WorldWideScience

Sample records for survey cas program

  1. The linear collider alignment and survey (LiCAS) project

    International Nuclear Information System (INIS)

    Bingham, Richard; Botcherby, Edward; Coe, Paul; Grzelak, Grzegorz; Mitra, Ankush; Reichold, Armin; Prenting, Johannes

    2003-01-01

    For the next generation of Linear Colliders (LC) the precision alignment of accelerator components will be critical. The DESY applied geodesy group has developed the concept of an automated 'survey train'. The train runs along the accelerator wall measuring the 3D position of a set of equispaced reference markers. This reference structure is then used to align the accelerator components. The LiCAS group is developing a measurement system for the survey train. It will use a combination of Laser Straightness Monitors (SM) and Frequency Scanning Interferometry (FSI). FSI is an interferometric length measurement technique originally developed for the online alignment of the ATLAS Inner Detector. This novel combination of optical techniques is expected to overcome the limitations of traditional open air survey. The authors describe the LiCAS project, the measurement systems and their integration into the survey train. The technical parameters and constraints will be mentioned. There will also be brief discussion of the second phase of the project to allow on-line monitoring of the LC alignment. (author)

  2. On the Integration of Computer Algebra Systems (CAS) by Canadian Mathematicians: Results of a National Survey

    Science.gov (United States)

    Buteau, Chantal; Jarvis, Daniel H.; Lavicza, Zsolt

    2014-01-01

    In this article, we outline the findings of a Canadian survey study (N = 302) that focused on the extent of computer algebra systems (CAS)-based technology use in postsecondary mathematics instruction. Results suggest that a considerable number of Canadian mathematicians use CAS in research and teaching. CAS use in research was found to be the…

  3. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 7, 0.07 Conveying

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    System information is given for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; and system work breakdown structure. Deficiency standards and inspection methods are presented for elevators and special conveyors.

  4. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 2, 0.02 Substructure

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    System information is given for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; system work breakdown structure; and general system/material data. System assembly/component deficiencies and inspection methods are given for slabs-on-grade, columns, and column fireproofing.

  5. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 3, 0.03 Superstructure

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    General information is presented on asset determinant factor/CAS profile codes/CAS cost process; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; system work breakdown structure; and general system/material data. Deficiency standards and inspection methods are presented for beams; pre-engineered building systems; floors; roof structure; stairs; and fireproofing.

  6. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 12, 0.12 Sitework

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    General information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; system work breakdown structure; and general system/material data. Deficiency standards and inspection methods are given for utility distribution systems, central heating, central cooling, electrical, utility support structures, paving roadways/walkways, and tunnels.

  7. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 5, 0.05 Roofing

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    General information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; and system work breakdown structure. Deficiency standards and inspection methods are presented for built-up membrane; single- ply membrane; metal roofing systems; coated foam membrane; shingles; tiles; parapets; roof drainage system; roof specialties; and skylights.

  8. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 6, 0.06 Interior construction

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    General information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; system work breakdown structure; and general system/material data. Deficiency standards and inspection methods are presented for conventional and specialty partitions, toilet partitions & accessories, interior doors, paint finishes/coatings/ wall covering systems; floor finishing systems; and ceiling systems.

  9. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 11, 0.11 Specialty systems

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    General information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; system work breakdown structure; and general system/material data. Deficiency standards and inspection methods are presented for canopies; loading dock systems; tanks; domes (bulk storage, metal framing); louvers & vents; access floors; integrated ceilings; and mezzanine structures.

  10. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 8, 0.08 Mechanical, Book 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    System information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet too & material listing; testing methods; inspection frequency; standard system design life tables; and system work breakdown structure. Deficiency standards are given for plumbing, fire protection, heating, cooling, and special (drinking water cooling systems).

  11. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 1, 0.01 Foundations and footings

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    General information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; system work breakdown structure; and general system/material data. Deficiency standards and inspection methods are given for footings - spread/strip/grade beams; foundation walls; foundation dampproofing/waterproofing; excavation/backfill/ and piles & caissons.

  12. Cas4-Dependent Prespacer Processing Ensures High-Fidelity Programming of CRISPR Arrays.

    Science.gov (United States)

    Lee, Hayun; Zhou, Yi; Taylor, David W; Sashital, Dipali G

    2018-04-05

    CRISPR-Cas immune systems integrate short segments of foreign DNA as spacers into the host CRISPR locus to provide molecular memory of infection. Cas4 proteins are widespread in CRISPR-Cas systems and are thought to participate in spacer acquisition, although their exact function remains unknown. Here we show that Bacillus halodurans type I-C Cas4 is required for efficient prespacer processing prior to Cas1-Cas2-mediated integration. Cas4 interacts tightly with the Cas1 integrase, forming a heterohexameric complex containing two Cas1 dimers and two Cas4 subunits. In the presence of Cas1 and Cas2, Cas4 processes double-stranded substrates with long 3' overhangs through site-specific endonucleolytic cleavage. Cas4 recognizes PAM sequences within the prespacer and prevents integration of unprocessed prespacers, ensuring that only functional spacers will be integrated into the CRISPR array. Our results reveal the critical role of Cas4 in maintaining fidelity during CRISPR adaptation, providing a structural and mechanistic model for prespacer processing and integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Cas9 versus Cas12a/Cpf1: Structure-function comparisons and implications for genome editing.

    Science.gov (United States)

    Swarts, Daan C; Jinek, Martin

    2018-05-22

    Cas9 and Cas12a are multidomain CRISPR-associated nucleases that can be programmed with a guide RNA to bind and cleave complementary DNA targets. The guide RNA sequence can be varied, making these effector enzymes versatile tools for genome editing and gene regulation applications. While Cas9 is currently the best-characterized and most widely used nuclease for such purposes, Cas12a (previously named Cpf1) has recently emerged as an alternative for Cas9. Cas9 and Cas12a have distinct evolutionary origins and exhibit different structural architectures, resulting in distinct molecular mechanisms. Here we compare the structural and mechanistic features that distinguish Cas9 and Cas12a, and describe how these features modulate their activity. We discuss implications for genome editing, and how they may influence the choice of Cas9 or Cas12a for specific applications. Finally, we review recent studies in which Cas12a has been utilized as a genome editing tool. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes. © 2018 Wiley Periodicals, Inc.

  14. How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration.

    Science.gov (United States)

    Xiao, Yibei; Ng, Sherwin; Nam, Ki Hyun; Ke, Ailong

    2017-10-05

    CRISPR (clustered regularly interspaced short palindromic repeats) and the nearby Cas (CRISPR-associated) operon establish an RNA-based adaptive immunity system in prokaryotes. Molecular memory is created when a short foreign DNA-derived prespacer is integrated into the CRISPR array as a new spacer. Whereas the RNA-guided CRISPR interference mechanism varies widely among CRISPR-Cas systems, the spacer integration mechanism is essentially identical. The conserved Cas1 and Cas2 proteins form an integrase complex consisting of two distal Cas1 dimers bridged by a Cas2 dimer. The prespacer is bound by Cas1-Cas2 as a dual-forked DNA, and the terminal 3'-OH of each 3' overhang serves as an attacking nucleophile during integration. The prespacer is preferentially integrated into the leader-proximal region of the CRISPR array, guided by the leader sequence and a pair of inverted repeats inside the CRISPR repeat. Spacer integration in the well-studied Escherichia coli type I-E CRISPR system also relies on the bacterial integration host factor. In type II-A CRISPR, however, Cas1-Cas2 alone integrates spacers efficiently in vitro; other Cas proteins (such as Cas9 and Csn2) have accessory roles in the biogenesis phase of prespacers. Here we present four structural snapshots from the type II-A system of Enterococcus faecalis Cas1 and Cas2 during spacer integration. Enterococcus faecalis Cas1-Cas2 selectively binds to a splayed 30-base-pair prespacer bearing 4-nucleotide 3' overhangs. Three molecular events take place upon encountering a target: first, the Cas1-Cas2-prespacer complex searches for half-sites stochastically, then it preferentially interacts with the leader-side CRISPR repeat, and finally, it catalyses a nucleophilic attack that connects one strand of the leader-proximal repeat to the prespacer 3' overhang. Recognition of the spacer half-site requires DNA bending and leads to full integration. We derive a mechanistic framework to explain the stepwise spacer

  15. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.

    Science.gov (United States)

    Ostria-Hernández, Martha Lorena; Sánchez-Vallejo, Carlos Javier; Ibarra, J Antonio; Castro-Escarpulli, Graciela

    2015-08-04

    In recent years the emergence of multidrug resistant Klebsiella pneumoniae strains has been an increasingly common event. This opportunistic species is one of the five main bacterial pathogens that cause hospital infections worldwide and multidrug resistance has been associated with the presence of high molecular weight plasmids. Plasmids are generally acquired through horizontal transfer and therefore is possible that systems that prevent the entry of foreign genetic material are inactive or absent. One of these systems is CRISPR/Cas. However, little is known regarding the clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) system in K. pneumoniae. The adaptive immune system CRISPR/Cas has been shown to limit the entry of foreign genetic elements into bacterial organisms and in some bacteria it has been shown to be involved in regulation of virulence genes. Thus in this work we used bioinformatics tools to determine the presence or absence of CRISPR/Cas systems in available K. pneumoniae genomes. The complete CRISPR/Cas system was identified in two out of the eight complete K. pneumoniae genomes sequences and in four out of the 44 available draft genomes sequences. The cas genes in these strains comprises eight cas genes similar to those found in Escherichia coli, suggesting they belong to the type I-E group, although their arrangement is slightly different. As for the CRISPR sequences, the average lengths of the direct repeats and spacers were 29 and 33 bp, respectively. BLAST searches demonstrated that 38 of the 116 spacer sequences (33%) are significantly similar to either plasmid, phage or genome sequences, while the remaining 78 sequences (67%) showed no significant similarity to other sequences. The region where the CRISPR/Cas systems were located is the same in all the Klebsiella genomes containing it, it has a syntenic architecture, and is located among genes encoding for proteins likely involved in

  16. A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease.

    Science.gov (United States)

    Ivanov, Yury V; Shariat, Nikki; Register, Karen B; Linz, Bodo; Rivera, Israel; Hu, Kai; Dudley, Edward G; Harvill, Eric T

    2015-10-26

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) are widely distributed among bacteria. These systems provide adaptive immunity against mobile genetic elements specified by the spacer sequences stored within the CRISPR. The CRISPR-Cas system has been identified using Basic Local Alignment Search Tool (BLAST) against other sequenced and annotated genomes and confirmed via CRISPRfinder program. Using Polymerase Chain Reactions (PCR) and Sanger DNA sequencing, we discovered CRISPRs in additional bacterial isolates of the same species of Bordetella. Transcriptional activity and processing of the CRISPR have been assessed via RT-PCR. Here we describe a novel Type II-C CRISPR and its associated genes-cas1, cas2, and cas9-in several isolates of a newly discovered Bordetella species. The CRISPR-cas locus, which is absent in all other Bordetella species, has a significantly lower GC-content than the genome-wide average, suggesting acquisition of this locus via horizontal gene transfer from a currently unknown source. The CRISPR array is transcribed and processed into mature CRISPR RNAs (crRNA), some of which have homology to prophages found in closely related species B. hinzii. Expression of the CRISPR-Cas system and processing of crRNAs with perfect homology to prophages present in closely related species, but absent in that containing this CRISPR-Cas system, suggest it provides protection against phage predation. The 3,117-bp cas9 endonuclease gene from this novel CRISPR-Cas system is 990 bp smaller than that of Streptococcus pyogenes, the 4,017-bp allele currently used for genome editing, and which may make it a useful tool in various CRISPR-Cas technologies.

  17. Production of Purified CasRNPs for Efficacious Genome Editing.

    Science.gov (United States)

    Lingeman, Emily; Jeans, Chris; Corn, Jacob E

    2017-10-02

    CRISPR-Cas systems have been harnessed as modular genome editing reagents for functional genomics and show promise to cure genetic diseases. Directed by a guide RNA, a Cas effector introduces a double stranded break in DNA and host cell DNA repair leads to the introduction of errors (e.g., to knockout a gene) or a programmed change. Introduction of a Cas effector and guide RNA as a purified Cas ribonucleoprotein complex (CasRNP) has recently emerged as a powerful approach to alter cell types and organisms. Not only does CasRNP editing exhibit increased efficacy and specificity, it avoids optimization and iteration of species-specific factors such as codon usage, promoters, and terminators. CasRNP editing has been rapidly adopted for research use in many contexts and is quickly becoming a popular method to edit primary cells for therapeutic application. This article describes how to make a Cas9 RNP and outlines its use for gene editing in human cells. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  18. Cas9 specifies functional viral targets during CRISPR-Cas adaptation.

    Science.gov (United States)

    Heler, Robert; Samai, Poulami; Modell, Joshua W; Weiner, Catherine; Goldberg, Gregory W; Bikard, David; Marraffini, Luciano A

    2015-03-12

    Clustered regularly interspaced short palindromic repeat (CRISPR) loci and their associated (Cas) proteins provide adaptive immunity against viral infection in prokaryotes. Upon infection, short phage sequences known as spacers integrate between CRISPR repeats and are transcribed into small RNA molecules that guide the Cas9 nuclease to the viral targets (protospacers). Streptococcus pyogenes Cas9 cleavage of the viral genome requires the presence of a 5'-NGG-3' protospacer adjacent motif (PAM) sequence immediately downstream of the viral target. It is not known whether and how viral sequences flanked by the correct PAM are chosen as new spacers. Here we show that Cas9 selects functional spacers by recognizing their PAM during spacer acquisition. The replacement of cas9 with alleles that lack the PAM recognition motif or recognize an NGGNG PAM eliminated or changed PAM specificity during spacer acquisition, respectively. Cas9 associates with other proteins of the acquisition machinery (Cas1, Cas2 and Csn2), presumably to provide PAM-specificity to this process. These results establish a new function for Cas9 in the genesis of prokaryotic immunological memory.

  19. CRISPR/Cas9 in Genome Editing and Beyond.

    Science.gov (United States)

    Wang, Haifeng; La Russa, Marie; Qi, Lei S

    2016-06-02

    The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR/Cas9 technology offers.

  20. CAS-NETL-PNNL CEP Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    King, David L.; Spies, Kurt A.; Rainbolt, James E.; Zhang, Keling

    2014-03-31

    This collaborative joint research project is in the area of advanced gasification and conversion, within the CAS-NETL-PNNL Memorandum of Understanding. The goal is the development and testing of an integrated warm syngas cleanup process. This effort is focused on an advanced, integrated system for capture and removal of alkali, sulfur, PH3, AsH3, chloride, and CO2, leading to a future process demonstration at a CAS gasification facility. Syngas produced by gasification can be used for production of fuels (Fischer-Tropsch, SNG, mixed alcohols), chemicals (MeOH, NH3), and hydrogen for fuel cells and IGCC. To employ this syngas, especially for synthesis reactions, contained impurities must be removed to sub-ppmv levels [1]. Commercially available approaches to remove contaminant species suffer from inefficiencies, employing solvents at ambient or lower temperature along with backup sacrificial sorbents, whereas syngas utilization occurs at higher temperatures. The efficiency and economics syngas utilization can be significantly improved if all the contaminants and CO2 are removed at temperatures higher than the chemical synthesis reaction temperatures (> 250 °C) [2].

  1. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems

    Science.gov (United States)

    Fonfara, Ines; Le Rhun, Anaïs; Chylinski, Krzysztof; Makarova, Kira S.; Lécrivain, Anne-Laure; Bzdrenga, Janek; Koonin, Eugene V.; Charpentier, Emmanuelle

    2014-01-01

    The CRISPR-Cas-derived RNA-guided Cas9 endonuclease is the key element of an emerging promising technology for genome engineering in a broad range of cells and organisms. The DNA-targeting mechanism of the type II CRISPR-Cas system involves maturation of tracrRNA:crRNA duplex (dual-RNA), which directs Cas9 to cleave invading DNA in a sequence-specific manner, dependent on the presence of a Protospacer Adjacent Motif (PAM) on the target. We show that evolution of dual-RNA and Cas9 in bacteria produced remarkable sequence diversity. We selected eight representatives of phylogenetically defined type II CRISPR-Cas groups to analyze possible coevolution of Cas9 and dual-RNA. We demonstrate that these two components are interchangeable only between closely related type II systems when the PAM sequence is adjusted to the investigated Cas9 protein. Comparison of the taxonomy of bacterial species that harbor type II CRISPR-Cas systems with the Cas9 phylogeny corroborates horizontal transfer of the CRISPR-Cas loci. The reported collection of dual-RNA:Cas9 with associated PAMs expands the possibilities for multiplex genome editing and could provide means to improve the specificity of the RNA-programmable Cas9 tool. PMID:24270795

  2. The CAS Classroom

    Science.gov (United States)

    Garner, Sue

    2004-01-01

    The Victorian Curriculum and Assessment Authority (VCAA) Computer Algebra System (CAS)Pilot study (2001-2005) is monitoring the use of CAS in senior secondary mathematics. This article explores the author's experiences in the CAS classroom and delineates changes in teaching style, as a result of the introduction of CAS into the senior mathematics…

  3. Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering.

    Science.gov (United States)

    Nuñez, James K; Harrington, Lucas B; Doudna, Jennifer A

    2016-03-18

    The application of the CRISPR-Cas9 system for genome engineering has revolutionized the ability to interrogate genomes of mammalian cells. Programming the Cas9 endonuclease to induce DNA breaks at specified sites is achieved by simply modifying the sequence of its cognate guide RNA. Although Cas9-mediated genome editing has been shown to be highly specific, cleavage events at off-target sites have also been reported. Minimizing, and eventually abolishing, unwanted off-target cleavage remains a major goal of the CRISPR-Cas9 technology before its implementation for therapeutic use. Recent efforts have turned to chemical biology and biophysical approaches to engineer inducible genome editing systems for controlling Cas9 activity at the transcriptional and protein levels. Here, we review recent advancements to modulate Cas9-mediated genome editing by engineering split-Cas9 constructs, inteins, small molecules, protein-based dimerizing domains, and light-inducible systems.

  4. Research Progress in the CAS Action Plan for the Development of Western China

    Institute of Scientific and Technical Information of China (English)

    Feng Renguo

    2005-01-01

    @@ To speed up the regional development in central and western China is a strategic decision made by the Chinese government at the turn of the century. For CAS research professionals, active participation into the campaign is a solemn historic commitment and a major task of the CAS-piloted national Knowledge Innovation Program. In early 2000, the CAS leadership formulated an Action Plan for Western China Development and initiated a research program aiming at the environmental evolution,ecological restoration and the sustainable exploitation of the local resources in the region.

  5. JSPS-CAS Core University Program seminar on summary of 10-year collaborations in plasma and nuclear fusion research area

    International Nuclear Information System (INIS)

    Toi, Kazuo; Wang Kongjia

    2011-07-01

    The JSPS-CAS Core University Program (CUP) seminar on “Summary of 10-year Collaborations in Plasma and Nuclear Fusion Research Area” was held from March 9 to March 11, 2011 in the Okinawa Prefectural Art Museum, Naha city, Okinawa, Japan. The collaboration program on plasma and nuclear fusion started from 2001 under the auspices of Japanese Society of Promotion of Science (JSPS) and Chinese Academy of Sciences (CAS). This year is the last year of the CUP. This seminar was organized in the framework of the CUP. In the seminar, 29 oral talks were presented, having 14 Chinese and 30 Japanese participants. These presentations covered key topics related to the collaboration categories: (1) improvement of core plasma properties, (2) basic research on fusion reactor technologies, and (3) theory and numerical simulation. This seminar aims at summarizing the results obtained through the collaborations for 10 years, and discussing future prospects of China-Japan collaboration in plasma and nuclear fusion research areas. (author)

  6. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference.

    Science.gov (United States)

    Hochstrasser, Megan L; Taylor, David W; Bhat, Prashant; Guegler, Chantal K; Sternberg, Samuel H; Nogales, Eva; Doudna, Jennifer A

    2014-05-06

    In bacteria, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) DNA-targeting complex Cascade (CRISPR-associated complex for antiviral defense) uses CRISPR RNA (crRNA) guides to bind complementary DNA targets at sites adjacent to a trinucleotide signature sequence called the protospacer adjacent motif (PAM). The Cascade complex then recruits Cas3, a nuclease-helicase that catalyzes unwinding and cleavage of foreign double-stranded DNA (dsDNA) bearing a sequence matching that of the crRNA. Cascade comprises the CasA-E proteins and one crRNA, forming a structure that binds and unwinds dsDNA to form an R loop in which the target strand of the DNA base pairs with the 32-nt RNA guide sequence. Single-particle electron microscopy reconstructions of dsDNA-bound Cascade with and without Cas3 reveal that Cascade positions the PAM-proximal end of the DNA duplex at the CasA subunit and near the site of Cas3 association. The finding that the DNA target and Cas3 colocalize with CasA implicates this subunit in a key target-validation step during DNA interference. We show biochemically that base pairing of the PAM region is unnecessary for target binding but critical for Cas3-mediated degradation. In addition, the L1 loop of CasA, previously implicated in PAM recognition, is essential for Cas3 activation following target binding by Cascade. Together, these data show that the CasA subunit of Cascade functions as an essential partner of Cas3 by recognizing DNA target sites and positioning Cas3 adjacent to the PAM to ensure cleavage.

  7. Expanding CRISPR/Cas9 Genome Editing Capacity in Zebrafish Using SaCas9

    OpenAIRE

    Feng, Yan; Chen, Cheng; Han, Yuxiang; Chen, Zelin; Lu, Xiaochan; Liang, Fang; Li, Song; Qin, Wei; Lin, Shuo

    2016-01-01

    The type II CRISPR/Cas9 system has been used widely for genome editing in zebrafish. However, the requirement for the 5′-NGG-3′ protospacer-adjacent motif (PAM) of Cas9 from Streptococcus pyogenes (SpCas9) limits its targeting sequences. Here, we report that a Cas9 ortholog from Staphylococcus aureus (SaCas9), and its KKH variant, successfully induced targeted mutagenesis with high frequency in zebrafish. Confirming previous findings, the SpCas9 variant, VQR, can also induce targeted mutation...

  8. Fragmentation of the CRISPR-Cas Type I-B signature protein Cas8b.

    Science.gov (United States)

    Richter, Hagen; Rompf, Judith; Wiegel, Julia; Rau, Kristina; Randau, Lennart

    2017-11-01

    CRISPR arrays are transcribed into long precursor RNA species, which are further processed into mature CRISPR RNAs (crRNAs). Cas proteins utilize these crRNAs, which contain spacer sequences that can be derived from mobile genetic elements, to mediate immunity during a reoccurring virus infection. Type I CRISPR-Cas systems are defined by the presence of different Cascade interference complexes containing large and small subunits that play major roles during target DNA selection. Here, we produce the protein and crRNA components of the Type I-B CRISPR-Cas complex of Clostridium thermocellum and Methanococcus maripaludis. The C. thermocellum Cascade complexes were reconstituted and analyzed via size-exclusion chromatography. Activity of the heterologous M. maripaludis CRISPR-Cas system was followed using phage lambda plaques assays. The reconstituted Type-I-B Cascade complex contains Cas7, Cas5, Cas6b and the large subunit Cas8b. Cas6b can be omitted from the reconstitution protocol. The large subunit Cas8b was found to be represented by two tightly associated protein fragments and a small C-terminal Cas8b segment was identified in recombinant complexes and C. thermocellum cell lysate. Production of Cas8b generates a small C-terminal fragment, which is suggested to fulfill the role of the missing small subunit. A heterologous, synthetic M. maripaludis Type I-B system is active in E. coli against phage lambda, highlighting a potential for genome editing using endogenous Type-I-B CRISPR-Cas machineries. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex.

    Science.gov (United States)

    Fagerlund, Robert D; Wilkinson, Max E; Klykov, Oleg; Barendregt, Arjan; Pearce, F Grant; Kieper, Sebastian N; Maxwell, Howard W R; Capolupo, Angela; Heck, Albert J R; Krause, Kurt L; Bostina, Mihnea; Scheltema, Richard A; Staals, Raymond H J; Fineran, Peter C

    2017-06-27

    CRISPR-Cas adaptive immune systems capture DNA fragments from invading bacteriophages and plasmids and integrate them as spacers into bacterial CRISPR arrays. In type I-E and II-A CRISPR-Cas systems, this adaptation process is driven by Cas1-Cas2 complexes. Type I-F systems, however, contain a unique fusion of Cas2, with the type I effector helicase and nuclease for invader destruction, Cas3. By using biochemical, structural, and biophysical methods, we present a structural model of the 400-kDa Cas1 4 -Cas2-3 2 complex from Pectobacterium atrosepticum with bound protospacer substrate DNA. Two Cas1 dimers assemble on a Cas2 domain dimeric core, which is flanked by two Cas3 domains forming a groove where the protospacer binds to Cas1-Cas2. We developed a sensitive in vitro assay and demonstrated that Cas1-Cas2-3 catalyzed spacer integration into CRISPR arrays. The integrase domain of Cas1 was necessary, whereas integration was independent of the helicase or nuclease activities of Cas3. Integration required at least partially duplex protospacers with free 3'-OH groups, and leader-proximal integration was stimulated by integration host factor. In a coupled capture and integration assay, Cas1-Cas2-3 processed and integrated protospacers independent of Cas3 activity. These results provide insight into the structure of protospacer-bound type I Cas1-Cas2-3 adaptation complexes and their integration mechanism.

  10. CRISPR/Cas9:A powerful tool for crop genome editing

    Institute of Scientific and Technical Information of China (English)

    Gaoyuan Song; Meiling Jia; Kai Chen; Xingchen Kong; Bushra Khattak; Chuanxiao Xie; Aili Li; Long Mao

    2016-01-01

    The CRISPR/Cas9 technology is evolved from a type II bacterial immune system and represents a new generation of targeted genome editing technology that can be applied to nearly all organisms. Site-specific modification is achieved by a single guide RNA(usually about 20nucleotides) that is complementary to a target gene or locus and is anchored by a protospaceradjacent motif. Cas9 nuclease then cleaves the targeted DNA to generate double-strand breaks(DSBs), which are subsequently repaired by non-homologous end joining(NHEJ) or homology-directed repair(HDR) mechanisms. NHEJ may introduce indels that cause frame shift mutations and hence the disruption of gene functions. When combined with double or multiplex guide RNA design, NHEJ may also introduce targeted chromosome deletions,whereas HDR can be engineered for target gene correction, gene replacement, and gene knock-in. In this review, we briefly survey the history of the CRISPR/Cas9 system invention and its genome-editing mechanism. We also describe the most recent innovation of the CRISPR/Cas9 technology, particularly the broad applications of modified Cas9 variants, and discuss the potential of this system for targeted genome editing and modification for crop improvement.

  11. CRISPR/Cas9:A powerful tool for crop genome editing

    Institute of Scientific and Technical Information of China (English)

    Gaoyuan Song; Meiling Jia; Kai Chen; Xingchen Kong; Bushra Khattak; Chuanxiao Xie; Aili Li; Long Mao

    2016-01-01

    The CRISPR/Cas9 technology is evolved from a type II bacterial immune system and represents a new generation of targeted genome editing technology that can be applied to nearly all organisms. Site-specific modification is achieved by a single guide RNA (usually about 20 nucleotides) that is complementary to a target gene or locus and is anchored by a protospacer-adjacent motif. Cas9 nuclease then cleaves the targeted DNA to generate double-strand breaks (DSBs), which are subsequently repaired by non-homologous end joining (NHEJ) or homology-directed repair (HDR) mechanisms. NHEJ may introduce indels that cause frame shift mutations and hence the disruption of gene functions. When combined with double or multiplex guide RNA design, NHEJ may also introduce targeted chromosome deletions, whereas HDR can be engineered for target gene correction, gene replacement, and gene knock-in. In this review, we briefly survey the history of the CRISPR/Cas9 system invention and its genome-editing mechanism. We also describe the most recent innovation of the CRISPR/Cas9 technology, particularly the broad applications of modified Cas9 variants, and discuss the potential of this system for targeted genome editing and modification for crop improvement.

  12. A Multiple-star Combined Solution Program - Application to the Population II Binary μ Cas

    Science.gov (United States)

    Gudehus, D. H.

    2001-05-01

    A multiple-star combined-solution computer program which can simultaneously fit astrometric, speckle, and spectroscopic data, and solve for the orbital parameters, parallax, proper motion, and masses has been written and is now publicly available. Some features of the program are the ability to scale the weights at run time, hold selected parameters constant, handle up to five spectroscopic subcomponents for the primary and the secondary each, account for the light travel time across the system, account for apsidal motion, plot the results, and write the residuals in position to a standard file for further analysis. The spectroscopic subcomponent data can be represented by reflex velocities and/or by independent measurements. A companion editing program which can manage the data files is included in the package. The program has been applied to the Population II binary μ Cas to derive improved masses and an estimate of the primordial helium abundance. The source code, executables, sample data files, and documentation for OpenVMS and Unix, including Linux, are available at http://www.chara.gsu.edu/\\rlap\\ \\ gudehus/binary.html.

  13. Occurrence and activity of a type II CRISPR-Cas system in Lactobacillus gasseri.

    Science.gov (United States)

    Sanozky-Dawes, Rosemary; Selle, Kurt; O'Flaherty, Sarah; Klaenhammer, Todd; Barrangou, Rodolphe

    2015-09-01

    Bacteria encode clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated genes (cas), which collectively form an RNA-guided adaptive immune system against invasive genetic elements. In silico surveys have revealed that lactic acid bacteria harbour a prolific and diverse set of CRISPR-Cas systems. Thus, the natural evolutionary role of CRISPR-Cas systems may be investigated in these ecologically, industrially, scientifically and medically important microbes. In this study, 17 Lactobacillus gasseri strains were investigated and 6 harboured a type II-A CRISPR-Cas system, with considerable diversity in array size and spacer content. Several of the spacers showed similarity to phage and plasmid sequences, which are typical targets of CRISPR-Cas immune systems. Aligning the protospacers facilitated inference of the protospacer adjacent motif sequence, determined to be 5'-NTAA-3' flanking the 3' end of the protospacer. The system in L. gasseri JV-V03 and NCK 1342 interfered with transforming plasmids containing sequences matching the most recently acquired CRISPR spacers in each strain. We report the distribution and function of a native type II-A CRISPR-Cas system in the commensal species L. gasseri. Collectively, these results open avenues for applications for bacteriophage protection and genome modification in L. gasseri, and contribute to the fundamental understanding of CRISPR-Cas systems in bacteria.

  14. Break Breast Cancer Addiction by CRISPR/Cas9 Genome Editing.

    Science.gov (United States)

    Yang, Haitao; Jaeger, MariaLynn; Walker, Averi; Wei, Daniel; Leiker, Katie; Weitao, Tao

    2018-01-01

    Breast cancer is the leading diagnosed cancer for women globally. Evolution of breast cancer in tumorigenesis, metastasis and treatment resistance appears to be driven by the aberrant gene expression and protein degradation encoded by the cancer genomes. The uncontrolled cancer growth relies on these cellular events, thus constituting the cancerous programs and rendering the addiction towards them. These programs are likely the potential anticancer biomarkers for Personalized Medicine of breast cancer. This review intends to delineate the impact of the CRSPR/Cas-mediated genome editing in identification and validation of these anticancer biomarkers. It reviews the progress in three aspects of CRISPR/Cas9-mediated editing of the breast cancer genomes: Somatic genome editing, transcription and protein degradation addictions.

  15. Nuclear Engineering Academic Programs Survey, 2003

    International Nuclear Information System (INIS)

    Science and Engineering Education, Oak Ridge Institute for Science and Education

    2004-01-01

    The survey includes degrees granted between September 1, 2002 and August 31, 2003. Thirty-three academic programs reported having nuclear engineering programs during the survey time period and all responded (100% response rate). Three of the programs included in last year's report were discontinued or out-of-scope in 2003. One new program has been added to the list. This year the survey data include U.S. citizenship, gender, and race/ethnicity by degree level

  16. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2011-07-01

    Full Text Available Abstract Background The CRISPR-Cas adaptive immunity systems that are present in most Archaea and many Bacteria function by incorporating fragments of alien genomes into specific genomic loci, transcribing the inserts and using the transcripts as guide RNAs to destroy the genome of the cognate virus or plasmid. This RNA interference-like immune response is mediated by numerous, diverse and rapidly evolving Cas (CRISPR-associated proteins, several of which form the Cascade complex involved in the processing of CRISPR transcripts and cleavage of the target DNA. Comparative analysis of the Cas protein sequences and structures led to the classification of the CRISPR-Cas systems into three Types (I, II and III. Results A detailed comparison of the available sequences and structures of Cas proteins revealed several unnoticed homologous relationships. The Repeat-Associated Mysterious Proteins (RAMPs containing a distinct form of the RNA Recognition Motif (RRM domain, which are major components of the CRISPR-Cas systems, were classified into three large groups, Cas5, Cas6 and Cas7. Each of these groups includes many previously uncharacterized proteins now shown to adopt the RAMP structure. Evidence is presented that large subunits contained in most of the CRISPR-Cas systems could be homologous to Cas10 proteins which contain a polymerase-like Palm domain and are predicted to be enzymatically active in Type III CRISPR-Cas systems but inactivated in Type I systems. These findings, the fact that the CRISPR polymerases, RAMPs and Cas2 all contain core RRM domains, and distinct gene arrangements in the three types of CRISPR-Cas systems together provide for a simple scenario for origin and evolution of the CRISPR-Cas machinery. Under this scenario, the CRISPR-Cas system originated in thermophilic Archaea and subsequently spread horizontally among prokaryotes. Conclusions Because of the extreme diversity of CRISPR-Cas systems, in-depth sequence and structure

  17. Tuning CRISPR-Cas9 Gene Drives in Saccharomyces cerevisiae

    Science.gov (United States)

    Roggenkamp, Emily; Giersch, Rachael M.; Schrock, Madison N.; Turnquist, Emily; Halloran, Megan; Finnigan, Gregory C.

    2018-01-01

    Control of biological populations is an ongoing challenge in many fields, including agriculture, biodiversity, ecological preservation, pest control, and the spread of disease. In some cases, such as insects that harbor human pathogens (e.g., malaria), elimination or reduction of a small number of species would have a dramatic impact across the globe. Given the recent discovery and development of the CRISPR-Cas9 gene editing technology, a unique arrangement of this system, a nuclease-based “gene drive,” allows for the super-Mendelian spread and forced propagation of a genetic element through a population. Recent studies have demonstrated the ability of a gene drive to rapidly spread within and nearly eliminate insect populations in a laboratory setting. While there are still ongoing technical challenges to design of a more optimal gene drive to be used in wild populations, there are still serious ecological and ethical concerns surrounding the nature of this powerful biological agent. Here, we use budding yeast as a safe and fully contained model system to explore mechanisms that might allow for programmed regulation of gene drive activity. We describe four conserved features of all CRISPR-based drives and demonstrate the ability of each drive component—Cas9 protein level, sgRNA identity, Cas9 nucleocytoplasmic shuttling, and novel Cas9-Cas9 tandem fusions—to modulate drive activity within a population. PMID:29348295

  18. A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease

    Science.gov (United States)

    The Cas9 endonuclease of the Type II-a clustered regularly interspersed short palindromic repeats (CRISPR), of Streptococcus pyogenes (SpCas9) has been adapted as a widely used tool for genome editing and genome engineering. Herein, we describe a gene encoding a novel Cas9 ortholog (BpsuCas9) and th...

  19. [Detection of CRSPR-Cas system in Streptococcus thermophiles].

    Science.gov (United States)

    Li, Wan; Liang, Hongzhang; Zhang, Danqing; Wang, Nana; Tang, Yaru; Li, Bailiang; Huo, Guicheng

    2016-04-14

    We aimed to detect the CRSPR-Cas system of six Streptococcus thermophilus. Bioinformatics method was used to predict CRSPR-Cas system of nine S. thermophilus that published in National Center for Biotechnology Information. Four primers were designed according to the flanking sequences of standard strains and the CRISPR-Cas system of six S. thermophilus have been detected by PCR method. S. thermophilus S4 had a Cas9 gene, others all had Cas9 gene, Cas10 gene and Cas9* gene. In addition, 79 and KLDS3.0207 still had Cas3 gene. Signature genes amplification of CRSPR-Cas system could predict the type of CRSPR-Cas system in unsequenced strains, these findings will help establish the foundation for the study of CRSPR-Cas system in lactic acid bacteria.

  20. FFTF preoperational survey. Program report

    International Nuclear Information System (INIS)

    Twitty, B.L.; Bicehouse, H.J.

    1980-12-01

    The FFTF will become operational with criticality early in 1980. This facility is composed of the test reactor, fuel examination cells, expended fuel storage systems and fuel handling systems. The reactor and storage systems are sodium-cooled with the heat load dumped to the ambient air through heat exchangers. In order to assure that the operation of the FFTF has minimal impact on the environment, a monitoring program has been established. Prior to operation of a new facility, a preoperational environmental survey is required. It is the purpose of this report to briefly describe the environmental survey program and to provide the background data obtained during the preoperational phase of the survey program. Nine stations in the program of particular importance to FFTF are discussed in detail with results of monitoring given. No unexplained trends were noted

  1. All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells.

    Science.gov (United States)

    Sakuma, Tetsushi; Sakamoto, Takuya; Yamamoto, Takashi

    2017-01-01

    CRISPR-Cas9 enables highly convenient multiplex genome engineering in cultured cells, because it utilizes generic Cas9 nuclease and an easily customizable single-guide RNA (sgRNA) for site-specific DNA double-strand break induction. We previously established a multiplex CRISPR-Cas9 assembly system for constructing an all-in-one vector simultaneously expressing multiple sgRNAs and Cas9 nuclease or other Cas9 variants including FokI-dCas9, which supersedes the wild-type Cas9 with regard to high specificity. In this chapter, we describe a streamlined protocol to design and construct multiplex CRISPR-Cas9 or FokI-dCas9 vectors, to introduce them into cultured cells by lipofection or electroporation, to enrich the genomically edited cells with a transient puromycin selection, to validate the mutation efficiency by Surveyor nuclease assay, and to perform off-target analyses. We show that our protocol enables highly efficient multiplex genome engineering even in hard-to-transfect HepG2 cells.

  2. Childhood apraxia of speech: A survey of praxis and typical speech characteristics.

    Science.gov (United States)

    Malmenholt, Ann; Lohmander, Anette; McAllister, Anita

    2017-07-01

    The purpose of this study was to investigate current knowledge of the diagnosis childhood apraxia of speech (CAS) in Sweden and compare speech characteristics and symptoms to those of earlier survey findings in mainly English-speakers. In a web-based questionnaire 178 Swedish speech-language pathologists (SLPs) anonymously answered questions about their perception of typical speech characteristics for CAS. They graded own assessment skills and estimated clinical occurrence. The seven top speech characteristics reported as typical for children with CAS were: inconsistent speech production (85%), sequencing difficulties (71%), oro-motor deficits (63%), vowel errors (62%), voicing errors (61%), consonant cluster deletions (54%), and prosodic disturbance (53%). Motor-programming deficits described as lack of automatization of speech movements were perceived by 82%. All listed characteristics were consistent with the American Speech-Language-Hearing Association (ASHA) consensus-based features, Strand's 10-point checklist, and the diagnostic model proposed by Ozanne. The mode for clinical occurrence was 5%. Number of suspected cases of CAS in the clinical caseload was approximately one new patient/year and SLP. The results support and add to findings from studies of CAS in English-speaking children with similar speech characteristics regarded as typical. Possibly, these findings could contribute to cross-linguistic consensus on CAS characteristics.

  3. Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems.

    Science.gov (United States)

    Yamada, Mari; Watanabe, Yuto; Gootenberg, Jonathan S; Hirano, Hisato; Ran, F Ann; Nakane, Takanori; Ishitani, Ryuichiro; Zhang, Feng; Nishimasu, Hiroshi; Nureki, Osamu

    2017-03-16

    The RNA-guided endonuclease Cas9 generates a double-strand break at DNA target sites complementary to the guide RNA and has been harnessed for the development of a variety of new technologies, such as genome editing. Here, we report the crystal structures of Campylobacter jejuni Cas9 (CjCas9), one of the smallest Cas9 orthologs, in complex with an sgRNA and its target DNA. The structures provided insights into a minimal Cas9 scaffold and revealed the remarkable mechanistic diversity of the CRISPR-Cas9 systems. The CjCas9 guide RNA contains a triple-helix structure, which is distinct from known RNA triple helices, thereby expanding the natural repertoire of RNA triple helices. Furthermore, unlike the other Cas9 orthologs, CjCas9 contacts the nucleotide sequences in both the target and non-target DNA strands and recognizes the 5'-NNNVRYM-3' as the protospacer-adjacent motif. Collectively, these findings improve our mechanistic understanding of the CRISPR-Cas9 systems and may facilitate Cas9 engineering. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Programmable type III-A CRISPR-Cas DNA targeting modules.

    Directory of Open Access Journals (Sweden)

    H Travis Ichikawa

    Full Text Available The CRISPR-Cas systems provide invader defense in a wide variety of prokaryotes, as well as technologies for many powerful applications. The Type III-A or Csm CRISPR-Cas system is one of the most widely distributed across prokaryotic phyla, and cleaves targeted DNA and RNA molecules. In this work, we have constructed modules of Csm systems from 3 bacterial species and heterologously expressed the functional modules in E. coli. The modules include a Cas6 protein and a CRISPR locus for crRNA production, and Csm effector complex proteins. The expressed modules from L. lactis, S. epidermidis and S. thermophilus specifically eliminate invading plasmids recognized by the crRNAs of the systems. Characteristically, activation of plasmid targeting activity depends on transcription of the plasmid sequence recognized by the crRNA. Activity was not observed when transcription of the crRNA target sequence was blocked, or when the opposite strand or a non-target sequence was transcribed. Moreover, the Csm module can be programmed to recognize plasmids with novel target sequences by addition of appropriate crRNA coding sequences to the module. These systems provide a platform for investigation of Type III-A CRISPR-Cas systems in E. coli, and for introduction of programmable transcription-activated DNA targeting into novel organisms.

  5. A Broad-Spectrum Inhibitor of CRISPR-Cas9.

    Science.gov (United States)

    Harrington, Lucas B; Doxzen, Kevin W; Ma, Enbo; Liu, Jun-Jie; Knott, Gavin J; Edraki, Alireza; Garcia, Bianca; Amrani, Nadia; Chen, Janice S; Cofsky, Joshua C; Kranzusch, Philip J; Sontheimer, Erik J; Davidson, Alan R; Maxwell, Karen L; Doudna, Jennifer A

    2017-09-07

    CRISPR-Cas9 proteins function within bacterial immune systems to target and destroy invasive DNA and have been harnessed as a robust technology for genome editing. Small bacteriophage-encoded anti-CRISPR proteins (Acrs) can inactivate Cas9, providing an efficient off switch for Cas9-based applications. Here, we show that two Acrs, AcrIIC1 and AcrIIC3, inhibit Cas9 by distinct strategies. AcrIIC1 is a broad-spectrum Cas9 inhibitor that prevents DNA cutting by multiple divergent Cas9 orthologs through direct binding to the conserved HNH catalytic domain of Cas9. A crystal structure of an AcrIIC1-Cas9 HNH domain complex shows how AcrIIC1 traps Cas9 in a DNA-bound but catalytically inactive state. By contrast, AcrIIC3 blocks activity of a single Cas9 ortholog and induces Cas9 dimerization while preventing binding to the target DNA. These two orthogonal mechanisms allow for separate control of Cas9 target binding and cleavage and suggest applications to allow DNA binding while preventing DNA cutting by Cas9. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Annotation and Classification of CRISPR-Cas Systems.

    Science.gov (United States)

    Makarova, Kira S; Koonin, Eugene V

    2015-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is a prokaryotic adaptive immune system that is represented in most archaea and many bacteria. Among the currently known prokaryotic defense systems, the CRISPR-Cas genomic loci show unprecedented complexity and diversity. Classification of CRISPR-Cas variants that would capture their evolutionary relationships to the maximum possible extent is essential for comparative genomic and functional characterization of this theoretically and practically important system of adaptive immunity. To this end, a multipronged approach has been developed that combines phylogenetic analysis of the conserved Cas proteins with comparison of gene repertoires and arrangements in CRISPR-Cas loci. This approach led to the current classification of CRISPR-Cas systems into three distinct types and ten subtypes for each of which signature genes have been identified. Comparative genomic analysis of the CRISPR-Cas systems in new archaeal and bacterial genomes performed over the 3 years elapsed since the development of this classification makes it clear that new types and subtypes of CRISPR-Cas need to be introduced. Moreover, this classification system captures only part of the complexity of CRISPR-Cas organization and evolution, due to the intrinsic modularity and evolutionary mobility of these immunity systems, resulting in numerous recombinant variants. Moreover, most of the cas genes evolve rapidly, complicating the family assignment for many Cas proteins and the use of family profiles for the recognition of CRISPR-Cas subtype signatures. Further progress in the comparative analysis of CRISPR-Cas systems requires integration of the most sensitive sequence comparison tools, protein structure comparison, and refined approaches for comparison of gene neighborhoods.

  7. Annotation and Classification of CRISPR-Cas Systems

    Science.gov (United States)

    Makarova, Kira S.; Koonin, Eugene V.

    2018-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is a prokaryotic adaptive immune system that is represented in most archaea and many bacteria. Among the currently known prokaryotic defense systems, the CRISPR-Cas genomic loci show unprecedented complexity and diversity. Classification of CRISPR-Cas variants that would capture their evolutionary relationships to the maximum possible extent is essential for comparative genomic and functional characterization of this theoretically and practically important system of adaptive immunity. To this end, a multipronged approach has been developed that combines phylogenetic analysis of the conserved Cas proteins with comparison of gene repertoires and arrangements in CRISPR-Cas loci. This approach led to the current classification of CRISPR-Cas systems into three distinct types and ten subtypes for each of which signature genes have been identified. Comparative genomic analysis of the CRISPR-Cas systems in new archaeal and bacterial genomes performed over the 3 years elapsed since the development of this classification makes it clear that new types and subtypes of CRISPR-Cas need to be introduced. Moreover, this classification system captures only part of the complexity of CRISPR-Cas organization and evolution, due to the intrinsic modularity and evolutionary mobility of these immunity systems, resulting in numerous recombinant variants. Moreover, most of the cas genes evolve rapidly, complicating the family assignment for many Cas proteins and the use of family profiles for the recognition of CRISPR-Cas subtype signatures. Further progress in the comparative analysis of CRISPR-Cas systems requires integration of the most sensitive sequence comparison tools, protein structure comparison, and refined approaches for comparison of gene neighborhoods. PMID:25981466

  8. CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops.

    Science.gov (United States)

    Karkute, Suhas G; Singh, Achuit K; Gupta, Om P; Singh, Prabhakar M; Singh, Bijendra

    2017-01-01

    Horticultural crops are an important part of agriculture for food as well as nutritional security. However, several pests and diseases along with adverse abiotic environmental factors pose a severe threat to these crops by affecting their quality and productivity. This warrants the effective and accelerated breeding programs by utilizing innovative biotechnological tools that can tackle aforementioned issues. The recent technique of genome editing by Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9 (CRISPR/Cas9) has greatly advanced the breeding for crop improvement due to its simplicity and high efficiency over other nucleases such as Zinc Finger Nucleases and Transcription Activator Like Effector Nucleases. CRISPR/Cas9 tool contains a non-specific Cas9 nuclease and a single guide RNA that directs Cas9 to the specific genomic location creating double-strand breaks and subsequent repair process creates insertion or deletion mutations. This is currently the widely adopted tool for reverse genetics, and crop improvement in large number of agricultural crops. The use of CRISPR/Cas9 in horticultural crops is limited to few crops due to lack of availability of regeneration protocols and sufficient sequence information in many horticultural crops. In this review, the present status of applicability of CRISPR/Cas9 in horticultural crops was discussed along with the challenges and future potential for possible improvement of these crops for their yield, quality, and resistance to biotic and abiotic stress.

  9. CRISPR-Cas: Adapting to change.

    Science.gov (United States)

    Jackson, Simon A; McKenzie, Rebecca E; Fagerlund, Robert D; Kieper, Sebastian N; Fineran, Peter C; Brouns, Stan J J

    2017-04-07

    Bacteria and archaea are engaged in a constant arms race to defend against the ever-present threats of viruses and invasion by mobile genetic elements. The most flexible weapons in the prokaryotic defense arsenal are the CRISPR-Cas adaptive immune systems. These systems are capable of selective identification and neutralization of foreign DNA and/or RNA. CRISPR-Cas systems rely on stored genetic memories to facilitate target recognition. Thus, to keep pace with a changing pool of hostile invaders, the CRISPR memory banks must be regularly updated with new information through a process termed CRISPR adaptation. In this Review, we outline the recent advances in our understanding of the molecular mechanisms governing CRISPR adaptation. Specifically, the conserved protein machinery Cas1-Cas2 is the cornerstone of adaptive immunity in a range of diverse CRISPR-Cas systems. Copyright © 2017, American Association for the Advancement of Science.

  10. New CRISPR-Cas systems from uncultivated microbes

    Science.gov (United States)

    Burstein, David; Harrington, Lucas B.; Strutt, Steven C.; Probst, Alexander J.; Anantharaman, Karthik; Thomas, Brian C.; Doudna, Jennifer A.; Banfield, Jillian F.

    2017-02-01

    CRISPR-Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR-Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR-Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR-Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies.

  11. Naturally Occurring Off-Switches for CRISPR-Cas9.

    Science.gov (United States)

    Pawluk, April; Amrani, Nadia; Zhang, Yan; Garcia, Bianca; Hidalgo-Reyes, Yurima; Lee, Jooyoung; Edraki, Alireza; Shah, Megha; Sontheimer, Erik J; Maxwell, Karen L; Davidson, Alan R

    2016-12-15

    CRISPR-Cas9 technology would be enhanced by the ability to inhibit Cas9 function spatially, temporally, or conditionally. Previously, we discovered small proteins encoded by bacteriophages that inhibit the CRISPR-Cas systems of their host bacteria. These "anti-CRISPRs" were specific to type I CRISPR-Cas systems that do not employ the Cas9 protein. We posited that nature would also yield Cas9 inhibitors in response to the evolutionary arms race between bacteriophages and their hosts. Here, we report the discovery of three distinct families of anti-CRISPRs that specifically inhibit the CRISPR-Cas9 system of Neisseria meningitidis. We show that these proteins bind directly to N. meningitidis Cas9 (NmeCas9) and can be used as potent inhibitors of genome editing by this system in human cells. These anti-CRISPR proteins now enable "off-switches" for CRISPR-Cas9 activity and provide a genetically encodable means to inhibit CRISPR-Cas9 genome editing in eukaryotes. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. CAS - CERN Accelerator School: Course on Digital Signal Processing

    CERN Document Server

    Digital Signal Processing; CAS 2007

    2008-01-01

    These proceedings present the lectures given at the twenty-first specialized course organized by the CERN Accelerator School (CAS), the topic being Digital Signal Processing. The course was held in Sigtuna, Sweden, from 31 May–9 June 2007. This is the first time this topic has been selected for a specialized course. Taking into account the number of related applications currently in use in accelerators around the world, it was recognized that such a topic should definitively be incorporated into the CAS series of specialized courses. The specific aim of the course was to introduce the participants to the use and programming of Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs) evaluation boards. The course consisted of lectures in the mornings covering fundamental background knowledge in mathematics, controls theory, design tools, programming hardware platforms, and implementation details. In the afternoons the students split into two groups with people working in pairs. One group w...

  13. Mechanism of duplex DNA destabilization by RNA-guided Cas9 nuclease during target interrogation.

    Science.gov (United States)

    Mekler, Vladimir; Minakhin, Leonid; Severinov, Konstantin

    2017-05-23

    The prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (Cas9) endonuclease cleaves double-stranded DNA sequences specified by guide RNA molecules and flanked by a protospacer adjacent motif (PAM) and is widely used for genome editing in various organisms. The RNA-programmed Cas9 locates the target site by scanning genomic DNA. We sought to elucidate the mechanism of initial DNA interrogation steps that precede the pairing of target DNA with guide RNA. Using fluorometric and biochemical assays, we studied Cas9/guide RNA complexes with model DNA substrates that mimicked early intermediates on the pathway to the final Cas9/guide RNA-DNA complex. The results show that Cas9/guide RNA binding to PAM favors separation of a few PAM-proximal protospacer base pairs allowing initial target interrogation by guide RNA. The duplex destabilization is mediated, in part, by Cas9/guide RNA affinity for unpaired segments of nontarget strand DNA close to PAM. Furthermore, our data indicate that the entry of double-stranded DNA beyond a short threshold distance from PAM into the Cas9/single-guide RNA (sgRNA) interior is hindered. We suggest that the interactions unfavorable for duplex DNA binding promote DNA bending in the PAM-proximal region during early steps of Cas9/guide RNA-DNA complex formation, thus additionally destabilizing the protospacer duplex. The mechanism that emerges from our analysis explains how the Cas9/sgRNA complex is able to locate the correct target sequence efficiently while interrogating numerous nontarget sequences associated with correct PAMs.

  14. Nuclear Engineering Academic Programs Survey, 2002 Data

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education

    2003-01-01

    The survey includes degrees granted between July 1, 2001 and June 30, 2002. Enrollment information refers to the fall term 2002. Thirty-five academic programs were in the survey universe and all responded (100% response rate). One of the 35 programs reported that it was discontinued after the 2001-2002 academic year. Also, two programs were discontinued after the previous academic year (2000-2001) and were not included in 2002 survey

  15. Comparison of Various Nuclear Localization Signal-Fused Cas9 Proteins and Cas9 mRNA for Genome Editing in Zebrafish.

    Science.gov (United States)

    Hu, Peinan; Zhao, Xueying; Zhang, Qinghua; Li, Weiming; Zu, Yao

    2018-03-02

    The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has been proven to be an efficient and precise genome editing technology in various organisms. However, the gene editing efficiencies of Cas9 proteins with a nuclear localization signal (NLS) fused to different termini and Cas9 mRNA have not been systematically compared. Here, we compared the ability of Cas9 proteins with NLS fused to the N-, C-, or both the N- and C-termini and N-NLS-Cas9-NLS-C mRNA to target two sites in the tyr gene and two sites in the gol gene related to pigmentation in zebrafish. Phenotypic analysis revealed that all types of Cas9 led to hypopigmentation in similar proportions of injected embryos. Genome analysis by T7 Endonuclease I (T7E1) assays demonstrated that all types of Cas9 similarly induced mutagenesis in four target sites. Sequencing results further confirmed that a high frequency of indels occurred in the target sites ( tyr1 > 66%, tyr2 > 73%, gol1 > 50%, and gol2 > 35%), as well as various types (more than six) of indel mutations observed in all four types of Cas9-injected embryos. Furthermore, all types of Cas9 showed efficient targeted mutagenesis on multiplex genome editing, resulting in multiple phenotypes simultaneously. Collectively, we conclude that various NLS-fused Cas9 proteins and Cas9 mRNAs have similar genome editing efficiencies on targeting single or multiple genes, suggesting that the efficiency of CRISPR/Cas9 genome editing is highly dependent on guide RNAs (gRNAs) and gene loci. These findings may help to simplify the selection of Cas9 for gene editing using the CRISPR/Cas9 system. Copyright © 2018 Hu et al.

  16. Not all predicted CRISPR-Cas systems are equal: isolated cas genes and classes of CRISPR like elements.

    Science.gov (United States)

    Zhang, Quan; Ye, Yuzhen

    2017-02-06

    The CRISPR-Cas systems in prokaryotes are RNA-guided immune systems that target and deactivate foreign nucleic acids. A typical CRISPR-Cas system consists of a CRISPR array of repeat and spacer units, and a locus of cas genes. The CRISPR and the cas locus are often located next to each other in the genomes. However, there is no quantitative estimate of the co-location. In addition, ad-hoc studies have shown that some non-CRISPR genomic elements contain repeat-spacer-like structures and are mistaken as CRISPRs. Using available genome sequences, we observed that a significant number of genomes have isolated cas loci and/or CRISPRs. We found that 11%, 22% and 28% of the type I, II and III cas loci are isolated (without CRISPRs in the same genomes at all or with CRISPRs distant in the genomes), respectively. We identified a large number of genomic elements that superficially reassemble CRISPRs but don't contain diverse spacers and have no companion cas genes. We called these elements false-CRISPRs and further classified them into groups, including tandem repeats and Staphylococcus aureus repeat (STAR)-like elements. This is the first systematic study to collect and characterize false-CRISPR elements. We demonstrated that false-CRISPRs could be used to reduce the false annotation of CRISPRs, therefore showing them to be useful for improving the annotation of CRISPR-Cas systems.

  17. Environmentally Sensitive Areas Surveys Program threatened and endangered species survey: Progress report. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    King, A.L.; Awl, D.J.; Gabrielsen, C.A.

    1994-09-01

    The Endangered Species Act (originally passed in 1973) is a Federal statute that protects both animal and plant species. The Endangered Species Act identifies species which are, without careful management, in danger of becoming extinct and species that are considered threatened. Along with the designation of threatened or endangered, the Endangered Species Act provides for the identification of appropriate habitat for these species. Since 1993, the United States Department of Energy`s (DOE) Environmental Restoration (ER) Program has supported a program to survey the Oak Ridge Reservation (ORR) for threatened and endangered species. The Environmentally Sensitive Areas Surveys Program initiated vascular plant surveys during fiscal year 1993 and vertebrate animal surveys during fiscal year 1994 to determine the baseline condition of threatened and endangered species on the ORR at the present time. Data collected during these surveys are currently aiding Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Remedial Investigations on the ORR. They also provide data for ER and Waste Management decision documents, ensure that decisions have technical and legal defensibility, provide a baseline for ensuring compliance with principal legal requirements and will increase public confidence in DOE`s adherence to all related environmental resources rules, laws, regulations, and instructions. This report discusses the progress to date of the threatened and endangered species surveys of the ORR.

  18. Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing

    Science.gov (United States)

    Lu, Jia; Zhao, Chen; Zhao, Yingze; Zhang, Jingfang; Zhang, Yue; Chen, Li; Han, Qiyuan; Ying, Yue; Peng, Shuai; Ai, Runna; Wang, Yu

    2018-01-01

    Abstract Precise investigation and manipulation of dynamic biological processes often requires molecular modulation in a controlled inducible manner. The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) has emerged as a versatile tool for targeted gene editing and transcriptional programming. Here, we designed and vigorously optimized a series of Hybrid drug Inducible CRISPR/Cas9 Technologies (HIT) for transcriptional activation by grafting a mutated human estrogen receptor (ERT2) to multiple CRISPR/Cas9 systems, which renders them 4-hydroxytamoxifen (4-OHT) inducible for the access of genome. Further, extra functionality of simultaneous genome editing was achieved with one device we named HIT2. Optimized terminal devices herein delivered advantageous performances in comparison with several existing designs. They exerted selective, titratable, rapid and reversible response to drug induction. In addition, these designs were successfully adapted to an orthogonal Cas9. HIT systems developed in this study can be applied for controlled modulation of potentially any genomic loci in multiple modes. PMID:29237052

  19. [A surveillance study on CRISPR/Cas molecular biomarker in Escherichia coli].

    Science.gov (United States)

    Liang, W J; Zhang, R G; Duan, G C; Hong, L J; Zhang, B; Xi, Y L; Yang, H Y; Chen, S Y; Lou, T Y; Zhao, Y X

    2016-08-10

    A new method related to molecular biomarker with CRISPR/Cas (clustered regularly interspaced short palindromic repeats-cas) in Escherichia (E.) coli was developed and used for surveillance programs. CRISPR/Cas sequence that containing 135 strains with complete sequence and 203 strains with whole genome shotgun sequence of E. coli in GenBank by BLAST and 361 strains of E. coli (including 38 strains of E. coli O157∶H7) in laboratory were identified by PCR and analyzed with the CRISPR Finder. Spacers were compared with DANMAN and the phylogenetic trees of cas gene were constructed under Clustal Ⅹ and Mega 5.1. With new perspective, a descriptive method was developed targeting on the position of CRISPR/cas in E. coli. The CRISPR1 was detected in 77.04%, 100.00% and 75.62% and the CRISPR2 was detected in 74.81%, 100.00% and 92.24% and the CRISPR3 and CRISPR4 were detected in 11.85%, 0 and 1.39% for 135 strains with complete sequence, 203 strains with whole genome shotgun sequence and 361 strains in the laboratory, respectively. One strain downloaded in GenBank with whole genome sequencing and 2 strains in the our laboratory were identified that containing four CRISPR locus. The other E. coli strain was with insertion sequence in downstream of the non-cas CRISPR1. The unique CRISPR was found in 8 strains of O55∶H7, in 180 strains of O157∶H7, in 8 strains of O157∶HNM, in 40 strains of O104∶H4, in 4 strains of O145∶H28, in all the 699 E. coli strains. The phylogenetic tree could be divided into two groups-cas with type I-E or type I-F. CRISPR/Cas might be used as a valuable molecular biomarker in epidemiological surveillance studies to identify the high virulent strains or new strains of E. coli. Phage night be related to the missing or obtaining of spacers.

  20. Asteroid named after CAS scientist

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ An asteroid has been named after CAS astronomy historian XI Zezong with the approval of the International Minor Planet Nomenclature Committee (IMPNC), announced China's National Astronomical Observatories at CAS (NAOC) on 17 August.

  1. Using CRISPR-Cas systems as antimicrobials.

    Science.gov (United States)

    Bikard, David; Barrangou, Rodolphe

    2017-06-01

    Although CRISPR-Cas systems naturally evolved to provide adaptive immunity in bacteria and archaea, Cas nucleases can be co-opted to target chromosomal sequences rather than invasive genetic elements. Although genome editing is the primary outcome of self-targeting using CRISPR-based technologies in eukaryotes, self-targeting by CRISPR is typically lethal in bacteria. Here, we discuss how DNA damage introduced by Cas nucleases in bacteria can efficiently and specifically lead to plasmid curing or drive cell death. Specifically, we discuss how various CRISPR-Cas systems can be engineered and delivered using phages or phagemids as vectors. These principles establish CRISPR-Cas systems as potent and programmable antimicrobials, and open new avenues for the development of CRISPR-based tools for selective removal of bacterial pathogens and precise microbiome composition alteration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins.

    Science.gov (United States)

    Couvin, David; Bernheim, Aude; Toffano-Nioche, Claire; Touchon, Marie; Michalik, Juraj; Néron, Bertrand; C Rocha, Eduardo P; Vergnaud, Gilles; Gautheret, Daniel; Pourcel, Christine

    2018-05-22

    CRISPR (clustered regularly interspaced short palindromic repeats) arrays and their associated (Cas) proteins confer bacteria and archaea adaptive immunity against exogenous mobile genetic elements, such as phages or plasmids. CRISPRCasFinder allows the identification of both CRISPR arrays and Cas proteins. The program includes: (i) an improved CRISPR array detection tool facilitating expert validation based on a rating system, (ii) prediction of CRISPR orientation and (iii) a Cas protein detection and typing tool updated to match the latest classification scheme of these systems. CRISPRCasFinder can either be used online or as a standalone tool compatible with Linux operating system. All third-party software packages employed by the program are freely available. CRISPRCasFinder is available at https://crisprcas.i2bc.paris-saclay.fr.

  3. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.

    Science.gov (United States)

    Kleinstiver, Benjamin P; Prew, Michelle S; Tsai, Shengdar Q; Topkar, Ved V; Nguyen, Nhu T; Zheng, Zongli; Gonzales, Andrew P W; Li, Zhuyun; Peterson, Randall T; Yeh, Jing-Ruey Joanna; Aryee, Martin J; Joung, J Keith

    2015-07-23

    Although CRISPR-Cas9 nucleases are widely used for genome editing, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM). As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome-editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-seq analysis. In addition, we identify and characterize another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also find that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities.

  4. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system.

    Science.gov (United States)

    Sinkunas, Tomas; Gasiunas, Giedrius; Fremaux, Christophe; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus

    2011-04-06

    Clustered regularly interspaced short palindromic repeat (CRISPR) is a recently discovered adaptive prokaryotic immune system that provides acquired immunity against foreign nucleic acids by utilizing small guide crRNAs (CRISPR RNAs) to interfere with invading viruses and plasmids. In Escherichia coli, Cas3 is essential for crRNA-guided interference with virus proliferation. Cas3 contains N-terminal HD phosphohydrolase and C-terminal Superfamily 2 (SF2) helicase domains. Here, we provide the first report of the cloning, expression, purification and in vitro functional analysis of the Cas3 protein of the Streptococcus thermophilus CRISPR4 (Ecoli subtype) system. Cas3 possesses a single-stranded DNA (ssDNA)-stimulated ATPase activity, which is coupled to unwinding of DNA/DNA and RNA/DNA duplexes. Cas3 also shows ATP-independent nuclease activity located in the HD domain with a preference for ssDNA substrates. To dissect the contribution of individual domains, Cas3 separation-of-function mutants (ATPase(+)/nuclease(-) and ATPase(-)/nuclease(+)) were obtained by site-directed mutagenesis. We propose that the Cas3 ATPase/helicase domain acts as a motor protein, which assists delivery of the nuclease activity to Cascade-crRNA complex targeting foreign DNA.

  5. Evolution and classification of the CRISPR-Cas systems

    Science.gov (United States)

    S. Makarova, Kira; H. Haft, Daniel; Barrangou, Rodolphe; J. J. Brouns, Stan; Charpentier, Emmanuelle; Horvath, Philippe; Moineau, Sylvain; J. M. Mojica, Francisco; I. Wolf, Yuri; Yakunin, Alexander F.; van der Oost, John; V. Koonin, Eugene

    2012-01-01

    The CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins) modules are adaptive immunity systems that are present in many archaea and bacteria. These defence systems are encoded by operons that have an extraordinarily diverse architecture and a high rate of evolution for both the cas genes and the unique spacer content. Here, we provide an updated analysis of the evolutionary relationships between CRISPR–Cas systems and Cas proteins. Three major types of CRISPR–Cas system are delineated, with a further division into several subtypes and a few chimeric variants. Given the complexity of the genomic architectures and the extremely dynamic evolution of the CRISPR–Cas systems, a unified classification of these systems should be based on multiple criteria. Accordingly, we propose a `polythetic' classification that integrates the phylogenies of the most common cas genes, the sequence and organization of the CRISPR repeats and the architecture of the CRISPR–cas loci. PMID:21552286

  6. Cas4 Facilitates PAM-Compatible Spacer Selection during CRISPR Adaptation

    OpenAIRE

    Sebastian N. Kieper; Cristóbal Almendros; Juliane Behler; Rebecca E. McKenzie; Franklin L. Nobrega; Anna C. Haagsma; Jochem N.A. Vink; Wolfgang R. Hess; Stan J.J. Brouns

    2018-01-01

    Summary: CRISPR-Cas systems adapt their immunological memory against their invaders by integrating short DNA fragments into clustered regularly interspaced short palindromic repeat (CRISPR) loci. While Cas1 and Cas2 make up the core machinery of the CRISPR integration process, various class I and II CRISPR-Cas systems encode Cas4 proteins for which the role is unknown. Here, we introduced the CRISPR adaptation genes cas1, cas2, and cas4 from the type I-D CRISPR-Cas system of Synechocystis sp....

  7. CRISPR-Cas9 Structures and Mechanisms.

    Science.gov (United States)

    Jiang, Fuguo; Doudna, Jennifer A

    2017-05-22

    Many bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems employ the dual RNA-guided DNA endonuclease Cas9 to defend against invading phages and conjugative plasmids by introducing site-specific double-stranded breaks in target DNA. Target recognition strictly requires the presence of a short protospacer adjacent motif (PAM) flanking the target site, and subsequent R-loop formation and strand scission are driven by complementary base pairing between the guide RNA and target DNA, Cas9-DNA interactions, and associated conformational changes. The use of CRISPR-Cas9 as an RNA-programmable DNA targeting and editing platform is simplified by a synthetic single-guide RNA (sgRNA) mimicking the natural dual trans-activating CRISPR RNA (tracrRNA)-CRISPR RNA (crRNA) structure. This review aims to provide an in-depth mechanistic and structural understanding of Cas9-mediated RNA-guided DNA targeting and cleavage. Molecular insights from biochemical and structural studies provide a framework for rational engineering aimed at altering catalytic function, guide RNA specificity, and PAM requirements and reducing off-target activity for the development of Cas9-based therapies against genetic diseases.

  8. CRISPR-Cas: biology, mechanisms and relevance

    Science.gov (United States)

    Hille, Frank

    2016-01-01

    Prokaryotes have evolved several defence mechanisms to protect themselves from viral predators. Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) display a prokaryotic adaptive immune system that memorizes previous infections by integrating short sequences of invading genomes—termed spacers—into the CRISPR locus. The spacers interspaced with repeats are expressed as small guide CRISPR RNAs (crRNAs) that are employed by Cas proteins to target invaders sequence-specifically upon a reoccurring infection. The ability of the minimal CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new avenues in genome editing in a broad range of cells and organisms with high potential in therapeutical applications. While numerous scientific studies have shed light on the biochemical processes behind CRISPR-Cas systems, several aspects of the immunity steps, however, still lack sufficient understanding. This review summarizes major discoveries in the CRISPR-Cas field, discusses the role of CRISPR-Cas in prokaryotic immunity and other physiological properties, and describes applications of the system as a DNA editing technology and antimicrobial agent. This article is part of the themed issue ‘The new bacteriology’. PMID:27672148

  9. A guild of 45 CRISPR-associated (Cas protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Daniel H Haft

    2005-11-01

    Full Text Available Clustered regularly interspaced short palindromic repeats (CRISPRs are a family of DNA direct repeats found in many prokaryotic genomes. Repeats of 21-37 bp typically show weak dyad symmetry and are separated by regularly sized, nonrepetitive spacer sequences. Four CRISPR-associated (Cas protein families, designated Cas1 to Cas4, are strictly associated with CRISPR elements and always occur near a repeat cluster. Some spacers originate from mobile genetic elements and are thought to confer "immunity" against the elements that harbor these sequences. In the present study, we have systematically investigated uncharacterized proteins encoded in the vicinity of these CRISPRs and found many additional protein families that are strictly associated with CRISPR loci across multiple prokaryotic species. Multiple sequence alignments and hidden Markov models have been built for 45 Cas protein families. These models identify family members with high sensitivity and selectivity and classify key regulators of development, DevR and DevS, in Myxococcus xanthus as Cas proteins. These identifications show that CRISPR/cas gene regions can be quite large, with up to 20 different, tandem-arranged cas genes next to a repeat cluster or filling the region between two repeat clusters. Distinctive subsets of the collection of Cas proteins recur in phylogenetically distant species and correlate with characteristic repeat periodicity. The analyses presented here support initial proposals of mobility of these units, along with the likelihood that loci of different subtypes interact with one another as well as with host cell defensive, replicative, and regulatory systems. It is evident from this analysis that CRISPR/cas loci are larger, more complex, and more heterogeneous than previously appreciated.

  10. Rational Design of Mini-Cas9 for Transcriptional Activation.

    Science.gov (United States)

    Ma, Dacheng; Peng, Shuguang; Huang, Weiren; Cai, Zhiming; Xie, Zhen

    2018-04-20

    Nuclease dead Cas9 (dCas9) has been widely used for modulating gene expression by fusing with different activation or repression domains. However, delivery of the CRISPR/Cas system fused with various effector domains in a single adeno-associated virus (AAV) remains challenging due to the payload limit. Here, we engineered a set of downsized variants of Cas9 including Staphylococcus aureus Cas9 (SaCas9) that retained DNA binding activity by deleting conserved functional domains. We demonstrated that fusing FokI nuclease domain to the N-terminal of the minimal SaCas9 (mini-SaCas9) or to the middle of the split mini-SaCas9 can trigger efficient DNA cleavage. In addition, we constructed a set of compact transactivation domains based on the tripartite VPR activation domain and self-assembled arrays of split SpyTag:SpyCatch peptides, which are suitable for fusing to the mini-SaCas9. Lastly, we produced a single AAV containing the mini-SaCas9 fused with a downsized transactivation domain along with an optimized gRNA expression cassette, which showed efficient transactivation activity. Our results highlighted a practical approach to generate down-sized CRISPR/Cas9 and gene activation systems for in vivo applications.

  11. Tenth anniversary of CAS ONLINE service : What CAS services should be in the new era of chemical information

    Science.gov (United States)

    Kostakos, Charles N.

    Chemical Abstracts Service celebrated 10th anniversary of CAS online information service in 1990. A speech given on the occasion reviewed history of the CAS ONLINE, in relation to its most important benefits for scientists and engineers. The development of STN international, the network through which CAS ONLINE is accessible around the world, was also discussed in the speech. The CAS ONLINE now contains a wide variety of files relating to chemical field including CA file, Registry file. CA previews,. CASREACT, CIN. MARPAT, etc for supplying chemical information worldwide.

  12. CAS-ATLID (co-alignment sensor of ATLID instrument) thermo-structural design and performance

    Science.gov (United States)

    Moreno, Javier; Serrano, Javier; González, David; Rodríguez, Gemma; Manjón, Andrés.; Vásquez, Eloi; Carretero, Carlos; Martínez, Berta

    2017-11-01

    This paper describes the main thermo-mechanical design features and performances of the Co-Alignment Sensor (CAS) developed by LIDAX and CRISA under ESA program with AIRBUS Defence and Space as industry prime.

  13. Disabling Cas9 by an anti-CRISPR DNA mimic.

    Science.gov (United States)

    Shin, Jiyung; Jiang, Fuguo; Liu, Jun-Jie; Bray, Nicolas L; Rauch, Benjamin J; Baik, Seung Hyun; Nogales, Eva; Bondy-Denomy, Joseph; Corn, Jacob E; Doudna, Jennifer A

    2017-07-01

    CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 gene editing technology is derived from a microbial adaptive immune system, where bacteriophages are often the intended target. Natural inhibitors of CRISPR-Cas9 enable phages to evade immunity and show promise in controlling Cas9-mediated gene editing in human cells. However, the mechanism of CRISPR-Cas9 inhibition is not known, and the potential applications for Cas9 inhibitor proteins in mammalian cells have not been fully established. We show that the anti-CRISPR protein AcrIIA4 binds only to assembled Cas9-single-guide RNA (sgRNA) complexes and not to Cas9 protein alone. A 3.9 Å resolution cryo-electron microscopy structure of the Cas9-sgRNA-AcrIIA4 complex revealed that the surface of AcrIIA4 is highly acidic and binds with a 1:1 stoichiometry to a region of Cas9 that normally engages the DNA protospacer adjacent motif. Consistent with this binding mode, order-of-addition experiments showed that AcrIIA4 interferes with DNA recognition but has no effect on preformed Cas9-sgRNA-DNA complexes. Timed delivery of AcrIIA4 into human cells as either protein or expression plasmid allows on-target Cas9-mediated gene editing while reducing off-target edits. These results provide a mechanistic understanding of AcrIIA4 function and demonstrate that inhibitors can modulate the extent and outcomes of Cas9-mediated gene editing.

  14. The new CAS-DIS digital ionosonde

    Directory of Open Access Journals (Sweden)

    Wang Shun

    2013-04-01

    Full Text Available A high quality digital ionosonde called the Chinese Academy of Sciences digital ionosonde (CAS-DIS has been developed for investigations of the ionosphere. Two important features are used for the CAS-DIS; first, the technique of analog down-conversion has been replaced by the new approach of digital down-conversion technology. Secondly, to solve the problem of large instantaneous receiving bandwidth in digital receivers, an analog narrowband tracking filter is used for the CAS-DIS. The center frequency of the filter tracks the carrier frequency transmitted in real-time, to ensure that the frequency components are filtered out of the effective bandwidth. This report describes the system architecture of the CAS-DIS, its main features, and its test results for ionosphere detection. 

  15. Sulfonamide inhibition studies of two β-carbonic anhydrases from the ascomycete fungus Sordaria macrospora, CAS1 and CAS2.

    Science.gov (United States)

    Vullo, Daniela; Lehneck, Ronny; Pöggeler, Stefanie; Supuran, Claudiu T

    2018-12-01

    The two β-carbonic anhydrases (CAs, EC 4.2.1.1) recently cloned and purified from the ascomycete fungus Sordaria macrospora, CAS1 and CAS2, were investigated for their inhibition with a panel of 39 aromatic, heterocyclic, and aliphatic sulfonamides and one sulfamate, many of which are clinically used agents. CAS1 was efficiently inhibited by tosylamide, 3-fluorosulfanilamide, and 3-chlorosulfanilamide (K I s in the range of 43.2-79.6 nM), whereas acetazolamide, methazolamide, topiramate, ethoxzolamide, dorzolamide, and brinzolamide were medium potency inhibitors (K I s in the range of 360-445 nM). CAS2 was less sensitive to sulfonamide inhibitors. The best CAS2 inhibitors were 5-amino-1,3,4-thiadiazole-2-sulfonamide (the deacetylated acetazolamide precursor) and 4-hydroxymethyl-benzenesulfonamide, with K I s in the range of 48.1-92.5 nM. Acetazolamide, dorzolamide, ethoxzolamide, topiramate, sulpiride, indisulam, celecoxib, and sulthiame were medium potency CAS2 inhibitors (K I s of 143-857 nM). Many other sulfonamides showed affinities in the high micromolar range or were ineffective as CAS1/2 inhibitors. Small changes in the structure of the inhibitor led to important differences of the activity. As these enzymes may show applications for the removal of anthropically generated polluting gases, finding modulators of their activity may be crucial for designing environmental-friendly CO 2 capture processes.

  16. [CRISPR/CAS9, the King of Genome Editing Tools].

    Science.gov (United States)

    Bannikov, A V; Lavrov, A V

    2017-01-01

    The discovery of CRISPR/Cas9 brought a hope for having an efficient, reliable, and readily available tool for genome editing. CRISPR/Cas9 is certainly easy to use, while its efficiency and reliability remain the focus of studies. The review describes the general principles of the organization and function of Cas nucleases and a number of important issues to be considered while planning genome editing experiments with CRISPR/Cas9. The issues include evaluation of the efficiency and specificity for Cas9, sgRNA selection, Cas9 variants designed artificially, and use of homologous recombination and nonhomologous end joining in DNA editing.

  17. CRISPR/Cas9 for cancer research and therapy.

    Science.gov (United States)

    Zhan, Tianzuo; Rindtorff, Niklas; Betge, Johannes; Ebert, Matthias P; Boutros, Michael

    2018-04-16

    CRISPR/Cas9 has become a powerful method for making changes to the genome of many organisms. First discovered in bacteria as part of an adaptive immune system, CRISPR/Cas9 and modified versions have found a widespread use to engineer genomes and to activate or to repress the expression of genes. As such, CRISPR/Cas9 promises to accelerate cancer research by providing an efficient technology to dissect mechanisms of tumorigenesis, identify targets for drug development, and possibly arm cells for cell-based therapies. Here, we review current applications of the CRISPR/Cas9 technology for cancer research and therapy. We describe novel Cas9 variants and how they are used in functional genomics to discover novel cancer-specific vulnerabilities. Furthermore, we highlight the impact of CRISPR/Cas9 in generating organoid and mouse models of cancer. Finally, we provide an overview of the first clinical trials that apply CRISPR/Cas9 as a therapeutic approach against cancer. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Examination of CRISPR/Cas9 design tools and the effect of target site accessibility on Cas9 activity.

    Science.gov (United States)

    Lee, Ciaran M; Davis, Timothy H; Bao, Gang

    2018-04-01

    What is the topic of this review? In this review, we analyse the performance of recently described tools for CRISPR/Cas9 guide RNA design, in particular, design tools that predict CRISPR/Cas9 activity. What advances does it highlight? Recently, many tools designed to predict CRISPR/Cas9 activity have been reported. However, the majority of these tools lack experimental validation. Our analyses indicate that these tools have poor predictive power. Our preliminary results suggest that target site accessibility should be considered in order to develop better guide RNA design tools with improved predictive power. The recent adaptation of the clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system for targeted genome engineering has led to its widespread application in many fields worldwide. In order to gain a better understanding of the design rules of CRISPR/Cas9 systems, several groups have carried out large library-based screens leading to some insight into sequence preferences among highly active target sites. To facilitate CRISPR/Cas9 design, these studies have spawned a plethora of guide RNA (gRNA) design tools with algorithms based solely on direct or indirect sequence features. Here, we demonstrate that the predictive power of these tools is poor, suggesting that sequence features alone cannot accurately inform the cutting efficiency of a particular CRISPR/Cas9 gRNA design. Furthermore, we demonstrate that DNA target site accessibility influences the activity of CRISPR/Cas9. With further optimization, we hypothesize that it will be possible to increase the predictive power of gRNA design tools by including both sequence and target site accessibility metrics. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  19. Cas9-triggered chain ablation of cas9 as a gene drive brake

    OpenAIRE

    Wu, Bing; Luo, Liqun; Gao, Xiaojing J.

    2016-01-01

    With the advent of clustered, regularly interspaced, short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9) technology, researchers can construct gene drives that can bias the inheritance of edited alleles to alter entire populations. As demonstrated with the mutagenic chain reaction in Drosophila4, the CRISPR-Cas9 system can propagate genomic modification together with the genome-editing machinery itself. Although gene drives might have the potential to control insect-borne di...

  20. CRISPR-Cas9 Based Engineering of Actinomycetal Genomes

    DEFF Research Database (Denmark)

    Tong, Yaojun; Charusanti, Pep; Zhang, Lixin

    2015-01-01

    . To facilitate the genetic manipulation of actinomycetes, we developed a highly efficient CRISPR-Cas9 system to delete gene(s) or gene cluster(s), implement precise gene replacements, and reversibly control gene expression in actinomycetes. We demonstrate our system by targeting two genes, actIORF1 (SCO5087......) and actVB (SCO5092), from the actinorhodin biosynthetic gene cluster in Streptomyces coelicolor A3(2). Our CRISPR-Cas9 system successfully inactivated the targeted genes. When no templates for homology-directed repair (HDR) were present, the site-specific DNA double-strand breaks (DSBs) introduced by Cas9....... Moreover, we developed a system to efficiently and reversibly control expression of target genes, deemed CRISPRi, based on a catalytically dead variant of Cas9 (dCas9). The CRISPR-Cas9 based system described here comprises a powerful and broadly applicable set of tools to manipulate actinomycetal genomes....

  1. Recent Advances in Genome Editing Using CRISPR/Cas9

    Science.gov (United States)

    Ding, Yuduan; Li, Hong; Chen, Ling-Ling; Xie, Kabin

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system is a versatile tool for genome engineering that uses a guide RNA (gRNA) to target Cas9 to a specific sequence. This simple RNA-guided genome-editing technology has become a revolutionary tool in biology and has many innovative applications in different fields. In this review, we briefly introduce the Cas9-mediated genome-editing method, summarize the recent advances in CRISPR/Cas9 technology, and discuss their implications for plant research. To date, targeted gene knockout using the Cas9/gRNA system has been established in many plant species, and the targeting efficiency and capacity of Cas9 has been improved by optimizing its expression and that of its gRNA. The CRISPR/Cas9 system can also be used for sequence-specific mutagenesis/integration and transcriptional control of target genes. We also discuss off-target effects and the constraint that the protospacer-adjacent motif (PAM) puts on CRISPR/Cas9 genome engineering. To address these problems, a number of bioinformatic tools are available to help design specific gRNAs, and new Cas9 variants and orthologs with high fidelity and alternative PAM specificities have been engineered. Owing to these recent efforts, the CRISPR/Cas9 system is becoming a revolutionary and flexible tool for genome engineering. Adoption of the CRISPR/Cas9 technology in plant research would enable the investigation of plant biology at an unprecedented depth and create innovative applications in precise crop breeding. PMID:27252719

  2. Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9

    OpenAIRE

    Hidetaka Kaya; Masafumi Mikami; Akira Endo; Masaki Endo; Seiichi Toki

    2016-01-01

    The CRISPR/Cas9 system is an efficient and convenient tool for genome editing in plants. Cas9 nuclease derived from Streptococcus pyogenes (Sp) is commonly used in this system. Recently, Staphylococcus aureus Cas9 (SaCas9)-mediated genome editing was reported in human cells and Arabidopsis. Because SaCas9 (1053 a.a.) is smaller than SpCas9 (1368 a.a.), SaCas9 could have substantial advantages for delivering and expressing Cas9 protein, especially using virus vectors. Since the protospacer adj...

  3. A Cas9 transgenic Plasmodium yoelii parasite for efficient gene editing.

    Science.gov (United States)

    Qian, Pengge; Wang, Xu; Yang, Zhenke; Li, Zhenkui; Gao, Han; Su, Xin-Zhuan; Cui, Huiting; Yuan, Jing

    2018-06-01

    The RNA-guided endonuclease Cas9 has applied as an efficient gene-editing method in malaria parasite Plasmodium. However, the size (4.2 kb) of the commonly used Cas9 from Streptococcus pyogenes (SpCas9) limits its utility for genome editing in the parasites only introduced with cas9 plasmid. To establish the endogenous and constitutive expression of Cas9 protein in the rodent malaria parasite P. yoelii, we replaced the coding region of an endogenous gene sera1 with the intact SpCas9 coding sequence using the CRISPR/Cas9-mediated genome editing method, generating the cas9-knockin parasite (PyCas9ki) of the rodent malaria parasite P. yoelii. The resulted PyCas9ki parasite displays normal progression during the whole life cycle and possesses the Cas9 protein expression in asexual blood stage. By introducing the plasmid (pYCs) containing only sgRNA and homologous template elements, we successfully achieved both deletion and tagging modifications for different endogenous genes in the genome of PyCas9ki parasite. This cas9-knockin PyCas9ki parasite provides a new platform facilitating gene functions study in the rodent malaria parasite P. yoelii. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit.

    Science.gov (United States)

    Murugan, Karthik; Babu, Kesavan; Sundaresan, Ramya; Rajan, Rakhi; Sashital, Dipali G

    2017-10-05

    CRISPR-Cas systems defend prokaryotes against bacteriophages and mobile genetic elements and serve as the basis for revolutionary tools for genetic engineering. Class 2 CRISPR-Cas systems use single Cas endonucleases paired with guide RNAs to cleave complementary nucleic acid targets, enabling programmable sequence-specific targeting with minimal machinery. Recent discoveries of previously unidentified CRISPR-Cas systems have uncovered a deep reservoir of potential biotechnological tools beyond the well-characterized Type II Cas9 systems. Here we review the current mechanistic understanding of newly discovered single-protein Cas endonucleases. Comparison of these Cas effectors reveals substantial mechanistic diversity, underscoring the phylogenetic divergence of related CRISPR-Cas systems. This diversity has enabled further expansion of CRISPR-Cas biotechnological toolkits, with wide-ranging applications from genome editing to diagnostic tools based on various Cas endonuclease activities. These advances highlight the exciting prospects for future tools based on the continually expanding set of CRISPR-Cas systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Evaluation of educational programs: an affiliate survey.

    Science.gov (United States)

    Kerker, B

    1996-08-01

    The Planned Parenthood Federation of America (PPFA) conducted a survey in 1996 to investigate the use of educational program evaluation among its affiliates. Of the 153 surveys mailed out, 55 (36%) were returned. Evaluations of school-based educational programs were conducted consistently by 19% of respondents and occasionally by 72%; non-school-based programs were evaluated consistently by 31% of associations and occasionally by 64%. In both types of presentations, evaluations were likely to consist of pre- and post-testing, post-tests alone, or informal discussions with participants. The outcome variables most often measured were participant satisfaction with the presentation, knowledge gained, and behavioral change. 75% of educational directors recognized the value of evaluations for purposes such as program planning, providing a baseline, and procuring funding; 80% were interested in doing more evaluations. However, directors identified numerous obstacles to evaluation: insufficient time, lack of expertise or models, problems conducting meaningful impact evaluations, limited funds for this purpose, and fear that results would be disappointing. Despite its low response rate, this survey identified a need for PPFA's Education Department to promote program evaluation among its affiliates, provide staff training, and develop meaningful program impact measures.

  6. B and V photometry and analysis of the eclipsing binary RZ CAS

    Science.gov (United States)

    Riazi, N.; Bagheri, M. R.; Faghihi, F.

    1994-01-01

    Photoelectric light curves of the eclipsing binary RZ Cas are presented for B and V filters. The light curves are analyzed for light and geometrical elements, starting with a previously suggested preliminary method. The approximate results thus obtained are then optimised through the Wilson-Devinney computer programs.

  7. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function

    Science.gov (United States)

    Isaac, R Stefan; Jiang, Fuguo; Doudna, Jennifer A; Lim, Wendell A; Narlikar, Geeta J; Almeida, Ricardo

    2016-01-01

    The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allow Cas9 to effectively act on chromatin in vivo. DOI: http://dx.doi.org/10.7554/eLife.13450.001 PMID:27130520

  8. CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum.

    Science.gov (United States)

    Pohl, C; Kiel, J A K W; Driessen, A J M; Bovenberg, R A L; Nygård, Y

    2016-07-15

    CRISPR/Cas9 based systems have emerged as versatile platforms for precision genome editing in a wide range of organisms. Here we have developed powerful CRISPR/Cas9 tools for marker-based and marker-free genome modifications in Penicillium chrysogenum, a model filamentous fungus and industrially relevant cell factory. The developed CRISPR/Cas9 toolbox is highly flexible and allows editing of new targets with minimal cloning efforts. The Cas9 protein and the sgRNA can be either delivered during transformation, as preassembled CRISPR-Cas9 ribonucleoproteins (RNPs) or expressed from an AMA1 based plasmid within the cell. The direct delivery of the Cas9 protein with in vitro synthesized sgRNA to the cells allows for a transient method for genome engineering that may rapidly be applicable for other filamentous fungi. The expression of Cas9 from an AMA1 based vector was shown to be highly efficient for marker-free gene deletions.

  9. Bimodal Programming: A Survey of Current Clinical Practice.

    Science.gov (United States)

    Siburt, Hannah W; Holmes, Alice E

    2015-06-01

    The purpose of this study was to determine the current clinical practice in approaches to bimodal programming in the United States. To be specific, if clinicians are recommending bimodal stimulation, who programs the hearing aid in the bimodal condition, and what method is used for programming the hearing aid? An 11-question online survey was created and sent via email to a comprehensive list of cochlear implant programming centers in the United States. The survey was sent to 360 recipients. Respondents in this study represented a diverse group of clinical settings (response rate: 26%). Results indicate little agreement about who programs the hearing aids, when they are programmed, and how they are programmed in the bimodal condition. Analysis of small versus large implant centers indicated small centers are less likely to add a device to the contralateral ear. Although a growing number of cochlear implant recipients choose to wear a hearing aid on the contralateral ear, there is inconsistency in the current clinical approach to bimodal programming. These survey results provide evidence of large variability in the current bimodal programming practices and indicate a need for more structured clinical recommendations and programming approaches.

  10. Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes

    Science.gov (United States)

    Ma, Enbo; Harrington, Lucas B.; O’Connell, Mitchell R.; Zhou, Kaihong; Doudna, Jennifer A.

    2015-01-01

    Summary Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9–guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide-RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA, and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family. PMID:26545076

  11. CRISPR/Cas9-mediated viral interference in plants

    KAUST Repository

    Ali, Zahir

    2015-11-11

    Background The CRISPR/Cas9 system provides bacteria and archaea with molecular immunity against invading phages and conjugative plasmids. Recently, CRISPR/Cas9 has been used for targeted genome editing in diverse eukaryotic species. Results In this study, we investigate whether the CRISPR/Cas9 system could be used in plants to confer molecular immunity against DNA viruses. We deliver sgRNAs specific for coding and non-coding sequences of tomato yellow leaf curl virus (TYLCV) into Nicotiana benthamiana plants stably overexpressing the Cas9 endonuclease, and subsequently challenge these plants with TYLCV. Our data demonstrate that the CRISPR/Cas9 system targeted TYLCV for degradation and introduced mutations at the target sequences. All tested sgRNAs exhibit interference activity, but those targeting the stem-loop sequence within the TYLCV origin of replication in the intergenic region (IR) are the most effective. N. benthamiana plants expressing CRISPR/Cas9 exhibit delayed or reduced accumulation of viral DNA, abolishing or significantly attenuating symptoms of infection. Moreover, this system could simultaneously target multiple DNA viruses. Conclusions These data establish the efficacy of the CRISPR/Cas9 system for viral interference in plants, thereby extending the utility of this technology and opening the possibility of producing plants resistant to multiple viral infections.

  12. Editing plants for virus resistance using CRISPR-Cas.

    Science.gov (United States)

    Green, J C; Hu, J S

    This minireview summarizes recent advancements using the clustered regularly interspaced palindromic repeats-associated nuclease systems (CRISPR-Cas) derived from prokaryotes to breed plants resistant to DNA and RNA viruses. The CRISPR-Cas system represents a powerful tool able to edit and insert novel traits into plants precisely at chosen loci offering enormous advantages to classical breeding. Approaches to engineering plant virus resistance in both transgenic and non-transgenic plants are discussed. Iterations of the CRISPR-Cas system, FnCas9 and C2c2 capable of editing RNA in eukaryotic cells offer a particular advantage for providing resistance to RNA viruses which represent the great majority of known plant viruses. Scientists have obtained conflicting results using gene silencing technology to produce transgenic plants resistant to geminiviruses. CRISPR-Cas systems engineered in plants to target geminiviruses have consistently reduced virus accumulation providing increased resistance to virus infection. CRISPR-Cas may provide novel and reliable approaches to control geminiviruses and other ssDNA viruses such as Banana bunchy top virus (BBTV).

  13. Versatile High-Throughput Fluorescence Assay for Monitoring Cas9 Activity.

    Science.gov (United States)

    Seamon, Kyle J; Light, Yooli K; Saada, Edwin A; Schoeniger, Joseph S; Harmon, Brooke

    2018-06-05

    The RNA-guided DNA nuclease Cas9 is now widely used for the targeted modification of genomes of human cells and various organisms. Despite the extensive use of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) systems for genome engineering and the rapid discovery and engineering of new CRISPR-associated nucleases, there are no high-throughput assays for measuring enzymatic activity. The current laboratory and future therapeutic uses of CRISPR technology have a significant risk of accidental exposure or clinical off-target effects, underscoring the need for therapeutically effective inhibitors of Cas9. Here, we develop a fluorescence assay for monitoring Cas9 nuclease activity and demonstrate its utility with S. pyogenes (Spy), S. aureus (Sau), and C. jejuni (Cje) Cas9. The assay was validated by quantitatively profiling the species specificity of published anti-CRISPR (Acr) proteins, confirming the reported inhibition of Spy Cas9 by AcrIIA4 and Cje Cas9 by AcrIIC1 and no inhibition of Sau Cas9 by either anti-CRISPR. To identify drug-like inhibitors, we performed a screen of 189 606 small molecules for inhibition of Spy Cas9. Of 437 hits (0.2% hit rate), six were confirmed as Cas9 inhibitors in a direct gel electrophoresis secondary assay. The high-throughput nature of this assay makes it broadly applicable for the discovery of additional Cas9 inhibitors or the characterization of Cas9 enzyme variants.

  14. Empirical Validation and Application of the Computing Attitudes Survey

    Science.gov (United States)

    Dorn, Brian; Elliott Tew, Allison

    2015-01-01

    Student attitudes play an important role in shaping learning experiences. However, few validated instruments exist for measuring student attitude development in a discipline-specific way. In this paper, we present the design, development, and validation of the computing attitudes survey (CAS). The CAS is an extension of the Colorado Learning…

  15. Drive alive: teen seat belt survey program.

    Science.gov (United States)

    Burkett, Katie M; Davidson, Steve; Cotton, Carol; Barlament, James; Loftin, Laurel; Stephens, James; Dunbar, Martin; Butterfield, Ryan

    2010-08-01

    To increase teen seat belt use among drivers at a rural high school by implementing the Drive Alive Pilot Program (DAPP), a theory-driven intervention built on highway safety best practices. The first component of the program was 20 observational teen seat belt surveys conducted by volunteer students in a high school parking lot over a 38-month period before and after the month-long intervention. The survey results were published in the newspaper. The second component was the use of incentives, such as gift cards, to promote teen seat belt use. The third component involved disincentives, such as increased police patrol and school policies. The fourth component was a programmatic intervention that focused on education and media coverage of the DAPP program. Eleven pre-intervention surveys and nine post-intervention surveys were conducted before and after the intervention. The pre- and post-intervention seat belt usage showed significant differences (p<0.0001). The average pre-intervention seat belt usage rate was 51.2%, while the average post-intervention rate was 74.5%. This represents a percentage point increase of 23.3 in seat belt use after the DAPP intervention. Based on seat belt observational surveys, the DAPP was effective in increasing seat belt use among rural high school teenagers. Utilizing a theory-based program that builds on existing best practices can increase the observed seat belt usage among rural high school students.

  16. Programmable RNA recognition and cleavage by CRISPR/Cas9.

    Science.gov (United States)

    O'Connell, Mitchell R; Oakes, Benjamin L; Sternberg, Samuel H; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A

    2014-12-11

    The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA-DNA complementarity to identify target sites for sequence-specific double-stranded DNA (dsDNA) cleavage. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, known as the protospacer adjacent motif (PAM), next to and on the strand opposite the twenty-nucleotide target site in dsDNA. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in a large range of prokaryotic and eukaryotic cell types, and in whole organisms, but it has been thought to be incapable of targeting RNA. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalysed DNA cleavage. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous messenger RNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable transcript recognition without the need for tags.

  17. A thermostable Cas9 with increased lifetime in human plasma

    OpenAIRE

    Harrington, LB; Paez-Espino, D; Staahl, BT; Chen, JS; Ma, E; Kyrpides, NC; Doudna, JA

    2017-01-01

    © 2017 The Author(s). CRISPR-Cas9 is a powerful technology that has enabled genome editing in a wide range of species. However, the currently developed Cas9 homologs all originate from mesophilic bacteria, making them susceptible to degradation and unsuitable for applications requiring cleavage at elevated temperatures. Here, we show that the Cas9 protein from the thermophilic bacterium Geobacillus stearothermophilus (GeoCas9) catalyzes RNA-guided DNA cleavage at elevated temperatures. GeoCas...

  18. Inconclusive studies on possible CRISPR-Cas off-targets should ...

    Indian Academy of Sciences (India)

    Sandeep Chakraborty

    Published online: 30 April 2018. Keywords. ... in gene-editing technologies have resulted from the simplicity of the single effector (Cas9) class 2 CRISPR-Cas ... a Cas9/gRNA concentration dependence on off-target activity (Pattanayak et al.

  19. Remote Sensing and Special Surveys Program annual report, January--December 1993

    International Nuclear Information System (INIS)

    Conder, S.R.; Doll, W.E.; Gabrielsen, C.A.; King, A.D.; Durfee, R.C.; Parr, P.D.

    1994-03-01

    The Remote Sensing and Special Surveys Program has been established to provide environmental characterization data, change data, and trend data to various Environmental Restoration and Waste Management (ERWM) programs. The data are acquired through several different types of survey platforms. During the calendar year of 1993, a variety of surveys were conducted through the Remote Sensing and Special Surveys Program. The aerial surveys included geophysical, radiological, false color infrared (IR) photography, and natural color photography. Ground surveys were conducted to correlate data collected from the airborne platforms to data measured at ground level. Ground surveys were also conducted to determine the existence or absence of threatened and endangered plant species on the Oak Ridge Reservation. Some of the special surveys included laser induced fluorescence imaging, solar reflectance, and various remote sensing and ground control activities for the Strategic Environmental Research and Development Program (SERDP) initiative. Data analysis, management, and storage are also conducted by the Remote Sensing and Special Surveys Program to achieve the highest level of data useability possible. The data acquired through these surveys have provided and will continue to provide much needed information to ERWM programs

  20. CRISPR-Cas

    NARCIS (Netherlands)

    Jackson, Simon A.; McKenzie, Rebecca E.; Fagerlund, Robert D.; Kieper, Sebastian N.; Fineran, Peter C.; Brouns, Stan J.J.

    2017-01-01

    Bacteria and archaea are engaged in a constant arms race to defend against the ever-present threats of viruses and invasion by mobile genetic elements. The most flexible weapons in the prokaryotic defense arsenal are the CRISPR-Cas adaptive immune systems. These systems are capable of selective

  1. The role of Cas8 in type I CRISPR interference.

    Science.gov (United States)

    Cass, Simon D B; Haas, Karina A; Stoll, Britta; Alkhnbashi, Omer S; Sharma, Kundan; Urlaub, Henning; Backofen, Rolf; Marchfelder, Anita; Bolt, Edward L

    2015-05-05

    CRISPR (clustered regularly interspaced short palindromic repeat) systems provide bacteria and archaea with adaptive immunity to repel invasive genetic elements. Type I systems use 'cascade' [CRISPR-associated (Cas) complex for antiviral defence] ribonucleoprotein complexes to target invader DNA, by base pairing CRISPR RNA (crRNA) to protospacers. Cascade identifies PAMs (protospacer adjacent motifs) on invader DNA, triggering R-loop formation and subsequent DNA degradation by Cas3. Cas8 is a candidate PAM recognition factor in some cascades. We analysed Cas8 homologues from type IB CRISPR systems in archaea Haloferax volcanii (Hvo) and Methanothermobacter thermautotrophicus (Mth). Cas8 was essential for CRISPR interference in Hvo and purified Mth Cas8 protein responded to PAM sequence when binding to nucleic acids. Cas8 interacted physically with Cas5-Cas7-crRNA complex, stimulating binding to PAM containing substrates. Mutation of conserved Cas8 amino acid residues abolished interference in vivo and altered catalytic activity of Cas8 protein in vitro. This is experimental evidence that Cas8 is important for targeting Cascade to invader DNA. © 2015 Authors.

  2. Exploiting CRISPR-Cas to manipulate Enterococcus faecalis populations.

    Science.gov (United States)

    Hullahalli, Karthik; Rodrigues, Marinelle; Palmer, Kelli L

    2017-06-23

    CRISPR-Cas provides a barrier to horizontal gene transfer in prokaryotes. It was previously observed that functional CRISPR-Cas systems are absent from multidrug-resistant (MDR) Enterococcus faecalis , which only possess an orphan CRISPR locus, termed CRISPR2, lacking cas genes. Here, we investigate how the interplay between CRISPR-Cas genome defense and antibiotic selection for mobile genetic elements shapes in vitro E. faecalis populations. We demonstrate that CRISPR2 can be reactivated for genome defense in MDR strains. Interestingly, we observe that E. faecalis transiently maintains CRISPR targets despite active CRISPR-Cas systems. Subsequently, if selection for the CRISPR target is present, toxic CRISPR spacers are lost over time, while in the absence of selection, CRISPR targets are lost over time. We find that forced maintenance of CRISPR targets induces a fitness cost that can be exploited to alter heterogeneous E. faecalis populations.

  3. Survey Procedures Manual for the Environmental Survey and Site Assessment Program (ESSAP). Revision 10

    International Nuclear Information System (INIS)

    2000-01-01

    The Environmental Survey and Site Assessment Program (ESSAP) of the Oak Ridge Institute for Science and Education (ORISE) conducts radiological survey activities under a contract with the U. S. Department of Energy (DOE) and for the U.S. Nuclear Regulatory Commission (NRC). ORISE and its programs are operated by Oak Ridge Associated Universities (ORAU) through a contract with DOE. The purpose of this Procedures Manual is to provide a standardized set of procedures that document activities of the program in an auditable manner. These procedures are applicable to both DOE and NRC operations. Procedures presented in this manual are limited to those associated with site survey activities

  4. NSP-CAS Protein Complexes: Emerging Signaling Modules in Cancer.

    Science.gov (United States)

    Wallez, Yann; Mace, Peter D; Pasquale, Elena B; Riedl, Stefan J

    2012-05-01

    The CAS (CRK-associated substrate) family of adaptor proteins comprises 4 members, which share a conserved modular domain structure that enables multiple protein-protein interactions, leading to the assembly of intracellular signaling platforms. Besides their physiological role in signal transduction downstream of a variety of cell surface receptors, CAS proteins are also critical for oncogenic transformation and cancer cell malignancy through associations with a variety of regulatory proteins and downstream effectors. Among the regulatory partners, the 3 recently identified adaptor proteins constituting the NSP (novel SH2-containing protein) family avidly bind to the conserved carboxy-terminal focal adhesion-targeting (FAT) domain of CAS proteins. NSP proteins use an anomalous nucleotide exchange factor domain that lacks catalytic activity to form NSP-CAS signaling modules. Additionally, the NSP SH2 domain can link NSP-CAS signaling assemblies to tyrosine-phosphorylated cell surface receptors. NSP proteins can potentiate CAS function by affecting key CAS attributes such as expression levels, phosphorylation state, and subcellular localization, leading to effects on cell adhesion, migration, and invasion as well as cell growth. The consequences of these activities are well exemplified by the role that members of both families play in promoting breast cancer cell invasiveness and resistance to antiestrogens. In this review, we discuss the intriguing interplay between the NSP and CAS families, with a particular focus on cancer signaling networks.

  5. Control of gene expression by CRISPR-Cas systems

    Science.gov (United States)

    2013-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) loci and their associated cas (CRISPR-associated) genes provide adaptive immunity against viruses (phages) and other mobile genetic elements in bacteria and archaea. While most of the early work has largely been dominated by examples of CRISPR-Cas systems directing the cleavage of phage or plasmid DNA, recent studies have revealed a more complex landscape where CRISPR-Cas loci might be involved in gene regulation. In this review, we summarize the role of these loci in the regulation of gene expression as well as the recent development of synthetic gene regulation using engineered CRISPR-Cas systems. PMID:24273648

  6. Drive Alive: Teen Seat Belt Survey Program

    Directory of Open Access Journals (Sweden)

    Loftin, Laurel

    2010-08-01

    Full Text Available Objective: To increase teen seat belt use among drivers at a rural high school by implementing the Drive Alive Pilot Program (DAPP, a theory-driven intervention built on highway safety best practices.Methods: The first component of the program was 20 observational teen seat belt surveys conducted by volunteer students in a high school parking lot over a 38-month period before and after the month-long intervention. The survey results were published in the newspaper. The second component was the use of incentives, such as gift cards, to promote teen seat belt use. The third component involved disincentives, such as increased police patrol and school policies. The fourth component was a programmatic intervention that focused on education and media coverage of the DAPP program.Results: Eleven pre-intervention surveys and nine post-intervention surveys were conducted before and after the intervention. The pre- and post-intervention seat belt usage showed significant differences (p<0.0001. The average pre-intervention seat belt usage rate was 51.2%, while the average post-intervention rate was 74.5%. This represents a percentage point increase of 23.3 in seat belt use after the DAPP intervention.Conclusion: Based on seat belt observational surveys, the DAPP was effective in increasing seat belt use among rural high school teenagers. Utilizing a theory-based program that builds on existing best practices can increase the observed seat belt usage among rural high school students. [West J Emerg Med. 2010; 11(3: 280-283.

  7. Controlling Citrate Synthase Expression by CRISPR/Cas9 Genome Editing for n-Butanol Production in Escherichia coli

    DEFF Research Database (Denmark)

    Heo, Min-Ji; Jung, Hwi-Min; Um, Jaeyong

    2017-01-01

    Genome editing using CRISPR/Cas9 was successfully demonstrated in Esherichia coli to effectively produce n-butanol in a defined medium under microaerobic condition. The butanol synthetic pathway genes including those encoding oxygen-tolerant alcohol dehydrogenase were overexpressed in metabolically...... prediction program, UTR designer, and modified using the CRISPR/Cas9 genome editing method to reduce its expression level. E. coli strains with decreased citrate synthase expression produced more butanol and the citrate synthase activity was correlated with butanol production. These results demonstrate...

  8. Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9.

    Science.gov (United States)

    Raper, Austin T; Stephenson, Anthony A; Suo, Zucai

    2018-02-28

    The discovery of prokaryotic adaptive immunity prompted widespread use of the RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) endonuclease Cas9 for genetic engineering. However, its kinetic mechanism remains undefined, and details of DNA cleavage are poorly characterized. Here, we establish a kinetic mechanism of Streptococcus pyogenes Cas9 from guide-RNA binding through DNA cleavage and product release. Association of DNA to the binary complex of Cas9 and guide-RNA is rate-limiting during the first catalytic turnover, while DNA cleavage from a pre-formed ternary complex of Cas9, guide-RNA, and DNA is rapid. Moreover, an extremely slow release of DNA products essentially restricts Cas9 to be a single-turnover enzyme. By simultaneously measuring the contributions of the HNH and RuvC nuclease activities of Cas9 to DNA cleavage, we also uncovered the kinetic basis by which HNH conformationally regulates the RuvC cleavage activity. Together, our results provide crucial kinetic and functional details regarding Cas9 which will inform gene-editing experiments, guide future research to understand off-target DNA cleavage by Cas9, and aid in the continued development of Cas9 as a biotechnological tool.

  9. Undergraduate paramedic students' attitudes to e-learning: findings from five university programs

    Directory of Open Access Journals (Sweden)

    Graham Munro

    2011-12-01

    Full Text Available Computers and computer-assisted instruction are being used with increasing frequency in the area of undergraduate paramedic education. Paramedic students' attitudes towards the use of e-learning technology and computer-assisted instruction have received limited attention in the empirical literature to date. The objective of this study was to determine paramedic students' attitudes towards e-learning. A cross-sectional methodology was used in the form of a paperbased survey to elicit students' attitudes to e-learning using three standardised scales. Convenience sampling was used to sample a cross-section of paramedic students at five universities during semester 1 of 2009. The scales used were: the Computer Attitude Survey (CAS, the Online Learning Environment Survey (OLES, and the Attitude Toward CAI Semantic Differential Scale (ATCAISDS. There were 339 students who participated. Approximately onehalf (57.7% were female and most (76.0% were under 24 years of age. Moderate results were noted for the CAS general and education subscales. The CAS results were broadly corroborated by the OLES, although a statistically significant difference between participants preferred and actual results on the OLES Computer Usage subscale identified that participants would prefer to use computers less than they actually do. Similarly, the ATCAISDS found participants were largely ambivalent towards computers. As paramedic degree programs continue to emerge and develop, careful consideration should be given to the usability and utility of various e-learning approaches.

  10. CRISPR/Cas9: Transcending the Reality of Genome Editing.

    Science.gov (United States)

    Chira, Sergiu; Gulei, Diana; Hajitou, Amin; Zimta, Alina-Andreea; Cordelier, Pierre; Berindan-Neagoe, Ioana

    2017-06-16

    With the expansion of the microbiology field of research, a new genome editing tool arises from the biology of bacteria that holds the promise of achieving precise modifications in the genome with a simplicity and versatility that surpasses previous genome editing methods. This new technique, commonly named CRISPR/Cas9, led to a rapid expansion of the biomedical field; more specifically, cancer characterization and modeling have benefitted greatly from the genome editing capabilities of CRISPR/Cas9. In this paper, we briefly summarize recent improvements in CRISPR/Cas9 design meant to overcome the limitations that have arisen from the nuclease activity of Cas9 and the influence of this technology in cancer research. In addition, we present challenges that might impede the clinical applicability of CRISPR/Cas9 for cancer therapy and highlight future directions for designing CRISPR/Cas9 delivery systems that might prove useful for cancer therapeutics. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. CRISPR-Cas9-Edited Site Sequencing (CRES-Seq): An Efficient and High-Throughput Method for the Selection of CRISPR-Cas9-Edited Clones.

    Science.gov (United States)

    Veeranagouda, Yaligara; Debono-Lagneaux, Delphine; Fournet, Hamida; Thill, Gilbert; Didier, Michel

    2018-01-16

    The emergence of clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-Cas9) gene editing systems has enabled the creation of specific mutants at low cost, in a short time and with high efficiency, in eukaryotic cells. Since a CRISPR-Cas9 system typically creates an array of mutations in targeted sites, a successful gene editing project requires careful selection of edited clones. This process can be very challenging, especially when working with multiallelic genes and/or polyploid cells (such as cancer and plants cells). Here we described a next-generation sequencing method called CRISPR-Cas9 Edited Site Sequencing (CRES-Seq) for the efficient and high-throughput screening of CRISPR-Cas9-edited clones. CRES-Seq facilitates the precise genotyping up to 96 CRISPR-Cas9-edited sites (CRES) in a single MiniSeq (Illumina) run with an approximate sequencing cost of $6/clone. CRES-Seq is particularly useful when multiple genes are simultaneously targeted by CRISPR-Cas9, and also for screening of clones generated from multiallelic genes/polyploid cells. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  12. Interference activity of a minimal Type I CRISPR–Cas system from Shewanella putrefaciens

    Science.gov (United States)

    Dwarakanath, Srivatsa; Brenzinger, Susanne; Gleditzsch, Daniel; Plagens, André; Klingl, Andreas; Thormann, Kai; Randau, Lennart

    2015-01-01

    Type I CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)–Cas (CRISPR-associated) systems exist in bacterial and archaeal organisms and provide immunity against foreign DNA. The Cas protein content of the DNA interference complexes (termed Cascade) varies between different CRISPR-Cas subtypes. A minimal variant of the Type I-F system was identified in proteobacterial species including Shewanella putrefaciens CN-32. This variant lacks a large subunit (Csy1), Csy2 and Csy3 and contains two unclassified cas genes. The genome of S. putrefaciens CN-32 contains only five Cas proteins (Cas1, Cas3, Cas6f, Cas1821 and Cas1822) and a single CRISPR array with 81 spacers. RNA-Seq analyses revealed the transcription of this array and the maturation of crRNAs (CRISPR RNAs). Interference assays based on plasmid conjugation demonstrated that this CRISPR-Cas system is active in vivo and that activity is dependent on the recognition of the dinucleotide GG PAM (Protospacer Adjacent Motif) sequence and crRNA abundance. The deletion of cas1821 and cas1822 reduced the cellular crRNA pool. Recombinant Cas1821 was shown to form helical filaments bound to RNA molecules, which suggests its role as the Cascade backbone protein. A Cascade complex was isolated which contained multiple Cas1821 copies, Cas1822, Cas6f and mature crRNAs. PMID:26350210

  13. CRISPR-Cas Technologies and Applications in Food Bacteria.

    Science.gov (United States)

    Stout, Emily; Klaenhammer, Todd; Barrangou, Rodolphe

    2017-02-28

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins form adaptive immune systems that occur in many bacteria and most archaea. In addition to protecting bacteria from phages and other invasive mobile genetic elements, CRISPR-Cas molecular machines can be repurposed as tool kits for applications relevant to the food industry. A primary concern of the food industry has long been the proper management of food-related bacteria, with a focus on both enhancing the outcomes of beneficial microorganisms such as starter cultures and probiotics and limiting the presence of detrimental organisms such as pathogens and spoilage microorganisms. This review introduces CRISPR-Cas as a novel set of technologies to manage food bacteria and offers insights into CRISPR-Cas biology. It primarily focuses on the applications of CRISPR-Cas systems and tools in starter cultures and probiotics, encompassing strain-typing, phage resistance, plasmid vaccination, genome editing, and antimicrobial activity.

  14. Cas5d Protein Processes Pre-crRNA and Assembles into a Cascade-like Interference Complex in Subtype I-C/Dvulg CRISPR-Cas System

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Hyun; Haitjema, Charles; Liu, Xueqi; Ding, Fran; Wang, Hongwei; DeLisa, Matthew P.; Ke, Ailong (Yale); (Cornell); (Tsinghua)

    2012-10-10

    Clustered regularly interspaced short palindromic repeats (CRISPRs), together with an operon of CRISPR-associated (Cas) proteins, form an RNA-based prokaryotic immune system against exogenous genetic elements. Cas5 family proteins are found in several type I CRISPR-Cas systems. Here, we report the molecular function of subtype I-C/Dvulg Cas5d from Bacillus halodurans. We show that Cas5d cleaves pre-crRNA into unit length by recognizing both the hairpin structure and the 3 single stranded sequence in the CRISPR repeat region. Cas5d structure reveals a ferredoxin domain-based architecture and a catalytic triad formed by Y46, K116, and H117 residues. We further show that after pre-crRNA processing, Cas5d assembles with crRNA, Csd1, and Csd2 proteins to form a multi-sub-unit interference complex similar to Escherichia coli Cascade (CRISPR-associated complex for antiviral defense) in architecture. Our results suggest that formation of a crRNA-presenting Cascade-like complex is likely a common theme among type I CRISPR subtypes.

  15. Cas9 in Genetically Modified Food Is Unlikely to Cause Food Allergy.

    Science.gov (United States)

    Nakajima, Osamu; Nishimaki-Mogami, Tomoko; Kondo, Kazunari

    2016-01-01

    Genome editing has undergone rapid development during the last three years. It is anticipated that genetically modified organisms (GMOs) for food purposes will be widely produced using the clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR)/Cas9 system in the near future. However, the Cas9 gene may then enter the genomes of GMOs for food if the breeding process is not strictly managed, which could lead to the Cas9 protein or associated peptides being produced within these organisms. A variety of peptides could theoretically be produced from the Cas9 gene by using open reading frames different from that of Cas9 in the GMOs. In this study, Cas9 and the peptides potentially encoded by Cas9 genes were studied regarding their immunogenicity, in terms of the digestibility of Cas9 and the homology of the peptides to food allergens. First, the digestibility and thermal stability of Cas9 were studied. Digestibility was tested with natural or heat-denatured Cas9 in simulated gastric fluid in vitro. The two types of Cas9 were digested rapidly. Cas9 was also gradually degraded during heat treatment. Second, the peptides potentially encoded by Cas9 genes were examined for their homology to food allergens. Specifically, an 8-mer exact match search and a sliding 80-mer window search were performed using allergen databases. One of the peptides was found to have homology with a food allergen.

  16. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins.

    Science.gov (United States)

    Bondy-Denomy, Joseph; Garcia, Bianca; Strum, Scott; Du, Mingjian; Rollins, MaryClare F; Hidalgo-Reyes, Yurima; Wiedenheft, Blake; Maxwell, Karen L; Davidson, Alan R

    2015-10-01

    The battle for survival between bacteria and the viruses that infect them (phages) has led to the evolution of many bacterial defence systems and phage-encoded antagonists of these systems. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated (cas) genes comprise an adaptive immune system that is one of the most widespread means by which bacteria defend themselves against phages. We identified the first examples of proteins produced by phages that inhibit a CRISPR-Cas system. Here we performed biochemical and in vivo investigations of three of these anti-CRISPR proteins, and show that each inhibits CRISPR-Cas activity through a distinct mechanism. Two block the DNA-binding activity of the CRISPR-Cas complex, yet do this by interacting with different protein subunits, and using steric or non-steric modes of inhibition. The third anti-CRISPR protein operates by binding to the Cas3 helicase-nuclease and preventing its recruitment to the DNA-bound CRISPR-Cas complex. In vivo, this anti-CRISPR can convert the CRISPR-Cas system into a transcriptional repressor, providing the first example-to our knowledge-of modulation of CRISPR-Cas activity by a protein interactor. The diverse sequences and mechanisms of action of these anti-CRISPR proteins imply an independent evolution, and foreshadow the existence of other means by which proteins may alter CRISPR-Cas function.

  17. Sexual Health Education in Massage Therapy Programs: A Survey of Program Directors

    Science.gov (United States)

    Zamboni, Brian D.; Healey, Dale K.

    2016-01-01

    Massage therapy program directors completed an online survey to explore sexual education in massage therapy programs. The overall data suggest that program directors are supportive of sexual health education in the training of massage therapists and that such education is integrated into several aspects of their training programs. To enhance…

  18. Applying national survey results for strategic planning and program improvement: the National Diabetes Education Program.

    Science.gov (United States)

    Griffey, Susan; Piccinino, Linda; Gallivan, Joanne; Lotenberg, Lynne Doner; Tuncer, Diane

    2015-02-01

    Since the 1970s, the federal government has spearheaded major national education programs to reduce the burden of chronic diseases in the United States. These prevention and disease management programs communicate critical information to the public, those affected by the disease, and health care providers. The National Diabetes Education Program (NDEP), the leading federal program on diabetes sponsored by the National Institutes of Health (NIH) and the Centers for Disease Control and Prevention (CDC), uses primary and secondary quantitative data and qualitative audience research to guide program planning and evaluation. Since 2006, the NDEP has filled the gaps in existing quantitative data sources by conducting its own population-based survey, the NDEP National Diabetes Survey (NNDS). The NNDS is conducted every 2–3 years and tracks changes in knowledge, attitudes and practice indicators in key target audiences. This article describes how the NDEP has used the NNDS as a key component of its evaluation framework and how it applies the survey results for strategic planning and program improvement. The NDEP's use of the NNDS illustrates how a program evaluation framework that includes periodic population-based surveys can serve as an evaluation model for similar national health education programs.

  19. Interference activity of a minimal Type I CRISPR-Cas system from Shewanella putrefaciens.

    Science.gov (United States)

    Dwarakanath, Srivatsa; Brenzinger, Susanne; Gleditzsch, Daniel; Plagens, André; Klingl, Andreas; Thormann, Kai; Randau, Lennart

    2015-10-15

    Type I CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR-associated) systems exist in bacterial and archaeal organisms and provide immunity against foreign DNA. The Cas protein content of the DNA interference complexes (termed Cascade) varies between different CRISPR-Cas subtypes. A minimal variant of the Type I-F system was identified in proteobacterial species including Shewanella putrefaciens CN-32. This variant lacks a large subunit (Csy1), Csy2 and Csy3 and contains two unclassified cas genes. The genome of S. putrefaciens CN-32 contains only five Cas proteins (Cas1, Cas3, Cas6f, Cas1821 and Cas1822) and a single CRISPR array with 81 spacers. RNA-Seq analyses revealed the transcription of this array and the maturation of crRNAs (CRISPR RNAs). Interference assays based on plasmid conjugation demonstrated that this CRISPR-Cas system is active in vivo and that activity is dependent on the recognition of the dinucleotide GG PAM (Protospacer Adjacent Motif) sequence and crRNA abundance. The deletion of cas1821 and cas1822 reduced the cellular crRNA pool. Recombinant Cas1821 was shown to form helical filaments bound to RNA molecules, which suggests its role as the Cascade backbone protein. A Cascade complex was isolated which contained multiple Cas1821 copies, Cas1822, Cas6f and mature crRNAs. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Cas9-nickase-mediated genome editing corrects hereditary tyrosinemia in rats.

    Science.gov (United States)

    Shao, Yanjiao; Wang, Liren; Guo, Nana; Wang, Shengfei; Yang, Lei; Li, Yajing; Wang, Mingsong; Yin, Shuming; Han, Honghui; Zeng, Li; Zhang, Ludi; Hui, Lijian; Ding, Qiurong; Zhang, Jiqin; Geng, Hongquan; Liu, Mingyao; Li, Dali

    2018-05-04

    Hereditary tyrosinemia type I (HTI) is a metabolic genetic disorder caused by mutation of fumarylacetoacetate hydrolase (FAH). Because of the accumulation of toxic metabolites, HTI causes severe liver cirrhosis, liver failure, and even hepatocellular carcinoma. HTI is an ideal model for gene therapy, and several strategies have been shown to ameliorate HTI symptoms in animal models. Although CRISPR/Cas9-mediated genome editing is able to correct the Fah mutation in mouse models, WT Cas9 induces numerous undesired mutations that have raised safety concerns for clinical applications. To develop a new method for gene correction with high fidelity, we generated a Fah mutant rat model to investigate whether Cas9 nickase (Cas9n)-mediated genome editing can efficiently correct the Fah First, we confirmed that Cas9n rarely induces indels in both on-target and off-target sites in cell lines. Using WT Cas9 as a positive control, we delivered Cas9n and the repair donor template/single guide (sg)RNA through adenoviral vectors into HTI rats. Analyses of the initial genome editing efficiency indicated that only WT Cas9 but not Cas9n causes indels at the on-target site in the liver tissue. After receiving either Cas9n or WT Cas9-mediated gene correction therapy, HTI rats gained weight steadily and survived. Fah-expressing hepatocytes occupied over 95% of the liver tissue 9 months after the treatment. Moreover, CRISPR/Cas9-mediated gene therapy prevented the progression of liver cirrhosis, a phenotype that could not be recapitulated in the HTI mouse model. These results strongly suggest that Cas9n-mediated genome editing is a valuable and safe gene therapy strategy for this genetic disease. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Cas Wepener

    African Journals Online (AJOL)

    Owner

    Dubbelfoto is die eerste kortverhaalbundel van die teoloog Cas Wepener wat tot dusver veral akademiese artikels en godsdienstige boeke geskryf het. Die bundel se titel gee besondere prominensie aan die gegewe van die foto ter- wyl die motto wat gehaal is uit Roland Barthes se Camera Lucida die aandag vestig op die ...

  2. Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9.

    Science.gov (United States)

    Hirano, Seiichi; Nishimasu, Hiroshi; Ishitani, Ryuichiro; Nureki, Osamu

    2016-03-17

    The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets bearing a PAM (protospacer adjacent motif) and complementarity to the guide RNA. A recent study showed that, whereas wild-type Streptococcus pyogenes Cas9 (SpCas9) recognizes the 5'-NGG-3' PAM, the engineered VQR, EQR, and VRER SpCas9 variants recognize the 5'-NGA-3', 5'-NGAG-3', and 5'-NGCG-3' PAMs, respectively, thus expanding the targetable sequences in Cas9-mediated genome editing applications. Here, we present the high-resolution crystal structures of the three SpCas9 variants in complexes with a single-guide RNA and its altered PAM-containing, partially double-stranded DNA targets. A structural comparison of the three SpCas9 variants with wild-type SpCas9 revealed that the multiple mutations synergistically induce an unexpected displacement in the phosphodiester backbone of the PAM duplex, thereby allowing the SpCas9 variants to directly recognize the altered PAM nucleotides. Our findings explain the altered PAM specificities of the SpCas9 variants and establish a framework for further rational engineering of CRISPR-Cas9. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Applications of CRISPR/Cas System to Bacterial Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Suhyung Cho

    2018-04-01

    Full Text Available The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas adaptive immune system has been extensively used for gene editing, including gene deletion, insertion, and replacement in bacterial and eukaryotic cells owing to its simple, rapid, and efficient activities in unprecedented resolution. Furthermore, the CRISPR interference (CRISPRi system including deactivated Cas9 (dCas9 with inactivated endonuclease activity has been further investigated for regulation of the target gene transiently or constitutively, avoiding cell death by disruption of genome. This review discusses the applications of CRISPR/Cas for genome editing in various bacterial systems and their applications. In particular, CRISPR technology has been used for the production of metabolites of high industrial significance, including biochemical, biofuel, and pharmaceutical products/precursors in bacteria. Here, we focus on methods to increase the productivity and yield/titer scan by controlling metabolic flux through individual or combinatorial use of CRISPR/Cas and CRISPRi systems with introduction of synthetic pathway in industrially common bacteria including Escherichia coli. Further, we discuss additional useful applications of the CRISPR/Cas system, including its use in functional genomics.

  4. CASKS (Computer Analysis of Storage casKS): A microcomputer based analysis system for storage cask design review. User's manual to Version 1b (including program reference)

    International Nuclear Information System (INIS)

    Chen, T.F.; Gerhard, M.A.; Trummer, D.J.; Johnson, G.L.; Mok, G.C.

    1995-02-01

    CASKS (Computer Analysis of Storage casKS) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for evaluating safety analysis reports on spent-fuel storage casks. The bulk of the complete program and this user's manual are based upon the SCANS (Shipping Cask ANalysis System) program previously developed at LLNL. A number of enhancements and improvements were added to the original SCANS program to meet requirements unique to storage casks. CASKS is an easy-to-use system that calculates global response of storage casks to impact loads, pressure loads and thermal conditions. This provides reviewers with a tool for an independent check on analyses submitted by licensees. CASKS is based on microcomputers compatible with the IBM-PC family of computers. The system is composed of a series of menus, input programs, cask analysis programs, and output display programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests

  5. CRISPR/Cas9 Inhibits Multiple Steps of HIV-1 Infection.

    Science.gov (United States)

    Yin, Lijuan; Hu, Siqi; Mei, Shan; Sun, Hong; Xu, Fengwen; Li, Jian; Zhu, Weijun; Liu, Xiaoman; Zhao, Fei; Zhang, Di; Cen, Shan; Liang, Chen; Guo, Fei

    2018-05-09

    CRISPR/Cas9 is an adaptive immune system where bacteria and archaea have evolved to resist the invading viruses and plasmid DNA by creating site-specific double-strand breaks in DNA. This study tested this gene editing system in inhibiting human immunodeficiency virus type 1 (HIV-1) infection by targeting the viral long terminal repeat and the gene coding sequences. Strong inhibition of HIV-1 infection by Cas9/gRNA was observed, which resulted not only from insertions and deletions (indels) that were introduced into viral DNA due to Cas9 cleavage, but also from the marked decrease in the levels of the late viral DNA products and the integrated viral DNA. This latter defect might have reflected the degradation of viral DNA that has not been immediately repaired after Cas9 cleavage. It was further observed that Cas9, when solely located in the cytoplasm, inhibits HIV-1 as strongly as the nuclear Cas9, except that the cytoplasmic Cas9 does not act on the integrated HIV-1 DNA and thus cannot be used to excise the latent provirus. Together, the results suggest that Cas9/gRNA is able to target and edit HIV-1 DNA both in the cytoplasm and in the nucleus. The inhibitory effect of Cas9 on HIV-1 is attributed to both the indels in viral DNA and the reduction in the levels of viral DNA.

  6. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.

    Science.gov (United States)

    Sternberg, Samuel H; Redding, Sy; Jinek, Martin; Greene, Eric C; Doudna, Jennifer A

    2014-03-06

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

  7. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9

    Science.gov (United States)

    Sternberg, Samuel H.; Redding, Sy; Jinek, Martin; Greene, Eric C.; Doudna, Jennifer A.

    2014-03-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

  8. Engineering Plant Immunity via CRISPR/Cas13a System

    KAUST Repository

    Aljedaani, Fatimah R.

    2018-05-01

    Viral diseases constitute a major threat to the agricultural production and food security throughout the world. Plants cope with the invading viruses by triggering immune responses and small RNA interference (RNAi) systems. In prokaryotes, CRISPR/Cas systems function as an adaptive immune system to provide bacteria with resistance against invading phages and conjugative plasmids. Interestingly, CRISPR/Cas9 system was shown to interfere with eukaryotic DNA viruses and confer resistance against plant DNA viruses. The majority of the plant viruses have RNA genomes. The aim of this study is to test the ability of the newly discovered CRISPR/Cas13a immune system, that targets and cleaves single stranded RNA (ssRNA) in prokaryotes, to provide resistance against RNA viruses in plants. Here, I employ the CRISPR/Cas13a system for molecular interference against Turnip Mosaic Virus (TuMV), a plant RNA virus. The results of this study established the CRISPR/Cas13a as a molecular interference machinery against RNA viruses in plants. Specifically, my data show that the CRISPR/Cas13a machinery is able to interfere with and degrade the TuMV (TuMV-GFP) RNA genome. In conclusion, these data indicate that the CRISPR/Cas13 systems can be employed for engineering interference and durable resistance against RNA viruses in diverse plant species.

  9. Designing Surveys for Language Programs.

    Science.gov (United States)

    Brown, James Dean

    A discussion of survey methodology for investigating second language programs and instruction examines two methods: oral interviews and written questionnaires. Each method is defined, and variations are explored. For interviews, this includes individual, group, and telephone interviews. For questionnaires, this includes self-administered and…

  10. Single step production of Cas9 mRNA for zygote injection.

    Science.gov (United States)

    Redel, Bethany K; Beaton, Benjamin P; Spate, Lee D; Benne, Joshua A; Murphy, Stephanie L; O'Gorman, Chad W; Spate, Anna M; Prather, Randall S; Wells, Kevin D

    2018-03-01

    Production of Cas9 mRNA in vitro typically requires the addition of a 5´ cap and 3´ polyadenylation. A plasmid was constructed that harbored the T7 promoter followed by the EMCV IRES and a Cas9 coding region. We hypothesized that the use of the metastasis associated lung adenocarcinoma transcript 1 (Malat1) triplex structure downstream of an IRES/Cas9 expression cassette would make polyadenylation of in vitro produced mRNA unnecessary. A sequence from the mMalat1 gene was cloned downstream of the IRES/Cas9 cassette described above. An mRNA concentration curve was constructed with either commercially available Cas9 mRNA or the IRES/ Cas9/triplex, by injection into porcine zygotes. Blastocysts were genotyped to determine if differences existed in the percent of embryos modified. The concentration curve identified differences due to concentration and RNA type injected. Single step production of Cas9 mRNA provides an alternative source of Cas9 for use in zygote injections.

  11. Structure of a CRISPR-associated protein Cas2 from Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Samai, Poulami; Smith, Paul; Shuman, Stewart [Molecular Biology Program, Sloan-Kettering Institute for Cancer Research (United States)

    2010-12-01

    A 1.35 Å resolution crystal structure of Cas2 from the bacterium Desulfovibrio vulgaris (DvuCas2) is reported. CRISPRs (clustered regularly interspaced short palindromic repeats) provide bacteria and archaea with RNA-guided acquired immunity to invasive DNAs. CRISPR-associated (Cas) proteins carry out the immune effector functions. Cas2 is a universal component of the CRISPR system. Here, a 1.35 Å resolution crystal structure of Cas2 from the bacterium Desulfovibrio vulgaris (DvuCas2) is reported. DvuCas2 is a homodimer, with each protomer consisting of an N-terminal βαββαβ ferredoxin fold (amino acids 1–78) to which is appended a C-terminal segment (amino acids 79–102) that includes a short 3{sub 10}-helix and a fifth β-strand. The β5 strands align with the β4 strands of the opposite protomers, resulting in two five-stranded antiparallel β-sheets that form a sandwich at the dimer interface. The DvuCas2 dimer is stabilized by a distinctive network of hydrophilic cross-protomer side-chain interactions.

  12. Structure of a CRISPR-associated protein Cas2 from Desulfovibrio vulgaris

    International Nuclear Information System (INIS)

    Samai, Poulami; Smith, Paul; Shuman, Stewart

    2010-01-01

    A 1.35 Å resolution crystal structure of Cas2 from the bacterium Desulfovibrio vulgaris (DvuCas2) is reported. CRISPRs (clustered regularly interspaced short palindromic repeats) provide bacteria and archaea with RNA-guided acquired immunity to invasive DNAs. CRISPR-associated (Cas) proteins carry out the immune effector functions. Cas2 is a universal component of the CRISPR system. Here, a 1.35 Å resolution crystal structure of Cas2 from the bacterium Desulfovibrio vulgaris (DvuCas2) is reported. DvuCas2 is a homodimer, with each protomer consisting of an N-terminal βαββαβ ferredoxin fold (amino acids 1–78) to which is appended a C-terminal segment (amino acids 79–102) that includes a short 3 10 -helix and a fifth β-strand. The β5 strands align with the β4 strands of the opposite protomers, resulting in two five-stranded antiparallel β-sheets that form a sandwich at the dimer interface. The DvuCas2 dimer is stabilized by a distinctive network of hydrophilic cross-protomer side-chain interactions

  13. Semiotic and discursive variables in cas-based didactical engineering

    DEFF Research Database (Denmark)

    Winsløw, Carl

    2003-01-01

    CAS, didactical engeneering, Maple, semiotics, undergraduate teaching, mathematics, education, didactics......CAS, didactical engeneering, Maple, semiotics, undergraduate teaching, mathematics, education, didactics...

  14. Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response.

    Science.gov (United States)

    Heler, Robert; Wright, Addison V; Vucelja, Marija; Bikard, David; Doudna, Jennifer A; Marraffini, Luciano A

    2017-01-05

    CRISPR loci and their associated (Cas) proteins encode a prokaryotic immune system that protects against viruses and plasmids. Upon infection, a low fraction of cells acquire short DNA sequences from the invader. These sequences (spacers) are integrated in between the repeats of the CRISPR locus and immunize the host against the matching invader. Spacers specify the targets of the CRISPR immune response through transcription into short RNA guides that direct Cas nucleases to the invading DNA molecules. Here we performed random mutagenesis of the RNA-guided Cas9 nuclease to look for variants that provide enhanced immunity against viral infection. We identified a mutation, I473F, that increases the rate of spacer acquisition by more than two orders of magnitude. Our results highlight the role of Cas9 during CRISPR immunization and provide a useful tool to study this rare process and develop it as a biotechnological application. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Auditing the Functional Part of the CAS Software

    Directory of Open Access Journals (Sweden)

    Adamyk Oksana V.

    2017-11-01

    Full Text Available The article is aimed at determining the order and methodology of auditing the functional component of the software for an computer accounting system (CAS. It has been found that software auditing should be performed separately for each of its components. The components of the functional part of the CAS software are the database management system (DBMS and the application software supporting the accountance automation. For auditing of the first component part are used such techniques as general evaluation, subject check of the embedded algorithms of information processing. Auditing the client software algorithms is carried out by means of the control data method, which is reduced to such procedures as creation of another database of test data with imaginary objects and its processing by the client program, as well as introduction in a copy of the real database of imaginary objects (employees, creditors, material values and the formation of reporting. Not only the current methods of calculation or evaluation of accounting objects, but all of the software, are subject to mandatory verification. This will avoid errors if the enterprise accounting policy changes.

  16. Excision of Nucleopolyhedrovirus Form Transgenic Silkworm Using the CRISPR/Cas9 System

    Directory of Open Access Journals (Sweden)

    Zhanqi Dong

    2018-02-01

    Full Text Available The CRISPR/Cas9-mediated genome engineering has been shown to efficiently suppress infection by disrupting genes of the pathogen. We recently constructed transgenic lines expressing CRISPR/Cas9 and the double sgRNA target Bombyx mori nucleopolyhedrovirus (BmNPV immediate early-1 (ie-1 gene in the silkworm, respectively, and obtained four transgenic hybrid lines by G1 generation hybridization: Cas9(-/sgRNA(-, Cas9(+/sgRNA(-, Cas9(-/sgRNA(+, and Cas9(+/sgRNA(+. We demonstrated that the Cas9(+/sgRNA(+ transgenic lines effectively edited the target site of the BmNPV genome, and large fragment deletion was observed after BmNPV infection. Further antiviral analysis of the Cas9(+/sgRNA(+ transgenic lines shows that the median lethal dose (LD50 is 1,000-fold higher than the normal lines after inoculation with occlusion bodies. The analysis of economic characters and off-target efficiency of Cas9(+/sgRNA(+ transgenic hybrid line showed no significant difference compared with the normal lines. Our findings indicate that CRISPR/Cas9-mediated genome engineering more effectively targets the BmNPV genomes and could be utilized as an insect antiviral treatment.

  17. Excision of Nucleopolyhedrovirus Form Transgenic Silkworm Using the CRISPR/Cas9 System.

    Science.gov (United States)

    Dong, Zhanqi; Dong, Feifan; Yu, Xinbo; Huang, Liang; Jiang, Yaming; Hu, Zhigang; Chen, Peng; Lu, Cheng; Pan, Minhui

    2018-01-01

    The CRISPR/Cas9-mediated genome engineering has been shown to efficiently suppress infection by disrupting genes of the pathogen. We recently constructed transgenic lines expressing CRISPR/Cas9 and the double sgRNA target Bombyx mori nucleopolyhedrovirus (BmNPV) immediate early-1 ( ie-1 ) gene in the silkworm, respectively, and obtained four transgenic hybrid lines by G1 generation hybridization: Cas9(-)/sgRNA(-), Cas9(+)/sgRNA(-), Cas9(-)/sgRNA(+), and Cas9(+)/sgRNA(+). We demonstrated that the Cas9(+)/sgRNA(+) transgenic lines effectively edited the target site of the BmNPV genome, and large fragment deletion was observed after BmNPV infection. Further antiviral analysis of the Cas9(+)/sgRNA(+) transgenic lines shows that the median lethal dose (LD50) is 1,000-fold higher than the normal lines after inoculation with occlusion bodies. The analysis of economic characters and off-target efficiency of Cas9(+)/sgRNA(+) transgenic hybrid line showed no significant difference compared with the normal lines. Our findings indicate that CRISPR/Cas9-mediated genome engineering more effectively targets the BmNPV genomes and could be utilized as an insect antiviral treatment.

  18. Cas4 Facilitates PAM-Compatible Spacer Selection during CRISPR Adaptation

    NARCIS (Netherlands)

    Kieper, Sebastian N.; Almendros, Cristóbal; Behler, Juliane; McKenzie, Rebecca E.; Nobrega, Franklin L.; Haagsma, Anna C.; Vink, Jochem N.A.; Hess, Wolfgang R.; Brouns, Stan J.J.

    2018-01-01

    CRISPR-Cas systems adapt their immunological memory against their invaders by integrating short DNA fragments into clustered regularly interspaced short palindromic repeat (CRISPR) loci. While Cas1 and Cas2 make up the core machinery of the CRISPR integration process, various class I and II

  19. Instrument and Survey Analysis Technical Report: Program Implementation Survey. Technical Report #1112

    Science.gov (United States)

    Alonzo, Julie; Tindal, Gerald

    2011-01-01

    This technical document provides guidance to educators on the creation and interpretation of survey instruments, particularly as they relate to an analysis of program implementation. Illustrative examples are drawn from a survey of educators related to the use of the easyCBM learning system. This document includes specific sections on…

  20. Assessment of residency program outcomes via alumni surveys.

    Science.gov (United States)

    Lüer, Sonja; Aebi, Christoph

    2017-01-01

    One trend in medical education is outcomes-oriented training. Outcomes usually refer to individuals' acquisition of competencies, for example, during training in residency programs. However, little is known about outcomes of these programs. In order to fill this gap, human resource (HR) data were analyzed and alumni of a pediatric residency program were surveyed at the Department of Pediatrics, Bern University Hospital, Switzerland. Residency program outcomes (demographics, career choices, part-time or full-time work status, competencies, feedback) were assessed through in-house HR databases, publicly available data on the Internet (physician directory and practice homepages), and 2 alumni surveys (S1, S2). In all, 109 alumni met the inclusion criteria. Retention rate at the hospital was low (14%). Forty-six alumni (42%) in private practice were eligible for alumni surveys. Response rates were 87% (S1) and 61% (S2). Time intervals between 2 career decisions (selecting specialty of pediatrics vs selecting setting of private practice) varied widely (late-training decision to enter private practice). Mean employment level in private practice was 60% (range 20%-100%). Most valued rotation was emergency medicine; most desired competencies in future colleagues were the ability to work in a team, proficiency in pediatrics, and working economically. A broadened view on outcomes - beyond individuals' competency acquisition - provides informative insights into a training program, can allow for informed program updates, and guide future program development.

  1. Versatile Cas9-driven subpopulation selection toolbox for Lactococcus lactis

    NARCIS (Netherlands)

    Els, van der Simon; James, Jennelle K.; Kleerebezem, Michiel; Bron, Peter A.

    2018-01-01

    CRISPR-Cas9 technology has been exploited for the removal or replacement of genetic elements in a wide range of prokaryotes and eukaryotes. Here, we describe the extension of the Cas9 application toolbox to the industrially important dairy species Lactococcus lactis. The Cas9 expression vector

  2. Cas4 Facilitates PAM-Compatible Spacer Selection during CRISPR Adaptation

    NARCIS (Netherlands)

    Kieper, S.N.; Almendros, Cristóbal; Behler, Juliane; McKenzie, R.E.; Luzia De Nóbrega, F.; van Eijkeren-Haagsma, A.C.; Vink, J.N.A.; Hess, Wolfgang R.; Brouns, S.J.J.

    2018-01-01

    CRISPR-Cas systems adapt their immunological memory against their invaders by integrating short DNA fragments into clustered regularly interspaced short palindromic repeat (CRISPR) loci. While Cas1 and Cas2 make up the core machinery of the CRISPR integration process, various class I and II

  3. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.

    Science.gov (United States)

    Hu, Johnny H; Miller, Shannon M; Geurts, Maarten H; Tang, Weixin; Chen, Liwei; Sun, Ning; Zeina, Christina M; Gao, Xue; Rees, Holly A; Lin, Zhi; Liu, David R

    2018-04-05

    A key limitation of the use of the CRISPR-Cas9 system for genome editing and other applications is the requirement that a protospacer adjacent motif (PAM) be present at the target site. For the most commonly used Cas9 from Streptococcus pyogenes (SpCas9), the required PAM sequence is NGG. No natural or engineered Cas9 variants that have been shown to function efficiently in mammalian cells offer a PAM less restrictive than NGG. Here we use phage-assisted continuous evolution to evolve an expanded PAM SpCas9 variant (xCas9) that can recognize a broad range of PAM sequences including NG, GAA and GAT. The PAM compatibility of xCas9 is the broadest reported, to our knowledge, among Cas9 proteins that are active in mammalian cells, and supports applications in human cells including targeted transcriptional activation, nuclease-mediated gene disruption, and cytidine and adenine base editing. Notably, despite its broadened PAM compatibility, xCas9 has much greater DNA specificity than SpCas9, with substantially lower genome-wide off-target activity at all NGG target sites tested, as well as minimal off-target activity when targeting genomic sites with non-NGG PAMs. These findings expand the DNA targeting scope of CRISPR systems and establish that there is no necessary trade-off between Cas9 editing efficiency, PAM compatibility and DNA specificity.

  4. CRISPR-Cas9 technology and its application in haematological disorders

    Science.gov (United States)

    Zhang, Han; McCarty, Nami

    2018-01-01

    Summary The recent advent of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated protein 9 (Cas9) system for precise genome editing has revolutionized methodologies in haematology and oncology studies. CRISPR-Cas9 technology can be used to remove and correct genes or mutations, and to introduce site-specific therapeutic genes in human cells. Inherited haematological disorders represent ideal targets for CRISPR-Cas9-mediated gene therapy. Correcting disease-causing mutations could alleviate disease-related symptoms in the near future. The CRISPR-Cas9 system is also a useful tool for delineating molecular mechanisms involving haematological malignancies. Prior to the use of CRISPR-Cas9-mediated gene correction in humans, appropriate delivery systems with higher efficiency and specificity must be identified, and ethical guidelines for applying the technology with controllable safety must be established. Here, the latest applications of CRISPR-Cas9 technology in haematological disorders, current challenges and future directions are reviewed and discussed. PMID:27619566

  5. Quality Improvement in Otolaryngology Residency: Survey of Program Directors.

    Science.gov (United States)

    Bowe, Sarah N

    2016-02-01

    The Clinical Learning Environment Review focuses on the responsibility of the sponsoring institution for quality and patient safety. Very little information is known regarding the status of quality improvement (QI) education during otolaryngology training. The purpose of this survey is to evaluate the extent of resident and faculty participation in QI and identify opportunities for both resident curriculum and faculty development. Cross-sectional survey A 15-item survey was distributed to all 106 otolaryngology program directors. The survey was developed after an informal review of the literature regarding education in QI and patient safety. Questions were directed at the format and content of the QI curriculum, as well as barriers to implementation. There was a 39% response rate. Ninety percent of responding program directors considered education in QI important or very important to a resident's future success. Only 23% of responding programs contained an educational curriculum in QI, and only 33% monitored residents' individual outcome measures. Barriers to implementation of a QI program included inadequate number of faculty with expertise in QI (75%) and competing resident educational demands (90%). Every program director considered morbidity and mortality conferences as an integral component in QI education. Program directors recognize the importance of QI in otolaryngology practice. Unfortunately, this survey identifies a distinct lack of resources in support of these educational goals. The results highlight the need to generate a comprehensive and stepwise approach to QI for faculty development and resident instruction. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  6. Modification of ethylene sensitivity in ornamental plants using CRISPR/Cas9

    DEFF Research Database (Denmark)

    Kemp, Oliver; Favero, Bruno Trevenzoli; Hegelund, Josefine Nymark

    2017-01-01

    ; the Clustered Regularly Interspaced Palindromic Repeats (CRISPR) RNA guided Cas9 DNA nuclease (CRISPR/Cas9). CRISPR/Cas9 may be employed to introduce targeted double-stranded breaks (DSBs) at desired sites in the host genome. The DSBs will be repaired by the non-homologous end-joining (NHEJ) repair mechanism...... which often results in small indels and consequently gene knockout. The CRISPR/Cas9 system consists of a protein DNA nuclease (Cas9) which is guided to the target sequence by a small RNA molecule (sgRNA) that recognizes a 20 bp target sequence in the genome situated immediately downstream of a 3 bp...... protospacer adjacent motif (PAM). The sgRNA confers the sequence specificity of the CRISPR/Cas9 complex and may thus be designed to target virtually any sequence, a feature that has made it the method of choice within precise genetic engineering. Although most research with CRISPR/Cas9 has been conducted...

  7. Mr.CAS-A minimalistic (pure) Ruby CAS for fast prototyping and code generation

    Science.gov (United States)

    Ragni, Matteo

    There are Computer Algebra System (CAS) systems on the market with complete solutions for manipulation of analytical models. But exporting a model that implements specific algorithms on specific platforms, for target languages or for particular numerical library, is often a rigid procedure that requires manual post-processing. This work presents a Ruby library that exposes core CAS capabilities, i.e. simplification, substitution, evaluation, etc. The library aims at programmers that need to rapidly prototype and generate numerical code for different target languages, while keeping separated mathematical expression from the code generation rules, where best practices for numerical conditioning are implemented. The library is written in pure Ruby language and is compatible with most Ruby interpreters.

  8. Les tuberculomes intracraniens: à propos de 125 cas

    Science.gov (United States)

    Moufid, Faycal; Oulali, Noureddine; El Fatemi, Nizare; Gana, Rachid; Maaqili, Rachid; Bellakhdar, Fouad

    2012-01-01

    Les tuberculomes intracrâniens représentent l'une des localisations les plus graves de la tuberculose, leur incidence varie en fonction du contexte représentant 0,2% des processus intracrâniens dans les pays occidentaux et 5 à 10% des masses intracrâniennes dans les pays en voie de développement. Nous rapportons une étude rétrospective de 125 cas. L'hypertension intracrânienne (45%) et le déficit neurologique (36%) sont les signes cliniques les plus fréquents. La lésion était localisée dans 60% des cas en sus-tentoriel et dans 40% des cas en sous-tentoriel. L'approche thérapeutique a consisté en un abord direct du tuberculome dans 67 cas (53%), une biopsie stéréotaxique dans 32 cas (25%), le traitement médical en première intention sans confirmation histologique dans 26 cas (20%). Avant 1993 notre service ne disposait pas de cadre de stéréotaxie, notre attitude thérapeutique consistait soit en un abord direct de la lésion dans 70% des cas, soit un traitement antituberculeux en première intention sans confirmation histologique (30%). Cette attitude était corrélée à une mortalité et morbidité non négligeables respectivement 3% et 10%. Après 1993; le taux d'abords direct a chuté a 38%, avec 47% de biopsies stéréotaxiques et seulement 13% des patients traités par antibacillaires sans preuve histologique. Ceci s'est accompagné d'une réduction significative de mortalité a 1,4% (p = 0,0003) et de morbidité a 2% (p = 0,0027). PMID:22937196

  9. RNA-guided Transcriptional Regulation in Plants via dCas9 Chimeric Proteins

    KAUST Repository

    Baazim, Hatoon

    2014-05-01

    Developing targeted genome regulation approaches holds much promise for accelerating trait discovery and development in agricultural biotechnology. Clustered Regularly Interspaced Palindromic Repeats (CRISPRs)/CRISPR associated (Cas) system provides bacteria and archaea with an adaptive molecular immunity mechanism against invading nucleic acids through phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing purposes across a variety of cell types and organisms. Recently, the catalytically inactive Cas9 (dCas9) protein combined with guide RNAs (gRNAs) were used as a DNA-targeting platform to modulate the expression patterns in bacterial, yeast and human cells. Here, we employed this DNA-targeting system for targeted transcriptional regulation in planta by developing chimeric dCas9-based activators and repressors. For example, we fused to the C-terminus of dCas9 with the activation domains of EDLL and TAL effectors, respectively, to generate transcriptional activators, and the SRDX repression domain to generate transcriptional repressor. Our data demonstrate that the dCas9:EDLL and dCas9:TAD activators, guided by gRNAs complementary to promoter elements, induce strong transcriptional activation on episomal targets in plant cells. Moreover, our data suggest that the dCas9:SRDX repressor and the dCas9:EDLL and dCas9:TAD activators are capable of markedly repressing or activating, respectively, the transcription of an endogenous genomic target. Our data indicate that the CRISPR/dCas9:TFs DNA targeting system can be used in plants as a functional genomic tool and for biotechnological applications.

  10. Coaching and engaging. Developing teaching with CAS in High School

    DEFF Research Database (Denmark)

    Bang, Henrik Peter; Grønbæk, Niels; Larsen, Claus Richard

    The extensive use of CAS at upper secondary school in Denmark provides a laboratory for research on the development of standards for CAS teaching. The poster focuses on action research into teachers developing lessons and student activities in an ongoing collaboration between university and high ...... schools on use of CAS in mathematics teaching. Coaches1 mediate design processes, reflection and documentation, and enable sharing. We discuss coaching as a valuable part of action research, and how to draw findings from the collaboration.......The extensive use of CAS at upper secondary school in Denmark provides a laboratory for research on the development of standards for CAS teaching. The poster focuses on action research into teachers developing lessons and student activities in an ongoing collaboration between university and high...

  11. Class 2 CRISPR-Cas RNA-guided endonucleases

    DEFF Research Database (Denmark)

    Stella, Stefano; Alcón, Pablo; Montoya, Guillermo

    2017-01-01

    CRISPR-Cas is a bacterial defense system against phage infection and nucleic acid invasion. Class 2 type II CRISPR-Cas9 has also been widely used for genome engineering. Here, we review novel insights into the CRISPR class 2 type V enzymes, specifically Cpf1 and C2c1, which display different DNA-...

  12. Cas9, Cpf1 and C2c1/2/3-What's next?

    Science.gov (United States)

    Nakade, Shota; Yamamoto, Takashi; Sakuma, Tetsushi

    2017-05-04

    Since the rapid emergence of clustered regulatory interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system, developed as a genome engineering tool in 2012-2013, most researchers in the life science field have had a fixated interest in this fascinating technology. CRISPR-Cas9 is an RNA-guided DNA endonuclease system, which consists of Cas9 nuclease defining a few targeting base via protospacer adjacent motif complexed with easily customizable single guide RNA targeting around 20-bp genomic sequence. Although Streptococcus pyogenes Cas9 (SpCas9), one of the Cas9 proteins that applications in genome engineering were first demonstrated, still has wide usage because of its high nuclease activity and broad targeting range, there are several limitations such as large molecular weight and potential off-target effect. In this commentary, we describe various improvements and alternatives of CRISPR-Cas systems, including engineered Cas9 variants, Cas9 homologs, and novel Cas proteins other than Cas9. These variations enable flexible genome engineering with high efficiency and specificity, orthogonal genetic control at multiple gene loci, gene knockdown, or fluorescence imaging of transcripts mediated by RNA targeting, and beyond.

  13. Efficient CRISPR/Cas9-based gene knockout in watermelon.

    Science.gov (United States)

    Tian, Shouwei; Jiang, Linjian; Gao, Qiang; Zhang, Jie; Zong, Mei; Zhang, Haiying; Ren, Yi; Guo, Shaogui; Gong, Guoyi; Liu, Fan; Xu, Yong

    2017-03-01

    CRISPR/Cas9 system can precisely edit genomic sequence and effectively create knockout mutations in T0 generation watermelon plants. Genome editing offers great advantage to reveal gene function and generate agronomically important mutations to crops. Recently, RNA-guided genome editing system using the type II clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) has been applied to several plant species, achieving successful targeted mutagenesis. Here, we report the genome of watermelon, an important fruit crop, can also be precisely edited by CRISPR/Cas9 system. ClPDS, phytoene desaturase in watermelon, was selected as the target gene because its mutant bears evident albino phenotype. CRISPR/Cas9 system performed genome editing, such as insertions or deletions at the expected position, in transfected watermelon protoplast cells. More importantly, all transgenic watermelon plants harbored ClPDS mutations and showed clear or mosaic albino phenotype, indicating that CRISPR/Cas9 system has technically 100% of genome editing efficiency in transgenic watermelon lines. Furthermore, there were very likely no off-target mutations, indicated by examining regions that were highly homologous to sgRNA sequences. Our results show that CRISPR/Cas9 system is a powerful tool to effectively create knockout mutations in watermelon.

  14. Progress Scored in Management Information System at CAS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ CAS initiative to upgrade its management information system (MIS) is making significant progress. Recently, 116 CAS subordinates have completed their online trial operation of a MIS project at the Academy, called Academia Resource Planning (ARP), marking an important phased achievement of the initiative.

  15. Relationship between drug resistance and the clustered, regularly interspaced, short, palindromic repeat-associated protein genes cas1 and cas2 in Shigella from giant panda dung.

    Science.gov (United States)

    Ren, Lu; Deng, Lin-Hua; Zhang, Ri-Peng; Wang, Cheng-Dong; Li, De-Sheng; Xi, Li-Xin; Chen, Zhen-Rong; Yang, Rui; Huang, Jie; Zeng, Yang-Ru; Wu, Hong-Lin; Cao, San-Jie; Wu, Rui; Huang, Yong; Yan, Qi-Gui

    2017-02-01

    To detect drug resistance in Shigella obtained from the dung of the giant panda, explore the factors leading to drug resistance in Shigella, understand the characteristics of clustered, regularly interspaced, short, palindromic repeats (CRISPR), and assess the relationship between CRISPR and drug resistance. We collected fresh feces from 27 healthy giant pandas in the Giant Panda Conservation base (Wolong, China). We identified the strains of Shigella in the samples by using nucleotide sequence analysis. Further, the Kirby-Bauer paper method was used to determine drug sensitivity of the Shigella strains. CRISPR-associated protein genes cas1 and cas2 in Shigella were detected by polymerase chain reaction (PCR), and the PCR products were sequenced and compared. We isolated and identified 17 strains of Shigella from 27 samples, including 14 strains of Shigella flexneri, 2 strains of Shigella sonnei, and 1 strain of Shigella dysenteriae. Further, drug resistance to cefazolin, imipenem, and amoxicillin-clavulanic acid was identified as a serious problem, as multidrug-resistant strains were detected. Further, cas1 and cas2 showed different degrees of point mutations. The CRISPR system widely exists in Shigella and shares homology with that in Escherichia coli. The cas1 and cas 2 mutations contribute to the different levels of resistance. Point mutations at sites 3176455, 3176590, and 3176465 in cas1 (a); sites 3176989, 3176992, and 3176995 in cas1 (b); sites 3176156 and 3176236 in cas2 may affect the resistance of bacteria, cause emergence of multidrug resistance, and increase the types of drug resistance.

  16. Comparative analysis of CRISPR-Cas systems in Klebsiella genomes.

    Science.gov (United States)

    Shen, Juntao; Lv, Li; Wang, Xudong; Xiu, Zhilong; Chen, Guoqiang

    2017-04-01

    Prokaryotic CRISPR-Cas system provides adaptive immunity against invasive genetic elements. Bacteria of the genus Klebsiella are important nosocomial opportunistic pathogens. However, information of CRISPR-Cas system in Klebsiella remains largely unknown. Here, we analyzed the CRISPR-Cas systems of 68 complete genomes of Klebsiella representing four species. All the elements for CRISPR-Cas system (cas genes, repeats, leader sequences, and PAMs) were characterized. Besides the typical Type I-E and I-F CRISPR-Cas systems, a new Subtype I system located in the ABC transport system-glyoxalase region was found. The conservation of the new subtype CRISPR system between different species showed new evidence for CRISPR horizontal transfer. CRISPR polymorphism was strongly correlated both with species and multilocus sequence types. Some results indicated the function of adaptive immunity: most spacers (112 of 124) matched to prophages and plasmids and no matching housekeeping genes; new spacer acquisition was observed within the same sequence type (ST) and same clonal complex; the identical spacers were observed only in the ancient position (far from the leader) between different STs and clonal complexes. Interestingly, a high ratio of self-targeting spacers (7.5%, 31 of 416) was found in CRISPR-bearing Klebsiella pneumoniae (61%, 11 of 18). In some strains, there even were multiple full matching self-targeting spacers. Some self-targeting spacers were conserved even between different STs. These results indicated that some unknown mechanisms existed to compromise the function of self-targets of CRISPR-Cas systems in K. pneumoniae. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. CRISPR/Cas9-mediated noncoding RNA editing in human cancers.

    Science.gov (United States)

    Yang, Jie; Meng, Xiaodan; Pan, Jinchang; Jiang, Nan; Zhou, Chengwei; Wu, Zhenhua; Gong, Zhaohui

    2018-01-02

    Cancer is characterized by multiple genetic and epigenetic alterations, including a higher prevalence of mutations of oncogenes and/or tumor suppressors. Mounting evidences have shown that noncoding RNAs (ncRNAs) are involved in the epigenetic regulation of cancer genes and their associated pathways. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) system, a revolutionary genome-editing technology, has shed light on ncRNA-based cancer therapy. Here, we briefly introduce the classifications and mechanisms of CRISPR/Cas9 system. Importantly, we mainly focused on the applications of CRISPR/Cas9 system as a molecular tool for ncRNA (microRNA, long noncoding RNA and circular RNA, etc.) editing in human cancers, and the novel techniques that are based on CRISPR/Cas9 system. Additionally, the off-target effects and the corresponding solutions as well as the challenges toward CRISPR/Cas9 were also evaluated and discussed. Long- and short-ncRNAs have been employed as targets in precision oncology, and CRISPR/Cas9-mediated ncRNA editing may provide an excellent way to cure cancer.

  18. Early Childhood Program Participation, Results from the National Household Education Surveys Program of 2016. First Look. NCES 2017-101

    Science.gov (United States)

    Corcoran, Lisa; Steinley, Katrina

    2017-01-01

    This report presents findings from the Early Childhood Program Participation Survey of the National Household Education Surveys Program of 2016 (NHES:2016). The Early Childhood Program Participation Survey collected data on children's participation in relative care, nonrelative care, and center-based care arrangements. It also collected…

  19. A Survey on Teaching and Learning Recursive Programming

    Science.gov (United States)

    Rinderknecht, Christian

    2014-01-01

    We survey the literature about the teaching and learning of recursive programming. After a short history of the advent of recursion in programming languages and its adoption by programmers, we present curricular approaches to recursion, including a review of textbooks and some programming methodology, as well as the functional and imperative…

  20. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos

    Science.gov (United States)

    Tu, Zhuchi; Yang, Weili; Yan, Sen; Yin, An; Gao, Jinquan; Liu, Xudong; Zheng, Yinghui; Zheng, Jiezhao; Li, Zhujun; Yang, Su; Li, Shihua; Guo, Xiangyu; Li, Xiao-Jiang

    2017-01-01

    CRISPR-Cas9 is a powerful new tool for genome editing, but this technique creates mosaic mutations that affect the efficiency and precision of its ability to edit the genome. Reducing mosaic mutations is particularly important for gene therapy and precision genome editing. Although the mechanisms underlying the CRSIPR/Cas9-mediated mosaic mutations remain elusive, the prolonged expression and activity of Cas9 in embryos could contribute to mosaicism in DNA mutations. Here we report that tagging Cas9 with ubiquitin-proteasomal degradation signals can facilitate the degradation of Cas9 in non-human primate embryos. Using embryo-splitting approach, we found that shortening the half-life of Cas9 in fertilized zygotes reduces mosaic mutations and increases its ability to modify genomes in non-human primate embryos. Also, injection of modified Cas9 in one-cell embryos leads to live monkeys with the targeted gene modifications. Our findings suggest that modifying Cas9 activity can be an effective strategy to enhance precision genome editing. PMID:28155910

  1. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani.

    Science.gov (United States)

    Zhang, Wen-Wei; Matlashewski, Greg

    2015-07-21

    The prokaryotic CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9, an RNA-guided endonuclease, has been shown to mediate efficient genome editing in a wide variety of organisms. In the present study, the CRISPR-Cas9 system has been adapted to Leishmania donovani, a protozoan parasite that causes fatal human visceral leishmaniasis. We introduced the Cas9 nuclease into L. donovani and generated guide RNA (gRNA) expression vectors by using the L. donovani rRNA promoter and the hepatitis delta virus (HDV) ribozyme. It is demonstrated within that L. donovani mainly used homology-directed repair (HDR) and microhomology-mediated end joining (MMEJ) to repair the Cas9 nuclease-created double-strand DNA break (DSB). The nonhomologous end-joining (NHEJ) pathway appears to be absent in L. donovani. With this CRISPR-Cas9 system, it was possible to generate knockouts without selection by insertion of an oligonucleotide donor with stop codons and 25-nucleotide homology arms into the Cas9 cleavage site. Likewise, we disrupted and precisely tagged endogenous genes by inserting a bleomycin drug selection marker and GFP gene into the Cas9 cleavage site. With the use of Hammerhead and HDV ribozymes, a double-gRNA expression vector that further improved gene-targeting efficiency was developed, and it was used to make precise deletion of the 3-kb miltefosine transporter gene (LdMT). In addition, this study identified a novel single point mutation caused by CRISPR-Cas9 in LdMT (M381T) that led to miltefosine resistance, a concern for the only available oral antileishmanial drug. Together, these results demonstrate that the CRISPR-Cas9 system represents an effective genome engineering tool for L. donovani. Leishmania donovani is the causative agent of fatal visceral leishmaniasis. To understand Leishmania infection and pathogenesis and identify new drug targets for control of leishmaniasis, more-efficient ways to manipulate this parasite genome are required. In this

  2. Les synovites villonodulaires du genou: à propos de 20 cas

    Science.gov (United States)

    Margad, Omar; Boukhris, Jalal; Azriouil, Ouahb; Daoudi, Mohamed; Mortaji, Aziz; Koulali, Khalid

    2017-01-01

    La synovite villonodulaire pigmentée (SVNP) est une prolifération bénigne rare de la synoviale des articulations, des bourses séreuses et des gaines tendineuses, d'étiopathogénie inconnue. Notre travail porte sur 20 cas de SVN du genou colligés à l'hôpital militaire Avicenne de Marrakech sur une période de 9 ans allant de janvier 2000 au décembre 2009 Il vise à identifier les spécificités de cette lésion, et à étudier ses principaux aspects anatomocliniques et pronostiques. L'incidence annuelle était de 2,2 cas par an. Ils étaient 15 hommes et 5 femmes, d'âge moyen de 32,5 ans, atteints du coté droit dans 55%des cas sous un mode mono articulaire chez 18 patients et bi articulaire chez un seul. La douleur et la tuméfaction étaient présentes dans 80% des cas, une masse palpable dans un cas, un syndrome méniscal a été retenu dans un cas, une mono arthrite septique dans 3 circonstances de même qu'un kyste poplité dans 2 autres. L'atteinte était diffuse dans 14 cas (70%), localisée dans 6 cas. L'imagerie par résonnance magnétique(IRM) pratiquée chez 5 patients était évocatrice chez 3, l'arthroscopie diagnostique a été utilisée chez 2 malades. La confirmation s'est faite à chaque fois à l'examen anatomopathlogique. Le traitement a consisté en une synovectomie subtotale dans 15 cas et en l'exérèse de la tumeur dans les autres formes localisées, 2 cas présentant une destruction ostéocartilagineuse ont nécessité une arthroplastie. L'évolution a été marquée par la survenue de 2 récidives sous la forme diffuse avec un recul de 3, 7 ans. On a noté une raideur avec atrophie quadricipitale chez 3 patients et une arthrolyse a été réalisée. Un cas de SVN confirmé par l'histologie s'est révélé être 5 mois après la synovectomie totale un Synovialosarcome monophasique envahissant l'os d'où l'indication de l'amputation. PMID:29255556

  3. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

    Science.gov (United States)

    Barrangou, Rodolphe; Marraffini, Luciano A

    2014-04-24

    Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity

    Science.gov (United States)

    Barrangou, Rodolphe; Marraffini, Luciano A.

    2014-01-01

    Summary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing, and can be repurposed for numerous DNA targeting applications including transcriptional control. PMID:24766887

  5. Phage Genetic Engineering Using CRISPR–Cas Systems

    Directory of Open Access Journals (Sweden)

    Asma Hatoum-Aslan

    2018-06-01

    Full Text Available Since their discovery over a decade ago, the class of prokaryotic immune systems known as CRISPR–Cas have afforded a suite of genetic tools that have revolutionized research in model organisms spanning all domains of life. CRISPR-mediated tools have also emerged for the natural targets of CRISPR–Cas immunity, the viruses that specifically infect bacteria, or phages. Despite their status as the most abundant biological entities on the planet, the majority of phage genes have unassigned functions. This reality underscores the need for robust genetic tools to study them. Recent reports have demonstrated that CRISPR–Cas systems, specifically the three major types (I, II, and III, can be harnessed to genetically engineer phages that infect diverse hosts. Here, the mechanisms of each of these systems, specific strategies used, and phage editing efficacies will be reviewed. Due to the relatively wide distribution of CRISPR–Cas systems across bacteria and archaea, it is anticipated that these immune systems will provide generally applicable tools that will advance the mechanistic understanding of prokaryotic viruses and accelerate the development of novel technologies based on these ubiquitous organisms.

  6. System-level perturbations of cell metabolism using CRISPR/Cas9

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Jensen, Michael Krogh; Keasling, Jay

    2017-01-01

    CRISPR/Cas9 (clustered regularly interspaced palindromic repeats and the associated protein Cas9) techniques have made genome engineering and transcriptional reprogramming studies more advanced and cost-effective. For metabolic engineering purposes, the CRISPR-based tools have been applied...... previously possible. In this mini-review we highlight recent studies adopting CRISPR/Cas9 for systems-level perturbations and model-guided metabolic engineering....

  7. CAS algorithm-based optimum design of PID controller in AVR system

    International Nuclear Information System (INIS)

    Zhu Hui; Li Lixiang; Zhao Ying; Guo Yu; Yang Yixian

    2009-01-01

    This paper presents a novel design method for determining the optimal PID controller parameters of an automatic voltage regulator (AVR) system using the chaotic ant swarm (CAS) algorithm. In the tuning process of parameters, the CAS algorithm is iterated to give the optimal parameters of the PID controller based on the fitness theory, where the position vector of each ant in the CAS algorithm corresponds to the parameter vector of the PID controller. The proposed CAS-PID controllers can ensure better control system performance with respect to the reference input in comparison with GA-PID controllers. Numerical simulations are provided to verify the effectiveness and feasibility of PID controller based on CAS algorithm.

  8. Analytical program: 1975 Bikini radiological survey

    International Nuclear Information System (INIS)

    Mount, M.E.; Robison, W.L.; Thompson, S.E.; Hamby, K.O.; Prindle, A.L.; Levy, H.B.

    1976-01-01

    The analytical program for samples of soil, vegetation, and animal tissue collected during the June 1975 field survey of Bikini and Eneu islands is described. The phases of this program are discussed in chronological order: initial processing of samples, gamma spectrometry, and wet chemistry. Included are discussions of quality control programs, reproducibility of measurements, and comparisons of gamma spectrometry with wet chemistry determinations of 241 Am. Wet chemistry results are used to examine differences in Pu:Am ratios and Pu-isotope ratios as a function of the type of sample and the location where samples were collected

  9. CRISPR/Cas9 advances engineering of microbial cell factories

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Jensen, Michael Krogh; Keasling, Jay D.

    2016-01-01

    interspaced palindromic repeats (CRISPR) and its associated proteins (Cas) have become the method of choice for precision genome engineering in many organisms due to their orthogonality, versatility and efficacy. Here we review the strategies adopted for implementation of RNA-guided CRISPR/Cas9 genome editing......-RNAs will be highlighted. Finally, this review will provide a perspective on the immediate challenges and opportunities foreseen by the use of CRISPR/Cas9 genome engineering and regulation in the context of metabolic engineering....

  10. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition.

    Science.gov (United States)

    Kleinstiver, Benjamin P; Prew, Michelle S; Tsai, Shengdar Q; Nguyen, Nhu T; Topkar, Ved V; Zheng, Zongli; Joung, J Keith

    2015-12-01

    CRISPR-Cas9 nucleases target specific DNA sequences using a guide RNA but also require recognition of a protospacer adjacent motif (PAM) by the Cas9 protein. Although longer PAMs can potentially improve the specificity of genome editing, they limit the range of sequences that Cas9 orthologs can target. One potential strategy to relieve this restriction is to relax the PAM recognition specificity of Cas9. Here we used molecular evolution to modify the NNGRRT PAM of Staphylococcus aureus Cas9 (SaCas9). One variant we identified, referred to as KKH SaCas9, showed robust genome editing activities at endogenous human target sites with NNNRRT PAMs, thereby increasing SaCas9 targeting range by two- to fourfold. Using GUIDE-seq, we show that wild-type and KKH SaCas9 induce comparable numbers of off-target effects in human cells. Our strategy for evolving PAM specificity does not require structural information and therefore should be applicable to a wide range of Cas9 orthologs.

  11. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9.

    Science.gov (United States)

    Ren, Jiangtao; Zhao, Yangbing

    2017-09-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (CRISPR/Cas9) system, an RNA-guided DNA targeting technology, is triggering a revolution in the field of biology. CRISPR/Cas9 has demonstrated great potential for genetic manipulation. In this review, we discuss the current development of CRISPR/Cas9 technologies for therapeutic applications, especially chimeric antigen receptor (CAR) T cell-based adoptive immunotherapy. Different methods used to facilitate efficient CRISPR delivery and gene editing in T cells are compared. The potential of genetic manipulation using CRISPR/Cas9 system to generate universal CAR T cells and potent T cells that are resistant to exhaustion and inhibition is explored. We also address the safety concerns associated with the use of CRISPR/Cas9 gene editing and provide potential solutions and future directions of CRISPR application in the field of CAR T cell immunotherapy. As an integration-free gene insertion method, CRISPR/Cas9 holds great promise as an efficient gene knock-in platform. Given the tremendous progress that has been made in the past few years, we believe that the CRISPR/Cas9 technology holds immense promise for advancing immunotherapy.

  12. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    Jiangtao Ren

    2017-04-01

    Full Text Available ABSTRACT The clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated 9 (CRISPR/Cas9 system, an RNA-guided DNA targeting technology, is triggering a revolution in the field of biology. CRISPR/Cas9 has demonstrated great potential for genetic manipulation. In this review, we discuss the current development of CRISPR/Cas9 technologies for therapeutic applications, especially chimeric antigen receptor (CAR T cell-based adoptive immunotherapy. Different methods used to facilitate efficient CRISPR delivery and gene editing in T cells are compared. The potential of genetic manipulation using CRISPR/Cas9 system to generate universal CAR T cells and potent T cells that are resistant to exhaustion and inhibition is explored. We also address the safety concerns associated with the use of CRISPR/Cas9 gene editing and provide potential solutions and future directions of CRISPR application in the field of CAR T cell immunotherapy. As an integration-free gene insertion method, CRISPR/Cas9 holds great promise as an efficient gene knock-in platform. Given the tremendous progress that has been made in the past few years, we believe that the CRISPR/Cas9 technology holds immense promise for advancing immunotherapy.

  13. Apport de l'imagerie dans le diagnostic des sacroiliites infectieuses : à propos de 19 cas

    Science.gov (United States)

    Abid, Hanen; Chaabouni, Salim; Frikha, Faten; Toumi, Nozha; Souissi, Basma; Lahiani, Dorra; Bahloul, Zouhir; Ben Mahfoudh, Khaireddine

    2014-01-01

    Les sacro-iliites infectieuses méritent d’être mieux connues. Leur diagnostic est souvent retardé en raison d'une symptomatologie trompeuse et des diffcultés d'exploration de l'articulation sacro-iliaque. Notre travail est basé sur une étude rétrospective portant sur les cas de SII, recueillis sur une période comprise entre 1997 et 2008 dans notre centre universitaire Sfax-Tunisie. Le diagnostic de sacro-iliite était retenu en présence d'arguments cliniques et radiologiques d'atteinte sacroiliaque. Nous rapportons dix neuf cas de sacroiliites infectieuses (10 hommes et 9 femmes), avec un âge moyen de 32 ans. L'atteinte était unilatérale dans tous les cas. Les radiographies standard faites dans tous les cas ont été suggestives dans 14 cas et normales dans les autres cas. La TDM faite dans 13 cas a montré, un abcès des parties molles dans 8 cas et un séquestre osseux dans 2 cas. L'IRM réalisée dans 8 cas, a objectivé une infiltration des parties molles dans tous les cas et un abcès dans 3 cas. Le germe a été identifié dans 9 cas (3 cas de tuberculose, 3 cas de brucellose, 2 sacro-iliites à pyogène et un cas de candidose). Cette identification était faite par biopsie dans 3 cas, hémocultures dans 2 cas, prélèvement au niveau de la porte d'entrée dans 1 cas et sérodiagnostic dans 3 cas. Pour les autres cas, l'origine pyogène a été retenue sur des arguments cliniques et biologiques. L'imagerie joue un rôle primordial dans le diagnostic précoce et l'orientation étiologique d'une sacroiliite infectieuse. PMID:25120884

  14. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.

    Science.gov (United States)

    Ma, Xingliang; Zhu, Qinlong; Chen, Yuanling; Liu, Yao-Guang

    2016-07-06

    The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein9 (Cas9) genome editing system (CRISPR/Cas9) is adapted from the prokaryotic type II adaptive immunity system. The CRISPR/Cas9 tool surpasses other programmable nucleases, such as ZFNs and TALENs, for its simplicity and high efficiency. Various plant-specific CRISPR/Cas9 vector systems have been established for adaption of this technology to many plant species. In this review, we present an overview of current advances on applications of this technology in plants, emphasizing general considerations for establishment of CRISPR/Cas9 vector platforms, strategies for multiplex editing, methods for analyzing the induced mutations, factors affecting editing efficiency and specificity, and features of the induced mutations and applications of the CRISPR/Cas9 system in plants. In addition, we provide a perspective on the challenges of CRISPR/Cas9 technology and its significance for basic plant research and crop genetic improvement. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  15. RNA virus interference via CRISPR/Cas13a system in plants

    KAUST Repository

    Aman, Rashid

    2017-11-04

    CRISPR/Cas systems confer immunity against invading nucleic acids and phages in bacteria and archaea. CRISPR/Cas13a (known previously as C2c2) is a class 2 type VI-A ribonuclease capable of targeting and cleaving single stranded RNA (ssRNA) molecules of the phage genome. Here, we employ CRISPR/Cas13a to engineer interference with an RNA virus, Turnip Mosaic Virus (TuMV), in plants. CRISPR/Cas13a produced interference against green fluorescent protein (GFP) expressing TuMV in transient assays and stable overexpression lines of Nicotiana benthamiana. crRNAs targeting the HC-Pro and GFP sequences exhibited better interference than those targeting other regions such as coat protein (CP) sequence. Cas13a can also process pre-crRNAs into functional crRNAs. Our data indicate that CRISPR/Cas13a can be used for engineering interference against RNA viruses, providing a potential novel mechanism for RNA-guided immunity against RNA viruses, and for other RNA manipulations in plants.

  16. Viesnīcas pārvaldības sistēma

    OpenAIRE

    Ščablinska, Elvīra

    2011-01-01

    Viesnīcas pārvaldības sistēma ir paredzēta viesnīcām, kas nodarbojas ar viesnīcas viesu izmitināšanu, ēdināšanu un SPA pakalpojumu piedāvāšanu. Tā var palīdzēt efektīvi organizēt viesnīcas numuru rezervēšanu, pieraksta veikšanu uz SPA procedūrām, viesnīcas restorāna darbības pārvaldību un informēt interesentus par viesnīcas aktualitātēm. Kā arī ļauj lietotājiem rezervēt viesnīcas numuru, pierakstīties uz SPA procedūrām, rezervēt galdiņu restorānā tiešsaistē, kas ir ērts veids kā plānot savu l...

  17. Exploiting CRISPR/Cas: Interference Mechanisms and Applications

    Directory of Open Access Journals (Sweden)

    André Plagens

    2013-07-01

    Full Text Available The discovery of biological concepts can often provide a framework for the development of novel molecular tools, which can help us to further understand and manipulate life. One recent example is the elucidation of the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas that protects bacteria and archaea against viruses or conjugative plasmids. The immunity is based on small RNA molecules that are incorporated into versatile multi-domain proteins or protein complexes and specifically target viral nucleic acids via base complementarity. CRISPR/Cas interference machines are utilized to develop novel genome editing tools for different organisms. Here, we will review the latest progress in the elucidation and application of prokaryotic CRISPR/Cas systems and discuss possible future approaches to exploit the potential of these interference machineries.

  18. Exploiting CRISPR/Cas: Interference Mechanisms and Applications

    Science.gov (United States)

    Richter, Hagen; Randau, Lennart; Plagens, André

    2013-01-01

    The discovery of biological concepts can often provide a framework for the development of novel molecular tools, which can help us to further understand and manipulate life. One recent example is the elucidation of the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) that protects bacteria and archaea against viruses or conjugative plasmids. The immunity is based on small RNA molecules that are incorporated into versatile multi-domain proteins or protein complexes and specifically target viral nucleic acids via base complementarity. CRISPR/Cas interference machines are utilized to develop novel genome editing tools for different organisms. Here, we will review the latest progress in the elucidation and application of prokaryotic CRISPR/Cas systems and discuss possible future approaches to exploit the potential of these interference machineries. PMID:23857052

  19. Cell-type-specific genome editing with a microRNA-responsive CRISPR–Cas9 switch

    Science.gov (United States)

    Hirosawa, Moe; Fujita, Yoshihiko; Parr, Callum J. C.; Hayashi, Karin; Kashida, Shunnichi; Hotta, Akitsu; Woltjen, Knut

    2017-01-01

    Abstract The CRISPR–Cas9 system is a powerful genome-editing tool useful in a variety of biotechnology and biomedical applications. Here we developed a synthetic RNA-based, microRNA (miRNA)-responsive CRISPR–Cas9 system (miR-Cas9 switch) in which the genome editing activity of Cas9 can be modulated through endogenous miRNA signatures in mammalian cells. We created miR-Cas9 switches by using a miRNA-complementary sequence in the 5΄-UTR of mRNA encoding Streptococcus pyogenes Cas9. The miR-21-Cas9 or miR-302-Cas9 switches selectively and efficiently responded to miR-21-5p in HeLa cells or miR-302a-5p in human induced pluripotent stem cells, and post-transcriptionally attenuated the Cas9 activity only in the target cells. Moreover, the miR-Cas9 switches could differentially control the genome editing by sensing endogenous miRNA activities within a heterogeneous cell population. Our miR-Cas9 switch system provides a promising framework for cell-type selective genome editing and cell engineering based on intracellular miRNA information. PMID:28525578

  20. Genetic and epigenetic control of gene expression by CRISPR–Cas systems

    Science.gov (United States)

    Lo, Albert; Qi, Lei

    2017-01-01

    The discovery and adaption of bacterial clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) systems has revolutionized the way researchers edit genomes. Engineering of catalytically inactivated Cas variants (nuclease-deficient or nuclease-deactivated [dCas]) combined with transcriptional repressors, activators, or epigenetic modifiers enable sequence-specific regulation of gene expression and chromatin state. These CRISPR–Cas-based technologies have contributed to the rapid development of disease models and functional genomics screening approaches, which can facilitate genetic target identification and drug discovery. In this short review, we will cover recent advances of CRISPR–dCas9 systems and their use for transcriptional repression and activation, epigenome editing, and engineered synthetic circuits for complex control of the mammalian genome. PMID:28649363

  1. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    Science.gov (United States)

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.

  2. Production of genome-edited pluripotent stem cells and mice by CRISPR/Cas.

    Science.gov (United States)

    Horii, Takuro; Hatada, Izuho

    2016-01-01

    Clustered regularly at interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) nucleases, so-called CRISPR/Cas, was recently developed as an epoch-making genome engineering technology. This system only requires Cas9 nuclease and single-guide RNA complementary to a target locus. CRISPR/Cas enables the generation of knockout cells and animals in a single step. This system can also be used to generate multiple mutations and knockin in a single step, which is not possible using other methods. In this review, we provide an overview of genome editing by CRISPR/Cas in pluripotent stem cells and mice.

  3. Antiviral Goes Viral: Harnessing CRISPR/Cas9 to Combat Viruses in Humans.

    Science.gov (United States)

    Soppe, Jasper Adriaan; Lebbink, Robert Jan

    2017-10-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems are RNA-guided sequence-specific prokaryotic antiviral immune systems. In prokaryotes, small RNA molecules guide Cas effector endonucleases to invading foreign genetic elements in a sequence-dependent manner, resulting in DNA cleavage by the endonuclease upon target binding. A rewired CRISPR/Cas9 system can be used for targeted and precise genome editing in eukaryotic cells. CRISPR/Cas has also been harnessed to target human pathogenic viruses as a potential new antiviral strategy. Here, we review recent CRISPR/Cas9-based approaches to combat specific human viruses in humans and discuss challenges that need to be overcome before CRISPR/Cas9 may be used in the clinic as an antiviral strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Methods for decoding Cas9 protospacer adjacent motif (PAM) sequences: A brief overview.

    Science.gov (United States)

    Karvelis, Tautvydas; Gasiunas, Giedrius; Siksnys, Virginijus

    2017-05-15

    Recently the Cas9, an RNA guided DNA endonuclease, emerged as a powerful tool for targeted genome manipulations. Cas9 protein can be reprogrammed to cleave, bind or nick any DNA target by simply changing crRNA sequence, however a short nucleotide sequence, termed PAM, is required to initiate crRNA hybridization to the DNA target. PAM sequence is recognized by Cas9 protein and must be determined experimentally for each Cas9 variant. Exploration of Cas9 orthologs could offer a diversity of PAM sequences and novel biochemical properties that may be beneficial for genome editing applications. Here we briefly review and compare Cas9 PAM identification assays that can be adopted for other PAM-dependent CRISPR-Cas systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. CRISPR/Cas systems: new players in gene regulation and bacterial physiology

    Directory of Open Access Journals (Sweden)

    David eWeiss

    2014-04-01

    Full Text Available CRISPR-Cas systems are bacterial defenses against foreign nucleic acids derived from bacteriophages, plasmids or other sources. These systems are targeted in an RNA-dependent, sequence-specific manner, and are also adaptive, providing protection against previously encountered foreign elements. In addition to their canonical function in defense against foreign nucleic acid, their roles in various aspects of bacterial physiology are now being uncovered. We recently revealed a role for a Cas9-based Type II CRISPR-Cas system in the control of endogenous gene expression, a novel form of prokaryotic gene regulation. Cas9 functions in association with two small RNAs to target and alter the stability of an endogenous transcript encoding a bacterial lipoprotein (BLP. Since BLPs are recognized by the host innate immune protein Toll-like Receptor 2 (TLR2, CRISPR-Cas-mediated repression of BLP expression facilitates evasion of TLR2 by the intracellular bacterial pathogen Francisella novicida, and is essential for its virulence. Here we describe the Cas9 regulatory system in detail, as well as data on its role in controlling virulence traits of Neisseria meningitidis and Campylobacter jejuni. We also discuss potential roles of CRISPR-Cas systems in the response to envelope stress and other aspects of bacterial physiology. Since ~45% of bacteria and ~83% of Archaea encode these machineries, the newly appreciated regulatory functions of CRISPR-Cas systems are likely to play broad roles in controlling the pathogenesis and physiology of diverse prokaryotes.

  6. Generic radiological characterization protocol for surveys conducted for DOE remedial action programs

    International Nuclear Information System (INIS)

    Berven, B.A.; Cottrell, W.D.; Leggett, R.W.; Little, C.A.; Myrick, T.E.; Goldsmith, W.A.; Haywood, F.F.

    1986-05-01

    This report describes goals and methodology that can be used by radiological survey contractors in surveys at properties associated with the Department of Energy's remedial action programs. The description includes: (1) a general discussion of the history of the remedial action programs; (2) the types of surveys that may be employed by the Radiological Survey Activities (RASA) contractor; (3) generic survey methods that may be used during radiological surveys; and (4) a format for presenting information and data in a survey report. 9 refs

  7. The use of social media in dental hygiene programs: a survey of program directors.

    Science.gov (United States)

    Henry, Rachel K; Pieren, Jennifer A

    2014-08-01

    The use of social media and social networking sites has become increasingly common by the current generation of students. Colleges and universities are using social media and social networking sites to advertise, engage and recruit prospective students. The purpose of this study was to evaluate how social media is being used in dental hygiene program admissions and policy. Researchers developed a survey instrument investigating the use of social media. The survey included questions about demographic information, personal use of social media, program use of social media, social media use in admissions and social media policies. An email was sent to 321 dental hygiene program directors asking them to complete the survey. All participants were provided 4 weeks to complete the survey, and 2 reminder emails were sent. A total of 155 responses were received (48.3% response rate). While 84% of respondents indicated their program had a web page, only 20% had an official Facebook page for the program and 2% had a Twitter page. Thirty-five percent had a program policy specifically addressing the use of social media and 31% indicated that their university or institution had a policy. Only 4% of programs evaluate a potential student's Internet presence, mostly by searching on Facebook. Statistically significant differences (p≤0.05) were noted between those respondents with more personal social media accounts and those with fewer accounts, as those with more accounts were more likely to evaluate a potential student's Internet presence. Open ended responses included concern about social media issues, but some uncertainty on how to handle social media in the program. The concern for social media and professionalism was evident and more research and discussion in this area is warranted. Social media is currently being used in a variety of ways in dental hygiene programs, but not in the area of admissions. There is some uncertainty about the role social media should play in a

  8. Assessment of residency program outcomes via alumni surveys

    Directory of Open Access Journals (Sweden)

    Lüer S

    2017-04-01

    Full Text Available Sonja Lüer, Christoph Aebi Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland Background: One trend in medical education is outcomes-oriented training. Outcomes usually refer to individuals’ acquisition of competencies, for example, during training in residency programs. However, little is known about outcomes of these programs. In order to fill this gap, human resource (HR data were analyzed and alumni of a pediatric residency program were surveyed at the Department of Pediatrics, Bern University Hospital, Switzerland.Methods: Residency program outcomes (demographics, career choices, part-time or full-time work status, competencies, feedback were assessed through in-house HR databases, publicly available data on the Internet (physician directory and practice homepages, and 2 alumni surveys (S1, S2. Results: In all, 109 alumni met the inclusion criteria. Retention rate at the hospital was low (14%. Forty-six alumni (42% in private practice were eligible for alumni surveys. Response rates were 87% (S1 and 61% (S2. Time intervals between 2 career decisions (selecting specialty of pediatrics vs selecting setting of private practice varied widely (late-training decision to enter private practice. Mean employment level in private practice was 60% (range 20%–100%. Most valued rotation was emergency medicine; most desired competencies in future colleagues were the ability to work in a team, proficiency in pediatrics, and working economically.Conclusion: A broadened view on outcomes – beyond individuals’ competency acquisition – provides informative insights into a training program, can allow for informed program updates, and guide future program development. Keywords: medical education, career choice, pediatrics, private practice

  9. Survey of international personnel radiation dosimetry programs

    International Nuclear Information System (INIS)

    Swaja, R.E.

    1985-04-01

    In September of 1983, a mail survey was conducted to determine the status of external personnel gamma and neutron radiation dosimetry programs at international agencies. A total of 130 agencies participated in this study including military, regulatory, university, hospital, laboratory, and utility facilities. Information concerning basic dosimeter types, calibration sources, calibration phantoms, corrections to dosimeter responses, evaluating agencies, dose equivalent reporting conventions, ranges of typical or expected dose equivalents, and degree of satisfaction with existing systems was obtained for the gamma and neutron personnel monitoring programs at responding agencies. Results of this survey indicate that to provide the best possible occupational radiation monitoring programs and to improve dosimetry accuracy in performance studies, facility dosimetrists, regulatory and standards agencies, and research laboratories must act within their areas of responsibility to become familiar with their radiation monitoring systems, establish common reporting guidelines and performance standards, and provide opportunities for dosimetry testing and evaluation. 14 references, 10 tables

  10. Supplementary Material for: CRISPR/Cas9-mediated viral interference in plants

    KAUST Repository

    Ali, Zahir; Abulfaraj, Aala A.; Idris, Ali; Ali, Shakila; Tashkandi, Manal; Mahfouz, Magdy

    2015-01-01

    Abstract Background The CRISPR/Cas9 system provides bacteria and archaea with molecular immunity against invading phages and conjugative plasmids. Recently, CRISPR/Cas9 has been used for targeted genome editing in diverse eukaryotic species. Results In this study, we investigate whether the CRISPR/Cas9 system could be used in plants to confer molecular immunity against DNA viruses. We deliver sgRNAs specific for coding and non-coding sequences of tomato yellow leaf curl virus (TYLCV) into Nicotiana benthamiana plants stably overexpressing the Cas9 endonuclease, and subsequently challenge these plants with TYLCV. Our data demonstrate that the CRISPR/Cas9 system targeted TYLCV for degradation and introduced mutations at the target sequences. All tested sgRNAs exhibit interference activity, but those targeting the stem-loop sequence within the TYLCV origin of replication in the intergenic region (IR) are the most effective. N. benthamiana plants expressing CRISPR/Cas9 exhibit delayed or reduced accumulation of viral DNA, abolishing or significantly attenuating symptoms of infection. Moreover, this system could simultaneously target multiple DNA viruses. Conclusions These data establish the efficacy of the CRISPR/Cas9 system for viral interference in plants, thereby extending the utility of this technology and opening the possibility of producing plants resistant to multiple viral infections.

  11. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.

    Science.gov (United States)

    Liu, Chang; Zhang, Li; Liu, Hao; Cheng, Kun

    2017-11-28

    The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. CATO--A Guided User Interface for Different CAS

    Science.gov (United States)

    Janetzko, Hans-Dieter

    2017-01-01

    CATO is a new user interface, written in Java and developed by the author as a response to the significant difficulties faced by students who only sporadically use computer algebra systems (CAS). The usage of CAS in mathematical lectures should be an integral part of mathematical instruction. However, difficulties arise for those students who have…

  13. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.

    Science.gov (United States)

    Liu, Jiao; Wang, Yu; Lu, Yujiao; Zheng, Ping; Sun, Jibin; Ma, Yanhe

    2017-11-16

    Corynebacterium glutamicum is an important industrial workhorse and advanced genetic engineering tools are urgently demanded. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) have revolutionized the field of genome engineering. The CRISPR/Cas9 system that utilizes NGG as protospacer adjacent motif (PAM) and has good targeting specificity can be developed into a powerful tool for efficient and precise genome editing of C. glutamicum. Herein, we developed a versatile CRISPR/Cas9 genome editing toolbox for C. glutamicum. Cas9 and gRNA expression cassettes were reconstituted to combat Cas9 toxicity and facilitate effective termination of gRNA transcription. Co-transformation of Cas9 and gRNA expression plasmids was exploited to overcome high-frequency mutation of cas9, allowing not only highly efficient gene deletion and insertion with plasmid-borne editing templates (efficiencies up to 60.0 and 62.5%, respectively) but also simple and time-saving operation. Furthermore, CRISPR/Cas9-mediated ssDNA recombineering was developed to precisely introduce small modifications and single-nucleotide changes into the genome of C. glutamicum with efficiencies over 80.0%. Notably, double-locus editing was also achieved in C. glutamicum. This toolbox works well in several C. glutamicum strains including the widely-used strains ATCC 13032 and ATCC 13869. In this study, we developed a CRISPR/Cas9 toolbox that could facilitate markerless gene deletion, gene insertion, precise base editing, and double-locus editing in C. glutamicum. The CRISPR/Cas9 toolbox holds promise for accelerating the engineering of C. glutamicum and advancing its application in the production of biochemicals and biofuels.

  14. Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch.

    Science.gov (United States)

    Hirosawa, Moe; Fujita, Yoshihiko; Parr, Callum J C; Hayashi, Karin; Kashida, Shunnichi; Hotta, Akitsu; Woltjen, Knut; Saito, Hirohide

    2017-07-27

    The CRISPR-Cas9 system is a powerful genome-editing tool useful in a variety of biotechnology and biomedical applications. Here we developed a synthetic RNA-based, microRNA (miRNA)-responsive CRISPR-Cas9 system (miR-Cas9 switch) in which the genome editing activity of Cas9 can be modulated through endogenous miRNA signatures in mammalian cells. We created miR-Cas9 switches by using a miRNA-complementary sequence in the 5΄-UTR of mRNA encoding Streptococcus pyogenes Cas9. The miR-21-Cas9 or miR-302-Cas9 switches selectively and efficiently responded to miR-21-5p in HeLa cells or miR-302a-5p in human induced pluripotent stem cells, and post-transcriptionally attenuated the Cas9 activity only in the target cells. Moreover, the miR-Cas9 switches could differentially control the genome editing by sensing endogenous miRNA activities within a heterogeneous cell population. Our miR-Cas9 switch system provides a promising framework for cell-type selective genome editing and cell engineering based on intracellular miRNA information. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. CRISPR/Cas9-Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development.

    Science.gov (United States)

    Okoli, Arinze; Okeke, Malachy I; Tryland, Morten; Moens, Ugo

    2018-01-22

    The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them.

  16. Applications of the CRISPR-Cas9 system in kidney research.

    Science.gov (United States)

    Higashijima, Yoshiki; Hirano, Seiichi; Nangaku, Masaomi; Nureki, Osamu

    2017-08-01

    The recently discovered clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) is an RNA-guided DNA nuclease, and has been harnessed for the development of simple, efficient, and relatively inexpensive technologies to precisely manipulate the genomic information in virtually all cell types and organisms. The CRIPSR-Cas9 systems have already been effectively used to disrupt multiple genes simultaneously, create conditional alleles, and generate reporter proteins, even in vivo. The ability of Cas9 to target a specific genomic region has also been exploited for various applications, such as transcriptional regulation, epigenetic control, and chromosome labeling. Here we first describe the molecular mechanism of the RNA-guided DNA targeting by the CRISPR-Cas9 system and then outline the current applications of this system as a genome-editing tool in mice and other species, to better model and study human diseases. We also discuss the practical and potential uses of the CRISPR-Cas9 system in kidney research and highlight the further applications of this technology beyond genome editing. Undoubtedly, the CRISPR-Cas9 system holds enormous potential for revolutionizing and accelerating kidney research and therapeutic applications in the future. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  17. A Survey of Campus Coordinators of Undergraduate Research Programs

    Science.gov (United States)

    Hensley, Merinda Kaye; Shreeves, Sarah L.; Davis-Kahl, Stephanie

    2015-01-01

    Interest in supporting undergraduate research programs continues to grow within academic librarianship. This article presents how undergraduate research program coordinators perceive and value library support of their programs. Undergraduate research coordinators from a variety of institutions were surveyed on which elements of libraries and…

  18. RNA virus interference via CRISPR/Cas13a system in plants

    KAUST Repository

    Aman, Rashid

    2018-01-04

    CRISPR/Cas systems confer immunity against invading nucleic acids and phages in bacteria and archaea. CRISPR/Cas13a (known previously as C2c2) is a class 2 type VI-A ribonuclease capable of targeting and cleaving single-stranded RNA (ssRNA) molecules of the phage genome. Here, we employ CRISPR/Cas13a to engineer interference with an RNA virus, Turnip Mosaic Virus (TuMV), in plants.CRISPR/Cas13a produces interference against green fluorescent protein (GFP)-expressing TuMV in transient assays and stable overexpression lines of Nicotiana benthamiana. CRISPR RNA (crRNAs) targeting the HC-Pro and GFP sequences exhibit better interference than those targeting other regions such as coat protein (CP) sequence. Cas13a can also process pre-crRNAs into functional crRNAs.Our data indicate that CRISPR/Cas13a can be used for engineering interference against RNA viruses, providing a potential novel mechanism for RNA-guided immunity against RNA viruses and for other RNA manipulations in plants.

  19. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation

    KAUST Repository

    Mahas, Ahmed

    2017-11-29

    Genome editing has enabled broad advances and novel approaches in studies of gene function and structure; now, emerging methods aim to precisely engineer post-transcriptional processes. Developing precise, efficient molecular tools to alter the transcriptome holds great promise for biotechnology and synthetic biology applications. Different approaches have been employed for targeted degradation of RNA species in eukaryotes, but they lack programmability and versatility, thereby limiting their utility for diverse applications. The CRISPR/Cas9 system has been harnessed for genome editing in many eukaryotic species and, using a catalytically inactive Cas9 variant, the CRISPR/dCas9 system has been repurposed for transcriptional regulation. Recent studies have used other CRISPR/Cas systems for targeted RNA degradation and RNA-based manipulations. For example, Cas13a, a Type VI-A endonuclease, has been identified as an RNA-guided RNA ribonuclease and used for manipulation of RNA. Here, we discuss different modalities for targeted RNA interference with an emphasis on the potential applications of CRISPR/Cas systems as programmable transcriptional regulators for broad uses, including functional biology, biotechnology, and synthetic biology applications.

  20. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation

    KAUST Repository

    Mahas, Ahmed; Neal Stewart, C.; Mahfouz, Magdy M.

    2017-01-01

    Genome editing has enabled broad advances and novel approaches in studies of gene function and structure; now, emerging methods aim to precisely engineer post-transcriptional processes. Developing precise, efficient molecular tools to alter the transcriptome holds great promise for biotechnology and synthetic biology applications. Different approaches have been employed for targeted degradation of RNA species in eukaryotes, but they lack programmability and versatility, thereby limiting their utility for diverse applications. The CRISPR/Cas9 system has been harnessed for genome editing in many eukaryotic species and, using a catalytically inactive Cas9 variant, the CRISPR/dCas9 system has been repurposed for transcriptional regulation. Recent studies have used other CRISPR/Cas systems for targeted RNA degradation and RNA-based manipulations. For example, Cas13a, a Type VI-A endonuclease, has been identified as an RNA-guided RNA ribonuclease and used for manipulation of RNA. Here, we discuss different modalities for targeted RNA interference with an emphasis on the potential applications of CRISPR/Cas systems as programmable transcriptional regulators for broad uses, including functional biology, biotechnology, and synthetic biology applications.

  1. Efficient fdCas9 Synthetic Endonuclease with Improved Specificity for Precise Genome Engineering

    KAUST Repository

    Aouida, Mustapha

    2015-07-30

    The Cas9 endonuclease is used for genome editing applications in diverse eukaryotic species. A high frequency of off-target activity has been reported in many cell types, limiting its applications to genome engineering, especially in genomic medicine. Here, we generated a synthetic chimeric protein between the catalytic domain of the FokI endonuclease and the catalytically inactive Cas9 protein (fdCas9). A pair of guide RNAs (gRNAs) that bind to sense and antisense strands with a defined spacer sequence range can be used to form a catalytically active dimeric fdCas9 protein and generate double-strand breaks (DSBs) within the spacer sequence. Our data demonstrate an improved catalytic activity of the fdCas9 endonuclease, with a spacer range of 15–39 nucleotides, on surrogate reporters and genomic targets. Furthermore, we observed no detectable fdCas9 activity at known Cas9 off-target sites. Taken together, our data suggest that the fdCas9 endonuclease variant is a superior platform for genome editing applications in eukaryotic systems including mammalian cells.

  2. Efficient fdCas9 Synthetic Endonuclease with Improved Specificity for Precise Genome Engineering

    KAUST Repository

    Aouida, Mustapha; Eid, Ayman; Ali, Zahir; Cradick, Thomas; Lee, Ciaran; Deshmukh, Harshavardhan; Atef, Ahmed; Abu Samra, Dina Bashir Kamil; Gadhoum, Samah Zeineb; Merzaban, Jasmeen; Bao, Gang; Mahfouz, Magdy M.

    2015-01-01

    The Cas9 endonuclease is used for genome editing applications in diverse eukaryotic species. A high frequency of off-target activity has been reported in many cell types, limiting its applications to genome engineering, especially in genomic medicine. Here, we generated a synthetic chimeric protein between the catalytic domain of the FokI endonuclease and the catalytically inactive Cas9 protein (fdCas9). A pair of guide RNAs (gRNAs) that bind to sense and antisense strands with a defined spacer sequence range can be used to form a catalytically active dimeric fdCas9 protein and generate double-strand breaks (DSBs) within the spacer sequence. Our data demonstrate an improved catalytic activity of the fdCas9 endonuclease, with a spacer range of 15–39 nucleotides, on surrogate reporters and genomic targets. Furthermore, we observed no detectable fdCas9 activity at known Cas9 off-target sites. Taken together, our data suggest that the fdCas9 endonuclease variant is a superior platform for genome editing applications in eukaryotic systems including mammalian cells.

  3. Predominance of Single Prophage Carrying a CRISPR/cas System in "Candidatus Liberibacter asiaticus" Strains in Southern China.

    Science.gov (United States)

    Zheng, Zheng; Bao, Minli; Wu, Fengnian; Chen, Jianchi; Deng, Xiaoling

    2016-01-01

    "Candidatus Liberibacter asiaticus" (CLas) is an uncultureable α-proteobacterium associated with citrus Huanglongbing (HLB, yellow shoot disease), a highly destructive disease affecting citrus production worldwide. HLB was observed in Guangdong Province of China over a hundred years ago and remains endemic there. Little is known about CLas biology due to its uncultureable nature. This study began with the genome sequence analysis of CLas Strain A4 from Guangdong in the prophage region. Within the two currently known prophage types, Type 1 (SC1-like) and Type 2 (SC2-like), A4 genome contained only a Type 2 prophage, CGdP2, namely. An analysis on CLas strains collected in Guangdong showed that Type 2 prophage dominated the bacterial population (82.6%, 71/86). An extended survey covering five provinces in southern China also revealed the predominance of single prophage (Type 1 or Type 2) in the CLas population (90.4%, 169/187). CLas strains with two and no prophage types accounted for 7.2% and 2.8%, respectively. In silico analyses on CGdP2 identified a CRISPR (clustered regularly interspaced short palindromic repeats)/cas (CRISPR-associated protein genes) system, consisting of four 22 bp repeats, three 23 bp spacers and 9 predicted cas. Similar CRISPR/cas systems were detected in all 10 published CLas prophages as well as 13 CLas field strains in southern China. Both Type 1 and Type 2 prophages shared almost identical sequences in spacer 1 and 3 but not spacer 2. Considering that the function of a CRISPR/cas system was to destroy invading DNA, it was hypothesized that a pre-established CLas prophage could use its CRISPR/cas system guided by spacer 1 and/or 3 to defeat the invasion of the other phage/prophage. This hypothesis explained the predominance of single prophage type in the CLas population in southern China. This is the first report of CRISPR/cas system in the "Ca. Liberibacter" genera.

  4. Suppression of HBV replication by the expression of nickase- and nuclease dead-Cas9.

    Science.gov (United States)

    Kurihara, Takeshi; Fukuhara, Takasuke; Ono, Chikako; Yamamoto, Satomi; Uemura, Kentaro; Okamoto, Toru; Sugiyama, Masaya; Motooka, Daisuke; Nakamura, Shota; Ikawa, Masato; Mizokami, Masashi; Maehara, Yoshihiko; Matsuura, Yoshiharu

    2017-07-21

    Complete removal of hepatitis B virus (HBV) DNA from nuclei is difficult by the current therapies. Recent reports have shown that a novel genome-editing tool using Cas9 with a single-guide RNA (sgRNA) system can cleave the HBV genome in vitro and in vivo. However, induction of a double-strand break (DSB) on the targeted genome by Cas9 risks undesirable off-target cleavage on the host genome. Nickase-Cas9 cleaves a single strand of DNA, and thereby two sgRNAs are required for inducing DSBs. To avoid Cas9-induced off-target mutagenesis, we examined the effects of the expressions of nickase-Cas9 and nuclease dead Cas9 (d-Cas9) with sgRNAs on HBV replication. The expression of nickase-Cas9 with a pair of sgRNAs cleaved the target HBV genome and suppressed the viral-protein expression and HBV replication in vitro. Moreover, nickase-Cas9 with the sgRNA pair cleaved the targeted HBV genome in mouse liver. Interestingly, d-Cas9 expression with the sgRNAs also suppressed HBV replication in vitro without cleaving the HBV genome. These results suggest the possible use of nickase-Cas9 and d-Cas9 with a pair of sgRNAs for eliminating HBV DNA from the livers of chronic hepatitis B patients with low risk of undesirable off-target mutation on the host genome.

  5. CRISPR-Cas9 for in vivo Gene Therapy: Promise and Hurdles

    Directory of Open Access Journals (Sweden)

    Wei-Jing Dai

    2016-01-01

    Full Text Available Owing to its easy-to-use and multiplexing nature, the genome editing tool CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats (CRISPR associated nuclease 9 is revolutionizing many areas of medical research and one of the most amazing areas is its gene therapy potentials. Previous explorations into the therapeutic potentials of CRISPR-Cas9 were mainly conducted in vitro or in animal germlines, the translatability of which, however, is either limited (to tissues with adult stem cells amenable to culture and manipulation or currently impermissible (due to ethic concerns. Recently, important progresses have been made on this regard. Several studies have demonstrated the ability of CRISPR-Cas9 for in vivo gene therapy in adult rodent models of human genetic diseases delivered by methods that are potentially translatable to human use. Although these recent advances represent a significant step forward to the eventual application of CRISPR-Cas9 to the clinic, there are still many hurdles to overcome, such as the off-target effects of CRISPR-Cas9, efficacy of homology-directed repair, fitness of edited cells, immunogenicity of therapeutic CRISPR-Cas9 components, as well as efficiency, specificity, and translatability of in vivo delivery methods. In this article, we introduce the mechanisms and merits of CRISPR-Cas9 in genome editing, briefly retrospect the applications of CRISPR-Cas9 in gene therapy explorations and highlight recent advances, later we discuss in detail the challenges lying ahead in the way of its translatability, propose possible solutions, and future research directions.

  6. Construction of an easy-to-use CRISPR-Cas9 system by patching a newly designed EXIT circuit.

    Science.gov (United States)

    Tang, Qiang; Lou, Chunbo; Liu, Shuang-Jiang

    2017-01-01

    Plasmid-borne genetic editing tools, including the widely used CRISPR-Cas9 system, have greatly facilitated bacterial programming to obtain novel functionalities. However, the lack of effective post-editing plasmid elimination methods impedes follow-up genetic manipulation or application. Conventional strategies including exposure to physical and chemical treatments, or exploiting temperature-sensitive replication origins have several drawbacks (e.g., they are limited for efficiency and are time-consuming). Therefore, the demand is apparent for easy and rapid elimination of the tool plasmids from their bacterial hosts after genetic manipulation. To bridge this gap, we designed a novel EXIT circuit with the homing endonuclease, which can be exploited for rapid and efficient elimination of various plasmids with diverse replication origins. As a proof of concept, we validated the EXIT circuit in Escherichia coli by harnessing homing endonuclease I- Sce I and its cleavage site. When integrated into multiple plasmids with different origins, the EXIT circuit allowed them to be eliminated from the host cells, simultaneously. By combining the widely used plasmid-borne CRISPR-Cas9 system and the EXIT circuit, we constructed an easy-to-use CRISPR-Cas9 system that eliminated the Cas9- and the single-guide RNA (sgRNA)-encoding plasmids in one-step. Within 3 days, we successfully constructed an atrazine-degrading E. coli strain, thus further demonstrating the advantage of this new CRISPR-Cas9 system for bacterial genome editing. Our novel EXIT circuit, which exploits the homing endonuclease I- Sce I, enables plasmid(s) with different replication origins to be eliminated from their host cells rapidly and efficiently. We also developed an easy-to-use CRISPR-Cas9 system with the EXIT circuit, and this new system can be widely applied to bacterial genome editing.

  7. Biophysical properties of intrinsically disordered p130Cas substrate domain--implication in mechanosensing.

    Directory of Open Access Journals (Sweden)

    Kinya Hotta

    2014-04-01

    Full Text Available Mechanical stretch-induced tyrosine phosphorylation in the proline-rich 306-residue substrate domain (CasSD of p130Cas (or BCAR1 has eluded an experimentally validated structural understanding. Cellular p130Cas tyrosine phosphorylation is shown to function in areas without internal actomyosin contractility, sensing force at the leading edge of cell migration. Circular dichroism shows CasSD is intrinsically disordered with dominant polyproline type II conformations. Strongly conserved in placental mammals, the proline-rich sequence exhibits a pseudo-repeat unit with variation hotspots 2-9 residues before substrate tyrosine residues. Atomic-force microscopy pulling experiments show CasSD requires minimal extension force and exhibits infrequent, random regions of weak stability. Proteolysis, light scattering and ultracentrifugation results show that a monomeric intrinsically disordered form persists for CasSD in solution with an expanded hydrodynamic radius. All-atom 3D conformer sampling with the TraDES package yields ensembles in agreement with experiment when coil-biased sampling is used, matching the experimental radius of gyration. Increasing β-sampling propensities increases the number of prolate conformers. Combining the results, we conclude that CasSD has no stable compact structure and is unlikely to efficiently autoinhibit phosphorylation. Taking into consideration the structural propensity of CasSD and the fact that it is known to bind to LIM domains, we propose a model of how CasSD and LIM domain family of transcription factor proteins may function together to regulate phosphorylation of CasSD and effect machanosensing.

  8. Versatile Cas9-Driven Subpopulation Selection Toolbox for Lactococcus lactis.

    Science.gov (United States)

    van der Els, Simon; James, Jennelle K; Kleerebezem, Michiel; Bron, Peter A

    2018-04-15

    CRISPR-Cas9 technology has been exploited for the removal or replacement of genetic elements in a wide range of prokaryotes and eukaryotes. Here, we describe the extension of the Cas9 application toolbox to the industrially important dairy species Lactococcus lactis The Cas9 expression vector pLABTarget, encoding the Streptocccus pyogenes Cas9 under the control of a constitutive promoter, was constructed, allowing plug and play introduction of short guide RNA (sgRNA) sequences to target specific genetic loci. Introduction of a pepN -targeting derivative of pLABTarget into L. lactis strain MG1363 led to a strong reduction in the number of transformants obtained, which did not occur in a pepN deletion derivative of the same strain, demonstrating the specificity and lethality of the Cas9-mediated double-strand breaks in the lactococcal chromosome. Moreover, the same pLABTarget derivative allowed the selection of a pepN deletion subpopulation from its corresponding single-crossover plasmid integrant precursor, accelerating the construction and selection of gene-specific deletion derivatives in L. lactis Finally, pLABTarget, which contained sgRNAs designed to target mobile genetic elements, allowed the effective curing of plasmids, prophages, and integrative conjugative elements (ICEs). These results establish that pLABTarget enables the effective exploitation of Cas9 targeting in L. lactis , while the broad-host-range vector used suggests that this toolbox could readily be expanded to other Gram-positive bacteria. IMPORTANCE Mobile genetic elements in Lactococcus lactis and other lactic acid bacteria (LAB) play an important role in dairy fermentation, having both positive and detrimental effects during the production of fermented dairy products. The pLABTarget vector offers an efficient cloning platform for Cas9 application in lactic acid bacteria. Targeting Cas9 toward mobile genetic elements enabled their effective curing, which is of particular interest in the

  9. A non-inheritable maternal Cas9-based multiple-gene editing system in mice

    OpenAIRE

    Takayuki Sakurai; Akiko Kamiyoshi; Hisaka Kawate; Chie Mori; Satoshi Watanabe; Megumu Tanaka; Ryuichi Uetake; Masahiro Sato; Takayuki Shindo

    2016-01-01

    The CRISPR/Cas9 system is capable of editing multiple genes through one-step zygote injection. The preexisting method is largely based on the co-injection of Cas9 DNA (or mRNA) and guide RNAs (gRNAs); however, it is unclear how many genes can be simultaneously edited by this method, and a reliable means to generate transgenic (Tg) animals with multiple gene editing has yet to be developed. Here, we employed non-inheritable maternal Cas9 (maCas9) protein derived from Tg mice with systemic Cas9...

  10. Spermatogenic Cell-Specific Gene Mutation in Mice via CRISPR-Cas9.

    Science.gov (United States)

    Bai, Meizhu; Liang, Dan; Wang, Yinghua; Li, Qing; Wu, Yuxuan; Li, Jinsong

    2016-05-20

    Tissue-specific knockout technology enables the analysis of the gene function in specific tissues in adult mammals. However, conventional strategy for producing tissue-specific knockout mice is a time- and labor-consuming process, restricting rapid study of the gene function in vivo. CRISPR-Cas9 system from bacteria is a simple and efficient gene-editing technique, which has enabled rapid generation of gene knockout lines in mouse by direct injection of CRISPR-Cas9 into zygotes. Here, we demonstrate CRISPR-Cas9-mediated spermatogenic cell-specific disruption of Scp3 gene in testes in one step. We first generated transgenic mice by pronuclear injection of a plasmid containing Hspa2 promoter driving Cas9 expression and showed Cas9 specific expression in spermatogenic cells. We then produced transgenic mice carrying Hspa2 promoter driven Cas9 and constitutive expressed sgRNA targeting Scp3 gene. Male founders were infertile due to developmental arrest of spermatogenic cells while female founders could produce progeny normally. Consistently, male progeny from female founders were infertile and females could transmit the transgenes to the next generation. Our study establishes a CRISPR-Cas9-based one-step strategy to analyze the gene function in adult tissues by a temporal-spatial pattern. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  11. CRISPR/Cas9: the Jedi against the dark empire of diseases.

    Science.gov (United States)

    Khan, Sehrish; Mahmood, Muhammad Shahid; Rahman, Sajjad Ur; Zafar, Hassan; Habibullah, Sultan; Khan, Zulqarnain; Ahmad, Aftab

    2018-03-28

    Advances in Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated system (CRISPR/Cas9) has dramatically reshaped our ability to edit genomes. The scientific community is using CRISPR/Cas9 for various biotechnological and medical purposes. One of its most important uses is developing potential therapeutic strategies against diseases. CRISPR/Cas9 based approaches have been increasingly applied to the treatment of human diseases like cancer, genetic, immunological and neurological disorders and viral diseases. These strategies using CRISPR/Cas9 are not only therapy oriented but can also be used for disease modeling as well, which in turn can lead to the improved understanding of mechanisms of various infectious and genetic diseases. In addition, CRISPR/Cas9 system can also be used as programmable antibiotics to kill the bacteria sequence specifically and therefore can bypass multidrug resistance. Furthermore, CRISPR/Cas9 based gene drive may also hold the potential to limit the spread of vector borne diseases. This bacterial and archaeal adaptive immune system might be a therapeutic answer to previous incurable diseases, of course rigorous testing is required to corroborate these claims. In this review, we provide an insight about the recent developments using CRISPR/Cas9 against various diseases with respect to disease modeling and treatment, and what future perspectives should be noted while using this technology.

  12. Using local chromatin structure to improve CRISPR/Cas9 efficiency in zebrafish.

    Science.gov (United States)

    Chen, Yunru; Zeng, Shiyang; Hu, Ruikun; Wang, Xiangxiu; Huang, Weilai; Liu, Jiangfang; Wang, Luying; Liu, Guifen; Cao, Ying; Zhang, Yong

    2017-01-01

    Although the CRISPR/Cas9 has been successfully applied in zebrafish, considerable variations in efficiency have been observed for different gRNAs. The workload and cost of zebrafish mutant screening is largely dependent on the mutation rate of injected embryos; therefore, selecting more effective gRNAs is especially important for zebrafish mutant construction. Besides the sequence features, local chromatin structures may have effects on CRISPR/Cas9 efficiency, which remain largely unexplored. In the only related study in zebrafish, nucleosome organization was not found to have an effect on CRISPR/Cas9 efficiency, which is inconsistent with recent studies in vitro and in mammalian cell lines. To understand the effects of local chromatin structure on CRISPR/Cas9 efficiency in zebrafish, we first determined that CRISPR/Cas9 introduced genome editing mainly before the dome stage. Based on this observation, we reanalyzed our published nucleosome organization profiles and generated chromatin accessibility profiles in the 256-cell and dome stages using ATAC-seq technology. Our study demonstrated that chromatin accessibility showed positive correlation with CRISPR/Cas9 efficiency, but we did not observe a clear correlation between nucleosome organization and CRISPR/Cas9 efficiency. We constructed an online database for zebrafish gRNA selection based on local chromatin structure features that could prove beneficial to zebrafish homozygous mutant construction via CRISPR/Cas9.

  13. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells.

    Science.gov (United States)

    Ihry, Robert J; Worringer, Kathleen A; Salick, Max R; Frias, Elizabeth; Ho, Daniel; Theriault, Kraig; Kommineni, Sravya; Chen, Julie; Sondey, Marie; Ye, Chaoyang; Randhawa, Ranjit; Kulkarni, Tripti; Yang, Zinger; McAllister, Gregory; Russ, Carsten; Reece-Hoyes, John; Forrester, William; Hoffman, Gregory R; Dolmetsch, Ricardo; Kaykas, Ajamete

    2018-06-11

    CRISPR/Cas9 has revolutionized our ability to engineer genomes and conduct genome-wide screens in human cells 1-3 . Whereas some cell types are amenable to genome engineering, genomes of human pluripotent stem cells (hPSCs) have been difficult to engineer, with reduced efficiencies relative to tumour cell lines or mouse embryonic stem cells 3-13 . Here, using hPSC lines with stable integration of Cas9 or transient delivery of Cas9-ribonucleoproteins (RNPs), we achieved an average insertion or deletion (indel) efficiency greater than 80%. This high efficiency of indel generation revealed that double-strand breaks (DSBs) induced by Cas9 are toxic and kill most hPSCs. In previous studies, the toxicity of Cas9 in hPSCs was less apparent because of low transfection efficiency and subsequently low DSB induction 3 . The toxic response to DSBs was P53/TP53-dependent, such that the efficiency of precise genome engineering in hPSCs with a wild-type P53 gene was severely reduced. Our results indicate that Cas9 toxicity creates an obstacle to the high-throughput use of CRISPR/Cas9 for genome engineering and screening in hPSCs. Moreover, as hPSCs can acquire P53 mutations 14 , cell replacement therapies using CRISPR/Cas9-enginereed hPSCs should proceed with caution, and such engineered hPSCs should be monitored for P53 function.

  14. Programmatic Environmental Scans: A Survey Based on Program Planning and Evaluation Concepts

    Directory of Open Access Journals (Sweden)

    Donna J. Peterson

    2015-10-01

    Full Text Available Within Extension, environmental scans are most commonly used to assess community or organizational issues or for strategic planning purposes. However, Extension has expanded the use of environmental scans to systematically identify “what programs exist” on a given topic or focus area. Yet, despite recent attention to the topic of environmental scanning in Extension, survey instruments used to conduct environmental scans have not been published. Given the emphasis on implementation of evidence-based practices and programs, having a ready-made survey that can be used to identify programs on a specific topic and that could subsequently lead to an evaluability assessment of those programs would be a useful resource. To encourage the use of environmental scans to identify existing evidence-based programs, this article describes a survey instrument developed for the purpose of scanning for 4-H Healthy Living programs ready for rigorous outcome evaluation and/or national replication. It focuses on the rationale for survey items, as well as provides a summary and definition of those items. The survey tool can be easily adapted for future programmatic environmental scans both within and outside Extension.

  15. Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems.

    Science.gov (United States)

    Leenay, Ryan T; Maksimchuk, Kenneth R; Slotkowski, Rebecca A; Agrawal, Roma N; Gomaa, Ahmed A; Briner, Alexandra E; Barrangou, Rodolphe; Beisel, Chase L

    2016-04-07

    CRISPR-Cas adaptive immune systems in prokaryotes boast a diversity of protein families and mechanisms of action, where most systems rely on protospacer-adjacent motifs (PAMs) for DNA target recognition. Here, we developed an in vivo, positive, and tunable screen termed PAM-SCANR (PAM screen achieved by NOT-gate repression) to elucidate functional PAMs as well as an interactive visualization scheme termed the PAM wheel to convey individual PAM sequences and their activities. PAM-SCANR and the PAM wheel identified known functional PAMs while revealing complex sequence-activity landscapes for the Bacillus halodurans I-C (Cascade), Escherichia coli I-E (Cascade), Streptococcus thermophilus II-A CRISPR1 (Cas9), and Francisella novicida V-A (Cpf1) systems. The PAM wheel was also readily applicable to existing high-throughput screens and garnered insights into SpyCas9 and SauCas9 PAM diversity. These tools offer powerful means of elucidating and visualizing functional PAMs toward accelerating our ability to understand and exploit the multitude of CRISPR-Cas systems in nature. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. CRISPR-Cas Systems in Bacteroides fragilis, an Important Pathobiont in the Human Gut Microbiome

    Science.gov (United States)

    Tajkarimi, Mehrdad; Wexler, Hannah M.

    2017-01-01

    Background: While CRISPR-Cas systems have been identified in bacteria from a wide variety of ecological niches, there are no studies to describe CRISPR-Cas elements in Bacteroides species, the most prevalent anaerobic bacteria in the lower intestinal tract. Microbes of the genus Bacteroides make up ~25% of the total gut microbiome. Bacteroides fragilis comprises only 2% of the total Bacteroides in the gut, yet causes of >70% of Bacteroides infections. The factors causing it to transition from benign resident of the gut microbiome to virulent pathogen are not well understood, but a combination of horizontal gene transfer (HGT) of virulence genes and differential transcription of endogenous genes are clearly involved. The CRISPR-Cas system is a multi-functional system described in prokaryotes that may be involved in control both of HGT and of gene regulation. Results: Clustered regularly interspaced short palindromic repeats (CRISPR) elements in all strains of B. fragilis (n = 109) with publically available genomes were identified. Three different CRISPR-Cas types, corresponding most closely to Type IB, Type IIIB, and Type IIC, were identified. Thirty-five strains had two CRISPR-Cas types, and three strains included all three CRISPR-Cas types in their respective genomes. The cas1 gene in the Type IIIB system encoded a reverse-transcriptase/Cas1 fusion protein rarely found in prokaryotes. We identified a short CRISPR (3 DR) with no associated cas genes present in most of the isolates; these CRISPRs were found immediately upstream of a hipA/hipB operon and we speculate that this element may be involved in regulation of this operon related to formation of persister cells during antimicrobial exposure. Also, blood isolates of B. fragilis did not have Type IIC CRISPR-Cas systems and had atypical Type IIIB CRISPR-Cas systems that were lacking adjacent cas genes. Conclusions: This is the first systematic report of CRISPR-Cas systems in a wide range of B. fragilis strains

  17. CRISPR-Cas Systems in Bacteroides fragilis, an Important Pathobiont in the Human Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Mehrdad Tajkarimi

    2017-11-01

    Full Text Available Background: While CRISPR-Cas systems have been identified in bacteria from a wide variety of ecological niches, there are no studies to describe CRISPR-Cas elements in Bacteroides species, the most prevalent anaerobic bacteria in the lower intestinal tract. Microbes of the genus Bacteroides make up ~25% of the total gut microbiome. Bacteroides fragilis comprises only 2% of the total Bacteroides in the gut, yet causes of >70% of Bacteroides infections. The factors causing it to transition from benign resident of the gut microbiome to virulent pathogen are not well understood, but a combination of horizontal gene transfer (HGT of virulence genes and differential transcription of endogenous genes are clearly involved. The CRISPR-Cas system is a multi-functional system described in prokaryotes that may be involved in control both of HGT and of gene regulation.Results: Clustered regularly interspaced short palindromic repeats (CRISPR elements in all strains of B. fragilis (n = 109 with publically available genomes were identified. Three different CRISPR-Cas types, corresponding most closely to Type IB, Type IIIB, and Type IIC, were identified. Thirty-five strains had two CRISPR-Cas types, and three strains included all three CRISPR-Cas types in their respective genomes. The cas1 gene in the Type IIIB system encoded a reverse-transcriptase/Cas1 fusion protein rarely found in prokaryotes. We identified a short CRISPR (3 DR with no associated cas genes present in most of the isolates; these CRISPRs were found immediately upstream of a hipA/hipB operon and we speculate that this element may be involved in regulation of this operon related to formation of persister cells during antimicrobial exposure. Also, blood isolates of B. fragilis did not have Type IIC CRISPR-Cas systems and had atypical Type IIIB CRISPR-Cas systems that were lacking adjacent cas genes.Conclusions: This is the first systematic report of CRISPR-Cas systems in a wide range of B

  18. Determination of local chromatin composition by CasID.

    Science.gov (United States)

    Schmidtmann, Elisabeth; Anton, Tobias; Rombaut, Pascaline; Herzog, Franz; Leonhardt, Heinrich

    2016-09-02

    Chromatin structure and function are determined by a plethora of proteins whose genome-wide distribution is typically assessed by immunoprecipitation (ChIP). Here, we developed a novel tool to investigate the local chromatin environment at specific DNA sequences. We combined the programmable DNA binding of dCas9 with the promiscuous biotin ligase BirA* (CasID) to biotinylate proteins in the direct vicinity of specific loci. Subsequent streptavidin-mediated precipitation and mass spectrometry identified both known and previously unknown chromatin factors associated with repetitive telomeric, major satellite and minor satellite DNA. With super-resolution microscopy, we confirmed the localization of the putative transcription factor ZNF512 at chromocenters. The versatility of CasID facilitates the systematic elucidation of functional protein complexes and locus-specific chromatin composition.

  19. Primary processing of CRISPR RNA by the endonuclease Cas6 in Staphylococcus epidermidis.

    Science.gov (United States)

    Wakefield, Noelle; Rajan, Rakhi; Sontheimer, Erik J

    2015-10-07

    In many bacteria and archaea, an adaptive immune system (CRISPR-Cas) provides immunity against foreign genetic elements. This system uses CRISPR RNAs (crRNAs) derived from the CRISPR array, along with CRISPR-associated (Cas) proteins, to target foreign nucleic acids. In most CRISPR systems, endonucleolytic processing of crRNA precursors (pre-crRNAs) is essential for the pathway. Here we study the Cas6 endonuclease responsible for crRNA processing in the Type III-A CRISPR-Cas system from Staphylococcus epidermidis RP62a, a model for Type III-A CRISPR-Cas systems, and define substrate requirements for SeCas6 activity. We find that SeCas6 is necessary and sufficient for full-length crRNA biogenesis in vitro, and that it relies on both sequence and stem-loop structure in the 3' half of the CRISPR repeat for recognition and processing. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors

    KAUST Repository

    Piatek, Agnieszka Anna

    2014-11-14

    Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3

  1. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors

    KAUST Repository

    Piatek, Agnieszka Anna; Ali, Zahir; Baazim, Hatoon; Li, Lixin; Abulfaraj, Aala A.; Alshareef, Sahar; Aouida, Mustapha; Mahfouz, Magdy M.

    2014-01-01

    Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3

  2. CRISPR/Cas9 based genome editing of Penicillium chrysogenum

    NARCIS (Netherlands)

    Pohl, Carsten; Kiel, Jan A K W; Driessen, Arnold J M; Bovenberg, Roel A L; Nygård, Yvonne

    2016-01-01

    CRISPR/Cas9 based systems have emerged as versatile platforms for precision genome editing in a wide range of organisms. Here we have developed powerful CRISPR/Cas9 tools for marker-based and marker-free genome modifications in Penicillium chrysogenum, a model filamentous fungus and industrially

  3. Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity

    Science.gov (United States)

    Tycko, Josh; Myer, Vic E.; Hsu, Patrick D.

    2016-01-01

    Summary Advances in the development of delivery, repair, and specificity strategies for the CRISPR-Cas9 genome engineering toolbox are helping researchers understand gene function with unprecedented precision and sensitivity. CRISPR-Cas9 also holds enormous therapeutic potential for the treatment of genetic disorders by directly correcting disease-causing mutations. Although the Cas9 protein has been shown to bind and cleave DNA at off-target sites, the field of Cas9 specificity is rapidly progressing with marked improvements in guide RNA selection, protein and guide engineering, novel enzymes, and off-target detection methods. We review important challenges and breakthroughs in the field as a comprehensive practical guide to interested users of genome editing technologies, highlighting key tools and strategies for optimizing specificity. The genome editing community should now strive to standardize such methods for measuring and reporting off-target activity, while keeping in mind that the goal for specificity should be continued improvement and vigilance. PMID:27494557

  4. CRISPR/Cas9 in insects: Applications, best practices and biosafety concerns.

    Science.gov (United States)

    Taning, Clauvis Nji Tizi; Van Eynde, Benigna; Yu, Na; Ma, Sanyuan; Smagghe, Guy

    2017-04-01

    Discovered as a bacterial adaptive immune system, CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeat/CRISPR associated) is being developed as an attractive tool in genome editing. Due to its high specificity and applicability, CRISPR/Cas9-mediated gene editing has been employed in a multitude of organisms and cells, including insects, for not only fundamental research such as gene function studies, but also applied research such as modification of organisms of economic importance. Despite the rapid increase in the use of CRISPR in insect genome editing, results still differ from each study, principally due to existing differences in experimental parameters, such as the Cas9 and guide RNA form, the delivery method, the target gene and off-target effects. Here, we review current reports on the successes of CRISPR/Cas9 applications in diverse insects and insect cells. We furthermore summarize several best practices to give a useful checklist of CRISPR/Cas9 experimental setup in insects for beginners. Lastly, we discuss the biosafety concerns related to the release of CRISPR/Cas9-edited insects into the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The use of CRISPR/Cas associated technologies for cell transplant applications.

    Science.gov (United States)

    Cowan, Peter J

    2016-10-01

    In this review, I will summarize recent developments in the use of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) genome editing system for cell transplant applications, ranging from transplantation of corrected autologous patient stem cells to treat inherited diseases, to the tailoring of donor pigs for cell xenotransplantation. Rational engineering of the Cas9 nuclease to improve its specificity will also be discussed. Over the past year, CRISPR/Cas9 has been used in preclinical studies to correct mutations in a rapidly increasing spectrum of diseases including hematological, neuromuscular, and respiratory disorders. The growing popularity of CRISPR/Cas9 over earlier genome editing platforms is partly due to its ease of use and flexibility, which is evident from the success of complex manipulations such as specific deletion of up to 725 kb in patient-derived stem cells, and simultaneous disruption of up to 62 endogenous retrovirus loci in pig cells. In addition, high-fidelity variants of Cas9 with greatly increased specificity are now available. CRISPR/Cas9 is a fast-evolving technology that is likely to have a significant impact on autologous, allogeneic, and xenogeneic cell transplantation.

  6. A p130Cas tyrosine phosphorylated substrate domain decoy disrupts v-Crk signaling

    Directory of Open Access Journals (Sweden)

    Hanafusa Hidesaburo

    2002-07-01

    Full Text Available Abstract Background The adaptor protein p130Cas (Cas has been shown to be involved in different cellular processes including cell adhesion, migration and transformation. This protein has a substrate domain with up to 15 tyrosines that are potential kinase substrates, able to serve as docking sites for proteins with SH2 or PTB domains. Cas interacts with focal adhesion plaques and is phosphorylated by the tyrosine kinases FAK and Src. A number of effector molecules have been shown to interact with Cas and play a role in its function, including c-crk and v-crk, two adaptor proteins involved in intracellular signaling. Cas function is dependent on tyrosine phosphorylation of its substrate domain, suggesting that tyrosine phosphorylation of Cas in part regulates its control of adhesion and migration. To determine whether the substrate domain alone when tyrosine phosphorylated could signal, we have constructed a chimeric Cas molecule that is phosphorylated independently of upstream signals. Results We found that a tyrosine phosphorylated Cas substrate domain acts as a dominant negative mutant by blocking Cas-mediated signaling events, including JNK activation by the oncogene v-crk in transient and stable lines and v-crk transformation. This block was the result of competition for binding partners as the chimera competed for binding to endogenous c-crk and exogenously expressed v-crk. Conclusion Our approach suggests a novel method to study adaptor proteins that require phosphorylation, and indicates that mere tyrosine phosphorylation of the substrate domain of Cas is not sufficient for its function.

  7. JSPS-CAS Core University Program seminar. Proceedings of Japan-China joint seminar on atomic and molecular processes in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Fumihiro [Kitasato Univ., Tokyo (Japan); Dong, Chenzhong [Northwest Normal Univ., Lanzhou (China)

    2005-02-01

    As one of the activities of JSPS-CAS Core University Program, Japan-China Joint Seminar on Atomic and Molecular Processes in Plasma was held on March 6 - 11, 2004 in Lanzhou, China. The total number of the officially registered participants was 29, in which 17 from Japan, 10 from China, and 2 from Germany. In the nuclear fusion plasma, there are quite a variety of atomic processes such as ionization, excitation, radiative recombination, non-radiative recombination (di-electronic recombination, collisional electron transfer), cascade radiation, and cascade Auger decay over the wide range of plasma temperature. The knowledge of such the processes is indispensable for the evaluation and improvement of the plasma properties, which is desirable to be investigated by international collaboration groups. The present Japan-China Joint Seminar constitutes one of such the activities to realize the above stated aim. The 21 of the presented papers are indexed individually. (J.P.N.)

  8. [CRISPR/Cas system for genome editing in pluripotent stem cells].

    Science.gov (United States)

    Vasil'eva, E A; Melino, D; Barlev, N A

    2015-01-01

    Genome editing systems based on site-specific nucleases became very popular for genome editing in modern bioengineering. Human pluripotent stem cells provide a unique platform for genes function study, disease modeling, and drugs testing. Consequently, technology for fast, accurate and well controlled genome manipulation is required. CRISPR/Cas (clustered regularly interspaced short palindromic repeat/CRISPR-associated) system could be employed for these purposes. This system is based on site-specific programmable nuclease Cas9. Numerous advantages of the CRISPR/Cas system and its successful application to human stem cells provide wide opportunities for genome therapy and regeneration medicine. In this publication, we describe and compare the main genome editing systems based on site-specific programmable nucleases and discuss opportunities and perspectives of the CRISPR/Cas system for application to pluripotent stem cells.

  9. Teaching Undergraduate Mathematics Using CAS Technology: Issues and Prospects

    Science.gov (United States)

    Tobin, Patrick C.; Weiss, Vida

    2016-01-01

    The use of handheld CAS technology in undergraduate mathematics courses in Australia is paradoxically shrinking under sustained disapproval or disdain from the professional mathematics community. Mathematics education specialists argue with their mathematics colleagues over a range of issues in course development and this use of CAS or even…

  10. Peptide/Cas9 nanostructures for ribonucleoprotein cell membrane transport and gene edition.

    Science.gov (United States)

    Lostalé-Seijo, Irene; Louzao, Iria; Juanes, Marisa; Montenegro, Javier

    2017-12-01

    The discovery of RNA guided endonucleases has emerged as one of the most important tools for gene edition and biotechnology. The selectivity and simplicity of the CRISPR/Cas9 strategy allows the straightforward targeting and editing of particular loci in the cell genome without the requirement of protein engineering. However, the transfection of plasmids encoding the Cas9 and the guide RNA could lead to undesired permanent recombination and immunogenic responses. Therefore, the direct delivery of transient Cas9 ribonucleoprotein constitutes an advantageous strategy for gene edition and other potential therapeutic applications of the CRISPR/Cas9 system. The covalent fusion of Cas9 with penetrating peptides requires multiple incubation steps with the target cells to achieve efficient levels of gene edition. These and other recent reports suggested that covalent conjugation of the anionic Cas9 ribonucleoprotein to cationic peptides would be associated with a hindered nuclease activity due to undesired electrostatic interactions. We here report a supramolecular strategy for the direct delivery of Cas9 by an amphiphilic penetrating peptide that was prepared by a hydrazone bond formation between a cationic peptide scaffold and a hydrophobic aldehyde tail. The peptide/protein non-covalent nanoparticles performed with similar efficiency and less toxicity than one of the best methods described to date. To the best of our knowledge this report constitutes the first supramolecular strategy for the direct delivery of Cas9 using a penetrating peptide vehicle. The results reported here confirmed that peptide amphiphilic vectors can deliver Cas9 in a single incubation step, with good efficiency and low toxicity. This work will encourage the search and development of conceptually new synthetic systems for transitory endonucleases direct delivery.

  11. Spectral Time Series of the Cas A Supernova

    Science.gov (United States)

    Rest, Armin

    2016-10-01

    We propose to obtain time-resolved spectroscopy of the outburst of the enigmatic historical supernova Cas A using STIS spectroscopy of light scattered by a narrow filament of interstellar dust. Our group has identified recent, high-surface brightness filaments that are likely to provide high signal-to-noise reproduction of the evolving spectrum of the Cas A outburst using verified, published techniques developed by us.The timescales to see any appreciable evolution in individual astrophysical objects are typically many orders of magnitudes larger than a human life. As a result, astronomers study large numbers of objects at different stages of their evolution to connect how a single object should change with time. Cas A can provide us with the ability, to look back in time to the point of explosion by observing its light echoes - SN light scattered off of dust in the Milky Way, which causes a time delay in reaching us. In obtaining spectra of light echoes, we have been able to determine the maximum-light characteristics of the SN. Our goal here is to obtain a single STIS spectrum of a bright Cas A LE, which will provide us a time series of spectra and a spatially resolved light curve of the Cas A SN. With these data, we will measure the properties of the cooling envelope after the shock breakout of the SN to estimate the radius of the progenitor star. We will then be able to connect the progenitor star to the explosion to the SN to the SNR.

  12. SD-CAS: Spin Dynamics by Computer Algebra System.

    Science.gov (United States)

    Filip, Xenia; Filip, Claudiu

    2010-11-01

    A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Optimizing CRISPR/Cas9 for the Diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Daniel Stukenberg

    2018-06-01

    Full Text Available CRISPR/Cas9 is a powerful tool for genome editing. We constructed an easy-to-handle expression vector for application in the model organism Phaeodactylum tricornutum and tested its capabilities in order to apply CRISPR/Cas9 technology for our purpose. In our experiments, we targeted two different genes, screened for mutations and analyzed mutated diatoms in a three-step process. In the end, we identified cells, showing either monoallelic or homo-biallelic targeted mutations. Thus, we confirm that application of the CRISPR/Cas9 system for P. tricornutum is very promising, although, as discussed, overlooked pitfalls have to be considered.

  14. The Assessment of a Tutoring Program to Meet CAS Standards Using a SWOT Analysis and Action Plan

    Science.gov (United States)

    Fullmer, Patricia

    2009-01-01

    This article summarizes the use of SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis and subsequent action planning as a tool of self-assessment to meet CAS (Council for the Advancement of Standards in Higher Education) requirements for systematic assessment. The use of the evaluation results to devise improvements to increase the…

  15. Predominance of Single Prophage Carrying a CRISPR/cas System in “Candidatus Liberibacter asiaticus” Strains in Southern China

    Science.gov (United States)

    Zheng, Zheng; Bao, Minli; Wu, Fengnian; Chen, Jianchi; Deng, Xiaoling

    2016-01-01

    “Candidatus Liberibacter asiaticus” (CLas) is an uncultureable α-proteobacterium associated with citrus Huanglongbing (HLB, yellow shoot disease), a highly destructive disease affecting citrus production worldwide. HLB was observed in Guangdong Province of China over a hundred years ago and remains endemic there. Little is known about CLas biology due to its uncultureable nature. This study began with the genome sequence analysis of CLas Strain A4 from Guangdong in the prophage region. Within the two currently known prophage types, Type 1 (SC1-like) and Type 2 (SC2-like), A4 genome contained only a Type 2 prophage, CGdP2, namely. An analysis on CLas strains collected in Guangdong showed that Type 2 prophage dominated the bacterial population (82.6%, 71/86). An extended survey covering five provinces in southern China also revealed the predominance of single prophage (Type 1 or Type 2) in the CLas population (90.4%, 169/187). CLas strains with two and no prophage types accounted for 7.2% and 2.8%, respectively. In silico analyses on CGdP2 identified a CRISPR (clustered regularly interspaced short palindromic repeats)/cas (CRISPR-associated protein genes) system, consisting of four 22 bp repeats, three 23 bp spacers and 9 predicted cas. Similar CRISPR/cas systems were detected in all 10 published CLas prophages as well as 13 CLas field strains in southern China. Both Type 1 and Type 2 prophages shared almost identical sequences in spacer 1 and 3 but not spacer 2. Considering that the function of a CRISPR/cas system was to destroy invading DNA, it was hypothesized that a pre-established CLas prophage could use its CRISPR/cas system guided by spacer 1 and/or 3 to defeat the invasion of the other phage/prophage. This hypothesis explained the predominance of single prophage type in the CLas population in southern China. This is the first report of CRISPR/cas system in the “Ca. Liberibacter” genera. PMID:26741827

  16. Engineering the Caenorhabditis elegans genome with CRISPR/Cas9

    NARCIS (Netherlands)

    Waaijers, Selma; Boxem, Mike

    2014-01-01

    The development in early 2013 of CRISPR/Cas9-based genome engineering promises to dramatically advance our ability to alter the genomes of model systems at will. A single, easily produced targeting RNA guides the Cas9 endonuclease to a specific DNA sequence where it creates a double strand break.

  17. CRISPR/Cas9—Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development

    Science.gov (United States)

    Okoli, Arinze; Okeke, Malachy I.; Tryland, Morten; Moens, Ugo

    2018-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them. PMID:29361752

  18. CRISPRscan: designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo

    Science.gov (United States)

    Moreno-Mateos, Miguel A.; Vejnar, Charles E.; Beaudoin, Jean-Denis; Fernandez, Juan P.; Mis, Emily K.; Khokha, Mustafa K.; Giraldez, Antonio J.

    2015-01-01

    CRISPR/Cas9 technology provides a powerful system for genome engineering. However, variable activity across different single guide RNAs (sgRNAs) remains a significant limitation. We have analyzed the molecular features that influence sgRNA stability, activity and loading into Cas9 in vivo. We observe that guanine enrichment and adenine depletion increase sgRNA stability and activity, while loading, nucleosome positioning and Cas9 off-target binding are not major determinants. We additionally identified truncated and 5′ mismatch-containing sgRNAs as efficient alternatives to canonical sgRNAs. Based on these results, we created a predictive sgRNA-scoring algorithm (CRISPRscan.org) that effectively captures the sequence features affecting Cas9/sgRNA activity in vivo. Finally, we show that targeting Cas9 to the germ line using a Cas9-nanos-3′-UTR fusion can generate maternal-zygotic mutants, increase viability and reduce somatic mutations. Together, these results provide novel insights into the determinants that influence Cas9 activity and a framework to identify highly efficient sgRNAs for genome targeting in vivo. PMID:26322839

  19. Pediatric dermatology training survey of United States dermatology residency programs.

    Science.gov (United States)

    Nijhawan, Rajiv I; Mazza, Joni M; Silverberg, Nanette B

    2014-01-01

    Variability exists in pediatric dermatology education for dermatology residents. We sought to formally assess the pediatric dermatology curriculum and experience in a dermatology residency program. Three unique surveys were developed for dermatology residents, residency program directors, and pediatric dermatology fellowship program directors. The surveys consisted of questions pertaining to residency program characteristics. Sixty-three graduating third-year residents, 51 residency program directors, and 18 pediatric dermatology fellowship program directors responded. Residents in programs with one or more full-time pediatric dermatologist were more likely to feel very competent treating children and were more likely to be somewhat or extremely satisfied with their pediatric curriculums than residents in programs with no full-time pediatric dermatologist (50.0% vs 5.9%, p = 0.002, and 85.3% vs 52.9%, p dermatology fellowships were much more likely to report being extremely satisfied than residents in programs without a pediatric dermatology fellowship (83.3% vs 21.2%; p dermatology residency programs to continue to strengthen their pediatric dermatology curriculums, especially through the recruitment of full-time pediatric dermatologists. © 2013 Wiley Periodicals, Inc.

  20. Bridge Programs in Illinois: Results of the 2010 Illinois Bridge Status Survey

    Science.gov (United States)

    Taylor, J. L.; Harmon, T.

    2010-01-01

    This report provides a summary of major results of the Illinois Bridge Status Survey, administered online between April and June 2010. The purpose of the survey was to understand the extent to which bridge programs are being implemented in Illinois, as well as to build an online directory of bridge programs. Bridge programs are an emerging…

  1. Genome Editing in Escherichia coli with Cas9 and synthetic CRISPRs

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Ze; Richardson, Sarah; Robinson, David; Deutsch, Samuel; Cheng, Jan-Fang

    2014-03-14

    Recently, the Cas9-CRISPR system has proven to be a useful tool for genome editing in eukaryotes, which repair the double stranded breaks made by Cas9 with non-homologous end joining or homologous recombination. Escherichia coli lacks non-homologous end joining and has a very low homologous recombination rate, effectively rendering targeted Cas9 activity lethal. We have developed a heat curable, serializable, plasmid based system for selectionless Cas9 editing in arbitrary E. coli strains that uses synthetic CRISPRs for targeting and -red to effect repairs of double stranded breaks. We have demonstrated insertions, substitutions, and multi-target deletions with our system, which we have tested in several strains.

  2. CRISPR/Cas9 delivery with one single adenoviral vector devoid of all viral genes.

    Science.gov (United States)

    Ehrke-Schulz, Eric; Schiwon, Maren; Leitner, Theo; Dávid, Stephan; Bergmann, Thorsten; Liu, Jing; Ehrhardt, Anja

    2017-12-07

    The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system revolutionized the field of gene editing but viral delivery of the CRISPR/Cas9 system has not been fully explored. Here we adapted clinically relevant high-capacity adenoviral vectors (HCAdV) devoid of all viral genes for the delivery of the CRISPR/Cas9 machinery using a single viral vector. We present a platform enabling fast transfer of the Cas9 gene and gRNA expression units into the HCAdV genome including the option to choose between constitutive or inducible Cas9 expression and gRNA multiplexing. Efficacy and versatility of this pipeline was exemplified by producing different CRISPR/Cas9-HCAdV targeting the human papillomavirus (HPV) 18 oncogene E6, the dystrophin gene causing Duchenne muscular dystrophy (DMD) and the HIV co-receptor C-C chemokine receptor type 5 (CCR5). All CRISPR/Cas9-HCAdV proved to be efficient to deliver the respective CRISPR/Cas9 expression units and to introduce the desired DNA double strand breaks at their intended target sites in immortalized and primary cells.

  3. Quality assurance program plan for the radiological survey activities program: Uranium Mill Tailings Remedial Action Project

    International Nuclear Information System (INIS)

    Ramos, S.J.; Berven, B.A.; Little, C.A.

    1986-08-01

    The Radiological Survey Activities (RASA) program at Oak Ridge National Laboratory (ORNL) is responsible for surveying designated sites in the vicinity of 24 inactive mill sites involved in the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP). The purpose of these surveys is to provide a recommendation to DOE whether to include or exclude the site from UMTRAP based on whether the onsite residual radioactive material (if any) originated from the former mill sites, and radiation levels onsite are in excess of appropriate Environmental Protection Agency (EPA) criteria. This report describes the quality assurance program plan for the RASA program in conducting all activities related to the UMTRA project. All quality assurance provisions given by the DOE, DOE/UMTRA, and ORNL organizations are integrated into this plan. Specifically, this report identifies the policies and procedures followed in accomplishing the RASA/UMTRAP QA program, identifies those organizational units involved in the implementation of these procedures, and outlines the respective responsibilities of those groups

  4. Quality assurance program plan for the Radiological Survey Activities Program - Uranium Mill Tailings Remedial Action Project

    International Nuclear Information System (INIS)

    Ramos, S.J.; Berven, B.A.; Little, C.A.

    1986-01-01

    The Radiological Survey Activities (RASA) program at Oak Ridge National Laboratory (ORNL) is responsible for surveying designated sites in the vicinity of 24 inactive mill sites involved in the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP). The purpose of these surveys is to provide a recommendation to DOE whether to include or exclude the site from UMTRAP based on whether the onsite residual radioactive material (if any) originated from the former mill sites, and radiation levels onsite are in excess of appropriate Environmental Protection Agency (EPA) criteria. This report describes the quality assurance program plan for the RASA program in conducting all activities related to the UMTRA project. All quality assurance provisions given by the DOE, DOE/UMTRA, and ORNL organizations are integrated into this plan. Specifically, this report identifies the policies and procedures followed in accomplishing the RASA/UMTRAP QA program, identifies those organizational units involved in the implementation of these procedures, and outlines the respective responsibilities of those groups

  5. Dermatology Residency Selection Criteria with an Emphasis on Program Characteristics: A National Program Director Survey

    Directory of Open Access Journals (Sweden)

    Farzam Gorouhi

    2014-01-01

    Full Text Available Background. Dermatology residency programs are relatively diverse in their resident selection process. The authors investigated the importance of 25 dermatology residency selection criteria focusing on differences in program directors’ (PDs’ perception based on specific program demographics. Methods. This cross-sectional nationwide observational survey utilized a 41-item questionnaire that was developed by literature search, brainstorming sessions, and online expert reviews. The data were analyzed utilizing the reliability test, two-step clustering, and K-means methods as well as other methods. The main purpose of this study was to investigate the differences in PDs’ perception regarding the importance of the selection criteria based on program demographics. Results. Ninety-five out of 114 PDs (83.3% responded to the survey. The top five criteria for dermatology residency selection were interview, letters of recommendation, United States Medical Licensing Examination Step I scores, medical school transcripts, and clinical rotations. The following criteria were preferentially ranked based on different program characteristics: “advanced degrees,” “interest in academics,” “reputation of undergraduate and medical school,” “prior unsuccessful attempts to match,” and “number of publications.” Conclusions. Our survey provides up-to-date factual data on dermatology PDs’ perception in this regard. Dermatology residency programs may find the reported data useful in further optimizing their residency selection process.

  6. CRISPR/Cas13 as a Tool for RNA Interference

    KAUST Repository

    Ali, Zahir

    2018-03-28

    Almost all biological processes involve RNA, making it crucial to develop tools for manipulation of the transcriptome. The bacterial CRISPR/Cas13 system was recently rewired to facilitate RNA manipulation in eukaryotes, including plants. We discuss here the opportunities and limitations of using CRISPR/Cas13 in plants for various types of RNA manipulation.

  7. CRISPR/Cas9-mediated gene knockout is insensitive to target copy number but is dependent on guide RNA potency and Cas9/sgRNA threshold expression level.

    Science.gov (United States)

    Yuen, Garmen; Khan, Fehad J; Gao, Shaojian; Stommel, Jayne M; Batchelor, Eric; Wu, Xiaolin; Luo, Ji

    2017-11-16

    CRISPR/Cas9 is a powerful gene editing tool for gene knockout studies and functional genomic screens. Successful implementation of CRISPR often requires Cas9 to elicit efficient target knockout in a population of cells. In this study, we investigated the role of several key factors, including variation in target copy number, inherent potency of sgRNA guides, and expression level of Cas9 and sgRNA, in determining CRISPR knockout efficiency. Using isogenic, clonal cell lines with variable copy numbers of an EGFP transgene, we discovered that CRISPR knockout is relatively insensitive to target copy number, but is highly dependent on the potency of the sgRNA guide sequence. Kinetic analysis revealed that most target mutation occurs between 5 and 10 days following Cas9/sgRNA transduction, while sgRNAs with different potencies differ by their knockout time course and by their terminal-phase knockout efficiency. We showed that prolonged, low level expression of Cas9 and sgRNA often fails to elicit target mutation, particularly if the potency of the sgRNA is also low. Our findings provide new insights into the behavior of CRISPR/Cas9 in mammalian cells that could be used for future improvement of this platform. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  8. SaCas9 Requires 5'-NNGRRT-3' PAM for Sufficient Cleavage and Possesses Higher Cleavage Activity than SpCas9 or FnCpf1 in Human Cells.

    Science.gov (United States)

    Xie, Haihua; Tang, Lianchao; He, Xiubin; Liu, Xiexie; Zhou, Chenchen; Liu, Junjie; Ge, Xianglian; Li, Jin; Liu, Changbao; Zhao, Junzhao; Qu, Jia; Song, Zongming; Gu, Feng

    2018-04-01

    CRISPR/Cas9-mediated gene therapy holds great promise for the treatment of human diseases. The protospacer adjacent motif (PAM), the sequence adjacent to the target sequence, is an essential targeting component for the design of CRISPR/Cas9-mediated gene editing. However, currently, very few studies have attempted to directly study the PAM sequence in human cells. To address this issue, the authors develop a dual fluorescence reporter system that could be harnessed for identifying functional PAMs for genome editing endonuclease, including Cas9. With this system, the authors investigate the effects of different PAM sequences for SaCas9, which is small and has the advantage of allowing in vivo genome editing, and found only 5'-NNGRRT-3' PAM could induced sufficient target cleavage with multi-sites. The authors also found SaCas9 possesses higher activity than SpCas9 or FnCpf1 via plasmids (episomal) and chromosomes with integrated eGFP-based comparison. Taken together, the authors show that a dual fluorescence reporter system is a means to identifying a functional PAM and quantitatively comparing the efficiency of different genome editing endonucleases with the similar or identical target sequence in human cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Harnessing CRISPR-Cas systems for bacterial genome editing.

    Science.gov (United States)

    Selle, Kurt; Barrangou, Rodolphe

    2015-04-01

    Manipulation of genomic sequences facilitates the identification and characterization of key genetic determinants in the investigation of biological processes. Genome editing via clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) constitutes a next-generation method for programmable and high-throughput functional genomics. CRISPR-Cas systems are readily reprogrammed to induce sequence-specific DNA breaks at target loci, resulting in fixed mutations via host-dependent DNA repair mechanisms. Although bacterial genome editing is a relatively unexplored and underrepresented application of CRISPR-Cas systems, recent studies provide valuable insights for the widespread future implementation of this technology. This review summarizes recent progress in bacterial genome editing and identifies fundamental genetic and phenotypic outcomes of CRISPR targeting in bacteria, in the context of tool development, genome homeostasis, and DNA repair. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice.

    Science.gov (United States)

    Mikami, Masafumi; Toki, Seiichi; Endo, Masaki

    2015-08-01

    The CRISPR/Cas9 system is an efficient tool used for genome editing in a variety of organisms. Despite several recent reports of successful targeted mutagenesis using the CRISPR/Cas9 system in plants, in each case the target gene of interest, the Cas9 expression system and guide-RNA (gRNA) used, and the tissues used for transformation and subsequent mutagenesis differed, hence the reported frequencies of targeted mutagenesis cannot be compared directly. Here, we evaluated mutation frequency in rice using different Cas9 and/or gRNA expression cassettes under standardized experimental conditions. We introduced Cas9 and gRNA expression cassettes separately or sequentially into rice calli, and assessed the frequency of mutagenesis at the same endogenous targeted sequences. Mutation frequencies differed significantly depending on the Cas9 expression cassette used. In addition, a gRNA driven by the OsU6 promoter was superior to one driven by the OsU3 promoter. Using an all-in-one expression vector harboring the best combined Cas9/gRNA expression cassette resulted in a much improved frequency of targeted mutagenesis in rice calli, and bi-allelic mutant plants were produced in the T0 generation. The approach presented here could be adapted to optimize the construction of Cas9/gRNA cassettes for genome editing in a variety of plants.

  11. From Calculus to Dynamical Systems through DGS and CAS

    Science.gov (United States)

    García, Jeanett López; Zamudio, Jorge Javier Jiménez

    2015-01-01

    Several factors have motivated the use of CAS or DGS in the teaching-learning process, such as: the development of new technologies, the availability of computers, and the widespread use of the Internet, among others. Even more, the trend to include CAS and DGS in the curricula of some undergraduate studies has resulted in the instruction of the…

  12. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica.

    Science.gov (United States)

    Schwartz, Cory; Wheeldon, Ian

    2018-01-01

    The discovery and adaptation of RNA-guided nucleases has resulted in the rapid development of efficient, scalable, and easily accessible synthetic biology tools for targeted genome editing and transcriptional control. In these systems, for example CRISPR-Cas9 from Streptococcus pyogenes, a protein with nuclease activity is targeted to a specific nucleotide sequence by a short RNA molecule, whereupon binding it cleaves the targeted nucleotide strand. To extend this genome-editing ability to the industrially important oleaginous yeast Yarrowia lipolytica, we developed a set of easily usable and effective CRISPR-Cas9 episomal vectors. In this protocols chapter, we first present a method by which arbitrary protein-coding genes can be disrupted via indel formation after CRISPR-Cas9 targeting. A second method demonstrates how the same CRISPR-Cas9 system can be used to induce markerless gene cassette integration into the genome by inducing homologous recombination after DNA cleavage by Cas9. Finally, we describe how a catalytically inactive form of Cas9 fused to a transcriptional repressor can be used to control transcription of native genes in Y. lipolytica. The CRISPR-Cas9 tools and strategies described here greatly increase the types of genome editing and transcriptional control that can be achieved in Y. lipolytica, and promise to facilitate more advanced engineering of this important oleaginous host.

  13. Modelling of slag emulsification and slag reduction in CAS-OB process

    OpenAIRE

    Sulasalmi, P. (Petri)

    2016-01-01

    Abstract Composition Adjustment by Sealed argon bubbling – Oxygen Blowing (CAS-OB) process is a ladle treatment process that was developed for chemical heating and alloying of steel. The main stages of the process are heating, (possible) alloying and reduction of slag. The CAS-OB process aims for homogenization and control of the composition and temperature of steel. In this dissertation, a mathematical reaction model was developed for the slag reduction stage of the CAS-OB process. Sl...

  14. CAS – A Journey Has Begun in Aotearoa New Zealand

    Directory of Open Access Journals (Sweden)

    Derek Smith

    2008-08-01

    Full Text Available This paper explores a journey through hand-held technology changes in mathematics teaching and learning and raises questions we as mathematics educators should be considering in the shorter and longer term. New Zealand is embarking on a Computer Algebraic Systems (CAS Pilot Programme in secondary school mathematics. The Ministry of Education and the New Zealand Qualifications Authority have selected secondary schools to be part of a pilot programme in the use of CAS technology in mathematics classes. The aim of the pilot programme is to improve teaching and learning of mathematics through the use of this technology. Six schools in 2005 used CAS technology with Year 9 (13-14 year olds students and, an additional 16 schools joined the programme in 2006. The pilot is planned to continue with an increasing number of schools in subsequent years. By the time students in the pilot schools reach Years 11, 12 and 13, alternative external assessments using the CAS technology will be available. Professional development support and assistance in obtaining and using the technology will be provided to the pilot schools. The project's emphasis in 2005 was on the Geometry and Algebra strands; the Statistics strand was added in 2006. By 2010 the first cohort of project programme students will have been through their secondary mathematics education via a CAS environment. New Zealand teachers have only a finite time to get into CAS technology and integrate it into their teaching practice. This paper discusses a research project based on a mathematics department professional development that is linked to the pilot.

  15. Characteristics of research tracks in dermatology residency programs: a national survey.

    Science.gov (United States)

    Narala, Saisindhu; Loh, Tiffany; Shinkai, Kanade; Paravar, Taraneh

    2017-12-15

    Pursuing research is encouraged in dermatology residency programs. Some programs offer specific research or investigative tracks. Currently, there is little data on the structure or scope of research tracks in dermatology residency programs. An anonymous online survey was distributed to the Association of Professors of Dermatology listserve in 2016. Program directors of dermatology residency programs in the United States were asked to participate and 38 of the 95 program directors responded. The survey results confirmed that a 2+2 research track, which is two years of clinical training followed by two years of research, was the most common investigator trackmodel and may promote an academic career at the resident's home institution. Further studies will help determine the most effective research track models to promote long-term outcomes.

  16. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities.

    Science.gov (United States)

    Li, Ling; Hu, Shuo; Chen, Xiaoyuan

    2018-07-01

    In recent years, CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) genome editing systems have become one of the most robust platforms in basic biomedical research and therapeutic applications. To date, efficient in vivo delivery of the CRISPR/Cas9 system to the targeted cells remains a challenge. Although viral vectors have been widely used in the delivery of the CRISPR/Cas9 system in vitro and in vivo, their fundamental shortcomings, such as the risk of carcinogenesis, limited insertion size, immune responses and difficulty in large-scale production, severely limit their further applications. Alternative non-viral delivery systems for CRISPR/Cas9 are urgently needed. With the rapid development of non-viral vectors, lipid- or polymer-based nanocarriers have shown great potential for CRISPR/Cas9 delivery. In this review, we analyze the pros and cons of delivering CRISPR/Cas9 systems in the form of plasmid, mRNA, or protein and then discuss the limitations and challenges of CRISPR/Cas9-based genome editing. Furthermore, current non-viral vectors that have been applied for CRISPR/Cas9 delivery in vitro and in vivo are outlined in details. Finally, critical obstacles for non-viral delivery of CRISPR/Cas9 system are highlighted and promising strategies to overcome these barriers are proposed. Published by Elsevier Ltd.

  17. System-level perturbations of cell metabolism using CRISPR/Cas9

    Energy Technology Data Exchange (ETDEWEB)

    Jakočiūnas, Tadas [Technical Univ. of Denmark, Lyngby (Denmark); Jensen, Michael K. [Technical Univ. of Denmark, Lyngby (Denmark); Keasling, Jay D. [Technical Univ. of Denmark, Lyngby (Denmark); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    2017-03-30

    CRISPR/Cas9 (clustered regularly interspaced palindromic repeats and the associated protein Cas9) techniques have made genome engineering and transcriptional reprogramming studies much more advanced and cost-effective. For metabolic engineering purposes, the CRISPR-based tools have been applied to single and multiplex pathway modifications and transcriptional regulations. The effectiveness of these tools allows researchers to implement genome-wide perturbations, test model-guided genome editing strategies, and perform transcriptional reprogramming perturbations in a more advanced manner than previously possible. In this mini-review we highlight recent studies adopting CRISPR/Cas9 for systems-level perturbations and model-guided metabolic engineering.

  18. New applications of CRISPR/Cas9 system on mutant DNA detection.

    Science.gov (United States)

    Jia, Chenqiang; Huai, Cong; Ding, Jiaqi; Hu, Lingna; Su, Bo; Chen, Hongyan; Lu, Daru

    2018-01-30

    The detection of mutant DNA is critical for precision medicine, but low-frequency DNA mutation is very hard to be determined. CRISPR/Cas9 is a robust tool for in vivo gene editing, and shows the potential for precise in vitro DNA cleavage. Here we developed a DNA mutation detection system based on CRISPR/Cas9 that can detect gene mutation efficiently even in a low-frequency condition. The system of CRISPR/Cas9 cleavage in vitro showed a high accuracy similar to traditional T7 endonuclease I (T7E1) assay in estimating mutant DNA proportion in the condition of normal frequency. The technology was further used for low-frequency mutant DNA detection of EGFR and HBB somatic mutations. To the end, Cas9 was employed to cleave the wild-type (WT) DNA and to enrich the mutant DNA. Using amplified fragment length polymorphism analysis (AFLPA) and Sanger sequencing, we assessed the sensitivity of CRISPR/Cas9 cleavage-based PCR, in which mutations at 1%-10% could be enriched and detected. When combined with blocker PCR, its sensitivity reached up to 0.1%. Our results suggested that this new application of CRISPR/Cas9 system is a robust and potential method for heterogeneous specimens in the clinical diagnosis and treatment management. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice.

    Science.gov (United States)

    Mikami, Masafumi; Toki, Seiichi; Endo, Masaki

    2015-10-01

    Frequency of CRISPR/Cas9-mediated targeted mutagenesis varies depending on Cas9 expression level and culture period of rice callus. Recent reports have demonstrated that the CRISPR/Cas9 system can function as a sequence-specific nuclease in various plant species. Induction of mutation in proliferating tissue during embryogenesis or in germline cells is a practical means of generating heritable mutations. In the case of plant species in which cultured cells are used for transformation, non-chimeric plants can be obtained when regeneration occurs from mutated cells. Since plantlets are regenerated from both mutated and non-mutated cells in a random manner, any increment in the proportion of mutated cells in Cas9- and guide RNA (gRNA)-expressing cells will help increase the number of plants containing heritable mutations. In this study, we examined factors affecting mutation frequency in rice calli. Following sequential transformation of rice calli with Cas9- and gRNA- expression constructs, the mutation frequency in independent Cas9 transgenic lines was analyzed. A positive correlation between Cas9 expression level and mutation frequency was found. This positive relationship was observed regardless of whether the transgene or an endogenous gene was used as the target for CRISPR/Cas9-mediated mutagenesis. Furthermore, we found that extending the culture period increased the proportion of mutated cells as well as the variety of mutations obtained. Because mutated and non-mutated cells might proliferate equally, these results suggest that a prolonged tissue culture period increases the chance of inducing de novo mutations in non-mutated cells. This fundamental knowledge will help improve systems for obtaining non-chimeric regenerated plants in many plant species.

  20. The Cooperative Agricultural Pest Survey Program (CAPS): scientific support to optimize a national program

    Science.gov (United States)

    Lisa D. Jackson; Daniel A. Fieselmann

    2011-01-01

    The mission of the Cooperative Agricultural Pest Survey (CAPS) program is to provide a survey profile of exotic plant pests in the United States deemed to be of regulatory significance to USDA Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), State Departments of Agriculture, tribal governments, and cooperators by confirming the...

  1. A national survey of school-based, adolescent suicide prevention programs.

    Science.gov (United States)

    Garland, A; Shaffer, D; Whittle, B

    1989-11-01

    A national survey of suicide prevention programs was conducted to determine the number, distribution and content of school-based, curriculum programs for adolescents. One hundred fifteen programs were identified. The total number of students and schools targeted for prevention efforts more than doubled during the academic years 1984/1985 to 1986/1987. Content of the programs was similar, with nearly all including information on suicide warning signs and other facts, as well as on accessing community mental health resources. Most included a separate component for school staff and parents. Ninety-five percent subscribed to the view that suicide is most commonly a response to extreme stress or pressure and could happen to anyone. Possible negative implications of this "stress model" of suicide were discussed. While this survey plays an important first step in providing a description of these programs, more evaluative research is needed to determine what effect, if any, these programs have on suicidal behavior.

  2. [Advances in CRISPR-Cas-mediated genome editing system in plants].

    Science.gov (United States)

    Wang, Chun; Wang, Kejian

    2017-10-25

    Targeted genome editing technology is an important tool to study the function of genes and to modify organisms at the genetic level. Recently, CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins) system has emerged as an efficient tool for specific genome editing in animals and plants. CRISPR-Cas system uses CRISPR-associated endonuclease and a guide RNA to generate double-strand breaks at the target DNA site, subsequently leading to genetic modifications. CRISPR-Cas system has received widespread attention for manipulating the genomes with simple, easy and high specificity. This review summarizes recent advances of diverse applications of the CRISPR-Cas toolkit in plant research and crop breeding, including expanding the range of genome editing, precise editing of a target base, and efficient DNA-free genome editing technology. This review also discusses the potential challenges and application prospect in the future, and provides a useful reference for researchers who are interested in this field.

  3. CRISPR-Cas adaptation: insights into the mechanism of action.

    Science.gov (United States)

    Amitai, Gil; Sorek, Rotem

    2016-02-01

    Since the first demonstration that CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against phages and plasmids, numerous studies have yielded key insights into the molecular mechanisms governing how these systems attack and degrade foreign DNA. However, the molecular mechanisms underlying the adaptation stage, in which new immunological memory is formed, have until recently represented a major unresolved question. In this Progress article, we discuss recent discoveries that have shown both how foreign DNA is identified by the CRISPR-Cas adaptation machinery and the molecular basis for its integration into the chromosome to form an immunological memory. Furthermore, we describe the roles of each of the specific CRISPR-Cas components that are involved in memory formation, and consider current models for their evolutionary origin.

  4. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials.

    Science.gov (United States)

    Bikard, David; Euler, Chad W; Jiang, Wenyan; Nussenzweig, Philip M; Goldberg, Gregory W; Duportet, Xavier; Fischetti, Vincent A; Marraffini, Luciano A

    2014-11-01

    Antibiotics target conserved bacterial cellular pathways or growth functions and therefore cannot selectively kill specific members of a complex microbial population. Here, we develop programmable, sequence-specific antimicrobials using the RNA-guided nuclease Cas9 (refs.1,2) delivered by a bacteriophage. We show that Cas9, reprogrammed to target virulence genes, kills virulent, but not avirulent, Staphylococcus aureus. Reprogramming the nuclease to target antibiotic resistance genes destroys staphylococcal plasmids that harbor antibiotic resistance genes and immunizes avirulent staphylococci to prevent the spread of plasmid-borne resistance genes. We also show that CRISPR-Cas9 antimicrobials function in vivo to kill S. aureus in a mouse skin colonization model. This technology creates opportunities to manipulate complex bacterial populations in a sequence-specific manner.

  5. The Impact of DNA Topology and Guide Length on Target Selection by a Cytosine-Specific Cas9.

    Science.gov (United States)

    Tsui, Tsz Kin Martin; Hand, Travis H; Duboy, Emily C; Li, Hong

    2017-06-16

    Cas9 is an RNA-guided DNA cleavage enzyme being actively developed for genome editing and gene regulation. To be cleaved by Cas9, a double stranded DNA, or the protospacer, must be complementary to the guide region, typically 20-nucleotides in length, of the Cas9-bound guide RNA, and adjacent to a short Cas9-specific element called Protospacer Adjacent Motif (PAM). Understanding the correct juxtaposition of the protospacer- and PAM-interaction with Cas9 will enable development of versatile and safe Cas9-based technology. We report identification and biochemical characterization of Cas9 from Acidothermus cellulolyticus (AceCas9). AceCas9 depends on a 5'-NNNCC-3' PAM and is more efficient in cleaving negative supercoils than relaxed DNA. Kinetic as well as in vivo activity assays reveal that AceCas9 achieves optimal activity when combined with a guide RNA containing a 24-nucleotide complementarity region. The cytosine-specific, DNA topology-sensitive, and extended guide-dependent properties of AceCas9 may be explored for specific genome editing applications.

  6. On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires

    Directory of Open Access Journals (Sweden)

    Sukrit Silas

    2017-07-01

    Full Text Available Cas1 integrase is the key enzyme of the clustered regularly interspaced short palindromic repeat (CRISPR-Cas adaptation module that mediates acquisition of spacers derived from foreign DNA by CRISPR arrays. In diverse bacteria, the cas1 gene is fused (or adjacent to a gene encoding a reverse transcriptase (RT related to group II intron RTs. An RT-Cas1 fusion protein has been recently shown to enable acquisition of CRISPR spacers from RNA. Phylogenetic analysis of the CRISPR-associated RTs demonstrates monophyly of the RT-Cas1 fusion, and coevolution of the RT and Cas1 domains. Nearly all such RTs are present within type III CRISPR-Cas loci, but their phylogeny does not parallel the CRISPR-Cas type classification, indicating that RT-Cas1 is an autonomous functional module that is disseminated by horizontal gene transfer and can function with diverse type III systems. To compare the sequence pools sampled by RT-Cas1-associated and RT-lacking CRISPR-Cas systems, we obtained samples of a commercially grown cyanobacterium—Arthrospira platensis. Sequencing of the CRISPR arrays uncovered a highly diverse population of spacers. Spacer diversity was particularly striking for the RT-Cas1-containing type III-B system, where no saturation was evident even with millions of sequences analyzed. In contrast, analysis of the RT-lacking type III-D system yielded a highly diverse pool but reached a point where fewer novel spacers were recovered as sequencing depth was increased. Matches could be identified for a small fraction of the non-RT-Cas1-associated spacers, and for only a single RT-Cas1-associated spacer. Thus, the principal source(s of the spacers, particularly the hypervariable spacer repertoire of the RT-associated arrays, remains unknown.

  7. MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems.

    Directory of Open Access Journals (Sweden)

    Sophie S Abby

    Full Text Available Biologists often wish to use their knowledge on a few experimental models of a given molecular system to identify homologs in genomic data. We developed a generic tool for this purpose.Macromolecular System Finder (MacSyFinder provides a flexible framework to model the properties of molecular systems (cellular machinery or pathway including their components, evolutionary associations with other systems and genetic architecture. Modelled features also include functional analogs, and the multiple uses of a same component by different systems. Models are used to search for molecular systems in complete genomes or in unstructured data like metagenomes. The components of the systems are searched by sequence similarity using Hidden Markov model (HMM protein profiles. The assignment of hits to a given system is decided based on compliance with the content and organization of the system model. A graphical interface, MacSyView, facilitates the analysis of the results by showing overviews of component content and genomic context. To exemplify the use of MacSyFinder we built models to detect and class CRISPR-Cas systems following a previously established classification. We show that MacSyFinder allows to easily define an accurate "Cas-finder" using publicly available protein profiles.MacSyFinder is a standalone application implemented in Python. It requires Python 2.7, Hmmer and makeblastdb (version 2.2.28 or higher. It is freely available with its source code under a GPLv3 license at https://github.com/gem-pasteur/macsyfinder. It is compatible with all platforms supporting Python and Hmmer/makeblastdb. The "Cas-finder" (models and HMM profiles is distributed as a compressed tarball archive as Supporting Information.

  8. Complementary Information Derived from CRISPR Cas9 Mediated Gene Deletion and Suppression. | Office of Cancer Genomics

    Science.gov (United States)

    CRISPR-Cas9 provides the means to perform genome editing and facilitates loss-of-function screens. However, we and others demonstrated that expression of the Cas9 endonuclease induces a gene-independent response that correlates with the number of target sequences in the genome. An alternative approach to suppressing gene expression is to block transcription using a catalytically inactive Cas9 (dCas9). Here we directly compare genome editing by CRISPR-Cas9 (cutting, CRISPRc) and gene suppression using KRAB-dCas9 (CRISPRi) in loss-of-function screens to identify cell essential genes.

  9. A Single-Chain Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and Transcription.

    Science.gov (United States)

    Zhou, Xin X; Zou, Xinzhi; Chung, Hokyung K; Gao, Yuchen; Liu, Yanxia; Qi, Lei S; Lin, Michael Z

    2018-02-16

    Optical control of CRISPR-Cas9-derived proteins would be useful for restricting gene editing or transcriptional regulation to desired times and places. Optical control of Cas9 functions has been achieved with photouncageable unnatural amino acids or by using light-induced protein interactions to reconstitute Cas9-mediated functions from two polypeptides. However, these methods have only been applied to one Cas9 species and have not been used for optical control of different perturbations at two genes. Here, we use photodissociable dimeric fluorescent protein domains to engineer single-chain photoswitchable Cas9 (ps-Cas9) proteins in which the DNA-binding cleft is occluded at baseline and opened upon illumination. This design successfully controlled different species and functional variants of Cas9, mediated transcriptional activation more robustly than previous optogenetic methods, and enabled light-induced transcription of one gene and editing of another in the same cells. Thus, a single-chain photoswitchable architecture provides a general method to control a variety of Cas9-mediated functions.

  10. Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9.

    Science.gov (United States)

    Anders, Carolin; Bargsten, Katja; Jinek, Martin

    2016-03-17

    The RNA-guided endonuclease Cas9 from Streptococcus pyogenes (SpCas9) forms the core of a powerful genome editing technology. DNA cleavage by SpCas9 is dependent on the presence of a 5'-NGG-3' protospacer adjacent motif (PAM) in the target DNA, restricting the choice of targetable sequences. To address this limitation, artificial SpCas9 variants with altered PAM specificities have recently been developed. Here we report crystal structures of the VQR, EQR, and VRER SpCas9 variants bound to target DNAs containing their preferred PAM sequences. The structures reveal that the non-canonical PAMs are recognized by an induced fit mechanism. Besides mediating sequence-specific base recognition, the amino acid substitutions introduced in the SpCas9 variants facilitate conformational remodeling of the PAM region of the bound DNA. Guided by the structural data, we engineered a SpCas9 variant that specifically recognizes NAAG PAMs. Taken together, these studies inform further development of Cas9-based genome editing tools. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion.

    Science.gov (United States)

    Sampson, Timothy R; Napier, Brooke A; Schroeder, Max R; Louwen, Rogier; Zhao, Jinshi; Chin, Chui-Yoke; Ratner, Hannah K; Llewellyn, Anna C; Jones, Crystal L; Laroui, Hamed; Merlin, Didier; Zhou, Pei; Endtz, Hubert P; Weiss, David S

    2014-07-29

    Clustered, regularly interspaced, short palindromic repeats-CRISPR associated (CRISPR-Cas) systems defend bacteria against foreign nucleic acids, such as during bacteriophage infection and transformation, processes which cause envelope stress. It is unclear if these machineries enhance membrane integrity to combat this stress. Here, we show that the Cas9-dependent CRISPR-Cas system of the intracellular bacterial pathogen Francisella novicida is involved in enhancing envelope integrity through the regulation of a bacterial lipoprotein. This action ultimately provides increased resistance to numerous membrane stressors, including antibiotics. We further find that this previously unappreciated function of Cas9 is critical during infection, as it promotes evasion of the host innate immune absent in melanoma 2/apoptosis associated speck-like protein containing a CARD (AIM2/ASC) inflammasome. Interestingly, the attenuation of the cas9 mutant is complemented only in mice lacking both the AIM2/ASC inflammasome and the bacterial lipoprotein sensor Toll-like receptor 2, but not in single knockout mice, demonstrating that Cas9 is essential for evasion of both pathways. These data represent a paradigm shift in our understanding of the function of CRISPR-Cas systems as regulators of bacterial physiology and provide a framework with which to investigate the roles of these systems in myriad bacteria, including pathogens and commensals.

  12. 2012 School Libraries Count! National Longitudinal Survey of School Library Programs

    Science.gov (United States)

    American Association of School Librarians (NJ1), 2012

    2012-01-01

    AASL's School Libraries Count! annual longitudinal survey is an online survey that is open to all primary and secondary school library programs to participate. The 2012 survey was launched on January 24th and closed on March 20th. The survey was publicized through various professional organizations and events and through word of mouth. Data…

  13. CRISPR/Cas9-mediated target validation of the Splicing Inhibitor Pladienolide B

    KAUST Repository

    Aouida, Mustapha; Eid, Ayman; Mahfouz, Magdy M.

    2016-01-01

    CRISPR/Cas9 system confers molecular immunity in archeal and bacterial species against invading foreign nucleic acids. CRISPR/Cas9 system is used for genome engineering applications across diverse eukaryotic species. In this study, we demonstrate the utility of the CRISPR/Cas9 genome engineering system for drug target validation in human cells. Pladienolide B is a natural macrolide with antitumor activities mediated through the inhibition of pre-mRNA splicing. To validate the spliceosomal target of Pladienolide B, we employed the CRSIPR/Cas9 system to introduce targeted mutations in the subunits of the SF3B complex in the HEK293T cells. Our data reveal that targeted mutagenesis of the SF3b1 subunit exhibited higher levels of resistance to Pladienolide B. Therefore, our data validate the spliceosomal target of Pladienolide B and provide a proof of concept on using the CRISPR/Cas9 system for drug target identification and validation.

  14. CRISPR/Cas9-mediated target validation of the Splicing Inhibitor Pladienolide B

    KAUST Repository

    Aouida, Mustapha

    2016-02-24

    CRISPR/Cas9 system confers molecular immunity in archeal and bacterial species against invading foreign nucleic acids. CRISPR/Cas9 system is used for genome engineering applications across diverse eukaryotic species. In this study, we demonstrate the utility of the CRISPR/Cas9 genome engineering system for drug target validation in human cells. Pladienolide B is a natural macrolide with antitumor activities mediated through the inhibition of pre-mRNA splicing. To validate the spliceosomal target of Pladienolide B, we employed the CRSIPR/Cas9 system to introduce targeted mutations in the subunits of the SF3B complex in the HEK293T cells. Our data reveal that targeted mutagenesis of the SF3b1 subunit exhibited higher levels of resistance to Pladienolide B. Therefore, our data validate the spliceosomal target of Pladienolide B and provide a proof of concept on using the CRISPR/Cas9 system for drug target identification and validation.

  15. Proceedings of JSPS-CAS Core University Program seminar on production and steady state confinement of high performance plasmas in magnetic confinement systems

    International Nuclear Information System (INIS)

    Wan Baonian; Toi, Kazuo

    2005-09-01

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and steady-state confinement of high performance plasmas in magnetic confinement systems' was held from 27 July to 29 July 2005 in Institute of Plasma Physics, the Chinese Academy of Sciences, Hefei, China. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. About 50 persons including 20 Japanese attendees attended this seminar. Long time sustainment of high confinement and high beta plasmas is crucial for realization of an advanced nuclear fusion reactor. This seminar was motivated to summarize the results of CUP obtained in four years activities of CUP, and to extract crucial issues to be resolved near future, which must drive near and mid- term collaborations in the framework of CUP. The 32 of presented papers are indexed individually. (J.P.N.)

  16. JSPS-CAS core university program seminar. Proceedings of Japan-China joint seminar on atomic and molecular processes in plasma

    International Nuclear Information System (INIS)

    Koike, Fumihiro; Dong Chenzhong

    2008-03-01

    As one of the activities of JSPS-CAS Core University Program, Japan-China Joint Seminar on Atomic and Molecular Processes in Plasma was held on October 8 - 12, 2007 in Dunhuang, China. The total number of the officially registered participants was 41, in which 12 from Japan, 25 from China, and 4 from EU. And this seminar is an extension of the last seminar that was held on March 6 - 11, 2004 in Lanzhou, China. In the nuclear fusion plasma, there are quite a variety of atomic processes such as ionization, excitation, radiative recombination, non-radiative recombination (di-electronic recombination, collisional electron transfer), cascade radiation, and cascade Auger decay over the wide range of plasma temperature. The knowledge of such processes is indispensable for the evaluation and improvement of the plasma properties, which is desirable to be investigated by international collaboration groups. The present seminar constitutes one of such activities to realize the above stated aim; especially it has given an opportunity for the collaborative workers to illustrate their achievements. The 32 of the presented papers are indexed individually. (J.P.N.)

  17. Application of computers in a radiological survey program

    International Nuclear Information System (INIS)

    Berven, B.A.; Blair, M.S.; Doane, R.W.; Little, C.A.; Perdue, P.T.

    1984-01-01

    Computers have become increasingly important in data analysis and data management as well as assisting in report preparation in the Oak Ridge National Laboratory (ORNL) Radiological Survey Activities (RASA) Program. The primary function of the RASA program is to collect, analyze, report, and manage data collected to characterize the radiological condition of potentially contaminated sites identified in the Department of Energy's (DOE) remedial action programs. Three different computer systems are routinely utilized in ORNL/RASA operations. Two of these systems are employed in specific functions. A Nuclear Data (ND) 682 is used to perform isotopic analysis of gamma spectroscopic data generated by high-purity germanium detectors for air, water and soil samples. The ND682 employs a 16,000-channel analyzer that is routinely used with four germanium spectrometers. Word processing and data management are accomplished using the INtext system implemented on a DEC PDP-11 computer. A group of personal computers are used to perform a diverse number of functions. These computer systems are Commodore Business Machines (CBM) Model 8032 with a dual floppy disk storage medium and line printers (with optional X-Y plotters). The CBM's are utilized for: (1) data analysis -- raw data from radiation detection instrumentation are stored and manipulated with customized computer programs; (2) data reduction -- raw data are converted into report-ready tables using customized programs; (3) data management -- radionuclide data on each air, water and soil sample are stored on diskettes along with location of archived samples; and (4) program management -- site surveys and report status are tracked by computer files as well as program budget information to provide contemporary information of program status

  18. Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations

    Science.gov (United States)

    Zuo, Zhicheng; Liu, Jin

    2016-11-01

    The CRISPR-associated endonuclease Cas9 from Streptococcus pyogenes (spCas9) along with a single guide RNA (sgRNA) has emerged as a versatile toolbox for genome editing. Despite recent advances in the mechanism studies on spCas9-sgRNA-mediated double-stranded DNA (dsDNA) recognition and cleavage, it is still unclear how the catalytic Mg2+ ions induce the conformation changes toward the catalytic active state. It also remains controversial whether Cas9 generates blunt-ended or staggered-ended breaks with overhangs in the DNA. To investigate these issues, here we performed the first all-atom molecular dynamics simulations of the spCas9-sgRNA-dsDNA system with and without Mg2+ bound. The simulation results showed that binding of two Mg2+ ions at the RuvC domain active site could lead to structurally and energetically favorable coordination ready for the non-target DNA strand cleavage. Importantly, we demonstrated with our simulations that Cas9-catalyzed DNA cleavage produces 1-bp staggered ends rather than generally assumed blunt ends.

  19. Oncogenic Human Papillomavirus: Application of CRISPR/Cas9 Therapeutic Strategies for Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Shuai Zhen

    2017-12-01

    Full Text Available Oncogenic human papillomaviruses (HPVs cause different types of cancer especially cervical cancer. HPV-associated carcinogenesis provides a classical model system for clustered regularly interspaced short palindromic repeats (CRISPR/Cas9 based cancer therapies since the viral oncogenes E6 and E7 are exclusively expressed in cancerous cells. Sequence-specific gene knockdown/knockout using CRISPR/Cas9 shows promise as a novel therapeutic approach for the treatment of a variety of diseases that currently lack effective treatments. However, CRISPR/Cas9-based targeting therapy requires further validation of its efficacy in vitro and in vivo to eliminate the potential off-target effects, necessitates verification of the delivery vehicles and the combinatory use of conventional therapies with CRISPR/Cas9 to ensure the feasibility and safety. In this review we discuss the potential of combining CRISPR/Cas9 with other treatment options as therapies for oncogenic HPVs-associated carcinogenesis. and present our assessment of the promising path to the development of CRISPR/Cas9 therapeutic strategies for clinical settings.

  20. Editing of the urease gene by CRISPR-Cas in the diatom Thalassiosira pseudonana

    Directory of Open Access Journals (Sweden)

    Amanda Hopes

    2016-11-01

    Full Text Available Abstract Background CRISPR-Cas is a recent and powerful addition to the molecular toolbox which allows programmable genome editing. It has been used to modify genes in a wide variety of organisms, but only two alga to date. Here we present a methodology to edit the genome of Thalassiosira pseudonana, a model centric diatom with both ecological significance and high biotechnological potential, using CRISPR-Cas. Results A single construct was assembled using Golden Gate cloning. Two sgRNAs were used to introduce a precise 37 nt deletion early in the coding region of the urease gene. A high percentage of bi-allelic mutations (≤61.5% were observed in clones with the CRISPR-Cas construct. Growth of bi-allelic mutants in urea led to a significant reduction in growth rate and cell size compared to growth in nitrate. Conclusions CRISPR-Cas can precisely and efficiently edit the genome of T. pseudonana. The use of Golden Gate cloning to assemble CRISPR-Cas constructs gives additional flexibility to the CRISPR-Cas method and facilitates modifications to target alternative genes or species.

  1. Insights into the CRISPR/Cas system of Gardnerella vaginalis

    Directory of Open Access Journals (Sweden)

    Pleckaityte Milda

    2012-12-01

    Full Text Available Abstract Background Gardnerella vaginalis is identified as the predominant colonist of the vaginal tracts of women diagnosed with bacterial vaginosis (BV. G. vaginalis can be isolated from healthy women, and an asymptomatic BV state is also recognised. The association of G. vaginalis with different clinical phenotypes could be explained by different cytotoxicity of the strains, presumably based on disparate gene content. The contribution of horizontal gene transfer to shaping the genomes of G. vaginalis is acknowledged. The CRISPR loci of the recently discovered CRISPR/Cas microbial defence system provide a historical view of the exposure of prokaryotes to a variety of foreign genetic elements. Results The CRISPR/Cas loci were analysed using available sequence data from three G. vaginalis complete genomes and 18 G. vaginalis draft genomes in the NCBI database, as well as PCR amplicons of the genomic DNA of 17 clinical isolates. The cas genes in the CRISPR/Cas loci of G. vaginalis belong to the E. coli subtype. Approximately 20% of the spacers had matches in the GenBank database. Sequence analysis of the CRISPR arrays revealed that nearly half of the spacers matched G. vaginalis chromosomal sequences. The spacers that matched G. vaginalis chromosomal sequences were determined to not be self-targeting and were presumably neither constituents of mobile-element-associated genes nor derived from plasmids/viruses. The protospacers targeted by these spacers displayed conserved protospacer-adjacent motifs. Conclusions The CRISPR/Cas system has been identified in about one half of the analysed G. vaginalis strains. Our analysis of CRISPR sequences did not reveal a potential link between their presence and the virulence of the G. vaginalis strains. Based on the origins of the spacers found in the G. vaginalis CRISPR arrays, we hypothesise that the transfer of genetic material among G. vaginalis strains could be regulated by the CRISPR/Cas mechanism. The

  2. Survey on present status and trend of parallel programming environments

    International Nuclear Information System (INIS)

    Takemiya, Hiroshi; Higuchi, Kenji; Honma, Ichiro; Ohta, Hirofumi; Kawasaki, Takuji; Imamura, Toshiyuki; Koide, Hiroshi; Akimoto, Masayuki.

    1997-03-01

    This report intends to provide useful information on software tools for parallel programming through the survey on parallel programming environments of the following six parallel computers, Fujitsu VPP300/500, NEC SX-4, Hitachi SR2201, Cray T94, IBM SP, and Intel Paragon, all of which are installed at Japan Atomic Energy Research Institute (JAERI), moreover, the present status of R and D's on parallel softwares of parallel languages, compilers, debuggers, performance evaluation tools, and integrated tools is reported. This survey has been made as a part of our project of developing a basic software for parallel programming environment, which is designed on the concept of STA (Seamless Thinking Aid to programmers). (author)

  3. A survey of functional programming language principles

    Science.gov (United States)

    Holloway, C. M.

    1986-01-01

    Research in the area of functional programming languages has intensified in the 8 years since John Backus' Turing Award Lecture on the topic was published. The purpose of this paper is to present a survey of the ideas of functional programming languages. The paper assumes the reader is comfortable with mathematics and has knowledge of the basic principles of traditional programming languages, but does not assume any prior knowledge of the ideas of functional languages. A simple functional language is defined and used to illustrate the basic ideas. Topics discussed include the reasons for developing functional languages, methods of expressing concurrency, the algebra of functional programming languages, program transformation techniques, and implementations of functional languages. Existing functional languages are also mentioned. The paper concludes with the author's opinions as to the future of functional languages. An annotated bibliography on the subject is also included.

  4. CRISPR-Cas9: a promising genetic engineering approach in cancer research

    Science.gov (United States)

    Ratan, Zubair Ahmed; Son, Young-Jin; Uddin, Bhuiyan Mohammad Mahtab; Yusuf, Md. Abdullah; Zaman, Sojib Bin; Kim, Jong-Hoon; Banu, Laila Anjuman

    2018-01-01

    Bacteria and archaea possess adaptive immunity against foreign genetic materials through clustered regularly interspaced short palindromic repeat (CRISPR) systems. The discovery of this intriguing bacterial system heralded a revolutionary change in the field of medical science. The CRISPR and CRISPR-associated protein 9 (Cas9) based molecular mechanism has been applied to genome editing. This CRISPR-Cas9 technique is now able to mediate precise genetic corrections or disruptions in in vitro and in vivo environments. The accuracy and versatility of CRISPR-Cas have been capitalized upon in biological and medical research and bring new hope to cancer research. Cancer involves complex alterations and multiple mutations, translocations and chromosomal losses and gains. The ability to identify and correct such mutations is an important goal in cancer treatment. In the context of this complex cancer genomic landscape, there is a need for a simple and flexible genetic tool that can easily identify functional cancer driver genes within a comparatively short time. The CRISPR-Cas system shows promising potential for modeling, repairing and correcting genetic events in different types of cancer. This article reviews the concept of CRISPR-Cas, its application and related advantages in oncology. PMID:29434679

  5. Organization of functional domains in the docking protein p130Cas

    International Nuclear Information System (INIS)

    Nasertorabi, Fariborz; Garcia-Guzman, Miguel; Briknarova, Klara; Larsen, Elise; Havert, Marnie L.; Vuori, Kristiina; Ely, Kathryn R.

    2004-01-01

    The docking protein p130Cas becomes phosphorylated upon cell adhesion to extracellular matrix proteins, and is thought to play an essential role in cell transformation. Cas transmits signals through interactions with the Src-homology 3 (SH3) and Src-homology 2 domains of FAK or v-Crk signaling molecules, or with 14-3-3 protein, as well as phosphatases PTP1B and PTP-PEST. The large (130 kDa), multi-domain Cas molecule contains an SH3 domain, a Src-binding domain, a serine-rich protein interaction region, and a C-terminal region that participates in protein interactions implicated in antiestrogen resistance in breast cancer. In this study, as part of a long-term goal to examine the protein interactions of Cas by X-ray crystallography and nuclear magnetic resonance spectroscopy, molecular constructs were designed to express two adjacent domains, the serine-rich domain and the Src-binding domain, that each participate in intermolecular contacts dependent on protein phosphorylation. The protein products are soluble, homogeneous, monodisperse, and highly suitable for structural studies to define the role of Cas in integrin-mediated cell signaling

  6. CRISPR/Cas-mediated knock-in via non-homologous end-joining in the crustacean Daphnia magna.

    Science.gov (United States)

    Kumagai, Hitoshi; Nakanishi, Takashi; Matsuura, Tomoaki; Kato, Yasuhiko; Watanabe, Hajime

    2017-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) is widely used for mediating the knock-in of foreign DNA into the genomes of various organisms. Here, we report a process of CRISPR/Cas-mediated knock-in via non-homologous end joining by the direct injection of Cas9/gRNA ribonucleoproteins (RNPs) in the crustacean Daphnia magna, which is a model organism for studies on toxicology, ecology, and evolution. First, we confirmed the cleavage activity of Cas9 RNPs comprising purified Cas9 proteins and gRNAs in D. magna. We used a gRNA that targets exon 10 of the eyeless gene. Cas9 proteins were incubated with the gRNAs and the resulting Cas9 RNPs were injected into D. magna eggs, which led to a typical phenotype of the eyeless mutant, i.e., eye deformity. The somatic and heritable mutagenesis efficiencies were up to 96% and 40%, respectively. Second, we tested the CRISPR/Cas-mediated knock-in of a plasmid by the injection of Cas9 RNPs. The donor DNA plasmid harboring the fluorescent reporter gene was designed to contain the gRNA recognition site. The co-injection of Cas9 RNPs together with the donor DNAs resulted in generation of one founder animal that produced fluorescent progenies. This transgenic Daphnia had donor DNA at the targeted genomic site, which suggested the concurrent cleavage of the injected plasmid DNA and genomic DNA. Owing to its simplicity and ease of experimental design, we suggest that the CRISPR/Cas-mediated knock-in method represents a promising tool for studying functional genomics in D. magna.

  7. NASA Controller Acceptability Study 1(CAS-1) Experiment Description and Initial Observations

    Science.gov (United States)

    Chamberlain, James P.; Consiglio, Maria C.; Comstock, James R., Jr.; Ghatas, Rania W.; Munoz, Cesar

    2015-01-01

    This paper describes the Controller Acceptability Study 1 (CAS-1) experiment that was conducted by NASA Langley Research Center personnel from January through March 2014 and presents partial CAS-1 results. CAS-1 employed 14 air traffic controller volunteers as research subjects to assess the viability of simulated future unmanned aircraft systems (UAS) operating alongside manned aircraft in moderate-density, moderate-complexity Class E airspace. These simulated UAS were equipped with a prototype pilot-in-the-loop (PITL) Detect and Avoid (DAA) system, specifically the Self-Separation (SS) function of such a system based on Stratway+ software to replace the see-and-avoid capabilities of manned aircraft pilots. A quantitative CAS-1 objective was to determine horizontal miss distance (HMD) values for SS encounters that were most acceptable to air traffic controllers, specifically HMD values that were assessed as neither unsafely small nor disruptively large. HMD values between 0.5 and 3.0 nautical miles (nmi) were assessed for a wide array of encounter geometries between UAS and manned aircraft. The paper includes brief introductory material about DAA systems and their SS functions, followed by descriptions of the CAS-1 simulation environment, prototype PITL SS capability, and experiment design, and concludes with presentation and discussion of partial CAS-1 data and results.

  8. Applications of CRISPR/Cas9 in retinal degenerative diseases

    Science.gov (United States)

    Peng, Ying-Qian; Tang, Luo-Sheng; Yoshida, Shigeo; Zhou, Ye-Di

    2017-01-01

    Gene therapy is a potentially effective treatment for retinal degenerative diseases. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been developed as a new genome-editing tool in ophthalmic studies. Recent advances in researches showed that CRISPR/Cas9 has been applied in generating animal models as well as gene therapy in vivo of retinitis pigmentosa (RP) and leber congenital amaurosis (LCA). It has also been shown as a potential attempt for clinic by combining with other technologies such as adeno-associated virus (AAV) and induced pluripotent stem cells (iPSCs). In this review, we highlight the main points of further prospect of using CRISPR/Cas9 in targeting retinal degeneration. We also emphasize the potential applications of this technique in treating retinal degenerative diseases. PMID:28503441

  9. Incidence of Type II CRISPR1-Cas Systems in Enterococcus Is Species-Dependent.

    Directory of Open Access Journals (Sweden)

    Casandra Lyons

    Full Text Available CRISPR-Cas systems, which obstruct both viral infection and incorporation of mobile genetic elements by horizontal transfer, are a specific immune response common to prokaryotes. Antiviral protection by CRISPR-Cas comes at a cost, as horizontally-acquired genes may increase fitness and provide rapid adaptation to habitat change. To date, investigations into the prevalence of CRISPR have primarily focused on pathogenic and clinical bacteria, while less is known about CRISPR dynamics in commensal and environmental species. We designed PCR primers and coupled these with DNA sequencing of products to detect and characterize the presence of cas1, a universal CRISPR-associated gene and proxy for the Type II CRISPR1-Cas system, in environmental and non-clinical Enterococcus isolates. CRISPR1-cas1 was detected in approximately 33% of the 275 strains examined, and differences in CRISPR1 carriage between species was significant. Incidence of cas1 in E. hirae was 73%, nearly three times that of E. faecalis (23.6% and 10 times more frequent than in E. durans (7.1%. Also, this is the first report of CRISPR1 presence in E. durans, as well as in the plant-associated species E. casseliflavus and E. sulfureus. Significant differences in CRISPR1-cas1 incidence among Enterococcus species support the hypothesis that there is a tradeoff between protection and adaptability. The differences in the habitats of enterococcal species may exert varying selective pressure that results in a species-dependent distribution of CRISPR-Cas systems.

  10. CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity

    Directory of Open Access Journals (Sweden)

    Roger A. Garrett

    2015-03-01

    Full Text Available The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR-Cas systems of bacteria. Despite this, there is evidence for a complex and differential regulation of expression of the diverse functional modules in response to viral infection. Recent work also supports critical roles for non-core Cas proteins, especially during Type III-directed interference, and this is consistent with these proteins tending to coevolve with core Cas proteins. Various novel aspects of CRISPR-Cas systems of the Sulfolobales are considered including an alternative spacer acquisition mechanism, reversible spacer acquisition, the formation and significance of antisense CRISPR RNAs, and a novel mechanism for avoidance of CRISPR-Cas defense. Finally, questions regarding the basis for the complexity, diversity, and apparent redundancy, of the intracellular CRISPR-Cas systems are discussed.

  11. Characterizing a thermostable Cas9 for bacterial genome editing and silencing

    NARCIS (Netherlands)

    Mougiakos, Ioannis; Mohanraju, Prarthana; Bosma, Elleke F.; Vrouwe, Valentijn; Finger Bou, Max; Naduthodi, Mihris I.S.; Gussak, Alex; Brinkman, Rudolf B.L.; Kranenburg, Van Richard; Oost, Van Der John

    2017-01-01

    CRISPR-Cas9-based genome engineering tools have revolutionized fundamental research and biotechnological exploitation of both eukaryotes and prokaryotes. However, the mesophilic nature of the established Cas9 systems does not allow for applications that require enhanced stability, including

  12. Characterizing a thermostable Cas9 for bacterial genome editing and silencing

    DEFF Research Database (Denmark)

    Mougiakos, Ioannis; Mohanraju, Prarthana; Bosma, Elleke Fenna

    2017-01-01

    CRISPR-Cas9-based genome engineering tools have revolutionized fundamental research and biotechnological exploitation of both eukaryotes and prokaryotes. However, the mesophilic nature of the established Cas9 systems does not allow for applications that require enhanced stability, including...

  13. Engineering Plants for Geminivirus Resistance with CRISPR/Cas9 System

    KAUST Repository

    Zaidi, Syed Shan-e-Ali; Mansoor, Shahid; Ali, Zahir; Tashkandi, Manal; Mahfouz, Magdy M.

    2016-01-01

    The CRISPR/Cas9 system is an efficient genome-editing platform for diverse eukaryotic species, including plants. Recent work harnessed CRISPR/Cas9 technology to engineer resistance to geminiviruses. Here, we discuss opportunities, emerging developments, and potential pitfalls for using this technology to engineer resistance against single and multiple geminivirus infections in plants.

  14. Engineering Plants for Geminivirus Resistance with CRISPR/Cas9 System

    KAUST Repository

    Zaidi, Syed Shan-e-Ali

    2016-02-14

    The CRISPR/Cas9 system is an efficient genome-editing platform for diverse eukaryotic species, including plants. Recent work harnessed CRISPR/Cas9 technology to engineer resistance to geminiviruses. Here, we discuss opportunities, emerging developments, and potential pitfalls for using this technology to engineer resistance against single and multiple geminivirus infections in plants.

  15. RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jong-Jin Park

    Full Text Available Clustered regularly interspaced short palindromic repeats (CRISPR and the CRISPR associated protein 9 (Cas9 system allows effective gene modification through RNA-guided DNA targeting. The Cas9 has undergone a series of functional alterations from the original active endonuclease to partially or completely deactivated Cas9. The catalytically deactivated Cas9 (dCas9 offers a platform to regulate transcriptional expression with the addition of activator or repressor domains. We redesigned a CRISPR/Cas9 activation system by adding the p65 transactivating subunit of NF-kappa B and a heat-shock factor 1 (HSF activation domain to dCas9 bound with the VP64 (tetramer of VP16 activation domain for application in plants. The redesigned CRISPR/Cas9 activation system was tested in Arabidopsis to increase endogenous transcriptional levels of production of anthocyanin pigment 1 (PAP1 and Arabidopsis thaliana vacuolar H+-pyrophosphatase (AVP1. The expression of PAP1 was increased two- to three-fold and the activated plants exhibited purple leaves similar to that of PAP1 overexpressors. The AVP1 gene expression was increased two- to five-fold in transgenic plants. In comparison to the wild type, AVP1 activated plants had increased leaf numbers, larger single-leaf areas and improved tolerance to drought stress. The AVP1 activated plants showed similar phenotypes to AVP1 overexpressors. Therefore, the redesigned CRISPR/Cas9 activation system containing modified p65-HSF provides a simple approach for producing activated plants by upregulating endogenous transcriptional levels.

  16. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress.

    Science.gov (United States)

    LeBlanc, Chantal; Zhang, Fei; Mendez, Josefina; Lozano, Yamile; Chatpar, Krishna; Irish, Vivian F; Jacob, Yannick

    2018-01-01

    The CRISPR/Cas9 system has greatly improved our ability to engineer targeted mutations in eukaryotic genomes. While CRISPR/Cas9 appears to work universally, the efficiency of targeted mutagenesis and the adverse generation of off-target mutations vary greatly between different organisms. In this study, we report that Arabidopsis plants subjected to heat stress at 37°C show much higher frequencies of CRISPR-induced mutations compared to plants grown continuously at the standard temperature (22°C). Using quantitative assays relying on green fluorescent protein (GFP) reporter genes, we found that targeted mutagenesis by CRISPR/Cas9 in Arabidopsis is increased by approximately 5-fold in somatic tissues and up to 100-fold in the germline upon heat treatment. This effect of temperature on the mutation rate is not limited to Arabidopsis, as we observed a similar increase in targeted mutations by CRISPR/Cas9 in Citrus plants exposed to heat stress at 37°C. In vitro assays demonstrate that Cas9 from Streptococcus pyogenes (SpCas9) is more active in creating double-stranded DNA breaks at 37°C than at 22°C, thus indicating a potential contributing mechanism for the in vivo effect of temperature on CRISPR/Cas9. This study reveals the importance of temperature in modulating SpCas9 activity in eukaryotes, and provides a simple method to increase on-target mutagenesis in plants using CRISPR/Cas9. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  17. CRISPR-Cas9 gene editing

    NARCIS (Netherlands)

    Oude Blenke, Erik; Evers, Martijn J.W.; Mastrobattista, Enrico; Oost, van der John

    2016-01-01

    The CRISPR-Cas9 gene editing system has taken the biomedical science field by storm, initiating rumors about future Nobel Prizes and heating up a fierce patent war, but also making significant scientific impact. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), together with

  18. Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies

    DEFF Research Database (Denmark)

    Damgaard Jensen, Emil; Ferreira, Raphael; Jakociunas, Tadas

    2017-01-01

    on developing synthetic biology tools for orthogonal control of transcription. Most recently, the nuclease-deficient Cas9 (dCas9) has emerged as a flexible tool for controlling activation and repression of target genes, by the simple RNA-guided positioning of dCas9 in the vicinity of the target gene...... transcription start site. In this study we compared two different systems of dCas9-mediated transcriptional reprogramming, and applied them to genes controlling two biosynthetic pathways for biobased production of isoprenoids and triacylglycerols (TAGs) in baker's yeast Saccharomyces cerevisiae. By testing 101...... production and increases in TAG. Taken together, we show similar performance for a constitutive and an inducible dCas9 approach, and identify multiplex gRNA designs that can significantly perturb isoprenoid production and TAG profiles in yeast without editing the genomic context of the target genes. We also...

  19. The durban beach monitoring program: simple surveys speak volumes

    CSIR Research Space (South Africa)

    de Wet, p

    2010-10-01

    Full Text Available program: simple surveys speak volumes Pierre de Wet, Andrew Mather, Andr? Theron SAEON summit, 6 October 2010 ? CSIR 2010 Slide 1www.csir.co.za Outline ? Background / History ? Monitoring area circle6 Examples of survey data & trends circle6...) and near-shore deposition cf. classical understanding / scheme ? CSIR 2010 Slide 6 ? id. areas vulnerable to erosion ? effect of replenishment rates / locations visible Beach survey data s h o r e l i n e p o s i t i o n [ m...

  20. Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back

    Science.gov (United States)

    Makarova, Kira S.

    2017-01-01

    Abstract The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-CRISPR-associated proteins (Cas) systems of bacterial and archaeal adaptive immunity show multifaceted evolutionary relationships with at least five classes of mobile genetic elements (MGE). First, the adaptation module of CRISPR-Cas that is responsible for the formation of the immune memory apparently evolved from a Casposon, a self-synthesizing transposon that employs the Cas1 protein as the integrase and might have brought additional cas genes to the emerging immunity loci. Second, a large subset of type III CRISPR-Cas systems recruited a reverse transcriptase from a Group II intron, providing for spacer acquisition from RNA. Third, effector nucleases of Class 2 CRISPR-Cas systems that are responsible for the recognition and cleavage of the target DNA were derived from transposon-encoded TnpB nucleases, most likely, on several independent occasions. Fourth, accessory nucleases in some variants of types I and III toxin and type VI effectors RNases appear to be ultimately derived from toxin nucleases of microbial toxin–antitoxin modules. Fifth, the opposite direction of evolution is manifested in the recruitment of CRISPR-Cas systems by a distinct family of Tn7-like transposons that probably exploit the capacity of CRISPR-Cas to recognize unique DNA sites to facilitate transposition as well as by bacteriophages that employ them to cope with host defense. Additionally, individual Cas proteins, such as the Cas4 nuclease, were recruited by bacteriophages and transposons. The two-sided evolutionary connection between CRISPR-Cas and MGE fits the “guns for hire” paradigm whereby homologous enzymatic machineries, in particular nucleases, are shuttled between MGE and defense systems and are used alternately as means of offense or defense. PMID:28985291

  1. Chromosomal Targeting by the Type III-A CRISPR-Cas System Can Reshape Genomes in Staphylococcus aureus

    OpenAIRE

    Guan, Jing; Wang, Wanying; Sun, Baolin

    2017-01-01

    ABSTRACT CRISPR-Cas (clustered regularly interspaced short palindromic repeat [CRISPR]-CRISPR-associated protein [Cas]) systems can provide protection against invading genetic elements by using CRISPR RNAs (crRNAs) as a guide to locate and degrade the target DNA. CRISPR-Cas systems have been classified into two classes and five types according to the content of cas genes. Previous studies have indicated that CRISPR-Cas systems can avoid viral infection and block plasmid transfer. Here we show...

  2. Optimization of genome engineering approaches with the CRISPR/Cas9 system

    DEFF Research Database (Denmark)

    Li, Kai; Wang, Gang; Andersen, Troels

    2014-01-01

    Designer nucleases such as TALENS and Cas9 have opened new opportunities to scarlessly edit the mammalian genome. Here we explored several parameters that influence Cas9-mediated scarless genome editing efficiency in murine embryonic stem cells. Optimization of transfection conditions and enrichi...

  3. Unravelling the structural and mechanistic basis of CRISPR-Cas systems.

    Science.gov (United States)

    van der Oost, John; Westra, Edze R; Jackson, Ryan N; Wiedenheft, Blake

    2014-07-01

    Bacteria and archaea have evolved sophisticated adaptive immune systems, known as CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) systems, which target and inactivate invading viruses and plasmids. Immunity is acquired by integrating short fragments of foreign DNA into CRISPR loci, and following transcription and processing of these loci, the CRISPR RNAs (crRNAs) guide the Cas proteins to complementary invading nucleic acid, which results in target interference. In this Review, we summarize the recent structural and biochemical insights that have been gained for the three major types of CRISPR-Cas systems, which together provide a detailed molecular understanding of the unique and conserved mechanisms of RNA-guided adaptive immunity in bacteria and archaea.

  4. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy.

    Science.gov (United States)

    Chen, Shuliang; Yu, Xiao; Guo, Deyin

    2018-01-16

    Currently, a new gene editing tool-the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system-is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy.

  5. Unravelling the structural and mechanistic basis of CRISPR–Cas systems

    Science.gov (United States)

    van der Oost, John; Westra, Edze R.; Jackson, Ryan N.; Wiedenheft, Blake

    2014-01-01

    Bacteria and archaea have evolved sophisticated adaptive immune systems, known as CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins) systems, which target and inactivate invading viruses and plasmids. Immunity is acquired by integrating short fragments of foreign DNA into CRISPR loci, and following transcription and processing of these loci, the CRISPR RNAs (crRNAs) guide the Cas proteins to complementary invading nucleic acid, which results in target interference. In this Review, we summarize the recent structural and biochemical insights that have been gained for the three major types of CRISPR–Cas systems, which together provide a detailed molecular understanding of the unique and conserved mechanisms of RNA-guided adaptive immunity in bacteria and archaea. PMID:24909109

  6. Application of computers in a Radiological Survey Program

    International Nuclear Information System (INIS)

    Berven, B.A.; Blair, M.S.; Doane, R.W.; Little, C.A.; Perdue, P.T.

    1984-01-01

    A brief description of some of the applications of computers in a radiological survey program is presented. It has been our experience that computers and computer software have allowed our staff personnel to more productively use their time by using computers to perform the mechanical acquisition, analyses, and storage of data. It is hoped that other organizations may similarly profit from this experience. This effort will ultimately minimize errors and reduce program costs

  7. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.

    Science.gov (United States)

    Burger, Alexa; Lindsay, Helen; Felker, Anastasia; Hess, Christopher; Anders, Carolin; Chiavacci, Elena; Zaugg, Jonas; Weber, Lukas M; Catena, Raul; Jinek, Martin; Robinson, Mark D; Mosimann, Christian

    2016-06-01

    CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9-sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos. MiSeq-based sequence analysis of targeted loci in individual embryos using CrispRVariants, a customized software tool for mutagenesis quantification and visualization, reveals efficient bi-allelic mutagenesis that reaches saturation at several tested gene loci. Such virtually complete mutagenesis exposes loss-of-function phenotypes for candidate genes in somatic mutant embryos for subsequent generation of stable germline mutants. We further show that targeting of non-coding elements in gene regulatory regions using saturating mutagenesis uncovers functional control elements in transgenic reporters and endogenous genes in injected embryos. Our results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo. © 2016. Published by The Company of Biologists Ltd.

  8. Application of the nanobiotechnology with the system CRISP-Cas

    Directory of Open Access Journals (Sweden)

    Liceth Xiomara Sáenz-Castiblanco

    2017-12-01

    Full Text Available Introduction: Nanobiotechnology and synthetic biology are sciences that impact today with the launching of innovative and beneficial applications for the human being. These sciences have been amalgamated to manufacture new components for the construction of totally artificial cells and the creation of synthetic biomolecules. Objective: To know the applications of nanobiotechnology related to the use of the system CRISPR/Cas in the storage of bacterial DNA and therapeutic alternatives. Materials and methods: A bibliographical review on the main applications of nanobiotechnology was carried out in ScienceDirect, SciELO, PubMed databases and in magazines such as: Nature Biotechnology, Biochemistry, Science and Journal Microbiology. Results: The literature review describes and analyzes the new nanobiotechnology applications used to write information in the genetic code of bacterial cells, in which the system is used based on short grouped and regularly interspaced palindromic repetitions (CRISPR/Cas and the production of synthetic DNA, as well as therapeutic alternatives related to gene therapy. Conclusion: Among the nanobiotechnology applications, two methods to record information in the DNA of bacterial cells Escherichia coli and Sulfolobus Tokodai have been shown, which are linked to the use of the system CRISPR/Cas and the production of synthetic DNA, as well as the use of CRISPR/Cas in gene and cellular therapy.

  9. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.

    Science.gov (United States)

    Kiro, Ruth; Shitrit, Dror; Qimron, Udi

    2014-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system has recently been used to engineer genomes of various organisms, but surprisingly, not those of bacteriophages (phages). Here we present a method to genetically engineer the Escherichia coli phage T7 using the type I-E CRISPR-Cas system. T7 phage genome is edited by homologous recombination with a DNA sequence flanked by sequences homologous to the desired location. Non-edited genomes are targeted by the CRISPR-Cas system, thus enabling isolation of the desired recombinant phages. This method broadens CRISPR Cas-based editing to phages and uses a CRISPR-Cas type other than type II. The method may be adjusted to genetically engineer any bacteriophage genome.

  10. CRISPR/Cas9 mediates efficient conditional mutagenesis in Drosophila.

    Science.gov (United States)

    Xue, Zhaoyu; Wu, Menghua; Wen, Kejia; Ren, Menda; Long, Li; Zhang, Xuedi; Gao, Guanjun

    2014-09-05

    Existing transgenic RNA interference (RNAi) methods greatly facilitate functional genome studies via controlled silencing of targeted mRNA in Drosophila. Although the RNAi approach is extremely powerful, concerns still linger about its low efficiency. Here, we developed a CRISPR/Cas9-mediated conditional mutagenesis system by combining tissue-specific expression of Cas9 driven by the Gal4/upstream activating site system with various ubiquitously expressed guide RNA transgenes to effectively inactivate gene expression in a temporally and spatially controlled manner. Furthermore, by including multiple guide RNAs in a transgenic vector to target a single gene, we achieved a high degree of gene mutagenesis in specific tissues. The CRISPR/Cas9-mediated conditional mutagenesis system provides a simple and effective tool for gene function analysis, and complements the existing RNAi approach. Copyright © 2014 Xue et al.

  11. CRISPR-Cas9 gene editing in honeybee and pig

    DEFF Research Database (Denmark)

    Pen, Anja

    2018-01-01

    Creating animal models by using genome modification has gotten significantly more accessible thanks to the CRISPR-Cas9 technique. In this study, we aimed to the implement the CRISPR-Cas9 methodology in the European honeybee (Apis mellifera) and pig (Sus scrofa) for generation of animal models. We...... want to use these animal models to study the development of honeybees and the pathology of amyotrophic lateral sclerosis (ALS) in a pig model of human disease. In order to simplify the production of these animal models, we test the use of sperm mediated gene transfer (SMGT) in combination with CRISPR...... mechanisms of honeybee development using genome modification will aid in uncovering these complex genetic regulatory systems. In honeybees, we have attempted to induce genome modification in the cinnabar gene through microinjection and feeding of CRISPR-Cas9 components to larvae. Additionally, we tested...

  12. Efficient Oligo nucleotide mediated CRISPR-Cas9 Gene Editing in Aspergilli

    DEFF Research Database (Denmark)

    Nødvig, Christina Spuur; Hoof, Jakob Blæsbjerg; Kogle, Martin Engelhard

    2018-01-01

    CRISPR-Cas9 technologies are revolutionizing fungal gene editing. Here we show that survival of specific Cas9/sgRNA mediated DNA double strand breaks (DSBs) depends on the non-homologous end-joining, NHEJ, DNA repair pathway and we use this observation to develop a tool to assess protospacer....... niger, and in A. oryzae indicating that this type of repair may be wide spread in filamentous fungi. Importantly, we demonstrate that by using single-stranded oligo nucleotides for CRISPR-Cas9 mediated gene editing it is possible to introduce specific point mutations as well gene deletions...

  13. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Bonde, Ida; Herrgard, Markus

    2015-01-01

    CRISPR/Cas9 is a simple and efficient tool for targeted and marker-free genome engineering. Here, we report the development and successful application of a multiplex CRISPR/Cas9 system for genome engineering of up to 5 different genomic loci in one transformation step in baker's yeast Saccharomyces...... cerevisiae. To assess the specificity of the tool we employed genome re-sequencing to screen for off-target sites in all single knock-out strains targeted by different gRNAs. This extensive analysis identified no more genome variants in CRISPR/Cas9 engineered strains compared to wild-type reference strains...

  14. 75 FR 14500 - National Organic Program, Sunset Review (2012)

    Science.gov (United States)

    2010-03-26

    ... as Generally Recognized As Safe; Approved by the FDA as a food additive; or Included in the FDA... the National Organic Program (NOP) is required by the Organic Foods Production Act of 1990 (OFPA). The... oil (CAS 8006-75-5); Fish oil (Fatty acid CAS 's: 10417- 94-4, and 25167-62-8); Fructooligosaccharides...

  15. Procedure and code for calculating black control rods taking into account epithermal absorption, code CAS-1; Postupak i program za proracun crnih kontrolnih sipki, uzimajuci u obzir i epitermalnu apsorpciju, CAS-1

    Energy Technology Data Exchange (ETDEWEB)

    Martinc, R; Trivunac, N; Zivkovic, Z [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1964-12-15

    This report describes the computer code CAS-1, calculation method and procedure applied for calculating the black control rods taking into account the epithermal neutron absorption. Results obtained for supercell method applied for regular lattice reflected in the multiplication medium is part of this report in addition to the computer code manual.

  16. AKRO/SF: Catch Accounting System (CAS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Catch Accounting System (CAS) creates total catch estimates for the groundfish fisheries in the Bering Sea/Aleutian Islands and Gulf of Alaska. Each year, quotas...

  17. Moving base Gravity Gradiometer Survey System (GGSS) program

    Science.gov (United States)

    Pfohl, Louis; Rusnak, Walter; Jircitano, Albert; Grierson, Andrew

    1988-04-01

    The GGSS program began in early 1983 with the objective of delivering a landmobile and airborne system capable of fast, accurate, and economical gravity gradient surveys of large areas anywhere in the world. The objective included the development and use of post-mission data reduction software to process the survey data into solutions for the gravity disturbance vector components (north, east and vertical). This document describes the GGSS equipment hardware and software, integration and lab test procedures and results, and airborne and land survey procedures and results. Included are discussions on test strategies, post-mission data reduction algorithms, and the data reduction processing experience. Perspectives and conclusions are drawn from the results.

  18. CRISPR-Cas : Adapting to change

    NARCIS (Netherlands)

    Jackson, Simon A.; McKenzie, R.E.; Fagerlund, Robert D.; Kieper, S.N.; Fineran, Peter C.; Brouns, S.J.J.

    2017-01-01

    Bacteria and archaea are engaged in a constant arms race to defend against the ever-present threats of viruses and invasion by mobile genetic elements. The most flexible weapons in the prokaryotic defense arsenal are the CRISPR-Cas adaptive immune systems. These systems are capable of selective

  19. The Conformational Dynamics of Cas9 Governing DNA Cleavage Are Revealed by Single-Molecule FRET

    Directory of Open Access Journals (Sweden)

    Mengyi Yang

    2018-01-01

    Full Text Available Summary: Off-target binding and cleavage by Cas9 pose major challenges in its application. How the conformational dynamics of Cas9 govern its nuclease activity under on- and off-target conditions remains largely unknown. Here, using intra-molecular single-molecule fluorescence resonance energy transfer measurements, we revealed that Cas9 in apo, sgRNA-bound, and dsDNA/sgRNA-bound forms spontaneously transits among three major conformational states, mainly reflecting significant conformational mobility of the catalytic HNH domain. We also uncovered surprising long-range allosteric communication between the HNH domain and the RNA/DNA heteroduplex at the PAM-distal end to ensure correct positioning of the catalytic site, which demonstrated that a unique proofreading mechanism served as the last checkpoint before DNA cleavage. Several Cas9 residues were likely to mediate the allosteric communication and proofreading step. Modulating interactions between Cas9 and heteroduplex at the PAM-distal end by introducing mutations on these sites provides an alternative route to improve and optimize the CRISPR/Cas9 toolbox. : Yang et al. revealed significant conformational dynamics of Cas9 at global and local scales using single-molecule FRET. They uncovered surprising long-range allosteric communication between the HNH nuclease domain and the RNA/DNA heteroduplex at the PAM-distal end that serves as a proofreading checkpoint to govern the nuclease activity and specificity of Cas9. Keywords: CRISPR, Cas9, single-molecule, FRET, conformational dynamics, proofreading, off-target, allosteric communication, genome editing

  20. [Efficient genome editing in human pluripotent stem cells through CRISPR/Cas9].

    Science.gov (United States)

    Liu, Gai-gai; Li, Shuang; Wei, Yu-da; Zhang, Yong-xian; Ding, Qiu-rong

    2015-11-01

    The RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-associated Cas9 nuclease has offered a new platform for genome editing with high efficiency. Here, we report the use of CRISPR/Cas9 technology to target a specific genomic region in human pluripotent stem cells. We show that CRISPR/Cas9 can be used to disrupt a gene by introducing frameshift mutations to gene coding region; to knock in specific sequences (e.g. FLAG tag DNA sequence) to targeted genomic locus via homology directed repair; to induce large genomic deletion through dual-guide multiplex. Our results demonstrate the versatile application of CRISPR/Cas9 in stem cell genome editing, which can be widely utilized for functional studies of genes or genome loci in human pluripotent stem cells.

  1. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems

    NARCIS (Netherlands)

    Mohanraju, Prarthana; Makarova, Kira S.; Zetsche, Bernd; Zhang, Feng; Koonin, Eugene V.; Oost, van der John

    2016-01-01

    Adaptive immunity had been long thought of as an exclusive feature of animals. However, the discovery of the CRISPR-Cas defense system, present in almost half of prokaryotic genomes, proves otherwise. Because of the everlasting parasite-host arms race, CRISPR-Cas has rapidly evolved through

  2. Single nucleotide editing without DNA cleavage using CRISPR/Cas9-deaminase in the sea urchin embryo.

    Science.gov (United States)

    Shevidi, Saba; Uchida, Alicia; Schudrowitz, Natalie; Wessel, Gary M; Yajima, Mamiko

    2017-12-01

    A single base pair mutation in the genome can result in many congenital disorders in humans. The recent gene editing approach using CRISPR/Cas9 has rapidly become a powerful tool to replicate or repair such mutations in the genome. These approaches rely on cleaving DNA, while presenting unexpected risks. In this study, we demonstrate a modified CRISPR/Cas9 system fused to cytosine deaminase (Cas9-DA), which induces a single nucleotide conversion in the genome. Cas9-DA was introduced into sea urchin eggs with sgRNAs targeted for SpAlx1, SpDsh, or SpPks, each of which is critical for skeletogenesis, embryonic axis formation, or pigment formation, respectively. We found that both Cas9 and Cas9-DA edit the genome, and cause predicted phenotypic changes at a similar efficiency. Cas9, however, resulted in significant deletions in the genome centered on the gRNA target sequence, whereas Cas9-DA resulted in single or double nucleotide editing of C to T conversions within the gRNA target sequence. These results suggest that the Cas9-DA approach may be useful for manipulating gene activity with decreased risks of genomic aberrations. Developmental Dynamics 246:1036-1046, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. 41 CFR 102-33.130 - If we hire CAS, what are our management responsibilities?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false If we hire CAS, what are our management responsibilities? 102-33.130 Section 102-33.130 Public Contracts and Property... § 102-33.130 If we hire CAS, what are our management responsibilities? If you hire CAS, you are...

  4. Competence and Adherence Scale for Cognitive Behavioral Therapy (CAS-CBT) for anxiety disorders in youth: Psychometric properties.

    Science.gov (United States)

    Bjaastad, Jon Fauskanger; Haugland, Bente Storm Mowatt; Fjermestad, Krister W; Torsheim, Torbjørn; Havik, Odd E; Heiervang, Einar R; Öst, Lars-Göran

    2016-08-01

    The aim of the present study was to evaluate the psychometric properties of the Competence and Adherence Scale for Cognitive Behavioral Therapy (CAS-CBT). The CAS-CBT is an 11-item scale developed to measure adherence and competence in cognitive-behavioral therapy (CBT) for anxiety disorders in youth. A total of 181 videotapes from the treatment sessions in a randomized controlled effectiveness trial (Wergeland et al., 2014) comprising youth (N = 182, M age = 11.5 years, SD = 2.1, range 8-15 years, 53% girls, 90.7% Caucasian) with mixed anxiety disorders were assessed with the CAS-CBT to investigate interitem correlations, internal consistency, and factor structure. Internal consistency was good (Cronbach's alpha = .87). Factor analysis suggested a 2-factor solution with Factor 1 representing CBT structure and session goals (explaining 46.9% of the variance) and Factor 2 representing process and relational skills (explaining 19.7% of the variance). The sum-score for adherence and competence was strongly intercorrelated, r = .79, p .40, n = 10 videotapes) and also good to excellent interrater reliability when compared to expert raters (ICC = .83 for adherence and .64 for competence, n = 26 videotapes). High rater stability was also found (n = 15 videotapes). The findings suggest that the CAS-CBT is a reliable measure of adherence and competence in manualized CBT for anxiety disorders in youth. Further research is needed to investigate the validity of the scale and psychometric properties when used with other treatment programs, disorders and treatment formats. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Proceeding of JSPS-CAS core university program seminar on production and control of high performance plasmas with advanced plasma heating and diagnostic systems

    International Nuclear Information System (INIS)

    Gao Xiang; Morita, Shigeru

    2009-01-01

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and control of high performance plasmas with advanced plasma heating and diagnostic systems' took place in Shiner hotel, Lijiang, China, 4-7 November 2008. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. One special talk and 34 oral talks were presented in the seminar including 16 Japanese attendees. Production and control of high performance plasmas is a crucial issue for realizing an advanced nuclear fusion reactor in addition to developments of advanced plasma heating and diagnostics. This seminar was motivated along the issues. Results obtained from CUP activities during recent four years were summarized. Several crucial issues to be resolved near future were also extracted in this seminar. The 31 of the papers are indexed individually. (J.P.N.)

  6. On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires.

    Science.gov (United States)

    Silas, Sukrit; Makarova, Kira S; Shmakov, Sergey; Páez-Espino, David; Mohr, Georg; Liu, Yi; Davison, Michelle; Roux, Simon; Krishnamurthy, Siddharth R; Fu, Becky Xu Hua; Hansen, Loren L; Wang, David; Sullivan, Matthew B; Millard, Andrew; Clokie, Martha R; Bhaya, Devaki; Lambowitz, Alan M; Kyrpides, Nikos C; Koonin, Eugene V; Fire, Andrew Z

    2017-07-11

    Cas1 integrase is the key enzyme of the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas adaptation module that mediates acquisition of spacers derived from foreign DNA by CRISPR arrays. In diverse bacteria, the cas1 gene is fused (or adjacent) to a gene encoding a reverse transcriptase (RT) related to group II intron RTs. An RT-Cas1 fusion protein has been recently shown to enable acquisition of CRISPR spacers from RNA. Phylogenetic analysis of the CRISPR-associated RTs demonstrates monophyly of the RT-Cas1 fusion, and coevolution of the RT and Cas1 domains. Nearly all such RTs are present within type III CRISPR-Cas loci, but their phylogeny does not parallel the CRISPR-Cas type classification, indicating that RT-Cas1 is an autonomous functional module that is disseminated by horizontal gene transfer and can function with diverse type III systems. To compare the sequence pools sampled by RT-Cas1-associated and RT-lacking CRISPR-Cas systems, we obtained samples of a commercially grown cyanobacterium- Arthrospira platensis Sequencing of the CRISPR arrays uncovered a highly diverse population of spacers. Spacer diversity was particularly striking for the RT-Cas1-containing type III-B system, where no saturation was evident even with millions of sequences analyzed. In contrast, analysis of the RT-lacking type III-D system yielded a highly diverse pool but reached a point where fewer novel spacers were recovered as sequencing depth was increased. Matches could be identified for a small fraction of the non-RT-Cas1-associated spacers, and for only a single RT-Cas1-associated spacer. Thus, the principal source(s) of the spacers, particularly the hypervariable spacer repertoire of the RT-associated arrays, remains unknown. IMPORTANCE While the majority of CRISPR-Cas immune systems adapt to foreign genetic elements by capturing segments of invasive DNA, some systems carry reverse transcriptases (RTs) that enable adaptation to RNA molecules. From

  7. Do Pain Medicine Fellowship Programs Provide Education in Practice Management? A Survey of Pain Medicine Fellowship Programs.

    Science.gov (United States)

    Przkora, Rene; Antony, Ajay; McNeil, Andrew; Brenner, Gary J; Mesrobian, James; Rosenquist, Richard; Abouleish, Amr E

    2018-01-01

    We hypothesized that there is a gap between expectations and actual training in practice management for pain medicine fellows. Our impression is that many fellowships rely on residency training to provide exposure to business education. Unfortunately, pain management and anesthesiology business education are very different, as the practice settings are largely office- versus hospital-based, respectively. Because it is unclear whether pain management fellowships are providing practice management education and, if they do, whether the topics covered match the expectations of their fellows, we surveyed pain medicine program directors and fellows regarding their expectations and training in business management. A survey. Academic pain medicine fellowship programs. After an exemption was obtained from the University of Texas Medical Branch Institutional Review Board (#13-030), an email survey was sent to members of the Association of Pain Program Directors to be forwarded to their fellows. Directors were contacted 3 times to maximize the response rate. The anonymous survey for fellows contained 21 questions (questions are shown in the results). Fifty-nine of 84 program directors responded and forwarded the survey to their fellows. Sixty fellows responded, with 56 answering the survey questions. The responder rate is a limitation, although similar rates have been reported in similar studies. The majority of pain medicine fellows receive some practice management training, mainly on billing documentation and preauthorization processes, while most do not receive business education (e.g., human resources, contracts, accounting/financial reports). More than 70% of fellows reported that they receive more business education from industry than from their fellowships, a result that may raise concerns about the independence of our future physicians from the industry. Our findings support the need for enhanced and structured business education during pain fellowship. Business

  8. Mismatch Negativity Responses in Children with a Diagnosis of Childhood Apraxia of Speech (CAS)

    Science.gov (United States)

    Froud, Karen; Khamis-Dakwar, Reem

    2012-01-01

    Purpose: To evaluate whether a hypothesis suggesting that apraxia of speech results from phonological overspecification could be relevant for childhood apraxia of speech (CAS). Method: High-density EEG was recorded from 5 children with CAS and 5 matched controls, ages 5-8 years, with and without CAS, as they listened to randomized sequences of CV…

  9. CAS Panel Proposes Priorities for Earth Science in Next Two Decades

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ CAS member Zhao Zhongxian, director of Working Committee on Consultation and Evaluation of the CAS Academic Divisions (CASAD),has announced that the Academic Division of Earth Sciences has drafted a consultative report on planning and strategic studies of the mid- and long-term development for earth sciences in China.

  10. Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasound-Propelled Nanomotors.

    Science.gov (United States)

    Hansen-Bruhn, Malthe; de Ávila, Berta Esteban-Fernández; Beltrán-Gastélum, Mara; Zhao, Jing; Ramírez-Herrera, Doris E; Angsantikul, Pavimol; Vesterager Gothelf, Kurt; Zhang, Liangfang; Wang, Joseph

    2018-03-01

    Direct and rapid intracellular delivery of a functional Cas9/sgRNA complex using ultrasound-powered nanomotors is reported. The Cas9/sgRNA complex is loaded onto the nanomotor surface through a reversible disulfide linkage. A 5 min ultrasound treatment enables the Cas9/sgRNA-loaded nanomotors to directly penetrate through the plasma membrane of GFP-expressing B16F10 cells. The Cas9/sgRNA is released inside the cells to achieve highly effective GFP gene knockout. The acoustic Cas9/sgRNA-loaded nanomotors display more than 80 % GFP knockout within 2 h of cell incubation compared to 30 % knockout using static nanowires. More impressively, the nanomotors enable highly efficient knockout with just 0.6 nm of the Cas9/sgRNA complex. This nanomotor-based intracellular delivery method thus offers an attractive route to overcome physiological barriers for intracellular delivery of functional proteins and RNAs, thus indicating considerable promise for highly efficient therapeutic applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Impact of Chromatin Dynamics on Cas9-Mediated Genome Editing in Human Cells.

    Science.gov (United States)

    Daer, René M; Cutts, Josh P; Brafman, David A; Haynes, Karmella A

    2017-03-17

    In order to efficiently edit eukaryotic genomes, it is critical to test the impact of chromatin dynamics on CRISPR/Cas9 function and develop strategies to adapt the system to eukaryotic contexts. So far, research has extensively characterized the relationship between the CRISPR endonuclease Cas9 and the composition of the RNA-DNA duplex that mediates the system's precision. Evidence suggests that chromatin modifications and DNA packaging can block eukaryotic genome editing by custom-built DNA endonucleases like Cas9; however, the underlying mechanism of Cas9 inhibition is unclear. Here, we demonstrate that closed, gene-silencing-associated chromatin is a mechanism for the interference of Cas9-mediated DNA editing. Our assays use a transgenic cell line with a drug-inducible switch to control chromatin states (open and closed) at a single genomic locus. We show that closed chromatin inhibits binding and editing at specific target sites and that artificial reversal of the silenced state restores editing efficiency. These results provide new insights to improve Cas9-mediated editing in human and other mammalian cells.

  12. Integrated Status and Effectiveness Monitoring Program - Entiat River Snorkel Surveys, 2006-2007.

    Energy Technology Data Exchange (ETDEWEB)

    Nelle, R.D.

    2007-10-01

    The USFWS Mid-Columbia River Fishery Resource Office conducted snorkel surveys at 11 sites during the summer 2006 survey period and at 15 sites during fall 2006 and winter 2007 survey periods as part of the Integrated Status and Effectiveness Monitoring Program in the Entiat River. A total of 39,898 fish from 14 species/genera and an unknown category were enumerated. Chinook salmon were the overall most common fish observed and comprised 19% of fish enumerated followed by mountain whitefish (18%) and rainbow trout (14%). Day and night surveys were conducted during the summer 2006 period (August), while night surveys were conducted during the fall 2006 (October) and winter 2007 (February/March) surveys. This is second annual progress report to Bonneville Power Administration for the snorkel surveys conducted in the Entiat River as related to long-term effectiveness monitoring of restoration programs in this watershed. The objective of this study is to monitor the fish habitat utilization of planned in-stream restoration efforts in the Entiat River by conducting pre- and post-construction snorkel surveys at selected treatment and control sites.

  13. Features of CRISPR-Cas Regulation Key to Highly Efficient and Temporally-Specific crRNA Production

    Directory of Open Access Journals (Sweden)

    Andjela Rodic

    2017-11-01

    Full Text Available Bacterial immune systems, such as CRISPR-Cas or restriction-modification (R-M systems, affect bacterial pathogenicity and antibiotic resistance by modulating horizontal gene flow. A model system for CRISPR-Cas regulation, the Type I-E system from Escherichia coli, is silent under standard laboratory conditions and experimentally observing the dynamics of CRISPR-Cas activation is challenging. Two characteristic features of CRISPR-Cas regulation in E. coli are cooperative transcription repression of cas gene and CRISPR array promoters, and fast non-specific degradation of full length CRISPR transcripts (pre-crRNA. In this work, we use computational modeling to understand how these features affect the system expression dynamics. Signaling which leads to CRISPR-Cas activation is currently unknown, so to bypass this step, we here propose a conceptual setup for cas expression activation, where cas genes are put under transcription control typical for a restriction-modification (R-M system and then introduced into a cell. Known transcription regulation of an R-M system is used as a proxy for currently unknown CRISPR-Cas transcription control, as both systems are characterized by high cooperativity, which is likely related to similar dynamical constraints of their function. We find that the two characteristic CRISPR-Cas control features are responsible for its temporally-specific dynamical response, so that the system makes a steep (switch-like transition from OFF to ON state with a time-delay controlled by pre-crRNA degradation rate. We furthermore find that cooperative transcription regulation qualitatively leads to a cross-over to a regime where, at higher pre-crRNA processing rates, crRNA generation approaches the limit of an infinitely abrupt system induction. We propose that these dynamical properties are associated with rapid expression of CRISPR-Cas components and efficient protection of bacterial cells against foreign DNA. In terms of synthetic

  14. Ten-year survey of program directors: trends, challenges, and mentoring in prosthodontics. Part 1.

    Science.gov (United States)

    Munoz, Deborah M; Kinnunen, Taru; Chang, Brian M; Wright, Robert F

    2011-10-01

    This study consisted of two parts. Part 1 was a survey of US program directors, and Part 2 reports on the survey findings distributed to the deans of US dental schools. Both surveys evaluated observations of trends in prosthodontic education. The first survey (2005) of program directors and deans was published in 2007. This second survey was conducted in 2009. The 2009 survey provided 10-year data on trends in prosthodontics as reported by program directors. A national e-mail survey of 46 program directors was used to collect enrollment data for years 1 to 3 of prosthodontics training for US and international dental school graduates, the total number of applicants and applications considered, and the trends over time of applicants to prosthodontics for US dental school graduates and for international graduates. In addition, the program directors were asked to rank 13 key factors that may have contributed to any changes in the prosthodontic applicant pool. Program directors were also asked for information on student financial incentives and whether their programs were state or federally funded, and whether their sponsoring institution was a dental school. Of the 46 program directors, 40 responded, for an 87% response rate. Respondents reported that 66% of their enrollees were graduates of US dental schools. Between 2000 and 2009 the applicant pool in prosthodontics nearly doubled, with 50% of the program directors reporting an increase in US-trained applicants, 42.5% reporting no change, and only 7.5% reporting a decrease. Using the Spearman correlation for the 10-year survey, there was a positive, statistically significant correlation that society's demand for a higher level of training and credentialing and interest in prosthodontics among dental students contributed to an increase in the number of US dental graduates applying to prosthodontic programs. Only four programs offered no financial packages to offset tuition. The remaining 36 respondents reported some

  15. Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy.

    Science.gov (United States)

    Shibata, Mikihiro; Nishimasu, Hiroshi; Kodera, Noriyuki; Hirano, Seiichi; Ando, Toshio; Uchihashi, Takayuki; Nureki, Osamu

    2017-11-10

    The CRISPR-associated endonuclease Cas9 binds to a guide RNA and cleaves double-stranded DNA with a sequence complementary to the RNA guide. The Cas9-RNA system has been harnessed for numerous applications, such as genome editing. Here we use high-speed atomic force microscopy (HS-AFM) to visualize the real-space and real-time dynamics of CRISPR-Cas9 in action. HS-AFM movies indicate that, whereas apo-Cas9 adopts unexpected flexible conformations, Cas9-RNA forms a stable bilobed structure and interrogates target sites on the DNA by three-dimensional diffusion. These movies also provide real-time visualization of the Cas9-mediated DNA cleavage process. Notably, the Cas9 HNH nuclease domain fluctuates upon DNA binding, and subsequently adopts an active conformation, where the HNH active site is docked at the cleavage site in the target DNA. Collectively, our HS-AFM data extend our understanding of the action mechanism of CRISPR-Cas9.

  16. Near infrared face recognition: A literature survey

    Czech Academy of Sciences Publication Activity Database

    Farokhi, Sajad; Flusser, Jan; Sheikh, U. U.

    2016-01-01

    Roč. 21, č. 1 (2016), s. 1-17 ISSN 1574-0137 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Literature survey * Biometrics * Face recognition * Near infrared * Illumination invariant Subject RIV: JD - Computer Applications, Robotics http://library.utia.cas.cz/separaty/2016/ZOI/flusser-0461834.pdf

  17. Child Welfare Training in Child Psychiatry Residency: A Program Director Survey

    Science.gov (United States)

    Lee, Terry G.; Cox, Julia R.; Walker, Sarah C.

    2013-01-01

    Objective: This study surveys child psychiatry residency program directors in order to 1) characterize child welfare training experiences for child psychiatry residents; 2) evaluate factors associated with the likelihood of program directors' endorsing the adequacy of their child welfare training; and 3) assess program directors'…

  18. National Household Education Surveys Program of 2012: Data File User's Manual. Parent and Family Involvement in Education Survey. Early Childhood Program Participation Survey. NCES 2015-030

    Science.gov (United States)

    McPhee, C.; Bielick, S.; Masterton, M.; Flores, L.; Parmer, R.; Amchin, S.; Stern, S.; McGowan, H.

    2015-01-01

    The 2012 National Household Education Surveys Program (NHES:2012) Data File User's Manual provides documentation and guidance for users of the NHES:2012 data files. The manual provides information about the purpose of the study, the sample design, data collection procedures, data processing procedures, response rates, imputation, weighting and…

  19. Antiviral Goes Viral : Harnessing CRISPR/Cas9 to Combat Viruses in Humans

    NARCIS (Netherlands)

    Soppe, Jasper Adriaan; Lebbink, Robert Jan

    2017-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems are RNA-guided sequence-specific prokaryotic antiviral immune systems. In prokaryotes, small RNA molecules guide Cas effector endonucleases to invading foreign genetic elements in a

  20. Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs.

    Science.gov (United States)

    Yin, Linlin; Maddison, Lisette A; Li, Mingyu; Kara, Nergis; LaFave, Matthew C; Varshney, Gaurav K; Burgess, Shawn M; Patton, James G; Chen, Wenbiao

    2015-06-01

    Determining the mechanism of gene function is greatly enhanced using conditional mutagenesis. However, generating engineered conditional alleles is inefficient and has only been widely used in mice. Importantly, multiplex conditional mutagenesis requires extensive breeding. Here we demonstrate a system for one-generation multiplex conditional mutagenesis in zebrafish (Danio rerio) using transgenic expression of both cas9 and multiple single guide RNAs (sgRNAs). We describe five distinct zebrafish U6 promoters for sgRNA expression and demonstrate efficient multiplex biallelic inactivation of tyrosinase and insulin receptor a and b, resulting in defects in pigmentation and glucose homeostasis. Furthermore, we demonstrate temporal and tissue-specific mutagenesis using transgenic expression of Cas9. Heat-shock-inducible expression of cas9 allows temporal control of tyr mutagenesis. Liver-specific expression of cas9 disrupts insulin receptor a and b, causing fasting hypoglycemia and postprandial hyperglycemia. We also show that delivery of sgRNAs targeting ascl1a into the eye leads to impaired damage-induced photoreceptor regeneration. Our findings suggest that CRISPR/Cas9-based conditional mutagenesis in zebrafish is not only feasible but rapid and straightforward. Copyright © 2015 by the Genetics Society of America.

  1. Genome Editing with Crispr-Cas9 Systems: Basic Research and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2017-04-01

    Full Text Available BACKGROUND: Recently established genome editing technologies will open new avenues for biological research and development. Human genome editing is a powerful tool which offers great scientific and therapeutic potential. CONTENT: Genome editing using the clustered regularly interspaced short palindromic repeats (CRISPR/CRISPRassociated protein 9 (Cas9 technology is revolutionizing the gene function studies and possibly will give rise to an entirely new degree of therapeutics for a large range of diseases. Prompt advances in the CRISPR/Cas9 technology, as well as delivery modalities for gene therapy applications, are dismissing the barriers to the clinical translation of this technology. Many studies conducted showed promising results, but as current available technologies for evaluating off-target gene modification, several elements must be addressed to validate the safety of the CRISPR/Cas9 platform for clinical application, as the ethical implication as well. SUMMARY: The CRISPR/Cas9 system is a powerful genome editing technology with the potential to create a variety of novel therapeutics for a range of diseases, many of which are currently untreatable. KEYWORDS: genome editing, CRISPR-Cas, guideRNA, DSB, ZFNs, TALEN

  2. Results of the Association of Directors of Radiation Oncology Programs (ADROP) Survey of Radiation Oncology Residency Program Directors

    International Nuclear Information System (INIS)

    Harris, Eleanor; Abdel-Wahab, May; Spangler, Ann E.; Lawton, Colleen A.; Amdur, Robert J.

    2009-01-01

    Purpose: To survey the radiation oncology residency program directors on the topics of departmental and institutional support systems, residency program structure, Accreditation Council for Graduate Medical Education (ACGME) requirements, and challenges as program director. Methods: A survey was developed and distributed by the leadership of the Association of Directors of Radiation Oncology Programs to all radiation oncology program directors. Summary statistics, medians, and ranges were collated from responses. Results: Radiation oncology program directors had implemented all current required aspects of the ACGME Outcome Project into their training curriculum. Didactic curricula were similar across programs nationally, but research requirements and resources varied widely. Program directors responded that implementation of the ACGME Outcome Project and the external review process were among their greatest challenges. Protected time was the top priority for program directors. Conclusions: The Association of Directors of Radiation Oncology Programs recommends that all radiation oncology program directors have protected time and an administrative stipend to support their important administrative and educational role. Departments and institutions should provide adequate and equitable resources to the program directors and residents to meet increasingly demanding training program requirements.

  3. Investigating CRISPR-Cas systems in Clostridium botulinum via bioinformatics tools.

    Science.gov (United States)

    Negahdaripour, Manica; Nezafat, Navid; Hajighahramani, Nasim; Rahmatabadi, Seyyed Soheil; Ghasemi, Younes

    2017-10-01

    The Clustered regularly interspaced short palindromic repeats (CRISPR) systems are a type of innate immunity found in some prokaryotes, which protect them against alien genetic elements by targeting foreign nucleic acids. Some other functions are also attributed to these systems. Clostridium botulinum bacteria produce botulinum neurotoxins (BoNT), one of the deadliest known toxins for humans and some animals. Food poisoning due to these bacteria is still a challenge in food industries. On the other hand, BoNT has been widely investigated for therapeutic applications including different muscle disorders. Bont genes may be located on bacterial chromosomes, plasmids, or even prophages. Generally, the genomes of Cl. botulinum show a high level of plasticity. In order to investigate the presence and characteristics of CRISPRs in these anaerobe bacteria, an in silico study on 113 CRISPR arrays identified in 38 Cl. botulinum strains was performed. A high occurrence of CRISPR arrays (80%) were found, with a remarkable frequency on plasmids. Several (CRISPR-associated) Cas proteins from different types were recognized in the studied strains, which were mostly Cas6. The CRISPR-Cas systems were identified as type I or III, but no type II. The spacers showed more homology with bacterial plasmids than phages. Active CRISPR-Cas systems can prevent the transfer of foreign genes, which may also include bont genes. This study provides the first insight into the probable roles of CRISPR-Cas systems in Cl. botulinum strains such as toxigenicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Dynamics of Indel Profiles Induced by Various CRISPR/Cas9 Delivery Methods

    DEFF Research Database (Denmark)

    Kosicki, Michael; Rajan, Sandeep S; Lorenzetti, Flaminia C

    2017-01-01

    The introduction of CRISPR/Cas9 gene editing in mammalian cells is a scientific breakthrough, which has greatly affected basic research and gene therapy. The simplicity and general access to CRISPR/Cas9 reagents has in an unprecedented manner "democratized" gene targeting in biomedical research...... approach. In this study we review the most commonly used indel detection methods and using a robust, sensitive, and cost efficient Indel Detection by Amplicon Analysis method, we have investigated the impact of the most commonly used CRISPR/Cas9 delivery formats, including lentivirus transduction, plasmid...

  5. A survey of research programs in radiation protection in Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    A survey of research programs in Canada concerned with radiation protection was conducted in 1991-92 by the Joint Subcommittee on Regulatory Research (JSCRR) of the Atomic Energy Control Board (AECB) Advisory Committees on Radiological Protection and on Nuclear Safety. The purpose of this survey was to determine the current state of funding for this type of research in Canada. Funding for health-related radiation research in Canada is critical to establishing and maintaining a supply of trained professionals who can provide competent advice on health-related problems in radiation protection. The present report is an analysis of the information received in this survey. This survey concludes with the recommendation that the organization and definition of subprograms for the AECB Regulatory Research and Support Program should be completed as soon as possible. In this report the JSCRR should assist AECB staff in preparing a report in which priorities for research related to radiation protection are indicated. The sources of information noted at the end of the Discussion section of this report should be considered for this purpose. (author). 15 refs., 3 tabs.

  6. A survey of research programs in radiation protection in Canada

    International Nuclear Information System (INIS)

    1995-07-01

    A survey of research programs in Canada concerned with radiation protection was conducted in 1991-92 by the Joint Subcommittee on Regulatory Research (JSCRR) of the Atomic Energy Control Board (AECB) Advisory Committees on Radiological Protection and on Nuclear Safety. The purpose of this survey was to determine the current state of funding for this type of research in Canada. Funding for health-related radiation research in Canada is critical to establishing and maintaining a supply of trained professionals who can provide competent advice on health-related problems in radiation protection. The present report is an analysis of the information received in this survey. This survey concludes with the recommendation that the organization and definition of subprograms for the AECB Regulatory Research and Support Program should be completed as soon as possible. In this report the JSCRR should assist AECB staff in preparing a report in which priorities for research related to radiation protection are indicated. The sources of information noted at the end of the Discussion section of this report should be considered for this purpose. (author). 15 refs., 3 tabs

  7. Engineering Plant Immunity: Using CRISPR/Cas9 to Generate Virus Resistance

    KAUST Repository

    Zaidi, Syed Shan-e-Ali

    2016-11-08

    Plant viruses infect many economically important crops, including wheat, cotton, maize, cassava, and other vegetables. These viruses pose a serious threat to agriculture worldwide, as decreases in cropland area per capita may cause production to fall short of that required to feed the increasing world population. Under these circumstances, conventional strategies can fail to control rapidly evolving and emerging plant viruses. Genome-engineering strategies have recently emerged as promising tools to introduce desirable traits in many eukaryotic species, including plants. Among these genome engineering technologies, the CRISPR (clustered regularly interspaced palindromic repeats)/CRISPR-associated 9 (CRISPR/Cas9) system has received special interest because of its simplicity, efficiency, and reproducibility. Recent studies have used CRISPR/Cas9 to engineer virus resistance in plants, either by directly targeting and cleaving the viral genome, or by modifying the host plant genome to introduce viral immunity. Here, we briefly describe the biology of the CRISPR/Cas9 system and plant viruses, and how different genome engineering technologies have been used to target these viruses. We further describe the main findings from recent studies of CRISPR/Cas9-mediated viral interference and discuss how these findings can be applied to improve global agriculture. We conclude by pinpointing the gaps in our knowledge and the outstanding questions regarding CRISPR/Cas9-mediated viral immunity.

  8. CRISPR/Cas9 system and its applications in human hematopoietic cells.

    Science.gov (United States)

    Hu, Xiaotang

    2016-11-01

    Since 2012, the CRISPR-Cas9 system has been quickly and successfully tested in a broad range of organisms and cells including hematopoietic cells. The application of CRISPR-Cas9 in human hematopoietic cells mainly involves the genes responsible for HIV infection, β-thalassemia and sickle cell disease (SCD). The successful disruption of CCR5 and CXCR4 genes in T cells by CRISPR-Cas9 promotes the prospect of the technology in the functional cure of HIV. More recently, eliminating CCR5 and CXCR4 in induced pluripotent stem cells (iPSCs) derived from patients and targeting the HIV genome have been successfully carried out in several laboratories. The outcome from these approaches bring us closer to the goal of eradicating HIV infection. For hemoglobinopathies the ability to produce iPSC-derived from patients with the correction of hemoglobin (HBB) mutations by CRISPR-Cas9 has been tested in a number of laboratories. These corrected iPSCs also show the potential to differentiate into mature erythrocytes expressing high-level and normal HBB. In light of the initial success of CRESPR-Cas9 in target mutated gene(s) in the iPSCs, a combination of genomic editing and autogenetic stem cell transplantation would be the best strategy for root treatment of the diseases, which could replace traditional allogeneic stem cell transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. CRISPR-Cas9: tool for qualitative and quantitative plant genome editing

    Directory of Open Access Journals (Sweden)

    Ali Noman

    2016-11-01

    Full Text Available Genome editing advancements have made many unachievable ideas practical. Increased adoption of genome editing has been geared by swiftly developing CRISPR-Cas9 technology. This technique is appearing as driving force for innovative utilization in diverse branches of plant biology. CRISPR mediated genome editing is being used for rapid, easy and efficient alteration of indigenous genes among diverse plant species. With approximate completion of conceptual work about CRISPR/Cas9, plant scientists are applying this genome editing tool for crop attributes enhancement. The capability of CRISPR-Cas9 systems for performing targeted and efficient modifications in genome sequence as well as gene expression will certainly spur novel developments not only in model plants but also in crop plants. Additionally, due to non-involvement of foreign DNA, this technique may help alleviating regulatory issues associated with GM Plants. We expect that prevailing challenges in plant science like genomic region manipulation, crop specific vectors etc. will be addressed along with sustained growth of this genome editing tool. In this review, recent progress of CRISPR/Cas9 technology in plants has been summarized and discussed. We review potential of CRISPR/Cas9 for different aspects of plant life. It also covers strengths of this technique in comparison with other genome editing techniques e.g. ZFNs and TALENs and potential challenges in coming decades have been described.

  10. Engineering Plant Immunity: Using CRISPR/Cas9 to Generate Virus Resistance

    KAUST Repository

    Zaidi, Syed Shan-e-Ali; Tashkandi, Manal; Mansoor, Shahid; Mahfouz, Magdy M.

    2016-01-01

    Plant viruses infect many economically important crops, including wheat, cotton, maize, cassava, and other vegetables. These viruses pose a serious threat to agriculture worldwide, as decreases in cropland area per capita may cause production to fall short of that required to feed the increasing world population. Under these circumstances, conventional strategies can fail to control rapidly evolving and emerging plant viruses. Genome-engineering strategies have recently emerged as promising tools to introduce desirable traits in many eukaryotic species, including plants. Among these genome engineering technologies, the CRISPR (clustered regularly interspaced palindromic repeats)/CRISPR-associated 9 (CRISPR/Cas9) system has received special interest because of its simplicity, efficiency, and reproducibility. Recent studies have used CRISPR/Cas9 to engineer virus resistance in plants, either by directly targeting and cleaving the viral genome, or by modifying the host plant genome to introduce viral immunity. Here, we briefly describe the biology of the CRISPR/Cas9 system and plant viruses, and how different genome engineering technologies have been used to target these viruses. We further describe the main findings from recent studies of CRISPR/Cas9-mediated viral interference and discuss how these findings can be applied to improve global agriculture. We conclude by pinpointing the gaps in our knowledge and the outstanding questions regarding CRISPR/Cas9-mediated viral immunity.

  11. Imipenem represses CRISPR-Cas interference of DNA acquisition through H-NS stimulation in Klebsiella pneumoniae

    Science.gov (United States)

    Lin, Tzu-Lung; Pan, Yi-Jiun; Hsieh, Pei-Fang; Hsu, Chun-Ru; Wu, Meng-Chuan; Wang, Jin-Town

    2016-01-01

    Analysis of the genome of Klebsiella pneumoniae NTUH-K2044 strain revealed the presence of two clustered regularly interspaced short palindromic repeats (CRISPR) arrays separated with CRISPR-associated (cas) genes. Carbapenem-resistant K. pneumoniae isolates were observed to be less likely to have CRISPR-Cas than sensitive strains (5/85 vs. 22/132). Removal of the transcriptional repressor, H-NS, was shown to prevent the transformation of plasmids carrying a spacer and putative proto-spacer adjacent motif (PAM). The CRISPR-Cas system also decreased pUC-4K plasmid stability, resulting in plasmid loss from the bacteria with acquisition of new spacers. Analysis of the acquired proto-spacers in pUC-4K indicated that 5′-TTN-3′ was the preferred PAM in K. pneumoniae. Treatment of cells by imipenem induced hns expression, thereby decreasing cas3 expression and consequently repressed CRISPR-Cas activity resulted in increase of plasmid stability. In conclusion, NTUH-K2044 CRISPR-Cas contributes to decrease of plasmid transformation and stability. Through repression of CRISPR-Cas activity by induced H-NS, bacteria might be more able to acquire DNA to confront the challenge of imipenem. PMID:27531594

  12. Targeted Delivery of CRISPR/Cas9-Mediated Cancer Gene Therapy via Liposome-Templated Hydrogel Nanoparticles.

    Science.gov (United States)

    Chen, Zeming; Liu, Fuyao; Chen, Yanke; Liu, Jun; Wang, Xiaoying; Chen, Ann T; Deng, Gang; Zhang, Hongyi; Liu, Jie; Hong, Zhangyong; Zhou, Jiangbing

    2017-12-08

    Due to its simplicity, versatility, and high efficiency, the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology has emerged as one of the most promising approaches for treatment of a variety of genetic diseases, including human cancers. However, further translation of CRISPR/Cas9 for cancer gene therapy requires development of safe approaches for efficient, highly specific delivery of both Cas9 and single guide RNA to tumors. Here, novel core-shell nanostructure, liposome-templated hydrogel nanoparticles (LHNPs) that are optimized for efficient codelivery of Cas9 protein and nucleic acids is reported. It is demonstrated that, when coupled with the minicircle DNA technology, LHNPs deliver CRISPR/Cas9 with efficiency greater than commercial agent Lipofectamine 2000 in cell culture and can be engineered for targeted inhibition of genes in tumors, including tumors the brain. When CRISPR/Cas9 targeting a model therapeutic gene, polo-like kinase 1 (PLK1), is delivered, LHNPs effectively inhibit tumor growth and improve tumor-bearing mouse survival. The results suggest LHNPs as versatile CRISPR/Cas9-delivery tool that can be adapted for experimentally studying the biology of cancer as well as for clinically translating cancer gene therapy.

  13. Imipenem represses CRISPR-Cas interference of DNA acquisition through H-NS stimulation in Klebsiella pneumoniae.

    Science.gov (United States)

    Lin, Tzu-Lung; Pan, Yi-Jiun; Hsieh, Pei-Fang; Hsu, Chun-Ru; Wu, Meng-Chuan; Wang, Jin-Town

    2016-08-17

    Analysis of the genome of Klebsiella pneumoniae NTUH-K2044 strain revealed the presence of two clustered regularly interspaced short palindromic repeats (CRISPR) arrays separated with CRISPR-associated (cas) genes. Carbapenem-resistant K. pneumoniae isolates were observed to be less likely to have CRISPR-Cas than sensitive strains (5/85 vs. 22/132). Removal of the transcriptional repressor, H-NS, was shown to prevent the transformation of plasmids carrying a spacer and putative proto-spacer adjacent motif (PAM). The CRISPR-Cas system also decreased pUC-4K plasmid stability, resulting in plasmid loss from the bacteria with acquisition of new spacers. Analysis of the acquired proto-spacers in pUC-4K indicated that 5'-TTN-3' was the preferred PAM in K. pneumoniae. Treatment of cells by imipenem induced hns expression, thereby decreasing cas3 expression and consequently repressed CRISPR-Cas activity resulted in increase of plasmid stability. In conclusion, NTUH-K2044 CRISPR-Cas contributes to decrease of plasmid transformation and stability. Through repression of CRISPR-Cas activity by induced H-NS, bacteria might be more able to acquire DNA to confront the challenge of imipenem.

  14. Inhibition of hepatitis B virus replication via HBV DNA cleavage by Cas9 from Staphylococcus aureus.

    Science.gov (United States)

    Liu, Yu; Zhao, Miaoxian; Gong, Mingxing; Xu, Ying; Xie, Cantao; Deng, Haohui; Li, Xueying; Wu, Hongkai; Wang, Zhanhui

    2018-04-01

    Chronic hepatitis B virus (HBV) infection is difficult to cure due to the presence of covalently closed circular DNA (cccDNA). Accumulating evidence indicates that the CRISPR/Cas9 system effectively disrupts HBV genome, including cccDNA, in vitro and in vivo. However, efficient delivery of CRISPR/Cas9 system to the liver or hepatocytes using an adeno-associated virus (AAV) vector remains challenging due to the large size of Cas9 from Streptococcus pyogenes (Sp). The recently identified Cas9 protein from Staphylococcus aureus (Sa) is smaller than SpCas9 and thus is able to be packaged into the AAV vector. To examine the efficacy of SaCas9 system on HBV genome destruction, we designed 5 guide RNAs (gRNAs) that targeted different HBV genotypes, 3 of which were shown to be effective. The SaCas9 system significantly reduced HBV antigen expression, as well as pgRNA and cccDNA levels, in Huh7, HepG2.2.15 and HepAD38 cells. The dual expression of gRNAs/SaCas9 in these cell lines resulted in more efficient HBV genome cleavage. In the mouse model, hydrodynamic injection of gRNA/SaCas9 plasmids resulted in significantly lower levels of HBV protein expression. We also delivered the SaCas9 system into mice with persistent HBV replication using an AAV vector. Both the AAV vector and the mRNA of Cas9 could be detected in the C3H mouse liver cells. Decreased hepatitis B surface antigen (HBsAg), HBV DNA and pgRNA levels were observed when a higher titer of AAV was injected, although this decrease was not significantly different from the control. In summary, the SaCas9 system accurately and efficiently targeted the HBV genome and inhibited HBV replication both in vitro and in vivo. The system was delivered by an AAV vector and maybe used as a novel therapeutic strategy against chronic HBV infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Surveys & Programs

    Science.gov (United States)

    Employment and Payroll Survey of Business Owners Work from Home Our statistics highlight trends in household statistics from multiple surveys. Data Tools & Apps Main American FactFinder Census Business Builder My residential construction. Business Dynamics Statistics (BDS) Provides measures of openings and closings, job

  16. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    International Nuclear Information System (INIS)

    Kennedy, Edward M.; Cullen, Bryan R.

    2015-01-01

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  17. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Edward M.; Cullen, Bryan R., E-mail: bryan.cullen@duke.edu

    2015-05-15

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  18. What Are We Doing? A Survey of United States Nephrology Fellowship Program Directors.

    Science.gov (United States)

    Liebman, Scott E; Moore, Catherine A; Monk, Rebeca D; Rizvi, Mahrukh S

    2017-03-07

    Interest in nephrology has been declining in recent years. Long work hours and a poor work/life balance may be partially responsible, and may also affect a fellowship's educational mission. We surveyed nephrology program directors using a web-based survey in order to define current clinical and educational practice patterns and identify areas for improvement. Our survey explored fellowship program demographics, fellows' workload, call structure, and education. Program directors were asked to estimate the average and maximum number of patients on each of their inpatient services, the number of patients seen by fellows in clinic, and to provide details regarding their overnight and weekend call. In addition, we asked about number of and composition of didactic conferences. Sixty-eight out of 148 program directors responded to the survey (46%). The average number of fellows per program was approximately seven. The busiest inpatient services had a mean of 21.5±5.9 patients on average and 33.8±10.7 at their maximum. The second busiest services had an average and maximum of 15.6±6.0 and 24.5±10.8 patients, respectively. Transplant-only services had fewer patients than other service compositions. A minority of services (14.5%) employed physician extenders. Fellows most commonly see patients during a single weekly continuity clinic, with a typical fellow-to-faculty ratio of 2:1. The majority of programs do not alter outpatient responsibilities during inpatient service time. Most programs (approximately 75%) divided overnight and weekend call responsibilities equally between first year and more senior fellows. Educational practices varied widely between programs. Our survey underscores the large variety in workload, practice patterns, and didactics at different institutions and provides a framework to help improve the service/education balance in nephrology fellowships. Copyright © 2017 by the American Society of Nephrology.

  19. Boosting plant immunity with CRISPR/Cas

    OpenAIRE

    Chaparro-Garcia, Angela; Kamoun, Sophien; Nekrasov, Vladimir

    2015-01-01

    CRISPR/Cas has recently been transferred to plants to make them resistant to geminiviruses, a damaging family of DNA viruses. We discuss the potential and the limitations of this method. See related Research: http://www.genomebiology.com/2015/16/1/238

  20. CRISPR/Cas9-mediated genome engineering of CHO cell factories: application and perspectives

    DEFF Research Database (Denmark)

    Lee, Jae Seong; Grav, Lise Marie; Lewis, Nathan E.

    2015-01-01

    repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system enables rapid,easy and efficient engineering of mammalian genomes. It has a wide range of applications frommodification of individual genes to genome-wide screening or regulation of genes. Facile genomeediting using CRISPR/Cas9 empowers...... researchers in the CHO community to elucidate the mechanisticbasis behind high level production of proteins and product quality attributes of interest. Inthis review, we describe the basis of CRISPR/Cas9-mediated genome editing and its applicationfor development of next generation CHO cell factories while...... highlighting both future perspectivesand challenges. As one of the main drivers for the CHO systems biology era, genome engineeringwith CRISPR/Cas9 will pave the way for rational design of CHO cell factories....

  1. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9

    Science.gov (United States)

    The CRISPR/Cas9 system is known for its precise and efficient gene-editing of a targeted region in a variety of organisms including plants. We targeted FAD2 gene region to perform CRISPR/Cas9 gene-editing in peanut. The FAD2 gene encodes fatty acid desaturase which catalyzes the conversion of oleic ...

  2. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells.

    Science.gov (United States)

    Dong, Zhan-Qi; Chen, Ting-Ting; Zhang, Jun; Hu, Nan; Cao, Ming-Ya; Dong, Fei-Fan; Jiang, Ya-Ming; Chen, Peng; Lu, Cheng; Pan, Min-Hui

    2016-06-01

    Although current antiviral strategies can inhibit baculovirus infection and decrease viral DNA replication to a certain extent, novel tools are required for specific and accurate elimination of baculovirus genomes from infected insects. Using the newly developed clustered regularly interspaced short palindromic repeats/associated protein 9 nuclease (CRISPR/Cas9) technology, we disrupted a viral genome in infected insect cells in vitro as a defense against viral infection. We optimized the CRISPR/Cas9 system to edit foreign and viral genome in insect cells. Using Bombyx mori nucleopolyhedrovirus (BmNPV) as a model, we found that the CRISPR/Cas9 system was capable of cleaving the replication key factor ie-1 in BmNPV thus effectively inhibiting virus proliferation. Furthermore, we constructed a virus-inducible CRISPR/Cas9 editing system, which minimized the probability of off-target effects and was rapidly activated after viral infection. This is the first report describing the application of the CRISPR/Cas9 system in insect antiviral research. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells provides insights to produce virus-resistant transgenic strains for future. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. PEG capped CaS nanoparticles synthesized by wet chemical co-precipitation method

    Science.gov (United States)

    Rekha, S.; Anila, E. I.

    2018-04-01

    Calcium sulfide (CaS) nanoparticles capped with polyethyleneglycol (PEG) were synthesized using wet chemical co-precipitation method. The structural and optical properties of the prepared sample were studied by X-ray diffractogram (XRD), transmission electron microscopy (TEM), diffuse reflectance spectrum (DRS) and photoluminescence (PL) spectrum. The structure of CaS nanoparticles is cubic as demonstrated by the X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) analysis. TEMimage revealed the spherical morphology of the particles with diameter in the range 15-20 nm. The optical band gap of the prepared sample was determined from the DRS and its value was found to be 4.1 eV. The PL studies showed that the relative intensity of the PEG capped CaS nanoparticles was higher than that of uncapped CaS nanoparticles. The presence of various functional groups in the capped samples were examined by Fourier Transform Infrared (FTIR) spectroscopy.

  4. Genetic Studies on CRISPR-Cas Functions in Invader Defense in Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Peng, Wenfang

    Archaea and bacteria contain CRISPR-Cas (clustered regularly interspaced short palindromic repeat-CRISPR-associated) systems that protect themselves against invasion by viruses and plasmids. There are three major types of CRISPR-Cas systems, type I, II and III, that are further divided...... into at least 11 subtypes. I employed Sulfolobus islandicus Rey15A as the model to study CRISPR mechanisms. The model archaeon encodes one subtype I-A (Cascade) and two subtype III-B (Cmr-α and Cmr-β) interference systems with no apparent redundancy in cas genes or in CRISPR systems, which is ideal for genetic...... analysis of cas gene function. Furthermore, a range of genetic tools have been developed for S. islandicus Rey15A in our laboratory and a plasmid interference assay has been successfully developed for testing CRISPR-directed DNA targeting activity, which have provided a solid basis for studying...

  5. Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells.

    Directory of Open Access Journals (Sweden)

    Sanne Hindriksen

    Full Text Available The CRISPR/Cas9 system is a highly effective tool for genome editing. Key to robust genome editing is the efficient delivery of the CRISPR/Cas9 machinery. Viral delivery systems are efficient vehicles for the transduction of foreign genes but commonly used viral vectors suffer from a limited capacity in the genetic information they can carry. Baculovirus however is capable of carrying large exogenous DNA fragments. Here we investigate the use of baculoviral vectors as a delivery vehicle for CRISPR/Cas9 based genome-editing tools. We demonstrate transduction of a panel of cell lines with Cas9 and an sgRNA sequence, which results in efficient knockout of all four targeted subunits of the chromosomal passenger complex (CPC. We further show that introduction of a homology directed repair template into the same CRISPR/Cas9 baculovirus facilitates introduction of specific point mutations and endogenous gene tags. Tagging of the CPC recruitment factor Haspin with the fluorescent reporter YFP allowed us to study its native localization as well as recruitment to the cohesin subunit Pds5B.

  6. Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells.

    Science.gov (United States)

    Hindriksen, Sanne; Bramer, Arne J; Truong, My Anh; Vromans, Martijn J M; Post, Jasmin B; Verlaan-Klink, Ingrid; Snippert, Hugo J; Lens, Susanne M A; Hadders, Michael A

    2017-01-01

    The CRISPR/Cas9 system is a highly effective tool for genome editing. Key to robust genome editing is the efficient delivery of the CRISPR/Cas9 machinery. Viral delivery systems are efficient vehicles for the transduction of foreign genes but commonly used viral vectors suffer from a limited capacity in the genetic information they can carry. Baculovirus however is capable of carrying large exogenous DNA fragments. Here we investigate the use of baculoviral vectors as a delivery vehicle for CRISPR/Cas9 based genome-editing tools. We demonstrate transduction of a panel of cell lines with Cas9 and an sgRNA sequence, which results in efficient knockout of all four targeted subunits of the chromosomal passenger complex (CPC). We further show that introduction of a homology directed repair template into the same CRISPR/Cas9 baculovirus facilitates introduction of specific point mutations and endogenous gene tags. Tagging of the CPC recruitment factor Haspin with the fluorescent reporter YFP allowed us to study its native localization as well as recruitment to the cohesin subunit Pds5B.

  7. Cytosolic and Nuclear Delivery of CRISPR/Cas9-ribonucleoprotein for Gene Editing Using Arginine Functionalized Gold Nanoparticles.

    Science.gov (United States)

    Mout, Rubul; Rotello, Vincent M

    2017-10-20

    In this protocol, engineered Cas9-ribonucleoprotein (Cas9 protein and sgRNA, together called Cas9-RNP) and gold nanoparticles are used to make nanoassemblies that are employed to deliver Cas9-RNP into cell cytoplasm and nucleus. Cas9 protein is engineered with an N-terminus glutamic acid tag (E-tag or En, where n = the number of glutamic acid in an E-tag and usually n = 15 or 20), C-terminus nuclear localizing signal (NLS), and a C-terminus 6xHis-tag. [Cas9En hereafter] To use this protocol, the first step is to generate the required materials (gold nanoparticles, recombinant Cas9En, and sgRNA). Laboratory-synthesis of gold nanoparticles can take up to a few weeks, but can be synthesized in large batches that can be used for many years without compromising the quality. Cas9En can be cloned from a regular SpCas9 gene (Addgene plasmid id = 47327), and expressed and purified using standard laboratory procedures which are not a part of this protocol. Similarly, sgRNA can be laboratory-synthesized using in vitro transcription from a template gene (Addgene plasmid id = 51765) or can be purchased from various sources. Once these materials are ready, it takes about ~30 min to make the Cas9En-RNP complex and 10 min to make the Cas9En-RNP/nanoparticles nanoassemblies, which are immediately used for delivery (Figure 1). Complete delivery (90-95% cytoplasmic and nuclear delivery) is achieved in less than 3 h. Follow-up editing experiments require additional time based on users' need. Synthesis of arginine functionalized gold nanoparticles (ArgNPs) (Yang et al ., 2011), expression of recombinant Cas9En, and in vitro synthesis of sgRNA is reported elsewhere (Mout et al ., 2017). We report here only the generation of the delivery vehicle i.e. , the fabrication of Cas9En-RNP/ArgNPs nanoassembly.

  8. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. | Office of Cancer Genomics

    Science.gov (United States)

    The CRISPR/Cas9 system is a powerful tool for studying gene function. Here, we describe a method that allows temporal control of CRISPR/Cas9 activity based on conditional Cas9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 (DD-Cas9) enables conditional Cas9 expression and temporal control of gene editing in the presence of an FKBP12 synthetic ligand. This system can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest without co-modulation of the latter.

  9. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Triggered Isothermal Amplification for Site-Specific Nucleic Acid Detection.

    Science.gov (United States)

    Huang, Mengqi; Zhou, Xiaoming; Wang, Huiying; Xing, Da

    2018-02-06

    A novel CRISPR/Cas9 triggered isothermal exponential amplification reaction (CAS-EXPAR) strategy based on CRISPR/Cas9 cleavage and nicking endonuclease (NEase) mediated nucleic acids amplification was developed for rapid and site-specific nucleic acid detection. CAS-EXPAR was primed by the target DNA fragment produced by cleavage of CRISPR/Cas9, and the amplification reaction performed cyclically to generate a large number of DNA replicates which were detected using a real-time fluorescence monitoring method. This strategy that combines the advantages of CRISPR/Cas9 and exponential amplification showed high specificity as well as rapid amplification kinetics. Unlike conventional nucleic acids amplification reactions, CAS-EXPAR does not require exogenous primers, which often cause target-independent amplification. Instead, primers are first generated by Cas9/sgRNA directed site-specific cleavage of target and accumulated during the reaction. It was demonstrated this strategy gave a detection limit of 0.82 amol and showed excellent specificity in discriminating single-base mismatch. Moreover, the applicability of this method to detect DNA methylation and L. monocytogenes total RNA was also verified. Therefore, CAS-EXPAR may provide a new paradigm for efficient nucleic acid amplification and hold the potential for molecular diagnostic applications.

  10. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production.

    Science.gov (United States)

    Li, Hung; Shen, Claire R; Huang, Chun-Hung; Sung, Li-Yu; Wu, Meng-Ying; Hu, Yu-Chen

    2016-11-01

    Cyanobacteria hold promise as a cell factory for producing biofuels and bio-derived chemicals, but genome engineering of cyanobacteria such as Synechococcus elongatus PCC 7942 poses challenges because of their oligoploidy nature and long-term instability of the introduced gene. CRISPR-Cas9 is a newly developed RNA-guided genome editing system, yet its application for cyanobacteria engineering has yet to be reported. Here we demonstrated that CRISPR-Cas9 system can effectively trigger programmable double strand break (DSB) at the chromosome of PCC 7942 and provoke cell death. With the co-transformation of template plasmid harboring the gene cassette and flanking homology arms, CRISPR-Cas9-mediated DSB enabled precise gene integration, ameliorated the homologous recombination efficiency and allowed the use of lower amount of template DNA and shorter homology arms. The CRISPR-Cas9-induced cell death imposed selective pressure and enhanced the chance of concomitant integration of gene cassettes into all chromosomes of PCC 7942, hence accelerating the process of obtaining homogeneous and stable recombinant strains. We further explored the feasibility of engineering cyanobacteria by CRISPR-Cas9-assisted simultaneous glgc knock-out and gltA/ppc knock-in, which improved the succinate titer to 435.0±35.0μg/L, an ≈11-fold increase when compared with that of the wild-type cells. These data altogether justify the use of CRISPR-Cas9 for genome engineering and manipulation of metabolic pathways in cyanobacteria. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Energy Systems Training Programs and Certifications Survey White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Daryl [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nimbalkar, Sachin U. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wenning, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thirumaran, Kiran [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guo, Wei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    Compressed air system, industrial refrigeration system, chilled water system, pump system, fan system, steam system, process heating system, and combined heat and power system are the major industrial energy systems. By helping enhance knowledge and skills of workforce, training and certification programs on these systems are essential to improve energy efficiency of manufacturing facilities. A literature survey of currently available training and certification programs on these systems was conducted.

  12. A Biophysical Model of CRISPR/Cas9 Activity for Rational Design of Genome Editing and Gene Regulation

    Science.gov (United States)

    Farasat, Iman; Salis, Howard M.

    2016-01-01

    The ability to precisely modify genomes and regulate specific genes will greatly accelerate several medical and engineering applications. The CRISPR/Cas9 (Type II) system binds and cuts DNA using guide RNAs, though the variables that control its on-target and off-target activity remain poorly characterized. Here, we develop and parameterize a system-wide biophysical model of Cas9-based genome editing and gene regulation to predict how changing guide RNA sequences, DNA superhelical densities, Cas9 and crRNA expression levels, organisms and growth conditions, and experimental conditions collectively control the dynamics of dCas9-based binding and Cas9-based cleavage at all DNA sites with both canonical and non-canonical PAMs. We combine statistical thermodynamics and kinetics to model Cas9:crRNA complex formation, diffusion, site selection, reversible R-loop formation, and cleavage, using large amounts of structural, biochemical, expression, and next-generation sequencing data to determine kinetic parameters and develop free energy models. Our results identify DNA supercoiling as a novel mechanism controlling Cas9 binding. Using the model, we predict Cas9 off-target binding frequencies across the lambdaphage and human genomes, and explain why Cas9’s off-target activity can be so high. With this improved understanding, we propose several rules for designing experiments for minimizing off-target activity. We also discuss the implications for engineering dCas9-based genetic circuits. PMID:26824432

  13. John F. Kennedy Space Center, Safety, Reliability, Maintainability and Quality Assurance, Survey and Audit Program

    Science.gov (United States)

    1994-01-01

    This document is the product of the KSC Survey and Audit Working Group composed of civil service and contractor Safety, Reliability, and Quality Assurance (SR&QA) personnel. The program described herein provides standardized terminology, uniformity of survey and audit operations, and emphasizes process assessments rather than a program based solely on compliance. The program establishes minimum training requirements, adopts an auditor certification methodology, and includes survey and audit metrics for the audited organizations as well as the auditing organization.

  14. CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973.

    Science.gov (United States)

    Wendt, Kristen E; Ungerer, Justin; Cobb, Ryan E; Zhao, Huimin; Pakrasi, Himadri B

    2016-06-23

    As autotrophic prokaryotes, cyanobacteria are ideal chassis organisms for sustainable production of various useful compounds. The newly characterized cyanobacterium Synechococcus elongatus UTEX 2973 is a promising candidate for serving as a microbial cell factory because of its unusually rapid growth rate. Here, we seek to develop a genetic toolkit that enables extensive genomic engineering of Synechococcus 2973 by implementing a CRISPR/Cas9 editing system. We targeted the nblA gene because of its important role in biological response to nitrogen deprivation conditions. First, we determined that the Streptococcus pyogenes Cas9 enzyme is toxic in cyanobacteria, and conjugational transfer of stable, replicating constructs containing the cas9 gene resulted in lethality. However, after switching to a vector that permitted transient expression of the cas9 gene, we achieved markerless editing in 100 % of cyanobacterial exconjugants after the first patch. Moreover, we could readily cure the organisms of antibiotic resistance, resulting in a markerless deletion strain. High expression levels of the Cas9 protein in Synechococcus 2973 appear to be toxic and result in cell death. However, introduction of a CRISPR/Cas9 genome editing system on a plasmid backbone that leads to transient cas9 expression allowed for efficient markerless genome editing in a wild type genetic background.

  15. Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods

    Directory of Open Access Journals (Sweden)

    Dan Sun

    2017-09-01

    Full Text Available Clustered regularly interspaced short palindromic repeats (CRISPR and the CRISPR-associated gene Cas9 represent an invaluable system for the precise editing of genes in diverse species. The CRISPR/Cas9 system is an adaptive mechanism that enables bacteria and archaeal species to resist invading viruses and phages or plasmids. Compared with zinc finger nucleases and transcription activator-like effector nucleases, the CRISPR/Cas9 system has the advantage of requiring less time and effort. This efficient technology has been used in many species, including diverse arthropods that are relevant to agriculture, forestry, fisheries, and public health; however, there is no review that systematically summarizes its successful application in the editing of both insect and non-insect arthropod genomes. Thus, this paper seeks to provide a comprehensive and impartial overview of the progress of the CRISPR/Cas9 system in different arthropods, reviewing not only fundamental studies related to gene function exploration and experimental optimization but also applied studies in areas such as insect modification and pest control. In addition, we also describe the latest research advances regarding two novel CRISPR/Cas systems (CRISPR/Cpf1 and CRISPR/C2c2 and discuss their future prospects for becoming crucial technologies in arthropods.

  16. CRISPR/Cas9: A Practical Approach in Date Palm Genome Editing

    Directory of Open Access Journals (Sweden)

    Muhammad N. Sattar

    2017-08-01

    Full Text Available The genetic modifications through breeding of crop plants have long been used to improve the yield and quality. However, precise genome editing (GE could be a very useful supplementary tool for improvement of crop plants by targeted genome modifications. Various GE techniques including ZFNs (zinc finger nucleases, TALENs (transcription activator-like effector nucleases, and most recently clustered regularly interspaced short palindromic repeats (CRISPR/Cas9 (CRISPR-associated protein 9-based approaches have been successfully employed for various crop plants including fruit trees. CRISPR/Cas9-based approaches hold great potential in GE due to their simplicity, competency, and versatility over other GE techniques. However, to the best of our knowledge no such genetic improvement has ever been developed in date palm—an important fruit crop in Oasis agriculture. The applications of CRISPR/Cas9 can be a challenging task in date palm GE due to its large and complex genome, high rate of heterozygosity and outcrossing, in vitro regeneration and screening of mutants, high frequency of single-nucleotide polymorphism in the genome and ultimately genetic instability. In this review, we addressed the potential application of CRISPR/Cas9-based approaches in date palm GE to improve the sustainable date palm production. The availability of the date palm whole genome sequence has made it feasible to use CRISPR/Cas9 GE approach for genetic improvement in this species. Moreover, the future prospects of GE application in date palm are also addressed in this review.

  17. CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) for Near-Perfect Selective Transformation

    Science.gov (United States)

    Rothschild, Lynn J.; Greenberg, Daniel T.; Takahashi, Jack R.; Thompson, Kirsten A.; Maheshwari, Akshay J.; Kent, Ryan E.; McCutcheon, Griffin; Shih, Joseph D.; Calvet, Charles; Devlin, Tyler D.; hide

    2015-01-01

    The CRISPR (Clustered, Regularly Interspaced, Short Palindromic Repeats)/Cas9 system has revolutionized genome editing by providing unprecedented DNA-targeting specificity. Here we demonstrate that this system can be also applied in vitro to fundamental cloning steps to facilitate efficient plasmid selection for transformation and selective gene insertion into plasmid vectors by cleaving unwanted plasmid byproducts with a single-guide RNA (sgRNA)-Cas9 nuclease complex. Using fluorescent and chromogenic proteins as reporters, we demonstrate that CRISPR/Cas9 cleavage excludes multiple plasmids as well as unwanted ligation byproducts resulting in an unprecedented increase in the transformation success rate from approximately 20% to nearly 100%. Thus, this CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) protocol is a novel, inexpensive, and convenient application to conventional molecular cloning to achieve near-perfect selective transformation.

  18. Efficient CRISPR-Cas9 Gene Disruption System in Edible-Medicinal Mushroom Cordyceps militaris

    Directory of Open Access Journals (Sweden)

    Bai-Xiong Chen

    2018-06-01

    Full Text Available Cordyceps militaris is a well-known edible medicinal mushroom in East Asia that contains abundant and diverse bioactive compounds. Since traditional genome editing systems in C. militaris were inefficient and complicated, here, we show that the codon-optimized cas9, which was used with the newly reported promoter Pcmlsm3 and terminator Tcmura3, was expressed. Furthermore, with the help of the negative selection marker ura3, a CRISPR-Cas9 system that included the Cas9 DNA endonuclease, RNA presynthesized in vitro and a single-strand DNA template efficiently generated site-specific deletion and insertion. This is the first report of a CRISPR-Cas9 system in C. militaris, and it could accelerate the genome reconstruction of C. militaris to meet the need for rapid development in the fungi industry.

  19. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.

    Science.gov (United States)

    Yin, L; Maddison, L A; Chen, W

    2016-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system is a powerful tool for genome editing in numerous organisms. However, the system is typically used for gene editing throughout the entire organism. Tissue and temporal specific mutagenesis is often desirable to determine gene function in a specific stage or tissue and to bypass undesired consequences of global mutations. We have developed the CRISPR/Cas system for conditional mutagenesis in transgenic zebrafish using tissue-specific and/or inducible expression of Cas9 and U6-driven expression of sgRNA. To allow mutagenesis of multiple targets, we have isolated four distinct U6 promoters and designed Golden Gate vectors to easily assemble transgenes with multiple sgRNAs. We provide experimental details on the reagents and applications for multiplex conditional mutagenesis in zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering

    Directory of Open Access Journals (Sweden)

    Xiao-Hui Zhang

    2015-01-01

    Full Text Available CRISPR/Cas9 is a versatile genome-editing technology that is widely used for studying the functionality of genetic elements, creating genetically modified organisms as well as preclinical research of genetic disorders. However, the high frequency of off-target activity (≥50%—RGEN (RNA-guided endonuclease-induced mutations at sites other than the intended on-target site—is one major concern, especially for therapeutic and clinical applications. Here, we review the basic mechanisms underlying off-target cutting in the CRISPR/Cas9 system, methods for detecting off-target mutations, and strategies for minimizing off-target cleavage. The improvement off-target specificity in the CRISPR/Cas9 system will provide solid genotype–phenotype correlations, and thus enable faithful interpretation of genome-editing data, which will certainly facilitate the basic and clinical application of this technology.

  1. Current Trends in Communication Graduate Degrees: Survey of Communications, Advertising, PR, and IMC Graduate Programs

    Science.gov (United States)

    Quesenberry, Keith A.; Coolsen, Michael K.; Wilkerson, Kristen

    2015-01-01

    A survey of 61 master's degree advertising programs reveals significant trends in program titles, curriculum design, course delivery, and students served. The results provide insight for current and planned master's degree programs as research predicts a continued increase in demand for master's education over the next decade. Survey results are…

  2. Phonological Awareness and Early Reading Development in Childhood Apraxia of Speech (CAS)

    Science.gov (United States)

    McNeill, B. C.; Gillon, G. T.; Dodd, B.

    2009-01-01

    Background: Childhood apraxia of speech (CAS) is associated with phonological awareness, reading, and spelling deficits. Comparing literacy skills in CAS with other developmental speech disorders is critical for understanding the complexity of the disorder. Aims: This study compared the phonological awareness and reading development of children…

  3. The Conformational Dynamics of Cas9 Governing DNA Cleavage Are Revealed by Single-Molecule FRET.

    Science.gov (United States)

    Yang, Mengyi; Peng, Sijia; Sun, Ruirui; Lin, Jingdi; Wang, Nan; Chen, Chunlai

    2018-01-09

    Off-target binding and cleavage by Cas9 pose major challenges in its application. How the conformational dynamics of Cas9 govern its nuclease activity under on- and off-target conditions remains largely unknown. Here, using intra-molecular single-molecule fluorescence resonance energy transfer measurements, we revealed that Cas9 in apo, sgRNA-bound, and dsDNA/sgRNA-bound forms spontaneously transits among three major conformational states, mainly reflecting significant conformational mobility of the catalytic HNH domain. We also uncovered surprising long-range allosteric communication between the HNH domain and the RNA/DNA heteroduplex at the PAM-distal end to ensure correct positioning of the catalytic site, which demonstrated that a unique proofreading mechanism served as the last checkpoint before DNA cleavage. Several Cas9 residues were likely to mediate the allosteric communication and proofreading step. Modulating interactions between Cas9 and heteroduplex at the PAM-distal end by introducing mutations on these sites provides an alternative route to improve and optimize the CRISPR/Cas9 toolbox. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Genome editing: the road of CRISPR/Cas9 from bench to clinic

    KAUST Repository

    Eid, Ayman

    2016-10-14

    Molecular scissors engineered for site-specific modification of the genome hold great promise for effective functional analyses of genes, genomes and epigenomes and could improve our understanding of the molecular underpinnings of disease states and facilitate novel therapeutic applications. Several platforms for molecular scissors that enable targeted genome engineering have been developed, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and, most recently, clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated-9 (Cas9). The CRISPR/Cas9 system\\'s simplicity, facile engineering and amenability to multiplexing make it the system of choice for many applications. CRISPR/Cas9 has been used to generate disease models to study genetic diseases. Improvements are urgently needed for various aspects of the CRISPR/Cas9 system, including the system\\'s precision, delivery and control over the outcome of the repair process. Here, we discuss the current status of genome engineering and its implications for the future of biological research and gene therapy.

  5. Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention.

    Science.gov (United States)

    Zhang, Qiang; Xing, Hui-Li; Wang, Zhi-Ping; Zhang, Hai-Yan; Yang, Fang; Wang, Xue-Chen; Chen, Qi-Jun

    2018-03-01

    We present novel observations of high-specificity SpCas9 variants, sgRNA expression strategies based on mutant sgRNA scaffold and tRNA processing system, and CRISPR/Cas9-mediated T-DNA integrations. Specificity of CRISPR/Cas9 tools has been a major concern along with the reports of their successful applications. We report unexpected observations of high frequency off-target mutagenesis induced by CRISPR/Cas9 in T1 Arabidopsis mutants although the sgRNA was predicted to have a high specificity score. We also present evidence that the off-target effects were further exacerbated in the T2 progeny. To prevent the off-target effects, we tested and optimized two strategies in Arabidopsis, including introduction of a mCherry cassette for a simple and reliable isolation of Cas9-free mutants and the use of highly specific mutant SpCas9 variants. Optimization of the mCherry vectors and subsequent validation found that fusion of tRNA with the mutant rather than the original sgRNA scaffold significantly improves editing efficiency. We then examined the editing efficiency of eight high-specificity SpCas9 variants in combination with the improved tRNA-sgRNA fusion strategy. Our results suggest that highly specific SpCas9 variants require a higher level of expression than their wild-type counterpart to maintain high editing efficiency. Additionally, we demonstrate that T-DNA can be inserted into the cleavage sites of CRISPR/Cas9 targets with high frequency. Altogether, our results suggest that in plants, continuous attention should be paid to off-target effects induced by CRISPR/Cas9 in current and subsequent generations, and that the tools optimized in this report will be useful in improving genome editing efficiency and specificity in plants and other organisms.

  6. Efficient Multiple Genome Modifications Induced by the crRNAs, tracrRNA and Cas9 Protein Complex in Zebrafish

    Science.gov (United States)

    Ohga, Rie; Ota, Satoshi; Kawahara, Atsuo

    2015-01-01

    The type II clustered regularly interspaced short palindromic repeats (CRISPR) associated with Cas9 endonuclease (CRISPR/Cas9) has become a powerful genetic tool for understanding the function of a gene of interest. In zebrafish, the injection of Cas9 mRNA and guide-RNA (gRNA), which are prepared using an in vitro transcription system, efficiently induce DNA double-strand breaks (DSBs) at the targeted genomic locus. Because gRNA was originally constructed by fusing two short RNAs CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA), we examined the effect of synthetic crRNAs and tracrRNA with Cas9 mRNA or Cas9 protein on the genome editing activity. We previously reported that the disruption of tyrosinase (tyr) by tyr-gRNA/Cas9 mRNA causes a retinal pigment defect, whereas the disruption of spns2 by spns2-gRNA1/Cas9 mRNA leads to a cardiac progenitor migration defect in zebrafish. Here, we found that the injection of spns2-crRNA1, tyr-crRNA and tracrRNA with Cas9 mRNA or Cas9 protein simultaneously caused a migration defect in cardiac progenitors and a pigment defect in retinal epithelial cells. A time course analysis demonstrated that the injection of crRNAs and tracrRNA with Cas9 protein rapidly induced genome modifications compared with the injection of crRNAs and tracrRNA with Cas9 mRNA. We further show that the crRNA-tracrRNA-Cas9 protein complex is functional for the visualization of endogenous gene expression; therefore, this is a very powerful, ready-to-use system in zebrafish. PMID:26010089

  7. Elective time during dermatology residency: A survey of residents and program directors.

    Science.gov (United States)

    Uppal, Pushpinder; Shantharam, Rohini; Kaufmann, Tara Lynn

    2017-12-15

    Elective time during residency training provides residents with exposure to different subspecialties. This opportunity gives residents the chance tonurture growth in particular areas of interest and broaden their knowledge base in certain topics in dermatology by having the chance to work withexperts in the field. The purpose of this study was to assess the views of residency program directors and dermatology residents on the value of elective time through a cross sectional survey. An eight-questionIRB exempt survey was sent out to 113 residency program directors via email through the American Professors of Dermatology (APD) program director listserv. Program directors were asked to forward a separate set of 9 questions to their residents. The majority of programs that responded allowed for some elective time within their schedule, often duringthe PGY 4 (3rd year of dermatology training), but the amount of time allowed widely varied among many residency programs. Overall, residents and program directors agree that elective is important in residencytraining, but no standardization is established across programs.

  8. Selected papers from the 2nd IEEEE Nordic Circuits and Systems Conference (NorCAS), 2016

    DEFF Research Database (Denmark)

    Sparsø, Jens

    2018-01-01

    This special issue includes selected papers from the 2nd IEEEE Nordic Circuits and Systems Conference (NorCAS), held in Linköping, Sweden, October 24-25, 2016. The IEEE NorCAS conference is the main circuits and systems event of the Nordic and Baltic countries representing both academia and the e......This special issue includes selected papers from the 2nd IEEEE Nordic Circuits and Systems Conference (NorCAS), held in Linköping, Sweden, October 24-25, 2016. The IEEE NorCAS conference is the main circuits and systems event of the Nordic and Baltic countries representing both academia...

  9. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells.

    Science.gov (United States)

    Yuen, Kit-San; Chan, Chi-Ping; Wong, Nok-Hei Mickey; Ho, Chau-Ha; Ho, Ting-Hin; Lei, Ting; Deng, Wen; Tsao, Sai Wah; Chen, Honglin; Kok, Kin-Hang; Jin, Dong-Yan

    2015-03-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated 9) system is a highly efficient and powerful tool for RNA-guided editing of the cellular genome. Whether CRISPR/Cas9 can also cleave the genome of DNA viruses such as Epstein-Barr virus (EBV), which undergo episomal replication in human cells, remains to be established. Here, we reported on CRISPR/Cas9-mediated editing of the EBV genome in human cells. Two guide RNAs (gRNAs) were used to direct a targeted deletion of 558 bp in the promoter region of BART (BamHI A rightward transcript) which encodes viral microRNAs (miRNAs). Targeted editing was achieved in several human epithelial cell lines latently infected with EBV, including nasopharyngeal carcinoma C666-1 cells. CRISPR/Cas9-mediated editing of the EBV genome was efficient. A recombinant virus with the desired deletion was obtained after puromycin selection of cells expressing Cas9 and gRNAs. No off-target cleavage was found by deep sequencing. The loss of BART miRNA expression and activity was verified, supporting the BART promoter as the major promoter of BART RNA. Although CRISPR/Cas9-mediated editing of the multicopy episome of EBV in infected HEK293 cells was mostly incomplete, viruses could be recovered and introduced into other cells at low m.o.i. Recombinant viruses with an edited genome could be further isolated through single-cell sorting. Finally, a DsRed selectable marker was successfully introduced into the EBV genome during the course of CRISPR/Cas9-mediated editing. Taken together, our work provided not only the first genetic evidence that the BART promoter drives the expression of the BART transcript, but also a new and efficient method for targeted editing of EBV genome in human cells. © 2015 The Authors.

  10. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease.

    Science.gov (United States)

    Anders, Carolin; Niewoehner, Ole; Duerst, Alessia; Jinek, Martin

    2014-09-25

    The CRISPR-associated protein Cas9 is an RNA-guided endonuclease that cleaves double-stranded DNA bearing sequences complementary to a 20-nucleotide segment in the guide RNA. Cas9 has emerged as a versatile molecular tool for genome editing and gene expression control. RNA-guided DNA recognition and cleavage strictly require the presence of a protospacer adjacent motif (PAM) in the target DNA. Here we report a crystal structure of Streptococcus pyogenes Cas9 in complex with a single-molecule guide RNA and a target DNA containing a canonical 5'-NGG-3' PAM. The structure reveals that the PAM motif resides in a base-paired DNA duplex. The non-complementary strand GG dinucleotide is read out via major-groove interactions with conserved arginine residues from the carboxy-terminal domain of Cas9. Interactions with the minor groove of the PAM duplex and the phosphodiester group at the +1 position in the target DNA strand contribute to local strand separation immediately upstream of the PAM. These observations suggest a mechanism for PAM-dependent target DNA melting and RNA-DNA hybrid formation. Furthermore, this study establishes a framework for the rational engineering of Cas9 enzymes with novel PAM specificities.

  11. Unexpected heterogeneity derived from Cas9 ribonucleoprotein-introduced clonal cells at the HPRT1 locus.

    Science.gov (United States)

    Sakuma, Tetsushi; Mochida, Keiji; Nakade, Shota; Ezure, Toru; Minagawa, Sachi; Yamamoto, Takashi

    2018-04-01

    Single-cell cloning is an essential technique for establishing genome-edited cell clones mediated by programmable nucleases such as CRISPR-Cas9. However, residual genome-editing activity after single-cell cloning may cause heterogeneity in the clonal cells. Previous studies showed efficient mutagenesis and rapid degradation of CRISPR-Cas9 components in cultured cells by introducing Cas9 ribonucleoproteins (RNPs). In this study, we investigated how the timing for single-cell cloning of Cas9 RNP-transfected cells affected the heterogeneity of the resultant clones. We carried out transfection of Cas9 RNPs targeting several loci in the HPRT1 gene in HCT116 cells, followed by single-cell cloning at 24, 48, 72 hr and 1 week post-transfection. After approximately 3 weeks of incubation, the clonal cells were collected and genotyped by high-resolution microchip electrophoresis and Sanger sequencing. Unexpectedly, long-term incubation before single-cell cloning resulted in highly heterogeneous clones. We used a lipofection method for transfection, and the media containing transfectable RNPs were not removed before single-cell cloning. Therefore, the active Cas9 RNPs were considered to be continuously incorporated into cells during the precloning incubation. Our findings provide a warning that lipofection of Cas9 RNPs may cause continuous introduction of gene mutations depending on the experimental procedures. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  12. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.

    Science.gov (United States)

    Khan, Muhammad Hafeez Ullah; Khan, Shahid U; Muhammad, Ali; Hu, Limin; Yang, Yang; Fan, Chuchuan

    2018-06-01

    Clustered regularly interspaced palindromic repeats associated protein Cas9 (CRISPR-Cas9), originally an adaptive immunity system of prokaryotes, is revolutionizing genome editing technologies with minimal off-targets in the present era. The CRISPR/Cas9 is now highly emergent, advanced, and highly specific tool for genome engineering. The technology is widely used to animal and plant genomes to achieve desirable results. The present review will encompass how CRISPR-Cas9 is revealing its beneficial role in characterizing plant genetic functions, genomic rearrangement, how it advances the site-specific mutagenesis, and epigenetics modification in plants to improve the yield of field crops with minimal side-effects. The possible pitfalls of using and designing CRISPR-Cas9 for plant genome editing are also discussed for its more appropriate applications in plant biology. Therefore, CRISPR/Cas9 system has multiple benefits that mostly scientists select for genome editing in several biological systems. © 2017 Wiley Periodicals, Inc.

  13. Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato

    KAUST Repository

    Mahfouz, Magdy M.

    2017-12-22

    CRISPR/Cas systems confer molecular immunity against phages and conjugative plasmids in prokaryotes. Recently, CRISPR/Cas9 systems have been used to confer interference against eukaryotic viruses. Here, we engineered Nicotiana benthamiana and tomato (Solanum lycopersicum) plants with the CRISPR/Cas9 system to confer immunity against the Tomato yellow leaf curl virus (TYLCV). Targeting the TYLCV genome with Cas9-single guide RNA at the sequences encoding the coat protein (CP) or replicase (Rep) resulted in efficient virus interference, as evidenced by low accumulation of the TYLCV DNA genome in the transgenic plants. The CRISPR/Cas9-based immunity remained active across multiple generations in the N. benthamiana and tomato plants. Together, our results confirmed the efficiency of the CRISPR/Cas9 system for stable engineering of TYLCV resistance in N. benthamiana and tomato, and opens the possibilities of engineering virus resistance against single and multiple infectious viruses in other crops.

  14. Year-End Clinic Handoffs: A National Survey of Academic Internal Medicine Programs.

    Science.gov (United States)

    Phillips, Erica; Harris, Christina; Lee, Wei Wei; Pincavage, Amber T; Ouchida, Karin; Miller, Rachel K; Chaudhry, Saima; Arora, Vineet M

    2017-06-01

    While there has been increasing emphasis and innovation nationwide in training residents in inpatient handoffs, very little is known about the practice and preparation for year-end clinic handoffs of residency outpatient continuity practices. Thus, the latter remains an identified, yet nationally unaddressed, patient safety concern. The 2014 annual Association of Program Directors in Internal Medicine (APDIM) survey included seven items for assessing the current year-end clinic handoff practices of internal medicine residency programs throughout the country. Nationwide survey. All internal medicine program directors registered with APDIM. Descriptive statistics of programs and tools used to formulate a year-end handoff in the ambulatory setting, methods for evaluating the process, patient safety and quality measures incorporated within the process, and barriers to conducting year-end handoffs. Of the 361 APDIM member programs, 214 (59%) completed the Transitions of Care Year-End Clinic Handoffs section of the survey. Only 34% of respondent programs reported having a year-end ambulatory handoff system, and 4% reported assessing residents for competency in this area. The top three barriers to developing a year-end handoff system were insufficient overlap between graduating and incoming residents, inability to schedule patients with new residents in advance, and time constraints for residents, attendings, and support staff. Most internal medicine programs do not have a year-end clinic handoff system in place. Greater attention to clinic handoffs and resident assessment of this care transition is needed.

  15. Navy Professional Reading Program: Results of the 2007 Survey

    National Research Council Canada - National Science Library

    Uriell, Zannette A; Johnson, J. S

    2008-01-01

    .... The program includes 60 books across 6 subject areas and 5 career states. Toward the end of the first year of implementation, a survey was conducted to look at reading habits of Navy personnel as well as opinions of the NPRP...

  16. Applications of CRISPR/Cas9 in the Mammalian Central Nervous System.

    Science.gov (United States)

    Savell, Katherine E; Day, Jeremy J

    2017-12-01

    Within the central nervous system, gene regulatory mechanisms are crucial regulators of cellular development and function, and dysregulation of these systems is commonly observed in major neuropsychiatric and neurological disorders. However, due to a lack of tools to specifically modulate the genome and epigenome in the central nervous system, many molecular and genetic mechanisms underlying cognitive function and behavior are still unknown. Although genome editing tools have been around for decades, the recent emergence of inexpensive, straightforward, and widely accessible CRISPR/Cas9 systems has led to a revolution in gene editing. The development of the catalytically dead Cas9 (dCas9) expanded this flexibility even further by acting as an anchoring system for fused effector proteins, structural scaffolds, and RNAs. Together, these advances have enabled robust, modular approaches for specific targeting and modification of the local chromatin environment at a single gene. This review highlights these advancements and how the combination of powerful modulatory tools paired with the versatility of CRISPR-Cas9-based systems offer great potential for understanding the underlying genetic and epigenetic contributions of neuronal function, behavior, and neurobiological diseases.

  17. The role of CRISPR-Cas systems in virulence of pathogenic bacteria.

    Science.gov (United States)

    Louwen, Rogier; Staals, Raymond H J; Endtz, Hubert P; van Baarlen, Peter; van der Oost, John

    2014-03-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are present in many bacterial and archaeal genomes. Since the discovery of the typical CRISPR loci in the 1980s, well before their physiological role was revealed, their variable sequences have been used as a complementary typing tool in diagnostic, epidemiologic, and evolutionary analyses of prokaryotic strains. The discovery that CRISPR spacers are often identical to sequence fragments of mobile genetic elements was a major breakthrough that eventually led to the elucidation of CRISPR-Cas as an adaptive immunity system. Key elements of this unique prokaryotic defense system are small CRISPR RNAs that guide nucleases to complementary target nucleic acids of invading viruses and plasmids, generally followed by the degradation of the invader. In addition, several recent studies have pointed at direct links of CRISPR-Cas to regulation of a range of stress-related phenomena. An interesting example concerns a pathogenic bacterium that possesses a CRISPR-associated ribonucleoprotein complex that may play a dual role in defense and/or virulence. In this review, we describe recently reported cases of potential involvement of CRISPR-Cas systems in bacterial stress responses in general and bacterial virulence in particular.

  18. Sensitizing pathogens to antibiotics using the CRISPR-Cas system.

    Science.gov (United States)

    Goren, Moran; Yosef, Ido; Qimron, Udi

    2017-01-01

    The extensive use of antibiotics over the last century has resulted in a significant artificial selection pressure for antibiotic-resistant pathogens to evolve. Various strategies to fight these pathogens have been introduced including new antibiotics, naturally-derived enzymes/peptides that specifically target pathogens and bacteriophages that lyse these pathogens. A new tool has recently been introduced in the fight against drug-resistant pathogens-the prokaryotic defense mechanism-clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) system. The CRISPR-Cas system acts as a nuclease that can be guided to cleave any target DNA, allowing sophisticated, yet feasible, manipulations of pathogens. Here, we review pioneering studies that use the CRISPR-Cas system to specifically edit bacterial populations, eliminate their resistance genes and combine these two strategies in order to produce an artificial selection pressure for antibiotic-sensitive pathogens. We suggest that intelligent design of this system, along with efficient delivery tools into pathogens, may significantly reduce the threat of antibiotic-resistant pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Building Cre Knockin Rat Lines Using CRISPR/Cas9.

    Science.gov (United States)

    Ma, Yuanwu; Zhang, Lianfeng; Huang, Xingxu

    2017-01-01

    Conditional gene inactivation strategy helps researchers to study the gene functions that are critical in embryogenesis or in defined tissues of adulthood. The Cre/loxP system is widely used for conditional gene inactivation/activation in cells or organisms. Cre knockin animal lines are essential for gene expression or inactivation in a spatially and temporally restricted manner. However, to generate a Cre knockin line by traditional approach is laborious. Recently, the clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) has been proven as a simple and efficient genome-editing tool. We have used CRISPR/Cas9 system to generate rat strains that carry Cre genes in different targeted gene loci by direct delivery of gRNAs/Cas9/donors into fertilized eggs. Here, we described a stepwise procedure for the generation of Cre knockin rat, including target site selection, RNA preparation, the construction of the template donor, pronuclear injection, and the genotyping of precise Cre insertion in F 0 rats. Taken together, the establishment of Cre knockin line can be achieved within 6 weeks.

  20. Split Cas9, Not Hairs - Advancing the Therapeutic Index of CRISPR Technology.

    Science.gov (United States)

    Schmelas, Carolin; Grimm, Dirk

    2018-01-05

    The discovery that the bacterial CRISPR/Cas9 system can be translated into mammalian cells continues to have an unprecedented impact on the biomedical research community, as it largely facilitates efforts to experimentally interrogate or therapeutically modify the cellular genome. In particular, CRISPR promises the ability to correct disease-associated genetic defects, or to target and destroy invading foreign DNA, in a simple, efficient, and selective manner directly in affected human cells or tissues. Here, we highlight a set of exciting new strategies that aim at further increasing the therapeutic index of CRISPR technologies, by reducing the size of Cas9 expression cassettes and thus enhancing their compatibility with viral gene delivery vectors. Specifically, we discuss the concept of splitCas9 whereby the Cas9 holo-protein is segregated into two parts that are expressed individually and reunited in the cell by various means, including use of 1) the gRNA as a scaffold for Cas9 assembly; 2) the rapamycin-controlled FKBP/FRB system; 3) the light-regulated Magnet system; or 4) inteins. We describe how these avenues, despite pursuing the identical aim, differ in critical features comprising the extent of spatio-temporal control of CRISPR activity, and discuss additional improvements to their efficiency or specificity that should foster their clinical translation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration

    KAUST Repository

    Suzuki, Keiichiro; Tsunekawa, Yuji; Herná ndez-Bení tez, Reyna; Wu, Jun; Zhu, Jie; Kim, Euiseok J.; Hatanaka, Fumiyuki; Yamamoto, Mako; Araoka, Toshikazu; Li, Zhe; Kurita, Masakazu; Hishida, Tomoaki; Li, Mo; Aizawa, Emi; Guo, Shicheng; Chen, Song; Goebl, April; Soligalla, Rupa Devi; Qu, Jing; Jiang, Tingshuai; Fu, Xin; Jafari, Maryam; Esteban, Concepcion Rodriguez; Berggren, W. Travis; Lajara, Jeronimo; Nuñ ez-Delicado, Estrella; Guillen, Pedro; Campistol, Josep M.; Matsuzaki, Fumio; Liu, Guang-Hui; Magistretti, Pierre J.; Zhang, Kun; Callaway, Edward M.; Zhang, Kang; Belmonte, Juan Carlos Izpisua

    2016-01-01

    regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9)3, 4 technology, here we devise a homology-independent targeted integration (HITI) strategy, which allows for robust DNA knock-in in both dividing and non-dividing cells in vitro and, more

  2. CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles.

    Science.gov (United States)

    Lemos, Brenda R; Kaplan, Adam C; Bae, Ji Eun; Ferrazzoli, Alexander E; Kuo, James; Anand, Ranjith P; Waterman, David P; Haber, James E

    2018-02-27

    Harnessing CRISPR-Cas9 technology provides an unprecedented ability to modify genomic loci via DNA double-strand break (DSB) induction and repair. We analyzed nonhomologous end-joining (NHEJ) repair induced by Cas9 in budding yeast and found that the orientation of binding of Cas9 and its guide RNA (gRNA) profoundly influences the pattern of insertion/deletions (indels) at the site of cleavage. A common indel created by Cas9 is a 1-bp (+1) insertion that appears to result from Cas9 creating a 1-nt 5' overhang that is filled in by a DNA polymerase and ligated. The origin of +1 insertions was investigated by using two gRNAs with PAM sequences located on opposite DNA strands but designed to cleave the same sequence. These templated +1 insertions are dependent on the X-family DNA polymerase, Pol4. Deleting Pol4 also eliminated +2 and +3 insertions, which are biased toward homonucleotide insertions. Using inverted PAM sequences, we also found significant differences in overall NHEJ efficiency and repair profiles, suggesting that the binding of the Cas9:gRNA complex influences subsequent NHEJ processing. As with events induced by the site-specific HO endonuclease, CRISPR-Cas9-mediated NHEJ repair depends on the Ku heterodimer and DNA ligase 4. Cas9 events are highly dependent on the Mre11-Rad50-Xrs2 complex, independent of Mre11's nuclease activity. Inspection of the outcomes of a large number of Cas9 cleavage events in mammalian cells reveals a similar templated origin of +1 insertions in human cells, but also a significant frequency of similarly templated +2 insertions.

  3. A survey of electric and hybrid vehicle simulation programs

    Science.gov (United States)

    Bevan, J.; Heimburger, D. A.; Metcalfe, M. A.

    1978-01-01

    Results of a survey conducted within the United States to determine the extent of development and capabilities of automotive performance simulation programs suitable for electric and hybrid vehicle studies are summarized. Altogether, 111 programs were identified as being in a usable state. The complexity of the existing programs spans a range from a page of simple desktop calculator instructions to 300,000 lines of a high-level programming language. The capability to simulate electric vehicles was most common, heat-engines second, and hybrid vehicles least common. Batch-operated programs are slightly more common than interactive ones, and one-third can be operated in either mode. The most commonly used language was FORTRAN, the language typically used by engineers. The higher-level simulation languages (e.g. SIMSCRIPT, GPSS, SIMULA) used by "model builders" were conspicuously lacking.

  4. Simple Meets Single: The Application of CRISPR/Cas9 in Haploid Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Zixi Yin

    2017-01-01

    Full Text Available The CRISPR/Cas9 system provides a powerful method for the genetic manipulation of the mammalian genome, allowing knockout of individual genes as well as the generation of genome-wide knockout cell libraries for genetic screening. However, the diploid status of most mammalian cells restricts the application of CRISPR/Cas9 in genetic screening. Mammalian haploid embryonic stem cells (haESCs have only one set of chromosomes per cell, avoiding the issue of heterozygous recessive mutations in diploid cells. Thus, the combination of haESCs and CRISPR/Cas9 facilitates the generation of genome-wide knockout cell libraries for genetic screening. Here, we review recent progress in CRISPR/Cas9 and haPSCs and discuss their applications in genetic screening.

  5. Maternal Supply of Cas9 to Zygotes Facilitates the Efficient Generation of Site-Specific Mutant Mouse Models

    Science.gov (United States)

    Cebrian-Serrano, Alberto; Zha, Shijun; Hanssen, Lars; Biggs, Daniel; Preece, Christopher

    2017-01-01

    Genome manipulation in the mouse via microinjection of CRISPR/Cas9 site-specific nucleases has allowed the production time for genetically modified mouse models to be significantly reduced. Successful genome manipulation in the mouse has already been reported using Cas9 supplied by microinjection of a DNA construct, in vitro transcribed mRNA and recombinant protein. Recently the use of transgenic strains of mice overexpressing Cas9 has been shown to facilitate site-specific mutagenesis via maternal supply to zygotes and this route may provide an alternative to exogenous supply. We have investigated the feasibility of supplying Cas9 genetically in more detail and for this purpose we report the generation of a transgenic mice which overexpress Cas9 ubiquitously, via a CAG-Cas9 transgene targeted to the Gt(ROSA26)Sor locus. We show that zygotes prepared from female mice harbouring this transgene are sufficiently loaded with maternally contributed Cas9 for efficient production of embryos and mice harbouring indel, genomic deletion and knock-in alleles by microinjection of guide RNAs and templates alone. We compare the mutagenesis rates and efficacy of mutagenesis using this genetic supply with exogenous Cas9 supply by either mRNA or protein microinjection. In general, we report increased generation rates of knock-in alleles and show that the levels of mutagenesis at certain genome target sites are significantly higher and more consistent when Cas9 is supplied genetically relative to exogenous supply. PMID:28081254

  6. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins

    Directory of Open Access Journals (Sweden)

    Lia Carolina Soares Medeiros

    2017-11-01

    Full Text Available Trypanosomatids (order Kinetoplastida, including the human pathogens Trypanosoma cruzi (agent of Chagas disease, Trypanosoma brucei, (African sleeping sickness, and Leishmania (leishmaniasis, affect millions of people and animals globally. T. cruzi is considered one of the least studied and most poorly understood tropical disease-causing parasites, in part because of the relative lack of facile genetic engineering tools. This situation has improved recently through the application of clustered regularly interspaced short palindromic repeats–CRISPR-associated protein 9 (CRISPR-Cas9 technology, but a number of limitations remain, including the toxicity of continuous Cas9 expression and the long drug marker selection times. In this study, we show that the delivery of ribonucleoprotein (RNP complexes composed of recombinant Cas9 from Staphylococcus aureus (SaCas9, but not from the more routinely used Streptococcus pyogenes Cas9 (SpCas9, and in vitro-transcribed single guide RNAs (sgRNAs results in rapid gene edits in T. cruzi and other kinetoplastids at frequencies approaching 100%. The highly efficient genome editing via SaCas9/sgRNA RNPs was obtained for both reporter and endogenous genes and observed in multiple parasite life cycle stages in various strains of T. cruzi, as well as in T. brucei and Leishmania major. RNP complex delivery was also used to successfully tag proteins at endogenous loci and to assess the biological functions of essential genes. Thus, the use of SaCas9 RNP complexes for gene editing in kinetoplastids provides a simple, rapid, and cloning- and selection-free method to assess gene function in these important human pathogens.

  7. Are surgery training programs ready for virtual reality? A survey of program directors in general surgery.

    Science.gov (United States)

    Haluck, R S; Marshall, R L; Krummel, T M; Melkonian, M G

    2001-12-01

    The use of advanced technology, such as virtual environments and computer-based simulators (VR/CBS), in training has been well established by both industry and the military. In contrast the medical profession, including surgery, has been slow to incorporate such technology in its training. In an attempt to identify factors limiting the regular incorporation of this technology into surgical training programs, a survey was developed and distributed to all general surgery program directors in the United States. A 22-question survey was sent to 254 general surgery program directors. The survey was designed to reflect attitudes of the program directors regarding the use of computer-based simulation in surgical training. Questions were scaled from 1 to 5 with 1 = strongly disagree and 5 = strongly agree. A total of 139 responses (55%) were returned. The majority of respondents (58%) had seen VR/CBS, but only 19% had "hands-on" experience with these systems. Respondents strongly agreed that there is a need for learning opportunities outside of the operating room and a role for VR/CBS in surgical training. Respondents believed both staff and residents would support this type of training. Concerns included VR/CBS' lack of validation and potential requirements for frequent system upgrades. Virtual environments and computer-based simulators, although well established training tools in other fields, have not been widely incorporated into surgical education. Our results suggest that program directors believe this type of technology would be beneficial in surgical education, but they lack adequate information regarding VR/CBS. Developers of this technology may need to focus on educating potential users and addressing their concerns.

  8. Proceeding of JSPS-CAS Core University Program seminar on production and control of high performance plasmas with advanced plasma heating and diagnostic systems

    International Nuclear Information System (INIS)

    Gao Xiang; Morita, Shigeru

    2011-02-01

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and control of high performance plasmas with advanced plasma heating and diagnostic systems' took place in Guilin Bravo Hotel, Guilin, China, 1-4 November 2010. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. Two special talks and 46 oral talks were presented in the seminar including 36 Chinese, 18 Japanese and 4 Korean attendees. Production and control of high performance plasmas is a crucial issue for realizing an advanced nuclear fusion reactor in addition to developments of advanced plasma heating and diagnostics. This seminar was motivated along the issues. Results in the field of fusion experiments obtained through CUP activities during recent two years were summarized. Possible direction of future collaboration and further encouragement of scientific activity of younger scientists were also discussed in this seminar with future experimental plans in both countries. (author)

  9. Cancer du sein au Cameroun, profil histo-épidémiologique: à propos de 3044 cas

    Science.gov (United States)

    Engbang, Jean Paul Ndamba; Essome, Henri; Koh, Valère Mve; Simo, Godefroy; Essam, Jean Daniel Sime; Mouelle, Albert Sone; Essame, Jean Louis Oyono

    2015-01-01

    Décrire les caractéristiques épidémiologiques et histo-pathologiques des tumeurs malignes du sein au Cameroun. Il s'agissait d'une étude rétrospective descriptive portant sur les tumeurs malignes du sein, colligées, dans les registres des différents laboratoires d'Anatomie Pathologique publiques et privés repartis dans cinq régions (centre, littoral, Ouest, Nord-ouest, Sud-ouest), pendant une période de 10 ans (2004-2013). Les paramètres étudiés étaient la fréquence, l’âge, le sexe, la localisation, le type et le grade histologique, et les récepteurs hormonaux. Un total de 3044 cas de cancers du sein a été recensé, soit une fréquence annuelle de 304,4 cas en moyenne. Le sexe féminin était le plus représenté avec 2971 cas (97,60%) et les hommes avec 73 cas (2,40%), soit un sexe ratio (H/F) de 0,02. L’âge moyen des patients était de 46±15,87 ans, avec des extrêmes de 13 et 95 ans. Selon la localisation, le sein gauche était atteint dans 1244 cas (52%) et le sein droit dans 1115 cas (47%). Au plan histologique, on retrouvait essentiellement des carcinomes avec 96,50% des cas, des sarcomes 1,39%, des lymphomes 1,07% et la maladie de Paget du mamelon, 1,03%. Les tumeurs épithéliales étaient infiltrantes dans 2049 cas (84,46%), avec une prédominance du carcinome canalaire infiltrant (1870 cas) et non infiltrantes dans 377 cas (15,54%). Le grade histo-pronostic de SBR avait révélé une prédominance du grade II dans 66% des cas. Les cancers du sein restent une pathologie fréquente au Cameroun et atteignent principalement la population féminine en âge de procréer. Ils sont caractérisés par la prédominance du carcinome canalaire infiltrant. PMID:26523182

  10. A modified CAS-CI approach for an efficient calculation of magnetic exchange coupling constants

    Science.gov (United States)

    Fink, Karin; Staemmler, Volker

    2013-09-01

    A modification of the conventional wavefunction-based CAS-CI method for the calculation of magnetic exchange coupling constants J in small molecules and transition metal complexes is presented. In general, CAS-CI approaches yield much too small values for J since the energies of the important charge transfer configurations are calculated with the ground state orbitals and are therefore much too high. In the present approach we improve these energies by accounting for the relaxation of the orbitals in the charge transfer configurations. The necessary relaxation energies R can be obtained in separate calculations using mononuclear or binuclear model systems. The method is applied to a few examples, small molecules, binuclear transition metal complexes, and bulk NiO. It allows to obtaining fairly reliable estimates for J at costs that are not higher than those of conventional CAS-CI calculations. Therefore, extended and very time-consuming perturbation theory (PT2), configuration interaction (CI), or coupled cluster (CC) schemes on top of the CAS-CI calculation can be avoided and the modified CAS-CI (MCAS-CI) approach can be applied to rather large systems.

  11. Breaking-Cas—interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes

    Science.gov (United States)

    Oliveros, Juan C.; Franch, Mònica; Tabas-Madrid, Daniel; San-León, David; Montoliu, Lluis; Cubas, Pilar; Pazos, Florencio

    2016-01-01

    The CRISPR/Cas technology is enabling targeted genome editing in multiple organisms with unprecedented accuracy and specificity by using RNA-guided nucleases. A critical point when planning a CRISPR/Cas experiment is the design of the guide RNA (gRNA), which directs the nuclease and associated machinery to the desired genomic location. This gRNA has to fulfil the requirements of the nuclease and lack homology with other genome sites that could lead to off-target effects. Here we introduce the Breaking-Cas system for the design of gRNAs for CRISPR/Cas experiments, including those based in the Cas9 nuclease as well as others recently introduced. The server has unique features not available in other tools, including the possibility of using all eukaryotic genomes available in ENSEMBL (currently around 700), placing variable PAM sequences at 5′ or 3′ and setting the guide RNA length and the scores per nucleotides. It can be freely accessed at: http://bioinfogp.cnb.csic.es/tools/breakingcas, and the code is available upon request. PMID:27166368

  12. A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi

    DEFF Research Database (Denmark)

    Nødvig, Christina Spuur; Nielsen, Jakob Blæsbjerg; Kogle, Martin Engelhard

    2015-01-01

    there is a demand for developing versatile methods that can be used to genetically manipulate non-model filamentous fungi. To facilitate this, we have developed a CRISPR-Cas9 based system adapted for use in filamentous fungi. The system is simple and versatile, as RNA guided mutagenesis can be achieved...... by transforming a target fungus with a single plasmid. The system currently contains four CRISPR- Cas9 vectors, which are equipped with commonly used fungal markers allowing for selection in a broad range of fungi. Moreover, we have developed a script that allows identification of protospacers that target gene...... used our CRISPR Cas9 system to generate a strain that contains an AACU_pyrG marker and demonstrated that the resulting strain can be used for iterative gene targeting....

  13. FDA Regulation of Clinical Applications of CRISPR-CAS Gene-Editing Technology.

    Science.gov (United States)

    Grant, Evita V

    Scientists have repurposed an adaptive immune system of single cell organisms to create a new type of gene-editing tool: CRISPR (clustered regularly interspaced short palindromic repeats)-Cas technology. Scientists in China have reported its use in the genome modification of non-viable human embryos. This has ignited a spirited debate about the moral, ethical, scientific, and social implications of human germline genome engineering. There have also been calls for regulations; however, FDA has yet to formally announce its oversight of clinical applications of CRISPR-Cas systems. This paper reviews FDA regulation of previously controversial biotechnology breakthroughs, recombinant DNA and human cloning. It then shows that FDA is well positioned to regulate CRISPR-Cas clinical applications, due to its legislative mandates, its existing regulatory frameworks for gene therapies and assisted reproductive technologies, and other considerations.

  14. 77 FR 69550 - Proposed Information Collection (Patient Satisfaction Survey Michael E. DeBakey Home Care Program...

    Science.gov (United States)

    2012-11-19

    ... (Patient Satisfaction Survey Michael E. DeBakey Home Care Program) Activity: Comment Request AGENCY.... DeBakey Home Care Program. DATES: Written comments and recommendations on the proposed collection of...: Patient Satisfaction Survey Michael E. DeBakey Home Care Program, VA Form 10-0476. OMB Control Number...

  15. CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna.

    Directory of Open Access Journals (Sweden)

    Takashi Nakanishi

    Full Text Available The water flea Daphnia magna has been used as an animal model in ecology, evolution, and environmental sciences. Thanks to the recent progress in Daphnia genomics, genetic information such as the draft genome sequence and expressed sequence tags (ESTs is now available. To investigate the relationship between phenotypes and the available genetic information about Daphnia, some gene manipulation methods have been developed. However, a technique to induce targeted mutagenesis into Daphnia genome remains elusive. To overcome this problem, we focused on an emerging genome editing technique mediated by the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas system to introduce genomic mutations. In this study, we targeted a functionally conserved regulator of eye development, the eyeless gene in D. magna. When we injected Cas9 mRNAs and eyeless-targeting guide RNAs into eggs, 18-47% of the survived juveniles exhibited abnormal eye morphology. After maturation, up to 8.2% of the adults produced progenies with deformed eyes, which carried mutations in the eyeless loci. These results showed that CRISPR/Cas system could introduce heritable mutations into the endogenous eyeless gene in D. magna. This is the first report of a targeted gene knockout technique in Daphnia and will be useful in uncovering Daphnia gene functions.

  16. A Survey of Faculty Mentoring Programs in AACSB Schools of Business

    Science.gov (United States)

    Raymond, Bruce C.; Kannan, Vijay R.

    2014-01-01

    The human resources management literature offers considerable evidence that mentoring programs can positively influence a variety of measures of both individual and organizational performance. This study examines the use and effectiveness of faculty mentoring programs at business schools in the United States. A survey of 118 schools accredited by…

  17. CPT Special Report: Survey of Ph.D. Programs in Chemistry.

    Science.gov (United States)

    Journal of Chemical Education, 1997

    1997-01-01

    Presents preliminary results from a survey taken by the American Chemical Society (ACS) Committee on Professional Training (CPT) to determine the current practices among 155 Ph.D. programs in chemistry. (DKM)

  18. Transient dynamic and inelastic analysis of shells of revolution - a survey of programs

    International Nuclear Information System (INIS)

    Svalbonas, V.

    1976-01-01

    Advances in the limits of structural use in the aerospace and nuclear power industries over the past years have increased the requirements upon the applicable analytical computer programs to include accurate capabilities for inelastic and transient dynamic analyses. In many minds, however, this advanced capability is unequivocally linked with the large scale, general purpose, finite element programs. This idea is also combined with the view that such analyses are therefore prohibitively expensive and should be relegated to the 'last resort' classification. While this, in the general sense, may indeed be the case, if the user needs only to analyze structures falling into limited categories, however, he may find that a variety of smaller special purpose programs are available which do not put an undue strain upon his resources. One such structural category is shells of revolution. This survey of programs concentrates upon the analytical tools which have been developed predominantly for shells of revolution. The survey is subdivided into three parts: (a) consideration of programs for transient dynamic analysis; (b) consideration of programs for inelastic analysis and finally; (c) consideration of programs capable of dynamic plasticity analysis. In each part, programs based upon finite difference, finite element, and numerical integration methods are considered. The programs are compared on the basis of analytical capabilities, and ease of idealization and use. In each part of the survey sample problems are utilized to exemplify the state-of-the-art. (Auth.)

  19. Targeted mutagenesis in tetraploid switchgrass (Panicum virgatum L.) using CRISPR/Cas9.

    Science.gov (United States)

    Liu, Yang; Merrick, Paul; Zhang, Zhengzhi; Ji, Chonghui; Yang, Bing; Fei, Shui-Zhang

    2018-02-01

    The CRISPR/Cas9 system has become a powerful tool for targeted mutagenesis. Switchgrass (Panicum virgatum L.) is a high yielding perennial grass species that has been designated as a model biomass crop by the U.S. Department of Energy. The self-infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9/sgRNA complex resulting in its restored function. Agrobacterium-mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched 1(tb1)a and b and phosphoglycerate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of tb1a and tb1b genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (tb1a) and 11% (tb1b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous mutants in T0 generation in switchgrass, circumventing the need of inbreeding. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Interaction between focal adhesion kinase and Crk-associated tyrosine kinase substrate p130Cas.

    Science.gov (United States)

    Polte, T R; Hanks, S K

    1995-11-07

    The focal adhesion kinase (FAK) has been implicated in integrin-mediated signaling events and in the mechanism of cell transformation by the v-Src and v-Crk oncoproteins. To gain further insight into FAK signaling pathways, we used a two-hybrid screen to identify proteins that interact with mouse FAK. The screen identified two proteins that interact with FAK via their Src homology 3 (SH3) domains: a v-Crk-associated tyrosine kinase substrate (Cas), p130Cas, and a still uncharacterized protein, FIPSH3-2, which contains an SH3 domain closely related to that of p130Cas. These SH3 domains bind to the same proline-rich region of FAK (APPKPSR) encompassing residues 711-717. The mouse p130Cas amino acid sequence was deduced from cDNA clones, revealing an overall high degree of similarity to the recently reported rat sequence. Coimmunoprecipitation experiments confirmed that p130Cas and FAK are associated in mouse fibroblasts. The stable interaction between p130Cas and FAK emerges as a likely key element in integrin-mediated signal transduction and further represents a direct molecular link between the v-Src and v-Crk oncoproteins. The Src family kinase Fyn, whose Src homology 2 (SH2) domain binds to the major FAK autophosphorylation site (tyrosine 397), was also identified in the two-hybrid screen.

  1. A lentivirus-free inducible CRISPR-Cas9 system for efficient targeting of human genes.

    Science.gov (United States)

    Bisht, Kamlesh; Grill, Sherilyn; Graniel, Jacqueline; Nandakumar, Jayakrishnan

    2017-08-01

    CRISPR-Cas9 is a cutting-edge tool for modifying genomes. The efficacy with which Cas9 recognizes its target has revolutionized the engineering of knockouts. However this efficacy complicates the knocking out of important genes in cultured cells. Unedited cells holding a survival advantage within an edited population can confound the knockout phenotype. Here we develop a HeLa-based system that overcomes this limitation, incorporating several attractive features. First, we use Flp-recombinase to generate clones stably integrated for Cas9 and guide RNAs, eliminating the possibility of unedited cells. Second, Cas9 can be induced uniformly in the clonal cultures using doxycycline to measure the knockout phenotype. Third, two genes can be simultaneously knocked out using this approach. Finally, by not involving lentiviruses, our method is appealing to a broad research audience. Using this methodology we generated an inducible AGO2-knockout cell line showing normal RNA interference in the absence of doxycycline. Upon induction of Cas9, the AGO2 locus was cleaved, the AGO2 protein was depleted, and RNA interference was compromised. In addition to generating inducible knockouts, our technology can be adapted to improve other applications of Cas9, including transcriptional/epigenetic modulation and visualization of cellular DNA loci. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Accelerating medical education: a survey of deans and program directors

    Directory of Open Access Journals (Sweden)

    Joan Cangiarella

    2016-06-01

    Full Text Available Background: A handful of medical schools in the U.S. are awarding medical degrees after three years. While the number of three-year pathway programs is slowly increasing there is little data on the opinions of medical education leaders on the need for shortening training. Purpose: To survey deans and program directors (PDs to understand the current status of 3-year medical degree programs and to elicit perceptions of the need for shortening medical school and the benefits and liabilities of 3-year pathway programs (3YPP. Methods: Online surveys were emailed to the academic deans of all U.S. medical schools and to a convenience sample of residency and fellowship PDs. Frequency distributions are reported for key survey items and content analysis was used to describe open-ended responses. Results: Of the respondents, 7% have a 3YPP, 4% were developing one, and 35% were considering development. In 2014, 47% of educational deans and 32% of PDs agreed that there may be a need to shorten medical school. From a list of benefits, both deans and PDs agreed that the greatest benefit to a 3YPP was debt reduction (68%. PDs and deans felt reduced readiness for independence, reduced exposure to complementary curricula regarding safety and quality improvement, premature commitment to a specialty, and burnout were all potential liabilities. From a list of concerns, PDs were concerned about depth of clinical exposure, direct patient care experience, ability to assume increased responsibility, level of maturity, and certainty regarding career choice. Conclusions: Over one-third of medical schools are considering the development of a 3YPP. While there may be benefits for a select group of students, concerns regarding maturity, depth of clinical exposure, and competency must be addressed for these programs to be well received.

  3. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system.

    Science.gov (United States)

    Liang, Zhen; Zhang, Kang; Chen, Kunling; Gao, Caixia

    2014-02-20

    Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have emerged as powerful tools for genome editing in a variety of species. Here, we report, for the first time, targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. We designed five TALENs targeting 4 genes, namely ZmPDS, ZmIPK1A, ZmIPK, ZmMRP4, and obtained targeting efficiencies of up to 23.1% in protoplasts, and about 13.3% to 39.1% of the transgenic plants were somatic mutations. Also, we constructed two gRNAs targeting the ZmIPK gene in maize protoplasts, at frequencies of 16.4% and 19.1%, respectively. In addition, the CRISPR/Cas system induced targeted mutations in Z. mays protoplasts with efficiencies (13.1%) similar to those obtained with TALENs (9.1%). Our results show that both TALENs and the CRISPR/Cas system can be used for genome modification in maize. Copyright © 2013. Published by Elsevier Ltd.

  4. Function of the CRISPR-Cas System of the Human Pathogen Clostridium difficile

    Science.gov (United States)

    Boudry, Pierre; Semenova, Ekaterina; Monot, Marc; Datsenko, Kirill A.; Lopatina, Anna; Sekulovic, Ognjen; Ospina-Bedoya, Maicol; Fortier, Louis-Charles; Severinov, Konstantin; Dupuy, Bruno

    2015-01-01

    ABSTRACT Clostridium difficile is the cause of most frequently occurring nosocomial diarrhea worldwide. As an enteropathogen, C. difficile must be exposed to multiple exogenous genetic elements in bacteriophage-rich gut communities. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems allow bacteria to adapt to foreign genetic invaders. Our recent data revealed active expression and processing of CRISPR RNAs from multiple type I-B CRISPR arrays in C. difficile reference strain 630. Here, we demonstrate active expression of CRISPR arrays in strain R20291, an epidemic C. difficile strain. Through genome sequencing and host range analysis of several new C. difficile phages and plasmid conjugation experiments, we provide evidence of defensive function of the CRISPR-Cas system in both C. difficile strains. We further demonstrate that C. difficile Cas proteins are capable of interference in a heterologous host, Escherichia coli. These data set the stage for mechanistic and physiological analyses of CRISPR-Cas-mediated interactions of important global human pathogen with its genetic parasites. PMID:26330515

  5. Survey of Home Visiting Programs for Abused and Neglected Children and Their Families.

    Science.gov (United States)

    Wasik, Barbara Hanna; Roberts, Richard N.

    1994-01-01

    This report on a survey of 224 home visitation programs that provide services for abused and neglected children and their families presents data on program characteristics, characteristics of home visits, credentials of home visitors, and program documentation procedures. Programs reported that training in parenting skills and parent coping were…

  6. Psychology or Psychological Science?: A Survey of Graduate Psychology Faculty Regarding Program Names

    Science.gov (United States)

    Collisson, Brian; Rusbasan, David

    2018-01-01

    The question of renaming graduate psychology programs to psychological science is a timely and contentious issue. To better understand why some programs, but not others, are changing names, we surveyed chairpersons (Study 1) and faculty (Study 2) within graduate psychology and psychological science programs. Within psychology programs, a name…

  7. JSPS-CAS Core University Program seminar. Proceedings of Japan-China joint seminar on atomic and molecular processes in plasma

    International Nuclear Information System (INIS)

    Koike, Fumihiro; Dong Chenzhong

    2010-02-01

    As one of the activities of JSPS-CAS Core University Program, Japan-China Joint Seminar on Atomic and Molecular Processes in Plasma was held on October 26 - 31, 2009 in Xi'an, China. The total number of the officially registered participants was 54, in which 18 from Japan, 35 from China, and 1 from USA. And this seminar is an extension of the last two seminars that were held on March 6 - 11, 2004 in Lanzhou, China, and on October 6 - 12, 2007 in Dunhuang, China. In the nuclear fusion plasma, there are quite a variety of atomic processes such as ionization, excitation, radiative recombination, non-radiative recombination (di-electronic recombination, collisional electron transfer), cascade radiation, and cascade Auger decay over the wide range of plasma temperature. The knowledge of those processes is indispensable for the evaluation and improvement of the plasma properties. Because of the diversity of the subject, it is desirable to investigate them by international collaboration groups. The present seminar may contribute to realize the above stated aim; especially it has given an opportunity for the collaborative workers to illustrate their achievements. This seminar summarizes the collaborative researches for the last decade and propose the issues for the future prospect. The 30 of the presented papers are indexed individually. (J.P.N.)

  8. Repetitive DNA Reeling by the Cascade-Cas3 Complex in Nucleotide Unwinding Steps

    NARCIS (Netherlands)

    Loeff, Luuk; Brouns, Stan J.J.; Joo, Chirlmin

    2018-01-01

    CRISPR-Cas provides RNA-guided adaptive immunity against invading genetic elements. Interference in type I systems relies on the RNA-guided Cascade complex for target DNA recognition and the Cas3 helicase/nuclease protein for target degradation. Even though the biochemistry of CRISPR interference

  9. Computational neural modeling of speech motor control in childhood apraxia of speech (CAS).

    NARCIS (Netherlands)

    Terband, H.R.; Maassen, B.A.M.; Guenther, F.H.; Brumberg, J.

    2009-01-01

    PURPOSE: Childhood apraxia of speech (CAS) has been associated with a wide variety of diagnostic descriptions and has been shown to involve different symptoms during successive stages of development. In the present study, the authors attempted to associate the symptoms of CAS in a particular

  10. Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework

    KAUST Repository

    Alsaiari, Shahad K.

    2017-12-22

    CRISPR/Cas9 is a combined protein (Cas9) and an engineered single guide RNA (sgRNA) genome editing platform that offers revolutionary solutions to genetic diseases. It has, however, a double delivery problem owning to the large protein size and the highly charged RNA component. In this work, we report the first example of CRISPR/Cas9 encapsulated by nanoscale zeolitic imidazole frameworks (ZIFs) with a loading efficiency of 17% and enhanced endosomal escape promoted by the protonated imidazole moieties. The gene editing potential of CRISPR/Cas9 encapsulated by ZIF-8 (CC-ZIFs) is further verified by knocking down the gene expression of green fluorescent protein by 37% over 4 days employing CRISPR/Cas9 machinery. The nanoscale CC-ZIFs are biocompatible and easily scaled-up offering excellent loading capacity and controlled co-delivery of intact Cas9 protein and sgRNA.

  11. Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework

    KAUST Repository

    Alsaiari, Shahad K.; Patil, Sachin; Alyami, Mram Z.; Alamoudi, Kholod; Aleisa, Fajr A; Merzaban, Jasmeen; Li, Mo; Khashab, Niveen M.

    2017-01-01

    CRISPR/Cas9 is a combined protein (Cas9) and an engineered single guide RNA (sgRNA) genome editing platform that offers revolutionary solutions to genetic diseases. It has, however, a double delivery problem owning to the large protein size and the highly charged RNA component. In this work, we report the first example of CRISPR/Cas9 encapsulated by nanoscale zeolitic imidazole frameworks (ZIFs) with a loading efficiency of 17% and enhanced endosomal escape promoted by the protonated imidazole moieties. The gene editing potential of CRISPR/Cas9 encapsulated by ZIF-8 (CC-ZIFs) is further verified by knocking down the gene expression of green fluorescent protein by 37% over 4 days employing CRISPR/Cas9 machinery. The nanoscale CC-ZIFs are biocompatible and easily scaled-up offering excellent loading capacity and controlled co-delivery of intact Cas9 protein and sgRNA.

  12. Assembly and Multiplex Genome Integration of Metabolic Pathways in Yeast Using CasEMBLR.

    Science.gov (United States)

    Jakočiūnas, Tadas; Jensen, Emil D; Jensen, Michael K; Keasling, Jay D

    2018-01-01

    Genome integration is a vital step for implementing large biochemical pathways to build a stable microbial cell factory. Although traditional strain construction strategies are well established for the model organism Saccharomyces cerevisiae, recent advances in CRISPR/Cas9-mediated genome engineering allow much higher throughput and robustness in terms of strain construction. In this chapter, we describe CasEMBLR, a highly efficient and marker-free genome engineering method for one-step integration of in vivo assembled expression cassettes in multiple genomic sites simultaneously. CasEMBLR capitalizes on the CRISPR/Cas9 technology to generate double-strand breaks in genomic loci, thus prompting native homologous recombination (HR) machinery to integrate exogenously derived homology templates. As proof-of-principle for microbial cell factory development, CasEMBLR was used for one-step assembly and marker-free integration of the carotenoid pathway from 15 exogenously supplied DNA parts into three targeted genomic loci. As a second proof-of-principle, a total of ten DNA parts were assembled and integrated in two genomic loci to construct a tyrosine production strain, and at the same time knocking out two genes. This new method complements and improves the field of genome engineering in S. cerevisiae by providing a more flexible platform for rapid and precise strain building.

  13. Enhancement of single guide RNA transcription for efficient CRISPR/Cas-based genomic engineering.

    Science.gov (United States)

    Ui-Tei, Kumiko; Maruyama, Shohei; Nakano, Yuko

    2017-06-01

    Genomic engineering using clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) protein is a promising approach for targeting the genomic DNA of virtually any organism in a sequence-specific manner. Recent remarkable advances in CRISPR/Cas technology have made it a feasible system for use in therapeutic applications and biotechnology. In the CRISPR/Cas system, a guide RNA (gRNA), interacting with the Cas protein, recognizes a genomic region with sequence complementarity, and the double-stranded DNA at the target site is cleaved by the Cas protein. A widely used gRNA is an RNA polymerase III (pol III)-driven single gRNA (sgRNA), which is produced by artificial fusion of CRISPR RNA (crRNA) and trans-activation crRNA (tracrRNA). However, we identified a TTTT stretch, known as a termination signal of RNA pol III, in the scaffold region of the sgRNA. Here, we revealed that sgRNA carrying a TTTT stretch reduces the efficiency of sgRNA transcription due to premature transcriptional termination, and decreases the efficiency of genome editing. Unexpectedly, it was also shown that the premature terminated sgRNA may have an adverse effect of inducing RNA interference. Such disadvantageous effects were avoided by substituting one base in the TTTT stretch.

  14. TEACHING MACHINES AND PROGRAMED LEARNING, A SURVEY OF THE INDUSTRY, 1962.

    Science.gov (United States)

    FINN, JAMES D.; AND OTHERS

    THIS PAPER REPORTS THE DEVELOPMENT OF THE TEACHING MACHINES AND PROGRAMED INSTRUCTION INDUSTRY THROUGH 1961. THIS EFFORT IS AN OUTGROWTH OF TWO LARGER SURVEYS--ONE ON MATERIALS OF INSTRUCTION, THE OTHER ON HARDWARE OR DEVICES. A CATALOG AND A STATUS REPORT ARE GIVEN FOR AVAILABLE TEACHING MACHINES, PROGRAMS, AND MANUFACTURERS. (GD)

  15. Efficient genome editing by FACS enrichment of paired D10A Cas9 nickases coupled with fluorescent proteins.

    Science.gov (United States)

    Gopalappa, Ramu; Song, Myungjae; Chandrasekaran, Arun Pandian; Das, Soumyadip; Haq, Saba; Koh, Hyun Chul; Ramakrishna, Suresh

    2018-05-31

    Targeted genome editing by clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) raised concerns over off-target effects. The use of double-nicking strategy using paired Cas9 nickase has been developed to minimize off-target effects. However, it was reported that the efficiency of paired nickases were comparable or lower than that of either corresponding nuclease alone. Recently, we conducted a systematic comparison of the efficiencies of several paired Cas9 with their corresponding Cas9 nucleases and showed that paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. However, sometimes the designed paired Cas9 nickases exhibited significantly lower mutation frequencies than nucleases, hampering the generation of cells containing paired Cas9 nickase-induced mutations. Here we implemented IRES peptide-conjugation of fluorescent protein to Cas9 nickase and subjected for fluorescence-activated cell sorting. The sorted cell populations are highly enriched with cells containing paired Cas9 nickase-induced mutations, by a factor of up to 40-fold as compared with the unsorted population. Furthermore, gene-disrupted single cell clones using paired nickases followed by FACS sorting strategy were generated highly efficiently, without compromising with its low off-target effects. We envision that our fluorescent protein coupled paired nickase-mediated gene disruption, facilitating efficient and highly specific genome editing in medical research.

  16. Neurocritical care education during neurology residency: AAN survey of US program directors.

    Science.gov (United States)

    Sheth, K N; Drogan, O; Manno, E; Geocadin, R G; Ziai, W

    2012-05-29

    Limited information is available regarding the current state of neurocritical care education for neurology residents. The goal of our survey was to assess the need and current state of neurocritical care training for neurology residents. A survey instrument was developed and, with the support of the American Academy of Neurology, distributed to residency program directors of 132 accredited neurology programs in the United States in 2011. A response rate of 74% (98 of 132) was achieved. A dedicated neuroscience intensive care unit (neuro-ICU) existed in 64%. Fifty-six percent of residency programs offer a dedicated rotation in the neuro-ICU, lasting 4 weeks on average. Where available, the neuro-ICU rotation was required in the vast majority (91%) of programs. Neurology residents' exposure to the fundamental principles of neurocritical care was obtained through a variety of mechanisms. Of program directors, 37% indicated that residents would be interested in performing away rotations in a neuro-ICU. From 2005 to 2010, the number of programs sending at least one resident into a neuro-ICU fellowship increased from 14% to 35%. Despite the expansion of neurocritical care, large proportions of US neurology residents have limited exposure to a neuro-ICU and neurointensivists. Formal training in the principles of neurocritical care may be highly variable. The results of this survey suggest a charge to address the variability of resident education and to develop standardized curricula in neurocritical care for neurology residents.

  17. The Medicare Health Outcomes Survey program: Overview, context, and near-term prospects

    Directory of Open Access Journals (Sweden)

    Miller Nancy A

    2004-07-01

    Full Text Available Abstract In 1996, the Centers for Medicare & Medicaid Services (CMS initiated the development of the Medicare Health Outcomes Survey (HOS. It is the first national survey to measure the quality of life and functional health status of Medicare beneficiaries enrolled in managed care. The program seeks to gather valid and reliable health status data in Medicare managed care for use in quality improvement activities, public reporting, plan accountability and improving health outcomes based on competition. The context that led to the development of the HOS was formed by the convergence of the following factors: 1 a recognized need to monitor the performance of managed care plans, 2 technical expertise and advancement in the areas of quality measurement and health outcomes assessment, 3 the existence of a tested functional health status assessment tool (SF-36®1, which was valid for an elderly population, 4 CMS leadership, and 5 political interest in quality improvement. Since 1998, there have been six baseline surveys and four follow up surveys. CMS, working with its partners, performs the following tasks as part of the HOS program: 1 Supports the technical/scientific development of the HOS measure, 2 Certifies survey vendors, 3 Collects Health Plan Employer Data and Information Set(HEDIS®2 HOS data, 4 Cleans, scores, and disseminates annual rounds of HOS data, public use files and reports to CMS, Quality Improvement Organizations (QIOs, Medicare+Choice Organizations (M+COs, and other stakeholders, 5 Trains M+COs and QIOs in the use of functional status measures and best practices for improving care, 6 Provides technical assistance to CMS, QIOs, M+COs and other data users, and 7 Conducts analyses using HOS data to support CMS and HHS priorities. CMS has recently sponsored an evaluation of the HOS program, which will provide the information necessary to enhance the future administration of the program. Information collected to date reveals that the

  18. CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Rajkumar, Arun Stephen; Zhang, Jie

    2015-01-01

    , we present a method for marker-free multiloci integration of in vivo assembled DNA parts. By the use of CRISPR/Cas9-mediated one-step double-strand breaks at single, double and triple integration sites we report the successful in vivo assembly and chromosomal integration of DNA parts. We call our...

  19. A Survey of Faculty Mentoring Programs in AACSB School of Business

    OpenAIRE

    Raymond, B. C.; Raymond, B. C.; Kannan, Vijay R.

    2014-01-01

    The human resources management literature offers considerable evidence that mentoring programs can positively influence a variety of measures of both individual and organizational performance. This study examines the use and effectiveness of faculty mentoring programs at business schools in the United States. A survey of 118 schools accredited by the Association for the Advancement of Collegiate Schools of Business found that mentoring programs are the exception rather than the rule. Moreover...

  20. Procedures manual for the ORNL Radiological Survey Activities (RASA) Program

    International Nuclear Information System (INIS)

    Myrick, T.E.; Berven, B.A.; Cottrell, W.D.; Goldsmith, W.A.; Haywood, F.F.

    1987-04-01

    The portion of the radiological survey program performed by ORNL is the subject of this Procedures Manual. The RASA group of the Health and Safety Research Division (HASRD) at ORNL is responsible for the planning, conducting, and reporting of the results of radiological surveys at specified sites and associated vicinity properties. The results of these surveys are used by DOE in determining the need for and extent of remedial actions. Upon completion of the necessary remedial actions, the ORNL-RASA group or other OOS contractor may be called upon to verify the effectiveness of the remedial action. Information from these postremedial action surveys is included as part of the data base used by DOE in certifying a site for unrestricted use

  1. Procedures manual for the ORNL Radiological Survey Activities (RASA) Program

    Energy Technology Data Exchange (ETDEWEB)

    Myrick, T.E.; Berven, B.A.; Cottrell, W.D.; Goldsmith, W.A.; Haywood, F.F.

    1987-04-01

    The portion of the radiological survey program performed by ORNL is the subject of this Procedures Manual. The RASA group of the Health and Safety Research Division (HASRD) at ORNL is responsible for the planning, conducting, and reporting of the results of radiological surveys at specified sites and associated vicinity properties. The results of these surveys are used by DOE in determining the need for and extent of remedial actions. Upon completion of the necessary remedial actions, the ORNL-RASA group or other OOS contractor may be called upon to verify the effectiveness of the remedial action. Information from these postremedial action surveys is included as part of the data base used by DOE in certifying a site for unrestricted use.

  2. Paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption.

    Science.gov (United States)

    Gopalappa, Ramu; Suresh, Bharathi; Ramakrishna, Suresh; Kim, Hyongbum Henry

    2018-03-23

    The use of paired Cas9 nickases instead of Cas9 nuclease drastically reduces off-target effects. Because both nickases must function for a nickase pair to make a double-strand break, the efficiency of paired nickases can intuitively be expected to be lower than that of either corresponding nuclease alone. Here, we carefully compared the gene-disrupting efficiency of Cas9 paired nickases with that of nucleases. Interestingly, the T7E1 assay and deep sequencing showed that on-target efficiency of paired D10A Cas9 nickases was frequently comparable, but sometimes higher than that of either corresponding nucleases in mammalian cells. As the underlying mechanism, we found that the HNH domain, which is preserved in the D10A Cas9 nickase, has higher activity than the RuvC domain in mammalian cells. In this study, we showed: (i) the in vivo cleavage efficiency of the HNH domain of Cas9 in mammalian cells is higher than that of the RuvC domain, (ii) paired Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. We envision that our findings which were overlooked in previous reports will serve as a new potential guideline for tool selection for CRISPR-Cas9-mediated gene disruption, facilitating efficient and precise genome editing.

  3. A National Survey of Conservation Reserve Program (CRP) Participants on Environmental Effects, Wildlife Issues, and Vegetation Management on Program Lands

    National Research Council Canada - National Science Library

    Allen, Arthur

    2003-01-01

    A national survey of Conservation Reserve Program (CRP) contractees was completed to obtain information about environmental and social effects of the program on participants, farms, and communities...

  4. The Role of CRISPR-Cas Systems in Virulence of Pathogenic Bacteria

    Science.gov (United States)

    Staals, Raymond H. J.; Endtz, Hubert P.; van Baarlen, Peter; van der Oost, John

    2014-01-01

    SUMMARY Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are present in many bacterial and archaeal genomes. Since the discovery of the typical CRISPR loci in the 1980s, well before their physiological role was revealed, their variable sequences have been used as a complementary typing tool in diagnostic, epidemiologic, and evolutionary analyses of prokaryotic strains. The discovery that CRISPR spacers are often identical to sequence fragments of mobile genetic elements was a major breakthrough that eventually led to the elucidation of CRISPR-Cas as an adaptive immunity system. Key elements of this unique prokaryotic defense system are small CRISPR RNAs that guide nucleases to complementary target nucleic acids of invading viruses and plasmids, generally followed by the degradation of the invader. In addition, several recent studies have pointed at direct links of CRISPR-Cas to regulation of a range of stress-related phenomena. An interesting example concerns a pathogenic bacterium that possesses a CRISPR-associated ribonucleoprotein complex that may play a dual role in defense and/or virulence. In this review, we describe recently reported cases of potential involvement of CRISPR-Cas systems in bacterial stress responses in general and bacterial virulence in particular. PMID:24600041

  5. Coupled RipCAS-DFLOW (CoRD) Software and Data Management System for Reproducible Floodplain Vegetation Succession Modeling

    Science.gov (United States)

    Turner, M. A.; Miller, S.; Gregory, A.; Cadol, D. D.; Stone, M. C.; Sheneman, L.

    2016-12-01

    We present the Coupled RipCAS-DFLOW (CoRD) modeling system created to encapsulate the workflow to analyze the effects of stream flooding on vegetation succession. CoRD provides an intuitive command-line and web interface to run DFLOW and RipCAS in succession over many years automatically, which is a challenge because, for our application, DFLOW must be run on a supercomputing cluster via the PBS job scheduler. RipCAS is a vegetation succession model, and DFLOW is a 2D open channel flow model. Data adaptors have been developed to seamlessly connect DFLOW output data to be RipCAS inputs, and vice-versa. CoRD provides automated statistical analysis and visualization, plus automatic syncing of input and output files and model run metadata to the hydrological data management system HydroShare using its excellent Python REST client. This combination of technologies and data management techniques allows the results to be shared with collaborators and eventually published. Perhaps most importantly, it allows results to be easily reproduced via either the command-line or web user interface. This system is a result of collaboration between software developers and hydrologists participating in the Western Consortium for Watershed Analysis, Visualization, and Exploration (WC-WAVE). Because of the computing-intensive nature of this particular workflow, including automating job submission/monitoring and data adaptors, software engineering expertise is required. However, the hydrologists provide the software developers with a purpose and ensure a useful, intuitive tool is developed. Our hydrologists contribute software, too: RipCAS was developed from scratch by hydrologists on the team as a specialized, open-source version of the Computer Aided Simulation Model for Instream Flow and Riparia (CASiMiR) vegetation model; our hydrologists running DFLOW provided numerous examples and help with the supercomputing system. This project is written in Python, a popular language in the

  6. Non-Mendelian Dominant Maternal Effects Caused by CRISPR/Cas9 Transgenic Components in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Chun-Chieh Lin

    2016-11-01

    Full Text Available The CRISPR/Cas9 system has revolutionized genomic editing. The Cas9 endonuclease targets DNA via an experimentally determined guide RNA (gRNA. This results in a double-strand break at the target site . We generated transgenic Drosophila melanogaster in which the CRISPR/Cas9 system was used to target a GAL4 transgene in vivo. To our surprise, progeny whose genomes did not contain CRISPR/Cas9 components were still capable of mutating GAL4 sequences. We demonstrate this effect was caused by maternal deposition of Cas9 and gRNAs into the embryo, leading to extensive GAL4 mutations in both somatic and germline tissues. This serves as a cautionary observation on the effects of maternal contributions when conducting experiments using genomically encoded CRISPR/Cas9 components. These results also highlight a mode of artificial inheritance in which maternal contributions of DNA editing components lead to transmissible mutant defects even in animals whose genomes lack the editing components. We suggest calling this a dominant maternal effect to reflect it is caused by the gain of maternally contributed products. Models of CRISPR-mediated gene drive will need to incorporate dominant maternal effects in order to accurately predict the efficiency and dynamics of gene drive in a population.

  7. CRISPR/Cas9-AAV Mediated Knock-in at NRL Locus in Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Xianglian Ge

    2016-01-01

    Full Text Available Clustered interspaced short palindromic repeats (CRISPR/CRISPR-associated protein 9 (Cas9-mediated genome engineering technologies are sparking a new revolution in biological research. This technology efficiently induces DNA double strand breaks at the targeted genomic sequence and results in indel mutations by the error-prone process of nonhomologous end joining DNA repair or homologous recombination with a DNA repair template. The efficiency of genome editing with CRISPR/Cas9 alone in human embryonic stem cells is still low. Gene targeting with adeno-associated virus (AAV vectors has been demonstrated in multiple human cell types with maximal targeting frequencies without engineered nucleases. However, whether CRISPR/Cas9-mediated double strand breaks and AAV based donor DNA mediated homologous recombination approaches could be combined to create a novel CRISPR/Cas9-AAV genetic tool for highly specific gene editing is not clear. Here we demonstrate that using CRISPR/Cas9-AAV, we could successfully knock-in a DsRed reporter gene at the basic motifleucine zipper transcription factor (NRL locus in human embryonic stem cells. For the first time, this study provides the proof of principle that these two technologies can be used together. CRISPR/Cas9-AAV, a new genome editing tool, offers a platform for the manipulation of human genome.

  8. 78 FR 6851 - Proposed Information Collection (Patient Satisfaction Survey Michael E. DeBakey Home Care Program...

    Science.gov (United States)

    2013-01-31

    ... (Patient Satisfaction Survey Michael E. DeBakey Home Care Program) Activity: Comment Request AGENCY... Satisfaction Survey Michael E. DeBakey Home Care Program, VA Form 10-0476. OMB Control Number: 2900-0775. Type... home care program staff. An agency may not conduct or sponsor, and a person is not required to respond...

  9. CRISPR-cas loci profiling of Cronobacter sakazakii pathovars.

    Science.gov (United States)

    Ogrodzki, Pauline; Forsythe, Stephen James

    2016-12-01

    Cronobacter sakazakii sequence types 1, 4, 8 and 12 are associated with outbreaks of neonatal meningitis and necrotizing enterocolitis infections. However clonality results in strains which are indistinguishable using conventional methods. This study investigated the use of clustered regularly interspaced short palindromic repeats (CRISPR)-cas loci profiling for epidemiological investigations. Seventy whole genomes of C. sakazakii strains from four clonal complexes which were widely distributed temporally, geographically and origin of source were profiled. All strains encoded the same type I-E subtype CRISPR-cas system with a total of 12 different CRISPR spacer arrays. This study demonstrated the greater discriminatory power of CRISPR spacer array profiling compared with multilocus sequence typing, which will be of use in source attribution during Cronobacter outbreak investigations.

  10. Cooperative Work-Study Programs in Vocational Rehabilitation: Results of a National Survey.

    Science.gov (United States)

    Bullis, Michael; Foss, Gilbert

    1983-01-01

    Conducted a national survey of vocational rehabilitation agencies (N=42) to determine the present status of cooperative work study programs serving mentally retarded secondary students. Results documented a decrease both in formal programs and number of students served. (Author/JAC)

  11. Optimization of CRISPR/Cas9 genome editing for loss-of-function in the early chick embryo.

    Science.gov (United States)

    Gandhi, Shashank; Piacentino, Michael L; Vieceli, Felipe M; Bronner, Marianne E

    2017-12-01

    The advent of CRISPR/Cas9 has made genome editing possible in virtually any organism, including those not previously amenable to genetic manipulations. Here, we present an optimization of CRISPR/Cas9 for application to early avian embryos with improved efficiency via a three-fold strategy. First, we employed Cas9 protein flanked with two nuclear localization signal sequences for improved nuclear localization. Second, we used a modified guide RNA (gRNA) scaffold that obviates premature termination of transcription and unstable Cas9-gRNA interactions. Third, we used a chick-specific U6 promoter that yields 4-fold higher gRNA expression than the previously utilized human U6. For rapid screening of gRNAs for in vivo applications, we also generated a chicken fibroblast cell line that constitutively expresses Cas9. As proof of principle, we performed electroporation-based loss-of-function studies in the early chick embryo to knock out Pax7 and Sox10, key transcription factors with known functions in neural crest development. The results show that CRISPR/Cas9-mediated deletion causes loss of their respective proteins and transcripts, as well as predicted downstream targets. Taken together, the results reveal the utility of this optimized CRISPR/Cas9 method for targeted gene knockout in chicken embryos in a manner that is reproducible, robust and specific. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Computational Neural Modeling of Speech Motor Control in Childhood Apraxia of Speech (CAS)

    Science.gov (United States)

    Terband, Hayo; Maassen, Ben; Guenther, Frank H.; Brumberg, Jonathan

    2009-01-01

    Purpose: Childhood apraxia of speech (CAS) has been associated with a wide variety of diagnostic descriptions and has been shown to involve different symptoms during successive stages of development. In the present study, the authors attempted to associate the symptoms of CAS in a particular developmental stage with particular…

  13. Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells

    NARCIS (Netherlands)

    Hindriksen, Sanne; Bramer, Arne J; Truong, My Anh; Vromans, Martijn J M; Post, Jasmin B; Verlaan-Klink, Ingrid; Snippert, Hugo J; Lens, Susanne M A; Hadders, Michael A

    2017-01-01

    The CRISPR/Cas9 system is a highly effective tool for genome editing. Key to robust genome editing is the efficient delivery of the CRISPR/Cas9 machinery. Viral delivery systems are efficient vehicles for the transduction of foreign genes but commonly used viral vectors suffer from a limited

  14. 78 FR 40665 - Cost Accounting Standards: CAS 413 Pension Adjustments for Extraordinary Events

    Science.gov (United States)

    2013-07-08

    ... Accounting Standards: CAS 413 Pension Adjustments for Extraordinary Events AGENCY: Cost Accounting Standards...: The Office of Federal Procurement Policy (OFPP), Cost Accounting Standards (CAS) Board, is conducting... Extraordinary Events. This is the first step in a four- step process that may result in a final rule. As part of...

  15. No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales.

    Science.gov (United States)

    Gophna, Uri; Kristensen, David M; Wolf, Yuri I; Popa, Ovidiu; Drevet, Christine; Koonin, Eugene V

    2015-09-01

    The CRISPR (clustered, regularly, interspaced, short, palindromic repeats)-Cas (CRISPR-associated genes) systems of archaea and bacteria provide adaptive immunity against viruses and other selfish elements and are believed to curtail horizontal gene transfer (HGT). Limiting acquisition of new genetic material could be one of the sources of the fitness cost of CRISPR-Cas maintenance and one of the causes of the patchy distribution of CRISPR-Cas among bacteria, and across environments. We sought to test the hypothesis that the activity of CRISPR-Cas in microbes is negatively correlated with the extent of recent HGT. Using three independent measures of HGT, we found no significant dependence between the length of CRISPR arrays, which reflects the activity of the immune system, and the estimated number of recent HGT events. In contrast, we observed a significant negative dependence between the estimated extent of HGT and growth temperature of microbes, which could be explained by the lower genetic diversity in hotter environments. We hypothesize that the relevant events in the evolution of resistance to mobile elements and proclivity for HGT, to which CRISPR-Cas systems seem to substantially contribute, occur on the population scale rather than on the timescale of species evolution.

  16. Conservation and variability in the structure and function of the Cas5d endoribonuclease in the CRISPR-mediated microbial immune system.

    Science.gov (United States)

    Koo, Yoon; Ka, Donghyun; Kim, Eun-Jin; Suh, Nayoung; Bae, Euiyoung

    2013-10-23

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins form an RNA-mediated microbial immune system against invading foreign genetic elements. Cas5 proteins constitute one of the most prevalent Cas protein families in CRISPR-Cas systems and are predicted to have RNA recognition motif (RRM) domains. Cas5d is a subtype I-C-specific Cas5 protein that can be divided into two distinct subgroups, one of which has extra C-terminal residues while the other contains a longer insertion in the middle of its N-terminal RRM domain. Here, we report crystal structures of Cas5d from Streptococcus pyogenes and Xanthomonas oryzae, which respectively represent the two Cas5d subgroups. Despite a common domain architecture consisting of an N-terminal RRM domain and a C-terminal β-sheet domain, the structural differences between the two Cas5d proteins are highlighted by the presence of a unique extended helical region protruding from the N-terminal RRM domain of X. oryzae Cas5d. We also demonstrate that Cas5d proteins possess not only specific endoribonuclease activity for CRISPR RNAs but also nonspecific double-stranded DNA binding affinity. These findings suggest that Cas5d may play multiple roles in CRISPR-mediated immunity. Furthermore, the specific RNA processing was also observed between S. pyogenes Cas5d protein and X. oryzae CRISPR RNA and vice versa. This cross-species activity of Cas5d provides a special opportunity for elucidating conserved features of the CRISPR RNA processing event. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Spitzer ultra faint survey program (surfs up). I. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Bradač, Maruša; Huang, Kuang-Han; Cain, Benjamin; Hall, Nicholas; Lubin, Lori [Department of Physics, University of California, Davis, CA 95616 (United States); Ryan, Russell; Casertano, Stefano [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lemaux, Brian C. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Schrabback, Tim; Hildebrandt, Hendrik [Argelander-Institut für Astronomie, Auf Dem Hügel 71, D-53121 Bonn (Germany); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Allen, Steve; Von der Linden, Anja [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Gladders, Mike [The University of Chicago, The Kavli Institute for Cosmological Physics, 933 East 56th Street, Chicago, IL 60637 (United States); Hinz, Joannah; Zaritsky, Dennis [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Treu, Tommaso, E-mail: marusa@physics.ucdavis.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2014-04-20

    Spitzer UltRa Faint SUrvey Program is a joint Spitzer and Hubble Space Telescope Exploration Science program using 10 galaxy clusters as cosmic telescopes to study z ≳ 7 galaxies at intrinsically lower luminosities, enabled by gravitational lensing, than blank field surveys of the same exposure time. Our main goal is to measure stellar masses and ages of these galaxies, which are the most likely sources of the ionizing photons that drive reionization. Accurate knowledge of the star formation density and star formation history at this epoch is necessary to determine whether these galaxies indeed reionized the universe. Determination of the stellar masses and ages requires measuring rest-frame optical light, which only Spitzer can probe for sources at z ≳ 7, for a large enough sample of typical galaxies. Our program consists of 550 hr of Spitzer/IRAC imaging covering 10 galaxy clusters with very well-known mass distributions, making them extremely precise cosmic telescopes. We combine our data with archival observations to obtain mosaics with ∼30 hr exposure time in both 3.6 μm and 4.5 μm in the central 4' × 4' field and ∼15 hr in the flanking fields. This results in 3σ sensitivity limits of ∼26.6 and ∼26.2 AB magnitudes for the central field in the IRAC 3.6 and 4.5 μm bands, respectively. To illustrate the survey strategy and characteristics we introduce the sample, present the details of the data reduction and demonstrate that these data are sufficient for in-depth studies of z ≳ 7 sources (using a z = 9.5 galaxy behind MACS J1149.5+2223 as an example). For the first cluster of the survey (the Bullet Cluster) we have released all high-level data mosaics and IRAC empirical point-spread function models. In the future we plan to release these data products for the entire survey.

  18. CAS - Great success for the DSP course

    CERN Multimedia

    2007-01-01

    The CERN Accelerator School (CAS) and the Uppsala University jointly organized a specialized school on "Digital Signal Processing" in Sigtuna, Sweden from 1-9 June, 2007. This course was a "première" in many ways: firstly the topic had never been addressed by CAS, and secondly the structure of the course differed from the usual specialized courses in the sense that it was composed of 32 hours of theoretical lectures in the mornings and 16 hours "hands-on" courses in the afternoons. The latter, which have been designed by CERN experts, had some logistic implications in transporting computers and circuit boards (DSP and FPGA) to Sweden. The principle of this new approach was extremely well received by the accelerator community and 97 participants representing 23 different nationalities (80% of the participants originating from the CERN Member States) attended the course. As illustrated by the very positive feedback received from th...

  19. Intensive comprehensive aphasia programs: an international survey of practice.

    Science.gov (United States)

    Rose, Miranda L; Cherney, Leora R; Worrall, Linda E

    2013-01-01

    In response to the need to simultaneously address multiple domains of the International Classification of Functioning, Disability and Health (ICF) in aphasia therapy and to incorporate intensive treatment doses consistent with principles of neuroplasticity, a potentially potent treatment option termed intensive comprehensive aphasia programs (ICAPs) has been developed. To conduct an international survey of ICAPs to determine the extent of their use and to explore current ICAP practices. A 32-item online survey was distributed internationally through Survey Monkey between May and August 2012. The survey addressed ICAP staffing, philosophy, values, funding, admission criteria, activities, family involvement, outcome measures, and factors considered important to success. Twelve ICAPs responded: 8 from the United States, 2 from Canada, and 1 each from Australia and the United Kingdom. The majority of ICAPs are affiliated with university programs and are funded through participant self-pay. ICAPs emphasize individualized treatment goals and evidence-based practices, with a focus on applying the principles of neuroplasticity related to repetition and intensity of treatment. On average, 6 people with aphasia attend each ICAP, for 4 days per week for 4 weeks, receiving about 100 hours of individual, group, and computer-based treatment. Speech-language pathologists, students, and volunteers staff the majority of ICAPs. ICAPs are increasing in number but remain a rare service delivery option. They address the needs of individuals who want access to intensive treatment and are interested in making significant changes to their communication skills and psychosocial well-being in a short period of time. Their efficacy and cost-effectiveness require future investigation.

  20. Sleep technologists educational needs assessment: a survey of polysomnography, electroneurodiagnostic technology, and respiratory therapy education program directors.

    Science.gov (United States)

    Wells, Mary Ellen; Vaughn, Bradley V

    2013-10-15

    In this study, we assessed the community and educational needs for sleep technologists by surveying program directors of nationally accredited polysomnography, electroneurodiagnostic technology, and respiratory care educational programs. Currently, little is known about our educational capacity and the need for advanced degrees for sleep medicine technical support. A questionnaire was developed about current and future community and educational needs for sleep technologists. The questionnaire was sent to directors of CAAHEP-accredited polysomnography and electroneurodiagnostic technology programs (associate degree and certificate programs), and directors of CoARC-accredited respiratory therapy associate degree and bachelor degree programs (n = 358). Qualitative and quantitative data were collected via an internet survey tool. Data analysis was conducted with the IBM SPSS statistical package and included calculating means and standard deviations of the frequency of responses. Qualitative data was analyzed and classified based on emerging themes. One hundred seven of 408 program directors completed the survey. Seventy-four percent agreed that demand for qualified sleep technologists will increase, yet 50% of those surveyed believe there are not enough educational programs to meet the demand. Seventy-eight percent of those surveyed agreed that the educational requirements for sleep technologists will soon increase; 79% of those surveyed believe sleep centers have a need for technologists with advanced training or specialization. Our study shows educators of associate and certificate degree programs believe there is a need for a bachelor's degree in sleep science and technology.

  1. Chromosomal Targeting by the Type III-A CRISPR-Cas System Can Reshape Genomes in Staphylococcus aureus.

    Science.gov (United States)

    Guan, Jing; Wang, Wanying; Sun, Baolin

    2017-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeat [CRISPR]-CRISPR-associated protein [Cas]) systems can provide protection against invading genetic elements by using CRISPR RNAs (crRNAs) as a guide to locate and degrade the target DNA. CRISPR-Cas systems have been classified into two classes and five types according to the content of cas genes. Previous studies have indicated that CRISPR-Cas systems can avoid viral infection and block plasmid transfer. Here we show that chromosomal targeting by the Staphylococcus aureus type III-A CRISPR-Cas system can drive large-scale genome deletion and alteration within integrated staphylococcal cassette chromosome mec (SCC mec ). The targeting activity of the CRISPR-Cas system is associated with the complementarity between crRNAs and protospacers, and 10- to 13-nucleotide truncations of spacers partially block CRISPR attack and more than 13-nucleotide truncation can fully abolish targeting, suggesting that a minimal length is required to license cleavage. Avoiding base pairings in the upstream region of protospacers is also necessary for CRISPR targeting. Successive trinucleotide complementarity between the 5' tag of crRNAs and protospacers can disrupt targeting. Our findings reveal that type III-A CRISPR-Cas systems can modulate bacterial genome stability and may serve as a high-efficiency tool for deleting resistance or virulence genes in bacteria. IMPORTANCE Staphylococcus aureus is a pathogen that can cause a wide range of infections in humans. Studies have suggested that CRISPR-Cas systems can drive the loss of integrated mobile genetic elements (MGEs) by chromosomal targeting. Here we demonstrate that CRISPR-mediated cleavage contributes to the partial deletion of integrated SCC mec in methicillin-resistant S. aureus (MRSA), which provides a strategy for the treatment of MRSA infections. The spacer within artificial CRISPR arrays should contain more than 25 nucleotides for immunity, and consecutive

  2. The chooz a expert survey program and its main conclusions for plant life management

    International Nuclear Information System (INIS)

    Barthelet, B.; Heuze, A.; Hennart, J.C.; Havard, P.

    2001-01-01

    Because of the importance of PWR components life management represents for Electricity Companies, significant R and D programs are dedicated to identifying and analysing mechanisms and damage rates of the different degradation modes of these components, systems and structures. To assess R and D assumptions and to validate non destructive test results through reviews, expert survey programs on in-situ equipment may enhance the knowledge about most of the various phenomena involved. In this regard, an extensive program was launched after the Chooz A NPP was decommissioned in 1991, after 24 years in operation. This program gathered EDF, IPSN, FRAMATOME, ELECTRABEL and TRACTEBEL into partnership. The expert survey program was performed in various laboratories between 1995 and 1999 and includes: - on-site non destructive testing before sampling, - and metallurgical and mechanical tests performed on samples taken from the nuclear and non nuclear part of the unit. The expert survey program performed by Utilities in various laboratories involved the following equipment: - reactor vessel and internal equipment, - reactor coolant system (dissimilar metal welds, SS welds, cast austenitic ferritic steels), - feedwater plant piping (erosion-corrosion), - electric cables susceptible of temperature and irradiation induced ageing, - anchoring in civil engineering structures, - main primary circuit concerning activation measurement. In conclusion, the extensive Chooz A expert survey program yields numerous significant results. The main outcomes will contribute to validate non destructive tests and enhance our knowledge of some degradation mechanisms of often quite similar components present in units in operation. It is worthy to note that this program is of prime importance for operation feedback; the cost of the whole study amounts to approximately 10 Million Euros. (author)

  3. Campylobacter jejuni acquire new host-derived CRISPR spacers when in association with bacteriophages harbouring a CRISPR-like Cas4 protein

    Directory of Open Access Journals (Sweden)

    Ian F. Connerton

    2015-01-01

    Full Text Available Campylobacter jejuni is a worldwide cause of human diarrhoeal disease. Clustered Repetitively Interspaced Palindromic Repeats (CRISPRs and associated proteins allow Bacteria and Archaea to evade bacteriophage and plasmid infection. Type II CRISPR systems are found in association with combinations of genes encoding the CRISPR-associated Cas1, Cas2, Cas4 or Csn2, and Cas9 proteins. C. jejuni possesses a minimal subtype II-C CRISPR system containing cas1, cas2, and cas9 genes whilst cas4 is notably absent. Cas4 proteins possess 5ʹ-3ʹ exonuclease activity to create recombinogenic-ends for spacer acquisition. Here we report a conserved Cas4-like protein in Campylobacter bacteriophages that creates a novel split arrangement between the bacteriophage and host that represents a new twist in the bacteriophage/host co-evolutionary arms race. The continuous association of bacteriophage and host in the carrier state life cycle of C. jejuni provided an opportunity to study spacer acquisition in this species. Remarkably all the spacer sequences observed were of host origin. We hypothesise that Campylobacter bacteriophages can use Cas4-like protein to activate spacer acquisition to use host DNA as an effective decoy to bacteriophage DNA. Bacteria that acquire self-spacers and escape phage infection must overcome CRISPR-mediated autoimmunity either by loss of the interference functions leaving them susceptible to foreign DNA incursion or tolerate changes in gene regulation.

  4. Sexual Assault Training in Emergency Medicine Residencies: A Survey of Program Directors

    Directory of Open Access Journals (Sweden)

    Margaret K Sande

    2013-09-01

    Full Text Available Introduction: There is currently no standard forensic medicine training program for emergency medicine residents. In the advent of sexual assault nurse examiner (SANE programs aimed at improving the quality of care for sexual assault victims, it is also unclear how these programs impact emergency medicine (EM resident forensic medicine training. The purpose of this study was togather information on EM residency programs’ training in the care of sexual assault patients and determine what impact SANE programs may have on the experience of EM resident training from the perspective of residency program directors (PDs.Methods: This was a cross-sectional survey. The study cohort was all residency PDs from approved EM residency training programs who completed a closed-response self-administered survey electronically.Results: We sent surveys to 152 PDs, and 71 responded for an overall response rate of 47%. Twenty-two PDs (31% reported that their residency does not require procedural competency for the sexual assault exam, and 29 (41% reported their residents are required only to observe sexual assault exam completion to demonstrate competency. Residency PDs were asked how their programs established resident requirements for sexual assault exams. Thirty-seven PDs (52% did not know how their sexual assault exam requirement was established.Conclusion: More than half of residency PDs did not know how their sexual assault guidelines were established, and few were based upon recommendations from the literature. There is no clear consensus as to how PDs view the effect of SANE programs on resident competency with the sexual assault exam. This study highlights both a need for increased awareness of EM resident sexual assault education nationally and also a possible need for a training curriculum defining guidelines forEM residents performing sexual assault exams. [West J Emerg Med. 2013;14(5:461–466.

  5. Genome Editing in Cotton with the CRISPR/Cas9 System

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2017-08-01

    Full Text Available Genome editing is an important tool for gene functional studies as well as crop improvement. The recent development of the CRISPR/Cas9 system using single guide RNA molecules (sgRNAs to direct precise double strand breaks in the genome has the potential to revolutionize agriculture. Unfortunately, not all sgRNAs are equally efficient and it is difficult to predict their efficiency by bioinformatics. In crops such as cotton (Gossypium hirsutum L., with labor-intensive and lengthy transformation procedures, it is essential to minimize the risk of using an ineffective sgRNA that could result in the production of transgenic plants without the desired CRISPR-induced mutations. In this study, we have developed a fast and efficient method to validate the functionality of sgRNAs in cotton using a transient expression system. We have used this method to validate target sites for three different genes GhPDS, GhCLA1, and GhEF1 and analyzed the nature of the CRISPR/Cas9-induced mutations. In our experiments, the most frequent type of mutations observed in cotton cotyledons were deletions (∼64%. We prove that the CRISPR/Cas9 system can effectively produce mutations in homeologous cotton genes, an important requisite in this allotetraploid crop. We also show that multiple gene targeting can be achieved in cotton with the simultaneous expression of several sgRNAs and have generated mutations in GhPDS and GhEF1 at two target sites. Additionally, we have used the CRISPR/Cas9 system to produce targeted gene fragment deletions in the GhPDS locus. Finally, we obtained transgenic cotton plants containing CRISPR/Cas9-induced gene editing mutations in the GhCLA1 gene. The mutation efficiency was very high, with 80.6% of the transgenic lines containing mutations in the GhCLA1 target site resulting in an intense albino phenotype due to interference with chloroplast biogenesis.

  6. Surveying the elements of successful infrared predictive maintenance programs

    Science.gov (United States)

    Snell, John R., Jr.; Spring, Robert W.

    1991-03-01

    This paper summarizes the results of a survey of over three hundred maintenance personnel who use imaging equipment within their company or organization. All had previously participated in one or more of our training programs. The companies took in a broad range of industry, including, among other, power generation, pulp and paper, metals, mining, petrochemical, automotive and general manufacturing. The organizations were mainly quite large, either commercial or public, and included governmental agencies, military, colleges and universities, municipalities, and utilities. Although we had a very tight time line for the survey, we were pleased to have a 15% response rate. The results show that some of the causes of success and failure in infrared programs are not unlike those associated with any type of program in an organizational structure, i.e. the need for accurate and timely communications; justification requirements; etc. Another set of problems was shared more closely with other startup maintenance technologies (for example, vibration monitoring), such as the need for trending data; providing appropriate technical training; achieving reproducible results; etc. Finally, some of the driving mechanisms are more specific to this technology, such as re-designing equipment so that it can be thermally inspected; establishing effective documentation strategies; etc.

  7. Exploiting the CRISPR/Cas9 System for Targeted Genome Mutagenesis in Petunia.

    Science.gov (United States)

    Zhang, Bin; Yang, Xia; Yang, Chunping; Li, Mingyang; Guo, Yulong

    2016-02-03

    Recently, CRISPR/Cas9 technology has emerged as a powerful approach for targeted genome modification in eukaryotic organisms from yeast to human cell lines. Its successful application in several plant species promises enormous potential for basic and applied plant research. However, extensive studies are still needed to assess this system in other important plant species, to broaden its fields of application and to improve methods. Here we showed that the CRISPR/Cas9 system is efficient in petunia (Petunia hybrid), an important ornamental plant and a model for comparative research. When PDS was used as target gene, transgenic shoot lines with albino phenotype accounted for 55.6%-87.5% of the total regenerated T0 Basta-resistant lines. A homozygous deletion close to 1 kb in length can be readily generated and identified in the first generation. A sequential transformation strategy--introducing Cas9 and sgRNA expression cassettes sequentially into petunia--can be used to make targeted mutations with short indels or chromosomal fragment deletions. Our results present a new plant species amenable to CRIPR/Cas9 technology and provide an alternative procedure for its exploitation.

  8. Modification of CAS-protocol for improvement of security web-applications from unauthorized access

    Directory of Open Access Journals (Sweden)

    Alexey I Igorevich Alexandrov

    2017-07-01

    Full Text Available Dissemination of information technologies and the expansion of their application demand constantly increasing security level for users, operating with confidential information and personal data. The problem of setting up secure user identification is probably one of the most common tasks, which occur in the process of software development. Today, despite the availability of a large amount of authentication tools, new solutions, mechanisms and technologies are being introduced regularly. Primarily, it is done to increase the security level of data protection against unauthorized access. This article describes the experience of using central user authentication service based on CAS-protocol (CAS – Central Authentication Service and free open source software, analyzing its main advantages and disadvantages and describing the possibility of its modification, which would increase security of web-based information systems from being accessed illegally. The article contains recommendations for setting a maximum time limit for users working on services, integrated with central authentication; and, analyses the research of implementing modern web-technologies while using user authentication system based on CAS-protocol. In addition, it describes the ways of CAS-server modernization for developing additional modules: a module for collecting and analyzing the use of information systems, and another one, for a user management system. Furthermore, CAS-protocol can be used at universities and other organizations for creating a unified information environment in education.

  9. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.

    Science.gov (United States)

    Modell, Joshua W; Jiang, Wenyan; Marraffini, Luciano A

    2017-04-06

    Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems provide protection against viral and plasmid infection by capturing short DNA sequences from these invaders and integrating them into the CRISPR locus of the prokaryotic host. These sequences, known as spacers, are transcribed into short CRISPR RNA guides that specify the cleavage site of Cas nucleases in the genome of the invader. It is not known when spacer sequences are acquired during viral infection. Here, to investigate this, we tracked spacer acquisition in Staphylococcus aureus cells harbouring a type II CRISPR-Cas9 system after infection with the staphylococcal bacteriophage ϕ12. We found that new spacers were acquired immediately after infection preferentially from the cos site, the viral free DNA end that is first injected into the cell. Analysis of spacer acquisition after infection with mutant phages demonstrated that most spacers are acquired during DNA injection, but not during other stages of the viral cycle that produce free DNA ends, such as DNA replication or packaging. Finally, we showed that spacers acquired from early-injected genomic regions, which direct Cas9 cleavage of the viral DNA immediately after infection, provide better immunity than spacers acquired from late-injected regions. Our results reveal that CRISPR-Cas systems exploit the phage life cycle to generate a pattern of spacer acquisition that ensures a successful CRISPR immune response.

  10. Burnout and distress among internal medicine program directors: results of a national survey.

    Science.gov (United States)

    West, Colin P; Halvorsen, Andrew J; Swenson, Sara L; McDonald, Furman S

    2013-08-01

    Physician burnout and distress has been described in national studies of practicing physicians, internal medicine (IM) residents, IM clerkship directors, and medical school deans. However, no comparable national data exist for IM residency program directors. To assess burnout and distress among IM residency program directors, and to evaluate relationships of distress with personal and program characteristics and perceptions regarding implementation and consequences of Accreditation Council for Graduate Medical Education (ACGME) regulations. The 2010 Association of Program Directors in Internal Medicine (APDIM) Annual Survey, developed by the APDIM Survey Committee, was sent in August 2010 to the 377 program directors with APDIM membership, representing 99.0 % of the 381 United States categorical IM residency programs. The 2010 APDIM Annual Survey included validated items on well-being and distress, including questions addressing quality of life, satisfaction with work-life balance, and burnout. Questions addressing personal and program characteristics and perceptions regarding implementation and consequences of ACGME regulations were also included. Of 377 eligible program directors, 282 (74.8 %) completed surveys. Among respondents, 12.4 % and 28.8 % rated their quality of life and satisfaction with work-life balance negatively, respectively. Also, 27.0 % reported emotional exhaustion, 10.4 % reported depersonalization, and 28.7 % reported overall burnout. These rates were lower than those reported previously in national studies of medical students, IM residents, practicing physicians, IM clerkship directors, and medical school deans. Aspects of distress were more common among younger program directors, women, and those reporting greater weekly work hours. Work-home conflicts were common and associated with all domains of distress, especially if not resolved in a manner effectively balancing work and home responsibilities. Associations with program characteristics

  11. On the implicit programming approach in a class of mathematical programs with equilibrium constraints

    Czech Academy of Sciences Publication Activity Database

    Outrata, Jiří; Červinka, Michal

    2009-01-01

    Roč. 38, 4B (2009), s. 1557-1574 ISSN 0324-8569 R&D Projects: GA ČR GA201/09/1957 Institutional research plan: CEZ:AV0Z10750506 Keywords : mathematical problem with equilibrium constraint * state constraints * implicit programming * calmness * exact penalization Subject RIV: BA - General Mathematics Impact factor: 0.378, year: 2009 http://library.utia.cas.cz/separaty/2010/MTR/outrata-on the implicit programming approach in a class of mathematical programs with equilibrium constraints.pdf

  12. A Worldwide Survey of MATESOL Programs in 2014: Patterns and Perspectives

    Science.gov (United States)

    Stapleton, Paul; Shao, Qing

    2018-01-01

    This article reports on a survey of 241 Master of Arts programs in TESOL (MATESOL) in 16 countries serving as a snapshot of second language teacher education in 2014. After an initial screening by a set of criteria, these programs were first identified, and their course offerings, among other criteria, such as entrance and capstone requirements,…

  13. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment

    DEFF Research Database (Denmark)

    Grav, Lise Marie; Lee, Jae Seong; Thomsen, Signe Gerling

    2015-01-01

    The CRISPR/Cas9 genome editing technology has previously been shown to be a highly efficient tool for generating gene disruptions in CHO cells. In this study we further demonstrate the applicability and efficiency of CRISPR/Cas9 genome editing by disrupting FUT8, BAK and BAX simultaneously....... Taken together, multiplexing with CRISPR/Cas9 can accelerate genome engineering efforts in CHO cells even further....

  14. Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4.

    Science.gov (United States)

    Cao, Qing-Hua; Shao, Huan-Huan; Qiu, Hui; Li, Tao; Zhang, Yi-Zheng; Tan, Xue-Mei

    2017-03-01

    The CRISPR/Cas system can be used to simply and efficiently edit the genomes of various species, including animals, plants, and microbes. Zymomonas mobilis ZM4 is a highly efficient, ethanol-producing bacterium that contains five native plasmids. Here, we constructed the pSUZM2a-Cas9 plasmid and a single-guide RNA expression plasmid. The pSUZM2a-Cas9 plasmid was used to express the Cas9 gene cloned from Streptococcus pyogenes CICC 10464. The single-guide RNA expression plasmid pUC-T7sgRNA, with a T7 promoter, can be used for the in vitro synthesis of single-guide RNAs. This system was successfully employed to knockout the upp gene of Escherichia coli and the replicase genes of native Z. mobilis plasmids. This is the first study to apply the CRISPR/Cas9 system of S. pyogenes to eliminate native plasmids in Z. mobilis. It provides a new method for plasmid curing and paves the way for the genomic engineering of Z. mobilis.

  15. 2014 Rural Clinical School Training and Support Program Snapshot survey.

    Science.gov (United States)

    Mendis, Kumara; Greenhill, Jennene; Walker, Judi; Bailey, Jannine; Croft, Amanda; Doyle, Zelda; McCrossin, Timothy; Stevens, Wendy

    2015-01-01

    The Rural Clinical Training and Support (RCTS) program is an Australian Government initiative to address the shortage of medical practitioners within rural and remote Australia. There is a large amount of published information about the RCTS program and rural medical student cohorts who have undertaken short- and long-term rotations. However, very little is known about the academic and professional staff involved in the program, a knowledge gap that may impact workforce and succession planning. To address this, the Federation of Rural Australian Medical Educators (FRAME) initiated the pilot 2014 RCTS Snapshot survey to obtain data on the current RCTS workforce. All professional, academic and clinical academic staff (fixed-term and continuing, regardless of fraction) employed through the RCTS program were invited to complete a short, web-based survey. The survey was conducted from March to June 2014. The quantitative variables in the survey included demographics (age and gender), rural background and exposure, employment history in rural/regional areas and at rural clinical schools (RCS), experience and expertise, reasons for working at RCS, and future employment intentions. The last three questions also were of a qualitative open-ended format to allow respondents to provide additional details regarding their reasons for working at RCSs and their future intentions. The estimated total RCTS workforce was 970. A total of 413 responses were received and 316 (40.9%) complete responses analysed. The majority of respondents were female (71%), the 40-60-year age group was predominant (28%), and professional staff constituted the majority (62%). The below 40-year age group had more professionals than academics (21% vs 12%) and more than 62% of academics were aged above 50 years. Notably, there were no academics aged less than 30 years. The percentage of professional staff with a rural background was higher (62%) than that of academics with a rural background (42%). However

  16. Parent Group Training Programs in Juvenile Courts: A National Survey

    Science.gov (United States)

    Windell, James O.; Windell, Ellen A.

    1977-01-01

    This survey of juvenile courts across the country indicates that only one of five courts have a parent group program and few use procedures reported in the growing literature relating to changing the behavior of agressive children. (Author)

  17. Survey of pharmacy involvement in hospital medication reconciliation programs across the United States

    Directory of Open Access Journals (Sweden)

    Gregory R Stein

    2015-11-01

    Full Text Available Objective: The objective of this study is to conduct a review of pertinent literature, assess pharmacy involvement in medication reconciliation, and offer insight into best practices for hospitals to implement and enhance their medication reconciliation programs. Method: Pharmacists in hospitals nationwide were asked to complete an anonymous survey via the American College of Clinical Pharmacy online database. The multiple choice survey analyzed the roles that healthcare professionals play in medication reconciliation programs at hospitals. Results: Of the survey responses received, 32/91 (35% came from pharmacists at hospitals with a pharmacy-led medication reconciliation program. Of these pharmacy-led programs, 17/32 (53% have a dedicated pharmacist or pharmacy staff to perform medication reconciliation. Conclusion: A comprehensive review of literature suggests that pharmacy involvement has the potential to reduce medication reconciliation errors and may improve patient satisfaction. Focused, full-time medication reconciliation pharmacists can help hospitals save time and money, improve outcomes, and meet higher standards issued by the Joint Commission. Data obtained in this study show the extent to which pharmacists contribute to achieving these goals in healthcare systems nationwide. This baseline study provides a strong case for hospitals to implement a pharmacy-led medication reconciliation program.

  18. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.

    Science.gov (United States)

    Wang, Ping

    2018-06-27

    Cryptococcus neoformans and related species are encapsulated basidiomycetous fungi that cause meningoencephalitis in individuals with immune deficiency. This pathogen has a tractable genetic system; however, gene disruption via electroporation remains difficult, while biolistic transformation is often limited by lack of multiple genetic markers and the high initial cost of equipment. The approach using clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) has become the technology of choice for gene editing in many organisms due to its simplicity, efficiency, and versatility. The technique has been successfully demonstrated in C. neoformans and Cryptococcus deneoformans in which two DNA plasmids expressing either the Streptococcus pyogenes CAS9 gene or the guide RNA (gRNA) were employed. However, potential adverse effects due to constitutive expression and the time-consuming process of constructing vectors to express each gRNA remain as a primary barrier for wide adaptation. This report describes the delivery of preassembled CRISPR-Cas9-gRNA ribonucleoproteins (RNPs) via electroporation that is able to generate edited mutant alleles. RNP-mediated CRISPR-Cas9 was used to replace the wild-type GIB2 gene encoding a Gβ-like/RACK1 Gib2 protein with a gib2 :: NAT allele via homologous recombination in both C. neoformans and C. deneoformans In addition, a DNA plasmid (pCnCas9:U6-gRNA) that expresses both Cas9 and gRNA, allowing for convenient yet low-cost DNA-mediated gene editing, is described. pCnCas9:U6-gRNA contains an endogenous U6 promoter for gRNA expression and restriction sites for one-step insertion of a gRNA. These approaches and resources provide new opportunities to accelerate genetic studies of Cryptococcus species. IMPORTANCE For genetic studies of the Cryptococcus genus, generation of mutant strains is often hampered by a limited number of selectable genetic markers, the tedious process of vector

  19. Developing a Survey to Determine Student Perceptions of Readiness at the Beginning of an Educational Leadership Program

    Science.gov (United States)

    Kelly, Michael D.; Gratto, John

    2015-01-01

    In this study, researchers developed a survey to determine student perceptions of readiness prior to entering an educational leadership program. The researchers analyzed and established the reliability and validity of the survey created to understand student readiness as they enter the program. The information garnered from this survey will help…

  20. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.

    Science.gov (United States)

    Paquet, Dominik; Kwart, Dylan; Chen, Antonia; Sproul, Andrew; Jacob, Samson; Teo, Shaun; Olsen, Kimberly Moore; Gregg, Andrew; Noggle, Scott; Tessier-Lavigne, Marc

    2016-05-05

    The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells. CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels). DSBs may also be repaired by homology-directed repair (HDR) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations. Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient and can be corrupted by additional indels, preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono- and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Cas-blocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in

  1. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.

    Science.gov (United States)

    Wang, Bo; Hu, Qitiao; Zhang, Yu; Shi, Ruilin; Chai, Xin; Liu, Zhe; Shang, Xiuling; Zhang, Yun; Wen, Tingyi

    2018-04-23

    Extensive modification of genome is an efficient manner to regulate the metabolic network for producing target metabolites or non-native products using Corynebacterium glutamicum as a cell factory. Genome editing approaches by means of homologous recombination and counter-selection markers are laborious and time consuming due to multiple round manipulations and low editing efficiencies. The current two-plasmid-based CRISPR-Cas9 editing methods generate false positives due to the potential instability of Cas9 on the plasmid, and require a high transformation efficiency for co-occurrence of two plasmids transformation. Here, we developed a RecET-assisted CRISPR-Cas9 genome editing method using a chromosome-borne Cas9-RecET and a single plasmid harboring sgRNA and repair templates. The inducible expression of chromosomal RecET promoted the frequencies of homologous recombination, and increased the efficiency for gene deletion. Due to the high transformation efficiency of a single plasmid, this method enabled 10- and 20-kb region deletion, 2.5-, 5.7- and 7.5-kb expression cassette insertion and precise site-specific mutation, suggesting a versatility of this method. Deletion of argR and farR regulators as well as site-directed mutation of argB and pgi genes generated the mutant capable of accumulating L-arginine, indicating the stability of chromosome-borne Cas9 for iterative genome editing. Using this method, the model-predicted target genes were modified to redirect metabolic flux towards 1,2-propanediol biosynthetic pathway. The final engineered strain produced 6.75 ± 0.46 g/L of 1,2-propanediol that is the highest titer reported in C. glutamicum. Furthermore, this method is available for Corynebacterium pekinense 1.563, suggesting its universal applicability in other Corynebacterium species. The RecET-assisted CRISPR-Cas9 genome editing method will facilitate engineering of metabolic networks for the synthesis of interested bio-based products from renewable

  2. Kinetics of the CRISPR-Cas9 effector complex assembly and the role of 3′-terminal segment of guide RNA

    Science.gov (United States)

    Mekler, Vladimir; Minakhin, Leonid; Semenova, Ekaterina; Kuznedelov, Konstantin; Severinov, Konstantin

    2016-01-01

    CRISPR-Cas9 is widely applied for genome engineering in various organisms. The assembly of single guide RNA (sgRNA) with the Cas9 protein may limit the Cas9/sgRNA effector complex function. We developed a FRET-based assay for detection of CRISPR–Cas9 complex binding to its targets and used this assay to investigate the kinetics of Cas9 assembly with a set of structurally distinct sgRNAs. We find that Cas9 and isolated sgRNAs form the effector complex efficiently and rapidly. Yet, the assembly process is sensitive to the presence of moderate concentrations of non-specific RNA competitors, which considerably delay the Cas9/sgRNA complex formation, while not significantly affecting already formed complexes. This observation suggests that the rate of sgRNA loading into Cas9 in cells can be determined by competition between sgRNA and intracellular RNA molecules for the binding to Cas9. Non-specific RNAs exerted particularly large inhibitory effects on formation of Cas9 complexes with sgRNAs bearing shortened 3′-terminal segments. This result implies that the 3′-terminal segment confers sgRNA the ability to withstand competition from non-specific RNA and at least in part may explain the fact that use of sgRNAs truncated for the 3′-terminal stem loops leads to reduced activity during genomic editing. PMID:26945042

  3. CRISPR-Cas adaptive immune systems of the sulfolobales

    DEFF Research Database (Denmark)

    Garrett, Roger Antony; Shah, Shiraz Ali; Erdmann, Susanne

    2015-01-01

    The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive...... structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation...... process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR...

  4. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus.

    Science.gov (United States)

    Park, Joo Youn; Moon, Bo Youn; Park, Juw Won; Thornton, Justin A; Park, Yong Ho; Seo, Keun Seok

    2017-03-21

    Discovery of clustered, regularly interspaced, short palindromic repeats and the Cas9 RNA-guided nuclease (CRISPR/Cas9) system provides a new opportunity to create programmable gene-specific antimicrobials that are far less likely to drive resistance than conventional antibiotics. However, the practical therapeutic use of CRISPR/Cas9 is still questionable due to current shortcomings in phage-based delivery systems such as inefficient delivery, narrow host range, and potential transfer of virulence genes by generalized transduction. In this study, we demonstrate genetic engineering strategies to overcome these shortcomings by integrating CRISPR/Cas9 system into a temperate phage genome, removing major virulence genes from the host chromosome, and expanding host specificity of the phage by complementing tail fiber protein. This significantly improved the efficacy and safety of CRISPR/Cas9 antimicrobials to therapeutic levels in both in vitro and in vivo assays. The genetic engineering tools and resources established in this study are expected to provide an efficacious and safe CRISPR/Cas9 antimicrobial, broadly applicable to Staphylococcus aureus.

  5. Survey of public participation potential regarding the Muria NPP program

    International Nuclear Information System (INIS)

    Yarianto-SBS; Sri Hariani Syarif; Heni Susiati; Imam Hamzah; Fepriadi

    2003-01-01

    Socio-culture aspect is a part of site feasibility evaluation of Nuclear Power Plant (NPP)program. Indonesia is under going democratization, therefore the paradigm of development has also been changed where the people have freedom or liberty and they can express their opinion independently. The people are significant factor that involving in the decision making of regional development.Even the socio-culture, such as social riot can reject the site. Therefore socio-culture aspect should be considered in the NPP site evaluation. The first step of the study,mapping of public participation potential should be conducted by field survey. The method used in there search is quantitative approach with field survey guided by questioner without any treatment of object sampled. Qualitative approach was also conducted by in-depth interview technique to collect more detailed information. Information were collected from general public without any stratification in the 10 km radius from NPP site. Sampling method used was full random sampling technique. The results of survey show that the most of the people have significant potential for participating in the NPP Program. Conducive atmosphere should be maintained by social setting, therefore the present good momentum will not be lost. (author)

  6. The CRISPR/Cas genome-editing tool: application in improvement of crops

    Directory of Open Access Journals (Sweden)

    SURENDER eKHATODIA

    2016-04-01

    Full Text Available The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR associated Cas9/sgRNA system is a novel fledgling targeted genome-editing technique from bacterial immune system, which is a cheap, easy and most rapidly adopted genome editing tool transforming to revolutionary paradigm. Cas9 protein is an RNA guided endonuclease utilized for creating targeted double stranded breaks with only a short RNA sequence to confer recognition of the target in animals and plants. Development of genetically edited (GE crops similar to those developed by conventional or mutation breeding using this potential technique makes it a promising and extremely versatile tool for providing sustainable productive agriculture for better feeding of rapidly growing population in changing climate. The emerging areas of research for the genome editing in plants are like, interrogating gene function, rewiring the regulatory signaling networks, sgRNA library for high-throughput loss-of-function screening. In this review, we will discuss the broad applicability of the Cas9 nuclease mediated targeted plant genome editing for development of designer crops. The regulatory uncertainty and social acceptance of plant breeding by Cas9 genome editing have also been discussed. The non-GM designer genetically edited plants could prospect climate resilient and sustainable energy agriculture in coming future for maximizing the yield by combating abiotic and biotic stresses with this new innovative plant breeding technique.

  7. Efficient and Heritable Gene Targeting in Tilapia by CRISPR/Cas9

    Science.gov (United States)

    Li, Minghui; Yang, Huihui; Zhao, Jiue; Fang, Lingling; Shi, Hongjuan; Li, Mengru; Sun, Yunlv; Zhang, Xianbo; Jiang, Dongneng; Zhou, Linyan; Wang, Deshou

    2014-01-01

    Studies of gene function in non-model animals have been limited by the approaches available for eliminating gene function. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated) system has recently become a powerful tool for targeted genome editing. Here, we report the use of the CRISPR/Cas9 system to disrupt selected genes, including nanos2, nanos3, dmrt1, and foxl2, with efficiencies as high as 95%. In addition, mutations in dmrt1 and foxl2 induced by CRISPR/Cas9 were efficiently transmitted through the germline to F1. Obvious phenotypes were observed in the G0 generation after mutation of germ cell or somatic cell-specific genes. For example, loss of Nanos2 and Nanos3 in XY and XX fish resulted in germ cell-deficient gonads as demonstrated by GFP labeling and Vasa staining, respectively, while masculinization of somatic cells in both XY and XX gonads was demonstrated by Dmrt1 and Cyp11b2 immunohistochemistry and by up-regulation of serum androgen levels. Our data demonstrate that targeted, heritable gene editing can be achieved in tilapia, providing a convenient and effective approach for generating loss-of-function mutants. Furthermore, our study shows the utility of the CRISPR/Cas9 system for genetic engineering in non-model species like tilapia and potentially in many other teleost species. PMID:24709635

  8. A ‘suicide’ CRISPR-Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans

    Science.gov (United States)

    Wang, Yu; Wei, Dongsheng; Zhu, Xiangyang; Pan, Jiao; Zhang, Ping; Huo, Liang; Zhu, Xudong

    2016-01-01

    Loss-of-function mutagenesis is an important tool used to characterize gene functions, and the CRISPR-Cas9 system is a powerful method for performing targeted mutagenesis in organisms that present low recombination frequencies, such as the serotype D strains of Cryptococcus neoformans. However, when the CRISPR-Cas9 system persists in the host cells, off-target effects and Cas9 cytotoxicity may occur, which might block subsequent genetic manipulation. Here, we report a method of spontaneously eliminating the CRISPR-Cas9 system without impairing its robust editing function. We successfully expressed single guide RNA under the driver of an endogenous U6 promoter and the human codon-optimized Cas9 endonuclease with an ACT1 promoter. This system can effectively generate an indel mutation and efficiently perform targeted gene disruption via homology-directed repair by electroporation in yeast. We then demonstrated the spontaneous elimination of the system via a cis arrangement of the CRISPR-Cas9 expression cassettes to the recombination construct. After a system-mediated double crossover, the CRISPR-Cas9 cassettes were cleaved and degraded, which was validated by Southern blotting. This ‘suicide’ CRISPR-Cas9 system enables the validation of gene functions by subsequent complementation and has the potential to minimize off-target effects. Thus, this technique has the potential for use in functional genomics studies of C. neoformans. PMID:27503169

  9. 2010 E-Rate Program and Broadband Usage Survey: Report. DA 10-2414

    Science.gov (United States)

    Federal Communications Commission, 2010

    2010-01-01

    This report presents data from the "2010 E-rate Program and Broadband Usage Survey" commissioned by the Federal Communications Commission (FCC) and conducted by Harris Interactive, Inc. (Harris), an independent national marketing research firm, between February and April 2010. The primary goal of the survey was to collect data on the current state…

  10. Active and adaptive Legionella CRISPR-Cas reveals a recurrent challenge to the pathogen.

    Science.gov (United States)

    Rao, Chitong; Guyard, Cyril; Pelaz, Carmen; Wasserscheid, Jessica; Bondy-Denomy, Joseph; Dewar, Ken; Ensminger, Alexander W

    2016-10-01

    Clustered regularly interspaced short palindromic repeats with CRISPR-associated gene (CRISPR-Cas) systems are widely recognized as critical genome defense systems that protect microbes from external threats such as bacteriophage infection. Several isolates of the intracellular pathogen Legionella pneumophila possess multiple CRISPR-Cas systems (type I-C, type I-F and type II-B), yet the targets of these systems remain unknown. With the recent observation that at least one of these systems (II-B) plays a non-canonical role in supporting intracellular replication, the possibility remained that these systems are vestigial genome defense systems co-opted for other purposes. Our data indicate that this is not the case. Using an established plasmid transformation assay, we demonstrate that type I-C, I-F and II-B CRISPR-Cas provide protection against spacer targets. We observe efficient laboratory acquisition of new spacers under 'priming' conditions, in which initially incomplete target elimination leads to the generation of new spacers and ultimate loss of the invasive DNA. Critically, we identify the first known target of L. pneumophila CRISPR-Cas: a 30 kb episome of unknown function whose interbacterial transfer is guarded against by CRISPR-Cas. We provide evidence that the element can subvert CRISPR-Cas by mutating its targeted sequences - but that primed spacer acquisition may limit this mechanism of escape. Rather than generally impinging on bacterial fitness, this element drives a host specialization event - with improved fitness in Acanthamoeba but a reduced ability to replicate in other hosts and conditions. These observations add to a growing body of evidence that host range restriction can serve as an existential threat to L. pneumophila in the wild. © 2016 The Authors Cellular Microbiology Published by John Wiley & Sons Ltd.

  11. An Undergraduate Laboratory Class Using CRISPR/Cas9 Technology to Mutate Drosophila Genes

    Science.gov (United States)

    Adame, Vanesa; Chapapas, Holly; Cisneros, Marilyn; Deaton, Carol; Deichmann, Sophia; Gadek, Chauncey; Lovato, TyAnna L.; Chechenova, Maria B.; Guerin, Paul; Cripps, Richard M.

    2016-01-01

    CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Because of the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using…

  12. CRISPR/Cas9-mediated viral interference in plants

    KAUST Repository

    Ali, Zahir; Abulfaraj, Aala A.; Idris, Ali; Ali, Shawkat; Tashkandi, Manal; Mahfouz, Magdy M.

    2015-01-01

    These data establish the efficacy of the CRISPR/Cas9 system for viral interference in plants, thereby extending the utility of this technology and opening the possibility of producing plants resistant to multiple viral infections.

  13. La tuberculose extra-ganglionnaire primitive de la sphère ORL: à propos de 15 cas

    Science.gov (United States)

    Touati, Mohamed Mliha; Darouassi, Youssef; Chihani, Mehdi; Lakouichmi, Mohammed; Tourabi, Khalid; Ammar, Haddou; Bouaity, Brahim

    2014-01-01

    Les localisations ORL extra ganglionnaires de la tuberculose sont rares. La symptomatologie clinique ainsi que les examens paracliniques sont souvent trompeurs,posant ainsi le problème de diagnostic différentiel avec la pathologie tumorale. Nous rapportons 15 cas de localisations extra ganglionnaires de tuberculose, colligés au service ORL et CCF de l'Hopital Militaire Avicenne de Marrakech colligés entre 2009 et 2013. L’âge moyen de nos patients est de 33 ans. L’étude topographique a montré 6 cas au niveau du cavum, un cas de miliaire tuberculeuse pharyngée, 4 cas laryngés; 2 localisations auriculaires; 1 parotidienne et 1 localisation sous maxillaire. Le diagnostic était anatomopathologiquedans tous les cas. Tous nos patients ont reçu un traitement antituberculeux avec une bonne évolution. Mots-clés: Tuberculose, amygdale, rhinopharynx, larynx, glandes salivaires,Oreille moyenne. PMID:25815100

  14. Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1.

    Science.gov (United States)

    Jakutyte-Giraitiene, Lina; Gasiunas, Giedrius

    2016-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) together with CRISPR-associated (cas) genes form an adaptive prokaryotic immune system which provides acquired resistance against viruses and plasmids. Bacillus subtilis presently is the best-characterized laboratory model for Gram-positive bacteria and also widely used for industrial production of enzymes, vitamins and antibiotics. In this study, we show that type II-A CRISPR-Cas system from Streptococcus thermophilus can be transferred into B. subtilis and provides heterologous protection against phage infection. We engineered a heterologous host by cloning S. thermophilus Cas9 and a spacer targeting bacteriophage SPP1 into the chromosome of B. subtilis, which does not harbor its own CRISPR-Cas systems. We found that the heterologous CRISPR-Cas system is functionally active in B. subtilis and provides resistance against bacteriophage SPP1 infection. The high efficiency of the acquired immunity against phage could be useful in generation of biotechnologically important B. subtilis strains with engineered chromosomes.

  15. Graduate Education in Chemistry. The ACS Committee on Professional Training: Surveys of Programs and Participants.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    This document reports on graduate education in chemistry concerning the nature of graduate programs. Contents include: (1) "Graduate Education in Chemistry in the United States: A Snapshot from the Late Twentieth Century"; (2) "A Survey of Ph.D. Programs in Chemistry"; (4) "The Master's Degree in Chemistry"; (5) "A Survey of Ph.D. Recipients in…

  16. CAS Introduction to Accelerator Physics in Bulgaria

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    The CERN Accelerator School (CAS) and the Institute for Nuclear Research & Nuclear Energy (INRNE – Bulgarian Academy of Sciences) jointly organised a course on Introduction to Accelerators, at the Grand Hotel Varna, Bulgaria, from 19 September to 1 October, 2010.   CERN Accelerator School group photo. The course was extremely well attended with 109 participants representing 34 different nationalities, coming from countries as far away as Australia, Canada and Vietnam. The intensive programme comprised 39 lectures, 3 seminars, 4 tutorials where the students were split into three groups, a poster session where students could present their own work, and 7 hours of guided and private study. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and excellent quality of their lectures. For the first time at CAS, the CERN Director-General, Rolf Heuer, visited the school and presented a seminar entitled...

  17. Efficient gene knock-out and knock-in with transgenic Cas9 in Drosophila.

    Science.gov (United States)

    Xue, Zhaoyu; Ren, Mengda; Wu, Menghua; Dai, Junbiao; Rong, Yikang S; Gao, Guanjun

    2014-03-21

    Bacterial Cas9 nuclease induces site-specific DNA breaks using small gRNA as guides. Cas9 has been successfully introduced into Drosophila for genome editing. Here, we improve the versatility of this method by developing a transgenic system that expresses Cas9 in the Drosophila germline. Using this system, we induced inheritable knock-out mutations by injecting only the gRNA into embryos, achieved highly efficient mutagenesis by expressing gRNA from the promoter of a novel non-coding RNA gene, and recovered homologous recombination-based knock-in of a fluorescent marker at a rate of 4.5% by co-injecting gRNA with a circular DNA donor. Copyright © 2014 Xue et al.

  18. Our Surveys & Programs

    Science.gov (United States)

    Employment and Payroll Survey of Business Owners Work from Home Our statistics highlight trends in household statistics from multiple surveys. Data Tools & Apps Main American FactFinder Census Business Builder My Classification Codes (i.e., NAICS) Economic Census Economic Indicators Economic Studies Industry Statistics

  19. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells.

    Science.gov (United States)

    Liao, Hsin-Kai; Gu, Ying; Diaz, Arturo; Marlett, John; Takahashi, Yuta; Li, Mo; Suzuki, Keiichiro; Xu, Ruo; Hishida, Tomoaki; Chang, Chan-Jung; Esteban, Concepcion Rodriguez; Young, John; Izpisua Belmonte, Juan Carlos

    2015-03-10

    To combat hostile viruses, bacteria and archaea have evolved a unique antiviral defense system composed of clustered regularly interspaced short palindromic repeats (CRISPRs), together with CRISPR-associated genes (Cas). The CRISPR/Cas9 system develops an adaptive immune resistance to foreign plasmids and viruses by creating site-specific DNA double-stranded breaks (DSBs). Here we adapt the CRISPR/Cas9 system to human cells for intracellular defense against foreign DNA and viruses. Using HIV-1 infection as a model, our results demonstrate that the CRISPR/Cas9 system disrupts latently integrated viral genome and provides long-term adaptive defense against new viral infection, expression and replication in human cells. We show that engineered human-induced pluripotent stem cells stably expressing HIV-targeted CRISPR/Cas9 can be efficiently differentiated into HIV reservoir cell types and maintain their resistance to HIV-1 challenge. These results unveil the potential of the CRISPR/Cas9 system as a new therapeutic strategy against viral infections.

  20. CRISPR/Cas9 for Human Genome Engineering and Disease Research.

    Science.gov (United States)

    Xiong, Xin; Chen, Meng; Lim, Wendell A; Zhao, Dehua; Qi, Lei S

    2016-08-31

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system, a versatile RNA-guided DNA targeting platform, has been revolutionizing our ability to modify, manipulate, and visualize the human genome, which greatly advances both biological research and therapeutics development. Here, we review the current development of CRISPR/Cas9 technologies for gene editing, transcription regulation, genome imaging, and epigenetic modification. We discuss the broad application of this system to the study of functional genomics, especially genome-wide genetic screening, and to therapeutics development, including establishing disease models, correcting defective genetic mutations, and treating diseases.