMO clear-filter mosaic (140 m/pixel) [1], a digital elevation model (DTM) [2] derived from Survey orbit (415 m/pixel) data, color-filter ratios and photometrically corrected images. Ceres' surface has been divided into 15 mapping quadrangles. The Ac-H-11 Sintana quadrangle is located in the southern hemisphere of Ceres between 21 66°S and 0 90°E. Geological units identified so far are cratered terrain, which covers most of the area, and a younger unit of relatively smooth material. The latter is characterized by a low crater density. Material of the same unit was found in adjacent quadrangles as well. Interest is taken in the diversity of crater shapes. Many craters show different forms of asymmetries. One and the same crater for instance displays different stages of rim degradation and some crater walls are partly terraced and their slopes' steepness is varying alongside the crater rim. Several mass wasting features, which partly cause the observed asymmetries, have been identified. Next to the multiple collapsed rims, landslides due to later cratering on the primary crater rim are observed. Whereas collapse structures are mostly blocky, single landslides are characterized by lobate margins. Occurrence and type of mass wasting feature might hint to subsurface differences. Further, there is a diversity of inner crater structures, like relaxed crater floors, ridges, central peaks, mounds and smooth plains. Processes like mass wasting and relaxation have modified many craters

  14. Applications of the U.S. Geological survey's global land cover product

    Science.gov (United States)

    Reed, B.

    1997-01-01

    The U.S. Geological Survey (USGS), in partnership with several international agencies and universities, has produced a global land cover characteristics database. The land cover data were created using multitemporal analysis of advanced very high resolution radiometer satellite images in conjunction with other existing geographic data. A translation table permits the conversion of the land cover classes into several conventional land cover schemes that are used by ecosystem modelers, climate modelers, land management agencies, and other user groups. The alternative classification schemes include Global Ecosystems, the Biosphere Atmosphere Transfer Scheme, the Simple Biosphere, the USGS Anderson Level 2, and the International Geosphere Biosphere Programme. The distribution system for these data is through the World Wide Web ( the web site address is: http://edcwww.cr.usgs.gov/landdaac/glcc/glcc.html) or by magnetic media upon special request. The availability of the data over the World Wide Web, in conjunction with the flexible database structure, allows easy data access to a wide range of users. The web site contains a user registration form that allows analysis of the diverse applications of large-area land cover data. Currently, applications are divided among mapping (20 percent), conservation (30 percent), and modeling (35 percent).

  15. Unpublished Digital Geologic Map of the Jewel Cave Northwest Quadrangle, South Dakota (NPS, GRD, GRI, JECA, JWNW digital map) adapted from U.S. Geological Survey mylars by DeWitt (2003)

    Data.gov (United States)

    National Park Service, Department of the Interior — The Unpublished Digital Geologic Map of the Jewel Cave Northwest Quadrangle, South Dakota is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files,...

  16. Mercury: Beethoven Quadrangle, H-7

    Science.gov (United States)

    2000-01-01

    Mercury: Computer Photomosaic of the Beethoven Quadrangle, H-7 The Beethoven Quadrangle, named for the 19th century classical German composer, lies in Mercury's Equatorial Mercator located between longitude 740 to 1440. The Mariner 10 spacecraft imaged the region during its initial flyby of the planet. The Image Processing Lab at NASA's Jet Propulsion Laboratory produced this photomosaic using computer software and techniques developed for use in processing planetary data. The images used to construct the Beethoven Quadrangle were taken as Mariner 10 flew passed Mercury. The Mariner 10 spacecraft was launched in 1974. The spacecraft took images of Venus in February 1974 on the way to three encounters with Mercury in March and September 1974 and March 1975. The spacecraft took more than 7,000 images of Mercury, Venus, the Earth and the Moon during its mission. The Mariner 10 Mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science in Washington, D.C.

  17. Land Use and Land Cover - LAND_COVER_2006_USGS_IN: Land Cover in Indiana, Derived from the 2006 National Land Cover Database (United States Geological Survey, 30-Meter TIFF Image)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — LAND_COVER_2006_USGS_IN is a grid (30-meter cell size) showing 2006 Land Cover data in Indiana. This grid is a subset of the National Land Cover Data (NLCD 2006)...

  18. Hyperspectral surface materials map of quadrangle 3262, Farah (421) and Hokumat-e-pur-Chaman (422) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangle 3468, Chak-e Wardak-Siyahgird (509) and Kabul (510) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3164, Lashkar Gah (605) and Kandahar (606) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangle 3568, Pul-e Khumri (503) and Charikar (504) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangle 3466, La`l wa Sar Jangal (507) and Bamyan (508) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3268, Khayr Kot (521) and Urgun (522) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangle 3466, La`l wa Sar Jangal (507) and Bamyan (508) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangle 3670, Jurm-Kishim (223) and Zebak (224) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral surface materials map of quadrangle 3368, Ghazni (515) and Gardez (516) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangle 3266, Uruzgan (519) and Moqur (520) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangle 3164, Lashkar Gah (605) and Kandahar (606) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral surface materials map of quadrangle 3366, Gizab (513) and Nawer (514) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. Hyperspectral surface materials map of quadrangle 3770, Faizabad (217) and Parkhaw (218) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  13. Hyperspectral surface materials map of quadrangle 3470, Jalalabad (511) and Chaghasaray (512) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  14. Hyperspectral surface materials map of quadrangle 3464, Shahrak (411) and Kasi (412) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  15. Hyperspectral Surface Materials Map of Quadrangle 3268, Khayr Kot (521) and Urgun (522) Quadrangles, Afghanistan, Showing Iron-bearing Minerals and Other Materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangle 3470, Jalalabad (511) and Chaghasaray (512) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral surface materials map of quadrangle 3260, Dasht-e-Chah-e-Mazar (419) and Anar Darah (420) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangle 3266, Uruzgan (519) and Moqur (520) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangle 3568, Pul-e Khumri (503) and Charikar (504) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3562, Khawja-Jir (403) and Murghab (404) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangle 3364, Pasaband (417) and Markaz-e Kajiran (418) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangle 3770, Faizabad (217) and Parkhaw (218) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangle 3162, Chakhansur (603) and Kotalak (604) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3562, Khawja-Jir (403) and Murghab (404) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3262, Farah (421) and Hokumat-e-pur-Chaman (422) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangle 3264, Naw Zad-Musa Qala (423) and Dihrawud (424) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangle 3570, Tagab-e-Munjan (505) and Asmar-Kamdesh (506) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral surface materials map of quadrangle 3366, Gizab (513) and Nawer (514) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangle 3464, Shahrak (411) and Kasi (412) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangle 3570, Tagab-e-Munjan (505) and Asmar-Kamdesh (506) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral surface materials map of quadrangle 3462, Herat (409) and Chishti Sharif (410) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. Hyperspectral surface materials map of quadrangle 3566, Sangcharak (501) and Sayghan-o-Kamard (502) quadrangles, Afghanistan, showing iron-bearing minerals and other material

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  13. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  14. Hyperspectral surface materials map of quadrangle 3362, Shindand (415) and Tulak (416) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  15. Hyperspectral surface materials map of quadrangle 3468, Chak-e Wardak-Siyahgird (509) and Kabul (510) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangle 3364, Pasaband (417) and Markaz-e Kajiran (418) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral Surface Materials Map of Quadrangle 3566, Sangcharak (501) and Sayghan-o-Kamard (502) Quadrangles, Afghanistan, Showing Carbonates, Phyllosilicates, Sulfates, Altered Minerals, and Other Materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangle 3162, Chakhansur (603) and Kotalak (604) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3264, Naw Zad-Musa Qala (423) and Dihrawud (424) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangle 3362, Shindand (415) and Tulak (416) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangle 3462, Herat (409) and Chishti Sharif (410) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangle 3368, Ghazni (515) and Gardez (516) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3670, Jurm-Kishim (223) and Zebak (224) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Direct Versus Indirect Supervision of Fellows Covering Football Events: A Survey of Fellows and Program Directors

    Science.gov (United States)

    Lascano, Charles A.; Stovak, Mark L.; Harvey, A. T.

    2010-01-01

    Background The Accreditation Council for Graduate Medical Education (ACGME) program requirements mandate “adequate supervision,” of residents, but there is little guidance for sports medicine fellowship directors regarding the transition from direct to indirect supervision of fellows covering football games. Objective We sought to gather evidence of current supervision practices in the context of injury outcomes. Methods Fellows and program directors of ACGME-accredited sports medicine fellowship programs were invited to complete an online survey regarding their experience and current supervision practice at football games. Criteria for transition to autonomy and desired changes in supervision practice were elicited. Player safety was quantified by noting the number of field-side emergencies, whether an attending was present, and whether better outcomes might have resulted from the presence of an attending. Results A total of 80 fellows and 50 program directors completed the online survey. Direct supervision was lacking in about 50% of high school games and 20% of college games. A resulting cost in terms of player safety was estimated to apply to 5% of serious injuries by fellows' report but less than 0.5% by directors' report. Written criteria for transitioning from direct supervision to autonomy were the exception rather than the rule. The majority of fellows and directors expressed satisfaction with the current level of supervision, but 20% of fellows would prefer more supervision through postgame review. Conclusions Football games covered by fellows are often not directly supervised. Absence of an attending affected the outcomes of 5% or less of serious injuries. Transition to autonomy does not usually require meeting written criteria. Fellows might benefit from additional off-site supervision. PMID:21976096

  6. A Satellite Survey of Cloud Cover and Water Vapor in the Southwestern USA and Northern Mexico

    Science.gov (United States)

    Carrasco, E.; Avila, R.; Erasmus, A.; Djorgovski, S. G.; Walker, A. R.; Blum, R.

    2017-03-01

    Cloud cover and water vapor conditions in the southwestern USA and northern Mexico were surveyed as a preparatory work for the Thirty Meter Telescope (TMT) in situ site testing program. Although the telescope site is already selected, the TMT site testing team decided to make public these results for its usefulness for the community. Using 58 months of meteorological satellite observations between 1993 July and 1999 September, different atmospheric parameters were quantified from data of the 10.7 μm and of 6.7 μm windows. In particular, cloud cover and water vapor conditions were identified in preferred areas. As a result of the aerial analysis, 15 sites of existing and potential telescope were selected, compared, and ranked in terms of their observing quality. The clearest sites are located along the spine of the Baja peninsula and into southern California on mountain peaks above the temperature inversion layer. A steep gradient of cloudiness was observed along the coast where coastal cloud and fog are trapped below the inversion layer. Moving from west to east over the continent, a significant increase in cloudiness was observed. The analysis shows that San Pedro Mártir, San Gorgonio Mountain and San Jacinto Peak have the largest fraction of clear sky conditions (∼74%). The site with the optimal combination of clear skies and low precipitable water vapor is Boundary Peak, Nevada. An approach based in satellite data provided a reliable method for sites comparison.

  7. National uranium resource evaluation: Clifton Quadrangle, Arizona and New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    White, D L; Foster, M

    1982-05-01

    The Clifton Quadrangle, Arizona and New Mexico, was evaluated to identify environments and delineate areas favorable for uranium deposits. The evaluation used criteria formulated for the National Uranium Resource Evaluation program. Evidence for the evaluation was based on surface studies, hydrogeochemical and stream-sediment reconnaissance, and aerial radiometric surveys. The quadrangle encompasses parts of three physiographic provinces: the Colorado Plateau, the transition zone, and the Basin and Range. The one environment determined, during the present study, to be favorable for uranium deposits is the Whitewater Creek member of the Cooney tuff, which is favorable for magmatic-hydrothermal uranium deposits on the west side of the Bursum caldera. No other areas were favorable for uranium deposits in sandstone, limestone, volcanogenic, igneous, or metamorphic environments. The subsurface is unevaluated because of lack of information, as are areas where access is a constraint.

  8. Geologic map of the Stephens City quadrangle, Clark, Frederick, and Warren Counties, Virginia

    Science.gov (United States)

    Weary, D.J.; Orndorff, R.C.; Aleman-Gonzalez, W.

    2006-01-01

    The Stephens City 1:24,000-scale quadrangle is one of several quadrangles in Frederick County, Virginia being mapped by geologists from the U.S. Geological Survey in Reston, VA with funding from the National Cooperative Geologic Mapping Program. This work is part of a project being lead by the U.S. Geological Survey Water Resources Discipline, Virginia District, to investigate the geologic framework and groundwater resources of Frederick County as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia.

  9. Geologic Map of the Greenaway Quadrangle (V-24), Venus

    Science.gov (United States)

    Lang, Nicholas P.; Hansen, Vicki L.

    2010-01-01

    The Greenaway quadrangle (V-24; lat 0 degrees -25 degrees N., long 120 degrees -150 degrees E.), Venus, derives its name from the impact crater Greenaway, centered at lat 22.9 degrees N., long 145.1 degrees E., in the northeastern part of the quadrangle. Greenaway was a well-noted writer and illustrator of children`s books in Britain during the nineteenth century. In Greenaway`s honor, the Library Association of Great Britain presents the annual Kate Greenaway Medal to an illustrator living and publishing in Britain who has produced the most distinguished children`s book illustrations for that year. The Greenaway quadrangle occupies an 8,400,000 km2 equatorial swath of lowlands and highlands. The map area is bounded by the crustal plateau, Thetis Regio, to the south and Gegute Tessera to the west. The rest of the quadrangle consists of part of Llorona Planitia, which is part of the vast lowlands that cover about 80 percent of Venus` surface. The southern map area marks the north edge of Aphrodite Terra, including Thetis Regio, that includes the highest topography in the quadrangle with elevations reaching >1 km above the Mean Planetary Radius (MPR; 6,051.84 km). Northern Aphrodite Terra abruptly slopes north to Llorona Planitia. A broad northeast-trending topographic arch pocked with coronae separates two northeast-trending elongate basins, Llorona Planitia on the east, that form depositional centers for shield and coronae-sourced materials; both basins drop to elevations of <-1 km. In addition to these major features, the map area hosts thousands of small volcanic constructs (shields); seven coronae; ribbon-tessera terrain; suites of faults, fractures, and wrinkle ridges; 23 impact craters; and one craterless splotch. Our goal for mapping the geology of the Greenaway quadrangle was to determine the geologic history for this region, which in turn provides insights into volcanic and tectonic processes that shaped the Venusian surface. Map relations illustrate that

  10. Prospect- and Mine-Related Features from U.S. Geological Survey 7.5- and 15-Minute Topographic Quadrangle Maps of the Western United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data are part of a larger USGS project to develop an updated geospatial database of mines, mineral deposits and mineral regions in the United States. Mine and...

  11. Geologic map of the Palisade quadrangle, Mesa County, Colorado

    Science.gov (United States)

    Carrara, Paul E.

    2000-01-01

    The Palisade 1:24,000 quadrangle is in Mesa County in western Colorado. Because the map area is dominated by various surficial deposits, the map depicts 22 different Quaternary units. Two prominent river terraces are present in the quadrangle containing gravels deposited by the Colorado River. The map area contains many mass movement deposits. Extensive landslide deposits are present along the eastern part of the quadrangle. These massive landslides originate on the flanks of Grand Mesa, in the Green River and Wasatch Formations, and flow west onto the Palisade quadrangle. In addition, large areas of the eastern and southern parts of the map are covered by extensive pediment surfaces. These pediment surfaces are underlain by debris flow deposits also originating from Grand Mesa. Material in these deposits consists of mainly subangular basalt cobbles and boulders and indicate that these debris flow deposits have traveled as much as 10 km from their source area. The pediment surfaces have been divided into 5 age classes based on their height above surrounding drainages. Two common bedrock units in the map area are the Mancos Shale and the Mesaverde Group both of Upper Cretaceous age. The Mancos shale is common in low lying areas near the western map border. The Mesaverde Group forms prominent sandstone cliffs in the north-central map area. The map is accompanied by a separate pamphlet containing unit descriptions, a section on geologic hazards (including landslides, piping, gullying, expansive soils, and flooding), and a section on economic geology (including sand and gravel, and coal). A table indicates what map units are susceptible to a given hazard. Approximately twenty references are cited at the end of the report.

  12. A gravity survey of parts of quadrangles 26E, 26F, 27E, and 27F, northeastern Arabian Shield, Kingdom of Saudi Arabia

    Science.gov (United States)

    Miller, C.H.; Showail, A.A.; Kane, M.F.; Khoja, I.A.; Al Ghandi, S. A.

    1989-01-01

    A gravity survey using nearly 800 stations was conducted over an area of about 13,400 km2 located in the northeast part of the Arabian Shield. The stations were set on spot elevations of relative high density and shown on high-quality l:50,000-scale topographic base maps.

  13. Geologic Map of the Carlton Quadrangle, Yamhill County, Oregon

    Science.gov (United States)

    Wheeler, Karen L.; Wells, Ray E.; Minervini, Joseph M.; Block, Jessica L.

    2009-01-01

    The Carlton, Oregon, 7.5-minute quadrangle is located in northwestern Oregon, about 35 miles (57 km) southwest of Portland. It encompasses the towns of Yamhill and Carlton in the northwestern Willamette Valley and extends into the eastern flank of the Oregon Coast Range. The Carlton quadrangle is one of several dozen quadrangles being mapped by the U.S. Geological Survey (USGS) and the Oregon Department of Geology and Mineral Industries (DOGAMI) to provide a framework for earthquake- hazard assessments in the greater Portland, Oregon, metropolitan area. The focus of USGS mapping is on the structural setting of the northern Willamette Valley and its relation to the Coast Range uplift. Mapping was done in collaboration with soil scientists from the National Resource Conservation Service, and the distribution of geologic units is refined over earlier regional mapping (Schlicker and Deacon, 1967). Geologic mapping was done on 7.5-minute topographic base maps and digitized in ArcGIS to produce ArcGIS geodatabases and PDFs of the map and text. The geologic contacts are based on numerous observations and samples collected in 2002 and 2003, National Resource Conservation Service soils maps, and interpretations of 7.5-minute topography. The map was completed before new, high-resolution laser terrain mapping was flown for parts of the northern Willamette Valley in 2008.

  14. 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 12

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In the late 1880's and early 1900's the Mississippi River Commission (MRC) conducted an extensive high-resolution survey of the Mississippi River from Cairo,...

  15. 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 18

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In the late 1880's and early 1900's the Mississippi River Commission (MRC) conducted an extensive high-resolution survey of the Mississippi River from Cairo,...

  16. 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 11

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In the late 1880's and early 1900's the Mississippi River Commission (MRC) conducted an extensive high-resolution survey of the Mississippi River from Cairo,...

  17. 1890's Land Cover/Use - Mississippi River Commission Surveys, Open River 2

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In the late 1880's and early 1900's the Mississippi River Commission (MRC) conducted an extensive high-resolution survey of the Mississippi River from Cairo,...

  18. 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 10

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In the late 1880's and early 1900's the Mississippi River Commission (MRC) conducted an extensive high-resolution survey of the Mississippi River from Cairo,...

  19. 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 21

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In the late 1880's and early 1900's the Mississippi River Commission (MRC) conducted an extensive high-resolution survey of the Mississippi River from Cairo,...

  20. 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 16

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In the late 1880's and early 1900's the Mississippi River Commission (MRC) conducted an extensive high-resolution survey of the Mississippi River from Cairo,...

  1. 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 24

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In the late 1880's and early 1900's the Mississippi River Commission (MRC) conducted an extensive high-resolution survey of the Mississippi River from Cairo,...

  2. 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 13

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In the late 1880's and early 1900's the Mississippi River Commission (MRC) conducted an extensive high-resolution survey of the Mississippi River from Cairo,...

  3. 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 15

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In the late 1880's and early 1900's the Mississippi River Commission (MRC) conducted an extensive high-resolution survey of the Mississippi River from Cairo,...

  4. 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 2

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In the late 1880's and early 1900's the Mississippi River Commission (MRC) conducted an extensive high-resolution survey of the Mississippi River from Cairo,...

  5. Enhanced Historical Land-Use and Land-Cover Data Sets of the U.S. Geological Survey: Data Source Index Polygons

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This polygon data set provides ancillary information to supplement a release of enhanced U.S. Geological Survey (USGS) historical land-use and land-cover data. The...

  6. Preliminary bedrock and surficial geologic map of the west half of the Sanders 30' x 60' quadrangle, Navajo and Apache Counties, northern Arizona

    Science.gov (United States)

    Amoroso, Lee; Priest, Susan S.; Hiza-Redsteer, Margaret

    2014-01-01

    The bedrock and surficial geologic map of the west half of the Sanders 30' x 60' quadrangle was completed in a cooperative effort of the U.S. Geological Survey (USGS) and the Navajo Nation to provide regional geologic information for management and planning officials. This report provides baseline geologic information that will be useful in future studies of groundwater and surface water resources, geologic hazards, and the distribution of soils and plants. The west half of the Sanders quadrangle encompasses approximately 2,509 km2 (980 mi2) within Navajo and Apache Counties of northern Arizona and is bounded by lat 35°30' to 35° N., long 109°30' to 110° W. The majority of the land within the map area lies within the Navajo Nation. South of the Navajo Nation, private and State lands form a checkerboard pattern east and west of Petrified Forest National Park. In the west half of the Sanders quadrangle, Mesozoic bedrock is nearly flat lying except near folds. A shallow Cenozoic erosional basin that developed about 20 Ma in the western part of the map area cut across late Paleozoic and Mesozoic rocks that were subsequently filled with flat-lying Miocene and Pliocene mudstone and argillaceous sandstone and fluvial sediments of the Bidahochi Formation and associated volcanic rocks of the Hopi Buttes volcanic field. The Bidahochi rocks are capped by Pliocene(?) and Pleistocene fluvial sediments and Quaternary eolian and alluvial deposits. Erosion along northeast-southwest-oriented drainages have exposed elongated ridges of Bidahochi Formation and basin-fill deposits that are exposed through shallow eolian cover of similarly oriented longitudinal dunes. Stokes (1964) concluded that the accumulation of longitudinal sand bodies and the development of confined parallel drainages are simultaneous processes resulting in parallel sets of drainages and ridges oriented along the prevailing southwest wind direction on the southern Colorado Plateau.

  7. Deformation of the Arctic Ocean Sea Ice Cover Between November 1996 and April 1997: A Survey

    Science.gov (United States)

    Kwok, R.

    2000-01-01

    Quasi-linear features of the scale of kilometers to hundreds of kilometers can be observed in the high-resolution deformation fields of the sea ice cover produced by the RADARSAT Geophysical Processor System.

  8. Every flock generalised quadrangle has a hemisystem

    CERN Document Server

    Bamberg, John; Royle, Gordon

    2009-01-01

    We prove that every flock generalised quadrangle contains a hemisystem, and we provide a construction method which unifies our results with the examples of Cossidente and Penttila in the classical case.

  9. zCOSMOS : A large VLT/VIMOS redshift survey covering 0

    NARCIS (Netherlands)

    Lilly, S. J.; Le Fevre, O.; Renzini, A.; Zamorani, G.; Scodeggio, M.; Contini, T.; Carollo, C. M.; Hasinger, G.; Kneib, J.-P.; Iovino, A.; Le Brun, V.; Maier, C.; Mainieri, V.; Mignoli, M.; Silverman, J.; Tasca, L. A. M.; Bolzonella, M.; Bongiorno, A.; Bottini, D.; Capak, P.; Caputi, K.; Cimatti, A.; Cucciati, O.; Daddi, E.; Feldmann, R.; Franzetti, P.; Garilli, B.; Guzzo, L.; Ilbert, O.; Kampczyk, P.; Kovac, K.; Lamareille, F.; Leauthaud, A.; Le Borgne, J.-F.; McCracken, H. J.; Marinoni, C.; Pello, R.; Ricciardelli, E.; Scarlata, C.; Vergani, D.; Sanders, D. B.; Schinnerer, E.; Scoville, N.; Taniguchi, Y.; Arnouts, S.; Aussel, H.; Bardelli, S.; Brusa, M.; Cappi, A.; Ciliegi, P.; Finoguenov, A.; Foucaud, S.; Franceschini, R.; Halliday, C.; Impey, C.; Knobel, C.; Koekemoer, A.; Kurk, J.; Maccagni, D.; Maddox, S.; Marano, B.; Marconi, G.; Meneux, B.; Mobasher, B.; Moreau, C.; Peacock, J. A.; Porciani, C.; Pozzetti, L.; Scaramella, R.; Schiminovich, D.; Shopbell, P.; Smail, I.; Thompson, D.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Zucca, E.

    2007-01-01

    zCOSMOS is a large-redshift survey that is being undertaken in the COSMOS field using 600 hr of observation with the VIMOS spectrograph on the 8mVLT. The survey is designed to characterize the environments of COSMOS galaxies from the 100 kpc scales of galaxy groups up to the 100 Mpc scale of the cos

  10. U.S. Geological Survey Gap Analysis Program- Land Cover Data v2.2

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis...

  11. Forest Cover Associated with Improved Child Health and Nutrition: Evidence from the Malawi Demographic and Health Survey and Satellite Data

    Science.gov (United States)

    Johnson, Kiersten B.; Jacob, Anila; Brown, Molly Elizabeth

    2013-01-01

    Healthy forests provide human communities with a host of important ecosystem services, including the provision of food, clean water, fuel, and natural medicines. Yet globally, about 13 million hectares of forests are lost every year, with the biggest losses in Africa and South America. As biodiversity loss and ecosystem degradation due to deforestation continue at unprecedented rates, with concomitant loss of ecosystem services, impacts on human health remain poorly understood. Here, we use data from the 2010 Malawi Demographic and Health Survey, linked with satellite remote sensing data on forest cover, to explore and better understand this relationship. Our analysis finds that forest cover is associated with improved health and nutrition outcomes among children in Malawi. Children living in areas with net forest cover loss between 2000 and 2010 were 19% less likely to have a diverse diet and 29% less likely to consume vitamin A-rich foods than children living in areas with no net change in forest cover. Conversely, children living in communities with higher percentages of forest cover were more likely to consume vitamin A-rich foods and less likely to experience diarrhea. Net gain in forest cover over the 10-year period was associated with a 34% decrease in the odds of children experiencing diarrhea (P5.002). Given that our analysis relied on observational data and that there were potential unknown factors for which we could not account, these preliminary findings demonstrate only associations, not causal relationships, between forest cover and child health and nutrition outcomes. However, the findings raise concerns about the potential short- and long-term impacts of ongoing deforestation and ecosystem degradation on community health in Malawi, and they suggest that preventing forest loss and maintaining the ecosystems services of forests are important factors in improving human health and nutrition outcomes.

  12. Mercury: Photomosaic of the Shakespeare Quadrangle (Northern Half) H-3

    Science.gov (United States)

    1974-01-01

    This computer generated photomosaic from Mariner 10 is of the northern half of Mercury's Shakespeare Quadrangle, named for the ancient Shakespeare crater located on the lower edge to the left of center. This portion of the quadrangle covers the geographic region from 45 to 70 degrees north latitude and from 90 to 180 degrees longitude. The photomosaic was produced using computer techniques and software developed in the Image Processing Laboratory of NASA's Jet Propulsion Laboratory. The pictures have been high-pass filtered and contrast enhanced to accentuate surface detail, and geometrically transformed into a Lambert conformal projection.The illuminated surface observed by Mariner 10 as it first approached Mercury is dominated by craters and basins. In marked contrast to this view, the surface photographed after the flyby exhibited features totally different, including large basins and extensive relatively smooth areas with few craters. The most striking feature in this region of the planet is a huge circular basin, 1300 kilometers in diameter, that was undoubtedly produced from a tremendous impact comparable to the event that formed the Imbrium basin on the Moon. This prominent Mercurian structure in the Shakespeare and Tolstoj quadrangles (lower left corner of this image), named Caloris Planitia, is filled with material forming a smooth surface or plain that appears similar in many respects to the lunar maria.The above material was taken from the following publication... Davies, M. E., S. E. Dwornik, D. E. Gault, and R. G. Strom, Atlas of Mercury, NASA SP-423 (1978).The Mariner 10 mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.

  13. Benthic Cover

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic cover (habitat) maps are derived from aerial imagery, underwater photos, acoustic surveys, and data gathered from sediment samples. Shallow to moderate-depth...

  14. Hyperspectral surface materials map of quadrangle 3260, Dasht-e-Chah-e-Mazar (419) and Anar Darah (420) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  15. Hyperspectral surface materials map of quadrangles 3666 and 3766, Balkh (219), Mazar-e Sharif (220), Qarqin (213), and Hazara Toghai (214) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangles 3668 and 3768, Baghlan (221), Taluqan (222), Imam Sahib (215), and Rustaq (216) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral surface materials map of quadrangles 2962 and 3062, Gawdezereh (615), Galachah (616), Chahar Burjak (609), and Khan Neshin (610) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    Hoefen, Todd M.; King, Trude V.V.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangles 3360 and 3460, Kawir-e Naizar (413), Kohe-Mahmudo-Esmailjan (414), Kol-e Namaksar (407), and Ghoriyan (408) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangles 3664 and 3764, Char Shengo (123), Shibirghan (124), Jalajin (117), and Kham-Ab (118) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangles 3666 and 3766, Balkh (219), Mazar-e Sharif (220), Qarqin (213), and Hazara Toghai (214) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangles 3360 and 3460, Kawir-e Naizar (413), Kohe-Mahmudo-Esmailjan (414), Kol-e Namaksar (407), and Ghoriyan (408) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangles 3664 and 3764, Char Shengo (123), Shibirghan (124), Jalajin (117), and Kham-Ab (118) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangles 2962 and 3062, Gawdezereh (615), Galachah (616), Chahar Burjak (609), and Khan Neshin (610) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Hoefen, Todd M.; Kokaly, Raymond F.; King, Trude V.V.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangles 3668 and 3768, Baghlan (221), Taluqan (222), Imam Sahib (215), and Rustaq (216) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Geologic map of the Murray Quadrangle, Newton County, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2016-07-06

    This map summarizes the geology of the Murray quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area is on the southern flank of the Ozark dome, an uplift that has the oldest rocks exposed at its center, in Missouri. Physiographically, the Murray quadrangle is within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and Little Buffalo River and their tributaries expose an approximately 1,600-ft-thick (488-meter-thick) sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The Buffalo National River, a park that encompasses the Buffalo River and adjacent land that is administered by the National Park Service is present at the northwestern edge of the quadrangle.Mapping for this study was carried out by field inspection of numerous sites and was compiled as a 1:24,000 geographic information system (GIS) database. Locations and elevation of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade relief and slope maps derived from a U.S. Geological Survey 10-meter digital elevation model as well as orthophotographs were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours, constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation, were drawn based on the elevations of field sites on these contacts well as other limiting information for their minimum elevations above hilltops or their maximum elevations below valley bottoms.

  6. Geologic map of the Rusalka Planitia Quadrangle (V-25), Venus

    Science.gov (United States)

    Young, Duncan A.; Hansen, Vicki L.

    2003-01-01

    The Rusalka Planitia quadrangle (herein referred to as V-25) occupies an 8.1 million square kilometer swath of lowlands nestled within the eastern highlands of Aphrodite Terra on Venus. The region (25?-0? N., 150?-180? E.) is framed by the crustal plateau Thetis Regio to the southwest, the coronae of the Diana-Dali chasmata complex to the south, and volcanic rise Atla Regio to the west. Regions to the north, and the quadrangle itself, are part of the vast lowlands, which cover four-fifths of the surface of Venus. The often-unspectacular lowlands of Venus are typically lumped together as ridged or regional plains. However, detailed mapping reveals the mode of resurfacing in V-25's lowlands: a mix of corona-related flow fields and local edifice clusters within planitia superimposed on a background of less clearly interpretable extended flow fields, large volcanoes, probable corona fragments, and edifice-flow complexes. The history detailed within the Rusalka Planitia quadrangle is that of the extended evolution of long-wavelength topographic basins in the presence of episodes of extensive corona-related volcanism, pervasive low-intensity small-scale eruptions, and an early phase of regional circumferential shortening centered on central Aphrodite Terra. Structural reactivation both obscures and illuminates the tectonic development of the region. The data are consistent with progressive lithospheric thickening, although the critical lack of an independent temporal marker on Venus severely hampers our ability to test this claim and correlate between localities. Two broad circular basins dominate V-25 geology: northern Rusalka Planitia lies in the southern half of the quadrangle, whereas the smaller Llorona Planitia sits along the northwestern corner of V-25. Similar large topographic basins occur throughout the lowlands of Venus, and gravity data suggest that some basins may represent dynamic topography over mantle downwellings. Both planitiae include coronae and

  7. Geologic map of the Pinedale quadrangle, McKinley County, New Mexico

    Science.gov (United States)

    Robertson, Jacques F.

    2005-01-01

    The 1:24,000-scale geologic map of the Pinedale 7.5' quadrangle lies in the western part of the Grants uranium mineral belt, which was mapped and studied under a cooperative agreement between the USGS and the U.S. Department of Energy. A spectacular panoramic view of the southern half of the Pinedale quadrangle is obtained looking northward from Interstate Highway 40, particularly from the New Mexico State travelers' rest stop near the Shell Oil Company's Ciniza Refinery, 28.5 kilometers (17.8 miles) east of Gallup. A west-trending escarpment, 200 meters high, of massive red sandstone, rises above a broad valley, its continuity broken only by a few deep and picturesque canyons in the western half of the quadrangle. The escarpment is formed by the eolian Entrada Sandstone of Late Jurassic age. The Entrada unconformably overlies the Chinle Formation of Late Triassic age, which occupies the valley below. The Chinle Formation consists of cherty mottled limestone and mudstone of the Owl Rock Member and underlying, poorly consolidated, red to purple fluvial siltstone, mudstone, and sandstone beds of the Petrified Forest Member. The pinyon- and juniper-covered bench that tops the escarpment is underlain by the Todilto Limestone. A quarry operation, located just north of the Indian community of Iyanbito in the southwestern part of the quadrangle, produces crushed limestone aggregate for highway construction and railroad ballast. Beyond the escarpment to the north and rising prominently above it, is the northwest-trending Fallen Timber Ridge. Near the west side of the quadrangle lie the peaks of Midget Mesa, and Mesa Butte, the latter of which has the highest altitude in the area at 2,635 meters (8,030 feet) above sea level. The prominences are capped by buff-colored resistant beds of the Dakota Sandstone of Late Cretaceous age, containing some interbedded coal. These beds unconformably overlie the uranium-bearing Morrison Formation, which consists of red, green, and gray

  8. Land Cover and Land Use in Slovakia within the LUCAS 201 5 Pan-European Harmonized Survey

    Directory of Open Access Journals (Sweden)

    Vladimír Hutár

    2016-12-01

    Full Text Available The LUCAS project was launched following a decision by the European Parliament and Council of the European Union in May 2000. Eurostat started the LUCAS pilot project in close cooperation with the technical support of the Directorate General for Agriculture and Rural Development’s Joint Research Centre in 2001 . The main aim of the project is to provide a common, aligned, in situ overview of agricultural and environmental data, using GNSS and photo documentation for specific, georeferenced points. Research was carried out in Slovakia over a three-year period, starting in 2006. In 2009, an evaluation of land cover/use was carried out. This article presents the process of preparing, securing, conducting and researching the management of land cover and land use in Slovakia. The survey was launched in 201 2. The classification base consists of eight categories of land cover and land use, which are broken down into more detail. The result is a structured database of images and digital records for 2,455 selected points. The largest class mapped is forestland. The stabilization of the sampling scheme allowed the construction of a time series for monitoring land cover changes for selected types.

  9. Effect on survey response rate of hand written versus printed signature on a covering letter: randomised controlled trial [ISRCTN67566265

    Directory of Open Access Journals (Sweden)

    Ayers Sarah

    2005-08-01

    Full Text Available Abstract Background It is important that response rates to postal surveys are as high as possible to ensure that the results are representative and to maximise statistical power. Previous research has suggested that any personalisation of approach helps to improve the response rate. This experiment tested whether personalising questionnaires by hand signing the covering letter improved the response rate compared with a non-personalised group where the investigator's signature on the covering letter was scanned into the document and printed. Methods Randomised controlled trial. Questionnaires about surgical techniques of caesarean section were mailed to 3,799 Members and Fellows of the Royal College of Obstetricians and Gynaecologists resident in the UK. Individuals were randomly allocated to receive a covering letter with either a computer printed signature or a hand written signature. Two reminders were sent to non-respondents. The outcome measures were the proportion of questionnaires returned and their time to return. Results The response rate was 79.1% (1506/1905 in the hand-signed group and 78.4% (1484/1894 in the scanned and printed signature group. There was no detectable difference between the groups in response rate or time taken to respond. Conclusion No advantage was detected to hand signing the covering letter accompanying a postal questionnaire to health professionals.

  10. Influence of coral cover and structural complexity on the accuracy of visual surveys of coral-reef fish communities

    KAUST Repository

    Coker, D. J.

    2017-04-20

    Using manipulated patch reefs with combinations of varying live-coral cover (low, medium and high) and structural complexity (low and high), common community metrics (abundance, diversity, richness and community composition) collected through standard underwater visual census techniques were compared with exhaustive collections using a fish anaesthetic (clove oil). This study showed that reef condition did not influence underwater visual census estimates at a community level, but reef condition can influence the detectability of some small and cryptic species and this may be exacerbated if surveys are conducted on a larger scale.

  11. Reconnaissance geology of the Wadi Wassat quadrangle, Kingdom of Saudi Arabia

    Science.gov (United States)

    Overstreet, William C.; Rossman, D.L.

    1970-01-01

    The Wadi Wassat quadrangle covers an area of 2926 sq km in the southwestern part of the Kingdom of Saudi Arabia. The west half of the quadrangle is underlain by crystalline rocks of the Arabian Shield, but in the eastern half of the quadrangle the Precambrian rocks are covered by Permian or older sandstone which is succeeded farther east by aeolian sands of Ar Rub' al Khali. The Shield consists of a sequence of unmetamorphosed to metamorphosed interlayered volcanic and sedimentary rocks intruded by igneous rocks ranging in composition from gabbro to syenite and in age from Precambrian to Cambrian(?). The volcanic rocks range in composition from andesite to rhyolite and in texture from agglomerate to thick, massive flows and lithic tuff. They are interlayered with conglomerate, fine-grained graywacke sandstone, calcareous graywacke, siltstone, tuffaceous laminated shale, pyritiferous sediment, carbonaceous shale, limestone, and dolomite. Most clastic debris is derived from andesite. In places the rocks are polymetamorphosed; elsewhere they are unmetamorphosed. The rocks on which this volcano-sedimentary eugeosynclinal sequence was deposited are not exposed in the area of the quadrangle. Reglonal dynamothermal metamorphism was .the dominant process affecting the volcanic-sedimentary rocks in the western part of the quadrangle. In the eastern part of the Precambrian area the chief metamorphic effect results from contact action along the walls of intrusive plutons. The oldest igneous rock to intrude the volcanic-sedimentary sequence, after the dikes and sills of the sequence itself, is granite gneiss and gneissic granodiorite. The gneiss is sparsely present in the quadrangle, but northwest of the quadrangle it forms an immense batholith which is one of the major geologic features of southwestern Arabia. However, the most common intrusive rocks of the quadrangle are a magnetic differentiation sequence that ranges in composition from gabbro and diorite to granite

  12. Geologic Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan

    Science.gov (United States)

    Lidke, David J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  13. Geologic map of the Orchard 7.5' quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Slate, Janet L.; Hanson, Paul R.; Brandt, Theodore R.

    2015-01-01

    The Orchard 7.5' quadrangle is located along the South Platte River corridor on the semi-arid plains of eastern Colorado, and contains surficial deposits that record alluvial, eolian, and hillslope processes that have operated through environmental changes from the Pleistocene to the present. The South Platte River, originating high in the Colorado Front Range, has played a major role in shaping the geology of the quadrangle, which is situated downstream of where the last of the major headwater tributaries (St. Vrain, Big Thompson, and Cache la Poudre) join the river. Recurrent glaciation (and deglaciation) of basin headwaters affected river discharge and sediment supply far downstream, influencing alluvium deposition and terrace formation in the Orchard quadrangle. Kiowa and Bijou Creeks, unglaciated tributaries originating east of the Front Range also have played a major role by periodically delivering large volumes of sediment to the river during flood events, which may have temporarily dammed the river. Eolian sand deposits of the Greeley (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of drought. With the onset of irrigation during historic times, the South Platte River has changed from a broad, shallow, and sandy braided river with highly seasonal discharge to a much narrower, deeper river with braided-meandering transition morphology and more uniform discharge. Along this reach, the river has incised into Upper Cretaceous Pierre Shale, which, although buried by alluvial deposits in Orchard quadrangle, is locally exposed downstream along the South Platte River bluff near the Bijou Creek confluence, in some of the larger draws, and along Wildcat Creek.

  14. Geologic Map of the Sif Mons Quadrangle (V-31), Venus

    Science.gov (United States)

    Copp, Duncan L.; Guest, John E.

    2007-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Sif Mons quadrangle of Venus includes lat 0? to 25? N. and long 330? to 0? E.; it covers an area of about 8.10 x 106 km2 (fig. 1). The data used to construct the geologic map were from the National Aeronautics and Space Administration (NASA) Magellan Mission. The area is also covered by Arecibo images, which were also consulted (Campbell and Campbell, 1990; Campbell and others, 1989). Data from the Soviet Venera orbiters do not cover this area. All of the SAR products were employed for geologic mapping. C1-MIDRs were used for general recognition of units and structures; F-MIDRs and F-MAPs were used for more specific examination of surface characteristics and structures. Where the highest resolution was required or some image processing was necessary to solve a particular mapping problem, the images were examined using the digital data on CD-ROMs. In cycle 1, the SAR incidence angles for images obtained for the Sif Mons quadrangle ranged from 44? to 46?; in cycle 3, they were between 25? and 26?. We use the term 'high backscatter' of a material unit to imply a rough surface texture at the wavelength scale used by Magellan SAR. Conversely, 'low backscatter' implies a smooth surface. In addition, altimetric, radiometric, and rms slope data were superposed on SAR images. Figure 2 shows altimetry data; figure 3 shows images of ancillary data for the quadrangle; and figure 4 shows backscatter coefficient for selected units. The interpretation of these data was discussed by Ford and others (1989, 1993). For corrected backscatter and

  15. 中老缅泰“黄金四角”地区土地利用与土地覆被变化研究进展%Review of land use and land cover change of Golden Economic Quadrangle Region in the border of China, Laos, Myanmar and Thailand

    Institute of Scientific and Technical Information of China (English)

    刘晓娜; 封志明; 姜鲁光

    2013-01-01

    Golden Economic Quadrangle Region is located on the borders of China, Laos, Myanmar and Thailand, the only multi-national geo-economic region in the Lancang-Mekong River Basin. With the development of various economic cooperation mechanisms, this region is becoming a hot and vulnerable area of land use and land cover change. The study has found that the current researches on land use and land cover change are relatively scattered and dispersed, lacking of holistic, comprehensive and regional comparative studies. Most data of land use and land cover change classification and mapping are from global and large-scale works, which can' t satisfy the regional research needs from the spatial and temporal perspectives. There have been only few high-resolution regional classifications and mapping studies. The levels of the studies on particular land types, i. e., opium poppy, swidden land, rubber forest, vary. Especially, the remote sensing recognition method and spatial-temporal analysis are inadequate. Pattern and process analysis of land use and land cover change has paid more attention to certain land types, but less attention to integrated and national comparative studies. Studies on driving forces of land use and land cover change are only carried out in small local areas. There are abundant studies on the effects of land use and land cover change on soil environment, but relatively rare on water, atmosphere, and eco-environment. The paper suggests that it is necessary to emphasize on comparative studies in different spatial and temporal scales, expand the research topics, adopt comprehensive methodologies, and at the same time, put more focus on the studies in the border regions and underdeveloped areas. The inter-national comparative studies on land use and land cover change on the borders of China, Laos, Myanmar and Thailand, not only help enrich the basic database of land use and land cover change, but also provide references for sustainable land use and regional

  16. Geology of the Cerro Summit quadrangle, Montrose County, Colorado

    Science.gov (United States)

    Dickinson, Robert G.

    1966-01-01

    The Cerro Summit quadrangle covers 58 square miles of dissected plateau on the south flank of the Gunnison uplift in southwestern Colorado. It lies east of the Uncompahgre River valley and south of the Black Canyon of the Gunnison River. Rocks dip gently in most of the quadrangle, but they are locally upturned and faulted on the margin of the Gunnison uplift and are intensely deformed in the core of the uplift. The rocks exposed are of Precambrian, late Mesozoic, and Cenozoic age. Precambrian rocks include metasedimentary schist and gneiss, granitic pegmatite, and olivine gabbro. The oldest Mesozoic rocks exposed are continental, fresh-water, and lagoonal deposits in the Late Jurassic Entrada Sandstone, Wanakah Formation, and Morrison Formation. Channel-fill deposits that unconformably overlie the Jurassic rocks are possibly the Burro Canyon Formation of Early Cretaceous age. Upper Cretaceous rocks include marine and nearshore deposits of the Dakota Sandstone, Mancos Shale, and Pictured Cliffs Sandstone, and the fresh- and brackish-water sandstone, shale, and coal of the Fruitland Formation. Rocks of Late Cretaceous age that crop out in the adjacent Cimarron Ridge area may also have been deposited in this quadrangle but are now eroded; these rocks include the nonmarine Kirtland Shale and an unnamed volcanic conglomerate and tuff breccia. Nine faunal zones in the Mancos Shale help to establish the correct correlation of units in the Upper Cretaceous. The Pictured Cliffs Sandstone, Fruitland Formation, and Kirtland Shale of the Cerro Summit area have been mapped by some geologists as the Mesaverde Formation. Fossils indicate that the rocks are younger than the type Mesaverde. The unnamed volcanic rocks represent major volcanism in nearby areas. A Late Cretaceous (Maestrichtian) age for the volcanism is indicated by palynological evidence and an isotopic age of approximately 66 million years. Middle Tertiary rocks are conglomerate and tuff breccia. Upper Tertiary or

  17. The Otter (Lutra lutra L. Signs and the Banks Tree Cover: A Survey in Central and Eastern Bulgaria

    Directory of Open Access Journals (Sweden)

    Radostina Dimitrova

    2012-12-01

    Full Text Available The study was carried out during 2011 – 2012 at different water basins (rivers and micro dams situated in Central and Eastern Bulgaria. Transects with 600 m length were walked along the banks in otter signs search. The search was stopped when the first otter signs were registered. As a whole we found domination of the very good or excellent bank tree cover. A total of 61% of transects were with tree cover between 50% and 100%. Almost equal were the stretches without or with little tree vegetation. At all transects surveyed the spraints dominated with 61%. All other otter signs were with low percentage. The otter tracks (foot prints were on second place with 20% of occurrence, followed by the food remains with 7%. At 12% of transects we did not find any otter signs. As a whole the otter was registered in 88% of transects, a sign for a good population. Highest preference we registered for walking or feeding of the otter at the open banks with no or with weak tree cover.

  18. Multisource data set integration and characterization of uranium mineralization for the Montrose Quadrangle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.; Balog, S.H.; Campbell, K.; Fugelso, L.E.; Weaver, T.A.; Wecksung, G.W.

    1981-04-01

    Several data-classification schemes were developed by the Los Alamos National Laboratory to detect potential uranium mineralization in the Montrose 1/sup 0/ x 2/sup 0/ quadrangle, Colorado. A first step was to develop and refine the techniques necessary to digitize, integrate, and register various large geological, geochemical, and geophysical data sets, including Landsat 2 imagery, for the Montrose quadrangle, Colorado, using a grid resolution of 1 km. All data sets for the Montrose quadrangle were registered to the Universal Transverse Mercator projection. The data sets include hydrogeochemical and stream sediment analyses for 23 elements, uranium-to-thorium ratios, airborne geophysical survey data, the locations of 90 uranium occurrences, a geologic map and Landsat 2 (bands 4 through 7) imagery. Geochemical samples were collected from 3965 locations in the 19 200 km/sup 2/ quadrangle; aerial data were collected on flight lines flown with 3 to 5 km spacings. These data sets were smoothed by universal kriging and interpolated to a 179 x 119 rectangular grid. A mylar transparency of the geologic map was prepared and digitized. Locations for the known uranium occurrences were also digitized. The Landsat 2 imagery was digitally manipulated and rubber-sheet transformed to quadrangle boundaries and bands 4 through 7 were resampled to both a 1-km and 100-m resolution. All possible combinations of three, for all data sets, were examined for general geologic correlations by utilizing a color microfilm output. Subsets of data were further examined for selected test areas. Two classification schemes for uranium mineralization, based on selected test areas in both the Cochetopa and Marshall Pass uranium districts, are presented. Areas favorable for uranium mineralization, based on these schemes, were identified and are discussed.

  19. Geophysically inferred structural and lithologic map of the precambrian basement in the Joplin 1 degree by 2 degrees Quadrangle, Kansas and Missouri

    Science.gov (United States)

    McCafferty, Anne E.; Cordell, Lindrith E.

    1992-01-01

    This report is an analysis of regional gravity and aeromagnetic data that was carried out as part of a Conterminuous United States Mineral Assessment Program (CUSMAP) study of the Joplin 1° X 2° quadrangle, Kansas and Missouri. It is one in a series of reports representing a cooperative effort between the U.S. Geological Survey, Kansas Geological Survey, and Missouri Department of Natural Resources, Division of Geology and Land Survey. The work presented here is part of a larger project whose goal is to assess the mineral resource potential of the Paleozoic sedimentary section and crystalline basement within the quadrangle. Reports discussing geochemical, geological, and various other aspects of the study area are included in this Miscellaneous Field Studies Map series as MF-2125-A through MF-2125-E. Geophysical interpretation of Precambrian crystalline basement lithology and structure is the focus of this report. The study of the crystalline basement is complicated by the lack of exposures due to the presence of a thick sequence of Phanerozoic sedimentary cover. In areas where there are no outcrops, the geologist must turn to other indirect methods to assist in an understanding of the basement. Previous investigations of the buried basement in this region used available drill hole data, isotope age information, and regional geophysical data (Sims, 1990; Denison and others, 1984; Bickford and others, 1986). These studies were regional in scope and were presented at state and multistate scales. The work documented here used recently collected detailed gravity and aeromagnetic data to enhance the regional geologic knowledge of the area. Terrace-density and terrace-magnetization maps were calculated from the gravity and aeromagnetic data, leading directly to inferred physical-property (density and magnetization) maps. Once these maps were produced, the known geology and drill-hole data were reconciled with the physical-property maps to form a refined structural and

  20. Survey of genome size in 28 hydrothermal vent species covering 10 families.

    Science.gov (United States)

    Bonnivard, Eric; Catrice, Olivier; Ravaux, Juliette; Brown, Spencer C; Higuet, Dominique

    2009-06-01

    Knowledge of genome size is a useful and necessary prerequisite for the development of many genomic resources. To better understand the origins and effects of DNA gains and losses among species, it is important to collect data from a broad taxonomic base, but also from particular ecosystems. Oceanic thermal vents are an interesting model to investigate genome size in very unstable environments. Here we provide data estimated by flow cytometry for 28 vent-living species among the most representative from different hydrothermal vents. We also report the genome size of closely related coastal decapods. Haploid C-values were compared with those previously reported for species from corresponding orders or infraorders. This is the first broad survey of 2C values in vent organisms. Contrary to expectations, it shows that certain hydrothermal vent species have particularly large genomes. The vent squat lobster Munidopsis recta has the largest genome yet reported for any anomuran: 2C=31.1 pg=30.4x10(9) bp. In several groups, such as Brachyura, Phyllodocida, and Veneroida, vent species have genomes that clearly rank at the high end of published values for each group. We also describe the highest DNA content yet recorded for the Brachyura (coastal crabs Xantho pilipes and Necora puber). Finally, analysis of genome size variation across populations revealed unexpected intraspecific variation in the vent shrimp Mirocaris fortunata that could not be attributed simply to ploidy changes.

  1. Geologic map of the Dillon 1 degree by 2 degrees Quadrangle, Idaho and Montana

    Science.gov (United States)

    Ruppel, E.T.; Lopez, D.A.; O'Neill, J. M.

    1993-01-01

    The digital ARC/INFO databases included in this website provide a GIS database for the geologic map of the Dillon 1 degree by 2 degree quadrangle of southwest Montana and east-central Idaho. The geologic map was originally published as U.S. Geological Survey Miscellaneous Investigations Series Map I-1803-H. This website directory contains ARC/INFO format files that can be used to query or display the geology of USGS Map I-1803-H with GIS software.

  2. Enhanced Historical Land-Use and Land-Cover Data Sets of the U.S. Geological Survey: polygon format files

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set depicts land use and land cover from the 1970s and 1980s and has been previously published by the U.S. Geological Survey (USGS) in other file formats....

  3. Enhanced Historical Land-Use and Land-Cover Data Sets of the U.S. Geological Survey: Tile Index Polygons

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This polygon data set documents the spatial extent of polygon files included in a release of enhanced U.S. Geological Survey historical land-use and land-cover data.

  4. Enhanced Historical Land-Use and Land-Cover Data Sets of the U.S. Geological Survey: raster format files

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set depicts land use and land cover from the 1970s and 1980s and has been previously published by the U.S. Geological Survey (USGS) in other file formats....

  5. NURE aerial gamma-ray and magnetic reconnaissance survey, Colorado-Arizona area: Salton Sea NI II-9, Phoenix NI 12-7, El Centro NI II-12, AJO NI 12-10, Lukeville NH 12-1 quadrangles. Volume I. Narrative report

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    A rotary-wing reconnaissance high sensitivity radiometric and magnetic survey, encompassing several 1:250,000 quadrangles in southwestern Arizona and southeastern California, was performed. The surveyed area consisted of approximately 9300 line miles. The radiometric data were corrected and normalized to 400 feet terrain clearance. The data were identified as to rock type by correlating the data samples with existing geologic maps. Statistics defining the mean and standard deviation of each rock type are presented as listings in Volume I of this report. The departure of the data from its corresponding mean rock type is computed in terms of standard deviation units and is presented graphically as anomaly maps in Volume II and as computer listings in microfiche form in Volume I. Profiles of the normalized averaged data are contained in Volume II and include traces of the potassium, uranium and thorium count rates, corresponding ratios, and several ancilliary sensor data traces, magnetometer, radio altimeter and barometric pressure height. A description of the local geology is provided, and a discussion of the magnetic and radiometric data is presented together with an evaluation of selected uranium anomalies.

  6. Enhanced Historical Land-Use and Land-Cover Data Sets of the U.S. Geological Survey

    Science.gov (United States)

    Price, Curtis V.; Nakagaki, Naomi; Hitt, Kerie J.; Clawges, Rick M.

    2007-01-01

    Historical land-use and land-cover data, available from the U.S. Geological Survey (USGS) for the conterminous United States and Hawaii, have been enhanced for use in geographic information systems (GIS) applications. The original digital data sets were created by the USGS in the late 1970s and early 1980s and were later converted by USGS and the U.S. Environmental Protection Agency (USEPA) to a geographic information system (GIS) format in the early 1990s. These data were made available on USEPA's Web site since the early 1990s and have been used for many national applications, despite minor coding and topological errors. During the 1990s, a group of USGS researchers made modifications to the data set for use in the National Water-Quality Assessment Program. These edited files have been further modified to create a more accurate, topologically clean, and seamless national data set. Several different methods, including custom editing software and several batch processes, were applied to create this enhanced version of the national data set. The data sets are included in this report in the commonly used shapefile and Tagged Image Format File (TIFF) formats. In addition, this report includes two polygon data sets (in shapefile format) representing (1) land-use and land-cover source documentation extracted from the previously published USGS data files, and (2) the extent of each polygon data file.

  7. Luminosity and redshift dependence of the covering factor of active galactic nuclei viewed with WISE and Sloan digital sky survey

    Energy Technology Data Exchange (ETDEWEB)

    Toba, Y.; Matsuhara, H. [Department of Space and Astronautical Science, the Graduate University for Advanced Studies (Sokendai), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Oyabu, S. [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Malkan, M. A. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Gandhi, P. [Department of Physics, Durham University, Durham DH1-3LE (United Kingdom); Nakagawa, T.; Isobe, N.; Shirahata, M.; Oi, N.; Takita, S.; Yano, K. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Ohyama, Y. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617 Taiwan (China); Yamauchi, C., E-mail: toba@ir.isas.jaxa.jp [Misato Observatory, 180 Matsugamine, Misato-cho, Kaiso-gun, Wakayama 640-1366 (Japan)

    2014-06-10

    In this work, we investigate the dependence of the covering factor (CF) of active galactic nuclei (AGNs) on the mid-infrared (MIR) luminosity and the redshift. We constructed 12 and 22 μm luminosity functions (LFs) at 0.006 ≤z ≤ 0.3 using Wide-field Infrared Survey Explorer (WISE) data. Combining the WISE catalog with Sloan Digital Sky Survey (SDSS) spectroscopic data, we selected 223,982 galaxies at 12 μm and 25,721 galaxies at 22 μm for spectroscopic classification. We then identified 16,355 AGNs at 12 μm and 4683 AGNs at 22 μm by their optical emission lines and cataloged classifications in the SDSS. Following that, we estimated the CF as the fraction of Type 2 AGN in all AGNs whose MIR emissions are dominated by the active nucleus (not their host galaxies) based on their MIR colors. We found that the CF decreased with increasing MIR luminosity, regardless of the choice of Type 2 AGN classification criteria, and the CF did not change significantly with redshift for z ≤ 0.2. Furthermore, we carried out various tests to determine the influence of selection bias and confirmed that similar dependences exist, even when taking these uncertainties into account. The luminosity dependence of the CF can be explained by the receding torus model, but the 'modified' receding torus model gives a slightly better fit, as suggested by Simpson.

  8. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance basic data for Beeville NTMS Quadrangle, Texas. Uranium resource evaluation project

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-31

    Results of a reconnaissance geochemical survey of the Beeville Quadrangle, Texas are reported. Field and laboratory data are presented for 373 groundwater and 364 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. The groundwater data indicate that the northwestern corner of the quadrangle is the most favorable for potential uranium mineralization. Favorability is indicated by high uranium concentrations; high arsenic, molybdenum, and vanadium concentrations; and proximity and similar geologic setting to the mines of the Karnes County mining district. Other areas that appear favorable are an area in Bee and Refugio Counties and the northeastern part of the quadrangle. Both areas have water chemistry similar to the Karnes County area, but the northeastern area does not have high concentrations of pathfinder elements. The stream sediment data indicate that the northeastern corner of the quadrangle is the most favorable for potential mineralization, but agricultural practices and mineralogy of the outcropping Beaumont Formation may indicate a false anomaly. The northwestern corner of the quadrangle is considered favorable because of its proximity to the known uranium deposits, but the data do not seem to support this.

  9. Geology of the V28 Quadrangle: Hecate Chasma, Venus

    Science.gov (United States)

    Stofan, E. R.; Guest, J. E.; Brian, A. W.

    2000-01-01

    The Hecate Chasma Quadrangle (V28), mapped at 1:5,000,000 scale, extends from 0-25 N and 240-270 Longitude. The quadrangle has thirteen impact craters, several large volcanoes, many coronae, three chasmata, and northern Hinemoa Planitia.

  10. Geologic map of the Hecate Chasma quadrangle (V-28), Venus

    Science.gov (United States)

    Stofan, Ellen R.; Guest, John E.; Brian, Antony W.

    2012-01-01

    The Hecate Chasma quadrangle (V–28) extends from lat 0° to 25° N. and from long 240° E. to 270° E. The quadrangle was mapped at 1:5,000,000 scale as part of the National Aeronautics and Space Administration (NASA) Planetary Geologic Mapping Program.

  11. Characterizing historical (1992-2010) transitions between grassland and cropland in mainland France through mining land-cover survey data

    Institute of Scientific and Technical Information of China (English)

    Ying Xiao; Catherine Mignolet; Jean-Franois Mari; Marc Benot

    2015-01-01

    Grassland, as one of the largest ecosystems on the earth, supports various goods and services to humanity. Historical y, humans have increased agricultural output primarily by cropland expansion and agricultural intensiifcation. The cropland area was primarily gained at the expense of grassland and forests. Apart from grassland conversion, increasing consumption of calorie-and meat-intensive diets drives the intensiifcation of livestock systems, which is shifting steadily from grazing to feeding with crops. To cope with the environmental degradation due to agriculture, various forms of‘green payment’ were implemented to promote the adoption of sustainable farming practices over the last two decades in the European Union. The aim of this study is to monitor the recent transitions (1992–2010) between grassland and cropland during two Common Agricultural Policy (CAP) reforms at the French mainland scale. We proposed an innovative approach to link grassland con-version to agricultural commodities and farming systems practices. We ifrst assessed the grassland-to-cropland conversion and further investigated the crop sequence patterns that were observed to be dominant after the conversion through mining land-cover survey data Teruti and Teruti-Lucas. We found the trends of the transitions between grassland and cropland over the two time intervals:The loss of grassland (1992–2003) and restoration or re-expansion of grassland (2006–2010) in mainland France. Our ifnding on the crop sequence patterns after the grassland conversion reveals two notable evolutions of agricultural production systems. These evolutions were related to the increase in the proportion of cropland in the total agricultural land use. One evolution was most likely inlfuenced by the demand for fodder:The conversion from grazing livestock to feeding livestock. Another evolution was the conversion from livestock production to ifeld crop production. Our results indicate that the intensiifcation of

  12. Accuracy assessment for the U.S. Geological Survey Regional Land-Cover Mapping Program: New York and New Jersey Region

    Science.gov (United States)

    Zhiliang Zhu; Limin Yang; Stephen V. Stehman; Raymond L. Czaplewski

    2000-01-01

    The U.S. Geological Survey, in cooperation with other government and private organizations, is producing a conterminous U.S. land-cover map using Landsat Thematic Mapper 30-meter data for the Federal regions designated by the U.S. Environmental Protection Agency. Accuracy assessment is to be conducted for each Federal region to estimate overall and class-specific...

  13. Mineralogical Analysis of the Oppia Quadrangle of Asteroid (4) Vesta: Evidence for Occurrence of Moderate-Reflectance Hydrated Minerals

    Science.gov (United States)

    Tosi, F.; Frigeri, A.; Combe, J.-Ph.; Zambon, F.; De Sanctis, M. C.; Ammannito, E.; Longobardo, A.; Hoffmann, M.; Nathues, A.; Garry, W. B.; Blewett, D. T.; Pieters, C. M.; Palomba, E.; Stephan, K.; McFadden, L. A.; McSween, H. Y.; Russell, C. T.; Raymond, C. A.

    2015-01-01

    Quadrangle Av-10 'Oppia' is one of five quadrangles that cover the equatorial region of asteroid (4) Vesta. This quadrangle is notable for the broad, spectrally distinct ejecta that extend south of the Oppia crater. These ejecta exhibit the steepest ('reddest') visible spectral slope observed across the asteroid and have distinct color properties as seen in multispectral composite images. Compared to previous works that focused on the composition and nature of unusual ('orange') ejecta found on Vesta, here we take into account a broader area that includes several features of interest, with an emphasis on mineralogy as inferred from data obtained by Dawn's Visible InfraRed mapping spectrometer (VIR). Our analysis shows that the older northern and northeastern part of Av-10 is dominated by howardite-like material, while the younger southwestern part, including Oppia and its ejecta blanket, has a markedly eucritic mineralogy. The association of the mineralogical information with the geologic and topographic contexts allows for the establishment of relationships between the age of the main formations observed in this quadrangle and their composition. A major point of interest in the Oppia quadrangle is the spectral signature of hydrous material seen at the local scale. This material can be mapped by using high-resolution VIR data, combined with multispectral image products from the Dawn Framing Camera (FC) so as to enable a clear correlation with specific geologic features. Hydrated mineral phases studied previously on Vesta generally correlate with low-albedo material delivered by carbonaceous asteroids. However, our analysis shows that the strongest OH signature in Av-10 is found in a unit west of Oppia, previously mapped as 'light mantle material' and showing moderate reflectance and a red visible slope. With the available data we cannot yet assess the presence of water in this material. However, we offer a possible explanation for its origin.

  14. Geologic Map of the Helen Planitia Quadrangle (V-52), Venus

    Science.gov (United States)

    Lopez, Ivan; Hansen, Vicki L.

    2008-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Helen Planitia quadrangle (V-52), located in the southern hemisphere of Venus between lat 25 deg S. and 50 deg S. and between long 240 deg E. and 270 deg E., covers approximately 8,000,000 km2. Regionally, the map area is located at the southern limit of an area of enhanced tectonomagmatic activity and extensional deformation, marked by a triangle that has highland apexes at Beta, Atla, and Themis Regiones (BAT anomaly) and is connected by the large extensional belts of Devana, Hecate, and Parga Chasmata. The BAT anomaly covers approximately 20 percent of the Venusian surface.

  15. Geological Mapping of the Ac-H-13 Urvara Quadrangle of Ceres from NASA's Dawn Mission

    Science.gov (United States)

    Sizemore, Hanna; Williams, David; Platz, Thomas; Mest, Scott; Yingst, Aileen; Crown, David; O'Brien, David; Buczkowski, Debra; Schenk, Paul; Scully, Jennifer; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andreas; De Sanctis, Maria Cristina; Russell, Christopher; Raymond, Carol

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map, and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the geologic evolution of the Ac-H-13 Urvara Quadrangle. At the time of this writing LAMO images (35 m/pixel) are just becoming available. Thus, our geologic maps are based on HAMO images (140 m/pixel) and Survey (400 m/pixel) digital ter-rain models (for topographic information). Dawn Framing Camera (FC) color images are also used to provide context for map unit identification. The maps to be presented as posters will be updated from analyses of LAMO images. The Urvara Quadrangle is dominated by the 170-km diameter impact basin Urvara (46.4°S, 248.6°E) and includes cratered terrain to the west. Named features include the impact craters Meanderi (40.9°S, 193.7°E, 103 km diameter), Sekhet (66.4°S, 254.9°E, 41 km diameter), and Fluusa (31.5°S, 277.9°E), as well as the crater chains Gerber Catena (38.1°S, 214.8°E) and Sam-hain Catena (19.6°S, 210.3°E). Based on preliminary geologic mapping [3,4], we interpret the two prominent catenae as pit craters associated with large scale tectonism rather than secondary impacts. We interpret two large curvilinear depressions near the eastern quadrangle boundary as secondary crater chains resulting from the Urvara impact. Textural and morphological asymme-tries in crater materials within the quadrangle indicate heterogeneities in subsurface composition and volatile content. Features on the Urvara basin floor are consistent with impact fluidization of target materials; post impact extrusion of volatile rich material may have also played a minor role. References: [1] Williams D.A. et al. (2014) Icarus, 244, 1-12. [2] Yingst R.A. et al. (2014) PSS, 103, 2-23. [3] Sizemore et al. (2015) GSA Abstracts with Program

  16. Geological Mapping of the Ac-H-14 Yalode Quadrangle of Ceres from NASA's Dawn Mission

    Science.gov (United States)

    Crown, David; Yingst, Aileen; Mest, Scott; Platz, Thomas; Sizemore, Hanna; Berman, Daniel; Williams, David; Roatsch, Thomas; Preusker, Frank; Nathues, Andreas; Hoffman, Martin; Schäfer, Michael; Raymond, Carol; Russell, Christopher

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres that includes production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the surface geology and geologic evolution of the Ac-H-14 Yalode Quadrangle (21-66°S, 270-360°E). The current geologic map was produced using ArcGIS software based on HAMO images (140 m/pixel) for surface morphology and stratigraphic relationships, Survey (400 m/pixel) digital terrain models for topographic information, and Dawn Framing Camera (FC) color images as context for map unit identification. The map will be updated through analysis of LAMO images (35 m/pixel) that are just becoming available. The Yalode Quadrangle is dominated by the 260-km diameter impact basin Yalode (42.3°S, 293.6°E) and includes rugged and smooth terrains to the east. Preliminary geologic mapping defined two regional units (cratered terrain and smooth material), which dominate the quadrangle, as well as a series of impact crater material units. Mapped geologic features include crater rims, graben, ridges, troughs, scarp, lineaments, and impact crater chains. Geologic contacts are typically not distinct in Survey and HAMO images. Impact craters in Yalode Quadrangle display a range of preservation states. Degraded features, including Yalode basin and numerous smaller craters, exhibit subdued rims, lack discrete ejecta deposits, and have infilled interiors. More pristine features (including Mondamin, Besua, Lono and craters on the Yalode basin floor) have well-defined, quasi-circular forms with prominent rims and in some cases discernible ejecta. Some of these craters have bowl-shaped interiors, and others contain hills or mounds on their floors that are interpreted as central peaks. Yalode basin has a variably preserved rim, which is continuous and sharply defined to the north/northwest and is irregular or degraded

  17. Geologic map of the Dillon quadrangle, Summit and Grand Counties, Colorado

    Science.gov (United States)

    Kellogg, Karl S.

    2002-01-01

    New 1:24,000-scale geologic mapping along the Interstate-70 urban corridor in western Colorado, in support of the USGS Central Region State/USGS Cooperative Geologic Mapping Project, is contributing to a more complete understanding of the stratigraphy, structure, tectonic evolution, and hazard potential of this rapidly developing region. The 1:24,000-scale Dillon quadrangle is near the headwaters of the Blue River and straddles features of the Blue River graben (Kellogg, 1999), part of the northernmost reaches of the Rio Grande rift, a major late Oligocene to recent zone of extension that extends from Colorado to Mexico. The Williams Range thrust fault, the western structural margin of the Colorado Front Range, cuts through the center of the quadrangle, although is mostly covered by surficial deposits. The oldest rocks in the quadrangle underlie the Williams Fork Mountains and the ridge immediately east of South Fork Middle Fork River, and include biotite-sillimanite schist and gneiss, amphibolite, and migmatite that are intruded by granite inferred to be part of the 1,667-1,750 Ma Routt Plutonic Suite (Tweto, 1987). The oldest exposed sedimentary unit is the Upper Jurassic Morrison Formation, but Pennsylvanian Maroon Formation, a sequence of red sandstone, conglomerate, and interbedded shale, underlies the southern part of the quadrangle. The thickest sequence of sedimentary rocks is Cretaceous in age and includes at least 500 m of the Upper Cretaceous Pierre Shale. Surficial deposits include (1) an old, deeply dissected landslide deposit, possibly as old as Pliocene, on the west flank of the Williams Fork Mountains, (2) deeply weathered, very coarse gravel deposits underlying a mesa in the southwest part of the quadrangle (the Mesa Cortina subdivision. The gravels are gold bearing and were mined by hydraulic methods in the 1800s), (3) moderately to deeply weathered, widespread, bouldery material that is a combination of till of the Bull Lake glaciation, debris

  18. Hyperspectral surface materials map of quadrangles 2964, 2966, 3064, and 3066, Shah-Esmail (617), Reg-Alaqadari (618), Samandkhan-Karez (713), Laki-Bander (611), Jahangir-Naweran (612), and Sreh-Chena (707) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Hoefen, Todd M.; Kokaly, Raymond F.; King, Trude V.V.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangles 2964, 2966, 3064, and 3066, Shah-Esmail (617), Reg-Alaqadari (618), Samandkhan-Karez (713), Laki-Bander (611), Jahangir-Naweran (612), and Sreh-Chena (707) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    Hoefen, Todd M.; King, Trude V.V.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Geological Mapping of the Ac-H-5 Fejokoo Quadrangle of Ceres from NASA's Dawn Mission

    Science.gov (United States)

    Hughson, Kynan; Russell, Christopher; Williams, David; Buczkowski, Debra; Mest, Scott; Scully, Jennifer; Kneissl, Thomas; Ruesch, Ottaviano; Frigeri, Alessandro; Combe, Jean-Philippe; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Platz, Thomas; Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael; Park, Ryan; Marchi, Simone; Raymond, Carol

    2016-04-01

    NASA's Dawn spacecraft arrived at Ceres on March 6, 2015, and has been studying the dwarf planet through a series of successively lower orbits, obtaining morphological & topographical image, mineralogical, elemental abundance, and gravity data. Ceres is the largest object in the asteroid belt with a mean diameter of ~950 km. The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for the asteroid Vesta [1, 2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map, and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we present the LAMO-based geologic map of the Ac-H-5 Fejokoo quadrangle (21-66 °N and 270-360 °E) and discuss its geologic evolution. At the time of this writing LAMO images (35 m/pixel) are just becoming available. Thus, our geologic maps are based on HAMO images (~140 m/pixel) and Survey (~400 m/pixel) digital terrain models (for topographic information) [3, 4]. Dawn Framing Camera (FC) color images are also used to provide context for map unit identification. The maps to be presented as posters will be updated from analyses of LAMO images (~35 m/pixel). The Fejokoo quadrangle hosts six primary geologic features: (1) the centrally located, ~80 km diameter, distinctly hexagonal impact crater Fejokoo; (2) Victa crater with its large exterior dark lobate flow feature, and interior lobate and furrowed deposits; (3) Abellio crater, which exhibits a well formed ejecta blanket and has an arcuately textured infilled floor whose morphology is similar to those of homologously sized craters on some of the icy Saturnian satellites [5]; (4) Cozobi crater, whose floor is filled with an unusually bulbous and smooth deposit, thin sheeted multi-lobed flow-like features that are reminiscent of fluidized ejecta as seen on Mars are also observed to be emanating outwards from the N and S rims of this crater [6]; (5) the peculiar Oxo crater on the eastern

  1. Geologic map of the Frisco quadrangle, Summit County, Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Bartos, Paul J.; Williams, Cindy L.

    2002-01-01

    New 1:24,000-scale geologic mapping along the Interstate-70 urban corridor in western Colorado, in support of the USGS Central Region State/USGS Cooperative Geologic Mapping Project, is contributing to a more complete understanding of the stratigraphy, structure, tectonic evolution, and hazard potential of this rapidly developing region. The 1:24,000-scale Frisco quadrangle is near the headwaters of the Blue River and straddles features of the Blue River graben (Kellogg, K.S., 1999, Neogene basins of the northern Rio Grande rift?partitioning and asymmetry inherited from Laramide and older uplifts: Tectonophysics, v. 305, p. 141-152.), part of the northernmost reaches of the Rio Grande rift, a major late Oligocene to recent zone of extension that extends from Colorado to Mexico. The Williams Range thrust fault, the western structural margin of the Colorado Front Range, cuts the northeastern corner of the quadrangle. The oldest rocks in the quadrangle underlie the Tenmile Range and include biotite-sillimanite schist and gneiss, amphibolite, and migmatite that are intruded by granite inferred to be part of the 1,667-1,750 Ma Routt Plutonic Suite (Tweto, Ogden, 1987, Rock units of the Precambrian- basement in Colorado: U.S. Geological Survey Professional Paper 1321-A, 54 p.). The oldest sedimentary unit is the Pennsylvanian Maroon Formation, a sequence of red sandstone, conglomerate, and interbedded shale. The thickest sequence of sedimentary rocks is Cretaceous in age and includes at least 500 m of the Upper Cretaceous Pierre Shale. The sedimentary rocks are intruded by sills and dikes of dacite porphyry sills of Swan Mountain, dated at 44 Ma (Marvin, R.F., Mehnert, H.H., Naeser, C.W., and Zartman, R.E., 1989, U.S. Geological Survey radiometric ages, compilation ?C??Part five?Colorado, Montana, Utah, and Wyoming: Isochron/West, no. 53, p. 14-19. Simmons, E.C., and Hedge, C.E., 1978, Minor-element and Sr-isotope geochemistry of Tertiary stocks, Colorado mineral belt

  2. 2002 Upper Texas Coast Lidar Point Data, Gulf of Mexico Shoreline in the Northeast 3.75-Minute Quadrant of the Lake Como 7.5-Minute Quadrangle: Post Fay Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains elevation data derived from a lidar survey approximately 300m wide of the Gulf of Mexico shoreline in the Northeast Lake Como...

  3. 2002 Upper Texas Coast Lidar Point Data, Gulf of Mexico Shoreline in the Northeast 3.75-Minute Quadrant of the Lake Como 7.5-Minute Quadrangle: Post Fay Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains elevation data derived from a lidar survey approximately 300m wide of the Gulf of Mexico shoreline in the Northeast Lake Como...

  4. Surficial Geologic Map of the Worcester North-Oxford- Wrentham-Attleboro Nine-Quadrangle Area in South- Central Massachusetts

    Science.gov (United States)

    Stone, Byron D.; Stone, Janet R.; DiGiacomo-Cohen, Mary L.

    2008-01-01

    The surficial geologic map layer shows the distribution of nonlithified earth materials at land surface in an area of nine 7.5-minute quadrangles (417 mi2 total) in south-central Massachusetts (fig. 1). Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and in resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, or organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for water resources, construction aggregate resources, earth-surface hazards assessments, and land-use decisions. The mapped distribution of surficial materials that lie between the land surface and the bedrock surface is based on detailed geologic mapping of 7.5-minute topographic quadrangles, produced as part of an earlier (1938-1982) cooperative statewide mapping program between the U.S. Geological Survey and the Massachusetts Department of Public Works (now Massachusetts Highway Department) (Page, 1967; Stone, 1982). Each published geologic map presents a detailed description of local geologic map units, the genesis of the deposits, and age correlations among units. Previously unpublished field compilation maps exist on paper or mylar sheets and these have been digitally rendered for the present map compilation. Regional summaries based on the Massachusetts surficial geologic mapping

  5. Bedrock Geologic Map of the Jay Peak, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG99-1 Compilation bedrock geologic map of the Jay Peak quadrangle, Compiled by B. Doolan, 1999: VGS Open-File Report VG99-1, 1 plate, scale...

  6. Digital bedrock geologic map of the Cavendish quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-203A Ratcliffe, NM, 1995,�Digital bedrock geologic map of the Cavendish quadrangle, Vermont: USGS Open-File Report 95-203, 2 plates, scale...

  7. Digital bedrock geologic map of the Saxtons River quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-52A Ratcliffe, NM�and Armstrong, TR, 1996, Digital bedrock geologic map of the Saxtons River quadrangle, Vermont, USGS Open-File Report...

  8. Geologic Mapping of Isabella Quadrangle (V50), Venus

    Science.gov (United States)

    Bleamaster, L. F., III

    2006-03-01

    Geologic Mapping of the Isabella Quadrangle (V50) provides tests of wrinkle ridge and shield formation mechanisms and temporal relations, impact crater-volcanic construct interactions, and structural reactivation.

  9. Digital bedrock geologic map of the Andover quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-31A Ratcliffe, N.M., 1996, Digital bedrock geologic map of the Andover quadrangle, Vermont: USGS Open-File Report 96-31-A, 2 plates, scale...

  10. Bedrock Geologic Map of the Hinesburg Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from Thompson, P., Thompson, T.B., and Doolan, B., 2004, Bedrock Geology of the Hinesburg quadrangle, Vermont. The bedrock geologic map data at a scale...

  11. Digital bedrock geologic map of the Rochester quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-33A Walsh, GJ and Falta, CK, 1996, Digital bedrock geologic map of the Rochester quadrangle, Vermont: USGS Open-File Report 96-33-A, 2 plates,...

  12. Digital bedrock geologic map of the Weston quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-526A Ratcliffe, NM and Burton, WC, 1996, Digital bedrock geologic map of the Weston quadrangle, Vermont: USGS Open-File Report 96-526, 2...

  13. Geologic Map of the Piedmont Hollow Quadrangle, Oregon County, Missouri

    Science.gov (United States)

    Weary, David J.

    2008-01-01

    The Piedmont Hollow 7.5-min quadrangle is located in south-central Missouri within the Salem Plateau region of the Ozark Plateaus physiographic province (Fenneman, 1938; Bretz, 1965) (fig. 1). Almost all of the land in the quadrangle north of the Eleven Point River is part of the Mark Twain National Forest. Most of the land immediately adjoining the river is part of the Eleven Point National Scenic River, also administered by the U.S. Forest Service. South of the Eleven Point River, most of the land is privately owned and used primarily for grazing cattle and horses. The quadrangle has topographic relief of about 480 feet (ft), with elevations ranging from 550 ft on the Eleven Point River at the eastern edge of the quadrangle to 1,030 ft on a hilltop about a mile to the west-northwest. The most prominent physiographic feature in the quadrangle is the valley of the Eleven Point River, which traverses the quadrangle from west to northeast.

  14. Geologic map of the Lada Terra quadrangle (V-56), Venus

    Science.gov (United States)

    Kumar, P. Senthil; Head, James W.

    2013-01-01

    This publication provides a geological map of Lada Terra quadrangle (V–56), a portion of the southern hemisphere of Venus that extends from lat 50° S. to 70° S. and from long 0° E. to 60° E. V–56 is bordered by Kaiwan Fluctus (V–44) and Agnesi (V–45) quadrangles in the north and by Mylitta Fluctus (V–61), Fredegonde (V–57), and Hurston (V–62) quadrangles in the west, east, and south, respectively. The geological map of V–56 quadrangle reveals evidence for tectonic, volcanic, and impact processes in Lada Terra in the form of tesserae, regional extensional belts, coronae, and volcanic plains. In addition, the map also shows relative age relations such as overlapping or cross-cutting relations between the mapped geologic units. The geology observed within this quadrangle addresses (1) how coronae evolved in association with regional extensional belts and (2) how tesserae, regional plains, and impact craters, which are also significant geological units observed in Lada Terra quadrangle, were formed.

  15. USGS 1:24000 (7 1/2 Minute) Quadrangle Index

    Data.gov (United States)

    Minnesota Department of Natural Resources — Mathematically generated grid representing USGS 7 1/2 Minute Quadrangle Map outlines. Quadrangle names and standard identifiers are included with the data set.

  16. Geologic map of the MTM 85200 quadrangle, Olympia Rupes region of Mars

    Science.gov (United States)

    Skinner, James A.; Herkenhoff, Kenneth E.

    2012-01-01

    The north polar region of Mars is dominated by Planum Boreum, a roughly circular, domical plateau that rises >2,500 m above the surrounding lowland. Planum Boreum is >1,500 km in diameter, contains deep, curvilinear troughs and chasmata, isolated cavi, and marginal scarps and slopes. The north polar plateau is surrounded by low-lying and nearly horizontal plains of various surface texture, geologic origin, and stratigraphic significance. The MTM 85200 quadrangle spans 5° of latitude (lat 82.5° to 87.5° N.) and 40° of longitude (long 140° to 180° E.) within the eastern hemisphere of Mars. The quadrangle includes the high-standing Planum Boreum, curvilinear troughs of Boreales Scopuli, deep, sinuous scarps of Olympia Rupes, isolated and coalesced depressions of Olympia Cavi, margins of the circular polar erg Olympia Undae, and low-standing Olympia Planum. The surface of Planum Boreum within the MTM 85200 quadrangle is characterized by smoothly sculptured landforms with shallow slopes and variable relief at kilometer scales. Areas that are perennially covered with bright frost are generally smooth and planar at 100-m scales. However, MGS MOC and MRO HiRISE images show that much of the icy polar plateau is rough at decameter scale. The Martian polar plateaus are likely to contain a record of global climate history for >107 to as much as ~3 x 109 years. This record is partly observable as rhythmically layered deposits exposed in the curvilinear troughs of the north polar plateau, Planum Boreum. The north polar layered deposits are widely interpreted to be among the most youthful bedrock deposits on the Martian surface. These materials and their stratigraphic and structural relations provide a glimpse into some of the more recent geologic processes that have occurred on Mars. The ability of the massive polar deposits to periodically trap and release both volatiles and lithic particles may represent a globally important, recurring geologic process for Mars.

  17. Uranium hydrogeochemical and stream sediment reconnaissance of the Denver and Greeley NTMS Quadrangles, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.; Broxton, D.E.; Olsen, C.E.

    1978-03-01

    Although this report covers two National Topographic Map Series 2/sup 0/ quadrangles, the data for each quadrangle are presented separately. Evaluation of the data by quadrangle resulted in the delineation of areas in which water and/or sediment uranium concentrations are notably higher than surrounding background concentrations. The major clusters of anomalous water samples were found in areas of the Denver Basin underlain by the Pierre, Laramie, Fox Hills, Denver, and Arapahoe formations. Most of the anomalous sediment samples were collected in areas of the Front Range underlain by Precambrian crystalline rocks, particularly granites of the Silver Plume-Sherman group. Many of the anomalous sediment samples are from sites located near fault zones. The data in this report are also presented by geologic/physiographic province because background uranium concentrations in Front Range samples differ significantly from those in the Denver Basin. Denver Basin waters have higher mean uranium concentrations (mean 14.4 ppB) than Front Range waters (mean 3.3 ppB). Conversely, Front Range sediments are more uraniferous (mean 14.7 ppM) than those in the Denver Basin (mean 6.1 ppM). These differences in background uranium concentrations between Front Range and Denver Basin samples can be attributed to differences in regional geology, physiography, and (in the case of water) the ratio of surface water to ground water sites sampled. There is a significant northward increase in uranium concentrations in water samples from the Denver Basin. The higher uranium concentrations in water samples from the northern part of the basin are probably due to leaching of uraniferous strata in the Pierre and Laramie formations which crop out in that area.

  18. Geological Mapping of the Ac-H-3 Dantu Quadrangle of Ceres from NASA's Dawn Mission.

    Science.gov (United States)

    Kneissl, Thomas; Schmedemann, Nico; Neesemann, Adrian; Williams, David A.; Crown, David A.; Mest, Scott C.; Buczkowski, Debra L.; Scully, Jennifer E. C.; Frigeri, Allessandro; Ruesch, Ottaviano; Hiesinger, Harald; Walter, Sebastian H. G.; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Kersten, Elke; Naß, Andrea; Nathues, Andreas; Platz, Thomas; Russell, Chistopher T.

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the geologic evolution of the Ac-H-3 Dantu Quadrangle. The current map is based on a Framing Camera (FC) clear-filter image mosaic from HAMO data (~140 m/px) as well as a digital terrain model (DTM) derived from imagery of the Survey phase [3]. Albedo variations were identified and mapped using a mosaic of photometrically corrected HAMO images provided by DLR. FC color images provided further context for map unit identification. LAMO images (35m/pixel), which have just become available at the time of writing, will be used to update the map to be presented as a poster. The quadrangle is located between 21-66°N and 90-180°E in a large-scale depression north of the impact basin Kerwan. The northern and southeastern parts of the quadrangle are characterized by cratered terrain while the south and southwest are dominated by the partially smooth ejecta blankets of craters Dantu and Gaue. East-west oriented pit/crater chains in the southern half of the quadrangle might be related to tectonic processes [4,5]. Dantu crater (d=~126 km) is a complex impact crater showing slump terraces and a partially smooth crater floor with concentric and radial fractures. Furthermore, Dantu shows a central pit structure with pitted terrain on its floor as well as several bright spots in the interior and exterior of the crater. High-resolution measurements of crater size-frequency distributions (CSFDs) superposed on Dantu indicate a formation/modification age of ~200 - 700 Ma. Most of the ejecta appear to be relatively bright and correspond to parts of the #2 high albedo region observed with the Hubble Space Telescope [6]. However, the southwestern portion of the ejecta blanket is

  19. Regional geochemistry Bandung Quadrangle West Java: for environmental and resources studies

    Science.gov (United States)

    Sendjaja, Purnama; Baharuddin

    2017-06-01

    Geochemical mapping based on the stream sediment method has been carried out in the whole of Java Region by the Centre for Geological Survey. The Regional Geochemistry Bandung Quadrangle as part of West Java Region has been mapped in 1:100.000 scale map, base on the Geological Map of Bandung Quadrangle. About 82 stream sediment samples collected and sieved in the 80 mesh sieve fraction during the field work session at 2011. This fraction was prepared and analysed for 30 elements by X-ray fluorescence spectrometry at the Centre for Geological Survey Laboratory. There are some elements indicating significant anomaly in this region, and it is important to determine the present abundance and spatial distribution of the elements for presuming result from natural product or derived from human activities. The volcanic products (Tangkuban Perahu Volcano, Volcanic Rock Complex and Quarternary Volcanic-Alluvial Deposit) are clearly identified on the distribution of As, Ba, Cl, Cu, Zr and La elements. However Mn, Zn, V and Sr are related to precipitation in the Tertiary Sediments, while the influence of human activities are showing from a geochemical map of Cl, Cr, Cu, Pb and Zn that show scattered anomalies localized close to the cities, farming and industries.

  20. Geologic map of the Cameron 30' x 60' quadrangle, Coconino County, northern Arizona

    Science.gov (United States)

    Billingsley, George H.; Priest, Susan S.; Felger, Tracey J.

    2007-01-01

    This geologic map is the result of a cooperative effort of the U.S. Geological Survey and the National Park Service in collaboration with the Navajo Nation and the Hopi Tribe to provide regional geologic information for resource management officials of the National Park Service, U.S. Forest Service, Navajo Indian Reservation (herein the Navajo Nation), the Hopi Tribe, and for visitor information services at Grand Canyon National Park, Arizona as well as private enterprises that have lands within the area. The Cameron 30’ x 60’ quadrangle encompasses approximately 5,018 km2 (1,960 mi2) within Coconino County, northern Arizona and is bounded by longitude 111° to 112° W., and latitude 35°30’ to 36° N. The map area is within the southern Colorado Plateaus geologic province (herein Colorado Plateau). The map area is locally subdivided into six physiographic areas: the Grand Canyon (including the Little Colorado River Gorge), Coconino Plateau, Marble Plateau, Little Colorado River Valley, Moenkopi Plateau, and the San Francisco Volcanic Field as defined by Billingsley and others, 1997 (fig. 1). Elevations range from about 2,274 m (7,460 ft) at the south rim of Grand Canyon along State Highway 64 to about 994 m (3,260 ft) in the Grand Canyon, northeast quarter of the map area.The Cameron quadrangle is one of the few remaining areas near the Grand Canyon where uniform geologic mapping was needed for geologic connectivity of the regional geologic framework that will be useful to federal, state, and private land resource managers who direct environmental and land management programs such as range management, biological studies, flood control, and water resource investigations. The geologic information presented will support future and ongoing local geologic investigations and associated scientific studies of all disciplines within the Cameron quadrangle area.

  1. Hydrogeochemical survey of groundwater for selected areas in the Arabian Shield and in cover rocks, Kingdom of Saudi Arabia

    Science.gov (United States)

    McHugh, John B.; Miller, W. Roger

    1989-01-01

    In the spring of 1984, a hydrogeochemical survey was conducted in the Kingdom of Saudi Arabia to test ground water as a sampling medium in exploration for mineral deposits. Eighty-one water samples (mostly from wells) were collected. The samples were analysed for the presence and concentration of major cations and anions, as well as a suite of trace elements. Most of the water samples contained high concentrations of dissolved salts. The majority of the samples showed no significant amounts of the trace elements. A few well-water samples contained moderately anomalous concentrations of zinc, molybdenum, and uranium. These anomalies could be due to salinity effects, contamination, or the proximity of mineral sources. This survey has established some baseline water-chemistry data, especially for the trace metals, which to date have not been reported in ground water in the Kingdom of Saudi Arabia.

  2. A Cultural Resource Survey of the East Shore of Lake Oahe, South Dakota. Volume 1. Covering Report

    Science.gov (United States)

    1986-12-01

    limited evidence of several small debris scatters, none of which were investigated (Roetzel and Woolworth 1978). One of these sites (39CA15) is...flake fragments were recorded during a reconnaissance of the southern shore of Pollock Bay (Roetzel and Woolworth 1978). In 1979, more extensive remains...K.A., and N.L. Woolworth 1978 The archeological and historical survey and report on a proposed project near Pollock and Herried, South Dakota

  3. Mercury: Photomosaic of the Shakespeare Quadrangle of Mercury (Southern Half) H-3

    Science.gov (United States)

    1974-01-01

    This computer generated photomosaic from Mariner 10 is of the southern half of Mercury's Shakespeare Quadrangle, named for the ancient Shakespeare crater located on the upper edge to the left of center. This portion of the quadrangle covers the geographic region from 20 to 45 degrees north latitude and from 90 to 180 degrees longitude. The photomosaic was produced using computer techniques and software developed in the Image Processing Laboratory of NASA's Jet Propulsion Laboratory. The pictures have been high-pass filtered and contrast enhanced to accentuate surface detail, and geometrically transformed into a Lambert conformal projection.Well defined bright streaks or ray systems radiating away from craters constitute another distinctive feature of the Mercurian surface, remarkably similar to the Moon. The rays cut across and are superimposed on all other surface features, indicating that the source craters are the youngest topographic features on the surface of Mercury.The above material was taken from the following publication... Davies, M. E., S. E. Dwornik, D. E. Gault, and R. G. Strom, Atlas of Mercury,NASA SP-423 (1978).The Mariner 10 mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.

  4. Integration of NURE and other data sets with emphasis on their utilization in generating exploration models in the Lubbock, TX 1/sup 0/ x 2/sup 0/ Quadrangle

    Energy Technology Data Exchange (ETDEWEB)

    Lankston, M.M.; Lankston, R.W.

    1979-05-01

    The study reviewed the geology of the region covered by the Lubbock, Texas 1/sup 0/ x 2/sup 0/ NTMS Quadrangle. The geology was integrated with NURE aerial radiometric data that had been recorded before the study was undertaken. The integration indicates that several of the geologic units in the area have recognizable radiometric signatures. These signatures were checked and substantiated by two ground radiometric survey systems, one truck-mounted and one hand-held. Numerous areas were seen which suggested that areas had been mismapped, that recent wind or stream action had modified the surface exposure of units, or that the radiometric data acquisition systems were able to detect surface units which were too small to be presented at the scale of the published geologic map. Two exploration models for the Lubbock region are proposed. The first and most obvious model involves basal Dockum (Triassic) sandstone which has been known for twenty years as a potentially economic uranium zone. The second model is more speculative. By integrating subsurface geologic data, NURE HSSR data, and ground and airborne radiometric data, a band of anomalies is seen extending in a generally north-south direction at the edge of the maximum eastern subsurface extent of Cretaceous rocks. Related to this band of anomalies is the group of very high radiometric anomalies over the Pleistocene lake basins in the southwestern corner of the study area. The basins also may be potential exploration targets.

  5. Geologic map of the eastern quarter of the Flagstaff 30’ x 60’ quadrangle, Coconino County, northern Arizona

    Science.gov (United States)

    Billingsley, George H.; Block, Debra; Hiza-Redsteer, Margaret

    2014-01-01

    The eastern quarter of the Flagstaff 30′ x 60′ quadrangle includes eight USGS 1:24,000-scale quadrangles in Coconino County, northern Arizona (fig. 1, map sheet): Anderson Canyon, Babbitt Wash, Canyon Diablo, Grand Falls, Grand Falls SE, Grand Falls SW, Grand Falls NE, and Meteor Crater. The map is bounded by lat 35° to 35°30′ N. and long 111° to 111°15′ W. and is on the southern part of the Colorado Plateaus geologic province (herein Colorado Plateau). Elevations range from 4,320 ft (1,317 m) at the Little Colorado River in the northwest corner of the map area to about 6,832 ft (2,082 m) at the southwest corner of the map. This geologic map provides an updated geologic framework for the eastern quarter of the Flagstaff 30′ x 60′ quadrangle and is adjacent to two other recent geologic maps, the Cameron and Winslow 30′ x 60′ quadrangles (Billingsley and others, 2007, 2013). This geologic map is the product of a cooperative effort between the U.S. Geological Survey (USGS) and the Navajo Nation. It provides geologic information for resource management officials of the U.S. Forest Service, the Arizona Game and Fish Department, and the Navajo Nation Reservation (herein the Navajo Nation). Funding for the map was provided by the USGS geologic mapping program, Reston, Virginia. Field work on the Navajo Nation was conducted under a permit from the Navajo Nation Minerals Department. Any persons wishing to conduct geologic investigations on the Navajo Nation must first apply for, and receive, a permit from the Navajo Nation Minerals Department, P.O. Box 1910, Window Rock, Arizona 86515, telephone (928) 871-6587.

  6. A Survey on Cover Song Identification%多版本音乐识别技术研究综述

    Institute of Scientific and Technical Information of China (English)

    肖川; 李伟; 殷玥; 薛敏; 朱碧磊; 冯瑞

    2012-01-01

    音乐作品通常具有多个不同版本.重新演奏、演绎使得各版本音乐在音质、速度、节奏、结构、基调、和声、歌词等多个方面都可能产生不同,这使得多版本音乐识别成为一个具有挑战性的研究领域.近年来多版本音乐识别技术发展迅速,本文对其包含的五个关键技术模块进行描述,分别是特征提取模块、基调不变性模块、速度不变性模块、结构不变性模块、相似性计算模块;其次概要介绍该领域的典型算法;最后总结当前存在的问题,并讨论进一步的研究方向.%There usually exist various versions (covers) of a music work. New performances or interpretations of a music piece may cause differences on timbre, tempo, rhythm, structure, key, harmony and lyrics etc., which makes cover song identification a challenging task. In this paper, we summarize five key technical modules which are feature extraction, key invariance, tempo invariance, structure invariance and similarity computing, then introduce representative algorithms, at last discuss the unsolved issues and future directions.

  7. Preliminary isostatic residual gravity map of the Newfoundland Mountains 30' by 60' quadrangle and east part of the Wells 30' by 60' quadrangle, Box Elder County, Utah

    Science.gov (United States)

    Langenheim, Victoria; Athens, N.D.; Churchel, B.A.; Willis, H.; Knepprath, N.E.; Rosario, Jose J.; Roza, J.; Kraushaar, S.M.; Hardwick, C.L.

    2013-01-01

    A new isostatic residual gravity map of the Newfoundland Mountains and east of the Wells 30×60 quadrangles of Utah is based on compilation of preexisting data and new data collected by the Utah and U.S. Geological Surveys. Pronounced gravity lows occur over Grouse Creek Valley and locally beneath the Great Salt Lake Desert, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Newfoundland, Silver Island, and Little Pigeon Mountains. Gravity values measured on pre-Tertiary basement to the north in the Bovine and Hogup Mountains are as much as 10mGal lower. Steep, linear gravity gradients may define basin-bounding faults concealed along the margins of the Newfoundland, Silver Island, and Little Pigeon Mountains, Lemay Island and the Pilot Range.

  8. A Survey of the Impact of Deyolking on Biological Processes Covered by Shotgun Proteomic Analyses of Zebrafish Embryos.

    Science.gov (United States)

    Rahlouni, Fatima; Szarka, Szabolcs; Shulaev, Vladimir; Prokai, Laszlo

    2015-12-01

    Deyolking, the removal of the most abundant protein from the zebrafish (Danio rerio) embryo, is a common technique for in-depth exploration of proteome-level changes in vivo due to various environmental stressors or pharmacological impacts during embryonic stage of development. However, the effect of this procedure on the remaining proteome has not been fully studied. Here, we report a label-free shotgun proteomics survey on proteome coverage and biological processes that are enriched and depleted as a result of deyolking. Enriched proteins are involved in cellular energetics and development pathways, specifically implicating enrichment related to mitochondrial function. Although few proteins were removed completely by deyolking, depleted molecular pathways were associated with calcium signaling and signaling events implicating immune system response.

  9. Accuracy Assessment for the U.S. Geological Survey Regional Land-Cover Mapping Program: New York and New Jersey Region

    Science.gov (United States)

    Zhu, Zhi-Liang; Yang, Limin; Stehman, Stephen V.; Czaplewski, Raymond L.

    2000-01-01

    The U.S. Geological Survey, in cooperation with other government and private organizations, is producing a conterminous U.S. land-cover map using Landsat Thematic Mapper 30-meter data for the Federal regions designated by the U.S. Environmental Protection Agency. Accuracy assessment is to be conducted for each Federal region to estimate overall and class-specific accuracies. In Region 2, consisting of New York and New Jersey, the accuracy assessment was completed for 15 land-cover and land-use classes, using interpreted 1:40,000-scale aerial photographs as reference data. The methodology used for Region 2 features a two-stage, geographically stratified approach, with a general sample of all classes (1,033 sample sites), and a separate sample for rare classes (294 sample sites). A confidence index was recorded for each land-cover interpretation on the 1:40,000-scale aerial photography The estimated overall accuracy for Region 2 was 63 percent (standard error 1.4 percent) using all sample sites, and 75.2 percent (standard error 1.5 percent) using only reference sites with a high-confidence index. User's and producer's accuracies for the general sample and user's accuracy for the sample of rare classes, as well as variance for the estimated accuracy parameters, were also reported. Narrowly defined land-use classes and heterogeneous conditions of land cover are the major causes of misclassification errors. Recommendations for modifying the accuracy assessment methodology for use in the other nine Federal regions are provided.

  10. Geologic Field Notes, Geochemical Analyses, and Field Photographs of Outcrops and Rock Samples from the Big Delta B-1 Quadrangle, East-Central Alaska

    Science.gov (United States)

    Day, Warren C.; O'Neill, J. Michael

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Alaska Department of Natural Resources Division of Mining, Land, and Water, has released a geologic map of the Big Delta B-1 quadrangle of east-central Alaska (Day and others, 2007). This companion report presents the major element oxide and trace element geochemical analyses, including those for gold, silver, and base metals, for representative rock units and for grab samples from quartz veins and mineralized zones within the quadrangle. Also included are field station locations, field notes, structural data, and field photographs based primarily on observations by W.C. Day with additions by J.M. O'Neill and B.M. Gamble, all of the U.S. Geological Survey. The data are provided in both Microsoft Excel spread sheet format and as a Microsoft Access database.

  11. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  12. Geology of the Lachesis Tessera Quadrangle (V-18), Venus

    Science.gov (United States)

    McGowan, Eileen M.; McGill, George G.

    2010-01-01

    The Lachesis Tessera Quadrangle (V-18) lies between 25deg and 50deg north, 300deg and 330deg east. Most of the quadrangle consists of "regional plains" (1) of Sedna and Guinevere Planitiae. A first draft of the geology has been completed, and the tentative number of mapped units by terrain type is: tesserae - 2; plains - 4; ridge belts - 1; fracture belts - 1 (plus embayed fragments of possible additional belts); coronae - 5; central volcanoes - 2; shield flows - 2; paterae - 1; impact craters - 13; undifferentiated flows - 1; bright materials - 1.

  13. Geological mapping of the Kuiper quadrangle (H06) of Mercury

    Science.gov (United States)

    Giacomini, Lorenza; Massironi, Matteo; Galluzzi, Valentina

    2017-04-01

    Kuiper quadrangle (H06) is located at the equatorial zone of Mercury and encompasses the area between longitudes 288°E - 360°E and latitudes 22.5°N - 22.5°S. The quadrangle was previously mapped for its most part by De Hon et al. (1981) that, using Mariner10 data, produced a final 1:5M scale map of the area. In this work we present the preliminary results of a more detailed geological map (1:3M scale) of the Kuiper quadrangle that we compiled using the higher resolution of MESSENGER data. The main basemap used for the mapping is the MDIS (Mercury Dual Imaging System) 166 m/pixel BDR (map-projected Basemap reduced Data Record) mosaic. Additional datasets were also taken into account, such as DLR stereo-DEM of the region (Preusker et al., 2016), global mosaics with high-incidence illumination from the east and west (Chabot et al., 2016) and MDIS global color mosaic (Denevi et al., 2016). The preliminary geological map shows that the western part of the quadrangle is characterized by a prevalence of crater materials (i.e. crater floor, crater ejecta) which were distinguished into three classes on the basis of their degradation degree (Galluzzi et al., 2016). Different plain units were also identified and classified as: (i) intercrater plains, represented by densely cratered terrains, (ii) intermediate plains, which are terrains with a moderate density of superposed craters, and (iii) smooth plains, which are poorly cratered volcanic deposits emplaced mainly on the larger crater floors. Finally, several structures were mapped all over the quadrangle. Most of these features are represented by thrusts, some of which appear to form systematic alignments. In particular, two main thrust systems have been identified: i) the "Thakur" system, a 1500 km-long system including several scarps with a NNE-SSW orientation, located at the edge between the Kuiper and Beethoven (H07) quadrangles; ii) the "Santa Maria" system, located at the centre of the quadrangle. It is a 1700 km

  14. Geologic Map of the Lavinia Planitia Quadrangle (V-55), Venus

    Science.gov (United States)

    Ivanov, Mikhail A.; Head, James W.

    2001-01-01

    Introduction The Lavinia Planitia quadrangle (V-55) is in the southern hemisphere of Venus and extends from 25 to 50 south latitude and from 330 to 360 longitude. It covers the central and northern part of Lavinia Planitia and parts of its margins. Lavinia Planitia consists of a centralized, deformed lowland flooded by volcanic deposits and surrounded by Dione Regio to the west (Keddie and Head, 1995), Alpha Regio tessera (Bindschadler and others, 1992a) and Eve Corona (Stofan and others, 1992) to the northeast, itself an extensive rift zone and coronae belt to the east and south (Baer and others, 1994; Magee and Head, 1995), Mylitta Fluctus to the south (Magee Roberts and others, 1992), and Helen Planitia to the southwest (Senske and others, 1991). In contrast to other areas on Venus, the Lavinia Planitia area is one of several large, relatively equidimensional lowlands (basins) and as such is an important region for the analysis of processes of basin formation and volcanic flooding. Before the Magellan mission, Lavinia Planitia was known on the basis of Pioneer-Venus altimetry to be a lowland area (Pettengill and others, 1980);. Arecibo radar images showed that Lavinia Plaitia was surrounded by several corona-like features and rift-like fractures parallel to the basin margin to the east and south (Senske and others, 1991; Campbell and others, 1990). Arecibo data further revealed that the interior contained complex patterns of deformational features in the form of belts and volcanic plains, and several regions along the margins were seen to be the sources of extensive outpourings of digitate lava flows into the interior (Senske and others, 1991; Campbell and others, 1990). Early Magellan results showed that the ridge belts are composed of complex structures of both extensional and contractional origin (Squyres and others, 1992; Solomon and others, 1992) and that the complex lava flows (fluctus) along the margins (Magee Roberts and others, 1992) emanated from a

  15. Geological Mapping of the Ac-H-12 Toharu Quadrangle of Ceres from NASA Dawn Mission

    Science.gov (United States)

    Mest, Scott; Williams, David; Crown, David; Yingst, Aileen; Buczkowski, Debra; Scully, Jennifer; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andres; Hoffmann, Martin; Schaefer, Michael; Raymond, Carol; Russell, Christopher

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the surface geology and geologic evolution of the Ac-H-12 Toharu Quadrangle (21-66°S, 90-180°E). At the time of this writing LAMO images (35 m/pixel) are just becoming available. The current geologic map of Ac-H-12 was produced using ArcGIS software, and is based on HAMO images (140 m/pixel) and Survey (400 m/pixel) digital terrain models (for topographic information). Dawn Framing Camera (FC) color images were also used to provide context for map unit identification. The map (to be presented as a poster) will be updated from analyses of LAMO images. The Toharu Quadrangle is named after crater Toharu (86 km diameter; 48.3°S, 156°E), and is dominated by smooth terrain in the north, and more heavily cratered terrain in the south. The quad exhibits ~9 km of relief, with the highest elevations (~3.5-4.6 km) found among the western plateau and eastern crater rims, and the lowest elevation found on the floor of crater Chaminuka. Preliminary geologic mapping has defined three regional units (smooth material, smooth Kerwan floor material, and cratered terrain) that dominate the quadrangle, as well as a series of impact crater material units. Smooth materials form nearly flat-lying plains in the northwest part of the quad, and overlies hummocky materials in some areas. These smooth materials extend over a much broader area outside of the quad, and appear to contain some of the lowest crater densities on Ceres. Cratered terrain forms much of the map area and contains rugged surfaces formed largely by the structures and deposits of impact features. In addition to geologic units, a number of geologic features - including crater rims, furrows, scarps, troughs, and impact

  16. Overview of research activities associated with the World Health Organization: results of a survey covering 2006/07

    Directory of Open Access Journals (Sweden)

    Terry Robert F

    2010-09-01

    Full Text Available Abstract Background This paper presents the first comprehensive effort to provide an overview of the research associated with the World Health Organization (WHO headquarters in 2006/07. Methods Information was obtained by questionnaire and interviews with senior staff operating at WHO headquarters in Geneva. Research type, purpose and resources (both financial and staff were defined and compared for each of the 37 departments identified and a comparative analysis was made with the global burden of disease as expressed by Disability Adjusted Life Years (DALY. Results Research expenditure in 2006/07 was estimated at US$215 million. WHO is involved in more than 60 research networks/partnerships and often WHO itself is the network host. Using the DALY model, 84% of the funding WHO allocates to research goes to DALY Type I diseases (communicable, maternal, perinatal and nutritional diseases which represents 40% of DALY. 4% is allocated to Daly Type II (non-communicable diseases which contributes to 48% of DALY. 45% of WHO permanent staff are involved with health research and the WHO's approach to research is predominantly focused on policy, advocacy, health systems and population based research. The Organization principally undertakes secondary research using published data and commissions others to conduct this work through contracts or research grants. This approach is broadly in line with the stated strategy of the Organization. Conclusions The difficulty in undertaking this survey highlights the complexity of obtaining an Organization-wide assessment of research activity in the absence of common standards for research classification, methods for priority setting and a mechanism across WHO, or within the governance of global health research more generally, for managing a research portfolio. This paper presents a strategic birds-eye view of the WHO research portfolio using methodologies that, with further development, may provide the strategic

  17. Covering young adults under the Affordable Care Act: the importance of outreach and Medicaid expansion: findings from the Commonwealth Fund Health Insurance Tracking Survey of Young Adults, 2013.

    Science.gov (United States)

    Collins, Sara R; Rasmussen, Petra W; Garber, Tracy; Doty, Michelle M

    2013-08-01

    There is concern that many young adults (ages 19--29) will remain without health insurance in 2014 despite the Affordable Care Act's reforms, including subsidized private coverage offered in new state marketplaces and expanded Medicaid eligibility. How things turn out will likely depend on outreach efforts and states' decisions on expanding Medicaid. Commonwealth Fund Health Insurance Tracking Survey data from 2011 and 2013 show increasing awareness among young adults of the 2010 requirement that health plans cover children under age 26. Of the estimated 15 million young adults enrolled in a parent's plan in the prior 12 months, 7.8 million would not likely have been eligible to enroll prior to the law. Still, only 27 percent of 19-to-29-year-olds are aware of the marketplaces. Meanwhile, most uninsured young adults living below poverty will not have access to subsidized public or private insurance in states opting out of the Medicaid expansion.

  18. Structural Analysis of the Victoria Quadrangle (H2) of Mercury based on NASA MESSENGER Data

    Science.gov (United States)

    Galluzzi, Valentina

    2015-04-01

    Victoria system post-date the smooth plains, even though the morphological evidence suggests a probable syndepositional fault activity. The structural analysis was supplemented by an innovative method to calculate fault slip data using craters cross-cut by lobate scarps. This method permits to fully constrain remotely-sensed fault kinematics, and it was applied on 16 craters found across 30% of Mercury, covered by stereo-DTM data. Six of the faulted craters are located within the H2 quadrangle and reveal that the Carnegie system and the Victoria - Endeavour array have near-dip-slip kinematics. The former dips 30° eastward, the latter dips 15°-20° westward. Inversion of fault slip data allows estimation of the orientation of the stress field pertaining to the Victoria-Carnegie-systems, whose σ1 trends 71° N. At a global scale, the application of the method developed to constrain fault kinematics documented that Mercurian faults have a wider range of dips (7° to 57°) than that predicted by mechanical models. Moreover, this analysis revealed that lobate scarps on Mercury have rakes ranging from 40° to 141° demonstrating the presence of oblique-slip kinematics, differently from what is assumed by the global contraction model that allows only pure or near dip-slip kinematics. Fault slip data were plotted on dip-rake, strike-rake, dip-latitude and strike-latitude diagrams. When more data will be available, these diagrams will help in evaluating the different tectonic models proposed for Mercury and individuating the probable reactivation of ancient tidal despinning structures. However, analysing these diagrams with the available data suggests that neither global contraction nor tidal despinning can satisfactorily explain the oblique-slip kinematics recorded by some faulted craters. Thus the contribution of additional models, such as mantle convection, should be incorporated in a global explanation of Mercurian tectonics.

  19. National Uranium Resource Evaluation: Iron River Quadrangle, Michigan and Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Frishman, D

    1982-09-01

    No area within the Iron River 1/sup 0/ x 2/sup 0/ Quadrangle, Michigan and Wisconsin, appears to be favorable for the existence of a minimum of 100 tons of U/sub 3/O/sub 8/ at a grade of 0.01 percent or better.

  20. Geologic map of the Agnesi quadrangle (V-45), Venus

    Science.gov (United States)

    Hansen, Vicki L.; Tharalson, Erik R.

    2014-01-01

    The Agnesi quadrangle (V–45), named for centrally located Agnesi crater, encompasses approximately 6,500,000 km2 extending from lat 25° to 50° S. and from long 30° to 60° E. The V–45 quadrangle lies within Venus’ lowland broadly between highlands Ovda Regio to the northeast and Alpha Regio to the west. The region ranges in altitude from 6,051 to 6,054 km, with an average of ~6,052 km, which is essentially mean planetary radius. The quadrangle displays a wide range of features including large to small arcuate exposures of ribbon-tessera terrain (Hansen and Willis, 1998), ten lowland coronae, two montes, 13 pristine impact craters, and long but localized volcanic flows sourced to the west in V–44. Shield terrain (Hansen, 2005) occurs across much of the V–45 quadrangle. Although V–45 lies topographically within the lowland, it includes only one planitia (Fonueha Planitia), perhaps because the features mentioned decorate it.

  1. Digital bedrock geologic map of the Johnson quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-2 Thompson, PJ�and Thompson, TB, 1998,�Digital bedrock geologic map of the Johnson quadrangle, Vermont: VGS Open-File Report VG98-2, 2 plates,...

  2. Digital bedrock geologic map of the Eden quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-3 Kim, J, Springston, G, and Gale, M, 1998,�Digital bedrock geologic map of the Eden quadrangle, Vermont: VGS Open-File Report VG98-3, 2...

  3. Digital bedrock geologic map of the Chester quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-576A Ratcliffe, N.M., 1995,�Digital bedrock geologic map of the Chester quadrangle, Vermont: USGS Open-File Report 95-576, 2 plates, scale...

  4. Digital bedrock geologic map of the Plymouth quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG94-654A Walsh, G.J., and Ratcliffe, N.M., 1994,�Digital bedrock geologic map of the Plymouth quadrangle, Vermont: USGS Open-File Report 94-654, 2...

  5. Geologic map of the Clifton Quadrangle, Mesa County, Colorado

    Science.gov (United States)

    Carrara, P.E.

    2001-01-01

    1:24,000-scale geologic mapping in the Clifton 7.5' quadrangle, in support of the USGS Colorado River/I-70 Corridor Cooperative Geologic Mapping Project, provides interpretations of the Quaternary stratigraphy and geologic hazards in this area of the Grand Valley. The Clifton 1:24,000 quadrangle is in Mesa County in western Colorado. Because the map area is dominated by various surficial deposits, the map depicts 16 different Quaternary units. Five prominent river terraces are present in the quadrangle containing gravels deposited by the Colorado River. The map area contains a large landslide deposit on the southern slopes of Mount Garfield. The landslide developed in the Mancos Shale and contains large blocks of the overlying Mesaverde Group. In addition, the landslide is a source of debris flows that have closed I-70 in the past. The major bedrock unit in the quadrangle is the Mancos Shale of Upper Cretaceous age. The map is accompanied by text containing unit descriptions, and sections on geologic hazards (including landslides, piping, gullying, expansive soils, and flooding), and economic geology (including sand and gravel). A table indicates what map units are susceptible to a given hazard. Approximately 20 references are cited at the end of the report.

  6. Land Cover

    Data.gov (United States)

    Kansas Data Access and Support Center — The Land Cover database depicts 10 general land cover classes for the State of Kansas. The database was compiled from a digital classification of Landsat Thematic...

  7. Geology of the Jewel Cave SW Quadrangle, Custer County, South Dakota

    Science.gov (United States)

    Braddock, William A.

    1963-01-01

    Formation consists of 200 to 300 feet of carbonaceous siltstone blocky-weathering claystone, and fine-grained to conglomeratic sandstone. These rocks were deposited in stream channels, flood plains, and ponds. The Fall River Formation is about 110 to 130 feet thick. Along the northeast side of the outcrop the formation consists of fine- to medium-grained sandstone, which forms an elongate body at least 1-1/2 miles wide and more than 25 miles long. To the southwest the formation consists of thinly stratified interbedded sandstone, carbonaceous siltstone, and varicolored mudstone. The Skull Creek and Mowry Shales of Early Cretaceous age consist of black fissile shale. The Mowry contains abundant fish scales and weathers to a silver gray. Alluvium fills the bottom of many intermittent streams, and small gravel-covered terraces mark the former high levels of these streams. Gravel, which caps hills at altitudes of 4,460 to 4,620 feet, is believed to have been deposited by a Pleistocene stream that drained southeastward toward the town of Minnekahta. Many landslides are present along the northward- and eastward-facing scarp of the Inyan Kara hogback. The Dewey fault, trending N. 75 deg E., crosses the quadrangle. It is probably a vertical dip-slip fault, and has an apparent displacement of 250 to 440 feet. Two northwest-trending anticlines are in the quadrangle - one extends from the Edgemont NE quadrangle to near the center of the Jewel Cave SW quadrangle, and the other is limited to the center of the Jewel Cave SW quadrangle. Collapse structures, which were produced by the solution of anhydrite, are (a) breccias in the Minnelusa Formation, (b) limestone-dolomite breccias in the Spearfish Formation, (c) undulations and normal faults in the formations overlying the Minnelusa and (d) breccia pipes that extend upward from the Minnelusa to at least as high as the Lakota Formation. The leaching probably occurred in early Cenozoic time. Minor deformationa

  8. Geologic map of the Chewelah 30' x 60' Quadrangle, Washington and Idaho

    Science.gov (United States)

    Miller, F.K.

    2001-01-01

    This data set maps and describes the geology of the Chewelah 30' X 60' quadrangle, Washington and Idaho. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a map coverage containing geologic contacts and units, (2) a point coverage containing site-specific geologic structural data, (3) two coverages derived from 1:100,000 Digital Line Graphs (DLG); one of which represents topographic data, and the other, cultural data, (4) two line coverages that contain cross-section lines and unit-label leaders, respectively, and (5) attribute tables for geologic units (polygons), contacts (arcs), and site-specific data (points). In addition, the data set includes the following graphic and text products: (1) A PostScript graphic plot-file containing the geologic map, topography, cultural data, and two cross sections, and on a separate sheet, a Correlation of Map Units (CMU) diagram, an abbreviated Description of Map Units (DMU), modal diagrams for granitic rocks, an index map, a regional geologic and structure map, and a key for point and line symbols; (2) PDF files of the Readme text-file and expanded Description of Map Units (DMU), and (3) this metadata file. The geologic map database contains original U.S. Geological Survey data generated by detailed field observation and by interpretation of aerial photographs. The map was compiled from geologic maps of eight 1:48,000 15' quadrangle blocks, each of which was made by mosaicing and reducing the four constituent 7.5' quadrangles. These 15' quadrangle blocks were mapped chiefly at 1:24,000 scale, but the detail of the mapping was governed by the intention that it was to be compiled at 1:48,000 scale. The compilation at 1:100,000 scale entailed necessary simplification in some areas and combining of some geologic units. Overall, however, despite a greater than two times reduction in scale, most geologic detail found on the 1:48,000 maps is retained on the

  9. Major and Trace-Element Data from Stream-Sediment and Rock Samples Collected in the Taylor Mountains 1:250,000-Scale Quadrangle, Alaska

    Science.gov (United States)

    Bailey, Elizabeth A.; Lee, Gregory K.; Mueller, Seth H.; Wang, Bronwen; Brown, Zoe Ann; Beischer, Greg A.

    2007-01-01

    In the summers of 2004, 2005, and 2006, the U.S. Geological Survey conducted a reconnaissance geochemical survey of the drainage basins throughout most of the Taylor Mountains 1:250,000-scale quadrangle, in southwestern Alaska. The purpose of the study was to locate areas of potential interest for ore minerals, provide data that may be used to determine regional-scale element baselines, and provide data for the concurrent U.S. Geological Survey geologic mapping and mineral resource assessment effort. This report provides the stream-sediment sample data for the study.

  10. Digital bedrock geologic map of the Arlington quadrangle and a Vermont portion of the Shushan quadrangle, Vermont: USGS Open-File Report 95-483, 2 plates, scale 1:24000

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-483A Lyttle, PT, Digital bedrock geologic map of the Arlington quadrangle and a Vermont portion of the Shushan quadrangle, Vermont: USGS...

  11. Polyline shapefile of a portion of the 1-meter (m) contours in quadrangle 6 of the Stellwagen Bank Survey Area offshore of Boston, Massachusetts necessary to show small features not displayed by 5-m contours - based on bathymetry data collected by the U.S. Geological Survey from 1994-1996 (Geographic, NAD 83)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, has conducted seabed...

  12. Geologic map of the Gila Hot Springs 7.5' quadrangle and the Cliff Dwellings National Monument, Catron and Grant Counties, New Mexico

    Science.gov (United States)

    Ratté, James C.; Gaskill, David L.; Chappell, James R.

    2014-01-01

    part of the composite Copperas Creek volcano, or volcanic complex in the Copperas Peak quadrangle to the south. The altered rocks of the Alum Mountain eruptive center have been prospected by means of several short adits, or tunnels, for alum, a mixture of the iron and aluminum sulfate minerals: alunite and halotrichite. A fault on the west side of the Gila River, opposite the hot springs in the south-central part of the map area, just north of Alum Mountain, is tentatively interpreted as a segment of the wall of the Gila Cliff Dwellings caldera. The fault, which dips about 55 degrees northwest, has a footwall of the andesitic and dacitic lava flows and flow breccias of Gila Flat. The hanging wall consists of Bloodgood Canyon Tuff overlain by Bearwallow Mountain Andesite flows. However, these rocks are not faulted against the older rocks, but apparently abut and locally overlap the footwall. These are the major geologic features of the quadrangle, about three quarters of which is covered by Bearwallow Mountain Andesite lava flows and overlying volcaniclastic rocks of the Gila Conglomerate.

  13. Quaternary geologic map of the Winnipeg 4 degrees x 6 degrees quadrangle, United States and Canada

    Science.gov (United States)

    Fullerton, D. S.; Ringrose, S.M.; Clayton, Lee; Schreiner, B.T.; Goebel, J.E.

    2000-01-01

    The Quaternary Geologic Map of the Winnipeg 4? ? 6? Quadrangle, United States and Canada, is a component of the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series (Miscellaneous Investigations Series I-1420), an effort to produce 4? ? 6? Quaternary geologic maps, at 1:1 million scale, of the entire conterminous United States and adjacent Canada. The map and the accompanying text and supplemental illustrations provide a regional overview of the areal distributions and characteristics of surficial deposits and materials of Quaternary age (~1.8 Ma to present) in parts of North Dakota, Minnesota, Manitoba, and Saskatchewan. The map is not a map of soils as soils are recognized in agriculture. Rather, it is a map of soils as recognized in engineering geology, or of substrata or parent materials in which agricultural soils are formed. The map units are distinguished chiefly on the basis of (1)genesis (processes of origin) or environments of deposition: for example, sediments deposited primarily by glacial ice (glacial deposits or till), sediments deposited in lakes (lacustrine deposits), or sediments deposited by wind (eolian deposits); (2) age: for example, how long ago the deposits accumulated; (3) texture (grain size)of the deposits or materials; (4) composition (particle lithology) of the deposits or materials; (5) thickness; and (6) other physical, chemical, and engineering properties. Supplemental illustrations show (1) temporal correlation of the map units, (2) the areal relationships of late Wisconsin glacial ice lobes and sublobes, (3) temporal and spatial correlation of late Wisconsin glacial phases, readvance limits, and ice margin stillstands, (4) temporal and stratigraphic correlation of surface and subsurface glacial deposits in the Winnipeg quadrangle and in adjacent 4? ? 6? quadrangles, and (5) responsibility for state and province compilations. The database provides information related to geologic hazards (for example

  14. Geology and Refractory Clay Deposits of the Haldeman and Wrigley Quadrangles, Kentucky

    Science.gov (United States)

    Patterson, Sam H.; Hosterman, John W.; Huddle, John Warfield

    1962-01-01

    The Haldeman and Wrigley 7th-minute quadrangles are near the western edge of the eastern Kentucky coal field and cover an area of approximately 117 square miles in parts of Carter, Rowan, Elliott, and Morgan Counties, Ky. The rocks exposed in the two quadrangles are of Early and Late Mississippian and Early and Middle Pennsylvanian age. The Mississippian rocks are composed of the thick Brodhead formation, which consists of siltstone and shale, and eleven thin marine limestone and shale formations, having an aggregate thickness of about 150 feet. The Lee and Breathitt formations, of Pennsylvanian age, consist of sandstone, siltstone, and shale; they also contain thin beds of coal and several beds of underclay, including the economically important Olive Hill clay bed of Crider, 1913. Pennsylvanian rocks include beds of both continental and marine origin. The eleven thin Mississippian formations and the upper-most part of the thick Brodhead formation are truncated by a prominent unconformity on which rocks of Pennsylvanian age rest. The rocks occupy a region of gentle dips between the Cincinnati arch and the Appalachian Mountains. Refractory clay deposits are in the Olive Hill clay bed, which occurs in the lower part of the Lee formation. The Olive Hill clay bed is discontinuous and consists of a series of irregularly shaped lenses. The bed is approximately two-thirds semifiint clay and one-third flint clay, and it contains minor amounts of plastic clay. Some of the flint clay is nearly pure kaolinite, but the semi flint and plastic clay consists of mixtures of kaolinite, illite, and mixed-layer clay minerals. The structure of the kaolinite ranges from highly crystalline to very poorly crystalline 'fireclay' type. The degree of crystallinity of the kaolinite and the hardness of the clay vary inversely with the amount of illite and mixed-layer clay minerals present. The nearly pure kaolinite is believed to have formed by the removal of alkalies and some silica fram

  15. Understanding uncertainties in non-linear population trajectories: a Bayesian semi-parametric hierarchical approach to large-scale surveys of coral cover.

    Directory of Open Access Journals (Sweden)

    Julie Vercelloni

    Full Text Available Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making.

  16. Understanding uncertainties in non-linear population trajectories: a Bayesian semi-parametric hierarchical approach to large-scale surveys of coral cover.

    Science.gov (United States)

    Vercelloni, Julie; Caley, M Julian; Kayal, Mohsen; Low-Choy, Samantha; Mengersen, Kerrie

    2014-01-01

    Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making.

  17. Preliminary geologic map of the Fontana 7.5' quadrangle, Riverside and San Bernardino Counties, California

    Science.gov (United States)

    Morton, Douglas M.; Digital preparation by Bovard, Kelly R.

    2003-01-01

    Open-File Report 03-418 is a digital geologic data set that maps and describes the geology of the Fontana 7.5’ quadrangle, Riverside and San Bernardino Counties, California. The Fontana quadrangle database is one of several 7.5’ quadrangle databases that are being produced by the Southern California Areal Mapping Project (SCAMP). These maps and databases are, in turn, part of the nation-wide digital geologic map coverage being developed by the National Cooperative Geologic Map Program of the U.S. Geological Survey (USGS). General Open-File Report 03-418 contains a digital geologic map database of the Fontana 7.5’ quadrangle, Riverside and San Bernardino Counties, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file (fon_map.ps) to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. An Encapsulated PostScript (EPS) file (fon_grey.eps) created in Adobe Illustrator 10.0 to plot the geologic map on a grey topographic base, and containing a Correlation of Map Units (CMU), a Description of Map Units (DMU), and an index map. 4. Portable Document Format (.pdf) files of: a. the Readme file; includes in Appendix I, data contained in fon_met.txt b. The same graphics as plotted in 2 and 3 above.Test plots have not produced precise 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following

  18. Geologic map of the Providence Mountains in parts of the Fountain Peak and adjacent 7.5' quadrangles, San Bernardino County, California

    Science.gov (United States)

    Stone, Paul; Miller, David M.; Stevens, Calvin H.; Rosario, Jose J.; Vazquez, Jorge A.; Wan, Elmira; Priest, Susan S.; Valin, Zenon C.

    2017-03-22

    IntroductionThe Providence Mountains are in the eastern Mojave Desert about 60 km southeast of Baker, San Bernardino County, California. This range, which is noted for its prominent cliffs of Paleozoic limestone, is part of a northeast-trending belt of mountainous terrain more than 100 km long that also includes the Granite Mountains, Mid Hills, and New York Mountains. Providence Mountains State Recreation Area encompasses part of the range, the remainder of which is within Mojave National Preserve, a large parcel of land administered by the National Park Service. Access to the Providence Mountains is by secondary roads leading south and north from Interstate Highways 15 and 40, respectively, which bound the main part of Mojave National Preserve.The geologic map presented here includes most of Providence Mountains State Recreation Area and land that surrounds it on the north, west, and south. This area covers most of the Fountain Peak 7.5′ quadrangle and small adjacent parts of the Hayden quadrangle to the north, the Columbia Mountain quadrangle to the northeast, and the Colton Well quadrangle to the east. The map area includes representative outcrops of most of the major geologic elements of the Providence Mountains, including gneissic Paleoproterozoic basement rocks, a thick overlying sequence of Neoproterozoic to Triassic sedimentary rocks, Jurassic rhyolite that intrudes and overlies the sedimentary rocks, Jurassic plutons and associated dikes, Miocene volcanic rocks, and a variety of Quaternary surficial deposits derived from local bedrock units. The purpose of the project was to map the area in detail, with primary emphasis on the pre-Quaternary units, to provide an improved stratigraphic, structural, and geochronologic framework for use in land management applications and scientific research.

  19. National Uranium Resource Evaluation: Ashton Quadrangle, Idaho, Montana, and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Suekawa, H.S.; Merrick, D.; Clayton, J.; Rumba, S.

    1982-07-01

    The Ashton Quadrangle, Idaho, Montana, and Wyoming, was evaluated to identify and delineate areas containing environments favorable for uranium deposits, using criteria developed for the National Uranium Resource Evaluation program. General surface reconnaissance, radiometric traverses, and geochemical sampling were carried out in all geologic environments within the quadrangle. Aerial radiometric data were evaluated, and anomalies were examined in the field. Fourteen uranium occurrences were noted in the study area. Only one environment, the phosphorites of the Permian Phosphoria Formation, is considered favorable for uranium deposition. The unfavorable environments include: limestones, sandstones, coal and carbonaceous shales, volcanics, Precambrian metamorphics, and Tertiary basins. Unevaluated areas include the John D. Rockefeller Jr. Memorial Parkway and Yellowstone and Grand Teton National Parks, where park service regulations prohibit detailed investigations.

  20. Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus

    Science.gov (United States)

    Kumar, P. Senthil; Head, James W., III

    2009-01-01

    Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationship) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.

  1. Land Cover Characterization Program

    Science.gov (United States)

    ,

    1997-01-01

    The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover mapping. The USGS Anderson system defined the principles for land use and land cover mapping that have been the model both nationally and internationally for more than 20 years. The Land Cover Characterization Program (LCCP) is founded on the premise that the Nation's needs for land cover and land use data are diverse and increasingly sophisticated. The range of projects, programs, and organizations that use land cover data to meet their planning, management, development, and assessment objectives has expanded significantly. The reasons for this are numerous, and include the improved capabilities provided by geographic information systems, better and more data-intensive analytic models, and increasing requirements for improved information for decision making. The overall goals of the LCCP are to:

  2. Geologic Map of the Sheep Hole Mountains 30' x 60' Quadrangle, San Bernardino and Riverside Counties, California

    Science.gov (United States)

    Howard, Keith A.

    2002-01-01

    This data set describes and maps the geology of the Sheep Hole Mountains 30' x 60' quadrangle in southern California. The quadrangle covers an area of the Mojave Desert characterized by desert ranges separated by broad basins. Ranges include parts of the Old Woman, Ship, Iron, Coxcomb, Pinto, Bullion, and Calumet mountains as well as Lead Mountain and the Kilbeck Hills. Basins include part of Ward Valley, part of Cadiz Valley including Cadiz Lake playa, and broad valleys occupied by the Bristol Lake and Dale Lake playas. Bedrock geologic units in the ranges range in age from Proterozoic to Quaternary. The valleys expose Neogene and Quaternary deposits. Proterozoic granitoids in the quadrangle include the Early Proterozoic Fenner Gneiss, Kilbeck Gneiss, Dog Wash Gneiss, granite of Joshua Tree, the (highly peraluminous granite) gneiss of Dry Lakes valley, and a Middle Proterozoic granite. Proterozoic supracrustal rocks include the Pinto Gneiss of Miller (1938) and the quartzite of Pinto Mountain. Early Proterozoic orogeny left an imprint of metamorphic mineral assemblages and fabrics in the older rocks. A Cambrian to Triassic sequence deposited on the continental shelf lies above a profound nonconformity developed on the Proterozoic rocks. Small metamorphosed remnants of this sequence in the quadrangle include rocks correlated to the Tapeats, Bright Angel, Bonanza King, Redwall, Bird Spring, Hermit, Coconino, Kaibab, and Moenkopi formations. The Dale Lake Volcanics (Jurassic), and the McCoy Mountains Formation of Miller (1944)(Cretaceous and Jurassic?) are younger Mesozoic synorogenic supracrustal rocks in the quadrangle. Mesozoic intrusions form much of the bedrock in the quadrangle, and represent a succession of magmatic arcs. The oldest rock is the Early Triassic quartz monzonite of Twentynine Palms. Extensive Jurassic magmatism is represented by large expanses of granitoids that range in composition from gabbro to syenogranite. They include the Virginia May

  3. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J A

    1982-09-01

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1/sup 0/ x 2/sup 0/ Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains.

  4. Geologic Mapping of the Devana Chasma (V-29) Quadrangle, Venus

    Science.gov (United States)

    Tandberg, E. R.; Bleamaster, L. F., III

    2010-01-01

    The Devana Chasma quadrangle (V-29; 0-25degN/270-300degE) is situated over the northeastern apex of the Beta-Atla-Themis (BAT) province and includes the southern half of Beta Regio, the northern and transitional segments of the Devana Chasma complex, the northern reaches of Phoebe Regio, Hyndla Regio, and Nedolya Tesserae, and several smaller volcano-tectonic centers and impact craters.

  5. Geological Map of the Fredegonde (V-57) Quadrangle, Venus

    Science.gov (United States)

    Ivanov, M. A.; Head, J. W.

    2009-01-01

    The area of V-57, the Fredegonde quadrangle (50-75degS, 60-120degE, Fig.1), is located within the eastern portion of Lada Terra within the topographic province of midlands (0-2 km above MPR [1,2]). Midlands form the most abundant portion of the surface of Venus and are characterized by diverse sets of units and structures [3-11]. The area of the Fredegonde quadrangle is in contact with the elevated portion of Lada Terra to the W and with the lowland of Aino Planitia to the NE. The transitions of the mid-lands to the lowlands and highlands are, thus, one of the main themes of the geology within the V-57 quadrangle. The character of the transitions and distribution and sequence of units/structures in the midlands are crucially important in understanding the time and modes of formation of this topographic province. The most prominent features in the map area are linear deformational zones consisting of swarms of grooves and graben and large coronae. The zones characterize the central and NW portions of the map area and represent regionally important, broad (up to 100s km wide) ridges that are 100s m high. Relatively small (100s km across, 100s m deep) equidimensional basins occur between the corona-groove-chains in the west and border the central chain from the east. Here we describe units that make up the surface within the V-57 quadrangle and present a summary of our geological map that shows the areal distribution of the major groups of units.

  6. Geologic map and sections of the Holy Cross Quadrangle, Eagle, Lake, Pitkin, and Summit counties, Colorado

    Science.gov (United States)

    Tweto, Ogden; Digital edition and database by Brandt, Theodore R.

    1974-01-01

    This map was first published as a printed edition in 1974. The geologic data have now been captured digitally and are presented here along with images of the printed map sheets. The map encompasses the area of four 7.5-minute quadrangles between 39º15' and 39º 30'N and 106º15' and 106º30'W in the Sawatch and Gore mountain ranges, and upper part of the Arkansas River drainage in central Colorado. The Holy Cross geologic map depicts in detail the complex geology at the north end of the Sawatch Range on the west at its junction with south end of the Gore Range on the east. The ranges are separated in the southern part of the map area by the upper reaches of the Arkansas River, and in the northeast part by the narrow valley of the upper Eagle River. Sixty map units and numerous individual beds and thin units within the principal map units are shown. Paleoproterozoic and Mesoproterozoic metamorphic rocks are the principal rocks of the Sawatch Range. In the Gore Range, lower and upper Paleozoic sedimentary rocks rest unconformably on the Precambrian metamorphic rocks. Paleozoic rocks that range in age from Upper Cambrian though Middle Pennsylvanian support the Gore Range along the eastern quarter of the map. The sequence includes a basal quartzite overlain by interbedded, shale, dolomite, quartzite, and sandstone. The Leadville Dolomite, below the dark shale, is the host rock for the ore deposits at Leadville and the neighboring lead-zinc-silver districts. A wide range of Miocene to Cretaceous intrusive rocks dip east off the Sawatch Range. The Dry Union Formation of Pliocene and Miocene age fills the valley of the Arkansas River and is covered by Quaternary alluvium and glacial sediment. Glacial deposits of Bull Lake, Pinedale, and neoglacial age are present in many of the mountain valleys. The geologic structure of the quadrangle is complex in geometry and time with a distinct structural and geographic break along the west front of the Gore Range in the eastern

  7. Mineral resource assessment of rare-earth elements, thorium, titanium, and uranium in the Greenville 1 degree by 2 degrees Quadrangle, South Carolina, Georgia, and North Carolina

    Science.gov (United States)

    Lesure, Frank G.; Curtin, Gary C.; Daniels, David L.; Jackson, John C.

    1993-01-01

    Mineral resources of the Greenville 1° x 2° quadrangle, South Carolina, Georgia, and North Carolina, were assessed between 1984 and 1990 under the Conterminuous United States Mineral Assessment Program (CUSMAP) of the U.S. Geological Survey (USGS). The mineral resource assessments were made on the basis of geologic, geochemical, and geophysical investigations and the presence of mines, prospects, and mineral occurrences from the literature. This report is an assessment of the rare-earth elements (REE), thorium, titanium, and uranium resources in the Greenville quadrangle and is based on heavy mineral concentrates collected in 1951-54 by the USGS (Overstreet and others, 1968; Caldwell and White, 1973; Cuppels and White, 1973); on the results of the U.S. Department of Energy, National Uranium Resource Evaluation (NURE) sampling program (Ferguson, 1978, 1979); on analyses of stream-sediment and heavy-mineral-concentrate samples (Jackson and Moore, 1992, G.C Cullin, USGS, unpub. data, 1992) on maps showing aerial gamma radiation in the Greenville quadrangle (D.L. Daniels, USGS, unpub. data, 1992); and on the geology as mapped by Nelson and others (1987, 1989).

  8. Surficial Geologic Map of the Pocasset-Provincetown-Cuttyhunk-Nantucket 24-Quadrangle Area of Cape Cod and Islands, Southeast Massachusetts

    Science.gov (United States)

    Stone, Byron D.; DiGiacomo-Cohen, Mary L.

    2006-01-01

    The surficial geologic map layer shows the distribution of nonlithified earth materials at land surface in an area of 24 7.5-minute quadrangles (555 mi2 total) in southeast Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. On Cape Cod and adjacent islands, these materials completely cover the bedrock surface. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relations, and age. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.

  9. Maps showing mineral resource assessment for porphyry and stockwork deposits of copper, molybdenum, and tungsten and for stockwork and disseminated deposits of gold and silver in the Butte 1 degree by 2 degrees Quadrangle, Montana

    Science.gov (United States)

    Elliott, J.E.; Moll, S.H.; Wallace, C.A.; Lee, G.K.; Antweiler, J.C.; Lidke, D.J.; Rowan, L.C.; Hanna, W.F.; Trautwein, C.M.; Dwyer, J.L.

    1993-01-01

    This report documents the assessment for potential occurrences of undiscovered porphyry and stockwork deposits of copper, molybdenum, and tungsten (porphyry Cu-Mo-W) and stockwork and disseminated deposits of gold and silver (disseminated Au-Ag) in the Butte 1 °X2° quadrangle. The Butte quadrangle, in west-central Montana, is one of the best known mineral producing regions in the U.S. Mining districts in the quadrangle, including the world famous Butte or Summit Valley district, have produced a variety of metallic and nonmetallic mineral commodities valued at more than $6.4 billion (at the time of production). Because of its importance as a mineral producing region, the Butte quadrangle was selected for study by the U.S. Geological Survey under the Conterminous United States Mineral Assessment Program (CUSMAP). Under this program, new data on geology, geochemistry, geophysics, geochronology, mineral resources, and remote sensing were collected and synthesized. The field and laboratory studies were supported, in part, by funding from the Geologic Framework and Synthesis Program and the Wilderness Program. The methods used in this resource assessment for porphyry Cu-Mo-W and disseminated Au-Ag deposits in the quadrangle include a compilation of all data, the development of descriptive occurrence models, and the analysis of data using techniques provided by a Geographic Information System (GIS). This map is one of several maps on the Butte 1 °X2° quadrangle. Other deposit types have been assessed for the Butte quadrangle, and maps (U.S. Geological Survey (USGS) Miscellaneous Investigation Series Maps) for each of the following have been prepared: Vein and replacement deposits of gold, silver, copper, lead, zinc, manganese, and tungsten (Elliott, Wallace, and others, 1992a) and skarn deposits of gold, silver, copper, tungsten, and iron (Elliott and others, 1992b ). Other publications resulting from this study include linear features map (Rowan and others, 1991

  10. Bedrock and surficial geologic map of the Satan Butte and Greasewood 7.5’ quadrangles, Navajo and Apache Counties, northern Arizona

    Science.gov (United States)

    Amoroso, Lee; Priest, Susan S.; Hiza-Redsteer, Margaret

    2013-01-01

    The geologic map of the Satan Butte and Greasewood 7.5’ quadrangles is the result of a cooperative effort of the U.S. Geological Survey (USGS) and the Navajo Nation to provide regional geologic information for management and planning officials. This map provides geologic information useful for range management, plant and animal studies, flood control, water resource investigations, and natural hazards associated with sand-dune mobility. The map provides connectivity to the regional geologic framework of the Grand Canyon area of northern Arizona. The map area encompasses approximately 314 km2 (123 mi2) within Navajo and Apache Counties of northern Arizona and is bounded by lat 35°37'30" to 35°30' N., long 109°45' to 110° W. The quadrangles lie within the southern Colorado Plateau geologic province and within the northeastern portion of the Hopi Buttes (Tsézhin Bií). Large ephemeral drainages, Pueblo Colorado Wash and Steamboat Wash, originate north of the map area on the Defiance Plateau and Balakai Mesa respectively. Elevations range from 1,930 m (6,330 ft) at the top of Satan Butte to about 1,787 m (5,860 ft) at Pueblo Colorado Wash where it exits the southwest corner of the Greasewood quadrangle. The only settlement within the map area is Greasewood, Arizona, on the north side of Pueblo Colorado Wash. Navajo Highway 15 crosses both quadrangles and joins State Highway 264 northwest of Ganado. Unimproved dirt roads provide access to remote parts of the Navajo Reservation.

  11. Color Shaded-Relief and Surface-Classification Maps of the Fish Creek Area, Harrison Bay Quadrangle, Northern Alaska

    Science.gov (United States)

    Mars, John L.; Garrity, Christopher P.; Houseknecht, David W.; Amoroso, Lee; Meares, Donald C.

    2007-01-01

    Introduction The northeastern part of the National Petroleum Reserve in Alaska (NPRA) has become an area of active petroleum exploration during the past five years. Recent leasing and exploration drilling in the NPRA requires the U.S. Bureau of Land Management (BLM) to manage and monitor a variety of surface activities that include seismic surveying, exploration drilling, oil-field development drilling, construction of oil-production facilities, and construction of pipelines and access roads. BLM evaluates a variety of permit applications, environmental impact studies, and other documents that require rapid compilation and analysis of data pertaining to surface and subsurface geology, hydrology, and biology. In addition, BLM must monitor these activities and assess their impacts on the natural environment. Timely and accurate completion of these land-management tasks requires elevation, hydrologic, geologic, petroleum-activity, and cadastral data, all integrated in digital formats at a higher resolution than is currently available in nondigital (paper) formats. To support these land-management tasks, a series of maps was generated from remotely sensed data in an area of high petroleum-industry activity (fig. 1). The maps cover an area from approximately latitude 70?00' N. to 70?30' N. and from longitude 151?00' W. to 153?10' W. The area includes the Alpine oil field in the east, the Husky Inigok exploration well (site of a landing strip) in the west, many of the exploration wells drilled in NPRA since 2000, and the route of a proposed pipeline to carry oil from discovery wells in NPRA to the Alpine oil field. This map area is referred to as the 'Fish Creek area' after a creek that flows through the region. The map series includes (1) a color shaded-relief map based on 5-m-resolution data (sheet 1), (2) a surface-classification map based on 30-m-resolution data (sheet 2), and (3) a 5-m-resolution shaded relief-surface classification map that combines the shaded

  12. Geologic map of the Rio Puerco quadrangle, Bernalillo and Valencia Counties, New Mexico

    Science.gov (United States)

    Maldonado, Florian

    2003-01-01

    The Rio Puerco quadrangle is located southwest of Albuquerque in central New Mexico and covers part of the western part of the Isleta Reservation. The U.S. Geological Survey, the New Mexico Bureau of Geology and Mineral Resources, and the University of New Mexico have conducted geologic mapping on the Isleta Reservation and vicinity as part of the Middle Rio Grande Basin Project. The map area contains surficial deposits, calcic soils, fluvial deposits of the Rio Puerco, deposits of the Santa Fe Group, and three volcanic fields. The area is characterized by predominantly north-trending normal faults with generally down-to-the-east movement. Post-Santa Fe Group deposits are composed of surficial deposits (Pleistocene-Holocene) and fluvial deposits of the Rio Puerco (Pleistocene-Holocene). The surficial deposits are divided into eolian, alluvial, colluvial, and landslide deposits. The fluvial deposits of the Rio Puerco consist of four terrace and present channel deposits. The Santa Fe Group is divided into lower and upper parts. The lower part of the Santa Fe Group is exposed near the southwestern corner of the study area where deposits consist of reddish-brown mudstone and sandstone correlated to the Popotosa Formation (Unit 1) of Lozinsky and Tedford (1991). They interpreted deposition of the unit in a basin-floor playa setting. The Popotosa Formation is in fault contact to the east with deposits of the upper Santa Fe Group. The upper Santa Fe Group is derived from major tributary fluvial systems (ancestral Rio Puerco Puerco and possibly the Rio San Jose drainages) draining the adjacent Colorado Plateau and Sierra Nacimiento and correlated to parts of Kelley's (1977) Ceja Formation of the Santa Fe Group and equivalent to Machette's (1978) Sierra Ladrones Formation, Connell's Arroyo Ojito Formation (Connell and others, 1999, and Maldonado's lithofacies of the Isleta Reservation (Maldonado and Atencio,1998a, b). The group also locally includes a fine- grained unit

  13. Preliminary Geologic Map of the North-Central Part of the Alamosa 30' x 60' Quadrangle, Alamosa, Conejos and Costilla Counties, Colorado

    Science.gov (United States)

    Machette, Michael N.; Thompson, Ren A.; Brandt, Theodore R.

    2008-01-01

    This geologic map presents new polygon (geologic map unit contacts) and line (terrace and lacustrine spit/barrier bar) vector data for a map comprised of four 7.5' quadrangles in the north-central part of the Alamosa, Colorado, 30' x 60' quadrangle. The quadrangles include Baldy, Blanca, Blanca SE, and Lasauses. The map database, compiled at 1:50,000 scale from new 1:24,000-scale mapping, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The mapped area is located primarily in Costilla County, but contains portions of Alamosa and Conejos Counties, and includes the town of Blanca in its northeastern part. The map area is mainly underlain by surficial geologic materials (fluvial and lacustrine deposits, and eolian sand), but Tertiary volcanic and volcaniclastic rocks crop out in the San Luis Hills, which are in the central and southern parts of the mapped area. The surficial geology of this area has never been mapped at any scale greater than 1:250,000 (broad reconnaissance), so this new map provides important data for ground-water assessments, engineering geology, and the Quaternary geologic history of the San Luis Basin. Newly discovered shoreline deposits are of particular interest (sands and gravels) that are associated with the high-water stand of Lake Alamosa, a Pliocene to middle Pleistocene lake that occupied the San Luis basin prior to its overflow and cutting of a river gorge through the San Luis Hills. After the lake drained, the Rio Grande system included Colorado drainages for the first time since the Miocene (>5.3 Ma). In addition, Servilleta Basalt, which forms the Basaltic Hills on the east margin of the map area, is dated at 3.79+or-0.17 Ma, consistent with its general age range of 3.67-4.84 Ma. This map provides new geologic information for better understanding ground-water flow paths in and adjacent to the Rio Grande system. The map abuts U.S. Geological Survey Open File Report 2005-1392 (a map of

  14. DOQ = USGS Digital Orthophoto Quadrangle: 1975 - 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Orthophotos combine the image characteristics of a photograph with the geometric qualities of a map. The primary digital orthophotoquadrangle (DOQ) is a 1-meter...

  15. Regional Geochemical Results from the Reanalysis of NURE Stream Sediment Samples - Eagle 3? Quadrangle, East-Central Alaska

    Science.gov (United States)

    Crock, J.G.; Briggs, P.H.; Gough, L.P.; Wanty, R.B.; Brown, Z.A.

    2007-01-01

    This report presents reconnaissance geochemical data for a cooperative study in the Fortymile Mining District, east-central Alaska, initiated in 1997. This study has been funded by the U.S. Geological Survey (USGS) Mineral Resources Program. Cooperative funds were provided from various State of Alaska sources through the Alaska Department of Natural Resources. Results presented here represent the initial reconnaissance phase for this multidisciplinary cooperative study. In this phase, 239 sediment samples from the Eagle 3? Quadrangle of east-central Alaska, which had been collected and analyzed for the U.S. Department of Energy's National Uranium Resource Evaluation program (NURE) of the 1970's (Hoffman and Buttleman, 1996; Smith, 1997), are reanalyzed by newer analytical methods that are more sensitive, accurate, and precise (Arbogast, 1996; Taggart, 2002). The main objectives for the reanalysis of these samples were to establish lower limits of determination for some elements and to confirm the NURE data as a reliable predictive reconnaissance tool for future studies in Alaska's Eagle 3? Quadrangle. This study has wide implications for using the archived NURE samples and data throughout Alaska for future studies.

  16. Perfect Octagon Quadrangle Systems with an upper C4-system and a large spectrum

    Directory of Open Access Journals (Sweden)

    Luigia Berardi

    2011-02-01

    Full Text Available An octagon quadrangle is the graph consisting of an 8-cycle (x1, x2,..., x8 with two additional chords: the edges {x1, x4} and {x5, x8}. An octagon quadrangle system of order ν and index λ [OQS] is a pair (X,H, where X is a finite set of ν vertices and H is a collection of edge disjoint octagon quadrangles (called blocks which partition the edge set of λKν defined on X. An octagon quadrangle system Σ=(X,H of order ν and index λ is said to be upper C4-perfect if the collection of all of the upper 4-cycles contained in the octagon quadrangles form a μ-fold 4-cycle system of order ν; it is said to be upper strongly perfect, if the collection of all of the upper 4-cycles contained in the octagon quadrangles form a μ-fold 4-cycle system of order ν and also the collection of all of the outside 8-cycles contained in the octagon quadrangles form a ρ-fold 8-cycle system of order ν. In this paper, the authors determine the spectrum for these systems, in the case that it is the largest possible.

  17. Geological Mapping of the Ac-H-4 Ezinu Quadrangle of Ceres from NASA's Dawn Misssion

    Science.gov (United States)

    Scully, Jennifer E. C.; Raymond, Carol A.; Williams, David A.; Buczkowski, Debra L.; Mest, Scott C.; Hughson, Kynan H. G.; Russell, Christopher T.; Kneissl, Thomas; Ruesch, Ottaviano; Frigeri, Alessandro; Combe, Jean-Philippe; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Platz, Thomas; Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael; Park, Ryan

    2016-04-01

    NASA's Dawn spacecraft is currently orbiting Ceres, a dwarf planet and the largest object in the asteroid belt (diameter of ~940 km). Ceres science data are primarily acquired during three orbits of decreasing altitude: Survey, High Altitude Mapping Orbit (HAMO) and Low Altitude Mapping Orbit (LAMO). The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that undertaken at Vesta [1]. Thus, Ceres' surface is divided into fifteen quadrangles to facilitate systematic HAMO-based and LAMO-based geological mapping. Here we present the LAMO-based geologic map of Ezinu quadrangle (21-66 °N, 180-270 °E). Acquisition of Survey and HAMO data was completed by the submission of this abstract, along with the collection of initial LAMO data. Thus, the current geologic map is based on HAMO (~140 m/pixel) and Survey (~400 m/pixel) mosaics of clear filter Framing Camera images [2]. Framing Camera color images and topography data, derived from the Framing Camera images, are also used to inform the geologic mapping. Updated mapping will be undertaken before the conference, using ~35 m/pixel LAMO Framing Camera mosaics. The key geologic features in Ezinu quadrangle are: linear features, Occator crater, Ezinu crater, Datan and Geshtin craters, and Erntedank Planum. We propose that linear features radial to impact craters (e.g. Occator) are ejecta ray systems, which commonly form as secondary material is ejected during impact crater formation. There is also a prominent set of grooves and chains of pits/craters that are centered near Erntedank Planum (topographically high region) and are cross-cut by ejecta from Occator crater. We interpret these grooves and chains of pits/craters as the surface expression of sub-surface fractures [3, 4]. Occator is a geologically fresh impact crater, and contains the brightest bright spots on Ceres [5], along with bright lobate material, undivided lobate material, hummocky crater floor material, smooth material and smooth

  18. Compositional variations on Mercury: Results from the Victoria quadrangle

    Science.gov (United States)

    Zambon, Francesca; Carli, Cristian; Galluzzi, Valentina; Capaccioni, Fabrizio; Giacomini, Lorenza; Massironi, Matteo; Palumbo, Pasquale; Cremonese, Gabriele

    2017-04-01

    Mercury was recently explored by the MESSENGER mission that orbited around the planet from March 2011 until April 2015 allowing a complete coverage of its surface. The Mercury Dual Imaging System (MDIS), mapped the Hermean surface at different spatial resolutions, due to variable altitude of the spacecraft from the surface. MDIS consists of two instruments: a Narrow Angle Camera (NAC) centered at 747nm, which acquired high-resolution images for the geological analysis, and the Wide Angle Camera (WAC), provided with 11 filters dedicated to the compositional analysis, operating in a range of wavelengths between 395 and 1040 nm. Mercury's surface has been divided into 15 quadrangles for mapping purposes. Here, we analyze the results obtained by the color composite mosaic of the quadrangle Victoria (H02) located at longitudes 270 ° - 360 ° E, and latitudes 22.5 ° N - 65 ° N. We produced a color mosaic, by using the images relative to the filters with the best spatial coverage. To obtain the 8-color mosaic of the Victoria quadrangle, we calibrated and georefenced the WAC raw images. Afterwards, we applied the Hapke photometric correction by using the parameters derived by Domingue et al. (2015). We projected and coregistered the data, and finally, we produced the mosaic. To analyze the compositional variations of the Victoria quadrangle, we consider different techniques of analysis, such as specific RGB color combinations and band ratios, which emphasize the different compositional characteristics of the surface. Furthermore, the use of clustering and classification methods allows for recognizing various terrain units, in terms of reflectance and spectral characteristics. In the H02 quadrangle, we observed a dichotomy in the RGB mosaic (R: second principal component (PC2), G: first principal component (PC1), B: 430/1000 nm; see Denevi et al. 2009) between the northern region of the quadrangle, dominated by smooth plains, and the southern part, characterized by

  19. Geologic map of the Lakshmi Planum quadrangle (V-7), Venus

    Science.gov (United States)

    Ivanov, Mikhail A.; Head, James W.

    2010-01-01

    The Lakshmi Planum quadrangle is in the northern hemisphere of Venus and extends from lat 50 degrees to 75 degrees N., and from long 300 degrees to 360 degrees E. The elevated volcanic plateau of Lakshmi Planum, which represents a very specific and unique class of highlands on Venus, dominates the northern half of the quadrangle. The surface of the planum stands 3-4 km above mean planetary radius and the plateau is surrounded by the highest Venusian mountain ranges, 7-10 km high. Before the Magellan mission, the geology of the Lakshmi Planum quadrangle was known on the basis of topographic data acquired by the Pioneer-Venus and Venera-15/16 altimeter and radar images received by the Arecibo telescope and Venera-15/16 spacecraft. These data showed unique topographic and morphologic structures of the mountain belts, which have no counterparts elsewhere on Venus, and the interior volcanic plateau with two large and low volcanic centers and large blocks of tessera-like terrain. From the outside, Lakshmi Planum is outlined by a zone of complexly deformed terrains that occur on the regional outer slope of Lakshmi. Vast low-lying plains surround this zone. After acquisition of the Venera-15/16 data, two classes of hypotheses were formulated to explain the unique structure of Lakshmi Planum and its surrounding. The first proposed that the western portion of Ishtar Terra, dominated by Lakshmi Planum, was a site of large-scale upwelling while the alternative hypothesis considered this region as a site of large-scale downwelling and underthrusting. Early Magellan results showed important details of the general geology of this area displayed in the Venera-15/16 images. Swarms of extensional structures and massifs of tesserae populate the southern slope of Lakshmi. The zone of fractures and grabens form a giant arc thousands of kilometers long and hundreds of kilometers wide around the southern flank of Lakshmi Planum. From the north, the deformational zones consist mostly of

  20. Geologic Map of the Niobe Planitia Quadrangle (V-23), Venus

    Science.gov (United States)

    Hansen, Vicki L.

    2009-01-01

    The Niobe Planitia quadrangle (V-23) encompasses approximately 8,000,000 km2 of the Venusian equatorial region extending from lat 0 deg to 25 deg N. and from long 90 deg to 120 deg E. (approximately 9,500 15-minute quadrangles on Earth). The map area lies along the north margin of the equatorial highland, Aphrodite Terra (V-35), and extends into the lowland region to the north, preserving a transition from southern highlands to northern lowlands (figs. 1, 2, map sheet). The northern parts of the crustal plateau, Ovda Regio and Haasttse-baad Tessera, mark the south margin of the map area; Niobe and Sogolon Planitiae make up the lowland region. The division between Niobe and Sogolon Planitiae is generally topographic, and Sogolon Planitia forms a relatively small elongate basin. Mesolands, the intermediate topographic level of Venus, are essentially absent or represented only by Gegute Tessera, which forms a slightly elevated region that separates Niobe Planitia from Llorona Planitia to the east (V-24). Lowlands within the map area host five features currently classified as coronae: Maya Corona (lat 23 deg N., long 97 deg E.) resides to the northwest and Dhisana, Allatu, Omeciuatl, and Bhumiya Coronae cluster loosely in the east-central area. Lowlands extend north, east, and west of the map area. Mapping the Niobe Planitia quadrangle (V-23) provides an excellent opportunity to examine a large tract of lowlands and the adjacent highlands with the express goal of clarifying the processes responsible for resurfacing this part of Venus and the resulting implications for Venus evolution. Although Venus lowlands are widely considered to have a volcanic origin, lowlands in the map area lack adjacent coronae or other obvious volcanic sources.

  1. Geology of the Cooper Ridge NE Quadrangle, Sweetwater County, Wyoming

    Science.gov (United States)

    Roehler, Henry W.

    1979-01-01

    The Cooper Ridge NE 7?-minute quadrangle is 18 miles southeast of Rock Springs, Wyo., on the east flank of the Rock Springs uplift. Upper Cretaceous rocks composing the Rock Springs Formation, Ericson Sandstone, Almond Formation, Lewis Shale, Fox Hills Sandstone, and Lance Formation, Paleocene rocks composing the Fort Union Formation, and Eocene rocks composing the Wasatch Formation are exposed and dip 5?-8? southeast. Outcrops are unfaulted and generally homoclinal, but a minor cross-trending fold, the Jackknife Spring anticline, plunges southeastward and interrupts the northeast strike of beds. Older rocks in the subsurface are faulted and folded, especially near the Brady oil and gas field. Coal beds are present in the Almond, Lance, and Fort Union Formations. Coal resources are estimated to be more than 762 million short tons in 16 beds more than 2.5 feet thick, under less than 3,000 ft of overburden. Nearly 166 million tons are under less than 200 ft of overburden and are recoverable by strip mining. Unknown quantities of oil and gas are present in the Cretaceous Rock Springs, Blair, and Dakota Formations, Jurassic sandstone (Entrada Sandstone of drillers), Jurassic(?) and Triassic(?) Nugget Sandstone, Permian Park City Formation, and Pennsylvanian and Permian Weber Sandstone at the Brady field, part of which is in the southeast corner of the quadrangle, and in the Dakota Sandstone at the Prenalta Corp. Bluewater 33-32 well near the northern edge of the quadrangle. Other minerals include uranium in the Almond Formation and titanium in the Rock Springs Formation.

  2. Reconnaissance geology of the Zarghat Quadrangle, sheet 26/40 B, Kingdom of Saudi Arabia

    Science.gov (United States)

    Quick, J.E.

    1984-01-01

    The Zarghat quadrangle is located in the northern Precambrian shield of Saudi Arabia between lat 26°30' and 27°00' N. and long 41°00' and 41°30 ' E. The area is underlain by three Precambrian volcanosedimentary units and a range of Precambrian dioritoid and granitoid plutonic intrusive rocks. Paleozoic(?) sandstone crops out in small areas in the northwestern part of the quadrangle, and a lobe of QuaternaryC?) basalt from Harrat Ithnain penetrates the southwest corner of the quadrangle.

  3. Geologic Map of the Poverty Bay 7.5' quadrangle, King and Pierce counties, Washington

    Science.gov (United States)

    Booth, Derek B.; Waldron, H.H.; Troost, K.G.

    2004-01-01

    The Poverty Bay quadrangle lies near the center of the region?s intensively developing urban core. Less than 20 km north lies the city of Seattle; downtown Tacoma lies just southwest of the quadrangle. The map area expresses much of the tremendous range of Quaternary environments and deposits found throughout the central Puget Lowland. Much of the ground surface is mantled by a rolling surface of glacial till deposited during the last occupation of the Puget Lowland by a great continental ice sheet about 14,000 years ago. A complex sequence of older unconsolidated sediments extends far below sea level across most of the quadrangle, with no bedrock exposures at all.

  4. Land use mapping and modelling for the Phoenix Quadrangle

    Science.gov (United States)

    Place, J. L. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The mapping of generalized land use (level 1) from ERTS 1 images was shown to be feasible with better than 95% accuracy in the Phoenix quadrangle. The accuracy of level 2 mapping in urban areas is still a problem. Updating existing maps also proved to be feasible, especially in water categories and agricultural uses; however, expanding urban growth has presented with accuracy. ERTS 1 film images indicated where areas of change were occurring, thus aiding focusing-in for more detailed investigation. ERTS color composite transparencies provided a cost effective source of information for land use mapping of very large regions at small map scales.

  5. Forest Cover Types - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer portrays general forest cover types for the United States. Data were derived from Advanced Very High Resolution Radiometer (AVHRR) composite images...

  6. Maps showing anomalous copper concentrations in stream sediments and heavy-mineral concentrates from the Ajo and Lukeville 1 degree by 2 degrees quadrangles, Arizona

    Science.gov (United States)

    Theobald, P.K.; Barton, H.N.

    1987-01-01

    This map is part of a folio of maps of the Ajo and Lukeville 1 ° x 2° quadrangles, Arizona, prepared under the Conterminous United States Mineral Assessment Program. Other publications in this folio include U.S. Geological Survey Miscellaneous Field Studies Maps MF-1831-A and MF-1831-B and Open-File Reports 82-119, 82–599, and 83–734. Open-File Reports 82-119 and 83–731 constitute the basic data and initial interpretation on which this discussion is predicated.

  7. Geology of the van Buren and Lavaca quadrangles, Arkansas and Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Haley, B.R.; Hendricks, T.A.

    1971-01-01

    Van Buren and Lavaca quadrangles cover an area of about 488 sq miles in E.-central Oklahoma and W.-central Arkansas. Rocks of Middle Pennsylvanian age and unconsolidated alluvial deposits of Quaternary age are exposed at the surface, and rocks of Ordovician to Middle Pennsylvanian age have been penetrated by wells drilled in the area. The rocks have been folded into E.-trending broad, gentle folds whose limbs have been broken by N.- or S.-dipping normal faults. Displacement across the faults is generally less than 1,500 ft, but may be as much as 2,500 ft. The Atoka, McAlester, and Savanna formations contain coal beds. The Lower Hartshorne coal bed, near the base of the McAlester Formation, and the Charleston coal bed, near the base of the Savanna Formation, have been the most economically important. Natural gas has been found in rocks of Silurian, Devonian, Mississippian, and Pennsylvanian age. Most of the gas is in rocks of Pennsylvanian age, in the Atoka Formation. The gas in Pennsylvanian rocks is lithologically entrapped, and structure appears to have had little influence on the location or extent of gas accumulation. (30 refs.)

  8. Geologic map of the Themis Regio quadrangle (V-53), Venus

    Science.gov (United States)

    Stofan, Ellen R.; Brian, Antony W.

    2012-01-01

    The Themis Regio quadrangle (V-53), Venus, has been geologically mapped at 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program. The quadrangle extends from lat 25° to 50° S. and from long 270° to 300° E. and encompasses the Themis Regio highland, the surrounding plains, and the southernmost extension of Parga Chasmata. Themis Regio is a broad regional topographic high with a diameter of about 2,000 km and a height of about 0.5 km that has been interpreted previously as a hotspot underlain by a mantle plume. The Themis rise is dominated by coronae and lies at the terminus of the Parga Chasmata corona chain. Themis Regio is the only one of the three corona-dominated rises that contains significant extensional deformation. Fractures and grabens are much less common than along the rest of Parga Chasmata and are embayed by corona-related flows in places. Rift and corona formation has overlapped in time at Themis Regio.

  9. National uranium resource evaluation program: hydrogeochemical and stream sediment reconnaissance basic data for Fresno quadrangle, California

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-15

    Field and laboratory data are presented for 1038 sediment samples from the Fresno Quadrangle, California. The samples were collected by Savannah River Laboratory; laboratory analysis and data reporting were perfomed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  10. Digital Geologic Map of the Fourmile quadrangle, South Dakota (NPS, GRD, GRE, WICA)

    Data.gov (United States)

    National Park Service, Department of the Interior — The Digital Geologic Map of the Fourmile quadrangle, South Dakota is composed of GIS data layers, two ancillary GIS tables, a Windows Help File with ancillary map...

  11. Digital Geologic Map of the Mount Coolidge quadrangle, South Dakota (NPS, GRD, GRE, WICA)

    Data.gov (United States)

    National Park Service, Department of the Interior — The Digital Geologic Map of the Mount Coolidge quadrangle, South Dakota is composed of GIS data layers, two ancillary GIS tables, a Windows Help File with ancillary...

  12. Digital Geologic Map of the Boland Ridge quadrangle, South Dakota (NPS, GRD, GRE, WICA)

    Data.gov (United States)

    National Park Service, Department of the Interior — The Digital Geologic Map of the Boland Ridge quadrangle, South Dakota is composed of GIS data layers, two ancillary GIS tables, a Windows Help File with ancillary...

  13. Digital Geologic Map of the Cicero Peak quadrangle, South Dakota (NPS, GRD, GRE, WICA)

    Data.gov (United States)

    National Park Service, Department of the Interior — The Digital Geologic Map of the Cicero Peak quadrangle, South Dakota is composed of GIS data layers, two ancillary GIS tables, a Windows Help File with ancillary map...

  14. Digital Geologic Map of the Argile quadrangle, South Dakota (NPS, GRD, GRE, WICA)

    Data.gov (United States)

    National Park Service, Department of the Interior — The Digital Geologic Map of the Argile quadrangle, South Dakota is composed of GIS data layers, two ancillary GIS tables, a Windows Help File with ancillary map...

  15. Digital Geologic Map of the Wind Cave quadrangle, South Dakota (NPS, GRD, GRE, WICA)

    Data.gov (United States)

    National Park Service, Department of the Interior — The Digital Geologic Map of the Wind Cave quadrangle, South Dakota is composed of GIS data layers, two ancillary GIS tables, a Windows Help File with ancillary map...

  16. Digital Geologic Map of the Pringle quadrangle, South Dakota (NPS, GRD, GRE, WICA)

    Data.gov (United States)

    National Park Service, Department of the Interior — The Digital Geologic Map of the Pringle quadrangle, South Dakota is composed of GIS data layers, two ancillary GIS tables, a Windows Help File with ancillary map...

  17. Digital Geologic Map of the Butcher Hill quadrangle, South Dakota (NPS, GRD, GRE, WICA)

    Data.gov (United States)

    National Park Service, Department of the Interior — The Digital Geologic Map of the Butcher Hill quadrangle, South Dakota is composed of GIS data layers, two ancillary GIS tables, a Windows Help File with ancillary...

  18. USGS 1:12000 (Quarter 7 1/2 Minute) Quadrangle Index

    Data.gov (United States)

    Minnesota Department of Natural Resources — This is a mathematically generated grid in which each polygon represents one quarter of a standard USGS 7 1/2 minute quadrangle. The result is a 3 3/4 minute...

  19. Digital bedrock geologic map of the Morrisville quadrangle,�Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-1 Springston, G., Kim, J., and Applegate, G.S., 1998,�Digital bedrock geologic map of the Morrisville quadrangle,�Vermont: VGS Open-File...

  20. Digital and preliminary bedrock geologic map of the Wallingford quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-335A Burton, WC, and Ratcliffe, NM, 2000, Digital and preliminary bedrock geologic map of the Wallingford quadrangle, Vermont: USGS Open-File...

  1. Digital compilation bedrock geologic map of part of the Waitsfield quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-03�Digital compilation bedrock geologic map of part of the Waitsfield quadrangle, Vermont: VGS Open-File Report VG96-3A, 2 plates, scale...

  2. Digital bedrock geologic map of the Mount Snow & Readsboro quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-DM1 Ratcliffe, NM, 1995, Digital bedrock geologic map of the Mount Snow & Readsboro quadrangles, Vermont, scale 1:24000, The bedrock...

  3. Digital and preliminary bedrock geologic map of the Chittenden quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG97-854A Ratcliffe, NM, 1997,�Digital and preliminary bedrock geologic map of the Chittenden quadrangle, Vermont: USGS Open-File Report 97-854, 1...

  4. Digital and preliminary bedrock geologic map of the Pico Peak quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-226A Walsh, G. J., and Ratcliffe, N.M., 1998,�Digital and preliminary bedrock geologic map of the Pico Peak quadrangle, Vermont: USGS...

  5. Bedrock Geologic Map of the Mount Mansfield 7.5 Minute Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG2017-2 Thompson, P. J., and Thompson, T. B., 2017, Bedrock Geologic Map of the Mount Mansfield 7.5 Minute Quadrangle, Vermont: VGS Open-File...

  6. Digital bedrock geologic map of parts of the Huntington, Richmond, Bolton and Waterbury quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-9A Thompson, PJ�and Thompson, TB, 1995, Digital bedrock geologic map of parts of the Huntington, Richmond, Bolton and Waterbury quadrangles,...

  7. Bedrock geologic map of parts of the Eden, Albany, Lowell, and Irasburg quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG09-4 (Digitized draft of VG97-5): Kim, J., 2009, Bedrock geologic map of parts of the Eden, Albany, Lowell, and Irasburg quadrangles, VGS...

  8. Digital and preliminary bedrock geologic map of the Mount Carmel quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-330A Ratcliffe, N.M., and Walsh, G. J., 1998, Digital and preliminary bedrock geologic map of the Mount Carmel quadrangle, Vermont: USGS...

  9. Stream-sediment samples reanalyzed for major, rare earth, and trace elements from seven 1:250,000-scale quadrangles, south-central Alaska, 2007-09

    Science.gov (United States)

    Gamble, Bruce M.; Bailey, Elizabeth A.; Shew, Nora B.; Labay, Keith A.; Schmidt, Jeanine M.; O'Leary, Richard M.; Detra, David E.

    2010-01-01

    During the 1960s through the 1980s, the U.S. Geological Survey conducted reconnaissance geochemical surveys of drainage basins throughout most of the Iliamna, Lake Clark, Lime Hills, and Talkeetna 1:250,000-scale quadrangles and parts of the McGrath, Seldovia, and Tyonek 1:250,000-scale quadrangles in Alaska. These geochemical surveys provide data necessary to assess the potential for undiscovered mineral resources and provide data that may be used to determine regional-scale element baselines. This report provides new data for 1,075 of the previously collected stream-sediment samples. The new analyses include a broader spectrum of elements and provide data that are more precise than the original analyses. All samples were analyzed for arsenic by hydride generation atomic absorption spectrometry, for gold, palladium, and platinum by inductively coupled plasma-mass spectrometry after lead button fire assay separation, and for a suite of 55 major, rare earth, and trace elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry after sodium peroxide sinter at 450 degrees Celsius.

  10. Geologic Map of the Goleta Quadrangle, Santa Barbara County, California

    Science.gov (United States)

    Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Brandt, Theodore R.

    2007-01-01

    This map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying those parts of the Santa Barbara coastal plain and adjacent southern flank of the Santa Ynez Mountains within the Goleta 7 ?? quadrangle at a compilation scale of 1:24,000 (one inch on the map = 2,000 feet on the ground) and with a horizontal positional accuracy of at least 20 m. The Goleta map overlaps an earlier preliminary geologic map of the central part of the coastal plain (Minor and others, 2002) that provided coverage within the coastal, central parts of the Goleta and contiguous Santa Barbara quadrangles. In addition to new mapping in the northern part of the Goleta quadrangle, geologic mapping in other parts of the map area has been revised from the preliminary map compilation based on new structural interpretations supplemented by new biostratigraphic data. All surficial and bedrock map units are described in detail in the accompanying map pamphlet. Abundant biostratigraphic and biochronologic data based on microfossil identifications are presented in expanded unit descriptions of the marine Neogene Monterey and Sisquoc Formations. Site-specific fault-kinematic observations (including slip-sense determinations) are embedded in the digital map database. The Goleta quadrangle is located in the western Transverse Ranges physiographic province along an east-west-trending segment of the southern California coastline about 100 km (62 mi) northwest of Los Angeles. The Santa Barbara coastal plain surface, which spans the central part of the quadrangle, includes several mesas and hills that are geomorphic expressions of underlying, potentially active folds and partly buried oblique and reverse faults of the Santa Barbara fold and fault belt (SBFFB). Strong earthquakes have occurred offshore within 10 km of the Santa Barbara coastal plain in 1925 (6.3 magnitude), 1941 (5.5 magnitude) and 1978 (5.1 magnitude). These and numerous smaller seismic events

  11. National Land Cover Database: 1986-1993

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — NLCD 92 (National Land Cover Dataset 1992) is a 21-category land cover classification scheme that has been applied consistently over the conterminous U.S. It is...

  12. National Land Cover Database: 1986-1993

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — NLCD 92 (National Land Cover Dataset 1992) is a 21-category land cover classification scheme that has been applied consistently over the conterminous U.S. It is...

  13. SURVEY

    DEFF Research Database (Denmark)

    SURVEY er en udbredt metode og benyttes inden for bl.a. samfundsvidenskab, humaniora, psykologi og sundhedsforskning. Også uden for forskningsverdenen er der mange organisationer som f.eks. konsulentfirmaer og offentlige institutioner samt marketingsafdelinger i private virksomheder, der arbejder...... med surveys. Denne bog gennemgår alle surveyarbejdets faser og giver en praktisk indføring i: • design af undersøgelsen og udvælgelse af stikprøver, • formulering af spørgeskemaer samt indsamling og kodning af data, • metoder til at analysere resultaterne...

  14. Historic Trail Map of the La Junta 1 Degree x 2 Degree Quadrangle, Southeastern Colorado and Western Kansas

    Science.gov (United States)

    Scott, Glenn R.; Louden, Richard H.; Brunstein, F. Craig; Quesenberry, Carol A.

    2008-01-01

    This historic trail map of the La Junta quadrangle contains all or part of eight Colorado and Kansas counties. Many of the historic trails in the La Junta quadrangle were used by Indians long before the white man reached the area. The earliest recorded use of the trails by white men in the quadrangle was in the 1820s when traders brought goods from St. Louis for barter with the Indians and for commerce with the Mexican settlements in New Mexico. The map and accompanying pamphlet include an introduction and the method of preparation used by the authors. The pamphlet includes a description of the early explorers along the Arkansas River and on the Santa Fe Trail, as well as roads established or proposed under General Assembly session law, Colorado Territorial corporations and charters, 1859-1876, and freighting companies. Stage companies that probably operated in the La Junta quadrangle also are described. The authors include a section on railroads in the quadrangle and north of the quadrangle along the Arkansas River. Military and civilian camps, forts, and bases are reported. Moreover, fossils and plants in the quadrangle are described. Indian tribes - Early Man or paleo-Indians, Archaic Indians, prehistoric and historic Indians, and historic Indian tribes in the quadrangle - are reported. Authors include place names within and along freight routes leading to the La Junta quadrangle. A full description of the contents along with three figures can be found in the Introduction.

  15. Historic trail map of the La Junta 1 degree x 2 degree quadrangle, southeastern Colorado and western Kansas

    Science.gov (United States)

    Scott, Glenn R.; Louden, Richard H.; Brunstein, F. Craig; Quesenberry, Carol A.

    2008-01-01

    This historic trail map of the La Junta quadrangle contains all or part of eight Colorado and Kansas counties. Many of the historic trails in the La Junta quadrangle were used by Indians long before the white man reached the area. The earliest recorded use of the trails by white men in the quadrangle was in the 1820s when traders brought goods from St. Louis for barter with the Indians and for commerce with the Mexican settlements in New Mexico. The map and accompanying pamphlet include an introduction and the method of preparation used by the authors. The pamphlet includes a description of the early explorers along the Arkansas River and on the Santa Fe Trail, as well as roads established or proposed under General Assembly session law, Colorado Territorial corporations and charters, 1859-1876, and freighting companies. Stage companies that probably operated in the La Junta quadrangle also are described. The authors include a section on railroads in the quadrangle and north of the quadrangle along the Arkansas River. Military and civilian camps, forts, and bases are reported. Moreover, fossils and plants in the quadrangle are described. Indian tribes - Early Man or paleo-Indians, Archaic Indians, prehistoric and historic Indians, and historic Indian tribes in the quadrangle - are reported. Authors include place names within and along freight routes leading to the La Junta quadrangle. A full description of the contents along with three figures can be found in the Introduction.

  16. Scanning and georeferencing historical USGS quadrangles

    Science.gov (United States)

    Fishburn, Kristin A.; Davis, Larry R.; Allord, Gregory J.

    2017-06-23

    The U.S. Geological Survey (USGS) National Geospatial Program is scanning published USGS 1:250,000-scale and larger topographic maps printed between 1884, the inception of the topographic mapping program, and 2006. The goal of this project, which began publishing the Historical Topographic Map Collection in 2011, is to provide access to a digital repository of USGS topographic maps that is available to the public at no cost. For more than 125 years, USGS topographic maps have accurately portrayed the complex geography of the Nation. The USGS is the Nation’s largest producer of traditional topographic maps, and, prior to 2006, USGS topographic maps were created using traditional cartographic methods and printed using a lithographic process. The next generation of topographic maps, US Topo, is being released by the USGS in digital form, and newer technologies make it possible to also deliver historical maps in the same electronic format that is more publicly accessible.

  17. Geologic map of the Montoso Peak quadrangle, Santa Fe and Sandoval Counties, New Mexico

    Science.gov (United States)

    Thompson, Ren A.; Hudson, Mark R.; Shroba, Ralph R.; Minor, Scott A.; Sawyer, David A.

    2011-01-01

    The Montoso Peak quadrangle is underlain by volcanic rocks and associated sediments of the Cerros del Rio volcanic field in the southern part of the Española Basin that record volcanic, faulting, alluvial, colluvial, and eolian processes over the past three million years. The geology was mapped from 1997 to 1999 and modified in 2004 to 2008. The geologic mapping was carried out in support of the U.S. Geological Survey (USGS) Rio Grande Basin Project, funded by the USGS National Cooperative Geologic mapping Program. The mapped distribution of units is based primarily on interpretation of 1:16,000-scale, color aerial photographs taken in 1992, and 1:40,000-scale, black-and-white, aerial photographs taken in 1996. Most of the contacts on the map were transferred from the aerial photographs using a photogrammetric stereoplotter and subsequently field checked for accuracy and revised based on field determination of allostratigraphic and lithostratigraphic units. Determination of lithostratigraphic units in volcanic deposits was aided by geochemical data, 40Ar/39Ar geochronology, aeromagnetic and paleomagnetic data. Supplemental revision of mapped contacts was based on interpretation of USGS 1-meter orthoimagery. This version of the Montoso Peak quadrangle geologic map uses a traditional USGS topographic base overlain on a shaded relief base generated from 10-m digital elevation model (DEM) data from the USGS National Elevation Dataset (NED). Faults are identified with varying confidence levels in the map area. Recognizing and mapping faults developed near the surface in young, brittle volcanic rocks is difficult because (1) they tend to form fractured zones tens of meters wide rather than discrete fault planes, (2) the youth of the deposits has allowed only modest displacements to accumulate for most faults, and (3) many may have significant strike-slip components that do not result in large vertical offsets that are readily apparent in offset of sub

  18. Lidar-revised geologic map of the Olalla 7.5' quadrangle, King, Kitsap, and Pierce Counties, Washington

    Science.gov (United States)

    Tabor, Rowland W.; Haugerud, Ralph A.; Booth, Derek B.; Troost, Kathy Goetz

    2013-01-01

    The Olalla 7.5' quadrangle, which lies almost in the center of the Puget Lowland, displays the broad range of geologic environments typical of the region. The upland plain is fluted by the passage of the great continental ice sheet that last covered the area about 17,000 (14,000 radiocarbon) years ago. The plain is cut by channel deposits, both late glacial and postglacial in age, and it is cleaved even more deeply by one of the major arms of Puget Sound, Colvos Passage, which here separates the west coast of Vashon Island from the Kitsap Peninsula. Beneath the deposits of the last ice sheet is a complex sequence of older Quaternary-age sediments that extends about 400 m below the modern ground surface. These older sediments are best exposed along the shorelines and beach cliffs of Puget Sound, where wave action and landslides maintain relatively fresh exposures. The older sediments typically are compact, having been loaded by ice during one or more episodes of glaciation subsequent to their deposition. Locally these sediments are also cemented by iron and manganese oxides and hydroxides, a consequence of many tens or hundreds of thousands of years of weathering and groundwater movement. Our map is an interpretation of a 6-ft resolution lidar-derived digital elevation model combined with the geology depicted on the "Geologic map of the Olalla 7.5' quadrangle, King, Kitsap, and Pierce Counties, Washington," by Booth and Troost (2005), which was described, interpreted, and located on the 1953 1:24,000-scale topographic map of the Olalla 7.5-minute quadrangle. The original topographic base map, derived from 1951 aerial photographs, has 20-ft contours, nominal horizontal resolution of circa 40 ft (12 m), and nominal mean vertical accuracy of circa 13 ft (4 m). This new DEM has a horizontal resolution of 6 ft (2 m) and mean vertical accuracy circa 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM facilitated a much-improved interpretation of many

  19. Lidar-revised geologic map of the Olalla 7.5' quadrangle, King, Kitsap, and Pierce Counties, Washington

    Science.gov (United States)

    Tabor, Rowland W.; Haugerud, Ralph A.; Booth, Derek B.; Troost, Kathy Goetz

    2013-01-01

    The Olalla 7.5' quadrangle, which lies almost in the center of the Puget Lowland, displays the broad range of geologic environments typical of the region. The upland plain is fluted by the passage of the great continental ice sheet that last covered the area about 17,000 (14,000 radiocarbon) years ago. The plain is cut by channel deposits, both late glacial and postglacial in age, and it is cleaved even more deeply by one of the major arms of Puget Sound, Colvos Passage, which here separates the west coast of Vashon Island from the Kitsap Peninsula. Beneath the deposits of the last ice sheet is a complex sequence of older Quaternary-age sediments that extends about 400 m below the modern ground surface. These older sediments are best exposed along the shorelines and beach cliffs of Puget Sound, where wave action and landslides maintain relatively fresh exposures. The older sediments typically are compact, having been loaded by ice during one or more episodes of glaciation subsequent to their deposition. Locally these sediments are also cemented by iron and manganese oxides and hydroxides, a consequence of many tens or hundreds of thousands of years of weathering and groundwater movement. Our map is an interpretation of a 6-ft resolution lidar-derived digital elevation model combined with the geology depicted on the "Geologic map of the Olalla 7.5' quadrangle, King, Kitsap, and Pierce Counties, Washington," by Booth and Troost (2005), which was described, interpreted, and located on the 1953 1:24,000-scale topographic map of the Olalla 7.5-minute quadrangle. The original topographic base map, derived from 1951 aerial photographs, has 20-ft contours, nominal horizontal resolution of circa 40 ft (12 m), and nominal mean vertical accuracy of circa 13 ft (4 m). This new DEM has a horizontal resolution of 6 ft (2 m) and mean vertical accuracy circa 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM facilitated a much-improved interpretation of many

  20. National uranium resource evaluation: Silver City Quadrangle, New Mexico and Arizona

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, A J; Thiede, D S

    1982-05-01

    Reconnaissance and detailed geologic, geochemical, and radiometric studies were conducted throughout the Silver City Quadrangle, New Mexico and Arizona, to identify environments and delineate areas favorable for the occurrence of uranium deposits using National Uranium Resource Evaluation criteria. Surface and limited subsurface studies were augmented by aerial radiometric and hydrogeochemical and stream-sediment reconnaissance surveys. Results of the investigations indicate several areas favorable for magmatic-hydrothermal uranium deposits. They include Precambrian granitic, gneissic, and diabasic rocks; the Cretaceous Beartooth Quartzite where it overlies Precambrian granite; certain Laramide to mid-Tertiary monzonitic rocks; and Tertiary volcanic rocks adjacent to a quartz monzonitic stock. Studies also indicate environments favorable for allogenic deposits in the Tyrone laccolith and for uranium deposits in upper Cenozoic volcaniclastic lacustrine rocks. Formations judged unfavorable for magmatic-hydrothermal uranium deposits include large areas of Precambrian granitic and metamorphic rocks, almost all Laramide and mid-Tertiary intrusive rocks, and intruded Paleozoic and Cretaceous carbonate rocks. Precambrian metamorphic rocks are also considered unfavorable for contact metasomatic as well as for unconformity-related and vein-type uranium deposits. The entire Paleozoic and Cretaceous sedimentary section is considered unfavorable for sandstone and marine-black-shale uranium deposits. Moreover, mid-Tertiary rocks were judged unfavorable for volcanogenic uranium deposits, and upper Cenozoic basin-fill and surficial deposits are unfavorable for sandstone-type deposits and for uranium deposits associated with volcaniclastic lacustrine environments.

  1. Digital geologic map of part of the Thompson Falls 1:100,000 quadrangle, Idaho

    Science.gov (United States)

    Lewis, Reed S.; Derkey, Pamela D.

    1999-01-01

    The geology of the Thompson Falls 1:100,000 quadrangle, Idaho was compiled by Reed S. Lewis in 1997 onto a 1:100,000-scale greenline mylar of the topographic base map for input into a geographic information system (GIS). The resulting digital geologic map GIS can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000). The map area is located in north Idaho. This open-file report describes the geologic map units, the methods used to convert the geologic map data into a digital format, the Arc/Info GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet.

  2. Sganzerla Cover

    Directory of Open Access Journals (Sweden)

    Victor da Rosa

    2014-06-01

    Full Text Available http://dx.doi.org/10.5007/2175-7917.2014v19n1p158 Neste artigo, realizo uma leitura do cinema de Rogério Sganzerla, desde o clássico O bandido da luz vermelha até os documentários filmados na década de oitenta, a partir de duas noções centrais: cover e over. Para isso, parto de uma controvérsia com o ensaio de Ismail Xavier, Alegorias do subdesenvolvimento, em que o crítico realiza uma leitura do cinema brasileiro da década de sessenta através do conceito de alegoria; depois releio uma série de textos críticos do próprio Sganzerla, publicados em Edifício Sganzerla, procurando repensar as ideias de “herói vazio” ou “cinema impuro” e sugerindo assim uma nova relação do seu cinema com o tempo e a representação; então busco articular tais ideias com certos procedimentos de vanguarda, como a falsificação, a cópia, o clichê e a colagem; e finalmente procuro mostrar que, no cinema de Sganzerla, a partir principalmente de suas reflexões sobre Orson Welles, a voz é usada de maneira a deformar a interpretação naturalista.

  3. Cover Picture.

    Science.gov (United States)

    Breuning; Ruben; Lehn; Renz; Garcia; Ksenofontov; Gütlich; Wegelius; Rissanen

    2000-07-17

    The cover picture shows how both, fine arts and science, avail themselves of a system of intertwined symbolic and iconic languages. They make use of a common set of abstracted signs to report on their results. Thus, already in 1925, Wassily Kandinsky painted a masterpiece (bottom), which now, 75 years later, might be regarded as a blueprint for a scientific project. In his painting, Kandinsky pictured a grid-shaped sign that resembles in effect an actual molecular switch. Apparently following an enigmatic protocol, the groups of Lehn and Gütlich (see p. 2504 ff. for more details) constructed a grid-type inorganic architecture that operates as a three-level magnetic switch (center) triggered by three external perturbations (p, T, hnu). The switching principle is based on the spin-crossover phenomenon of Fe(II) ions and can be monitored by Mössbauer spectroscopy (left) and magnetic measurements (rear). Maybe not by chance, the English translation of the title of the painting "signs" is a homonym of "science", since both presented works are a product of the insatiable curiosity of man and his untiring desire to recognize his existence.

  4. Land Use and Land Cover, WI Agricultural Statistics Service (WASS) WI Cropland Data Layer. Agriculture and non-ag land cover categories based on survey data (ground truth), satellite imagery classification, FSA common land unit, and 2001 National Land Cover dataset., Published in 2008, 1:100000 (1in=8333ft) scale, Wisconsin Department of Agriculture, Trade & Consumer Protection.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Land Use and Land Cover dataset, published at 1:100000 (1in=8333ft) scale, was produced all or in part from Field Observation information as of 2008. It is...

  5. Geologic map of the Silt Quadrangle, Garfield County, Colorado

    Science.gov (United States)

    Shroba, R.R.; Scott, R.B.

    2001-01-01

    New 1:24,000-scale geologic mapping in the Silt 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift, the Grand Hogback, and the eastern Piceance Basin. The Wasatch Formation was subdivided into three formal members, the Shire, Molina, and Atwell Gulch Members. Also a sandstone unit within the Shire Member was broken out. The Mesaverde Group consists of the upper Williams Fork Formation and the lower Iles Formation. Members for the Iles Formation consist of the Rollins Sandstone, the Cozzette Sandstone, and the Corcoran Sandstone Members. The Cozzette and Corcoran Sandstone Members were mapped as a combined unit. Only the upper part of the Upper Member of the Mancos Shale is exposed in the quadrangle. From the southwestern corner of the map area toward the northwest, the unfaulted early Eocene to Paleocene Wasatch Formation and underlying Mesaverde Group gradually increase in dip to form the Grand Hogback monocline that reaches 45-75 degree dips to the southwest (section A-A'). The shallow west-northwest-trending Rifle syncline separates the northern part of the quadrangle from the southern part along the Colorado River. Geologic hazards in the map area include erosion, expansive soils, and flooding. Erosion includes mass wasting, gullying, and piping. Mass wasting involves any rock or surficial material that moves downslope under the influence of gravity, such as landslides, debris flows, or rock falls, and is generally more prevalent on steeper slopes. Locally, where the Grand Hogback is dipping greater than 60 degrees and the Wasatch Formation has been eroded, leaving sandstone slabs of the Mesa Verde Group unsupported over vertical distances as great as 500 m, the upper part of the unit has collapsed in landslides, probably by a process of beam-buckle failure. In

  6. Global Land Cover Characterization: 1992-1993

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey (USGS) has a long history of involvement in multi-scale, and multi-temporal land cover characterization and mapping of the world. During...

  7. Polygon shapefile of the interpretation of the seabed geologic substrates in quadrangle 6 of the Stellwagen Bank National Marine Sanctuary region offshore of Boston, Massachusetts based on data collected by the U.S. Geological Survey from 1993-2004 (Geographic, NAD 83)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, has conducted seabed...

  8. Geologic map of the Metis Mons quadrangle (V–6), Venus

    Science.gov (United States)

    Dohm, James M.; Tanaka, Kenneth L.; Skinner, James A.

    2011-01-01

    The Metis Mons quadrangle (V–6) in the northern hemisphere of Venus (lat 50° to 75° N., long 240° to 300° E.) includes a variety of coronae, large volcanoes, ridge and fracture (structure) belts, tesserae, impact craters, and other volcanic and structural features distributed within a plains setting, affording study of their detailed age relations and evolutionary development. Coronae in particular have magmatic, tectonic, and topographic signatures that indicate complex evolutionary histories. Previously, the geology of the map region has been described either in general or narrowly focused investigations. Based on Venera radar mapping, a 1:15,000,000-scale geologic map of part of the northern hemisphere of Venus included the V–6 map region and identified larger features such as tesserae, smooth and hummocky plains materials, ridge belts, coronae, volcanoes, and impact craters but proposed little relative-age information. Global-scale mapping from Magellan data identified similar features and also determined their mean global ages with crater counts. However, the density of craters on Venus is too low for meaningful relative-age determinations at local to regional scales. Several of the coronae in the map area have been described using Venera data (Stofan and Head, 1990), while Crumpler and others (1992) compiled detailed identification and description of volcanic and tectonic features from Magellan data. The main purpose of this map is to reconstruct the geologic history of the Metis Mons quadrangle at a level of detail commensurate with a scale of 1:5,000,000 using Magellan data. We interpret four partly overlapping stages of geologic activity, which collectively resulted in the formation of tesserae, coronae (oriented along structure belts), plains materials of varying ages, and four large volcanic constructs. Scattered impact craters, small shields and pancake-shaped domes, and isolated flows superpose the tectonically deformed materials and appear to

  9. Geologic map of the Alligator Ridge area, including the Buck Mountain East and Mooney Basin Summit quadrangles and parts of the Sunshine Well NE and Long Valley Slough quadrangles, White Pine County, Nevada

    Science.gov (United States)

    Nutt, Constance J.

    2000-01-01

    Data set describes the geology of Paleozoic through Quaternary units in the Alligator Ridge area, which hosts disseminated gold deposits. These digital files were used to create the 1:24,000-scale geologic map of the Buck Mountain East and Mooney Basin Summit Quadrangles and parts of the Sunshine Well NE and Long Valley Slough Quadrangles, White Pine County, east-central Nevada.

  10. Geologic map of the Fraser 7.5-minute quadrangle, Grand County, Colorado

    Science.gov (United States)

    Shroba, Ralph R.; Bryant, Bruce; Kellogg, Karl S.; Theobald, Paul K.; Brandt, Theodore R.

    2010-01-01

    The geologic map of the Fraser quadrangle, Grand County, Colo., portrays the geology along the western boundary of the Front Range and the eastern part of the Fraser basin near the towns of Fraser and Winter Park. The oldest rocks in the quadrangle include gneiss, schist, and plutonic rocks of Paleoproterozoic age that are intruded by younger plutonic rocks of Mesoproterozoic age. These basement rocks are exposed along the southern, eastern, and northern margins of the quadrangle. Fluvial claystone, mudstone, and sandstone of the Upper Jurassic Morrison Formation, and fluvial sandstone and conglomeratic sandstone of the Lower Cretaceous Dakota Group, overlie Proterozoic rocks in a small area near the southwest corner of the quadrangle. Oligocene rhyolite tuff is preserved in deep paleovalleys cut into Proterozoic rocks near the southeast corner of the quadrangle. Generally, weakly consolidated siltstone and minor unconsolidated sediments of the upper Oligocene to upper Miocene Troublesome Formation are preserved in the post-Laramide Fraser basin. Massive bedding and abundant silt suggest that loess or loess-rich alluvium is a major component of the siltstone in the Troublesome Formation. A small unnamed fault about one kilometer northeast of the town of Winter Park has the youngest known displacement in the quadrangle, displacing beds of the Troublesome Formation. Surficial deposits of Pleistocene and Holocene age are widespread in the Fraser quadrangle, particularly in major valleys and on slopes underlain by the Troublesome Formation. Deposits include glacial outwash and alluvium of non-glacial origin; mass-movement deposits transported by creep, debris flow, landsliding, and rockfall; pediment deposits; tills deposited during the Pinedale and Bull Lake glaciations; and sparse diamictons that may be pre-Bull Lake till or debris-flow deposits. Some of the oldest surficial deposits may be as old as Pliocene.

  11. Maps showing anomalous concentrations of lead, molybdenum, bismuth, and tungsten in stream sediment and heavy-mineral concentrate from parts of the Ajo and Lukeville 1 degree by 2 degrees quadrangles, Arizona

    Science.gov (United States)

    Theobald, P.K.; Barton, H.N.

    1988-01-01

    These maps are part of a folio of maps of the Ajo and Lukeville 1° x 2° quadrangles, Arizona, prepared under the Conterminous United States Mineral Assessment Program. Other publications in this folio include U.S. Geological Survey Miscellaneous Field Studies Maps MF-1834-A, 1834–B, and 1834–C and U.S. Geological Survey Open-File Reports 82–419, 82–599, and 83–734. Open-File Reports 82–419 and 83–734 constitute the basic data and initial interpretation on which this discussion is predicated. Open-File Report 82–599 is an aeromagnetic map.

  12. Seabed maps showing topography, ruggedness, backscatter intensity, sediment mobility, and the distribution of geologic substrates in Quadrangle 6 of the Stellwagen Bank National Marine Sanctuary Region offshore of Boston, Massachusetts

    Science.gov (United States)

    Valentine, Page C.; Gallea, Leslie B.

    2015-11-10

    The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The area is approximately 3,700 square kilometers (km2) and is subdivided into 18 quadrangles. Seven maps, at a scale of 1:25,000, of quadrangle 6 (211 km2) depict seabed topography, backscatter, ruggedness, geology, substrate mobility, mud content, and areas dominated by fine-grained or coarse-grained sand. Interpretations of bathymetric and seabed backscatter imagery, photographs, video, and grain-size analyses were used to create the geology-based maps. In all, data from 420 stations were analyzed, including sediment samples from 325 locations. The seabed geology map shows the distribution of 10 substrate types ranging from boulder ridges to immobile, muddy sand to mobile, rippled sand. Mapped substrate types are defined on the basis of sediment grain-size composition, surface morphology, sediment layering, the mobility or immobility of substrate surfaces, and water depth range. This map series is intended to portray the major geological elements (substrates, topographic features, processes) of environments within quadrangle 6. Additionally, these maps will be the basis for the study of the ecological requirements of invertebrate and vertebrate species that utilize these substrates and guide seabed management in the region.

  13. Evaluation and combined geophysical interpretations of NURE and related geoscience data in the Van Horn, Pecos, Marfa, Fort Stockton, Presidido, and Emory Peak quadrangles, Texas. Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Keller, G.R.; Hinze, W.J.; Aiken, C.L.V.; Goodell, P.C.; Roy, R.F.; Pingitore, N.E.

    1981-09-01

    This report (two volumes) is the culmination of a two-year study of the six Trans-Pecos Texas quadrangles (Van Horn, Pecos, Marfa, Fort Stockton, Presidio, and Emory Park) surveyed as part of the National Uranium Resource Evaluation (NURE) program. Volume I contains a discussion of the aeromagnetic, gravity and geochemical data, their processing, and their analysis. The geologic history and setting of the Trans-Pecos are discussed along with the uranium potential of the region. Uranium anomalies and occurrences characteristic of numerous different NURE classes are present in the study area, and information is presented on 33 drill holes into these targets. Volume II is a folio of maps reduced to a scale of 1:500,000. Geologic maps for each of the six quadrangles are included and the geophysical maps have been prepared to be overlays for the goelogic maps. In addition to the geologic maps, residual aeromagnetic anomaly, complete Bouguer gravity anomaly, flight line index, gravity station index, and anomaly interpretative maps were prepared for each quadrangle. A large suite of digitally processed maps of gravity and aeromagnetic data were prepared and are included in Volume II.

  14. Geologic map of the Mound Spring quadrangle, Nye and Clark Counties, Nevada, and Inyo County, California

    Science.gov (United States)

    Lundstrom, Scott C.; Mahan, Shannon; Blakely, Richard J.; Paces, James B.; Young, Owen D.; Workman, Jeremiah B.; Dixon, Gary L.

    2003-01-01

    The Mound Spring quadrangle, the southwestern-most 7.5' quadrangle of the area of the Las Vegas 1:100,000-scale quadrangle, is entirely within the Pahrump Valley, spanning the Nevada/California State line. New geologic mapping of the predominantly Quaternary materials is combined with new studies of gravity and geochronology in this quadrangle. Eleven predominantly fine-grained units are delineated, including playa sediment, dune sand, and deposits associated with several cycles of past groundwater discharge and distal fan sedimentation. These units are intercalated with 5 predominantly coarse-grained alluvial-fan and wash gravel units mainly derived from the Spring Mountains. The gravel units are distinguished on the basis of soil development and associated surficial characteristics. Thermoluminescence and U-series geochronology constrain most of the units to the Holocene and late and middle Pleistocene. Deposits of late Pleistocene groundwater discharge in the northeast part of the quadrangle are associated with a down-to-the-southwest fault zone that is expressed by surface fault scarps and a steep gravity gradient. The gravity field also defines a northwest-trending uplift along the State line, in which the oldest sediments are poorly exposed. About 2 km to the northeast a prominent southwest-facing erosional escarpment is formed by resistant beds in middle Pleistocene fine-grained sediments that dip northeast away from the uplift. These sediments include cycles of groundwater discharge that were probably caused by upwelling of southwesterly groundwater flow that encountered the horst.

  15. Geologic Map of the Needles 7.5' Quadrangle, California and Arizona

    Science.gov (United States)

    Malmon, Daniel V.; Howard, Keith A.; Priest, Susan S.

    2009-01-01

    The Needles 7.5' quadrangle straddles the Colorado River in the southern part of the Mohave Valley, in Mohave County, Arizona, and San Bernardino County, California. The quadrangle contains part of the Havasu National Wildlife Refuge, sections of the Fort Mojave Indian Reservation, most of the city of Needles, and several major interstate highways and railroads. The quadrangle is underlain by structurally undeformed sediments of Pliocene and younger age that were deposited by the Colorado River, as well as alluvial fan deposits on the piedmonts that flank the Black Mountains (in Arizona) and the Sacramento Mountains (in California). Multiple cycles of aggradation of the Colorado River, each followed by episodes of downcutting, are recorded by Pliocene through historic deposits on the piedmonts that border the floodplain. Regionally, the complex stratigraphy related to the Colorado River has been the subject of geologic interest for over 150 years. The California and Arizona piedmont portions of the Needles quadrangle expose a subset of this incompletely understood stratigraphic record. Thus, the stratigraphic sequence presented on this map is a version of the stratigraphy of the Colorado River as interpreted locally. The deposits in the recently active Colorado River valley floor support riparian habitat and irrigated agriculture. The distributions of sand-rich channel deposits and mud-rich floodplain deposits in the valley are mapped on the basis of the history of the movement of the Colorado River in the quadrangle, which has been documented in sequential aerial photographs since 1937 and maps dating to 1857.

  16. Geologic map of the White Hall quadrangle, Frederick County, Virginia, and Berkeley County, West Virginia

    Science.gov (United States)

    Doctor, Daniel H.; Orndorff, Randall C.; Parker, Ronald A.; Weary, David J.; Repetski, John E.

    2010-01-01

    The White Hall 7.5-minute quadrangle is located within the Valley and Ridge province of northern Virginia and the eastern panhandle of West Virginia. The quadrangle is one of several being mapped to investigate the geologic framework and groundwater resources of Frederick County, Va., as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia. All exposed bedrock outcrops are clastic and carbonate strata of Paleozoic age ranging from Middle Cambrian to Late Devonian. Surficial materials include unconsolidated alluvium, colluvium, and terrace deposits of Quaternary age, and local paleo-terrace deposits possibly of Tertiary age. The quadrangle lies across the northeast plunge of the Great North Mountain anticlinorium and includes several other regional folds. The North Mountain fault zone cuts through the eastern part of the quadrangle; it is a series of thrust faults generally oriented northeast-southwest that separate the Silurian and Devonian clastic rocks from the Cambrian and Ordovician carbonate rocks and shales. Karst development in the quadrangle occurs in all of the carbonate rocks. Springs occur mainly near or on faults. Sinkholes occur within all of the carbonate rock units, especially where the rocks have undergone locally intensified deformation through folding, faulting, or some combination.

  17. Quaternary geologic map of the Wolf Point 1° × 2° quadrangle, Montana and North Dakota

    Science.gov (United States)

    Fullerton, David S.; Colton, Roger B.; Bush, Charles A.

    2016-09-08

    The Wolf Point quadrangle encompasses approximately 16,084 km2 (6,210 mi2). The northern boundary is the Montana/Saskatchewan (U.S.-Canada) boundary. The quadrangle is in the Northern Plains physiographic province and it includes the Peerless Plateau and Flaxville Plain. The primary river is the Missouri River.The map units are surficial deposits and materials, not landforms. Deposits that comprise some constructional landforms (for example, ground-moraine deposits, end-moraine deposits, and stagnation-moraine deposits, all composed of till) are distinguished for purposes of reconstruction of glacial history. Surficial deposits and materials are assigned to 23 map units on the basis of genesis, age, lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized in pedology or agronomy.  Rather, it is a generalized map of soils recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed.  Glaciotectonic (ice-thrust) structures and deposits are mapped separately, represented by a symbol. The surficial deposits are glacial, ice-contact, glaciofluvial, alluvial, lacustrine, eolian, colluvial, and mass-movement deposits.Till of late Wisconsin age is represented by three map units. Till of Illinoian age also is mapped.  Till deposited during pre-Illinoian glaciations is not mapped, but is widespread in the subsurface.  Linear ice-molded landforms (primarily drumlins), shown by symbol, indicate directions of ice flow during late Wisconsin and Illinoian glaciations. The Quaternary geologic map of the Wolf Point quadrangle, northeastern Montana and North Dakota, was prepared to provide a database for compilation of a Quaternary geologic map of the Regina 4° × 6° quadrangle, United States and Canada, at scale 1:1,000,000, for the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series

  18. Geologic Map of MTM -20012 and -25012 Quadrangles, Margaritifer Terra Region of Mars

    Science.gov (United States)

    Grant, J. A.; Wilson, S.A.; Fortezzo, C.M.; Clark, D.A.

    2009-01-01

    Mars Transverse Mercator (MTM) -20012 and -25012 quadrangles (lat 17.5 deg - 27.5 deg S., long 345 deg - 350 deg E.) cover a portion of Margaritifer Terra near the east end of Valles Marineris. The map area consists of a diverse assemblage of geologic surfaces including isolated knobs of rugged mountainous material, heavily cratered and dissected ancient highland material, a variety of plains materials, chaotic terrain materials, and one of the highest densities of preserved valleys and their associated deposits on the planet (Saunders, 1979; Baker, 1982; Phillips and others, 2000, 2001). The map area is centered on a degraded, partially filled, ~200-km-diameter impact structure (lat 22 deg S., long 347.5 deg E.), informally referred to as Parana basin, located between Parana Valles to the east and Loire Valles to the west. Parana Valles is a network of multidigitate, mostly east-west-oriented valleys that flowed west and discharged into Parana basin (Grant, 1987, 2000; Grant and Parker, 2002). Loire Valles, broadly comparable in length to the Grand Canyon on Earth, has a deeply incised channel within the map area that originates at the west-northwest edge of Erythraeum Chaos within Parana basin (Grant, 1987, 2000; Grant and Parker, 2002; Strom and others, 2000). Parana and Loire Valles, combined with Samara Valles to the west, form one of the most laterally extensive, well-integrated valley networks on Mars (Grant, 2000) and record a long history of modification by fluvial processes. The origin and morphology of the valley networks, therefore, provide insight into past environmental conditions, whereas their relation with other landforms helps constrain the timing and role of fluvial processes in the evolution and modification of the Margaritifer Terra region.

  19. A genome-wide BAC end-sequence survey of sugarcane elucidates genome composition, and identifies BACs covering much of the euchromatin.

    Science.gov (United States)

    Kim, Changsoo; Lee, Tae-Ho; Compton, Rosana O; Robertson, Jon S; Pierce, Gary J; Paterson, Andrew H

    2013-01-01

    BAC-end sequences (BESs) of hybrid sugarcane cultivar R570 are presented. A total of 66,990 informative BESs were obtained from 43,874 BAC clones. Similarity search using a variety of public databases revealed that 13.5 and 42.8 % of BESs match known gene-coding and repeat regions, respectively. That 11.7 % of BESs are still unmatched to any nucleotide sequences in the current public databases despite the fact that a close relative, sorghum, is fully sequenced, indicates that there may be many sugarcane-specific or lineage-specific sequences. We found 1,742 simple sequence repeat motifs in 1,585 BESs, spanning 27,383 bp in length. As simple sequence repeat markers derived from BESs have some advantages over randomly generated markers, these may be particularly useful for comparing BAC-based physical maps with genetic maps. BES and overgo hybridization information was used for anchoring sugarcane BAC clones to the sorghum genome sequence. While sorghum and sugarcane have extensive similarity in terms of genomic structure, only 2,789 BACs (6.4 %) could be confidently anchored to the sorghum genome at the stringent threshold of having both-end information (BESs or overgos) within 300 Kb. This relatively low rate of anchoring may have been caused in part by small- or large-scale genomic rearrangements in the Saccharum genus after two rounds of whole genome duplication since its divergence from the sorghum lineage about 7.8 million years ago. Limiting consideration to only low-copy matches, 1,245 BACs were placed to 1,503 locations, covering ~198 Mb of the sorghum genome or about 78 % of the estimated 252 Mb of euchromatin. BESs and their analyses presented here may provide an early profile of the sugarcane genome as well as a basis for BAC-by-BAC sequencing of much of the basic gene set of sugarcane.

  20. Geologic map of the Morena Reservoir 7.5-minute quadrangle, San Diego County, California

    Science.gov (United States)

    Todd, Victoria R.

    2016-06-01

    IntroductionMapping in the Morena Reservoir 7.5-minute quadrangle began in 1980, when the Hauser Wilderness Area, which straddles the Morena Reservoir and Barrett Lake quadrangles, was mapped for the U.S. Forest Service. Mapping was completed in 1993–1994. The Morena Reservoir quadrangle contains part of a regional-scale Late Jurassic(?) to Early Cretaceous tectonic suture that coincides with the western limit of Jurassic metagranites in this part of the Peninsular Ranges batholith (PRB). This suture, and a nearly coincident map unit consisting of metamorphosed Cretaceous and Jurassic back-arc basinal volcanic and sedimentary rocks (unit KJvs), mark the boundary between western, predominantly metavolcanic rocks, and eastern, mainly metasedimentary, rocks. The suture is intruded and truncated by the western margin of middle to Late Cretaceous Granite Mountain and La Posta plutons of the eastern zone of the batholith.

  1. Geologic map of the Nelson quadrangle, Lewis and Clark County, Montana

    Science.gov (United States)

    Reynolds, Mitchell W.; Hays, William H.

    2003-01-01

    The geologic map of the Nelson quadrangle, scale 1:24,000, was prepared as part of the Montana Investigations Project to provide new information on the stratigraphy, structure, and geologic history of an area in the geologically complex southern part of the Montana disturbed belt. In the Nelson area, rocks ranging in age from Middle Proterozoic through Cretaceous are exposed on three major thrust plates in which rocks have been telescoped eastward. Rocks within the thrust plates are folded and broken by thrust faults of smaller displacement than the major bounding thrust faults. Middle and Late Tertiary sedimentary and volcaniclastic rocks unconformably overlie the pre-Tertiary rocks. A major normal fault displaces rocks of the western half of the quadrangle down on the west with respect to strata of the eastern part. Alluvial and terrace gravels and local landslide deposits are present in valley bottoms and on canyon walls in the deeply dissected terrain. Different stratigraphic successions are exposed at different structural levels across the quadrangle. In the northeastern part, strata of the Middle Cambrian Flathead Sandstone, Wolsey Shale, and Meagher Limestone, the Middle and Upper Cambrian Pilgrim Formation and Park Shale undivided, the Devonian Maywood, Jefferson, and lower part of the Three Forks Formation, and Lower and Upper Mississippian rocks assigned to the upper part of the Three Forks Formation and the overlying Lodgepole and Mission Canyon Limestones are complexly folded and faulted. These deformed strata are overlain structurally in the east-central part of the quadrangle by a succession of strata including the Middle Proterozoic Greyson Formation and the Paleozoic succession from the Flathead Sandstone upward through the Lodgepole Limestone. In the east-central area, the Flathead Sandstone rests unconformably on the middle part of the Greyson Formation. The north edge, northwest quarter, and south half of the quadrangle are underlain by a

  2. Topographically Derived Maps of Valley Networks and Drainage Density in the Mare Tyrrhenum Quadrangle on Mars

    Science.gov (United States)

    Luo, W.; Stepinski, T. F.

    2006-12-01

    A novel, automated technique for delineating Martian valley networks from digital terrain data is applied to the Mare Tyrrhenum quadrangle on Mars, yielding a detailed map for the entire quadrangle. The resultant average value of drainage density for the Noachian part of the quadrangle is D ~ 0.05 km-1, an order of magnitude higher than the value inferred from a global map based on Viking images, and comparable to the values inferred from the precision mapping of selected focus sites. Valleys are omnipresent in Noachian terrain even outside the "highly dissected" Npld unit. This suggests fluvial erosion throughout the Noachian, implying widespread precipitation. The map of continuous drainage density is constructed to study spatial variations of D. This map reveals significant variations in degree of dissection in Noachian on scale of > 100 km. These variations do not correlate with any terrain parameter and their origin requires further study.

  3. Radiometric reconnaissance in the Garfield and Taylor park quadrangles, Chaffee and Gunnison counties, Colorado

    Science.gov (United States)

    Dings, M.G.; Schafer, Max

    1953-01-01

    During the summer of 1952 most of the mines and prospects in the Garfield and Taylor Park quadrangles of west-central Colorado were examined radiometrically by the U. S. Geological Survey to determine the extent, grade, and mode of occurrence of radioactive substances. The region contains a relatively large number of rock types, chiefly pre-Cambrian schists, gneisses, and granites; large and small isolated areas of sedimentary rocks of Paleozoic and Mesozoic ages; and a great succession of intrusive rocks of Tertiary age that range from andesite to granite and occur as stocks, chonoliths, sills, dikes, and one batholith. The prevailing structures are northwest-trending folds and faults. Ores valued at about $30,000,000 have been produced from this region. Silver, lead, zinc, and gold have accounted for most of this value, but small tonnages of copper, tungsten, and molybdenum have also been produced. The principal ore minerals are sphalerite, silver-bearing galena, cerussite, smithsonite, and gold-bearing pyrite and limonite; they occur chiefly as replacement bodies in limestone and as shoots in pyritic quartz veins. Anomalous radioactivity is uncommon and the four localities at which it is known are widely separated in space. The uranium content of samples from these localities is low. Brannerite, the only uranium-bearing mineral positively identified in the region, occurs sparingly in a few pegmatites and in one quartz-beryl-pyrite vein. Elsewhere radioactivity is associated with (l) black shale seams in the Manitou dolomite, (2) a quartz-pyrite-molybdenite vein, (3) a narrow border zone of oxidized material surrounding a small lead zinc ore body in the Manitou dolomite along a strong fault zone.

  4. Bedrock geologic map of the Worcester South quadrangle, Worcester County, Massachusetts

    Science.gov (United States)

    Walsh, Gregory J.; Merschat, Arthur J.

    2015-09-29

    The bedrock geology of the 7.5-minute Worcester South quadrangle, Massachusetts, consists of deformed Neoproterozoic to Paleozoic crystalline metamorphic and intrusive igneous rocks in three fault-bounded terranes (zones), including the Avalon, Nashoba, and Merrimack zones (Zen and others, 1983). This quadrangle spans the easternmost occurrence of Ganderian margin arc-related rocks (Nashoba zone) in the southern New England part of the northern Appalachians, and coincides with the trailing edge of Ganderia (Merrimack and Nashoba zones) where it structurally overlies Avalonia (Hibbard and others, 2006; Pollock and others, 2012; van Staal and others, 2009, 2012).

  5. Conodont and Radiolarian Data from the De Long Mountains Quadrangle and Adjacent Areas, Northern Alaska

    Science.gov (United States)

    Dumoulin, Julie A.; Harris, Anita G.; Blome, Charles D.; Young, Lorne E.

    2006-01-01

    INTRODUCTION This report presents biostratigraphic data from 289 collections at 189 localities in the De Long Mountains, Misheguk Mountain, and Noatak quadrangles (fig. 1); most of these data have never been previously published. The collections were made during studies of the Red Dog massive sulfide deposit in 1998?2004 and in support of regional mapping projects in 1979, 1981, 1983, and 1997?98. The collections?mostly conodonts and some radiolarians?tightly constrain the age of many stratigraphic units of Devonian through Triassic age exposed within the study area, and provide additional data on the depositional environments and thermal history of these rocks. The data are presented in a series of tables, organized by fossil type, stratigraphic unit, and location. Tables 1?12 contain conodont data, mostly from the De Long Mountains quadrangle. All of these collections were initially examined, or were reevaluated, from 1997 through 2004, and complete faunal lists are given for all samples. Table 13 lists ages and conodont color alteration indices (CAIs) of 27 collections from 24 localities in the Noatak quadrangle; updated faunal lists were not prepared for these samples. Radiolarian data?all from the De Long Mountains quadrangle?are given in table 14; these collections were analyzed between 1998 and 2003. Collection localities are shown in four maps (sheets 1, 2). Map 1 (sheet 1) shows all outcrop samples from the De Long Mountains and western Misheguk Mountain quadrangle (locs. 1-121). Maps 2?4 (sheets 1, 2) show all drill hole sample localities; samples come from the Su-Lik deposit and in and around the Anarraaq deposit (map 2, locs. 122?135), in and adjacent to the Red Dog deposits (Paalaaq, Aqqaluk, Main, and Qanaiyaq) (map 3, locs. 136?158), and from drill holes along the Port Road in the Noatak quadrangle (map 4, locs. 159?160). Map 4 (sheet 2) also shows all outcrop samples from the Noatak quadrangle (locs. 161?189). The text summarizes the lithofacies

  6. Gambia Land Use Land Cover

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This series of three-period land use land cover (LULC) datasets (1975, 2000, and 2013) aids in monitoring change in West Africa’s land resources (exception is...

  7. Land Cover - Minnesota Land Cover Classification System

    Data.gov (United States)

    Minnesota Department of Natural Resources — Land cover data set based on the Minnesota Land Cover Classification System (MLCCS) coding scheme. This data was produced using a combination of aerial photograph...

  8. Geologic map of the southern White Ledge Peak and Matilija quadrangles, Santa Barbara and Ventura Counties, California

    Science.gov (United States)

    Minor, Scott A.; Brandt, Theodore R.

    2015-01-01

    This report presents a digital geologic strip map of the southern parts of the contiguous White Ledge Peak and Matilija 7.5’ quadrangles in coastal southern California. With a compilation scale of 1:24,000 (one inch on the map to 2,000 feet on the ground), the map depicts the distribution of bedrock units, surficial deposits, and associated deformation adjacent to and south of the Arroyo Parida fault and in the southern Ojai Valley east of the Ventura River. This new compilation, combined with a recently published geologic map of the Santa Barbara coastal plain (U.S. Geological Survey Scientific Investigations Map 3001), completes a 69-km-long east-west mapping transect from Goleta to Ojai by the U.S. Geological Survey. These two contiguous geologic maps provide new insights and constraints on Neogene-through-Quaternary tectonic deformation and consequent landscape change, including geohazards in the urbanized southern flank of the Santa Ynez Mountains.

  9. Geologic Maps of the Dardanus Sulcus (Jg-6), Misharu (Jg-10), Nabu (Jg-11), and Namtar (Jg-14) Quadrangles of Ganymede

    Science.gov (United States)

    Maxwell, Ted A.; Marvin, Ursula B.

    2001-01-01

    Ganymede is the largest (~5,200 km diameter) of the Jovian satellites. Surficial features on Ganymede, as recorded by the Voyager 1 and 2 spacecraft (Smith and others, 1979a; 1979b), indicate a complex history of crustal formation. Several episodes of crustal modification led to the formation of curvilinear systems of furrows in dark terrain, the emplacement of light materials, and the creation of grooves in light terrain. Prior to exploration of the Jovian system by spacecraft, Earth-based observations established that the surface of Ganymede is dominated by water ice with various admixtures of fine silicate (rock) material (Pilcher and others, 1972; Sill and Clark, 1982). No agreement yet exists as to the amount of water in the near surface material; early estimates based on spectral reflectance data suggested that half the surface was covered by nearly pure water ice, whereas later studies by Clark (1981) indicated that up to 95% of the surface could be water ice and still be consistent with spectroscopic data. The Pioneer encounters with the Jovian system in 1973 and 1974 confirmed that Ganymede was made up of patches of light and dark terrain but did not have the spatial resolution needed to determine the percent cover of water ice, or geologic relations of surface materials. Not until the Voyager encounters was the surface seen with sufficient detail to enable geologic mapping. On the basis of albedo contrasts, surface morphology, crater density, and superposition relations, geologic mapping was done using principles and techniques that have been applied to the Earth, Moon, and other terrestrial planets (Wilhelms, 1972). Considerable uncertainty exists in applying such methods to bodies having icy crusts, as the internal processes that produce their surface configurations are poorly understood, and the resolution of the Voyager images is barely sufficient to show the detail required to interpret structural and stratigraphic relations. With the exception of

  10. Preliminary Geologic Map of the Topanga 7.5' Quadrangle, Southern California: A Digital Database

    Science.gov (United States)

    Yerkes, R.F.; Campbell, R.H.

    1995-01-01

    INTRODUCTION This Open-File report is a digital geologic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. This digital map database is compiled from previously published sources combined with some new mapping and modifications in nomenclature. The geologic map database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U. S. Geological Survey. For detailed descriptions of the units, their stratigraphic relations and sources of geologic mapping consult Yerkes and Campbell (1994). More specific information about the units may be available in the original sources. The content and character of the database and methods of obtaining it are described herein. The geologic map database itself, consisting of three ARC coverages and one base layer, can be obtained over the Internet or by magnetic tape copy as described below. The processes of extracting the geologic map database from the tar file, and importing the ARC export coverages (procedure described herein), will result in the creation of an ARC workspace (directory) called 'topnga.' The database was compiled using ARC/INFO version 7.0.3, a commercial Geographic Information System (Environmental Systems Research Institute, Redlands, California), with version 3.0 of the menu interface ALACARTE (Fitzgibbon and Wentworth, 1991, Fitzgibbon, 1991, Wentworth and Fitzgibbon, 1991). It is stored in uncompressed ARC export format (ARC/INFO version 7.x) in a compressed UNIX tar (tape archive) file. The tar file was compressed with gzip, and may be uncompressed with gzip, which is available free of charge via the Internet from the gzip Home Page (http://w3.teaser.fr/~jlgailly/gzip). A tar utility is required to extract the database from the tar file. This utility is included in most UNIX systems, and can be obtained free of charge via the Internet from Internet Literacy's Common

  11. Geologic map of the Vancouver and Orchards quadrangles and parts of the Portland and Mount Tabor quadrangles, Clark County, Washington, and Multnomah County, Oregon

    Science.gov (United States)

    O'Connor, Jim E.; Cannon, Charles M.; Mangano, Joseph F.; Evarts, Russell C.

    2016-06-03

    IntroductionThis is a 1:24,000-scale geologic map of the Vancouver and Orchards quadrangles and parts of the Portland and Mount Tabor quadrangles in the States of Washington and Oregon. The map area is within the Portland Basin and includes most of the city of Vancouver, Washington; parts of Clark County, Washington; and a small part of northwestern Multnomah County, Oregon. The Columbia River flows through the southern part of the map area, generally forming the southern limit of mapping. Mapped Quaternary geologic units include late Pleistocene cataclysmic flood deposits, eolian deposits, and alluvium of the Columbia River and its tributaries. Older deposits include Miocene to Pleistocene alluvium from an ancestral Columbia River. Regional geologic structures are not exposed in the map area but are inferred from nearby mapping.

  12. Geologic and geophysical maps of the Las Vegas 30' x 60' quadrangle, Clark and Nye counties, Nevada, and Inyo County, California

    Science.gov (United States)

    Page, William R.; Lundstrom, Scott C.; Harris, Anita G.; Langenheim, V.E.; Workman, Jeremiah B.; Mahan, Shannon; Paces, James B.; Dixon, Gary L.; Rowley, Peter D.; Burchfiel, B.C.; Bell, John W.; Smith, Eugene I.

    2005-01-01

    Las Vegas and Pahrump are two of the fastest growing cities in the US, and the shortage of water looms as among the greatest future problems for these cities. These new maps of the Las Vegas 30 x 60-minute quadrangle provide a geologic and geophysical framework and fundamental earth science database needed to address societal issues such as ground water supply and contamination, surface flood, landslide, and seismic hazards, and soil properties and their changing impact by and on urbanization. The mountain ranges surrounding Las Vegas and Pahrump consist of Mesozoic, Paleozoic and Proterozoic rocks. A majority of these rocks are Paleozoic carbonate rocks that are part of Nevada's carbonate rock aquifer province. The Spring Mountains represent a major recharge site in the province, where maximum altitude is 3,632 m (Charleston Peak) above sea level. Rocks in the Sheep and Las Vegas Ranges and Spring Mountains contain correlative, northeast-striking, southeast-verging thrust faults that are part of the Cretaceous, Sevier orogenic belt. These thrusts were offset during the Miocene by the Las Vegas Valley shear system (LVVSZ). We conducted new mapping in the Blue Diamond area, highlighting refined work on the Bird Spring thrust, newly studied ancient landslides, and gravity-slide blocks. We conducted new mapping in the Las Vegas Range and mapped previously unrecognized structures such as the Valley thrust and fold belt; recognition of these structures has led to a refined correlation of Mesozoic thrust faults across the LVVSZ. New contributions in the quadrangle also include a greatly refined stratigraphy of Paleozoic bedrock units based on conodont biostragraphy. We collected over 200 conodont samples in the quadrangle and established stratigraphic reference sections used to correlate units across the major Mesozoic thrust faults. Quaternary deposits cover about half of the map area and underlie most of the present urbanized area. Deposits consist of large coalescing

  13. High-resolution digital elevation dataset for Newberry Volcano and vicinity, Oregon, based on lidar survey of August-September, 2010 and bathymetric survey of June, 2001

    Science.gov (United States)

    Bard, Joseph A.; Ramsey, David W.

    2016-01-01

    Newberry Volcano, one of the largest Quaternary volcanoes in the conterminous United States, is a broad shield-shaped volcano measuring 60 km north-south by 30 km east-west with a maximum elevation of more than 2 km above sea level. It is the product of deposits from thousands of eruptions, including at least 25 in (approximately) the last 12,000 years (the Holocene Epoch). Newberry Volcano has erupted as recently as 1,300 years ago, but isotopic ages indicate that the volcano began its growth as early as 0.6 million years ago. Such a long eruptive history together with recent activity suggests that Newberry Volcano is likely to erupt in the future. This DEM (digital elevation model) of Newberry Volcano contributes to natural hazard monitoring efforts, the study of regional geology, volcanic landforms, and landscape modification during and after future volcanic eruptions, both at Newberry Volcano or elsewhere globally. In collaboration with the USGS, the Oregon Department of Geology and Mineral Industries-led Oregon Lidar Consortium contracted Watershed Sciences to collect 500 square miles of high-precision airborne lidar (Light Detection and Ranging) data. These data provide a digital map of the ground surface beneath forest cover. The lidar-derived DEM is amended to include bathymetric surveys of East Lake and Paulina Lake. The bathymetric surveys were performed in June, 2001 by Bob Reynolds of Central Oregon Community College, Bend, Oregon. The bathymetry is mosaicked into the DEM in place of the lidar derived lake surfaces. This release is comprised of a DEM dataset accompanied by a hillshade raster, each divided into eighteen tiles. Each tile’s bounding rectangle is identical to the extent of the USGS 7.5 minute topographic quadrangles covering the same area. The names of the DEM tiles are eleven characters long (e.g., dem_xxxxxx) with the prefix, "dem", indicating the file is a DEM and the last seven characters corresponding to the map reference code of the

  14. Spectral analysis of the quadrangles Av-13 and Av-14 on Vesta

    Science.gov (United States)

    Zambon, F.; Frigeri, A.; Combe, J.-Ph.; Tosi, F.; Longobardo, A.; Ammannito, E.; De Sanctis, M. C.; Blewett, D. T.; Scully, J.; Palomba, E.; Denevi, B.; Yingst, A.; Russell, C. T.; Raymond, C. A.

    2015-10-01

    The Av-13 (Tuccia) and Av-14 (Urbinia) quadrangles are located in the south-west region of Vesta. They are characterized by a large topographic variability, from the highest (Vestalia terra highlands) to the lowest (Rheasilvia basin). Many geological units in these quadrangles are not associated with mineralogical variability, as shown by the color-composite maps. Maps of mafic absorption band-center position reveal that the principal lithology is eucrite-rich howardite, but diogenite-rich howardite areas are also present, corresponding to particular features such as Antonia and Justina craters, which are characterized by strong mafic absorptions. These quadrangles, especially Urbinia, contain many bright ejecta, such as those of Tuccia crater, which are the highest reflectance materials on Vesta (Zambon et al., 2014). Dark areas are present and correspond to regions with deeper OH-signature. The two quadrangles contain many vertical ridge crests associated with the Rheasilvia impact. These ridges do not show mineralogical differences with respect to their surroundings, but have a distinctive appearance in color-ratio composite images.

  15. Digital and preliminary bedrock geologic map of the Rutland quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-121A Ratcliffe, N.M., 1998,�Digital and preliminary bedrock geologic map of the Rutland quadrangle, Vermont: USGS Open-File Report 98-121-A, 1...

  16. Digital bedrock geologic map of the Gilson Mountain quadrangle,�Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-7A Doolan, B, 1995,�Digital bedrock geologic map of the Gilson Mountain quadrangle,�Vermont: VGS Open-File Report VG95-7A, 2 plates, scale...

  17. Hydrogeochemical and stream sediment reconnaissance basic data for Big Delta Quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-29

    Field and laboratory data are presented for 1380 water samples from the Big Delta Quadrangle, Alaska. The samples were collected by Los Alamos Scientific Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  18. Geologic map of the Strawberry Butte 7.5’ quadrangle, Meagher County, Montana

    Science.gov (United States)

    Reynolds, Mitchell W.; Brandt, Theodore R.

    2017-06-19

    The 7.5′ Strawberry Butte quadrangle in Meagher County, Montana near the southwest margin of the Little Belt Mountains, encompasses two sharply different geologic terranes.  The northern three-quarters of the quadrangle are underlain mainly by Paleoproterozoic granite gneiss, across which Middle Cambrian sedimentary rocks rest unconformably.  An ancestral valley of probable late Eocene age, eroded northwest across the granite gneiss terrane, is filled with Oligocene basalt and overlying Miocene and Oligocene sandstone, siltstone, tuffaceous siltstone, and conglomerate.  The southern quarter of the quadrangle is underlain principally by deformed Mesoproterozoic sedimentary rocks of the Newland Formation, which are intruded by Eocene biotite hornblende dacite dikes.  In this southern terrane, Tertiary strata are exposed only in a limited area near the southeast margin of the quadrangle.  The distinct terranes are juxtaposed along the Volcano Valley fault zone—a zone of recurrent crustal movement beginning possibly in Mesoproterozoic time and certainly established from Neoproterozoic–Early Cambrian to late Tertiary time.  Movement along the fault zone has included normal faulting, the southern terrane faulted down relative to the northern terrane, some reverse faulting as the southern terrane later moved up against the northern terrane, and lateral movement during which the southern terrane likely moved west relative to the northern terrane.  Near the eastern margin of the quadrangle, the Newland Formation is locally the host of stratabound sulfide mineralization adjacent to the fault zone; west along the fault zone across the remainder of the quadrangle are significant areas and bands of hematite and iron-silicate mineral concentrations related to apparent alteration of iron sulfides.  The map defines the distribution of a variety of surficial deposits, including the distribution of hematite-rich colluvium and iron-silicate boulders.  The southeast

  19. Bedrock geologic map of the Hartland and North Hartland quadrangles, Windsor County, Vermont, and Sullivan and Grafton Counties, New Hampshire

    Science.gov (United States)

    Walsh, Gregory J.

    2016-08-16

    The bedrock geology of the 7.5-minute Hartland and North Hartland quadrangles, Vermont-New Hampshire, consists of highly deformed and metamorphosed lower Paleozoic metasedimentary, metavolcanic, and metaplutonic rocks of the Bronson Hill anticlinorium (BHA) and the Connecticut Valley trough (CVT). Rocks of the Orfordville anticlinorium on this map occupy the western part of the broader BHA. In the BHA, the Ordovician Ammonoosuc Volcanics and graphitic, sulfidic metapelite of the Partridge Formation are intruded by Ordovician plutonic rocks of the Oliverian Plutonic Suite. The Ordovician rocks are collectively referred to as the Bronson Hill arc. The Ordovician rocks are overlain by the Silurian to Devonian Clough, Fitch, and Littleton Formations. On this map, rocks of the CVT occupy the eastern part of the broader CVT. In the CVT in Vermont, the Silurian to Devonian Shaw Mountain, Waits River, and Gile Mountain Formations form an unconformable autochthonous to parautochthonous cover sequence on the pre-Silurian rocks of the Rowe-Hawley zone above Precambrian basement rocks of the Mount Holly Complex. On this map, however, only the Waits River and Gile Mountain Formations are exposed. Syn- to postmetamorphic rocks include quartz veins and Cretaceous dikes of the White Mountain Igneous Suite.

  20. Geologic map of the Sauk River 30- by 60-minute quadrangle, Washington

    Science.gov (United States)

    Tabor, R.W.; Booth, D.B.; Vance, J.A.; Ford, A.B.

    2002-01-01

    Summary -- The north-south-trending regionally significant Straight Creek Fault roughly bisects the Sauk River quadrangle and defines the fundamental geologic framework of it. Within the quadrangle, the Fault mostly separates low-grade metamorphic rocks on the west from medium- to high-grade metamorphic rocks of the Cascade metamorphic core. On the west, the Helena-Haystack melange and roughly coincident Darrington-Devils Mountain Fault Zone separate the western and eastern melange belts to the southwest from the Easton Metamorphic Suite, the Bell Pass melange, and rocks of the Chilliwack Group, to the northeast. The tectonic melanges have mostly Mesozoic marine components whereas the Chilliwack is mostly composed of Late Paleozoic arc rocks. Unconformably overlying the melanges and associated rocks are Eocene volcanic and sedimentary rocks, mostly infaulted along the Darrington-Devils Mountain Fault Zone. These younger rocks and a few small Eocene granitic plutons represent an extensional tectonic episode. East of the Straight Creek Fault, medium to high-grade regional metamorphic rocks of the Nason, Chelan Mountains, and Swakane terranes have been intruded by deep seated, Late Cretaceous granodioritic to tonalitic plutons, mostly now orthogneisses. Unmetamorphosed mostly tonalitic intrusions on both sides of the Straight Creek fault range from 35 to 4 million years old and represent the roots of volcanoes of the Cascade Magmatic Arc. Arc volcanic rocks are sparsely preserved east of the Straight Creek fault, but dormant Glacier Peak volcano on the eastern margin of the quadrangle is the youngest member of the Arc. Deposits of the Canadian Ice Sheet are well represented on the west side of the quadrangle, whereas alpine glacial deposits are common to the east. Roughly 5000 years ago lahars from Glacier Peak flowed westward filling major valleys across the quadrangle.

  1. Mineral resource assessment of the Iron River 1 degree x 2 degrees Quadrangle, Michigan and Wisconsin

    Science.gov (United States)

    Cannon, William F.

    1983-01-01

    The Iron River 1? x 2? quadrangle contains identified resources of copper and iron. Copper-rich shale beds in the north part of the quadrangle contain 12.2 billion pounds (5.5 billion kilograms) of copper in well-studied deposits including 9.2 billion pounds (4.2 billion kilograms) that are economically minable by 1980 standards. At least several billion pounds of copper probably exist in other parts of the same shale beds, but not enough data are available to measure the amount. A small amount, about 250 million pounds (113 million kilograms), of native copper is known to remain in one abandoned mine, and additional but unknown amounts remain in other abandoned mines. About 13.25 billion tons (12.02 billion metric tons) of banded iron-formation averaging roughly 30 percent iron are known within 500 feet (152.4 meters) of the surface in the Gogebic, Marquette, and Iron River-Crystal Falls districts. A small percentage of that might someday be minable as taconite, but none is now believed to be economic. Some higher grade iron concentrations exist in the same iron-formations. Such material was the basis of former mining of iron in the region, but a poor market for such ore and depletion of many deposits have led to the decline of iron mining in the quadrangle. Iron mines of the quadrangle were not being worked in 1980. Many parts of the quadrangle contain belts of favorable host rocks for mineral deposits. Although deposits are not known in these belts, undiscovered deposits of copper, zinc, lead, silver, uranium, phosphate, nickel, chromium, platinum, gold, and diamonds could exist.

  2. Digital and preliminary bedrock geologic map of the Vermont part of the Hartland quadrangle, Windsor County, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-123A Walsh, G. J., 1998,�Digital and preliminary bedrock geologic map of the Vermont part of the Hartland quadrangle, Windsor County, Vermont:...

  3. Digital and preliminary bedrock geologic map of the Townshend 7.5 x 15 minute quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-335A Armstrong, T.R., and Ratcliffe, N.M., 1998, Digital and preliminary bedrock geologic map of the Townshend 7.5 x 15 minute quadrangle,...

  4. Surficial Geologic Map of the Southern Two-Thirds of the Woodbury Quadrangle, Vermont, Washington County, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2015-3 Springston, G, Thomas, E, and Kim, J, 2015,�Surficial Geologic Map of the Southern Two-Thirds of the Woodbury Quadrangle, Vermont,...

  5. Map showing abundance and distribution of copper in oxide residues of stream-sediment samples, Medford 1 degree by 2 degrees Quadrangle, Oregon-California

    Science.gov (United States)

    Whittington, Charles L.; Grimes, David J.; Leinz, Reinhard W.

    1985-01-01

    Stream-sediment sampling in the Medford 1o x 2o quadrangle was undertaken to provide to aid in assessment of the mineral resource potential of the quadrangle. This map presents data on the abundance and distribution of copper in the oxide residues (oxalic-acid leachates) of stream sediments and in the minus-0.18-mm sieve fraction of selected stream sediments collected in the quadrangle

  6. Bouguer gravity anomaly and isostatic residual gravity maps of the Tonopah 1 degree by 2 degrees Quadrangle, central Nevada

    Science.gov (United States)

    Plouff, Donald

    1992-01-01

    These gravity maps are part of a folio of maps of the Tonopah 1 degree by 2 degrees quadrangle, Nevada, prepared under the Conterminous United States Mineral Assessment Program. Each product of the folio is designated by a different letter symbol, starting with A, in the MF-1877 folio. The quadrangle encompasses an area of about 19,500 km2  in the west central part of Nevada.

  7. Lidar-revised geologic map of the Poverty Bay 7.5' quadrangle, King and Pierce Counties, Washington

    Science.gov (United States)

    Tabor, Rowland W.; Booth, Derek B.; Troost, Kathy Goetz

    2014-01-01

    For this map, we interpreted a 6-ft-resolution lidar digital elevation model combined with the geology depicted on the Geologic Map of the Poverty Bay 7.5' Quadrangle, King and Pierce Counties, Washington (Booth and others, 2004b). The authors of the 2004 map described, interpreted, and located the geology on the 1:24,000-scale topographic map of the Poverty Bay 7.5' quadrangle.

  8. What Medicare Covers

    Science.gov (United States)

    ... What Part A covers Medicare Part A hospital insurance covers inpatient hospital care, skilled nursing facility, hospice, lab tests, surgery, ... Medicare Covers Drug Coverage (Part D) Supplements & Other Insurance Claims & ... doctors, providers, hospitals & plans Where can I get covered medical items? ...

  9. Preliminary surficial geologic map of the Newberry Springs 30' x 60' quadrangle, California

    Science.gov (United States)

    Phelps, G.A.; Bedford, D.R.; Lidke, D.J.; Miller, D.M.; Schmidt, K.M.

    2012-01-01

    The Newberry Springs 30' x 60' quadrangle is located in the central Mojave Desert of southern California. It is split approximately into northern and southern halves by I-40, with the city of Barstow at its western edge and the town of Ludlow near its eastern edge. The map area spans lat 34°30 to 35° N. to long -116 °to -117° W. and covers over 1,000 km2. We integrate the results of surficial geologic mapping conducted during 2002-2005 with compilations of previous surficial mapping and bedrock geologic mapping. Quaternary units are subdivided in detail on the map to distinguish variations in age, process of formation, pedogenesis, lithology, and spatial interdependency, whereas pre-Quaternary bedrock units are grouped into generalized assemblages that emphasize their attributes as hillslope-forming materials and sources of parent material for the Quaternary units. The spatial information in this publication is presented in two forms: a spatial database and a geologic map. The geologic map is a view (the display of an extracted subset of the database at a given time) of the spatial database; it highlights key aspects of the database and necessarily does not show all of the data contained therein. The database contains detailed information about Quaternary geologic unit composition, authorship, and notes regarding geologic units, faults, contacts, and local vegetation. The amount of information contained in the database is too large to show on a single map, so a restricted subset of the information was chosen to summarize the overall nature of the geology. Refer to the database for additional information. Accompanying the spatial data are the map documentation and spatial metadata. The map documentation (this document) describes the geologic setting and history of the Newberry Springs map sheet, summarizes the age and physical character of each map unit, and describes principal faults and folds. The Federal Geographic Data Committee (FGDC) compliant metadata

  10. The National Land Cover Database

    Science.gov (United States)

    Homer, Collin H.; Fry, Joyce A.; Barnes, Christopher A.

    2012-01-01

    The National Land Cover Database (NLCD) serves as the definitive Landsat-based, 30-meter resolution, land cover database for the Nation. NLCD provides spatial reference and descriptive data for characteristics of the land surface such as thematic class (for example, urban, agriculture, and forest), percent impervious surface, and percent tree canopy cover. NLCD supports a wide variety of Federal, State, local, and nongovernmental applications that seek to assess ecosystem status and health, understand the spatial patterns of biodiversity, predict effects of climate change, and develop land management policy. NLCD products are created by the Multi-Resolution Land Characteristics (MRLC) Consortium, a partnership of Federal agencies led by the U.S. Geological Survey. All NLCD data products are available for download at no charge to the public from the MRLC Web site: http://www.mrlc.gov.

  11. Geologic map of the Vail West quadrangle, Eagle County, Colorado

    Science.gov (United States)

    Scott, Robert B.; Lidke, David J.; Grunwald, Daniel J.

    2002-01-01

    This new 1:24,000-scale geologic map of the Vail West 7.5' quadrangle, as part of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area on the southwest flank of the Gore Range. Bedrock strata include Miocene tuffaceous sedimentary rocks, Mesozoic and upper Paleozoic sedimentary rocks, and undivided Early(?) Proterozoic metasedimentary and igneous rocks. Tuffaceous rocks are found in fault-tilted blocks. Only small outliers of the Dakota Sandstone, Morrison Formation, Entrada Sandstone, and Chinle Formation exist above the redbeds of the Permian-Pennsylvanian Maroon Formation and Pennsylvanian Minturn Formation, which were derived during erosion of the Ancestral Front Range east of the Gore fault zone. In the southwestern area of the map, the proximal Minturn facies change to distal Eagle Valley Formation and the Eagle Valley Evaporite basin facies. The Jacque Mountain Limestone Member, previously defined as the top of the Minturn Formation, cannot be traced to the facies change to the southwest. Abundant surficial deposits include Pinedale and Bull Lake Tills, periglacial deposits, earth-flow deposits, common diamicton deposits, common Quaternary landslide deposits, and an extensive, possibly late Pliocene landslide deposit. Landscaping has so extensively modified the land surface in the town of Vail that a modified land-surface unit was created to represent the surface unit. Laramide movement renewed activity along the Gore fault zone, producing a series of northwest-trending open anticlines and synclines in Paleozoic and Mesozoic strata, parallel to the trend of the fault zone. Tertiary down-to-the-northeast normal faults are evident and are parallel to similar faults in both the Gore Range and the Blue River valley to the northeast; presumably these are related to extensional deformation that occurred during formation of the northern end of the

  12. Geologic map of the Beacon Rock quadrangle, Skamania County, Washington

    Science.gov (United States)

    Evarts, Russell C.; Fleck, Robert J.

    2017-06-06

    The Beacon Rock 7.5′ quadrangle is located approximately 50 km east of Portland, Oregon, on the north side of the Columbia River Gorge, a scenic canyon carved through the axis of the Cascade Range by the Columbia River. Although approximately 75,000 people live within the gorge, much of the region remains little developed and is encompassed by the 292,500-acre Columbia River Gorge National Scenic Area, managed by a consortium of government agencies “to pro­tect and provide for the enhancement of the scenic, cultural, recreational and natural resources of the Gorge and to protect and support the economy of the Columbia River Gorge area.” As the only low-elevation corridor through the Cascade Range, the gorge is a critical regional transportation and utilities corridor (Wang and Chaker, 2004). Major state and national highways and rail lines run along both shores of the Columbia River, which also provides important water access to ports in the agricultural interior of the Pacific Northwest. Transmission lines carry power from hydroelectric facilities in the gorge and farther east to the growing urban areas of western Oregon and Washington, and natural-gas pipelines transect the corridor (Wang and Chaker, 2004). These lifelines are highly vulnerable to disruption by earthquakes, landslides, and floods. A major purpose of the work described here is to identify and map geologic hazards, such as faults and landslide-prone areas, to provide more accurate assessments of the risks associated with these features.The steep canyon walls of the map area reveal exten­sive outcrops of Miocene flood-basalt flows of the Columbia River Basalt Group capped by fluvial deposits of the ances­tral Columbia River, Pliocene lavas erupted from the axis of the Cascade arc to the east, and volcanic rocks erupted from numerous local vents. The Columbia River Basalt Group unconformably rests on a sequence of late Oligocene and early Miocene rocks of the ancestral Cascade volcanic arc

  13. Reconnaissance geology of the Thaniyah Quadrangle, sheet 20/42 C, Kingdom of Saudi Arabia

    Science.gov (United States)

    Greene, Robert C.

    1983-01-01

    The Thaniyah quadrangle, sheet 20/42 C, is located in the transition zone between the Hijaz Mountains and the Najd Plateau of southwestern Saudi Arabia between lat 20?00' and 20?30' N., long 42?00' to 42?30' E. The quadrangle is underlain by Precambrian metavolcanic, metasedimentary, plutonic, and dike rocks. Metavolcanic rocks consist of metamorphosed basalt and andesite with minor dacite and rhyolite and underlie three discontinuous northwest-trending belts. Metasedimentary rocks are confined to small areas underlain by quartzite, metasandstone, marble, and calc-silicate rock. Plutonic rocks include an extensive unit of tonalite and quartz diorite and a smaller unit of diorite and quartz diorite, which occupy much of the central part of the quadrangle. A small body of diorite and gabbro and a two-part zone of tonalite gneiss are also present. All of these plutonic rocks are assigned to the An Nimas batholith. Younger plutonic rocks include extensive graphic granite and rhyolite in the northeastern part of the quadrangle and several smaller bodies of granitic rocks and of gabbro. The metavolcanic rocks commonly have strong foliation with northwest strike and steep to vertical dip. Diorite and quartz diorite are sheared and brecciated and apparently syntectonic. Tonalite and quartz diorite are both foliate and nonfoliate and were intruded in episodes both preceding and following shearing. The granitic rocks and gabbro are post-tectonic. Trends of faults and dikes are mostly related to the Najd faulting episode. Radiometric ages, mostly from adjacent quadrangles, suggest that the An Nimas batholith is 835 to 800 Ma, gabbro and granite, except the graphic granite and rhyolite unit, are about 640 to 615 Ma, and the graphic granite and rhyolite 575 to 565 Ma old. Metavolcanic rocks similar to those hosting copper and gold mineralization in the Wadi Shuwas mining district adjacent to the southwestern part of the quadrangle are abundant. An ancient copper mine was

  14. Preliminary Geological Maps of the Ac-H-10 Rongo and Ac-H-15 Zadeni Quadrangles: An integrated Mapping Study Using Dawn Spacecraft Data

    Science.gov (United States)

    Platz, T.; Nathues, A.; Crown, D. A.; Mest, S. C.; Williams, D. A.; Hoffmann, M.; Schäfer, M.; Sizemore, H. G.; Yingst, R. A.; Ruesch, O.; Buczkowski, D.; Kneissl, T.; Schmedemann, N.; Hughson, K.; Preusker, F.; Russell, C. T.

    2015-12-01

    We used geologic mapping applied to Dawn spacecraft data as a tool to understand the geologic history of the Ac-H-10 Rongo and Ac-H-15 Zadeni quadrangles of dwarf planet Ceres. These regions, Rongo and Zadeni, are located between 22°S-22°N and 288°-360°E and 65-90°S and 0°-360°E, respectively. The Rongo Quadrangle hosts a number of features: 1) the southwest portion is dissected by curvilinear structures likely caused by Yalode basin formation; 2) the central part is marked by dome-like constructs up to 100 km across; 3) a peculiar bright, c.4 km tall, conical structure informally known as the 'pyramid'; 4) impact craters of various diameters appear moderately to highly degraded or are partially buried; and 5) bright material is primarily exposed in the central portion and often associated with craters. Rongo crater (68 km across) exhibits a central peak and scalloped walls indicative of its degraded appearance. The Zadeni Quadrangle is characterised by impact craters up to 130 km in diameter of which Zadeni crater is the largest. Impact craters across all sizes exhibit fresh to highly degraded morphologies or are partially buried. Many craters developed central peaks. Inter-crater plains are generally hummocky with isolated regions of smooth-textured surfaces. The south pole area (85-90°S) is poorly illuminated and may host a large impact structure. At the time of this writing geologic mapping was performed on Framing Camera (FC) mosaics from Approach (1.3 km/px) and Survey (415 m/px) orbits, including clear filter and colour images and digital terrain models derived from stereo images. In Fall 2015 images from the High Altitude Mapping Orbit (140 m/px) will be used to refine the mapping, followed by Low Altitude Mapping Orbit (35 m/px) starting in December 2015. Support of the Dawn Instrument, Operations, and Science Teams is acknowledged. This work is supported by grants from NASA through the Dawn project, and from the German and Italian Space Agencies.

  15. Modeled conterminous United States Crop Cover datasets for 2000 - 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Crop cover maps have become widely used in a range of research applications. Multiple crop cover maps have been developed to suite particular research interests. The...

  16. Modeled conterminous United States Crop Cover datasets for 2001

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Crop cover maps have become widely used in a range of research applications. Multiple crop cover maps have been developed to suite particular research interests. The...

  17. Modeled conterminous United States Crop Cover datasets for 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Crop cover maps have become widely used in a range of research applications. Multiple crop cover maps have been developed to suite particular research interests. The...

  18. National Land Cover Database 2006: 2005-2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — NLCD 2006 quantifies land cover and land cover change between the years 2001 to 2006 and provides an updated version of NLCD 2001. These products represent the...

  19. National Land Cover Database 2006: 2005-2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — NLCD 2006 quantifies land cover and land cover change between the years 2001 to 2006 and provides an updated version of NLCD 2001. These products represent the first...

  20. National Land Cover Database 2006: 2005-2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — NLCD 2006 quantifies land cover and land cover change between the years 2001 to 2006 and provides an updated version of NLCD 2001. These products represent the first...

  1. Modeled conterminous United States Crop Cover datasets for 2004

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Crop cover maps have become widely used in a range of research applications. Multiple crop cover maps have been developed to suite particular research interests. The...

  2. Enhanced National Land Cover Data 1992 (NLCDe 92)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The enhanced National Land Cover Data 1992 ("NLCDe 92") served as the primary source for nationally consistent mapped land cover during the first decade of sampling...

  3. Modeled conterminous United States Crop Cover datasets for 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Crop cover maps have become widely used in a range of research applications. Multiple crop cover maps have been developed to suite particular research interests. The...

  4. Modeled conterminous United States Crop Cover datasets for 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Crop cover maps have become widely used in a range of research applications. Multiple crop cover maps have been developed to suite particular research interests. The...

  5. Modeled conterminous United States Crop Cover datasets for 2011

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Crop cover maps have become widely used in a range of research applications. Multiple crop cover maps have been developed to suite particular research interests. The...

  6. Modeled conterminous United States Crop Cover datasets for 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Crop cover maps have become widely used in a range of research applications. Multiple crop cover maps have been developed to suite particular research interests. The...

  7. Modeled conterminous United States Crop Cover datasets for 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Crop cover maps have become widely used in a range of research applications. Multiple crop cover maps have been developed to suite particular research interests. The...

  8. Bedrock geologic map of the Uxbridge quadrangle, Worcester County, Massachusetts, and Providence County, Rhode Island

    Science.gov (United States)

    Walsh, Gregory J.

    2014-01-01

    The bedrock geology of the 7.5-minute Uxbridge quadrangle consists of Neoproterozoic metamorphic and igneous rocks of the Avalon zone. In this area, rocks of the Avalon zone lie within the core of the Milford antiform, south and east of the terrane-bounding Bloody Bluff fault zone. Permian pegmatite dikes and quartz veins occur throughout the quadrangle. The oldest metasedimentary rocks include the Blackstone Group, which represents a Neoproterozoic peri-Gondwanan marginal shelf sequence. The metasedimentary rocks are intruded by Neoproterozoic arc-related plutonic rocks of the Rhode Island batholith. This report presents mapping by G.J. Walsh. The complete report consists of a map, text pamphlet, and GIS database. The map and text pamphlet are available only as downloadable files (see frame at right). The GIS database is available for download in ESRI™ shapefile and Google Earth™ formats, and includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, geochemical data, and photographs.

  9. Reconnaissance surficial geologic map of the Taylor Mountains quadrangle, southwestern Alaska

    Science.gov (United States)

    Wilson, Frederic H.

    2015-09-28

    This map and accompanying digital files are the result of the interpretation of aerial photographs from the 1950s as well as more modern imagery. The area, long considered a part of Alaska that was largely not glaciated (see Karlstrom, 1964; Coulter and others, 1965; or Péwé, 1975), actually has a long history reflecting local and more distant glaciations. An unpublished photogeologic map of the Taylor Mountains quadrangle from the 1950s by J.N. Platt Jr. was useful in the construction of this map. Limited new field mapping in the area was conducted as part of a mapping project in the Dillingham quadrangle to the south (Wilson and others, 2003); however, extensive aerial photograph interpretation represents the bulk of the mapping effort. The accompanying digital files show the sources for each line and geologic unit shown on the map.

  10. A geologic evaluation of thermal properties for the Elysium and Aeolis quadrangles of Mars

    Science.gov (United States)

    Zimbelman, James R.; Leshin, Laurie A.

    1987-01-01

    The results of an analysis of high-resolution thermal inertia data (obtained with the IR Thermal Mapper) for the Elysium and Aeolis quadrangles of Mars are presented. The results indicate that aeolian features, both with dark and light albedos relative to their surroundings, have thermal inertias higher than that of the surrounding terrains. On the other hand, terrains with distinctive surface relief do not have distinguishable thermal properties, even when these terrains can be spatially resolved from surrounding units. Thermal inertias for individual geologic units within the two quadrangles appear to be more strongly controlled by the location of the terrain in either the northern plains or the southern highlands than by properties intrinsic to the unit. The similarity of regional thermal properties observed at both high and low spatial resolutions indicates a regional homogeneity of much of the Martian surface at scales larger than 5 km.

  11. Structure of the Paleozoic rocks in the Tonkin Summit Quadrangle, Eureka County, Nevda

    Science.gov (United States)

    Arney, Eric

    Paleozoic rocks in the northern Simpson Park Range, Tonkin Summit Quadrangle, are comprised of the syn-orogenic Roberts Mountains allochthon, the postorogenic Permian Garden Valley Formation, and autochthonous Devonian carbonates. Complex deformation includes the Late Devonian-Early Mississippian, Antler Orogeny, post-Antler thrusting, and Cenozoic Basin and Range extension. The Roberts Mountains thrust caused eastward advancement of deep marine, mainly siliciclastic strata on top of the shelfal, mainly carbonate platform during the Antler Orogeny. This study shows that an east-vergent, post-Antler thrust, emplace the topographically higher carbonate outliers of the autochthon on top of the Roberts Mountains allochthon. These carbonate masses sit on top of the Henderson thrust in the Tonkin Summit Quadrangle and timing of this thrust is constrained to be post-Permian.

  12. Preliminary Geological Map of the Ac-H-9 Occator Quadrangle of Ceres: An Integrated Mapping Study Using Dawn Spacecraft Data

    Science.gov (United States)

    Buczkowski, D.; Yingst, R. A.; Williams, D. A.; Mest, S. C.; Scully, J. E. C.; Crown, D. A.; Schenk, P.; Jaumann, R.; Roatsch, T.; Preusker, F.; Platz, T.; Nathues, A.; Hoffmann, M.; Schäfer, M.; Marchi, S.; De Sanctis, M. C.; Raymond, C. A.; Russell, C. T.

    2015-12-01

    We used geologic mapping applied to Dawn spacecraft data as a tool to understand the geologic history of the Ac-H-9 Occator quadrangle of dwarf planet Ceres. This region, located between 22˚S-22˚N and 216-288˚E, is one of two longitudinally distinct regions on Ceres where ESA Herschel space telescope data suggested a release of water vapor [1] and hosts: 1) the 92 km diameter impact crater Occator in the NW of the quadrangle, whose rim is scalloped and whose interior encompasses Hubble "Bright Spot 5"; 2) the 115 km diameter crater Kirnis, a degraded crater that contains a large dome-like feature on the western half of its floor; and 3) regional linear structures, that both cut crater rims (including Occator and Kirnis) and affect crater shapes. Key goals of the ongoing mapping are to 1) determine the source of the bright spots in Occator; 2) determine if the dome-like feature in Kirnis resulted from a mass-wasting or is a product of uplift; and 3) assess the relationships between linear structural features and impact craters, including the effects of surface stress regimes on crater formation and modification. At the time of this writing geologic mapping was performed on Framing Camera (FC) mosaics from late Approach (1.3 km/px) and Survey (415 m/px) orbits, including clear filter and color images and digital terrain models derived from stereo images. In Fall 2015 images from the High Altitude Mapping Orbit (140 m/px) will be used to refine the mapping, followed by Low Altitude Mapping Orbit (35 m/px) images starting in December 2015. Support of the Dawn Instrument, Operations, and Science Teams is acknowledged. This work is supported by grants from NASA through the Dawn project, and from the German and Italian Space Agencies. Reference: [1] Küppers, M., et al. (2014). Nature, v. 505, 525-527.

  13. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    1999-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...

  14. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    2002-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...

  15. Aerial Gamma Ray and Magnetic Survey Raton Basin Project. Final Report Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-08-01

    The Flagstaff quadrangle in northern Arizona lies at the southwestern edge of the Colorado Plateau. Portions of the Black Mesa Basin and Mogollon Rim lie within the quadrangle. Mesozoic rocks cover 90% of the surface of the Black Mesa Basin, but Paleozoic rocks dominate the Mogollon Rim. Cenozoic instrusive and extrusive rocks of the San Francisco Volcanic Field and the Hopi Buttes are superimposed on the older sedimentary sequence. Magnetic data apparently show contributions from both deep and shallow sources. The San Francisco Volcanic Field is relatively well defined, but deeper-lying structural boundaries are largely masked by the younger igneous rocks in the area. The Flagstaff quadrangle has been relatively unproductive in terms of uranium mining. Some claims are present in the Black Mesa Basin, primarily in Triassic rocks. A total of 195 groups of sample responses in the uranium window qualify as anomalies as defined in Volume I. These anomalies primarily form two distinct groups, though others are scattered throughout the quadrangle. One group is associated with igneous rocks in the northern Hopi Buttes area, and the other, a larger and more indistinct group, is primarily associated with the Shinarump Member of the Triassic Chinle Formation in the northern Painted Desert area. None are directly associated with the locations of known claims.

  16. Geologic map of the Hart Peak Quadrangle, California and Nevada: a digital database

    Science.gov (United States)

    Nielson, Jane E.; Turner, Ryan D.; Bedford, David R.

    1999-01-01

    The Hart Peak 1:24,000-scale quadrangle is located about 12 km southwest of Searchlight, Nevada, comprehending the eastern part of the Castle Peaks, California, and most of the Castle Mountains and the northwestern part of the Piute Range, in California and Nevada. The Castle Peaks area constitutes the northeasternmost part of the northeast-trending New York Mountains. The Castle Mountains straddle the California-Nevada State line between the Castle Peaks and north-trending Piute Range. The southern part of the Piute Range, near Civil War-era Fort Piute, adjoins Homer Mountain mapped by Spencer and Turner (1985). Adjacent and nearby 1:24,000-scale quadrangles include Castle Peaks, East of Grotto Hills, Homer Mountain, and Signal Hill, Calif.; also Tenmile Well and West of Juniper Mine, Calif. and Nev. The oldest rocks in the Hart Peak quadrangle are Early Proterozoic gneiss and foliated granite that crop out in the northern part of the quadrangle on the eastern flank of the Castle Peaks and in the central Castle Mountains (Wooden and Miller, 1990). Paleozoic rocks are uncommon and Mesozoic granitic rocks are not found in the map area. The older rocks are overlain nonconformably by several km of Miocene volcanic deposits, which accumulated in local basins. Local dikes and domes are sources of most Miocene eruptive units; younger Miocene intrusions cut all the older rocks. Upper Miocene to Quaternary gravel deposits interfinger with the uppermost volcanic flows; the contact between volcanic rocks and the gravel deposits is unconformable locally. Canyons and intermontane valleys contain dissected Quaternary alluvialfan deposits that are mantled by active drainage and alluvial fan detritus.

  17. Winter Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Winter Bottom Trawl Survey was initiated in 1992 and covered offshore areas from the Mid-Atlantic to Georges Bank. Inshore strata were covered...

  18. Geologic Map of the Pahranagat Range 30' x 60' Quadrangle, Lincoln and Nye Counties, Nevada

    Science.gov (United States)

    Jayko, A.S.

    2007-01-01

    Introduction The Pahranagat Range 30' x 60' quadrangle lies within an arid, sparsely populated part of Lincoln and Nye Counties, southeastern Nevada. Much of the area is public land that includes the Desert National Wildlife Range, the Pahranagat National Wildlife Refuge, and the Nellis Air Force Base. The topography, typical of much of the Basin and Range Province, consists of north-south-trending ranges and intervening broad alluvial valleys. Elevations range from about 1,000 to 2,900 m. At the regional scale, the Pahranagat Range quadrangle lies within the Mesozoic and early Tertiary Sevier Fold-and-Thrust Belt and the Cenozoic Basin and Range Province. The quadrangle is underlain by a Proterozoic to Permian miogeoclinal section, a nonmarine clastic and volcanic section of middle Oligocene or older to late Miocene age, and alluvial deposits of late Cenozoic age. The structural features that are exposed reflect relatively shallow crustal deformation. Mesozoic deformation is dominated by thrust faults and asymmetric or open folds. Cenozoic deformation is dominated by faults that dip more than 45i and dominostyle tilted blocks. At least three major tectonic events have affected the area: Mesozoic (Sevier) folding and thrust faulting, pre-middle Oligocene extensional deformation, and late Cenozoic (mainly late Miocene to Holocene) extensional deformation. Continued tectonic activity is expressed in the Pahranagat Range area by seismicity and faults having scarps that cut alluvial deposits.

  19. Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus

    Science.gov (United States)

    Ivanov, M. A.; Head, J. W.

    2009-01-01

    The Fortuna Tessera quadrangle (50-75 N, 0-60 E) is a large region of tessera [1] that includes the major portion of Fortuna and Laima Tesserae [2]. Near the western edge of the map area, Fortuna Tessera is in contact with the highest moun-tain belt on Venus, Maxwell Montes. Deformational belts of Sigrun-Manto Fossae (extensional structures) and Au ra Dorsa (contractional structures) separate the tessera regions. Highly deformed terrains correspond to elevated regions and mildly deformed units are with low-lying areas. The sets of features within the V-2 quadrangle permit us to address the following important questions: (1) the timing and processes of crustal thickening/thinning, (2) the nature and origin of tesserae and deformation belts and their relation to crustal thickening processes, (3) the existence or absence of major evolutionary trends of volcanism and tectonics. The key feature in all of these problems is the regional sequence of events. Here we present description of units that occur in the V-2 quadrangle, their regional correlation chart (Fig. 1), and preliminary geological map of the region (Fig. 2).

  20. Measured Sections of Upper Paleozoic to Early Tertiary Rocks, Demarcation Point Quadrangle, Alaska

    Science.gov (United States)

    Detterman, Robert L.

    1984-01-01

    Introduction Twelve sections of upper Paleozoic to early Tertiary rocks from the Demarcation Point quadrangle and the northern edge of the Table Mountain quadrangle are presented. These measured sections include the type sections for the Joe Creek Member of the Echooka Formation (Section 11), the Bathtub Graywacke and Kongakut Formation (Section 9), and the unnamed early Tertiary rocks (Section 1). The early Tertiary rocks correlate closely with the Moose Channel Formation in the MacKenzie Delta, Candada (Detterman and Spicer, 1981). The sections were measured with a Jacob's staff during the geologic investigations of the Demarcation Point quadrangle in 1969 to 1971. The geologic map is published in generalized form (Detterman, 1974, 1976; Detterman and others, 1975). The sections are at a scale of 1 in to 100 ft, except for section 1, which is at 1 in to 200 ft. The location map shows the year and station number for each station. Fossils collected from these rocks and marked by and asterisk (*) are included in Detterman and others, 1975 (p. 42-45). A double asterisk (**) indicates they are included in the list below. All other fossil indicators mean fossils are present, but not collected.

  1. Elliptic ovoids and their rosettes in a classical generalized quadrangle of even order

    Indian Academy of Sciences (India)

    ILARIA CARDINALI; N S NARASIMHA SASTRY

    2016-10-01

    Let $\\mathcal{Q}_0$ be the classical generalized quadrangle of order $q = 2^{n}(n \\geq 2)$ arising from a non-degenerate quadratic form in a 5-dimensional vector space defined over a finite field of order $q$. We consider the rank two geometry $\\mathcal{X}$ having as points all the elliptic ovoids of $\\mathcal{Q}^0$ and as lines the maximal pencils of elliptic ovoids of $\\mathcal{Q}_0$ pairwise tangent at the same point. We first prove that $\\mathcal{X}$ is isomorphic to a 2-fold quotient of the affine generalized quadrangle $\\mathcal{Q} \\backslash \\mathcal{Q}_0$, where $\\mathcal{Q}$ is the classical $(q, q^2)$- generalized quadrangle admitting $\\mathcal{Q}_0$ as a hyperplane. Further, we classify the cliques in the collinearity graph $\\Gamma$ of $\\mathcal{X}$. We prove that any maximal clique in $\\Gamma$ is either a line of $\\mathcal{X}$ or it consists of 6 or 4 points of $\\mathcal{X}$ not contained in any line of $\\mathcal{X}$, accordingly as $n$ is odd or even.We count the number of cliques of each type and show that those cliques which are not contained in lines of $\\mathcal{X}$ arise as subgeometries of $\\mathcal{Q}$ defined over $\\mathbb{F}_2$

  2. 2000 UMRS Land Cover Land Use--Pool 11

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) is in the process of creating high-resolution land cover/use data sets for the Upper...

  3. 2000 UMRS Land Cover Land Use--Pool 22

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) is in the process of creating high-resolution land cover/use data sets for the Upper...

  4. 2000 UMRS Land Cover Land Use--Pool 2

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) is in the process of creating high-resolution land cover/use data sets for the Upper...

  5. 1994 UMRS Land Cover Land Use--Pool 7

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for selected areas in the Upper...

  6. 1994 UMRS Land Cover Land Use--Pool 26

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for selected areas in the Upper...

  7. 1994 UMRS Land Cover Land Use--Pool 8

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for selected areas in the Upper...

  8. 2000 UMRS Land Cover Land Use--Pool 8

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) is in the process of creating high-resolution land cover/use data sets for the...

  9. 2000 UMRS Land Cover Land Use--Open River 2

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) is in the process of creating high-resolution land cover/use data sets for the Upper...

  10. 2000 UMRS Land Cover Land Use--Open River 1

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) is in the process of creating high-resolution land cover/use data sets for the Upper...

  11. 2000 UMRS Land Cover Land Use--Pool 9

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) is in the process of creating high-resolution land cover/use data sets for the Upper...

  12. Land Cover Trends Geotagged Photography: 1999-2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The United States Geological Survey (USGS) Land Cover Trends field photography collection is a national-scale, ground-reference dataset which initially served as a...

  13. 2000 UMRS Land Cover Land Use--Pool 1

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) is in the process of creating high-resolution land cover/use data sets for the Upper...

  14. 2000 UMRS Land Cover Land Use--Pool 7

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) is in the process of creating high-resolution land cover/use data sets for the Upper...

  15. 2000 UMRS Land Cover Land Use--Pool 25

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) is in the process of creating high-resolution land cover/use data sets for the Upper...

  16. Landfill Top Covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2011-01-01

    the landfill section has been filled or several years later depending on the settlement patterns. Significant differential settlements may disturb the functioning of the top cover. The specific design of the cover system depends on the type of waste landfilled (municipal, hazardous, or inert waste...... such as lowpermeability clay soils and geomembranes are required. The avoidance of water input to organic waste may impede the microbial stabilization processes including gas generation. Therefore watertight top covers may be in conflict with the purposes of reactor landfills (see Chapter 10.6). At some sites covers...... sometimes are made to include components for recirculation of landfill leachate (see Section 10.9.2 for more details). The top cover is an important factor in the water management of landfills. Details about water infiltration through top covers and its influence on the hydrology of the landfill is covered...

  17. Microporosity of BIF hosted massive hematite ore, Iron Quadrangle, Brazil

    Directory of Open Access Journals (Sweden)

    CÉSAR A.C. VARAJÃO

    2002-03-01

    Full Text Available Massive hematite ore (MHO is a special high-grade iron ore, used as lump ore in the process of obtaining direct reduction iron (DRI. The influence of porosity on the reducibility of MHO from the Capitão do Mato Mine (Iron Quadrangle, Brazil was investigated using optical and scanning electron microscopes on drill core and open pit samples. Hematite is the main component of the samples and occurs as granular crystals (10 mum, microplates (1 mum and euhedral martite (10 to 30 mum. Quartz, maghemite, kenomagnetite and goethite are minor components. Primary micropores (Å to 1 mum are associated with microplaty crystals that fill cavities between granular hematite. Secondary micropores (Å to 5 mum related to euhedral martite crystals, are the most important. The total porosity of weathered samples, measured using nitrogen adsorption and mercury injection, attains values up to 11%, whereas unweathered samples have a porosity less than 2.5%. Reducibility is strongly enhanced by porosity, but inhibited by structure (bedding.O minério de hematita compacta (MHC é um tipo de minério de ferro de alto grau usado como minério granulado na obtenção do ferro via redução direta (DRI. A influência da porosidade sobre a redutibilidade do MHC da Mina de Capitão do Mato (Quadrilátero Ferrífero, Brasil, foi investigada em amostras de furos de sonda e de afloramentos da mina, usando-se microscópio óptico e eletrônico de varredura. Hematita é o principal componente mineralógico e ocorre sob diferentes formas: granular (10 mim, microtabular (1 mim e euédrico (10 a 30 mim. Quartzo maghemita, kenomagnetita e goethita são componetes menores. Microporos primários (Å to 1 mim associam-se a cristais de hematita microtabular, que preenchem espaços entre cristais de hematita granular. Microporos secundários (Å to 5 mim, relacionados com os cristais de martita euédrica, são os mais importantes. A porosidade total das amostras do MHC, medida atrav

  18. Geologic map of the Rifle Falls quadrangle, Garfield County, Colorado

    Science.gov (United States)

    Scott, Robert B.; Shroba, Ralph R.; Egger, Anne

    2001-01-01

    New 1:24,000-scale geologic map of the Rifle Falls 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift. Bedrock strata include the Upper Cretaceous Iles Formation through Ordovician and Cambrian units. The Iles Formation includes the Cozzette Sandstone and Corcoran Sandstone Members, which are undivided. The Mancos Shale is divided into three members, an upper member, the Niobrara Member, and a lower member. The Lower Cretaceous Dakota Sandstone, the Upper Jurassic Morrison Formation, and the Entrada Sandstone are present. Below the Upper Jurassic Entrada Sandstone, the easternmost limit of the Lower Jurassic and Upper Triassic Glen Canyon Sandstone is recognized. Both the Upper Triassic Chinle Formation and the Lower Triassic(?) and Permian State Bridge Formation are present. The Pennsylvanian and Permian Maroon Formation is divided into two members, the Schoolhouse Member and a lower member. All the exposures of the Middle Pennsylvanian Eagle Evaporite intruded into the Middle Pennsylvanian Eagle Valley Formation, which includes locally mappable limestone beds. The Middle and Lower Pennsylvanian Belden Formation and the Lower Mississippian Leadville Limestone are present. The Upper Devonian Chaffee Group is divided into the Dyer Dolomite, which is broken into the Coffee Pot Member and the Broken Rib Member, and the Parting Formation. Ordovician through Cambrian units are undivided. The southwest flank of the White River uplift is a late Laramide structure that is represented by the steeply southwest-dipping Grand Hogback, which is only present in the southwestern corner of the map area, and less steeply southwest-dipping older strata that flatten to nearly horizontal attitudes in the northern part of the map area. Between these two is a large-offset, mid

  19. National Land Cover Database 1992/2001 Retrofit Land Cover Change Product: 1999-2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — NLCD 1992-2001 Retrofit Change Product What is the NLCD 1992/2001 Retrofit Land Cover Change Product? Although one of the guiding principles of the NLCD 2001 design...

  20. Geologic map of the west half of the Blythe 30' by 60' quadrangle, Riverside County, California and La Paz County, Arizona

    Science.gov (United States)

    Stone, Paul

    2006-01-01

    The Blythe 30' by 60' quadrangle is located along the Colorado River between southeastern California and western Arizona. This map depicts the geology of the west half of the Blythe quadrangle, which is mostly in California. The map area is a desert terrain consisting of mountain ranges surrounded by extensive alluvial fans and plains, including the flood plain of the Colorado River which covers the easternmost part of the area. Mountainous parts of the area, including the Big Maria, Little Maria, Riverside, McCoy, and Mule Mountains, consist of structurally complex rocks that range in age from Proterozoic to Miocene. Proterozoic gneiss and granite are overlain by Paleozoic to Early Jurassic metasedimentary rocks (mostly marble, quartzite, and schist) that are lithostratigraphically similar to coeval formations of the Colorado Plateau region to the east. The Paleozoic to Jurassic strata were deposited on the tectonically stable North American craton. These rocks are overlain by metamorphosed Jurassic volcanic rocks and are intruded by Jurassic plutonic rocks that represent part of a regionally extensive, northwest-trending magmatic arc. The overlying McCoy Mountains Formation, a very thick sequence of weakly metamorphosed sandstone and conglomerate of Jurassic(?) and Cretaceous age, accumulated in a rapidly subsiding depositional basin south of an east-trending belt of deformation and east of the north-trending Cretaceous Cordilleran magmatic arc. The McCoy Mountains Formation and older rocks were deformed, metamorphosed, and locally intruded by plutonic rocks in the Late Cretaceous. In Oligocene(?) to Miocene time, sedimentary and minor volcanic deposits accumulated locally, and the area was deformed by faulting. Tertiary rocks and their Proterozoic basement in the Riverside and northeastern Big Maria Mountains are in the upper plate of a low-angle normal (detachment) fault that lies within a region of major Early to Middle Miocene crustal extension. Surficial

  1. Geologic map of the Jam Up Cave and Pine Crest quadrangles, Shannon, Texas, and Howell Counties, Missouri

    Science.gov (United States)

    Weary, David J.; Orndorff, Randall C.; Repetski, John E.

    2013-01-01

    The Jam Up Cave and Pine Crest 7.5-minute quadrangles are located in south-central Missouri within the Salem Plateau region of the Ozark Plateaus physiographic province. About 2,400 to 3,100 feet (ft) of flat-lying to gently dipping Lower Paleozoic sedimentary rocks, mostly dolomite, chert, sandstone, and orthoquartzite, overlie Mesoproterozoic igneous basement rocks. Unconsolidated residuum, colluvium, terrace deposits, and alluvium overlie the sedimentary rocks. Numerous karst features, such as sinkholes, caves, and springs, have formed in the carbonate rocks. Many streams are spring fed. The topography is a dissected karst plain with elevations ranging from about 690 ft where the Jacks Fork River exits the northeastern corner of the Jam Up Cave quadrangle to about 1,350 ft in upland areas along the north-central edge and southwestern corner of the Pine Crest quadrangle. The most prominent physiographic feature is the valley of the Jacks Fork River. This reach of the upper Jacks Fork, with its clean, swiftly-flowing water confined by low cliffs and bluffs, provides one of the most beautiful canoe float trips in the nation. Most of the land in the quadrangles is privately owned and used primarily for grazing cattle and horses and growing timber. A large minority of the land within the quadrangles is publicly owned by the Ozark National Scenic Riverways of the National Park Service. Geologic mapping for this investigation was conducted in 2005 and 2006.

  2. Landfill Top Covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2011-01-01

    is landscaped in order to fit into the surrounding area/environment or meet specific plans for the final use of the landfill. To fulfill the above listed requirements landfill covers are often multicomponent systems which are placed directly on top of the waste. The top cover may be placed immediately after...... the landfill section has been filled or several years later depending on the settlement patterns. Significant differential settlements may disturb the functioning of the top cover. The specific design of the cover system depends on the type of waste landfilled (municipal, hazardous, or inert waste...... however, top covers may be the only environmental protection measure. In some landfill regulations (for instance the Subtitle D landfills receiving municipal solid waste in the USA) it is required to minimize infiltration into the waste layers. Therefore top covers containing liner components...

  3. Stream-sediment samples reanalyzed for major, rare earth, and trace elements from ten 1:250,000-scale quadrangles, south-central Alaska, 2007-08

    Science.gov (United States)

    Bailey, Elizabeth A.; Shew, Nora B.; Labay, Keith A.; Schmidt, Jeanine M.; O'Leary, Richard M.; Detra, David E.

    2010-01-01

    During the 1960s through the 1980s, the U.S. Geological Survey (USGS) conducted reconnaissance geochemical surveys of the drainage basins throughout most of the Anchorage, Bering Glacier, Big Delta, Gulkana, Healy, McCarthy, Mount Hayes, Nabesna, Talkeetna Mountains, and Valdez 1:250,000-scale quadrangles in Alaska as part of the Alaska Mineral Resource Assessment Program (AMRAP). These geochemical surveys provide data necessary to assess the potential for undiscovered mineral resources on public and other lands, and provide data that may be used to determine regional-scale element baselines. This report provides new data for 366 of the previously collected stream-sediment samples. These samples were selected for reanalysis because recently developed analytical methods can detect additional elements of interest and have lower detection limits than the methods used when these samples were originally analyzed. These samples were all analyzed for arsenic by hydride generation atomic absorption spectrometry (HGAAS), for gold, palladium, and platinum by inductively coupled plasma-mass spectrometry after lead button fire assay separation (FA/ICP-MS), and for a suite of 55 major, rare earth, and trace elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry (ICP-AES-MS) after sodium peroxide sinter at 450 degrees Celsius.

  4. Sea Scallop Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Sea Scallop Survey began in 1980 and has covered an area from Cape Hatteras to Georges Bank. The survey aims to determine the distribution and...

  5. Percent Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High percentages of forest cover (FORPCT) generally indicate healthier ecosystems and cleaner surface water. More...

  6. Saturated Domino Coverings

    CERN Document Server

    Buchanan, Andrew; Ryba, Alex

    2011-01-01

    A domino covering of a board is saturated if no domino is redundant. We introduce the concept of a fragment tiling and show that a minimal fragment tiling always corresponds to a maximal saturated domino covering. The size of a minimal fragment tiling is the domination number of the board. We define a class of regular boards and show that for these boards the domination number gives the size of a minimal X-pentomino covering. Natural sequences that count maximal saturated domino coverings of square and rectangular boards are obtained. These include the new sequences A193764, A193765, A193766, A193767, and A193768 of OEIS.

  7. Percent Forest Cover (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High percentages of forest cover (FORPCTFuture) generally indicate healthier ecosystems and cleaner surface water....

  8. Land Cover Trends Project

    Science.gov (United States)

    Acevedo, William

    2006-01-01

    The Land Cover Trends Project is designed to document the types, rates, causes, and consequences of land cover change from 1973 to 2000 within each of the 84 U.S. Environmental Protection Agency (EPA) Level III ecoregions that span the conterminous United States. The project's objectives are to: * Develop a comprehensive methodology using probability sampling and change analysis techniques and Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), and Enhanced Thematic Mapper (ETM) data for estimating regional land cover change. * Characterize the spatial and temporal characteristics of conterminous U.S. land cover change for five periods from 1973 to 2000 (nominally 1973, 1980, 1986, 1992, and 2000). * Document the regional driving forces and consequences of change. * Prepare a national synthesis of land cover change.

  9. Flat covers of modules

    CERN Document Server

    Xu, Jinzhong

    1996-01-01

    Since the injective envelope and projective cover were defined by Eckmann and Bas in the 1960s, they have had great influence on the development of homological algebra, ring theory and module theory. In the 1980s, Enochs introduced the flat cover and conjectured that every module has such a cover over any ring. This book provides the uniform methods and systematic treatment to study general envelopes and covers with the emphasis on the existence of flat cover. It shows that Enochs' conjecture is true for a large variety of interesting rings, and then presents the applications of the results. Readers with reasonable knowledge in rings and modules will not have difficulty in reading this book. It is suitable as a reference book and textbook for researchers and graduate students who have an interest in this field.

  10. Airborne gamma-ray spectrometer and magnetometer survey: Victoria quadrangle (Washington). Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    One uranium anomaly meets the minimum statistical requirements. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (ppM eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented. Stacked Profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation. Anomaly number 1 is over an exposure of the Permian Shuksan metamorphic suite which is predominantly phyllite (Trps).

  11. Airborne gamma-ray spectrometer and magnetometer survey, Salem quadrangle (Oregon). Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Five uranium anomalies meet the minimum statistical requirements as defined in Volume I. These anomalies are tabulated and are shown on the Uranium Anomaly Interpretation Map. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented in Appendix E. Stacked Profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented in Appendix F. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation in Volume II. Each of the anomalies occurs over the Eocene Tyee and Burpee formation (Teme), a rhythmically banded, feldspathic and micaceous, massive bedded sandstone, and siltstone. Anomalies 1, 2, 3, and 4 are in the northwest corner of the map. Anomalies 2 and 3 are near faults, so may be due to radon leaking from the faults. Anomaly No. 5 is in the southwest corner of the map.

  12. Geologic map of the east half of the Lime Hills 1:250,000-scale quadrangle, Alaska

    Science.gov (United States)

    Gamble, Bruce M.; Reed, Bruce L.; Richter, Donald H.; Lanphere, Marvin A.

    2013-01-01

    This map is compiled from geologic mapping conducted between 1985 and 1992 by the U.S. Geological Survey as part of the Alaska Mineral Resource Assessment Program. That mapping built upon previous USGS work (1963–1988) unraveling the magmatic history of the Alaska–Aleutian Range batholith. Quaternary unit contacts depicted on this map are derived largely from aerial-photograph interpretation. K-Ar ages made prior to this study have been recalculated using 1977 decay constants. The east half of the Lime Hills 1:250,000-scale quadrangle includes part of the Alaska–Aleutian Range batholith and several sequences of sedimentary rocks or mixed sedimentary and volcanic rocks. The Alaska–Aleutian Range batholith contains rocks that represent three major igneous episodes, (1) Early and Middle Jurassic, (2) Late Cretaceous and early Tertiary, and (3) middle Tertiary; only rocks from the latter two episodes are found in this map area. The map area is one of very steep and rugged terrain; elevations range from a little under 1,000 ft (305 m) to 9,828 ft (2,996 m). Foot traverses are generally restricted to lowermost elevations. Areas suitable for helicopter landings can be scarce at higher elevations. Most of the area was mapped from the air, supplemented by direct examination of rocks where possible. This restricted access greatly complicates understanding some of the more complex geologic units. For example, we know there are plutons whose compositions vary from gabbro to granodiorite, but we have little insight as to how these phases are distributed and what their relations might be to each other. It is also possible that some of what we have described as compositionally complex plutons might actually be several distinct intrusions.

  13. Statistical parameters for resource evaluation of geochemical data from the Ajo 1 degree x 2 degrees Quadrangle, Arizona

    Science.gov (United States)

    Theobald, P.K.; Barton, Harlan N.

    1983-01-01

    Statistical data are presented from a regional geochemical study of the Ajo 1? X 2? quadrangle exclusive of the Papago Indian Reservation, but including the extension of Organ Pipe Cactus National Monument into the Lukeville 1? X 2? quadrangle. Frequency distribution data from the analysis of stream-sediment and heavy-mineral-concentrate samples for 31 elements have broad ranges and for most elements have maxima well above normal. Elemental associations derived from correlation and R-mode factor analysis related to regional lithologic variation and for some associations suggest mineral-resource potential.

  14. Land-Cover Map for the Island of Maui, Hawaii, circa 2017

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset describes land cover and vegetation for the island of Maui, Hawaii, circa 2017, hereinafter the 2017 land-cover map. The 2017 land-cover map is a...

  15. Geologic Map of MTM -40277, -45277, -40272, and -45272 Quadrangles, Eastern Hellas Planitia Region of Mars

    Science.gov (United States)

    Bleamaster, Leslie F.; Crown, David A.

    2010-01-01

    Hellas Planitia comprises the floor deposits of the Hellas basin, more than 2,000 km across and 8 km deep, which is located in the southern hemisphere's cratered highlands and is the largest well-preserved impact structure on the Martian surface. The circum-Hellas highlands represent a significant percentage of the southern hemisphere of Mars and have served as a locus for volcanic and sedimentary activity throughout Martian geologic time. Hellas basin topography has had a long-lasting influence, acting as Mars' deepest and second largest depositional sink, as a source for global dust storms, and as a forcing agent on southern hemisphere atmospheric circulation. The region lies in the Martian mid-latitude zone where geomorphic indicators of past, and possibly contemporary, ground ice are prominent. The highlands north of the basin show concentrations of Noachian valley networks, and those to the east show prominent lobate debris aprons that are considered to be geomorphic indicators of ground ice. Several studies have proposed that Hellas itself was the site of extensive glacial and lacustrine activity. Recent analyses of mineralogical information from Mars Express' OMEGA (Observatoire pour la Mineralogie, l'Eau les Glaces et l'Activite) and Mars Reconnaissance Orbiter's CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) reveal outcrops of hydrated phyllosilicates in the region, strengthening an already strong case for past aqueous activity in and around Hellas basin. Our mapping and evaluation of landforms and materials of the Hellas region from basin rim to floor provides further insight into Martian global climate regimes and into the abundance, distribution, and flux of volatiles through history. Mars Transverse Mercator (MTM) quadrangles -40277, -45277, -45272, and -40272 (lat 37.5 degrees S.-47.5 degrees S., long 270 degrees W.-280 degrees W.) cover the eastern portion of the Hellas basin including the boundary between its floor and rim, the distal

  16. Covering folded shapes

    Directory of Open Access Journals (Sweden)

    Oswin Aichholzer

    2014-05-01

    Full Text Available Can folding a piece of paper flat make it larger? We explore whether a shape S must be scaled to cover a flat-folded copy of itself. We consider both single folds and arbitrary folds (continuous piecewise isometries \\(S\\to\\mathbb{R}^2\\. The underlying problem is motivated by computational origami, and is related to other covering and fixturing problems, such as Lebesgue's universal cover problem and force closure grasps. In addition to considering special shapes (squares, equilateral triangles, polygons and disks, we give upper and lower bounds on scale factors for single folds of convex objects and arbitrary folds of simply connected objects.

  17. Spatial digital database for the geologic map of the east part of the Pullman 1° x 2° quadrangle, Idaho

    Science.gov (United States)

    Rember, William C.; Bennett, Earl H.

    2001-01-01

    he paper geologic map of the east part of the Pullman 1·x 2· degree quadrangle, Idaho (Rember and Bennett, 1979) was scanned and initially attributed by Optronics Specialty Co., Inc. (Northridge, CA) and remitted to the U.S. Geological Survey for further attribution and publication of the geospatial digital files. The resulting digital geologic map GIS can be queried in many ways to produce a variety of geologic maps. This digital geospatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information in a geographic information system (GIS) for use in spatial analysis. Digital base map data files (topography, roads, towns, rivers and lakes, and others.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:250,000 (for example, 1:100,000 or 1:24,000). The digital geologic map graphics and plot files (pull250k.gra/.hp /.eps) that are provided in the digital package are representations of the digital database.

  18. Geologic map of the Fittstown 7.5΄ quadrangle, Pontotoc and Johnston Counties, Oklahoma

    Science.gov (United States)

    Lidke, David J.; Blome, Charles D.

    2017-01-09

    This 1:24,000-scale geologic map includes new geologic mapping as well as compilation and revision of previous geologic maps in the area. Field investigations were carried out during 2009–2011 that included mapping and investigations of the geology and hydrology of the Chickasaw National Recreation Area, Oklahoma, west of the map area.The Fittstown quadrangle is in Pontotoc and Johnston Counties in south-central Oklahoma, which is in the northeastern part of the Arbuckle Mountains. The Arbuckle Mountains are composed of a thick sequence of Paleozoic sedimentary rocks that overlie Lower Cambrian and Precambrian igneous rocks; these latter rocks are not exposed in the quadrangle. From Middle to Late Pennsylvanian time, the Arbuckle Mountains region was folded, faulted, and uplifted. Periods of erosion followed these Pennsylvanian mountain-building events, beveling this region and ultimately developing the current subtle topography that includes hills and incised uplands. The southern and northwestern parts of the Fittstown quadrangle are directly underlain by Lower Ordovician dolomite of the Arbuckle Group that has eroded to form an extensive, stream-incised upland containing the broad, gently southeast-plunging, Pennsylvanian-age Hunton anticline. The northeastern part of the map area is underlain by Middle Ordovician to Pennsylvanian limestone, shale, and sandstone units that predominantly dip northeast and form the northeastern limb of the Hunton anticline; this limb is cut by steeply dipping, northwest-southeast striking faults of the Franks fault zone. This limb and the Franks fault zone define the southwestern margin of the Franks graben, which is underlain by Pennsylvanian rocks in the northeast part of the map area.

  19. Geologic map of the East of Grotto Hills Quadrangle, California: a digital database

    Science.gov (United States)

    Nielson, Jane E.; Bedford, David R.

    1999-01-01

    The East of Grotto Hills 1:24,000-scale quadrangle of California lies west of the Colorado River about 30 km southwest of Searchlight, Nevada, near the boundary between the northern and southern parts of the Basin and Range Province. The quadrangle includes the eastern margin of Lanfair Valley, the southernmost part of the Castle Mountains, and part of the northwest Piute Range. The generally north-trending Piute Range aligns with the Piute and Dead Mountains of California and the Newberry and Eldorado Mountains and McCullough Range of Nevada. The southern part of the Piute Range adjoins Homer Mountain (Spencer and Turner, 1985) near Civil War-era Fort Piute. Adjacent 1:24,000-scale quadrangles include Castle Peaks, Homer Mountain, and Signal Hill, Calif.; also Hart Peak, Tenmile Well, and West of Juniper Mine, Calif. and Nev. The mapped area contains Tertiary (Miocene) volcanic and sedimentary rocks, interbedded with and overlain by Tertiary and Quaternary surficial deposits. Miocene intrusions mark conduits that served as feeders for the Miocene volcanic rocks, which also contain late magma pulses that cut the volcanic section. Upper Miocene conglomerate deposits interfinger with the uppermost volcanic flows. Canyons and intermontane valleys contain dissected Quaternary alluvial-fan deposits, mantled by active alluvial-fan deposits and detritus of active drainages. The alluvial materials were derived largely from Early Proterozoic granite and gneiss complexes, intruded by Mesozoic granite, dominate the heads of Lanfair Valley drainages in the New York Mountains and Mid Hills (fig. 1; Jennings, 1961). Similar rocks also underlie Tertiary deposits in the Castle Peaks, Castle Mountains, and eastern Piute Range.

  20. Percent Wetland Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  1. Percent of Impervious Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — High amounts of impervious cover (parking lots, rooftops, roads, etc.) can increase water runoff, which may directly enter surface water. Runoff from roads often...

  2. Percent Wetland Cover (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  3. GAP Land Cover - Image

    Data.gov (United States)

    Minnesota Department of Natural Resources — This raster dataset is a simple image of the original detailed (1-acre minimum), hierarchically organized vegetation cover map produced by computer classification of...

  4. GAP Land Cover - Vector

    Data.gov (United States)

    Minnesota Department of Natural Resources — This vector dataset is a detailed (1-acre minimum), hierarchically organized vegetation cover map produced by computer classification of combined two-season pairs of...

  5. Projected 2020 Land Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Projected 2020 land cover was developed to provide one scenario of development in the year 2020. It was used to generate several metrics to compare to 1992 metrics...

  6. Geology and mineral deposits of the Jabal ash Shumta quadrangle, Kingdom of Saudi Arabia

    Science.gov (United States)

    Hummel, C.L.; Ankary, Abdullah O.

    1972-01-01

    Rocks, structures, and mineral deposits which are the result of both the older Halaban petro-tectonic cycle and the younker Najd Wrench Fault deformation are present in the Ash Shumta area. Northward-trending belts of granitic rocks and folded, layered metavolcanic and metasedimentary rocks of the Halaban Formation which they intrude represent the effects of the Halaban cycle. These older rocks are everywhere transected and deformed by northwestward- and northeastward-striking fractures and strike-slip faults and by eastward-striking fractures and fracture-controlled silicic dikes which belong to the Najd Wrench Fault deformation. Several kinds of epigenetic mineral deposits of hydrothermal origin are present throughout the Ash Shumta area. All occur in or ape closely associated with structures of the Najd Wrench Fault deformation. The mineralization which produced the deposits is thought to have taken place during the period of deformation which produced the Najd Wrench Fault structures. The hydrothermal deposits include many metalliferous quartz veins most of which occur in three mineralized areas: two major areas at Jabal Ash Shumta and Jabal El Khom in the northern half of the quadrangle and a minor area along Wadj al Boharah in the southeastern part of the quadrangle. The metalliferous lodes possess the only economic potential in the area of the Jabal Ash Shumta quadrangle. These lodes consist mainly of gold and base metal-bearing quartz veins, some of which were mined for gold in ancient times. The mineralized area at Jabal Ash Shumta has the best of these veins. Higher temperature veins with wolframite as a major constituent and beryl as a minor one occur in a granite cupola in the eastern part of the El Khom area. These veins have altered, gneissen-like wall rocks. Although the grade of the veins is low at the surface, the made could increase at depth. The tungsten-bearing veins and El Khom area possess the greatest economic promise in the Jabal Ash Shumta

  7. Reconnaissance for radioactive deposits in the Nixon Fork mining district, Medfra Quadrangle, central Alaska, 1949

    Science.gov (United States)

    White, Max G.; Stevens, John M.

    1953-01-01

    Reconnaissance for radioactive deposits in the Nixon Fork mining district, Medfra quadrangle, central Alaska, in 1949 disclosed the occurrence of allanite in sampled containing as much as 0.05 percent equivalent uranium from the dump of the Whalen mine; the presence of radioactive parisite (a rare-earth fluocarbonate) in a highly altered limestone containing about 0.025 percent equivalent uranium near the Whalen shaft; and radioactive idocrase in samples of altered garnet rock with about 0.025 percent equivalent uranium, form the Crystal shaft of the Nixon Fork mine. This radioactivity is due mostly to thorium rather than uranium. Placer concentrates

  8. Geology of -30247, -35247, and -40247 Quadrangles, Southern Hesperia Planum, Mars

    Science.gov (United States)

    Mest, S. C.; Crown, D. A.

    2010-01-01

    Geologic mapping of MTM -30247, -35247, and -40247 quadrangles is being used to characterize Reull Vallis (RV) and examine the roles and timing of volatile-driven erosional and depositional processes. This study complements earlier investigations of the eastern Hellas region, including regional analyses [1-6], mapping studies of circum-Hellas canyons [7-10], and volcanic studies of Hadriaca and Tyrrhena Paterae [11-13]. Key scientific objectives include 1) characterizing RV in its "fluvial zone," and evaluating its history of formation, 2) analyzing channels in the surrounding plains and potential connections to RV, and 3) examining young, possibly sedimentary plains along RV.

  9. Prospects for Reconstruction of Leptonic Unitarity Quadrangle and Neutrino Oscillation Experiments

    CERN Document Server

    Verma, Surender

    2016-01-01

    After the observation of non-zero $\\theta_{13}$ the goal has shifted to observe $CP$ violation in the leptonic sector. Neutrino oscillation experiments can, directly, probe the Dirac $CP$ phases. Alternatively, one can measure $CP$ violation in the leptonic sector using Leptonic Unitarity Quadrangle(LUQ). The existence of Standard Model (SM) gauge singlets - sterile neutrinos - will provide additional sources of $CP$ violation. We investigate the connection between neutrino survival probability and rephasing invariants of the $4\\times4$ neutrino mixing matrix. In general, LUQ contain eight geometrical parameters out of which five are independent. We obtain $CP$ asymmetry($P_{\

  10. Geologic map of the Granite 7.5' quadrangle, Lake and Chaffee Counties, Colorado

    Science.gov (United States)

    Shroba, Ralph R.; Kellogg, Karl S.; Brandt, Theodore R.

    2014-01-01

    The geologic map of the Granite 7.5' quadrangle, Lake and Chaffee Counties, Colorado, portrays the geology in the upper Arkansas valley and along the lower flanks of the Sawatch Range and Mosquito Range near the town of Granite. The oldest rocks, exposed in the southern and eastern parts of the quadrangle, include gneiss and plutonic rocks of Paleoproterozoic age. These rocks are intruded by younger plutonic rocks of Mesoproterozoic age. Felsic hypabyssal dikes, plugs, and plutons, ranging in age from Late Cretaceous or Paleocene to late Oligocene, locally intruded Proterozoic rocks. A small andesite lava flow of upper Oligocene age overlies Paleoproterozoic rock, just south of the Twin Lakes Reservoir. Gravelly fluvial and fan deposits of the Miocene and lower Pliocene(?) Dry Union Formation are preserved in the post-30 Ma upper Arkansas valley graben, a northern extension of the Rio Grande rift. Mostly north-northwest-trending faults displace deposits of the Dry Union Formation and older rock units. Light detection and ranging (lidar) imagery suggests that two short faults, near the Arkansas River, may displace surficial deposits as young as middle Pleistocene. Surficial deposits of middle Pleistocene to Holocene age are widespread in the Granite quadrangle, particularly in the major valleys and on slopes underlain by the Dry Union Formation. The main deposits are glacial outwash and post-glacial alluvium; mass-movement deposits transported by creep, debris flow, landsliding, and rockfall; till deposited during the Pinedale, Bull Lake, and pre-Bull Lake glaciations; rock-glacier deposits; and placer-tailings deposits formed by hydraulic mining and other mining methods used to concentrate native gold. Hydrologic and geologic processes locally affect use of the land and locally may be of concern regarding the stability of buildings and infrastructure, chiefly in low-lying areas along and near stream channels and locally in areas of moderate to steep slopes. Low

  11. Classification accuracy analysis of selected land use and land cover products in a portion of West-Central Lower Michigan

    Science.gov (United States)

    Ma, Kin Man

    2007-12-01

    Remote sensing satellites have been utilized to characterize and map land cover and its changes since the 1970s. However, uncertainties exist in almost all land use and land cover maps classified from remotely sensed images. In particular, it has been recognized that the spatial mis-registration of land cover maps can affect the true estimates of land use/land cover (LULC) changes. This dissertation addressed the following questions: what are the spatial patterns, magnitudes, and cover-dependencies of classification uncertainty associated with West-Central Lower Michigan's LULC products and how can the adverse effects of spatial misregistration on accuracy assessment be reduced? Two Michigan LULC products were chosen for comparison: 1998 Muskegon River Watershed (MRW) Michigan Resource Information Systems LULC map and a 2001 Integrated Forest Monitoring and Assessment Prescription Project (IFMAP). The 1m resolution 1998 MRW LULC map was derived from U.S. Geological Survey Digital Orthophoto Quarter Quadrangle (USGS DOQQs) color infrared imagery and was used as the reference map, since it has a thematic accuracy of 95%. The IFMAP LULC map was co-registered to a series of selected 1998 USGS DOQQs. The total combined root mean square error (rmse) distance of the georectified 2001 IFMAP was +/-12.20m. A spatial uncertainty buffer of at least 1.5 times the rmse was set at 20m so that polygon core areas would be unaffected by spatial misregistration noise. A new spatial misregistration buffer protocol (SPATIALM_ BUFFER) was developed to limit the effect of spatial misregistration on classification accuracy assessment. Spatial uncertainty buffer zones of 20m were generated around LULC polygons of both datasets. Eight-hundred seventeen (817) stratified random accuracy assessment points (AAPs) were generated across the 1998 MRW map. Classification accuracy and kappa statistics were generated for both the 817 AAPs and 604 AAPs comparisons. For the 817 AAPs comparison, the

  12. Geologic Map of the San Luis Quadrangle, Costilla County, Colorado

    Science.gov (United States)

    Machette, Michael N.; Thompson, Ren A.; Drenth, Benjamin J.

    2008-01-01

    The map area includes San Luis and the primarily rural surrounding area. San Luis, the county seat of Costilla County, is the oldest surviving settlement in Colorado (1851). West of the town are San Pedro and San Luis mesas (basalt-covered tablelands), which are horsts with the San Luis fault zone to the east and the southern Sangre de Cristo fault zone to the west. The map also includes the Sanchez graben (part of the larger Culebra graben), a deep structural basin that lies between the San Luis fault zone (on the west) and the central Sangre de Cristo fault zone (on the east). The oldest rocks exposed in the map area are the Pliocene to upper Oligocene basin-fill sediments of the Santa Fe Group, and Pliocene Servilleta Basalt, a regional series of 3.7?4.8 Ma old flood basalts. Landslide deposits and colluvium that rest on sediments of the Santa Fe Group cover the steep margins of the mesas. Rare exposures of the sediment are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesas and in the graben is covered by surficial deposits of Quaternary age. The alluvial deposits are subdivided into three Pleistocene-age units and three Holocene-age units. The oldest Pleistocene gravel (unit Qao) forms extensive coalesced alluvial fan and piedmont surfaces, the largest of which is known as the Costilla Plain. This surface extends west from San Pedro Mesa to the Rio Grande. The primary geologic hazards in the map area are from earthquakes, landslides, and localized flooding. There are three major fault zones in the area (as discussed above), and they all show evidence for late Pleistocene to possible Holocene movement. The landslides may have seismogenic origins; that is, they may be stimulated by strong ground shaking during large earthquakes. Machette and Thompson based this geologic map entirely on new mapping, whereas Drenth supplied geophysical data and interpretations.

  13. Engineering surveying

    CERN Document Server

    Schofield, W

    2001-01-01

    The aim of Engineering Surveying has always been to impart and develop a clear understanding of the basic topics of the subject. The author has fully revised the book to make it the most up-to-date and relevant textbook available on the subject.The book also contains the latest information on trigonometric levelling, total stations and one-person measuring systems. A new chapter on satellites ensures a firm grasp of this vitally important topic.The text covers engineering surveying modules for civil engineering students on degree courses and forms a reference for the engineering surveying module in land surveying courses. It will also prove to be a valuable reference for practitioners.* Simple clear introduction to surveying for engineers* Explains key techniques and methods* Details reading systems and satellite position fixing

  14. Capo Verde, Land Use Land Cover

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This series of three-period land use land cover (LULC) datasets (1975, 2000, and 2013) aids in monitoring change in West Africa’s land resources (exception is...

  15. National uranium resource evaluation program: hydrogeochemical and stream sediment reconnaissance basic data for Ely quadrangle, Nevada; Utah

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-15

    Field and laboratory data are presented for 1937 sediment samples from the Ely Quadrangle, Nevada; Utah. The samples were collected by Savannah River Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  16. Climate under cover

    CERN Document Server

    Takakura, Tadashi

    2002-01-01

    1.1. INTRODUCTION Plastic covering, either framed or floating, is now used worldwide to protect crops from unfavorable growing conditions, such as severe weather and insects and birds. Protected cultivation in the broad sense, including mulching, has been widely spread by the innovation of plastic films. Paper, straw, and glass were the main materials used before the era of plastics. Utilization of plastics in agriculture started in the developed countries and is now spreading to the developing countries. Early utilization of plastic was in cold regions, and plastic was mainly used for protection from the cold. Now plastic is used also for protection from wind, insects and diseases. The use of covering techniques started with a simple system such as mulching, then row covers and small tunnels were developed, and finally plastic houses. Floating mulch was an exception to this sequence: it was introduced rather recently, although it is a simple structure. New development of functional and inexpensive films trig...

  17. Reusable pipe flange covers

    Energy Technology Data Exchange (ETDEWEB)

    Holden, James Elliott (Simpsonville, SC); Perez, Julieta (Houston, TX)

    2001-01-01

    A molded, flexible pipe flange cover for temporarily covering a pipe flange and a pipe opening includes a substantially round center portion having a peripheral skirt portion depending from the center portion, the center portion adapted to engage a front side of the pipe flange and to seal the pipe opening. The peripheral skirt portion is formed to include a plurality of circumferentially spaced tabs, wherein free ends of the flexible tabs are formed with respective through passages adapted to receive a drawstring for pulling the tabs together on a back side of the pipe flange.

  18. Geologic map of the Harvard Lakes 7.5' quadrangle, Park and Chaffee Counties, Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Lee, Keenan; Premo, Wayne R.; Cosca, Michael A.

    2013-01-01

    The Harvard Lakes 1:24,000-scale quadrangle spans the Arkansas River Valley in central Colorado, and includes the foothills of the Sawatch Range on the west and Mosquito Range on the east. The Arkansas River valley lies in the northern end of the Rio Grande rift and is structurally controlled by Oligocene and younger normal faults mostly along the west side of the valley. Five separate pediment surfaces were mapped, and distinctions were made between terraces formed by the Arkansas River and surfaces that formed from erosion and alluviation that emanated from the Sawatch Range. Three flood deposits containing boulders as long as 15 m were deposited from glacial breakouts just north of the quadrangle. Miocene and Pliocene basin-fill deposits of the Dry Union Formation are exposed beneath terrace or pediment deposits in several places. The southwestern part of the late Eocene Buffalo Peaks volcanic center, mostly andesitic breccias and flows and ash-flow tuffs, occupy the northeastern corner of the map. Dated Tertiary intrusive rocks include Late Cretaceous or early Paleocene hornblende gabbro and hornblende monzonite. Numerous rhyolite and dacite dikes of inferred early Tertiary or Late Cretaceous age also intrude the basement rocks. Basement rocks are predominantly Mesoproterozoic granites, and subordinately Paleoproterozoic biotite gneiss and granitic gneiss.

  19. Geologic map of the Vashon 7.5' quadrangle and selected areas, King County, Washington

    Science.gov (United States)

    Booth, Derek B.; Troost, Kathy Goetz; Tabor, Rowland W.

    2015-01-01

    This map is an interpretation of a 6-ft-resolution lidar-derived digital elevation model combined with geology by Derek B. Booth and Kathy Goetz Troost. Field work by Booth and Troost was located on the 1:24,000-scale topographic map of the Vashon and Des Moines 7.5' quadrangles that were published in 1997 and 1995, respectively. Much of the geology was interpreted from landforms portrayed on the topographic maps, supplemented by field exposures, where available. In 2001, the Puget Sound Lidar Consortium (see http://pugetsoundlidar.org/) obtained a lidar-derived digital elevation model (DEM) for Vashon Island and the Des Moines quadrangle. For a brief description of lidar and this data acquisition program, see Haugerud and others (2003). This new DEM has a horizontal resolution of 6 ft (1.83 m) and mean vertical accuracy of about 1 ft (about 0.3 m). The greater resolution and accuracy of the lidar DEM facilitated a much-improved interpretation of many aspects of the surficial geology, especially the distribution and relative age of landforms and the materials inferred to comprise them. Booth and Troost were joined by Tabor to interpret the new lidar DEM but have done no futher field work for this map.

  20. Maps showing anomalous concentrations of zinc, silver, antimony, manganese, barium and strontium in stream sediment and heavy-mineral concentrate from parts of the Ajo and Lukeville 1 degree by 2 degrees quadrangles, Arizona

    Science.gov (United States)

    Theobald, P.K.; Barton, H.N.

    1988-01-01

    This map is part of a folio of maps of the Ajo and Lukeville 1 degree x 2 degrees quadrangles, Arizona, prepared under the Conterminous United States Mineral Assessment Program. Other publications in this folio include U.S. Geological Survey Open-File Reports 82-419 (Barton and others, 1982), 82-599 (Klein, 1982), and 830734 (Theobald and Barton, 1983), and Miscellaneous Field Studies Maps MF-1834-A (Peterson and Tosdal, 1986), MF-1834-B (Peterson and others, 1987), MF-1834-C (Theobald and Barton, 1987), and MF-1834-D (Theobald and Barton, 1988). Open-File Reports 82-419 and 83-734 constitute the basic data and initial interpretation on which this discussion is predicated. MF-1834-C and D show the distributions of anomalous concentrations of copper, lead, molybdenum, bismuth, and tungsten.

  1. Adding structure to land cover - using fractional cover to study animal habitat use.

    Science.gov (United States)

    Bevanda, Mirjana; Horning, Ned; Reineking, Bjoern; Heurich, Marco; Wegmann, Martin; Mueller, Joerg

    2014-01-01

    Linking animal movements to landscape features is critical to identify factors that shape the spatial behaviour of animals. Habitat selection is led by behavioural decisions and is shaped by the environment, therefore the landscape is crucial for the analysis. Land cover classification based on ground survey and remote sensing data sets are an established approach to define landscapes for habitat selection analysis. We investigate an approach for analysing habitat use using continuous land cover information and spatial metrics. This approach uses a continuous representation of the landscape using percentage cover of a chosen land cover type instead of discrete classes. This approach, fractional cover, captures spatial heterogeneity within classes and is therefore capable to provide a more distinct representation of the landscape. The variation in home range sizes is analysed using fractional cover and spatial metrics in conjunction with mixed effect models on red deer position data in the Bohemian Forest, compared over multiple spatio-temporal scales. We analysed forest fractional cover and a texture metric within each home range showing that variance of fractional cover values and texture explain much of variation in home range sizes. The results show a hump-shaped relationship, leading to smaller home ranges when forest fractional cover is very homogeneous or highly heterogeneous, while intermediate stages lead to larger home ranges. The application of continuous land cover information in conjunction with spatial metrics proved to be valuable for the explanation of home-range sizes of red deer.

  2. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jian-Ying; Ibragimov, Rashid

    2013-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting ...

  3. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jiong; Ibragimov, Rashid

    2015-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting ...

  4. Covering All Options

    Science.gov (United States)

    Kennedy, Mike

    2011-01-01

    The day a school opens its doors for the first time, the flooring will be new and untarnished. When the flooring is in such pristine condition, many flooring materials--carpeting, vinyl, terrazzo, wood or some other surface--will look good. But school and university planners who decide what kind of material covers the floors of their facilities…

  5. CORINE Land Cover 2006

    DEFF Research Database (Denmark)

    Stjernholm, Michael

    "CORINE land cover" er en fælleseuropæisk kortlægning af arealanvendelse/arealdække. Arealanvendelse/arealdække er i Danmark kortlagt efter CORINE metode og klasseopdeling med satellitbilleder fra 3 forskellige tidsperioder, fra begyndelsen af 1990'erne (CLC90), fra år 2000 (CLC2000) og fra år 2006...

  6. CORINE Land Cover 2006

    DEFF Research Database (Denmark)

    Stjernholm, Michael

    "CORINE land cover" er en fælleseuropæisk kortlægning af arealanvendelse/arealdække. Arealanvendelse/arealdække er i Danmark kortlagt efter CORINE metode og klasseopdeling med satellitbilleder fra 3 forskellige tidsperioder, fra begyndelsen af 1990'erne (CLC90), fra år 2000 (CLC2000) og fra år 2006...

  7. Preliminary Geologic Map of the Sanchez Reservoir Quadrangle and Eastern Part of the Garcia Quadrangle, Costilla County, Colorado

    Science.gov (United States)

    Thompson, Ren A.; Machette, Michael N.; Drenth, Benjamin J.

    2007-01-01

    This geologic map is based entirely on new mapping by Thompson and Machette, whereas the geophysical data and interpretations were supplied by Drenth. The map area includes most of San Pedro Mesa, a basalt covered mesa that is uplifted as a horst between the Southern Sangre de Cristo fault zone (on the west) and the San Luis fault zone on the east. The map also includes most of the Sanchez graben, a deep structural basin that lies between the San Luis fault zone (on the west) and the Central Sangre de Cristo fault zone on the east. The oldest rocks in the map area are Proterozoic granites and Paleozoic sedimentary rocks, which are only exposed in a small hill on the west-central part of the mesa. The low hills that rise above San Pedro mesa are comprised of middle(?) Miocene volcanic rocks that are undated, but possibly correlative with mapped rocks to the east of Sanchez Reservoir. The bulk of the map area is comprised of the Servilleta Basalt, a regional series of flood basalts of Pliocene age. The west, north, and northeast margins of the mesa are covered by extensive landslide deposits that rest on poorly exposed sediment of the Santa Fe Group. Rare exposures of the sediment are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesa is covered by surficial deposits of Quaternary age. The piedmont alluvium is subdivided into three Pleistocene units, and three Holocene units. The oldest Pleistocene gravel (unit Qao) forms an extensive coalesced alluvial fan and piedmont surface that is known as the Costilla Plains. This surface extends west from San Pedro Mesa to the Rio Grande. The primary geologic hazards in the map are are from earthquakes and landslides. There are three major fault zones in the area (as discussed above), and they all show evidence for late Pleistocene to possible Holocene movement. Two generations of landslides are mapped (younger and older), and both may have seismogenic origins.

  8. Geologic map of the Snegurochka Planitia quadrangle (V-1), Venus

    Science.gov (United States)

    Hurwitz, Debra M.; Head, James W.

    2012-01-01

    The Snegurochka Planitia region is a predominantly low-lying terrain that covers the north polar region of Venus, extending from lat 75° N. to 90° N. and from long 0° E. to 360° E. The plains associated with Snegurochka Planitia abut the highlands of Metis Mons to the south from approximately long 240° E. to 300° E. (V–6) and the highlands of Ishtar Terra to the south from approximately long 300° E. to 60° E. (Lakshmi Planum, V–7; Fortuna Tessera, V–2). The plains of Louhi Planitia also lie within the V–1 region and form the northern border with the highlands of Tethus Regio from approximately long 60° E. to 120° E. (V–3 Meskhent Tessera) and with the lowlands of both Atalanta Planitia (V–4) and the nearby deformed region containing a series of ridged belts (V–5, Pandrosos Dorsa) from approximately long 120° E. to 240° E. The plains generally lie between +500 m and -500 m of the mean planetary radius (MPR) of 6051.8 km, with the highest terrain in the region, the northernmost extent of Ishtar Terra (Itzpapalotl Tessera, lat 75° N., long ~315° E.), rising more than 6.4 km above MPR.

  9. Coral bleaching, hurricane damage, and benthic cover on coral reefs in St. John, U.S. Virgin Islands: A comparison of surveys with the chain transect method and videography

    Science.gov (United States)

    Rogers, C.S.; Miller, J.

    2001-01-01

    The linear chain transect method and videography were used to quantify the percent cover by corals, macroalgae, gorgonians, other living organisms, and substrate along permanent transects on two fringing reefs off St. John. Both methods were used simultaneously on Lameshur reef in November 1998, and on Newfound reef in March and October 1998. Hurricane Georges passed over St. John in September 1998, and a severe coral bleaching episode began the same month. Both methods gave remarkably similar values for coral cover, while the video method gave consistently higher values for gorgonians and macroalgae. The most dramatic difference was in the quantification of bleaching. At Newfound, the chain method indicated 13.4% (SD = 14.1) of the coral tissues were bleached and the video method, 43.4% (SD = 13.0). Corresponding values at Lameshur were 18.1% (SD = 22.3) and 46.5% (SD = 13.3). Although hurricane damage was conspicuous at Newfound reef, neither method showed significant changes in coral cover or other categories as a result of the storm.

  10. Singular coverings of toposes

    CERN Document Server

    Bunge, Marta

    2006-01-01

    The self-contained theory of certain singular coverings of toposes called complete spreads, that is presented in this volume, is a field of interest to topologists working in knot theory, as well as to various categorists. It extends the complete spreads in topology due to R. H. Fox (1957) but, unlike the classical theory, it emphasizes an unexpected connection with topos distributions in the sense of F. W. Lawvere (1983). The constructions, though often motivated by classical theories, are sometimes quite different from them. Special classes of distributions and of complete spreads, inspired respectively by functional analysis and topology, are studied. Among the former are the probability distributions; the branched coverings are singled out amongst the latter. This volume may also be used as a textbook for an advanced one-year graduate course introducing topos theory with an emphasis on geometric applications. Throughout the authors emphasize open problems. Several routine proofs are left as exercises, but...

  11. On directed coverings

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth

    In [1], we study coverings in the setting of directed topology. Unfortunately, there is a condition missing in the definition of a directed covering. Some of the results in [1] require this extra condition and in fact it was claimed to follow from the original definition. It is the purpose...... of this note to give the right definition and point out how this affects the statements in that paper. Moreover, we give an example of a dicovering in the sense of [1], which does not satisfy the extra condition. Fortunately, with the extra condition, the subsequent results are now correct. [1] L. Fajstrup......, Dicovering spaces, Homology Homotopy Appl. 5 (2003), no. 2, 1-17....

  12. Covering R-trees

    CERN Document Server

    Berestovskii, V N

    2007-01-01

    We show that every inner metric space X is the metric quotient of a complete R-tree via a free isometric action, which we call the covering R-tree of X. The quotient mapping is a weak submetry (hence, open) and light. In the case of compact 1-dimensional geodesic space X, the free isometric action is via a subgroup of the fundamental group of X. In particular, the Sierpin'ski gasket and carpet, and the Menger sponge all have the same covering R-tree, which is complete and has at each point valency equal to the continuum. This latter R-tree is of particular interest because it is "universal" in at least two senses: First, every R-tree of valency at most the continuum can be isometrically embedded in it. Second, every Peano continuum is the image of it via an open light mapping. We provide a sketch of our previous construction of the uniform universal cover in the special case of inner metric spaces, the properties of which are used in the proof.

  13. Airborne gamma-ray spectrometer and magnetometer survey Coos Bay, Oregon. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    During the months of August, September, and October of 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Coos Bay, Oregon, map area. Line spacing was generally six miles for east/west traverses and eighteen miles for north/south tie lines over the northern one-half of the area. Traverses and tie lines were flown at three miles and twelve miles respectively over the southern one-half of the area. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 863.8 line miles are in this quadrangle.

  14. The Geology of the Marcia Quadrangle of Asteroid Vesta: Assessing the Effects of Large, Young Craters

    Science.gov (United States)

    Williams, David A.; Denevi, Brett W.; Mittlefehldt, David W.; Mest, Scott C.; Schenk, Paul M.; Yingst, R. Aileen; Buczowski, Debra L.; Scully, Jennifer E. C.; Garry, W. Brent; McCord, Thomas B.; hide

    2014-01-01

    We used Dawn spacecraft data to identify and delineate geological units and landforms in the Marcia quadrangle of Vesta as a means to assess the role of the large, relatively young impact craters Marcia (approximately 63 kilometers diameter) and Calpurnia (approximately 53 kilometers diameter) and their surrounding ejecta field on the local geology. We also investigated a local topographic high with a dark-rayed crater named Aricia Tholus, and the impact crater Octavia that is surrounded by a distinctive diffuse mantle. Crater counts and stratigraphic relations suggest that Marcia is the youngest large crater on Vesta, in which a putative impact melt on the crater floor ranges in age between approximately 40 and 60 million years (depending upon choice of chronology system), and Marcia's ejecta blanket ranges in age between approximately 120 and 390 million years (depending upon choice of chronology system). We interpret the geologic units in and around Marcia crater to mark a major Vestan time-stratigraphic event, and that the Marcia Formation is one of the geologically youngest formations on Vesta. Marcia crater reveals pristine bright and dark material in its walls and smooth and pitted terrains on its floor. The smooth unit we interpret as evidence of flow of impact melts and (for the pitted terrain) release of volatiles during or after the impact process. The distinctive dark ejecta surrounding craters Marcia and Calpurnia is enriched in OH- or H-bearing phases and has a variable morphology, suggestive of a complex mixture of impact ejecta and impact melts including dark materials possibly derived from carbonaceous chondrite-rich material. Aricia Tholus, which was originally interpreted as a putative Vestan volcanic edifice based on lower resolution observations, appears to be a fragment of an ancient impact basin rim topped by a dark-rayed impact crater. Octavia crater has a cratering model formation age of approximately 280-990 million years based on counts

  15. Reconnaissance geology of the Ghazzalah Quadrangle, sheet 26/41 A, Kingdom of Saudi Arabia

    Science.gov (United States)

    Quick, James E.

    1983-01-01

    The Ghazzalah quadrangle is located in the northern Precambrian shield of Saudi Arabia between lat 26?30' and 27?00' N. and long 41?00' and 41?30' E. The area is underlain by two lithologically distinct, Precambrian volcanosedimentary units and a wide range of dioritoid and granitoid plutonic intrusive rocks. The only Phanerozoic rocks consist of one outcrop of Tertiary(?) basalt and widespread but thin deposits of Quaternary detritus. The Banana greenstone, the oldest rock in the quadrangle, consists of intermediate volcanic and subvolcanic rocks and minor interbedded marble, which have been metamorphosed to greenschist-facies assemblages. Volcanic rocks mainly range in composition from basalt to andesite, and subvolcanic rocks consist of diorite and diabase. The Banana greenstone is unconformably overlain by silicic volcanic rocks and minor arkosic sandstone and breccia of the Hadn formation. Preservation of delicate volcanic textures suggests that the rocks have been only incipiently metamorphosed. Unpublished rubidium/strontium isotopic data for the Hadn formation suggest an age of 620 to 610 Ma. Intrusive rocks are separable according to their ages relative to the Hadn formation. Those that are unconformably overlain by the Hadn formation consist of hornblende quartz diorite and gabbro, which may be consanguineous with the Banana greenstone, and younger tonalite, biotite-hornblende granodiorite, syenogranite, and monzogranite. Plutons of monzogranite, alkali-feldspar g,ranite, syenbgranite, peralkaline granite, and hypabyssal intrusions of granophyre were probably emplaced during a period coincident with and (or) following Hadn volcanism. Uranium-lead and rubidium/strontium isotopic data for two plutons in the adjacent Al Qasr quadrangle suggest that plutonic activity persisted in the region until about 580 to 570 Ma. Faulting appears to postdate all of the plutonic rocks. The dominant faults belong to a northeast-trending system of right-lateral shears; a

  16. North American Land Cover Characteristics ? 1-Kilometer Resolution - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is an Arc/INFO grid map of land cover characteristics for North America, excluding Hawaii, and including the Caribbean and most of Mexico. The nominal...

  17. National Land Cover Database 2001 Version 2: 1985-2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Land Cover Database 2001 Version 2 (NLCD 2001 Version 2) is being compiled across all 50 states and Puerto Rico as a cooperative mapping effort of the...

  18. National Land Cover Database 2001 Version 2: 1985-2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Land Cover Database 2001 Version 2 (NLCD 2001 Version 2) is being compiled across all 50 states and Puerto Rico as a cooperative mapping effort of the...

  19. Change in land use in the Phoenix (1:250,000) Quadrangle, Arizona between 1970 and 1973: ERTS as an aid in a nationwide program for mapping general land use. [Phoenix Quadrangle, Arizona

    Science.gov (United States)

    Place, J. L.

    1974-01-01

    Changes in land use between 1970 and 1973 in the Phoenix (1:250,000 scale) Quadrangle in Arizona have been mapped using only the images from ERTS-1, tending to verify the utility of a standard land use classification system proposed for use with ERTS images. Types of changes detected have been: (1) new residential development of former cropland and rangeland; (2) new cropland from the desert; and (3) new reservoir fill-up. The seasonal changing of vegetation patterns in ERTS has complemented air photos in delimiting the boundaries of some land use types. ERTS images, in combination with other sources of information, can assist in mapping the generalized land use of the fifty states by the standard 1:250,000 quadrangles. Several states are already working cooperatively in this type of mapping.

  20. Covered Clause Elimination

    CERN Document Server

    Heule, Marijn; Biere, Armin

    2010-01-01

    Generalizing the novel clause elimination procedures developed in [M. Heule, M. J\\"arvisalo, and A. Biere. Clause elimination procedures for CNF formulas. In Proc. LPAR-17, volume 6397 of LNCS, pages 357-371. Springer, 2010.], we introduce explicit (CCE), hidden (HCCE), and asymmetric (ACCE) variants of a procedure that eliminates covered clauses from CNF formulas. We show that these procedures are more effective in reducing CNF formulas than the respective variants of blocked clause elimination, and may hence be interesting as new preprocessing/simplification techniques for SAT solving.

  1. Quaternary geologic map of the Boston 4 degrees x 6 degrees quadrangle, United States and Canada

    Science.gov (United States)

    State compilations by Hartshorn, Joseph H.; Thompson, W.B.; Chapman, W.F.; Black, R.F.; Richmond, Gerald Martin; Grant, D.R.; Fullerton, David S.; edited and integrated by Richmond, Gerald Martin

    1991-01-01

    The Quaternary Geologic Map of the Boston 4 deg x 6 deg Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.

  2. Uranium hydrogeochemical and stream sediment reconnaissance of the Valdez NTMS Quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Valdez NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System (GJOIS) at Oak Ridge National Laboratory (ORNL). Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others (1981a) into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples.

  3. Preliminary assessment of arsenic concentration in a spring water area, iron quadrangle, Minas Gerais Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Maria Angela de B.C.; Magalhaes, Camila Lucia M.R., E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Reator e Tecnicas Analiticas. Laboratorio de Ativacao Neutronica; Uemura, George, E-mail: george@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Meio Ambiente; Jacimovic, Radojko, E-mail: radojko.jacimovic@ijs.si [Jozef Stefan Institute, Department of Environmental Sciences, Group for Radiochemistry and Radioecology, Ljubljana (Slovenia); Deschamps, Maria Eleonora, E-mail: leonora.deschamps@meioambiente.mg.gov.br [FEAM, Fundacao Estadual do Meio Ambiente. Universidade FUMEC, Belo Horizonte, MG (Brazil); Isaias, Rosy Mary; Salino, Alexandre, E-mail: rosy@icb.ufmg.br, E-mail: salino@icb.ufmg.br [Universidade Federal de Minas Gerais, Departamento de Botanica, UFMG, Belo Horizonte, MG (Brazil); Magalhaes, Fernando, E-mail: camila@bonsaimorrovelho.com.br [Instituto Superior de Ciencias da Saude, Curso Superior de Ciencias Biologicas, Belo Horizonte, MG (Brazil)

    2011-07-01

    The attention to environmental exposure to arsenic is increasing in the worldwide. In this scenario, a project is being developed in Santana do Morro, Iron Quadrangle, Minas Gerais, region well known due to natural and anthropogenic occurrence of arsenic. This proposal has several objectives; one of them is to start a procedure of phyto remediation in laboratory aiming at future riparian forests restoration. The main concern is the preservation of water resource and consequently the health of the inhabitants. The study place is close to a water spring. One sampling was carried out, collecting plants, soil and sediment. The Neutron Activation Analysis, k{sub 0}-method, was applied to determine the elemental concentration, using the TRIGA Mark I IPR-R1 reactor, located at CDTN/CNEN. In this paper, the results are discussed. (author)

  4. Mineral and energy resource assessment maps of the Mount Katmai, Naknek, and western Afognak quadrangles, Alaska

    Science.gov (United States)

    Church, S.E.; Riehle, J.R.; Magoon, L.B.; Campbell, D.L.

    1992-01-01

    On the basis of new geologic mapping and exploration geochemical studies, we have provided a mineral and energy resource assessment of the Mount Katmai, Naknek, and western Afognak quadrangles, Alaska. We delineate four tracts of ground that have metallic mineral resources. The mineral deposit types considered in each tract are summarized in table 4. Estimates of the number of undiscovered mineral deposits have been made for porphyry copper and polymetallic vein deposits. We estimate that one undiscovered porphyry copper deposit is present in the Katmai study area at the ten percent probability level. Although the sampling density may be too low to give an accurate estimate of the number of undiscovered polymetallic vein deposits, we suggest that, at a minimum, there is a five percent probability for five or more undiscovered polymetallic vein deposits in the Katmai study area. In addition, several areas have potential for undiscovered porphyry molybdenum, massive sulfide, and epithermal gold and mercury deposits.

  5. Uraniam hydrogeochemical and stream sediment reconnaissance of the Wiseman NTMS Quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Wiseman NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others (198a) into stream sediment samples.

  6. Geologic map of the Cochiti Dam quadrangle, Sandoval County, New Mexico

    Science.gov (United States)

    Dethier, David P.; Thompson, Ren A.; Hudson, Mark R.; Minor, Scott A.; Sawyer, David A.

    2011-01-01

    The Cochiti Dam quadrangle is located in the southern part of the Española Basin and contains sedimentary and volcanic deposits that record alluvial, colluvial, eolian, tectonic and volcanic processes over the past seventeen million years. The geology was mapped from 1997 to 1999 and modified in 2004 to 2008. The primary mapping responsibilities were as follows: Dethier mapped the surficial deposits, basin-fill sedimentary deposits, Miocene to Quaternary volcanic deposits of the Jemez volcanic field, and a preliminary version of fault distribution. Thompson and Hudson mapped the Pliocene and Quaternary volcanic deposits of the Cerros del Rio volcanic field. Thompson, Minor, and Hudson mapped surface exposures of faults and Hudson conducted paleomagnetic studies for stratigraphic correlations. Thompson prepared the digital compilation of the geologic map.

  7. Uranium hydrogeochemical and stream sediment reconnaissance of the Mt. Hayes NTMS quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Mt. Hayes quadrangle, Alaska, are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and Laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report.

  8. Preliminary geologic map and digital database of the San Bernardino 30' x 60' quadrangle, California

    Science.gov (United States)

    Morton, Douglas M.; Miller, Fred K.

    2003-01-01

    The San Bernardino 30'x60' quadrangle, southern California, is diagonally bisected by the San Andreas Fault Zone, separating the San Gabriel and San Bernardino Mountains, major elements of California's east-oriented Transverse Ranges Province. Included in the southern part of the quadrangle is the northern part of the Peninsular Ranges Province and the northeastern part of the oil-producing Los Angeles basin. The northern part of the quadrangle includes the southern part of the Mojave Desert Province. Pre-Quaternary rocks within the San Bernardino quadrangle consist of three extensive, well-defined basement rock assemblages, the San Gabriel Mountains, San Bernardino Mountains, and the Peninsular Ranges assemblages, and a fourth assemblage restricted to a narrow block bounded by the active San Andreas Fault and the Mill Creek Fault. Each of these basement rock assemblages is characterized by a relatively unique suite of rocks that was amalgamated by the end of the Cretaceous and (or) early Cenozoic. Some Tertiary sedimentary and volcanic rocks are unique to specific assemblages, and some overlap adjacent assemblages. A few Miocene and Pliocene units cross the boundaries of adjacent assemblages, but are dominant in only one. Tectonic events directly and indirectly related to the San Andreas Fault system have partly dismembered the basement rocks during the Neogene, forming the modern-day physiographic provinces. Rocks of the four basement rock assemblages are divisible into an older suite of Late Cretaceous and older rocks and a younger suite of post-Late Cretaceous rocks. The age span of the older suite varies considerably from assemblage to assemblage, and the point in time that separates the two suites varies slightly. In the Peninsular Ranges, the older rocks were formed from the Paleozoic to the end of Late Cretaceous plutonism, and in the Transverse Ranges over a longer period of time extending from the Proterozoic to metamorphism at the end of the Cretaceous

  9. Analysis of stream sediment reconnaissance data for mineral resources from the Montrose NTMS Quadrangle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Beyth, M.; Broxton, D.; McInteer, C.; Averett, W.R.; Stablein, N.K.

    1980-06-01

    Multivariate statistical analysis to support the National Uranium Resource Evaluation and to evaluate strategic and other commercially important mineral resources was carried out on Hydrogeochemical and Stream Sediment Reconnaissance data from the Montrose quadrangle, Colorado. The analysis suggests that: (1) the southern Colorado Mineral Belt is an area favorable for uranium mineral occurrences; (2) carnotite-type occurrences are likely in the nose of the Gunnison Uplift; (3) uranium mineral occurrences may be present along the western and northern margins of the West Elk crater; (4) a base-metal mineralized area is associated with the Uncompahgre Uplift; and (5) uranium and base metals are associated in some areas, and both are often controlled by faults trending west-northwest and north.

  10. Quaternary Geologic Map of the Lake of the Woods 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    Science.gov (United States)

    Sado, Edward V.; Fullerton, David S.; Goebel, Joseph E.; Ringrose, Susan M.; Edited and Integrated by Fullerton, David S.

    1995-01-01

    The Quaternary Geologic Map of the Lake of the Woods 4 deg x 6 deg Quadrangle, United States and Canada, was mapped as part of the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series (Miscellaneous Investigations Series I-1420, NM-15). The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is a product of collaboration of the Ontario Geological Survey, the Minnesota Geological Survey, the Manitoba Department of Energy and Mines, and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, separate maps and map explanations were prepared by the compilers. Second, the maps were combined, integrated, and supplemented by the editor. Map unit symbols were revised to a uniform system of classification and the map unit descriptions were prepared by the editor from information received from the compilers and from additional sources listed under Sources of Information. Diagrams accompanying the map were prepared by the editor. For scientific purposes, the map differentiates Quaternary surficial deposits on the basis of lithology or composition, texture or particle size, structure, genesis, stratigraphic relationships, engineering geologic properties, and relative age, as shown on the correlation diagram and

  11. Digital geologic map of the Thirsty Canyon NW quadrangle, Nye County, Nevada

    Science.gov (United States)

    Minor, S.A.; Orkild, P.P.; Sargent, K.A.; Warren, R.G.; Sawyer, D.A.; Workman, J.B.

    1998-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, dike, and caldera wall), and point (i.e., structural attitude) vector data for the Thirsty Canyon NW 7 1/2' quadrangle in southern Nevada. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic and tectonic interest. The Thirsty Canyon NW quadrangle is located in southern Nye County about 20 km west of the Nevada Test Site (NTS) and 30 km north of the town of Beatty. The map area is underlain by extensive layers of Neogene (about 14 to 4.5 million years old [Ma]) mafic and silicic volcanic rocks that are temporally and spatially associated with transtensional tectonic deformation. Mapped volcanic features include part of a late Miocene (about 9.2 Ma) collapse caldera, a Pliocene (about 4.5 Ma) shield volcano, and two Pleistocene (about 0.3 Ma) cinder cones. Also documented are numerous normal, oblique-slip, and strike-slip faults that reflect regional transtensional deformation along the southern part of the Walker Lane belt. The Thirsty Canyon NW map provides new geologic information for modeling groundwater flow paths that may enter the map area from underground nuclear testing areas located in the NTS about 25 km to the east. The geologic map database comprises six component ArcINFO map coverages that can be accessed after decompressing and unbundling the data archive file (tcnw.tar.gz). These six coverages (tcnwpoly, tcnwflt, tcnwfold, tcnwdike, tcnwcald, and tcnwatt) are formatted here in ArcINFO EXPORT format. Bundled with this database are two PDF files for readily viewing and printing the map, accessory graphics, and a description of map units and compilation methods.

  12. Hydrogeochemical and stream sediment reconnaissance basic data report for Winnemucca NTMS Quadrangle, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Puchlik, K.P.

    1978-05-01

    Results are presented of the geochemical reconnaissance sampling in the Winnemucca 1/sup 0/ x 2/sup 0/ quadrangle of the National Topographic Map Series (NTMS). Wet and dry sediment samples were collected throughout the 18,770-km/sup 2/ arid to semi-arid area and water samples at available streams, springs and wells. Results of neutron activation analyses are presented of uranium and trace elements and other measurements made in the field and laboratory in tabular hardcopy and microfiche format. The report includes 5 full-size overlays for use with the Winnemucca NTMS 1:250,000 quadrangle. Water sampling sites, water-sample uranium and thorium concentrations, sediment sampling sites, and sediment-sample total uranium and thorium concentrations are shown on the separate overlays. General geological and structural descriptions of the area are given and the 12 known uranium occurrences are described. The results indicate that the uranium geochemistry of the area is diverse. High concentrations (greater than 5 ppM) of uranium in sediments are associated mainly with rhyolitic ash falls and flows and silicic intrusives. In defining areas of interest the ratio of relatively insoluble thorium to uranium was considered. The anomalies as defined are then the sediment samples containing low Th/U and high uranium concentrations. These areas consist mainly of fluvial-lacustrine units. Most known uranium occurrences were also identified by this technique. The main Humboldt River shows an irregular increase in uranium concentration downstream which may be related to agricultural modification of the stream flow. U/Cl ratios were used to evaluate the effects of evaporative concentration. Of interest are spring and tributary waters containing high U/Cl and high uranium values. These waters mainly drain acid intrusives, silicic volcanic rocks and related sediments. One such area is the Shoshone and Cortez Mountains.

  13. 100-Meter Resolution Land Cover of Hawaii - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer contains land cover data for Hawaii, in an Albers Equal-Area Conic projection and at a resolution of 100 meters. The land cover data were derived from...

  14. 100-Meter Resolution Land Cover of Alaska - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer contains land cover data for Alaska, in an Albers Equal-Area Conic projection and at a resolution of 100 meters. The land cover data were derived from...

  15. Modeling the Seasonal Ice Zone from the Air: use of repeat aerial hydrographic surveys to constrain a regional ice-ocean model in an area of rapidly evolving ice cover

    Science.gov (United States)

    Dewey, S.; Morison, J.; Zhang, J.

    2015-12-01

    The Seasonal Ice Zone of the Beaufort Sea is the area of ocean north of Alaska over which sea ice melts and reforms annually. It contains the more narrow, near-edge marginal ice zone (MIZ). Seasonal Ice Zone Reconnaissance Surveys (SIZRS) measure hydrography along two meridional sections using Air eXpendable CTDs (AXCTDs) and Air eXpendable Current Profilers (AXCPs). These surveys take place aboard U.S. Coast Guard Arctic Domain Awareness flights of opportunity during each melt season (June-October) starting in 2012. The Marginal Ice Zone Modeling and Assimilation System (MIZMAS) is a high-resolution regional ice-ocean model with daily, three-dimensional output encompassing the SIZRS survey area. Direct comparison of the SIZRS data with MIZMAS output as well as with several regional climatologies can constrain the ice-ocean model and help to explain recent changes in subsurface heat content and salinity. For example, observed freshening relative to climatology has been used as a reference to which MIZMAS surface salinity values can be relaxed. MIZMAS may in turn shed light on the physical mechanisms driving the observed freshening. In addition, use of MIZMAS surface fluxes to drive a one-dimensional mixed layer model gives results close to observations when the model is initialized with SIZRS profiles. Because SIZRS observations range in time from the onset of melt to the onset of Fall freeze-up, the comparison of the one-dimensional model with MIZMAS illustrates the relative roles of local and regional processes in forming near-surface temperature maxima and salinity minima. The SIZRS observations and one-dimensional model are used to constrain MIZMAS estimations of stored subsurface heat while establishing the physical drivers of these temperature and salinity changes.

  16. Geology of the Delta, Escalante, Price, Richfield and Salina 1 deg x 2 deg NTMS quadrangles, Utah

    Science.gov (United States)

    Thayer, P. A.

    1981-11-01

    The National Uranium Resource Evaluation (NURE) program was established to evaluate domestic uranium resources in the continental United States and to identify areas favorable for uranium exploration. The Grand Junction Office of the Department of Energy is responsible for administering the program. The Savannah River Laboratory (SRL) is responsible for hydrogeochemical and stream-sediment reconnaissance (HSSR) of 3.9 million sq km (1,500,000 mi(2)) in 37 eastern and western states. This document provides geologic and mineral resources reports for the Delta, Escalante, Price, Richfield, and Salina 1 deg x 2 deg National Topographic Map Series quadrangles, Utah. The purpose of these reports is to provide background geologic and mineral resources information to aid in the interpretation of NURE geochemical reconnaissance data. Except for the Escalante Quadrangle, each report is accompanied by a geologic map and a mineral locality map (Plates 1-8, in pocket).

  17. Stream discharge measurements under ice cover

    Science.gov (United States)

    Noland, K. Michael; Jacobson, Nathan D.

    2000-01-01

    This training presentation shows procedures used by the U.S. Geological Survey to measure streamflow when streams are covered by ice. Although 'Ice Measurements' are generally more difficult to make than open-water measurements and are often made under uncomfortable conditions it is very important that ice measurements be made regularly during the winter. This is because a large part of many winter discharge records depend on such measurements.

  18. Geologic significance of new isostatic gravity and aeromagnetic maps of the Winnemucca 1[degree] by 2[degree] quadrangle, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, H.W.; Sikora, R.F. (Geological Survey, Menlo Park, CA (United States)); Robbins, S.L. (Geological Survey, Denver, CO (United States))

    1993-04-01

    Since Wagini's 1986 Bouguer and isostatic gravity compilations of the Winnemucca 1[degree] by 2[degree] quadrangle, R. Sikora has provided an 1991 update that includes 133 new stations obtained in the Sonoma Range, Boulder Valley, and the Battle Mountain areas. Since that 1991 update, 371 additional stations have been obtained by S. Robbins in the Pine and Crescent Valley areas to look for possible gravity signatures of petroleum and gold deposits. All these data have been reduced and incorporated into a new isostatic gravity map of the quadrangle. This new compilation shows that the largest residual low of 32 mGal occurs over petroleum-bearing Pine Valley, although nearly-as-large gravity lows (27--31 mGal) occur over Buena Vista, Pleasant, Reese River, and Grass Valleys. A new aeromagnetic compilation of the Winnemucca quadrangle is continued downward to 300 m above terrain and shows a number of magnetic highs associated with igneous rocks, both intrusive and extrusive. A nearly continuous north-northwest trending magnetic high of about 400 nT, known as the northern Nevada rift, cuts across the quadrangle about 10 km east of Battle Mountain and is associated at some locations with Miocene basaltic and andesitic extrusive rocks. Three Miocene epithermal gold deposits are associated with this magnetic high at Mule Canyon, Fire Creek, and Bluckhorn. A smaller but broader magnetic high of about 200 nT at 300 m above terrain is located over the Tuscarora Mountains about 15 km northwest of Carlin. The maximum horizontal gradient of the pseudogravity transformation of the total magnetic field coincides with a series of ten productive gold mines known as the Carlin trend.

  19. Forest cover change in the upper Midwestern United States results from both climate and land use change following European settlement: Historical survey and weather records provide robust support for modeling applications

    Science.gov (United States)

    Goring, S. J.; Williams, J. W.; McLachlan, J. S.; Dawson, A.; Dietze, M.; Paciorek, C. J.; Mladenoff, D. J.; Record, S.; Cogbill, C. V.; Hooten, M.; Ruid, M.; Jackson, S. T.

    2013-12-01

    Since European settlement, both climate and human land use have acted on forests in the upper Midwestern United States resulting in changes in forest structure and composition. The extent of these changes has been examined locally and at the state level by examining forest records from the Public Lands Survey System (PLSS), but here we bring together records of changing forest composition with weather records from the mid to late 19th century from the 19th Century Forts and Observer's Database. We are able to assign attribution for taxon range and composition shifts in the region to either land use, climate or both. We see that much of the range contraction in the region seen when comparing Forest Inventory and Analysis data with Public Land Survey System data occurs along the prairie margin, with northern forests showing greater stability in both range and composition suggesting a dominant role for land use in structuring regional vegetation. Modern forests are often less diverse than PLSS forests and the mean minimum dissimilarity between modern and PLSS-era forests is significantly higher than the minimum dissimilarity within either the PLSS-era forests or the modern (FIA) forests, indicating the possiblity that our modern forests have already become 'no-analogue' ecosystems.

  20. Engineering surveying

    CERN Document Server

    Schofield, W

    2007-01-01

    Engineering surveying involves determining the position of natural and man-made features on or beneath the Earth's surface and utilizing these features in the planning, design and construction of works. It is a critical part of any engineering project. Without an accurate understanding of the size, shape and nature of the site the project risks expensive and time-consuming errors or even catastrophic failure.Engineering Surveying 6th edition covers all the basic principles and practice of this complex subject and the authors bring expertise and clarity. Previous editions of this classic text have given readers a clear understanding of fundamentals such as vertical control, distance, angles and position right through to the most modern technologies, and this fully updated edition continues that tradition.This sixth edition includes:* An introduction to geodesy to facilitate greater understanding of satellite systems* A fully updated chapter on GPS, GLONASS and GALILEO for satellite positioning in surveying* Al...