WorldWideScience

Sample records for surrounding viscoelastic medium

  1. DYNAMIC DEFORMATION THE VISCOELASTIC TWOCOMPONENT MEDIUM

    Directory of Open Access Journals (Sweden)

    V. S. Polenov

    2015-01-01

    Full Text Available Summary. In the article are scope harmonious warping of the two-component medium, one component which are represent viscoelastic medium, hereditary properties which are described by the kernel aftereffect Abel integral-differential ratio BoltzmannVolterr, while second – compressible liquid. Do a study one-dimensional case. Use motion equation of two-component medium at movement. Look determination system these equalization in the form of damped wave. Introduce dimensionless coefficient. Combined equations happen to homogeneous system with complex factor relatively waves amplitude in viscoelastic component and in fluid. As a result opening system determinant receive biquadratic equation. Elastic operator express through kernel aftereffect Abel for space Fourier. With the help transformation and symbol series biquadratic equation reduce to quadratic equation. Come to the conclusion that in two-component viscoelastic medium exist two mode sonic waves. As a result solution of quadratic equation be found description advance of waves sonic in viscoelastic two-component medium, which physical-mechanical properties represent complex parameter. Velocity determination advance of sonic waves, attenuation coefficient, mechanical loss tangent, depending on characteristic porous medium and circular frequency formulas receive. Graph dependences of description advance of waves sonic from the temperature logarithm and with the fractional parameter γ are constructed.

  2. Dynamics of two-component membranes surrounded by viscoelastic media.

    Science.gov (United States)

    Komura, Shigeyuki; Yasuda, Kento; Okamoto, Ryuichi

    2015-11-01

    We discuss the dynamics of two-component fluid membranes which are surrounded by viscoelastic media. We assume that membrane-embedded proteins can diffuse laterally and induce a local membrane curvature. The mean squared displacement of a tagged membrane segment is obtained as a generalized Einstein relation. When the elasticity of the surrounding media obeys a power-law behavior in frequency, an anomalous diffusion of the membrane segment is predicted. We also consider the situation where the proteins generate active non-equilibrium forces. The generalized Einstein relation is further modified by an effective temperature that depends on the force dipole energy. The obtained generalized Einstein relations are useful for membrane microrheology experiments.

  3. Lamb's problem for a linear viscoelastic medium

    Energy Technology Data Exchange (ETDEWEB)

    Pound, Michael J.

    1988-02-01

    Lamb's problem for an elastic medium is one of the fundamental theoretical problems in mathematical seismology. It has been essential to the understanding of the basic interaction of waves with surfaces, including the production of such surface effects as Rayleigh waves and head waves. All real materials, however, exhibit some dissipation, and the combined effect of dissipation and surface interactions has not been well understood, particularly in the case of transient phenomena. In this work, the distance generated in a semi-infinite linear viscoelastic medium due to an impulsive line load applied normally to the surface is investigated. Uniform asymptotic techniques based on the method of steepest descent are developed to construct the long-time solution for the half-space. It is found that the solution for long times consists primarily of a set of small amplitude ''precursor'' signals whose properties are determined largely by the initial elastic response of the medium, and a set of much larger amplitude smooth waves. It is these smooth waves, analogous to the viscoelastic ''main'' waves of one-dimensional studies, which occupy the bulk of the analysis, and some of these signals are found to exhibit some interesting and unexpected properties. The Archenbach-Chao solid (ACS) model was selected as the material model for this study primarily because of its desirable physical and mathematical properties, but the results are applicable, both qualitatively and quantitatively, to a broad class of viscoelastic materials that exhibit initial elasticity and have bounded creep function. 103 refs., 24 figs.

  4. Fluid-particle dynamics for passive tracers advected by a thermally fluctuating viscoelastic medium

    Science.gov (United States)

    Hohenegger, Christel; McKinley, Scott A.

    2017-07-01

    Many biological fluids, like mucus and cytoplasm, have prominent viscoelastic properties. As a consequence, immersed particles exhibit subdiffusive behavior, which is to say, the variance of the particle displacement grows sublinearly with time. In this work, we propose a viscoelastic generalization of the Landau-Lifschitz Navier-Stokes fluid model and investigate the properties of particles that are passively advected by such a medium. We exploit certain exact formulations that arise from the Gaussian nature of the fluid model and introduce analysis of memory in the fluid statistics, marking an important step toward capturing fluctuating hydrodynamics among subdiffusive particles. The proposed method is spectral, meshless and is based on the numerical evaluation of the covariance matrix associated with individual fluid modes. With this method, we probe a central hypothesis of passive microrheology, a field premised on the idea that the statistics of particle trajectories can reveal fundamental information about their surrounding fluid environment.

  5. Nonlocal vibration and biaxial buckling of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.C. [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Zhang, Y.Q., E-mail: cyqzhang@zju.edu.cn [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Mechanical Structural Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Fan, L.F. [College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100084 (China)

    2017-04-11

    The general equation for transverse vibration of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between and each nanoplate subjected to in-plane edge loads is formulated on the basis of the Eringen's nonlocal elastic theory and the Kelvin model. The factors of the structural damping, medium damping, small size effect, loading ratio, and Winkler modulus and shear modulus of the medium are incorporated in the formulation. Based on the Navier's method, the analytical solutions for vibrational frequency and buckling load of the system with simply supported boundary conditions are obtained. The influences of these factors on vibrational frequency and buckling load of the system are discussed. It is demonstrated that the vibrational frequency of the system for the out-of-phase vibration is dependent upon the structural damping, small size effect and viscoelastic Pasternak medium, whereas the vibrational frequency for the in-phase vibration is independent of the viscoelastic Pasternak medium. While the buckling load of the system for the in-phase buckling case has nothing to do with the viscoelastic Pasternak medium, the buckling load for the out-of-phase case is related to the small size effect, loading ratio and Pasternak medium. - Highlights: • Vibration of double-viscoelastic-FGM-nanoplate system under in-plane edge loads is investigated. • Biaxial buckling of the system with simply supported boundary conditions is analyzed. • Explicit expression for the vibrational frequency and buckling load is obtained. • Impacts of viscoelastic Pasternak medium on vibrational frequency and buckling load are discussed. • Influences of structural damping, small size effect and loading ratio are also considered.

  6. Nonlocal vibration and biaxial buckling of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between

    Science.gov (United States)

    Liu, J. C.; Zhang, Y. Q.; Fan, L. F.

    2017-04-01

    The general equation for transverse vibration of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between and each nanoplate subjected to in-plane edge loads is formulated on the basis of the Eringen's nonlocal elastic theory and the Kelvin model. The factors of the structural damping, medium damping, small size effect, loading ratio, and Winkler modulus and shear modulus of the medium are incorporated in the formulation. Based on the Navier's method, the analytical solutions for vibrational frequency and buckling load of the system with simply supported boundary conditions are obtained. The influences of these factors on vibrational frequency and buckling load of the system are discussed. It is demonstrated that the vibrational frequency of the system for the out-of-phase vibration is dependent upon the structural damping, small size effect and viscoelastic Pasternak medium, whereas the vibrational frequency for the in-phase vibration is independent of the viscoelastic Pasternak medium. While the buckling load of the system for the in-phase buckling case has nothing to do with the viscoelastic Pasternak medium, the buckling load for the out-of-phase case is related to the small size effect, loading ratio and Pasternak medium.

  7. Identification of -SiC surrounded by relatable surrounding diamond medium using weak Raman surface phonons

    Indian Academy of Sciences (India)

    Mohan Kumar Kuntumalla; Harish Ojha; Vadali Venkata Satya Siva Srikanth

    2013-11-01

    It is difficult to detect -SiC using micro-Raman scattering, if it is surrounded by carbon medium. Here, -SiC is identified in the presence of a relatable surrounding diamond medium using subtle, but discernible Raman surface phonons. In this study, diamond/-SiC nanocomposite thin film system is considered in which nanosized -SiC crystallites are surrounded by a relatable nanodiamond medium that leads to the appearance of a weak Raman surface phonon band at about 855 cm-1. Change in the nature of the surrounding material structure and its volume content when relatable, will affect the resultant Raman response of -SiC phase as seen in the present case of diamond/-SiC nanocomposite thin films.

  8. Love wave dispersion in anisotropic visco-elastic medium

    Directory of Open Access Journals (Sweden)

    G. GIR SUBHASH

    1978-06-01

    Full Text Available The paper presents a study on Love wave propagation in a anisotropic
    visco-elastic layer overlying a rigid half space. The characteristic frequency
    equation is obtained and the variation of the wave number with frequency
    under the combined effect of visco-elasticity and anisotropy is analysed
    in detail. The results show that the effect of visco-elasticity on the
    wave is similar to that of anisotropy as long as the coefficient of anisotropy
    is less than unity.

  9. Focusing and alignment of erythrocytes in a viscoelastic medium

    Science.gov (United States)

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2017-01-01

    Viscoelastic fluid flow-induced cross-streamline migration has recently received considerable attention because this process provides simple focusing and alignment over a wide range of flow rates. The lateral migration of particles depends on the channel geometry and physicochemical properties of particles. In this study, digital in-line holographic microscopy (DIHM) is employed to investigate the lateral migration of human erythrocytes induced by viscoelastic fluid flow in a rectangular microchannel. DIHM provides 3D spatial distributions of particles and information on particle orientation in the microchannel. The elastic forces generated in the pressure-driven flows of a viscoelastic fluid push suspended particles away from the walls and enforce erythrocytes to have a fixed orientation. Blood cell deformability influences the lateral focusing and fixed orientation in the microchannel. Different from rigid spheres and hardened erythrocytes, deformable normal erythrocytes disperse from the channel center plane, as the flow rate increases. Furthermore, normal erythrocytes have a higher angle of inclination than hardened erythrocytes in the region near the side-walls of the channel. These results may guide the label-free diagnosis of hematological diseases caused by abnormal erythrocyte deformability.

  10. Three-sphere swimmer in a nonlinear viscoelastic medium

    KAUST Repository

    Curtis, Mark P.

    2013-04-10

    A simple model for a swimmer consisting of three colinearly linked spheres attached by rods and oscillating out of phase to break reciprocal motion is analyzed. With a prescribed forcing of the rods acting on the three spheres, the swimming dynamics are determined analytically in both a Newtonian Stokes fluid and a zero Reynolds number, nonlinear, Oldroyd-B viscoelastic fluid with Deborah numbers of order one (or less), highlighting the effects of viscoelasticity on the net displacement of swimmer. For instance, the model predicts that the three-sphere swimmer with a sinusoidal, but nonreciprocal, forcing cycle within an Oldroyd-B representation of a polymeric Boger fluid moves a greater distance with enhanced efficiency in comparison with its motility in a Newtonian fluid of the same viscosity. Furthermore, the nonlinear contributions to the viscoelastic constitutive relation, while dynamically nontrivial, are predicted a posteriori to have no effect on swimmer motility at leading order, given a prescribed forcing between spheres. © 2013 American Physical Society.

  11. Focusing and alignment of erythrocytes in a viscoelastic medium

    Science.gov (United States)

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2017-01-01

    Viscoelastic fluid flow-induced cross-streamline migration has recently received considerable attention because this process provides simple focusing and alignment over a wide range of flow rates. The lateral migration of particles depends on the channel geometry and physicochemical properties of particles. In this study, digital in-line holographic microscopy (DIHM) is employed to investigate the lateral migration of human erythrocytes induced by viscoelastic fluid flow in a rectangular microchannel. DIHM provides 3D spatial distributions of particles and information on particle orientation in the microchannel. The elastic forces generated in the pressure-driven flows of a viscoelastic fluid push suspended particles away from the walls and enforce erythrocytes to have a fixed orientation. Blood cell deformability influences the lateral focusing and fixed orientation in the microchannel. Different from rigid spheres and hardened erythrocytes, deformable normal erythrocytes disperse from the channel center plane, as the flow rate increases. Furthermore, normal erythrocytes have a higher angle of inclination than hardened erythrocytes in the region near the side-walls of the channel. These results may guide the label-free diagnosis of hematological diseases caused by abnormal erythrocyte deformability. PMID:28117428

  12. Temperature and stress fields produced by ultrasound-induced cavitation in a viscoelastic medium

    Science.gov (United States)

    Mancia, Lauren; Johnsen, Eric

    2016-11-01

    Ultrasound contrast agents can act as cavitation nuclei that mechanically damage surrounding tissue when they oscillate in diagnostic ultrasound. Encapsulated microbubbles have also been proposed as a means to improve the efficiency and efficacy of therapeutic ultrasound by increasing the rate of tissue heating. However, the thermal and mechanical effects of cavitation are difficult to distinguish from each other and to quantify experimentally as they often occur simultaneously. To address this challenge, we study the cavitation-induced temperature and stress fields produced by a spherical bubble oscillating in a Kelvin-Voigt viscoelastic medium with nonlinear elasticity using a model that also accounts for energy transport inside and outside the bubble. We find that the primary contribution to heating is viscous dissipation, which itself depends on both the material (viscosity) and the bubble dynamics. We examine the rate of viscous heating and the magnitude of stresses over a relevant range of tissue properties and waveform parameters to determine regimes where heating is expected to be dominant. A means of estimating the expected significance of viscous dissipation from given tissue properties and waveform parameters is proposed.

  13. Vibration of an infinite inhomogeneous transversely isotropic viscoelastic medium with cylindrical hole

    Institute of Scientific and Technical Information of China (English)

    D.P.Acharya; Indrajit Roy; P.K.Biswas

    2008-01-01

    This paper investigates the influences of higher order viscoelasticity and the inhomogeneities of the transversely isotropic elastic parameters on the disturbances in an infinite medium,caused by the presence of a transient radial force or twist on the surface of a cylindrical hole with circular cross section.Following Voigt's model for higher order viscoelasticity,the nonvanishing stress components valid for a transversely isotropic and higher order viscoelastic solid medium have been deduced in terms of radial displacement component.Considering the power law variation of elastic and viscoelastic parameters,the stress equation of motion has been developed.Solving this equation under suitable boundary conditions,due to transient forces and twists,radial displacement and relevant stress components have been determined in terms of modified Bessel functions.The problem for the presence of transient radial force has been numerically analysed.Modulations of displacement and stresses due to different order of viscoelasticity and inhomogeneity have been graphically depicted.The numerical study of the disturbance caused by the presence of twist on the surface may be similarly done but is not pursued in this paper.

  14. Fragmentation Wave in Viscoelastic Medium Containing Bubbles and Crystals

    Science.gov (United States)

    Ichihara, M.; Nakamura, K.; Takayama, K.

    2007-12-01

    We conducted fragmentation experiment using viscoelastic silicone compound with various pressure, vesicularity, crystallinity and permeability to understand the magma fragmentation in an explosive volcanic eruption. We used a vertical shock tube to generate rapid decompression. The specimen was pressurized with nitrogen very slowly so that the pores are filled with the high-pressure gas. Then the membranes separating the high- pressure part from the atmospheric pressure part are artificially ruptured, and the specimen is rapidly decompressed. The fragmentation behavior of the specimen is photographed by a high-speed video camera. The fragmentation wave velocity is measured from the video images. After each experiment, the fragments are taken out of the chamber on top of the shock tube carefully and the structures are observed. We obtained the following results from the observation of the fragmentation speed. The fragmentation speed is in the range of 20-40 m/s. Its dependence on the void fraction is not clear in the present experimental conditions with void fraction ranging from 0.33 to 0.44. It tends to be decreased by existence of crystals and increase of permeability. The larger it is, the larger is the acceleration of the fragments. We have noticed significant cavitation in the viscoelastic compound after rapid decompression. The bubbles are generated homogeneously within the compound. The cavitation occurred regardless of the initial gas-saturation condition of the compound. It was not observed with slow decompression, though the decompression amplitude is the same. The bubble nucleation depending on the decompression rate might be significant also in the volcanic processes with rapid decompression and magma fragmentation.

  15. Heat Transfer to MHD Oscillatory Viscoelastic Flow in a Channel Filled with Porous Medium

    Directory of Open Access Journals (Sweden)

    Rita Choudhury

    2012-01-01

    Full Text Available The combined effect of a transverse magnetic field and radiative heat transfer on unsteady flow of a conducting optically thin viscoelastic fluid through a channel filled with saturated porous medium and nonuniform walls temperature has been discussed. It is assumed that the fluid has small electrical conductivity and the electromagnetic force produced is very small. Closed-form analytical solutions are constructed for the problem. The effects of the radiation and the magnetic field parameters on velocity profile and shear stress for different values of the viscoelastic parameter with the combination of the other flow parameters are illustrated graphically, and physical aspects of the problem are discussed.

  16. Nonlinear thermal convection in a viscoelastic nanofluid saturated porous medium under gravity mod

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2016-06-01

    Full Text Available This paper carried out a nonlinear thermal convection in a porous medium saturated with viscoelastic nanofluid under vibrations. The Darcy model has been used for the porous medium, while the nanofluid layer incorporates the effect of Brownian motion along with thermophoresis. An Oldroyd-B type constitutive equation was used to describe the rheological behavior of viscoelastic nanofluids. The non-uniform vertical vibrations of the system, which can be realized by oscillating the system vertically, is considered to vary sinusoidally with time. In order to find the heat and mass transports for unsteady state, a nonlinear analysis, using a minimal representation of the truncated Fourier series of two terms, has been performed. Effect of various parameters has been investigated on heat and mass transport and then presented graphically. It is found that gravity modulation can be used effectively to regulate either heat or mass transports in the system.

  17. Propagation of acoustic wave in viscoelastic medium permeated with air bubbles

    Institute of Scientific and Technical Information of China (English)

    Liang Bin; Zhu Zhe-Min; Cheng Jian-Chun

    2006-01-01

    Based on the modification of the radial pulsation equation of an individual bubble, an effective medium method (EMM) is presented for studying propagation of linear and nonlinear longitudinal acoustic waves in viscoelastic medium permeated with air bubbles. A classical theory developed previously by Gaunaurd (Gaunaurd GC and (U)berall H, J. Acoust. Soc. Am., 1978; 63: 1699-1711) is employed to verify the EMM under linear approximation by comparing the dynamic (i.e. frequency-dependent) effective parameters, and an excellent agreement is obtained. The propagation of longitudinal waves is hereby studied in detail. The results illustrate that the nonlinear pulsation of bubbles serves as the source of second harmonic wave and the sound energy has the tendency to be transferred to second harmonic wave. Therefore the sound attenuation and acoustic nonlinearity of the viscoelastic matrix are remarkably enhanced due to the system's resonance induced by the existence of bubbles.

  18. Gravitational Instability of Cylindrical Viscoelastic Medium Permeated with Non Uniform Magnetic Field and Rotation

    Indian Academy of Sciences (India)

    Joginder Singh Dhiman; Rajni Sharma

    2016-03-01

    The self-gravitating instability of an infinitely extending axisymmetric cylinder of viscoelastic medium permeated with non uniform magnetic field and rotation is studied for both the strongly coupled plasma (SCP) and weakly coupled plasma (WCP). The non uniform magnetic field and rotation are considered to act along the axial direction of the cylinder. The normal mode method of perturbations is applied to obtain the dispersion relation. The condition for the onset of gravitational instability has been derived from the dispersion relation under both strongly and weakly coupling limits. It is found that the Jeans criterion for gravitational collapse gets modified due to the presence of shear and bulk viscosities for the SCP, however, the magnetic field and rotation whether uniform or non uniform has no effect on the Jeans criterion of an infinitely extending axisymmetric cylinder of a self-gravitating viscoelastic medium.

  19. The nonlinear propagation of acoustic waves in a viscoelastic medium containing cylindrical micropores

    Institute of Scientific and Technical Information of China (English)

    Feng Yu-Lin; Liu Xiao-Zhou; Liu Jie-Hui; Ma Li

    2009-01-01

    Based on an equivalent medium approach,this paper presents a model describing the nonlinear propagation of acoustic waves in a viscoelastic medium containing cylindrical micropores. The influences of pores' nonlinear oscillations on sound attenuation,sound dispersion and an equivalent acoustic nonlinearity parameter are discussed. The calculated results show that the attenuation increases with an increasing volume fraction of mieropores. The peak of sound velocity and attenuation occurs at the resonant frequency of the micropores while the peak of the equivalent acoustic nonlinearity parameter occurs at the half of the resonant frequency of the micropores. Furthermore,multiple scattering has been taken into account,which leads to a modification to the effective wave number in the equivalent medium approach. We find that these linear and nonlinear acoustic parameters need to be corrected when the volume fraction of micropores is larger than 0.1%.

  20. On the propagation of transient waves in a viscoelastic Bessel medium

    Science.gov (United States)

    Colombaro, Ivano; Giusti, Andrea; Mainardi, Francesco

    2017-06-01

    In this paper, we discuss the uniaxial propagation of transient waves within a semi-infinite viscoelastic Bessel medium. First, we provide the analytic expression for the response function of the material as we approach the wave front. To do so, we take profit of a revisited version of the so called Buchen-Mainardi algorithm. Secondly, we provide an analytic expression for the long-time behavior of the response function of the material. This result is obtained by means of the Tauberian theorems for the Laplace transform. Finally, we relate the obtained results to a peculiar model for fluid-filled elastic tubes.

  1. Propagation of waves in the layer of a thermo-viscoelastic transversely isotropic medium

    Directory of Open Access Journals (Sweden)

    Gupta R.R.

    2016-02-01

    Full Text Available The article is presented to enhance our knowledge about the propagation of Lamb waves in the layer of a viscoelastic transversely isotropic medium in the context of thermoelasticity with GN theory of type-II and III. Secular equations for symmetric and skew-symmetric modes of wave propagation in completely separate terms are derived. The amplitudes of displacements and temperature distribution were also obtained. Finally, the numerical solution was carried out for cobalt and the dispersion curves, amplitudes of displacements and temperature distribution for symmetric and skew-symmetric wave modes are presented to evince the effect of anisotropy. Some particular cases are also deduced.

  2. Gravity modulation of thermal instability in a viscoelastic fluid saturated anisotropic porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Bhadauria, Beer S. [Babasaheb Bhimrao Ambedkar Univ., Lucknow (India). Dept. of Applied Mathematics and Statistics; Banaras Hindu Univ., Varanasi (India). Dept. of Mathematics; Srivastava, Atul K. [Banaras Hindu Univ., Varanasi (India). Dept. of Mathematics; Sacheti, Nirmal C.; Chandran, Pallath [Sultan Qaboos Univ., Muscat (Oman). Dept. of Mathematics

    2012-01-15

    The present paper deals with a thermal instability problem in a viscoelastic fluid saturating an anisotropic porous medium under gravity modulation. To find the gravity modulation effect, the gravity field is considered in two parts: a constant part and an externally imposed time-dependent periodic part. The time-dependent part of the gravity field, which can be realized by shaking the fluid, has been represented by a sinusoidal function. Using Hill's equation and the Floquet theory, the convective threshold has been obtained. It is found that gravity modulation can significantly affect the stability limits of the system. Further, we find that there is a competition between the synchronous and subharmonic modes of convection at the onset of instability. Effects of various parameters on the onset of instability have also been discussed. (orig.)

  3. Vibration and instability of a viscous-fluid-conveying single-walled carbon nanotube embedded in a visco-elastic medium

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, P; Farshidianfar, A [Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Taherian, M M, E-mail: payam.soltani@gmail.co [Department of Mechanical Engineering, Islamic Azad University-Semnan Branch, Semnan (Iran, Islamic Republic of)

    2010-10-27

    In this study, for the first time, the transverse vibrational model of a viscous-fluid-conveying single-walled carbon nanotube (SWCNT) embedded in biological soft tissue is developed. Nonlocal Euler-Bernoulli beam theory has been used to investigate fluid-induced vibration of the SWCNT while visco-elastic behaviour of the surrounding tissue is simulated by the Kelvin-Voigt model. The results indicate that the resonant frequencies and the critical flow velocity at which structural instability of nanotubes emerges are significantly dependent on the properties of the medium around the nanotube, the boundary conditions, the viscosity of the fluid and the nonlocal parameter. Detailed results are demonstrated for the dependence of damping and elastic properties of the medium on the resonant frequencies and the critical flow velocity. Three standard boundary conditions, namely clamped-clamped, clamped-pinned and pinned-pinned, are applied to study the effect of the supported end conditions. Furthermore, it is found that the visco-elastic foundation causes an obvious reduction in the critical velocity in comparison with the elastic foundation, in particular for a compliant medium, pinned-pinned boundary condition, high viscosity of the fluid and small values of the nonlocal coefficient.

  4. Surface response of a viscoelastic medium to subsurface acoustic sources with application to medical diagnosis

    Science.gov (United States)

    Royston, Thomas J.; Yazicioglu, Yigit; Loth, Francis

    2003-02-01

    The response at the surface of an isotropic viscoelastic medium to buried fundamental acoustic sources is studied theoretically, computationally and experimentally. Finite and infinitesimal monopole and dipole sources within the low audible frequency range (40-400 Hz) are considered. Analytical and numerical integral solutions that account for compression, shear and surface wave response to the buried sources are formulated and compared with numerical finite element simulations and experimental studies on finite dimension phantom models. It is found that at low audible frequencies, compression and shear wave propagation from point sources can both be significant, with shear wave effects becoming less significant as frequency increases. Additionally, it is shown that simple closed-form analytical approximations based on an infinite medium model agree well with numerically obtained ``exact'' half-space solutions for the frequency range and material of interest in this study. The focus here is on developing a better understanding of how biological soft tissue affects the transmission of vibro-acoustic energy from biological acoustic sources below the skin surface, whose typical spectral content is in the low audible frequency range. Examples include sound radiated from pulmonary, gastro-intestinal and cardiovascular system functions, such as breath sounds, bowel sounds and vascular bruits, respectively.

  5. Analysis of Magneto-hydrodynamics Flow and Heat Transfer of a Viscoelastic Fluid through Porous Medium in Wire Coating Analysis

    OpenAIRE

    Zeeshan Khan; Muhammad Altaf Khan; Saeed Islam; Bilal Jan; Fawad Hussain; Haroon Ur Rasheed; Waris Khan

    2017-01-01

    Wire coating process is a continuous extrusion process for primary insulation of conducting wires with molten polymers for mechanical strength and protection in aggressive environments. Nylon, polysulfide, low/high density polyethylene (LDPE/HDPE) and plastic polyvinyl chloride (PVC) are the common and important plastic resin used for wire coating. In the current study, wire coating is performed using viscoelastic third grade fluid in the presence of applied magnetic field and porous medium. ...

  6. ANALYSIS OF FREE TORSIONAL VIBRATION IN CARBON NANOTUBES EMBEDDED IN A VISCOELASTIC MEDIUM

    Directory of Open Access Journals (Sweden)

    Mustafa Arda

    2015-05-01

    Full Text Available Carbon Nanotubes (CNTs have a great potential in many areas like electromechanical systems, medical application, pharmaceutical industry etc. The surrounding physical environment of CNT is very important on torsional vibration behavior of CNT. Damping and elastic effect of medium to the torsional vibration of CNTs are investigated in the present study. Governing equation of motion of nanotube is obtained using Eringen’s Nonlocal Elasticty Theory. The effects of some parameters like nonlocal parameter, stiffness parameter and nanotube length are studied in detail.

  7. A review on the systematic formulation of 3D multiparameter full waveform inversion in viscoelastic medium

    Science.gov (United States)

    Yang, Pengliang; Brossier, Romain; Métivier, Ludovic; Virieux, Jean

    2016-07-01

    In this paper we study 3D multiparameter full waveform inversion (FWI) in viscoelastic media based on the generalized Maxwell/Zener body (GMB/GZB) including arbitrary number of attenuation mechanisms. We present a frequency-domain energy analysis to establish the stability condition of a full anisotropic viscoelastic system, according to zero-valued boundary condition and the elastic-viscoelastic correspondence principle: the real-valued stiffness matrix becomes a complex-valued one in Fourier domain when seismic attenuation is taken into account. We develop a least-squares optimization approach to linearly relate the quality factor with the anelastic coefficients by estimating a set of constants which are independent of the spatial coordinates, which supplies an explicit incorporation of the parameter Q in the general viscoelastic wave equation. By introducing the Lagrangian multipliers into the matrix expression of the wave equation with implicit time integration, we build a systematic formulation of multiparameter full waveform inversion for full anisotropic viscoelastic wave equation, while the equivalent form of the state and adjoint equation with explicit time integration is available to be resolved efficiently. In particular, this formulation lays the foundation for the inversion of the parameter Q in the time domain with full anisotropic viscoelastic properties. In the 3D isotropic viscoelastic settings, the anelastic coefficients and the quality factors using bulk and shear moduli parameterization can be related to the counterparts using P- and S- velocity. Gradients with respect to any other parameter of interest can be found by chain rule. Pioneering numerical validations as well as the real applications of this most generic framework will be carried out to disclose the potential of viscoelastic FWI when adequate high performance computing resources and the field data are available.

  8. A review on the systematic formulation of 3-D multiparameter full waveform inversion in viscoelastic medium

    Science.gov (United States)

    Yang, Pengliang; Brossier, Romain; Métivier, Ludovic; Virieux, Jean

    2016-10-01

    In this paper, we study 3-D multiparameter full waveform inversion (FWI) in viscoelastic media based on the generalized Maxwell/Zener body including arbitrary number of attenuation mechanisms. We present a frequency-domain energy analysis to establish the stability condition of a full anisotropic viscoelastic system, according to zero-valued boundary condition and the elastic-viscoelastic correspondence principle: the real-valued stiffness matrix becomes a complex-valued one in Fourier domain when seismic attenuation is taken into account. We develop a least-squares optimization approach to linearly relate the quality factor with the anelastic coefficients by estimating a set of constants which are independent of the spatial coordinates, which supplies an explicit incorporation of the parameter Q in the general viscoelastic wave equation. By introducing the Lagrangian multipliers into the matrix expression of the wave equation with implicit time integration, we build a systematic formulation of multiparameter FWI for full anisotropic viscoelastic wave equation, while the equivalent form of the state and adjoint equation with explicit time integration is available to be resolved efficiently. In particular, this formulation lays the foundation for the inversion of the parameter Q in the time domain with full anisotropic viscoelastic properties. In the 3-D isotropic viscoelastic settings, the anelastic coefficients and the quality factors using bulk and shear moduli parametrization can be related to the counterparts using P and S velocity. Gradients with respect to any other parameter of interest can be found by chain rule. Pioneering numerical validations as well as the real applications of this most generic framework will be carried out to disclose the potential of viscoelastic FWI when adequate high-performance computing resources and the field data are available.

  9. Stability Analysis and Internal Heating Effect on Oscillatory Convection in a Viscoelastic Fluid Saturated Porous Medium Under Gravity Modulation

    Directory of Open Access Journals (Sweden)

    Bhadauria B.S.

    2016-12-01

    Full Text Available In this paper, we investigate the combined effect of internal heating and time periodic gravity modulation in a viscoelastic fluid saturated porous medium by reducing the problem into a complex non-autonomous Ginzgburg-Landau equation. Weak nonlinear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number is obtained in terms of the amplitude for oscillatory mode of convection. The influence of viscoelastic parameters on heat transfer has been discussed. Gravity modulation is found to have a destabilizing effect at low frequencies and a stabilizing effect at high frequencies. Finally, it is found that overstability advances the onset of convection, more with internal heating. The conditions for which the complex Ginzgburg-Landau equation undergoes Hopf bifurcation and the amplitude equation undergoes supercritical pitchfork bifurcation are studied.

  10. Nonlinear shear wave in a non Newtonian visco-elastic medium

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, D.; Janaki, M. S.; Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Chaudhuri, M. [Max-Planck-Institut fuer extraterrestrische Physik, 85741 Garching (Germany)

    2012-06-15

    An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau-Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries equation. This model has application from laboratory to astrophysical plasmas as well as in biological systems.

  11. Nonlinear Shear Wave in a Non Newtonian Visco-elastic Medium

    CERN Document Server

    Janaki, D Banerjee M S; Chaudhuri, M

    2013-01-01

    An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic(GH) model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau -Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam (FPU) problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries (mKdV) equation. This model has application from laboratory to astrophysical plasmas as well as biological systems.

  12. Analysis of Magneto-hydrodynamics Flow and Heat Transfer of a Viscoelastic Fluid through Porous Medium in Wire Coating Analysis

    Directory of Open Access Journals (Sweden)

    Zeeshan Khan

    2017-05-01

    Full Text Available Wire coating process is a continuous extrusion process for primary insulation of conducting wires with molten polymers for mechanical strength and protection in aggressive environments. Nylon, polysulfide, low/high density polyethylene (LDPE/HDPE and plastic polyvinyl chloride (PVC are the common and important plastic resin used for wire coating. In the current study, wire coating is performed using viscoelastic third grade fluid in the presence of applied magnetic field and porous medium. The governing equations are first modeled and then solved analytically by utilizing the homotopy analysis method (HAM. The convergence of the series solution is established. A numerical technique called ND-solve method is used for comparison and found good agreement. The effect of pertinent parameters on the velocity field and temperature profile is shown with the help of graphs. It is observed that the velocity profiles increase as the value of viscoelastic third grade parameter β increase and decrease as the magnetic parameter M and permeability parameter K increase. It is also observed that the temperature profiles increases as the Brinkman number B r , permeability parameter K , magnetic parameter M and viscoelastic third grade parameter (non-Newtonian parameter β increase.

  13. Hydromagnetic Flow and Heat Transfer over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid with Porous Medium.

    Science.gov (United States)

    Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer

    2015-01-01

    An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number.

  14. Hydromagnetic Flow and Heat Transfer over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid with Porous Medium

    Science.gov (United States)

    Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer

    2015-01-01

    An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number. PMID:26657931

  15. Hydromagnetic Flow and Heat Transfer over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid with Porous Medium.

    Directory of Open Access Journals (Sweden)

    Sami Ullah Khan

    Full Text Available An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number.

  16. $\\gamma$-Ray Burst Afterglows Effects of Radiative Corrections and Nonuniformity of the Surrounding Medium

    CERN Document Server

    Dai, Z G

    1998-01-01

    The afterglow of a gamma-ray burst (GRB) is commonly thought to be due to continuous deceleration of a relativistically expanding fireball in the surrounding medium. Assuming that the expansion of the fireball is adiabatic and that the density of the medium is a power-law function of shock radius, viz., $n_{ext}\\propto R^{-k}$, we analytically study the effects of the first-order radiative correction and the nonuniformity of the medium on a GRB afterglow. We first derive a new relation among the observed time, the shock radius and the fireball's Lorentz factor: $t_\\oplus=R/4(4-k)\\gamma^2c$, and also derive a new relation among the comoving time, the shock radius and the fireball's Lorentz factor: $t_{co}=2R/(5-k)\\gamma c$. We next study the evolution of the fireball by using the analytic solution of Blandford and McKee (1976). The radiation losses may not significantly influence this evolution. We further derive new scaling laws both between the X-ray flux and observed time and between the optical flux and ob...

  17. Quasars Probing Quasars VII. The Pinnacle of the Cool Circumgalactic Medium Surrounds Massive z~2 Galaxies

    CERN Document Server

    Prochaska, J Xavier; Hennawi, Joseph F

    2014-01-01

    We survey the incidence and absorption strength of the metal-line transitions CII 1334 and CIV from the circumgalactic medium (CGM) surrounding z~2 quasars, which act as signposts for massive dark matter halos M_halo~10^12.5 Msun. On scales of the virial radius (Mvir~160kpc), we measure a high covering fraction fC=0.73+/-0.10 to strong CII absorption (rest equivalent width W1334>0.2A), implying a massive reservoir of cool (T~10^4K) metal enriched gas. We conservatively estimate a metal mass exceeding 10^8 Msun. We propose these metals trace enrichment of the incipient intragroup/intracluster medium that these halos eventually inhabit. This cool CGM around quasars is the pinnacle amongst galaxies observed at all epochs, as regards covering fraction and average equivalent width of HI Lya and low-ion metal absorption. We argue that the properties of this cool CGM primarily reflect the halo mass, and that other factors such as feedback, star-formation rate, and accretion from the intergalactic medium are secondar...

  18. Onset of Convection in Porous Medium Saturated by Viscoelastic Nanofluid: More Realistic Result

    Directory of Open Access Journals (Sweden)

    A. Srivastava

    2016-01-01

    Full Text Available The present paper deals with the linear thermal instability analysis of viscoelastic nanofluid saturated porous layer. We consider a set of new boundary conditions for the nanoparticle fraction, which is physically more realistic. The new boundary condition is based on the assumption that the nanoparticle fraction adjusts itself so that the nanoparticle flux is zero on the boundaries. We use Oldroyd-B type viscoelastic fluid that incorporates the effects of Brownian motion and thermophoresis. Expressions for stationary and oscillatory modes of convection have been obtained in terms of the Rayleigh number, which are found to be functions of various parameters. The numerical results have been presented through graphs.

  19. The interplay between the young stellar super cluster Westerlund 1, and the surrounding interstellar medium

    Directory of Open Access Journals (Sweden)

    Carrasco L.

    2012-02-01

    Full Text Available We analyze the multi-band (CO, HI and Spitzer maps, large-scale (150 pc gaseous structure around Westerlund 1, the most massive known superstar cluster in the Milky Way, with the intention of exploring the effect of feedback from massive stars in this young (age < 5 Myr cluster on the surrounding interstellar medium. We find no traces of the parental molecular cloud in the immediate vicinity of the cluster, instead this volume is partially filled by HI gas. On the other hand, there are two giant molecular clouds, both moving away from the cluster at 5–10 km s−1, at distances of around 50–150 pc. There are several ultra-compact HII regions associated with these giant molecular clouds. All these events suggest that the cluster has played an important role in re-structuring the ISM, in the form of ejecting the molecular gas, as well as triggering secondary star formation.

  20. Rayleigh Waves in Generalized Magneto-Thermo-Viscoelastic Granular Medium under the Influence of Rotation, Gravity Field, and Initial Stress

    Directory of Open Access Journals (Sweden)

    A. M. Abd-Alla

    2011-01-01

    Full Text Available The surface waves propagation in generalized magneto-thermo-viscoelastic granular medium subjected to continuous boundary conditions has been investigated. In addition, it is also subjected to thermal boundary conditions. The solution of the more general equations are obtained for thermoelastic coupling. The frequency equation of Rayleigh waves is obtained in the form of a determinant containing a term involving the coefficient of friction of a granular media which determines Rayleigh waves velocity as a real part and the attenuation coefficient as an imaginary part, and the effects of rotation, magnetic field, initial stress, viscosity, and gravity field on Rayleigh waves velocity and attenuation coefficient of surface waves have been studied in detail. Dispersion curves are computed numerically for a specific model and presented graphically. Some special cases have also been deduced. The results indicate that the effect of rotation, magnetic field, initial stress, and gravity field is very pronounced.

  1. Wave propagation in a fractional viscoelastic Andrade medium: diffusive approximation and numerical modeling

    CERN Document Server

    Jazia, Abderrahmin Ben; Bellis, Cédric

    2013-01-01

    This study focuses on the numerical modeling of wave propagation in fractionally-dissipative media. These viscoelastic models are such that the attenuation is frequency dependent and follows a power law with non-integer exponent. As a prototypical example, the Andrade model is chosen for its simplicity and its satisfactory fits of experimental flow laws in rocks and metals. The corresponding constitutive equation features a fractional derivative in time, a non-local term that can be expressed as a convolution product which direct implementation bears substantial memory cost. To circumvent this limitation, a diffusive representation approach is deployed, replacing the convolution product by an integral of a function satisfying a local time-domain ordinary differential equation. An associated quadrature formula yields a local-in-time system of partial differential equations, which is then proven to be well-posed. The properties of the resulting model are also compared to those of the original Andrade model. The...

  2. Numerical analysis of road pavement thermal deformability, based on Biot viscoelastic model of porous medium

    Science.gov (United States)

    Bartlewska-Urban, Monika; Zombroń, Marek; Strzelecki, Tomasz

    2016-03-01

    The following study presents numerical calculations for establishing the impact of temperature changes on the process of distortion of bi-phase medium represented using Biot consolidation equations with Kelvin-Voigt rheological skeleton presented, on the example of thermo-consolidation of a pavement of expressway S17. We analyzed the behavior of the expressway under the action of its own weight, dynamic load caused by traffic and temperature gradient. This paper presents the application of the Biot consolidation model with the Kelvin-Voigt skeleton rheological characteristics and the influence of temperature on the deformation process is taken into account. A three-dimensional model of the medium was created describing the thermal consolidation of a porous medium. The 3D geometrical model of the area under investigation was based on data obtained from the land surveying and soil investigation of a 200 m long section of the expressway and its shoulders.

  3. Hall Effect on Bénard Convection of Compressible Viscoelastic Fluid through Porous Medium

    Directory of Open Access Journals (Sweden)

    Mahinder Singh

    2013-01-01

    Full Text Available An investigation made on the effect of Hall currents on thermal instability of a compressible Walter’s B′ elasticoviscous fluid through porous medium is considered. The analysis is carried out within the framework of linear stability theory and normal mode technique. For the case of stationary convection, Hall currents and compressibility have postponed the onset of convection through porous medium. Moreover, medium permeability hasten postpone the onset of convection, and magnetic field has duel character on the onset of convection. The critical Rayleigh numbers and the wave numbers of the associated disturbances for the onset of instability as stationary convection have been obtained and the behavior of various parameters on critical thermal Rayleigh numbers has been depicted graphically. The magnetic field, Hall currents found to introduce oscillatory modes, in the absence of these effects the principle of exchange of stabilities is valid.

  4. Viscoelastic wave propagation in the viscoelastic single walled carbon nanotubes based on nonlocal strain gradient theory

    Science.gov (United States)

    Tang, Yugang; Liu, Ying; Zhao, Dong

    2016-10-01

    In this paper, the viscoelastic wave propagation in an embedded viscoelastic single-walled carbon nanotube (SWCNT) is studied based on the nonlocal strain gradient theory. The characteristic equation for the viscoelastic wave in SWCNTs is derived. The emphasis is placed on the influence of the tube diameter on the viscoelastic wave dispersion. A blocking diameter is observed, above which the wave could not propagate in SWCNTs. The results show that the blocking diameter is greatly dependent on the damping coefficient, the nonlocal and the strain gradient length scale parameters, as well as the Winkler modulus of the surrounding elastic medium. These findings may provide a prospective application of SWCNTs in nanodevices and nanocomposites.

  5. Quasars Probing Quasars VIII. The Physical Properties of the Cool Circumgalactic medium Surrounding z ~ 2-3 Massive Galaxies

    CERN Document Server

    Lau, Marie Wingyee; Hennawi, Joseph F

    2015-01-01

    We characterize the physical properties of the cool T ~ 10^4 K circumgalactic medium surrounding z ~ 2-3 quasar host galaxies, which are predicted to evolve into present day massive ellipticals. Using a statistical sample of 14 quasar pairs with projected separation 100 cm^-3 and subparsec scale gas clumps.

  6. A New Approach for Studying Nonlinear Dynamic Response of a Thin Plate with Internal Resonance in a Fractional Viscoelastic Medium

    Directory of Open Access Journals (Sweden)

    Yury A. Rossikhin

    2015-01-01

    Full Text Available In the previous analysis, the dynamic behaviour of a nonlinear plate embedded into a fractional derivative viscoelastic medium has been studied by the method of multiple time scales under the conditions of the internal resonances two-to-one and one-to-one, as well as the internal combinational resonances for the case when the linear parts of nonlinear equations of motion occur to be coupled. A new approach proposed in this paper allows one to uncouple the linear parts of equations of motion of the plate, while the same method, the method of multiple time scales, has been utilized for solving nonlinear equations. The influence of viscosity on the energy exchange mechanism between interacting nonlinear modes has been analyzed. It has been shown that for some internal resonances there exist such particular cases when it is possible to obtain two first integrals, namely, the energy integral and the stream function, which allows one to reduce the problem to the calculation of elliptic integrals. The new approach enables one to solve the problems of vibrations of thin bodies more efficiently.

  7. On the Onset of Thermal Convection in a Layer of Oldroydian Visco-Elastic Fluid Saturated by Brinkman–Darcy Porous Medium

    Directory of Open Access Journals (Sweden)

    Chand Ramesh

    2015-12-01

    Full Text Available Thermal instability in a horizontal layer of Oldroydian visco-elastic fluid in a porous medium is investigated. For porous medium the Brinkman–Darcy model is considered. A linear stability analysis based upon perturbation method and normal mode technique is used to find solution of the fluid layer confined between two free-free boundaries. The onset criterion for stationary and oscillatory convection is derived analytically. The influence of the Brinkman–Darcy, Prandtl–Darcy number, stress relaxation parameter on the stationary and oscillatory convection is studied both analytically and graphically. The sufficient condition for the validity of PES has also been derived.

  8. Subwavelength imaging of sparse broadband sources surrounded by an open disordered medium from a single antenna

    CERN Document Server

    Li, Lianlin; Cui, Tie Jun

    2014-01-01

    In this letter we study the subwavelength imaging of sparse broadband sources inside a disordered medium by processing the data acquired by a single antenna. A mathematical model has been developed for solving such problem based on the idea of sparse reconstruction. We show that the strongly disordered medium can serves as an efficient apparatus for compressive measurement, which shifts the complexity of devising compressive sensing (CS) hardware from the design, fabrication and electronic control. The proposed method and associated results can find applications in several imaging disciplines, such as optics, THz, RF or ultrasound imaging.

  9. Effect of synthesis conditions and surrounding medium on luminescence properties of YVO4:Eu3+nanopowders

    Institute of Scientific and Technical Information of China (English)

    EV Golyeva; DV Tolstikova; IE Kolesnikov; MD Mikhailov

    2015-01-01

    Nanocrystalline yttrium vanadate doped with europium ions powders were synthesized via sol-gel method based on decomposition of metal-polymer complex. X-ray diffraction analysis showed that samples had pure tetragonal phase without any impurities. Scanning electron microscopy and static light scattering technique were used to study morphology and size of prepared nanoparticles. Average diameter of the nanoparticles was about 40 nm. The changes in structural and luminescence properties were observed as a function of the first and second calcination temperature. The optimal conditions for synthesis of nanoparticles were determined asТ1=500 °С, t1=1 h;Т2=950 °С, t2=1.5 h. The effect of different media surrounding the nanoparticles on their luminescence properties and lifetime was investigated and discussed in terms of effective refractive index. It was found that the observed lifetime of YVO4:Eu3+ 5 at.% nanophosphor was decreased from 0.64 ms in air (nmed=1) to 0.45 ms in chalcogenide glass As39S61 (nmed=2.39).

  10. EFFECT OF SLIP CONDITIONS AND HALL CURRENT ON UNSTEADY MHD FLOW OF A VISCOELASTIC FLUID PAST AN INFINITE VERTICAL POROUS PLATE THROUGH POROUS MEDIUM

    Directory of Open Access Journals (Sweden)

    RAKESH KUMAR,

    2011-04-01

    Full Text Available The purpose of this paper is to present a theoretical analysis of an unsteady hydromagnetic free convection flow of viscoelastic fluid (Walter’s B’ past an infinite vertical porous flat plate through porous medium. The temperature is assumed to be oscillating with time and the effect of the Hall current is taken into account. Assuming constant suction at the plate, closed form solutions have been obtained for velocity and temperature profiles. The effect of the various parameters, entering into the problem, on the primary, secondary velocity profiles, the axial and transverse components of skin-friction are shown graphically followed by quantitative discussion.

  11. Crustal Anisotropy Across Eastern Tibet and Surroundings Modeled as a Depth-Dependent Tilted Hexagonally Symmetric Medium

    Science.gov (United States)

    Xie, Jiayi; Ritzwoller, Michael H.; Shen, W.; Wang, Weitao

    2017-01-01

    SUMMARYTwo types of surface wave anisotropy are observed regularly by seismologists but are only rarely interpreted jointly: apparent radial anisotropy, which is the difference in propagation speed between horizontally and vertically polarized waves inferred from Love and Rayleigh waves, and apparent azimuthal anisotropy, which is the directional dependence of surface wave speeds (usually Rayleigh waves). We show that a new data set of Love and Rayleigh wave isotropic phase speeds and Rayleigh wave azimuthal anisotropy observed within and surrounding eastern Tibet can be explained simultaneously by modeling the crust as a depth-dependent tilted hexagonally symmetric (THS) medium. We specify the THS medium with depth-dependent hexagonally symmetric elastic tensors tilted and rotated through dip and strike angles and estimate these quantities using a Bayesian Monte Carlo inversion to produce a 3-D model of the crust and uppermost mantle on a 0.5°x0.5° spatial grid. In the interior of eastern Tibet and in the Yunnan-Guizhou plateau, we infer a steeply dipping THS upper crustal medium overlying a shallowly dipping THS medium in the middle-to-lower crust. Such vertical stratification of anisotropy may reflect a brittle to ductile transition in which shallow fractures and faults control upper crustal anisotropy and the crystal preferred orientation of anisotropic (perhaps micaceous) minerals governs the anisotropy of the deeper crust. In contrast, near the periphery of the Tibetan Plateau the anisotropic medium is steeply dipping throughout the entire crust, which may be caused by the reorientation of the symmetry axes of deeper crustal anisotropic minerals as crustal flows are rotated near the borders of Tibet.

  12. Effect of thermal radiation and Hall current on heat and mass transfer of unsteady MHD flow of a viscoelastic micropolar fluid through a porous medium

    Directory of Open Access Journals (Sweden)

    B.I. Olajuwon

    2014-12-01

    Full Text Available Heat and mass transfer effects on unsteady flow of a viscoelastic micropolar fluid over an infinite moving permeable plate in a saturated porous medium in the presence of a transverse magnetic field with Hall effect and thermal radiation are studied. The governing system of partial differential equations is transformed to dimensionless equations using dimensionless variables. The dimensionless equations are then solved analytically using perturbation technique to obtain the expressions for velocity, microrotation, temperature and concentration. With the help of graphs, the effects of magnetic field parameter M, thermal radiation parameter Nr, Hall current parameter m, K, viscoelastic parameter a, and slip parameter h on the velocity, microrotation, temperature and concentration fields within the boundary layer are discussed. The result showed that increase in Nr and m increases translational velocity across the boundary layer while (a decreases translational velocity in the vicinity of the plate but the reverse happens when away from the plate. As h increases the translational velocity across the boundary layer increases. The higher the values of Nr, the higher the micro-rotational velocity effect while m lowers it. Also the effects n, a, m, Nr, Pr and Sc on the skin friction coefficient, Nusselt number and Sherwood numbers are presented numerically in tabular form. The result also revealed that increase in n reduces the skin friction coefficient. Pr enhances the rate of heat transfer while Sc enhances the rate of mass transfer.

  13. An analytic, Fourier domain description of shear wave propagation in a viscoelastic medium using asymmetric Gaussian sources.

    Science.gov (United States)

    Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R

    2015-08-01

    Recent measurements of shear wave propagation in viscoelastic materials have been analyzed by constructing the two-dimensional Fourier transform (2D-FT) of the spatial-temporal shear wave signal and using an analysis procedure derived under the assumption the wave is described as a plane wave, or as the asymptotic form of a wave expanding radially from a cylindrically symmetric source. This study presents an exact, analytic expression for the 2D-FT description of shear wave propagation in viscoelastic materials following asymmetric Gaussian excitations and uses this expression to evaluate the bias in 2D-FT measurements obtained using the plane or cylindrical wave assumptions. A wide range of biases are observed depending on specific values of frequency, aspect ratio R of the source asymmetry, and material properties. These biases can be reduced significantly by weighting the shear wave signal in the spatial domain to correct for the geometric spreading of the shear wavefront using a factor of x(p). The optimal weighting power p is found to be near the theoretical value of 0.5 for the case of a cylindrical source with R = 1, and decreases for asymmetric sources with R > 1.

  14. Heat transfer in MHD flow of dusty viscoelastic (Walters’ liquid model-B) stratified fluid in porous medium under variable viscosity

    Indian Academy of Sciences (India)

    Om Prakash; Devendra Kumar; Y K Dwivedi

    2012-12-01

    The paper investigates the effects of heat transfer in MHD flow of viscoelastic stratified fluid in porous medium on a parallel plate channel inclined at an angle . A laminar convection flow for incompressible conducting fluid is considered. It is assumed that the plates are kept at different temperatures which decay with time. The partial differential equations governing the flow are solved by perturbation technique. Expressions for the velocity of fluid and particle phases, temperature field, Nusselt number, skin friction and flow flux are obtained within the channel. The effects of various parameters like stratification factor, magnetic field parameter, Prandtl number on temperature field, heat transfer, skin friction, flow flux, velocity for both the fluid and particle phases are displayed through graphs and discussed numerically.

  15. Quasars probing quasars. VII. The pinnacle of the cool circumgalactic medium surrounds massive z ∼ 2 galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Prochaska, J. Xavier; Lau, Marie Wingyee [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Hennawi, Joseph F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69115 Heidelberg (Germany)

    2014-12-01

    We survey the incidence and absorption strength of the metal-line transitions C II 1334 and C IV 1548 from the circumgalactic medium (CGM) surrounding z ∼ 2 quasars, which act as signposts for massive dark matter halos M {sub halo} ≈ 10{sup 12.5} M {sub ☉}. On scales of the virial radius (r {sub vir} ≈ 160 kpc), we measure a high covering fraction f{sub C} = 0.73 ± 0.10 to strong C II 1334 absorption (rest equivalent width W {sub 1334} ≥ 0.2 Å), implying a massive reservoir of cool (T ∼ 10{sup 4} K) metal enriched gas. We conservatively estimate a metal mass exceeding 10{sup 8} M {sub ☉}. We propose that these metals trace enrichment of the incipient intragroup/intracluster medium that these halos eventually inhabit. This cool CGM around quasars is the pinnacle among galaxies observed at all epochs, as regards covering the fraction and average equivalent width of H I Lyα and low-ion metal absorption. We argue that the properties of this cool CGM primarily reflect the halo mass, and that other factors such as feedback, star-formation rate, and accretion from the intergalactic medium are secondary. We further estimate that the CGM of massive, z ∼ 2 galaxies accounts for the majority of strong Mg II absorption along random quasar sightlines. Last, we detect an excess of strong C IV 1548 absorption (W {sub 1548} ≥ 0.3 Å) over random incidence to the 1 Mpc physical impact parameter and measure the quasar-C IV cross-correlation function: ξ{sub C} {sub IV-Q}(r)=(r/r{sub 0}){sup −γ} with r{sub 0}=7.5{sub −1.4}{sup +2.8} h{sup −1} Mpc and γ=1.7{sub −0.2}{sup +0.1}. Consistent with previous work on larger scales, we infer that this highly ionized C IV gas traces massive (10{sup 12} M {sub ☉}) halos.

  16. Viscoelastic characterization of elliptical mechanical heterogeneities using a semi-analytical shear-wave scattering model for elastometry measures.

    Science.gov (United States)

    Montagnon, Emmanuel; Hadj-Henni, Anis; Schmitt, Cédric; Cloutier, Guy

    2013-04-07

    This paper presents a semi-analytical model of shear wave scattering by a viscoelastic elliptical structure embedded in a viscoelastic medium, and its application in the context of dynamic elastography imaging. The commonly used assumption of mechanical homogeneity in the inversion process is removed introducing a priori geometrical information to model physical interactions of plane shear waves with the confined mechanical heterogeneity. Theoretical results are first validated using the finite element method for various mechanical configurations and incidence angles. Secondly, an inverse problem is formulated to assess viscoelastic parameters of both the elliptic inclusion and its surrounding medium, and applied in vitro to characterize mechanical properties of agar-gelatin phantoms. The robustness of the proposed inversion method is then assessed under various noise conditions, biased geometrical parameters and compared to direct inversion, phase gradient and time-of-flight methods. The proposed elastometry method appears reliable in the context of estimating confined lesion viscoelastic parameters.

  17. Engineering viscoelasticity

    CERN Document Server

    Gutierrez-Lemini, Danton

    2014-01-01

    Engineering Viscoelasticity covers all aspects of the thermo- mechanical response of viscoelastic substances that a practitioner in the field of viscoelasticity would need to design experiments, interpret test data, develop stress-strain models, perform stress analyses, design structural components, and carry out research work. The material in each chapter is developed from the elementary to the advanced, providing the background in mathematics and mechanics that are central to understanding the subject matter being presented. The book examines how viscoelastic materials respond to the application of loads, and provides practical guidelines to use them in the design of commercial, military and industrial applications. This book also: ·         Facilitates conceptual understanding by progressing in each chapter from elementary to challenging material ·         Examines in detail both differential and integral constitutive equations, devoting full chapters to each type and using both forms in ...

  18. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    Science.gov (United States)

    Warnez, M. T.; Johnsen, E.

    2015-06-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.

  19. Combined Method of 3d Analysis for Underground Structures in View of Surrounding Infinite Homogeneous and Inhomogeneous Medium

    Directory of Open Access Journals (Sweden)

    N.V. Chernysheva

    2016-08-01

    Full Text Available The application of algorithms of the finite element method (FEM or the boundary element method (BEM reveals some peculiar properties for a numerical solution of the three-dimensional analysis in infinite domains. Various algorithms offer to avoid such problems at the expense of combining different methods and equations. The algorithm of the 3d analysis developed to solve an external boundary problem by applying the combined method based on incorporating the FEM and Somigliana’s integral formula is considered. The algorithm is modified for the case of the interaction of a structure with an inhomogeneous medium. The efficiency of software implementation of both algorithms has been tested. A stress-strain analysis of an inhomogeneous medium with a cavity has been carried out to illustrate the given approach.

  20. Analyses of transverse vibrations of axially pretensioned viscoelastic nanobeams with small size and surface effects

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongqiang [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Mechanical Structural Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Pang, Miao, E-mail: ppmmzju@163.com [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Fan, Lifeng [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China)

    2016-07-01

    The general governing equation for transverse vibration of an axially pretensioned viscoelastic nanobeam embedded in elastic substrate medium is formulated on the basis of the Bernoulli–Euler beam theory and the Kelvin model. The factors of structural damping, initial axial tension, surrounding medium, small size, surface elasticity and residual surface tension are incorporated in the formulation. The explicit expression is obtained for the vibrational frequency of a simply supported nanobeam. The impacts of these factors on the properties of transverse vibration of the nanobeam are discussed. It is demonstrated that the dependences of natural frequency on the structural damping, surrounding medium, small size, surface elasticity and residual surface tension are significant, whereas the effect of initial axial tension on the natural frequency is limited. In addition, it can be concluded that the energy dissipation of transverse vibration of the viscoelastic nanobeam is related to the small size effect and structural damping. - Highlights: • The properties of transverse vibration of a pretensioned embedded viscoelastic nanobeam is investigated. • The vibrational equation is formulated based on Bernoulli–Euler beam theory and Kelvin model. • Explicit expression for the complex vibrational frequency is obtained. • Small size and surface effects on vibrational frequency are discussed. • Influences of structural damping, initial axial tension and surrounding medium are analyzed.

  1. Dispersion of Short- and Medium-Chain Chlorinated Paraffins (CPs) from a CP Production Plant to the Surrounding Surface Soils and Coniferous Leaves.

    Science.gov (United States)

    Xu, Jiazhi; Gao, Yuan; Zhang, Haijun; Zhan, Faqiang; Chen, Jiping

    2016-12-06

    Chlorinated paraffin (CP) production is one important emission source for short- and medium-chain CPs (SCCPs and MCCPs) in the environment. In this study, 48 CP congener groups were measured in the surface soils and coniferous leaves collected from the inner and surrounding environment of a CP production plant that has been in operation for more than 30 years to investigate the dispersion and deposition behavior of SCCPs and MCCPs. The average concentrations of the sum of SCCPs and MCCPs in the in-plant coniferous leaves and surface soils were 4548.7 ng g(-1) dry weight (dw) and 3481.8 ng g(-1) dw, which were 2-fold and 10-fold higher than those in the surrounding environment, respectively. The Gaussian air pollution model explained the spatial distribution of CPs in the coniferous leaves, whereas the dispersion of CPs to the surrounding surface soils fits the Boltzmann equation well. Significant fractionation effect was observed for the atmospheric dispersion of CPs from the production plant. CP congener groups with higher octanol-air partitioning coefficients (KOA) were more predominant in the in-plant environment, whereas the ones with lower KOA values had the elevated proportion in the surrounding environment. A radius of approximately 4 km from the CP production plant was influenced by the atmospheric dispersion and deposition of CPs.

  2. Effects of the variability of the nucleus of NGC1275 on X-ray observations of the surrounding intracluster medium

    CERN Document Server

    Fabian, A C; Pinto, C; Russell, H R; Edge, A C

    2015-01-01

    The active galaxy NGC1275 lies at the centre of the Perseus cluster of galaxies, which is the X-ray brightest cluster in the Sky. The nucleus shows large variability over the past few decades. We compile a lightcurve of its X-ray emission covering about 40 years and show that the bright phase around 1980 explains why the inner X-ray bubbles were not seen in the images taken with the Einstein Observatory. The flux had dropped considerably by 1992 when images with the ROSAT HRI led to their discovery. The nucleus is showing a slow X-ray rise since the first Chandra images in 2000. If it brightens back to the pre-1990 level, then X-ray absorption spectroscopy by ASTRO-H can reveal the velocity structure of the shocked gas surrounding the inner bubbles.

  3. Nonlocal Vibration Behavior of a Viscoelastic SLGS Embedded on Visco- Pasternak Foundation Under Magnetic Field

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour-Arani

    2013-12-01

    Full Text Available This paper is concerned with the surface and small scale effects on transverse vibration of a viscoelastic single-layered graphene sheet (SLGS subjected to an in-plane magnetic field. The SLGS is surrounded by an elastic medium which is simulated as Visco-Pasternak foundation. In order to investigate the small scale effects, the nonlocal elasticity theory is employed due to its simplicity and accuracy. The effect of structural damping of SLGS is taken into account based on Kelvin’s model on elastic materials. An analytical method is used to obtain the natural frequency of the system. A detailed parametric study is conducted to elucidate the effects of the surface layers, nonlocal parameter, magnetic field, Visco-Pasternak elastic medium, viscoelastic structural damping coefficient and aspect ratio of graphene sheet. The findings indicate that enhancing the magnetic field and the density of surface layers leads to an increase in the natural frequency of SLGS.

  4. Theca cells and theca-cell conditioned medium inhibit the progression of FSH-induced meiosis of bovine oocytes surrounded by cumulus cells connected to membrana granulosa.

    Science.gov (United States)

    van Tol, H T; Bevers, M M

    1998-11-01

    The effect of follicular cells and their conditioned media on the FSH-induced oocyte maturation of oocytes surrounded by cumulus cells connected to the membrana granulosa (COCGs) was investigated. COCGs and cumulus oocyte complexes (COCs) were cultured for 22 hr in M199 supplemented with 0.05 IU FSH/ml in either the presence of pieces of theca cell layer or in the presence of pieces of membrana granulosa. COCGs and COCs were also cultured for 22 hr in either theca-cell conditioned medium (CMt) or in granulosa cell conditioned medium (CMg), both supplemented with 0.05 IU FSH/ml. To investigate the importance of cell-cell contacts between granulosa cells and cumulus cells, oocytes were cultured as COCs in CMt, as COCs in CMt supplemented with pieces of membrana granulosa, or as COCGs in CMt. In all groups the medium was supplemented with 0.05 IU FSH/ml. After culture the nuclear status of the oocytes was assessed using orcein staining. Culture of COCGs in the presence of theca cells as well as in CMt resulted in a significantly decreased proportion of oocytes that had undergone germinal vesicle breakdown (GVBD) at the end of the culture period as compared to the control. Of the oocytes that resumed meiosis in the presence of theca cells or in CMt, the proportion of oocytes that progressed up to the MII stage was significantly reduced. This indicates the production of a meiosis-inhibiting factor by theca cells. Culture with COCs instead of COCGs resulted in comparable results although the effect was less pronounced. The significant effect on the progression of meiosis of oocytes cultured as COCGs or as COCs, obtained in the presence of granulosa cells or in CMg, was much weaker than the effect of theca cells or culture in CMt. Culture of COCs in CMt supplemented with layers of membrana granulosa and 0.05 IU FSH/ml, resulted in significantly less oocytes that resumed meiosis as compared to culture of COCs in CMt. Of the oocytes that showed GVBD, the proportion that

  5. Transient waves in visco-elastic media

    CERN Document Server

    Ricker, Norman

    1977-01-01

    Developments in Solid Earth Geophysics 10: Transient Waves in Visco-Elastic Media deals with the propagation of transient elastic disturbances in visco-elastic media. More specifically, it explores the visco-elastic behavior of a medium, whether gaseous, liquid, or solid, for very-small-amplitude disturbances. This volume provides a historical overview of the theory of the propagation of elastic waves in solid bodies, along with seismic prospecting and the nature of seismograms. It also discusses the seismic experiments, the behavior of waves propagated in accordance with the Stokes wave

  6. Active-passive calibration of optical tweezers in viscoelastic media

    DEFF Research Database (Denmark)

    Fischer, Mario; Richardson, Andrew C; S Reihani, S Nader

    2010-01-01

    In order to use optical tweezers as a force measuring tool inside a viscoelastic medium such as the cytoplasm of a living cell, it is crucial to perform an exact force calibration within the complex medium. This is a nontrivial task, as many of the physical characteristics of the medium and probe......, e.g., viscosity, elasticity, shape, and density, are often unknown. Here, we suggest how to calibrate single beam optical tweezers in a complex viscoelastic environment. At the same time, we determine viscoelastic characteristics such as friction retardation spectrum and elastic moduli of the medium...

  7. Dynamical problem of micropolar viscoelasticity

    Indian Academy of Sciences (India)

    Rajneesh Kumar; Suman Choudhary

    2001-09-01

    The dynamic problem in micropolar viscoelastic medium has been investigated by employing eigen value approach after applying Laplace and Fourier transformations. An example of infinite space with concentrated force at the origin has been presented to illustrate the application of the approach. The integral transforms have been inverted by using a numerical technique to obtain the displacement components, force stresses, couple stress and microrotation in the physical domain. The results for these quantities are given and illustrated graphically.

  8. 随机介质理论下隧道围岩渐进破坏过程数值实验研究%Numerical Experiment Research on the Progressive Failure Process of the Surrounding Rock of the Tunnel under the Stochastic Medium Theory

    Institute of Scientific and Technical Information of China (English)

    商拥辉; 李航; 张波; 方前程

    2015-01-01

    The strength subtraction is introduced to safety evaluation of tunnel surrounding rock,combining with “the shallow tunnel rapid construction double small spacing tunnels,wear interchange structure under the shield tunnel and the surface of the structure containing joint,irregular fissure of mountain highway tunnel”engi-neering examples,using real damage of material analysis software RFPA -2D ,the finite element model of each strength reduction factor is set up.Viscoelastic artificial boundary is adopted to eliminate the influence of boundary conditions on the calculation precision in model,and the model achieves the mesoscopic structure unit of surround-ing rock of the mean and the defects of random distribution by means of random medium theory,it also reveals the dynamic gradual damage process of surrounding rock,the primitive phase change damage evolution mechanism and characteristics of rock mass structural plane under different working conditions,the mesoscopic damage of surround-ing rock is thought to be caused by non average of rock nonlinear material macroscopic unit,the calculation results judged in failure of tunnel surrounding rock with different step reduction in crack development trends and the num-ber of cell damage,and calculates safety factor in the sense of the safety reserve.At the same time,combining ABAQUS with RFPA -2D two different finite element models,comparatively analyzing the random medium theory and continuum theory combining strength subtraction in differences of the evaluation of surrounding rock stability.%将强度折减法引入到隧道围岩安全评价中,结合“浅埋暗挖快速施工双线小间距隧道、盾构下穿立交结构隧道和结构面含有节理、不规则裂隙的山体公路隧道”等工程实例,借助材料真实破坏分析软件 RFPA-2D,建立每个强度折减系数下的有限元模型。模型采用了黏弹性人工边界来消除边界条件对计算精度的影响,并借助随机介

  9. Nonequilibrium statistical thermodynamic theory for viscoelasticity of polymers

    Science.gov (United States)

    Chen, Xiaohong; Tong, Pin; Wang, Ren

    1998-01-01

    In this paper, we propose a new molecular relaxation mechanism for polymers by considering the change in the actual microscopic structure under macroscopic stress fields. The effects of both intramolecular and intermolecular forces on the inner rotation and the relative slippage of links are taken into account. A constraint potential function, along with a constraint tensor, is introduced to describe the constraint exerted by the surrounding medium. A unified three-dimensional constitutive framework for the viscoelasticity of polymers including thermal effects is established by making use of nonequilibrium statistical thermodynamics, which can be reduced to James and Guth's (1943) non-Gaussian polymer network theory for rubber elasticity. The model compares well with the experimental data for PMMA and plasticized PVC over a wide range of temperatures.

  10. Viscoelastic flow simulations in model porous media

    Science.gov (United States)

    De, S.; Kuipers, J. A. M.; Peters, E. A. J. F.; Padding, J. T.

    2017-05-01

    We investigate the flow of unsteadfy three-dimensional viscoelastic fluid through an array of symmetric and asymmetric sets of cylinders constituting a model porous medium. The simulations are performed using a finite-volume methodology with a staggered grid. The solid-fluid interfaces of the porous structure are modeled using a second-order immersed boundary method [S. De et al., J. Non-Newtonian Fluid Mech. 232, 67 (2016), 10.1016/j.jnnfm.2016.04.002]. A finitely extensible nonlinear elastic constitutive model with Peterlin closure is used to model the viscoelastic part. By means of periodic boundary conditions, we model the flow behavior for a Newtonian as well as a viscoelastic fluid through successive contractions and expansions. We observe the presence of counterrotating vortices in the dead ends of our geometry. The simulations provide detailed insight into how flow structure, viscoelastic stresses, and viscoelastic work change with increasing Deborah number De. We observe completely different flow structures and different distributions of the viscoelastic work at high De in the symmetric and asymmetric configurations, even though they have the exact same porosity. Moreover, we find that even for the symmetric contraction-expansion flow, most energy dissipation is occurring in shear-dominated regions of the flow domain, not in extensional-flow-dominated regions.

  11. Linear Viscoelasticity and Swelling of Polyelectrolyte Complex Coacervates

    Science.gov (United States)

    Hamad, Fawzi; Colby, Ralph

    2012-02-01

    The addition of near equimolar amounts of poly(diallyldimethylammonium chloride) to poly(isobutylene-alt-maleate sodium), results in formation of a polyelectrolyte complex coacervate. Zeta-potential titrations conclude that these PE-complexes are nearly charge-neutral. Swelling and rheological properties are studied at different salt concentrations in the surrounding solution. The enhanced swelling observed at high salt concentration suggests the system behaves like a polyampholyte gel, and weaker swelling at very low salt concentrations implies polyelectrolyte gel behavior. Linear viscoelastic oscillatory shear measurements indicate that the coacervates are viscoelastic liquids and that increasing ionic strength of the medium weakens the electrostatic interactions between charged units, lowering the relaxation time and viscosity. We use the time-salt superposition idea recently proposed by Spruijt, et al., allowing us to construct master curves for these soft materials. Similar swelling properties observed when varying molecular weights. Rheological measurements reveal that PE-complexes with increasing molecular weight polyelectrolytes form a network with higher crosslink density, suggesting time-molecular weight superposition idea.

  12. Viscoelastic effective properties of two types of heterogeneous materials.

    Science.gov (United States)

    Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel

    2015-04-01

    In the past, a lot of efforts have been put to describe two end cases of rock behaviors: elasticity and viscosity. In recent years, more focus has been brought on the intermediate viscoelastic cases which describe better the rheology of rocks such as shales. Shales are typically heterogeneous and the question arises as to how to derive their effective properties so that they can be approximated as homogeneous media. This question has already been dealt with at the elastic and viscous limit but still remains for some cases in between. Using MILAMIN, a fast finite element solver for large problems, we numerically investigate different approaches to derive the effective properties of several viscoelastic media. Two types of geometries are considered: layered and inclusion based media. We focus on two dimensional plane strain problems considering two phase composites deformed under pure shear. We start by investigating the case of transversely isotropic layered media made of two Maxwell materials. Using the Backus averaging method we discuss the degree of relevance of this averaging by considering some parameters as: layer periodicity, layer thickness and layer interface roughness. Other averaging methods are also discussed which provide a broader perspective on the performances of Backus averaging. In a second part we move on to inclusion based models. The advantage of these models compared to the previous one is that they provide a better approximation to real microstructures in rocks. The setup we consider in this part is the following: some viscous circular inclusions are embedded in an elastic matrix. Both the inclusions and the matrix are homogeneous but the inclusions are purely isotropic while the matrix can also be anisotropic. In order to derive the effective viscoelastic properties of the medium we use two approaches: the self-consistent averaging and the differential effective medium theory. The idea behind self-consistency is to assume that the inclusions

  13. Hamiltonian and Lagrangian theory of viscoelasticity

    Science.gov (United States)

    Hanyga, A.; Seredyńska, M.

    2008-03-01

    The viscoelastic relaxation modulus is a positive-definite function of time. This property alone allows the definition of a conserved energy which is a positive-definite quadratic functional of the stress and strain fields. Using the conserved energy concept a Hamiltonian and a Lagrangian functional are constructed for dynamic viscoelasticity. The Hamiltonian represents an elastic medium interacting with a continuum of oscillators. By allowing for multiphase displacement and introducing memory effects in the kinetic terms of the equations of motion a Hamiltonian is constructed for the visco-poroelasticity.

  14. Small-scale effects on the free vibrational behavior of embedded viscoelastic double-nanoplate-systems under thermal environment

    Science.gov (United States)

    Hosseini, M.; Jamalpoor, A.; Bahreman, M.

    2016-12-01

    The present paper deals with the theoretical investigation of small-scale effect on the thermo-mechanical vibration of double viscoelastic nanoplate-system made of functionally graded materials (FGMs). The small scale effect is taken into consideration via Eringen's nonlocal elasticity theory. It is considered that a Kelvin-Voigt viscoelastic layer connects two parallel viscoelastic nano-plates that surrounded by a Pasternak elastic foundation. The material properties in the thickness direction vary according to power low distribution. On the basis of nonlocal elasticity theory and employing Hamilton's principle, the exact solution for complex natural frequencies of a double nanoplate-system is determined for two types of vibrations, out-of-phase and in-phase. The detailed manner of deriving equations based on Navier method are presented and numerical studies are carried out to illustrate the influence of structural damping of the nanoplates, damping coefficient of viscoelastic medium, nonlocal parameter, higher wave numbers, aspect ratio, temperature change and other factors on the behavior of double nanoplate-system. Results from the analytical solution reveal that the temperature raising decreases the natural frequencies.

  15. Viscoelasticity of mixed polyacrylamide solution

    Institute of Scientific and Technical Information of China (English)

    徐丽娜

    2008-01-01

    The viscoelastic behavior of polyacrylamide solution is crucial for its application in various industries.The mixed polyacrylamide solution was prepared by mixing polyacrylamide with different relative molecular masses according to the defined mass fraction.The viscosity and elasticity of mixed polyacrylamide solution were separately tested with RS150 rheometer and capillary breakup extensional rheometer and compared with those of the single polyacrylamide solution which is directly provided by manufacturer without any mixing.The results indicate that the mixed and single polyacrylamide solutions have the same shear viscosity and intrinsic viscosity.However,some mixed polyacrylamide solutions have higher elasticity than single polyacrylamide solution.The flow resistance of mixed polyacrylamide with higher elasticity is also greater than that of single polyacrylamide solution in porous medium.This paper presents an effective method of mixing polyacrylamides with different relative molecular masses,which can enhance the elasticity of polyacrylamide solution and flowing resistance through porous medium.

  16. Topology optimization of viscoelastic rectifiers

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Szabo, Peter; Okkels, Fridolin

    2012-01-01

    An approach for the design of microfluidic viscoelastic rectifiers is presented based on a combination of a viscoelastic model and the method of topology optimization. This presumption free approach yields a material layout topologically different from experimentally realized rectifiers...

  17. Vibration analysis of viscoelastic inhomogeneous nanobeams incorporating surface and thermal effects

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2017-01-01

    This article deals with the free vibration investigation of nonlocal strain gradient-based viscoelastic functionally graded (FG) nanobeams on viscoelastic medium considering surface stress effects. Nonlocal strain gradient theory possesses a nonlocal stress field parameter and a length scale parameter for more accurate prediction of mechanical behavior of nanostructures. Surface energy effect is incorporate to the nonlocal strain gradient theory employing Gurtin-Murdoch elasticity theory. Thermo-elastic material properties of nanobeam are graded in thickness direction using power-law distribution. Hamilton's principal is utilized to obtain the governing equations of FG nanobeam embedded in viscoelastic medium. The effects of surface stress, length scale parameter, nonlocal parameter, viscoelastic medium, internal damping constant, thermal loading, power-law index and boundary conditions on vibration frequencies of viscoelastic FGM nanobeams are discussed in detail.

  18. Modeling electrically active viscoelastic membranes.

    Directory of Open Access Journals (Sweden)

    Sitikantha Roy

    Full Text Available The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active properties similar to those in the native cell that have also been useful in understanding the process. Here we propose a model describing the major electromechanical features of such active membranes. The model derived from thermodynamic principles is in the form of integral relationships between the history of voltage and membrane resultants as independent variables and the charge density and strains as dependent variables. The proposed model is applied to the analysis of an active force produced by the outer hair cell in response to a harmonic electric field. Our analysis reveals the mechanism of the outer hair cell active (isometric force having an almost constant amplitude and phase up to 80 kHz. We found that the frequency-invariance of the force is a result of interplay between the electrical filtering associated with prestin and power law viscoelasticity of the surrounding membrane. Paradoxically, the membrane viscoelasticity boosts the force balancing the electrical filtering effect. We also consider various modes of electromechanical coupling in membrane with prestin associated with mechanical perturbations in the cell. We consider pressure or strains applied step-wise or at a constant rate and compute the time course of the resulting electric charge. The results obtained here are important for the analysis of electromechanical properties of membranes, cells, and biological materials as well as for a better understanding of the mechanism of hearing and the role of the protein prestin in this mechanism.

  19. Measurement of Dynamic Viscoelasticity of Full-Size Wood Composite Panels Using a Vibration Testing Method

    Science.gov (United States)

    Cheng Guan; Houjiang Zhang; John F. Hunt; Lujing Zhou; Dan Feng

    2016-01-01

    The dynamic viscoelasticity of full-size wood composite panels (WCPs) under the free-free vibrational state were determined by a vibration testing method. Vibration detection tests were performed on 194 pieces of three types of full-size WCPs (particleboard, medium density fiberboard, and plywood (PW)). The dynamic viscoelasticity from smaller specimens cut from the...

  20. Calibration of trapping force and response function of optical tweezers in viscoelastic media

    DEFF Research Database (Denmark)

    Fischer, Mario; Berg-Sørensen, Kirstine

    2007-01-01

    , 594) is not possible as the viscoelastic properties of the bio-active medium are a priori unknown. Here, we present an approach that neither requires explicit assumptions about the size of the trapped particle nor about the viscoelastic properties of the medium. Instead, the interaction between...... the medium and the trapped particle is described in a general manner, through velocity and acceleration memory. Our method is applicable to general, at least locally homogeneous, viscoelastic media. The procedure combines active and passive approaches by the application of Onsager's regression hypothesis....... It allows extraction of the trapping stiffness kappa of the optical tweezers and of the response function chi(omega), which is the frequency-dependent effective inverse spring constant of the system. Finally, information about the viscoelastic properties of the medium may also be found. To test the method...

  1. Noise Reduction Evaluation of Multi-Layered Viscoelastic Infinite Cylinder under Acoustical Wave Excitation

    OpenAIRE

    Mofakhami, M.R.; H. Hosseini Toudeshky; Sh. Hosseini Hashemi

    2008-01-01

    In this paper sound transmission through the multilayered viscoelastic air filled cylinders subjected to the incident acoustic wave is studied using the technique of separation of variables on the basis of linear three dimensional theory of elasticity. The effect of interior acoustic medium on the mode maps (frequency vs geometry) and noise reduction is investigated. The effects of internal absorption and external moving medium on noise reduction are also evaluated. The dynamic viscoelastic p...

  2. Partial characterization of the factor in theca-cell conditioned medium that inhibits the progression of FSH-induced meiosis of bovine oocytes surrounded by cumulus cells connected to the membrana granulosa.

    Science.gov (United States)

    van Tol, H T; Bevers, M M

    2001-11-01

    A factor, secreted by theca cells, inhibits FSH induced resumption of meiosis in bovine oocytes that are surrounded by cumulus cells which are attached to a piece of the membrana granulosa (COCGs). In order to characterize this factor, theca cell conditioned medium (CMt) was heat-treated, filtered through a 5 kD spin off filter, charcoal treated, chloroform extracted and protease treated. To investigate whether the meiosis inhibiting factor produced by theca cells was also present in follicular fluid (FF), the same treatments were done with 50% bovine follicular fluid (bFF). COCGs, originating from 2 to 8 mm follicles of bovine ovaries collected at a slaughterhouse, were cultured in groups of 15 per 600 microl medium supplemented with 0.05 IU ml FSH for 22 hr at 39 degrees C in a humidified atmosphere of 5% CO(2). After culture the oocytes were denuded, stained with orcein, and the nuclear status assessed. Heat treatment did not affect the meiosis arresting capacity of CMt since a similar proportion of the oocytes remained at the GV stage after 22 hr of culture in heat treated CMt as compared to the proportion of oocytes in the GV stage after culture in untreated CMt. Filtering through a 5 kD spin-off filter revealed that the meiosis inhibiting action was maintained in the <5 kD fraction, although there was a significant (P < 0.05) loss of inhibiting activity compared to nonfiltered CMt. No significant decrease was observed in the meiosis arresting capacity of the <5 kD fraction after charcoal or protease treatment. Extraction of the <5 kD fraction with chloroform also did not affect the theca cell produced factor. The effect of the theca cell factor on the progression of meiosis of the oocytes that resumed meiosis, as demonstrated by a very low percentage of the oocytes that matured up to the M2 stage, was not affected following any of the treatments. With regard to bFF, the results show a lower percentage of the oocytes in the GV stage after culture in 50% bFF as

  3. Noise Reduction Evaluation of Multi-Layered Viscoelastic Infinite Cylinder under Acoustical Wave Excitation

    Directory of Open Access Journals (Sweden)

    M.R. Mofakhami

    2008-01-01

    Full Text Available In this paper sound transmission through the multilayered viscoelastic air filled cylinders subjected to the incident acoustic wave is studied using the technique of separation of variables on the basis of linear three dimensional theory of elasticity. The effect of interior acoustic medium on the mode maps (frequency vs geometry and noise reduction is investigated. The effects of internal absorption and external moving medium on noise reduction are also evaluated. The dynamic viscoelastic properties of the structure are rigorously taken into account with a power law technique that models the viscoelastic damping of the cylinder. A parametric study is also performed for the two layered infinite cylinders to obtain the effect of viscoelastic layer characteristics such as thickness, material type and frequency dependency of viscoelastic properties on the noise reduction. It is shown that using constant and frequency dependent viscoelastic material with high loss factor leads to the uniform noise reduction in the frequency domain. It is also shown that the noise reduction obtained for constant viscoelastic material property is subjected to some errors in the low frequency range with respect to those obtained for the frequency dependent viscoelastic material.

  4. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  5. Perfil do Controller em empresas de médio e grande porte da Grande Florianópolis = The controller profile in medium and big enterprises in Florianopolis and its surroundings

    Directory of Open Access Journals (Sweden)

    Lisa M. Seixas Ribeiro

    2008-07-01

    Full Text Available Há certa assimetria e fragilidade entre a literatura sobre controladoria e a prática atual das organizações. Para compreender as razões dessas divergências, este ensaio visa apresentar os resultados de uma pesquisa, na literatura, sobre as funções de um controller e confrontá-los com as constatações de uma pesquisa de campo em médias e grandes empresas da Grande Florianópolis. Nela busca-se diagnosticar pontos específicos como, posição hierárquica, subordinação, formação, funções e habilidades relacionadas ao controller. O delineamento metodológico adotado foi o descritivo, de caráter quantitativo, conduzido através do instrumento de levantamento (survey e amostragem por acessibilidade. Os resultados mostram que o controller possui, preponderantemete, formação em ciências contábeis (55,6%, ocupa posição de gerência (41,2%, e que as funções de controles internos, elaboração de relatórios locais e habilidades relacionadas ao conhecimento profundo de contabilidade, iniciativa, liderança, flexibilidade para mudanças, capacidade analítica e raciocínio lógico são as mais demandadas.The bibliography on business control shows much fragility and asymmetry in itstheoretical basis if compared to its practice. In order to better understand the reasonsfor such differences, the present essay aims at presenting the results of a bibliographicalresearch on the functions of a controller and later, through a survey, to show the profileof this professional in medium and big enterprises of Florianopolis and its surroundings.Questionnaires were applied in order to identify specific issues such as status,subordination, training, functions and abilities connected with controllers. Themethodology adopted was descriptive, both quantitative and qualitative, and the workwas conducted through data collection and sample according to accessibility. The resultsreveal that the controller is a manager (41,18% who has graduated on

  6. Viscoelastic Liquid Curtain

    Science.gov (United States)

    Lebon, Luc; Limat, Laurent; Gaillard, Antoine; Beaumont, Julien; Lhuissier, Henri; Laboratoire MSC Team

    2015-11-01

    We have investigated experimentally the properties and stability of viscoelastic curtains, falling from a long thin slot and maintained laterally by two highly wetting wires. We have observed several original facts, compared to the seminal work of Brown and Taylor on Newtonian curtains: (1) The stability with respect to breaking is considerably enhanced by the use of appropriate polymers. Even strange tree-like falling filament structures can be also stabilised, though less interesting for applications. (2) Specific instabilities can be observed, when the amount of polymers is excessive, with spatial and temporal modulations of the coating thickness. (3) Even the base state is modified, and does NOT reduce at large scale to a free fall, even slightly displaced vertically from the expected profile. We present this experimental exploration and also some attempts of analytical modeling based on Rheological theories of complex fluids.

  7. Theory of viscoelasticity an introduction

    CERN Document Server

    Christensen, R

    1982-01-01

    Theory of Viscoelasticity: An Introduction, Second Edition discusses the integral form of stress strain constitutive relations. The book presents the formulation of the boundary value problem and demonstrates the separation of variables condition.The text describes the mathematical framework to predict material behavior. It discusses the problems to which integral transform methods do not apply. Another topic of interest is the thermoviscoelastic stress analysis. The section that follows describes the heat conduction, glass transition criterion, viscoelastic Rayleigh waves, optimal str

  8. Viscoelastic behavior of concrete pile

    Institute of Scientific and Technical Information of China (English)

    丁科; 唐小弟

    2008-01-01

    Based on constitutive theory of viscoelasticity,the viscoelastic behaviour of concrete pile was investigated.The influence of viscosity coefficient on the stress,displacement and velocity response was discussed.With the increase of viscosity coefficient,the amplitude of stress wave decreases,and the maximum value of the stress wave shifts to deeper position of the pile.In other words,the viscosity coefficient behaves as lag effect to stress wave.

  9. Lubrication of soft viscoelastic solids

    CERN Document Server

    Pandey, Anupam; Venner, Kees; Snoeijer, Jacco

    2015-01-01

    Lubrication flows appear in many applications in engineering, biophysics, and in nature. Separation of surfaces and minimisation of friction and wear is achieved when the lubrication fluid builds up a lift force. In this paper we analyse soft lubricated contacts by treating the solid walls as viscoelastic: soft materials are typically not purely elastic, but dissipate energy under dynamical loading conditions. We present a method for viscoelastic lubrication and focus on three canonical examples, namely Kelvin-Voigt-, Standard Linear-, and Power Law-rheology. It is shown how the solid viscoelasticity affects the lubrication process when the timescale of loading becomes comparable to the rheological timescale. We derive asymptotic relations between lift force and sliding velocity, which give scaling laws that inherit a signature of the rheology. In all cases the lift is found to decrease with respect to purely elastic systems.

  10. Two-phase viscoelastic jetting

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J-D; Sakai, S.; Sethian, J.A.

    2008-12-10

    A coupled finite difference algorithm on rectangular grids is developed for viscoelastic ink ejection simulations. The ink is modeled by the Oldroyd-B viscoelastic fluid model. The coupled algorithm seamlessly incorporates several things: (1) a coupled level set-projection method for incompressible immiscible two-phase fluid flows; (2) a higher-order Godunov type algorithm for the convection terms in the momentum and level set equations; (3) a simple first-order upwind algorithm for the convection term in the viscoelastic stress equations; (4) central difference approximations for viscosity, surface tension, and upper-convected derivative terms; and (5) an equivalent circuit model to calculate the inflow pressure (or flow rate) from dynamic voltage.

  11. EIGEN THEORY OF VISCOELASTIC MECHANICS FOR ANISOTROPIC SOLIDS

    Institute of Scientific and Technical Information of China (English)

    Guo Shaohua

    2001-01-01

    Anisotropic viscoelastic mechanics is studied under anisotropic subspace. It is proved that there also exist the eigen properties for viscoelastic medium. The modal Maxwell's equation,modal dynamical equation (or modal equilibrium equation) and modal compatibility equation are obtained. Based on them, a new theory of anisotropic viscoelastic mechanics is presented. The advantages of the theory are as follows: 1) the equations are all scalar, and independent of each other. The number of equations is equal to that of anisotropic subspaces, 2) no matter how complicated the anisotropy of solids may be, the form of the definite equation and the boundary condition are in common and explicit, 3) there is no distinction between the force method and the displacement method for statics, that is, the equilibrium equation and the compatibility equation are indistinguishable under the mechanical space, 4) each modal equation has a definite physical meaning, for example, the modal equations of order one and order two express the volume change and shear deformation respectively for isotropic solids, 5) there also exist the potential functions which are similar to the stress functions of elastic mechanics for viscoelastic mechanics, but they are not man-made, 6) the final solution of stress or strain is given in the form of modal superimposition, which is suitable to the proximate calculation in engineering.

  12. Mechanistic Constitutive Models for Rubber Elasticity and Viscoelasticity

    Energy Technology Data Exchange (ETDEWEB)

    Puso, M

    2003-01-21

    Physically based models which describe the finite strain behavior of vulcanized rubber are developed. Constitutive laws for elasticity and viscoelasticity are derived by integrating over orientation space the forces due to each individual polymer chain. A novel scheme is presented which effectively approximates these integrals in terms of strain and strain invariants. In addition, the details involving the implementation of such models into a quasi-static large strain finite element formulation are provided. In order to account for the finite extensibility of a molecular chain, Langevin statistics is used to model the chain response. The classical statistical model of rubber assumes that polymer chains interact only at the chemical crosslinks. It is shown that such model when fitted for uniaxial tension data cannot fit compression or equibiaxial data. A model which incorporates the entanglement interactions of surrounding chains, in addition to the finite extensibility of the chains, is shown to give better predictions than the classical model. The technique used for approximating the orientation space integral was applied to both the classical and entanglement models. A viscoelasticity model based on the force equilibration process as described by Doi and Edwards is developed. An assumed form for the transient force in the chain is postulated. The resulting stress tensor is composed of an elastic and a viscoelastic portion with the elastic stress given by the proposed entanglement model. In order to improve the simulation of experimental data, it was found necessary to include the effect of unattached or dangling polymer chains in the viscoelasticity model. The viscoelastic effect of such chains is the manifestation of a disengagement process. This disengagement model for unattached polymer chains motivated an empirical model which was very successful in simulating the experimental results considered.

  13. Double-diffusive convection in a viscoelastic fluid

    Directory of Open Access Journals (Sweden)

    Pardeep Kumar

    2012-09-01

    Full Text Available The double-diffusive convection in an Oldroydian viscoelastic fluid is mathematical investigated under the simultaneous effects of magnetic field and suspended particles through porous medium. A sufficient condition for the invalidity of the `principle of exchange of stabilities' is derived, in the context, which states that the exchange principle is not valid provided the thermal Rayleigh number $R$, solutal Rayleigh number$R_S$, the medium permeability $P_1$ and the suspended particles parameter $B$ are restricted by the inequality $\\frac{BP_1}{\\pi^2}(R+R_S<1$.

  14. Viscoelastic behavior of rubbery materials

    CERN Document Server

    Roland, C M

    2011-01-01

    The gigantic size of polymer molecules makes them viscoelastic - their behavior changes depending on how fast and for how long the material is used. This book looks at the latest discoveries in the field from a fundamental molecular perspective, in order to guide the development of better and new applications for soft materials.

  15. Viscoelastic behaviour of pumpkin balloons

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2008-11-01

    The lobes of the NASA ULDB pumpkin-shaped super-pressure balloons are made of a thin polymeric film that shows considerable time-dependent behaviour. A nonlinear viscoelastic model based on experimental measurements has been recently established for this film. This paper presents a simulation of the viscoelastic behaviour of ULDB balloons with the finite element software ABAQUS. First, the standard viscoelastic modelling capabilities available in ABAQUS are examined, but are found of limited accuracy even for the case of simple uniaxial creep tests on ULDB films. Then, a nonlinear viscoelastic constitutive model is implemented by means of a user-defined subroutine. This approach is verified by means of biaxial creep experiments on pressurized cylinders and is found to be accurate provided that the film anisotropy is also included in the model. A preliminary set of predictions for a single lobe of a ULDB is presented at the end of the paper. It indicates that time-dependent effects in a balloon structure can lead to significant stress redistribution and large increases in the transverse strains in the lobes.

  16. Simulation of Transient Viscoelastic Flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1993-01-01

    The Lagrangian kinematic description is used to develop a numerical method for simulation of time-dependent flow of viscoelastic fluids described by integral models. The method is shown to converge to first order in the time step and at least second order in the spatial discretization. The method...

  17. Simulation of Transient Viscoelastic Flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1993-01-01

    The Lagrangian kinematic description is used to develop a numerical method for simulation of time-dependent flow of viscoelastic fluids described by integral models. The method is shown to converge to first order in the time step and at least second order in the spatial discretization. The method...

  18. Viscoelastic properties of heavy oils

    Science.gov (United States)

    Rojas Luces, Maria Alejandra

    Rheological low frequency measurements were carried out to analyze the viscoelastic properties of four heavy oil samples. At room conditions, the heavy oil samples exhibit non-Newtonian or viscoelastic behavior since they have a viscous component and an elastic component. The latter becomes very important for temperatures below 30°C, and for seismic to ultrasonic frequencies. Above this temperature, the viscous component increases significantly in comparison to the elastic component, and for seismic frequencies heavy oils can be considered as Newtonian fluids. A new viscosity model based on the concept of activation energy was derived to predict viscosity in terms of frequency and temperature for temperatures below 60°C. A new frequency-temperature dispersion model was derived to address the variation of the complex shear modulus (G*) with frequency and temperature for the heavy oil samples. This model fits the data well for seismic and sonic frequencies but it overpredicts G* at ultrasonic frequencies.

  19. Viscoelastic behavior of dense microemulsions

    Science.gov (United States)

    Cametti, C.; Codastefano, P.; D'arrigo, G.; Tartaglia, P.; Rouch, J.; Chen, S. H.

    1990-09-01

    We have performed extensive measurements of shear viscosity, ultrasonic absorption, and sound velocity in a ternary system consisting of water-decane-sodium di(2-ethylhexyl)sulfo- succinate(AOT), in the one-phase region where it forms a water-in-oil microemulsion. We observe a rapid increase of the static shear viscosity in the dense microemulsion region. Correspondingly the sound absorption shows unambiguous evidence of a viscoelastic behavior. The absorption data for various volume fractions and temperatures can be reduced to a universal curve by scaling both the absorption and the frequency by the measured static shear viscosity. The sound absorption can be interpreted as coming from the high-frequency tail of the viscoelastic relaxation, describable by a Cole-Cole relaxation formula with unusually small elastic moduli.

  20. Practices Surrounding Event Photos

    NARCIS (Netherlands)

    Vyas, Dhaval; Nijholt, Antinus; van der Veer, Gerrit C.; Kotzé, P.; Marsden, G.; Lindgaard, G.; Wesson, J.; Winckler, M.

    Sharing photos through mobile devices has a great potential for creating shared experiences of social events between co-located as well as remote participants. In order to design novel event sharing tools, we need to develop indepth understanding of current practices surrounding these so called

  1. Star-forming regions at the periphery of the supershell surrounding the Cyg OB1 association. I. The star cluster vdB 130 and its ambient gas and dust medium

    CERN Document Server

    Sitnik, T G; Lozinskaya, T A; Moiseev, A V; Rastorguev, A S; Tatarnikov, A M; Tatarnikova, A A; Wiebe, D S; Zabolotskikh, M V

    2015-01-01

    Stellar population and the interstellar gas-dust medium in the vicinity of the open star cluster vdB 130 are analysed using optical observations taken with the 6-m telescope of the SAO RAS and the 125-cm telescope of the SAI MSU along with the data of Spitzer and Herschel. Based on proper motions and BV and JHKs 2MASS photometric data, we select additional 36 stars as probable cluster members. Some stars in vdB 130 are classified as B stars. Our estimates of minimum colour excess, apparent distance modulus and the distance are consistent with young age (from 5 to 10 Myrs) of the cluster vdB 130. We suppose the large deviations from the conventional extinction law in the cluster direction, with $R_V$ ~ 4 - 5. The cluster vdB 130 appears to be physically related to the supershell around Cyg OB1, a cometary CO cloud, ionized gas, and regions of infrared emission. There are a few regions of bright mid-infrared emission in the vicinity of vdB 130. The largest of them is also visible on H-alpha and [SII] emission m...

  2. Hydrodynamic Interactions between Two Equally Sized Spheres in Viscoelastic Fluids in Shear Flow

    NARCIS (Netherlands)

    Snijkers, F.; Pasquino, R.; Vermant, J.

    2013-01-01

    The effect of using a viscoelastic suspending medium, on the;in-plane hydrodynamic interaction between two equally sized spheres in shear flow is studied experimentally to understand flow-induced assembly behavior (i.e., string formation). A counterrotating device equipped with a Couette geometry is

  3. On Lamb and Rayleigh wave convergence in viscoelastic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Nenadic, Ivan Z; Urban, Matthew W; Aristizabal, Sara; Mitchell, Scott A; Humphrey, Tye C; Greenleaf, James F, E-mail: Nenadic.Ivan@mayo.edu [Department of Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905 (United States)

    2011-10-21

    Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using a shear wave dispersion ultrasound vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave dispersion ultrasound vibrometry to quantify the mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify the viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ's surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40-500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium.

  4. On Lamb and Rayleigh Wave Convergence in Viscoelastic Tissues

    Science.gov (United States)

    Nenadic, Ivan Z.; Urban, Matthew W.; Aristizabal, Sara; Mitchell, Scott A.; Humphrey, Tye C.; Greenleaf, James F.

    2012-01-01

    Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using Shearwave Dispersion Ultrasound Vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave Dispersion Ultrasound Vibrometry (LDUV) to quantify mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ’s surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40–500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium. PMID:21970846

  5. pH induced contrast in viscoelasticity imaging of biopolymers

    Science.gov (United States)

    Yapp, R D; Insana, M F

    2009-01-01

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This report focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced, however the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability. PMID:19174599

  6. On Lamb and Rayleigh wave convergence in viscoelastic tissues.

    Science.gov (United States)

    Nenadic, Ivan Z; Urban, Matthew W; Aristizabal, Sara; Mitchell, Scott A; Humphrey, Tye C; Greenleaf, James F

    2011-10-21

    Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using a shear wave dispersion ultrasound vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave dispersion ultrasound vibrometry to quantify the mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify the viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ's surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40–500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium.

  7. pH-induced contrast in viscoelasticity imaging of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Yapp, R D; Insana, M F [Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL 61801 (United States)], E-mail: ryapp2@illinois.edu

    2009-03-07

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This paper focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time-domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced; however, the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability.

  8. pH-induced contrast in viscoelasticity imaging of biopolymers

    Science.gov (United States)

    Yapp, R. D.; Insana, M. F.

    2009-03-01

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This paper focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time-domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced; however, the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability.

  9. Efficiency of perfectly matched layers for seismic wave modeling in second-order viscoelastic equations

    Science.gov (United States)

    Ping, Ping; Zhang, Yu; Xu, Yixian; Chu, Risheng

    2016-12-01

    In order to improve the perfectly matched layer (PML) efficiency in viscoelastic media, we first propose a split multi-axial PML (M-PML) and an unsplit convolutional PML (C-PML) in the second-order viscoelastic wave equations with the displacement as the only unknown. The advantage of these formulations is that it is easy and efficient to revise the existing codes of the second-order spectral element method (SEM) or finite-element method (FEM) with absorbing boundaries in a uniform equation, as well as more economical than the auxiliary differential equations PML. Three models which are easily suffered from late time instabilities are considered to validate our approaches. Through comparison the M-PML with C-PML efficiency of absorption and stability for long time simulation, it can be concluded that: (1) for an isotropic viscoelastic medium with high Poisson's ratio, the C-PML will be a sufficient choice for long time simulation because of its weak reflections and superior stability; (2) unlike the M-PML with high-order damping profile, the M-PML with second-order damping profile loses its stability in long time simulation for an isotropic viscoelastic medium; (3) in an anisotropic viscoelastic medium, the C-PML suffers from instabilities, while the M-PML with second-order damping profile can be a better choice for its superior stability and more acceptable weak reflections than the M-PML with high-order damping profile. The comparative analysis of the developed methods offers meaningful significance for long time seismic wave modeling in second-order viscoelastic wave equations.

  10. Efficiency of perfectly matched layers for seismic wave modeling in second-order viscoelastic equations

    Science.gov (United States)

    Ping, Ping; Zhang, Yu; Xu, Yixian; Chu, Risheng

    2016-09-01

    In order to improve the perfectly matched layer (PML) efficiency in viscoelastic media, we firstly propose a split multi-axial PML (M-PML) and an unsplit convolutional PML (C-PML) in the second-order viscoelastic wave equations with the displacement as the only unknown. The advantage of these formulations is that it is easy and efficient to revise the existing codes of the second-order spectral element method (SEM) or finite element method (FEM) with absorbing boundaries in a uniform equation, as well as more economical than the auxiliary differential equations PML (ADEPML). Three models which are easily suffered from late time instabilities are considered to validate our approaches. Through comparison the M-PML with C-PML efficiency of absorption and stability for long time simulation, it can be concluded that: 1) For an isotropic viscoelastic medium with high Poisson's ratio, the C-PML will be a sufficient choice for long time simulation because of its weak reflections and superior stability; 2) Unlike the M-PML with high-order damping profile, the M-PML with 2nd-order damping profile loses its stability in long time simulation for an isotropic viscoelastic medium; 3) In an anisotropic viscoelastic medium, the C-PML suffers from instabilities, while the M-PML with 2nd-order damping profile can be a better choice for its superior stability and more acceptable weak reflections than the M-PML with high-order damping profile. The comparative analysis of the developed methods offers meaningful significance for long time seismic wave modeling in second-order viscoelastic wave equations.

  11. Aspiration of biological viscoelastic drops

    CERN Document Server

    Guevorkian, Karine; Durth, Mélanie; Dufour, Sylvie; Brochard-Wyart, Françoise

    2010-01-01

    Spherical cellular aggregates are in vitro systems to study the physical and biophysical properties of tissues. We present a novel approach to characterize the mechanical properties of cellular aggregates using micropipette aspiration technique. We observe an aspiration in two distinct regimes, a fast elastic deformation followed by a viscous flow. We develop a model based on this viscoelastic behavior to deduce the surface tension, viscosity, and elastic modulus. A major result is the increase of the surface tension with the applied force, interpreted as an effect of cellular mechanosensing.

  12. Undulatory swimming in viscoelastic fluids

    CERN Document Server

    Shen, Xiaoning

    2011-01-01

    The effects of fluid elasticity on the swimming behavior of the nematode \\emph{Caenorhabditis elegans} are experimentally investigated by tracking the nematode's motion and measuring the corresponding velocity fields. We find that fluid elasticity hinders self-propulsion. Compared to Newtonian solutions, fluid elasticity leads to 35% slower propulsion speed. Furthermore, self-propulsion decreases as elastic stresses grow in magnitude in the fluid. This decrease in self-propulsion in viscoelastic fluids is related to the stretching of flexible molecules near hyperbolic points in the flow.

  13. Optimization of Bistable Viscoelastic Systems

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Szabo, Peter; Okkels, Fridolin

    2014-01-01

    We consider the flow of a viscoelastic fluid in a symmetric cross geometry. For small driving pressures the flow is symmetric, but beyond a certain critical pressure the symmetric flow becomes unstable; two stable asymmetric solutions appear, and forcing of the unstable symmetric flow beyond...... find a design that significantly reduces the driving pressure required for bistability, and furthermore is in agreement with the approach followed by experimental researchers. Furthermore, by comparing the two asymmetric solutions, we succesfully apply the same approach to a problem with two fluids...

  14. Undulatory swimming in viscoelastic fluids.

    Science.gov (United States)

    Shen, X N; Arratia, P E

    2011-05-20

    The effects of fluid elasticity on the swimming behavior of the nematode Caenorhabditis elegans are experimentally investigated by tracking the nematode's motion and measuring the corresponding velocity fields. We find that fluid elasticity hinders self-propulsion. Compared to Newtonian solutions, fluid elasticity leads to up to 35% slower propulsion. Furthermore, self-propulsion decreases as elastic stresses grow in magnitude in the fluid. This decrease in self-propulsion in viscoelastic fluids is related to the stretching of flexible molecules near hyperbolic points in the flow.

  15. The visco-elastic multilayer program VEROAD

    NARCIS (Netherlands)

    Hopman, P.C.

    1996-01-01

    The mathematical principles and derivation of a linear visco-elastic multilayer computer program are described. The mathematical derivation is based on Fourier Transformation. The program is called VEROAD, which is an acronym for Visco-Elastic ROad Analysis Delft. The program allows calculation of p

  16. Shape recovery of viscoelastic beams after stowage

    DEFF Research Database (Denmark)

    Kwok, Kawai

    2015-01-01

    The deployment of viscoelastic structures that have been held stowed for a given time duration can be formulated as a viscoelastic boundary value problem in which the prescribed condition switches from constant displacement to constant traction. This paper presents closed-form expressions...

  17. Linear viscoelastic characterization from filament stretching rheometry

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole

    viscoelasticity well into the nonlinear regime. Therefore at present, complete rheological characterization of a material requires two apparatuses: a shear and an extensional rheometer. This work is focused on developing a linear viscoelastic protocol for the filament stretching rheometer (FSR) in order...

  18. Nonlinear Viscoelastic Characterization of Structural Adhesives.

    Science.gov (United States)

    1983-06-01

    neat resin properties 20. ABSTRACT (Cainlnuo OR revaWco aide II necessay amd identify br blck number) Measurements of the nonlinear viscoelastic...which is utilized. 17. Key Words and Document Analysis. l7a. Descriptors Adhesives, nonlinear viscoelasticity, FM-73 and FM-300 neat resin properties 17b

  19. Importance of rheological heterogeneity for interpreting viscoelastic relaxation caused by the 2011 Tohoku-Oki earthquake

    Science.gov (United States)

    Suito, Hisashi

    2017-01-01

    This study develops a three-dimensional viscoelastic model using the finite element method to understand the postseismic deformation that followed the 2011 Tohoku-Oki earthquake. The question of understanding which elements of the viscoelastic media affect the surface deformation is of particular importance. We first examined the individual effects of two different viscoelastic media, the mantle wedge and the oceanic mantle, which produce almost opposite deformation patterns. The mantle wedge controls eastward motion, uplift of the Pacific coastal and offshore regions, and extension across a broad area. In contrast, the oceanic mantle controls dominantly offshore westward motion, subsidence across a broad area, minor uplift of the surrounding areas, and contraction offshore. These differences are the most important issues for understanding the viscoelastic relaxation caused by subduction earthquakes. We then developed four different models to clarify which elements of the viscoelastic media affect the observed surface deformation. The simplest model, with uniform viscosity for all viscoelastic media, could explain the horizontal deformation but not the vertical deformation. The second model, with different viscosities for the mantle wedge and the oceanic mantle, could explain the onshore observations but could not explain the seafloor observations. The third model, which includes a thin weak layer beneath the subducting slab, could essentially explain the near-field onshore and seafloor observations but could not explain the far-field data. The final depth-dependent model was able to explain the far-field data as well as the near-field data. In these typical models, it is of particular importance to consider the different viscosities between the mantle wedge and the oceanic mantle and to include a thin weak layer beneath the slab, which has a dramatic impact on the seafloor deformation. Far-field data as well as near-field data are also important for constraining

  20. Viscoelasticity imaging using ultrasound: parameters and error analysis.

    Science.gov (United States)

    Sridhar, M; Liu, J; Insana, M F

    2007-05-07

    Techniques are being developed to image viscoelastic features of soft tissues from time-varying strain. A compress-hold-release stress stimulus commonly used in creep-recovery measurements is applied to samples to form images of elastic strain and strain retardance times. While the intended application is diagnostic breast imaging, results in gelatin hydrogels are presented to demonstrate the techniques. The spatiotemporal behaviour of gelatin is described by linear viscoelastic theory formulated for polymeric solids. Measured creep responses of polymers are frequently modelled as sums of exponentials whose time constants describe the delay or retardation of the full strain response. We found the spectrum of retardation times tau to be continuous and bimodal, where the amplitude at each tau represents the relative number of molecular bonds with a given strength and conformation. Such spectra indicate that the molecular weight of the polymer fibres between bonding points is large. Imaging parameters are found by summarizing these complex spectral distributions at each location in the medium with a second-order Voigt rheological model. This simplification reduces the dimensionality of the data for selecting imaging parameters while preserving essential information on how the creeping deformation describes fluid flow and collagen matrix restructuring in the medium. The focus of this paper is on imaging parameter estimation from ultrasonic echo data, and how jitter from hand-held force applicators used for clinical applications propagate through the imaging chain to generate image noise.

  1. Vibration analysis of viscoelastic single-walled carbon nanotubes resting on a viscoelastic foundation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Da Peng; Lei, Yong Jun; Shen, Zhi Bin [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha (China); Wang, Cheng Yuan [Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea Wales (United Kingdom)

    2017-01-15

    Vibration responses were investigated for a viscoelastic Single-walled carbon nanotube (visco-SWCNT) resting on a viscoelastic foundation. Based on the nonlocal Euler-Bernoulli beam model, velocity-dependent external damping and Kelvin viscoelastic foundation model, the governing equations were derived. The Transfer function method (TFM) was then used to compute the natural frequencies for general boundary conditions and foundations. In particular, the exact analytical expressions of both complex natural frequencies and critical viscoelastic parameters were obtained for the Kelvin-Voigt visco-SWCNTs with full foundations and certain boundary conditions, and several physically intuitive special cases were discussed. Substantial nonlocal effects, the influence of geometric and physical parameters of the SWCNT and the viscoelastic foundation were observed for the natural frequencies of the supported SWCNTs. The study demonstrates the efficiency and robustness of the developed model for the vibration of the visco-SWCNT-viscoelastic foundation coupling system.

  2. Rotating convection in a viscoelastic magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, L.M. [Departamento de Fíisica y Matemática Aplicada, Universidad de Navarra, 31080 Pamplona (Spain); Laroze, D., E-mail: dlarozen@uta.cl [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile); Díaz, P. [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54 D, Temuco (Chile); Martinez-Mardones, J. [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Mancini, H.L. [Departamento de Fíisica y Matemática Aplicada, Universidad de Navarra, 31080 Pamplona (Spain)

    2014-09-01

    We report theoretical and numerical results on convection for a magnetic fluid in a viscoelastic carrier liquid under rotation. The viscoelastic properties are given by the Oldroyd model. We obtain explicit expressions for the convective thresholds in terms of the parameters of the system in the case of idealized boundary conditions. We also calculate numerically the convective thresholds for the case of realistic boundary conditions. The effects of the rheology and of the rotation rate on the instability thresholds for a diluted magnetic suspension are emphasized. - Highlights: • Ferrofluids. • Thermal convection. • Viscoelastic model. • Realistic boundary conditions.

  3. Cake Filtration in Viscoelastic Polymer Solutions

    Science.gov (United States)

    Surý, Alexander; Machač, Ivan

    2009-07-01

    In this contribution, the filtration equations for a cake filtration in viscoelastic fluids are presented. They are based on a capillary hybrid model for the flow of a power law fluid. In order to express the elastic pressure drop excess in the flow of viscoelastic filtrate through the filter cake and filter screen, modified Deborah number correction functions are included into these equations. Their validity was examined experimentally. Filtration experiments with suspensions of hardened polystyrene particles (Krasten) in viscoelastic aqueous solutions of polyacryl amides (0.4% and 0.6%wt. Kerafloc) were carried out at a constant pressure on a cylindrical filtration unit using filter screens of different resistance.

  4. Transient vibration of thin viscoelastic orthotropic plates

    Institute of Scientific and Technical Information of China (English)

    J. Soukup; F. Vale(s); J. Volek; J. Sko(c)ilas

    2011-01-01

    This article deals with solutions of transient vibration of a rectangular viscoelastic orthotropic thin 2D plate for particular deformation models according to Flügge and Timoshenko-Mindlin. The linear model, a general standard viscoelastic body, of the rheologic properties of a viscoelastic material was applied. The time and coordinate curves of the basic quantities displacement, rotation, velocity, stress and deformation are compared. The results obtained by an approximate analytic method are compared with numerical results for 3D plate generated by FEM application and with experimental investigation.

  5. Calibrating galaxy redshifts using absorption by the surrounding intergalactic medium

    Science.gov (United States)

    Rakic, Olivera; Schaye, Joop; Steidel, Charles C.; Rudie, Gwen C.

    2011-07-01

    Rest-frame UV spectral lines of star-forming galaxies are systematically offset from the galaxies' systemic redshifts, probably because of large-scale outflows. We calibrate galaxy redshifts measured from rest-frame UV lines by utilizing the fact that the mean H I Lyα absorption profiles around the galaxies, as seen in spectra of background objects, must be symmetric with respect to the true galaxy redshifts if the galaxies are oriented randomly with respect to the lines of sight to the background objects. We use 15 bright QSOs at z≈ 2.5-3 and more than 600 foreground galaxies with spectroscopic redshifts at z≈ 1.9-2.5. All galaxies are within 2 Mpc proper from the lines of sight to the background QSOs. We find that Lyα emission and ISM absorption redshifts require systematic shifts of ? and ?, respectively. Assuming a Gaussian distribution, we put 1σ upper limits on possible random redshift offsets of ? for Lyα and ? for ISM redshifts. For the small subset (Technology, the University of California and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.

  6. Sh2-205: I. The surrounding interstellar medium

    CERN Document Server

    Romero, G A

    2008-01-01

    We present a study of the HII region Sh2-205 and its environs, based on data obtained from the CGPS, 12CO observations, and MSX data. We find that Sh2-205 can be separated in three independent optical structures: SH149.25--0.0, SH 148.83-0.67, and LBN 148.11-0.45. The derived spectral indices show the thermal nature of SH 148.83--0.67 and LBN 148.11--0.45. The morphology of SH 148.83--0.67, both in the optical and radio data, along with the energetic requ irements indicate that this feature is an interstellar bubble powered by the UV photons of HD 24431 (O9 III). LBN 148.11--0.45 has the morphology of a classic al HII region and their ionizing sources remain uncertain. Dust and molecular gas are found related to LBN 148.11-0.45.Particularly, a photodissociation region is detected at the interface between the ionized and molecular regions. If the proposed exciting star HD 24094 were an O8--O9 type star, as suggested by its near-infrared colors, its UV photon flux would be enough to explain the ionization of th...

  7. Viscoelastic coupling of nanoelectromechanical resonators.

    Energy Technology Data Exchange (ETDEWEB)

    Simonson, Robert Joseph; Staton, Alan W.

    2009-09-01

    This report summarizes work to date on a new collaboration between Sandia National Laboratories and the California Institute of Technology (Caltech) to utilize nanoelectromechanical resonators designed at Caltech as platforms to measure the mechanical properties of polymeric materials at length scales on the order of 10-50 nm. Caltech has succeeded in reproducibly building cantilever resonators having major dimensions on the order of 2-5 microns. These devices are fabricated in pairs, with free ends separated by reproducible gaps having dimensions on the order of 10-50 nm. By controlled placement of materials that bridge the very small gap between resonators, the mechanical devices become coupled through the test material, and the transmission of energy between the devices can be monitored. This should allow for measurements of viscoelastic properties of polymeric materials at high frequency over short distances. Our work to date has been directed toward establishing this measurement capability at Sandia.

  8. Viscoelastic behavior of stock indices

    Science.gov (United States)

    Gündüz, Güngör; Gündüz, Yalin

    2010-12-01

    The scattering diagram of a stock index results in a complex network structure, which can be used to analyze the viscoelastic properties of the index. The change along x- or y-direction of the diagram corresponds to purely elastic (or spring like) movement whereas the diagonal change at an angle of 45° corresponds to purely viscous (or dashpot like) movement. The viscous component pushes the price from its current value to any other value, while the elastic component acts like a restoring force. Four indices, namely, DJI, S&P-500, NASDAQ-100, and NASDAQ-composite were studied for the period of 2001-2009. NASDAQ-composite displayed very high elasticity while NASDAQ-100 displayed the highest fluidity in the time period considered. The fluidity of DJI and S&P-500 came out to be close to each other, and they are almost the same in the second half of the period.

  9. Effect of 3-D viscoelastic structure on post-seismic relaxation from the 2004 M = 9.2 Sumatra earthquake

    Science.gov (United States)

    Pollitz, F.; Banerjee, P.; Grijalva, K.; Nagarajan, B.; Burgmann, R.

    2008-01-01

    The 2004 M=9.2 Sumatra-Andaman earthquake profoundly altered the state of stress in a large volume surrounding the ???1400 km long rupture. Induced mantle flow fields and coupled surface deformation are sensitive to the 3-D rheology structure. To predict the post-seismic motions from this earthquake, relaxation of a 3-D spherical viscoelastic earth model is simulated using the theory of coupled normal modes. The quasi-static deformation basis set and solution on the 3-D model is constructed using: a spherically stratified viscoelastic earth model with a linear stress-strain relation; an aspherical perturbation in viscoelastic structure; a 'static'mode basis set consisting of Earth's spheroidal and toroidal free oscillations; a "viscoelastic" mode basis set; and interaction kernels that describe the coupling among viscoelastic and static modes. Application to the 2004 Sumatra-Andaman earthquake illustrates the profound modification of the post-seismic flow field at depth by a slab structure and similarly large effects on the near-field post-seismic deformation field at Earth's surface. Comparison with post-seismic GPS observations illustrates the extent to which viscoelastic relaxation contributes to the regional post-seismic deformation. ?? Journal compilation ?? 2008 RAS.

  10. Theory of reciprocating contact for viscoelastic solids

    Science.gov (United States)

    Putignano, Carmine; Carbone, Giuseppe; Dini, Daniele

    2016-04-01

    A theory of reciprocating contacts for linear viscoelastic materials is presented. Results are discussed for the case of a rigid sphere sinusoidally driven in sliding contact with a viscoelastic half-space. Depending on the size of the contact, the frequency and amplitude of the reciprocating motion, and on the relaxation time of the viscoelastic body, we establish that the contact behavior may range from the steady-state viscoelastic solution, in which traction forces always oppose the direction of the sliding rigid punch, to a more elaborate trend, which is due to the strong interaction between different regions of the path covered during the reciprocating motion. Practical implications span a number of applications, ranging from seismic engineering to biotechnology.

  11. Dynamics and Stability of Rolling Viscoelastic Tires

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Trevor [Univ. of California, Berkeley, CA (United States)

    2013-04-30

    Current steady state rolling tire calculations often do not include treads because treads destroy the rotational symmetry of the tire. We describe two methodologies to compute time periodic solutions of a two-dimensional viscoelastic tire with treads: solving a minimization problem and solving a system of equations. We also expand on work by Oden and Lin on free spinning rolling elastic tires in which they disovered a hierachy of N-peak steady state standing wave solutions. In addition to discovering a two-dimensional hierarchy of standing wave solutions that includes their N-peak hiearchy, we consider the eects of viscoelasticity on the standing wave solutions. Finally, a commonplace model of viscoelasticity used in our numerical experiments led to non-physical elastic energy growth for large tire speeds. We show that a viscoelastic model of Govindjee and Reese remedies the problem.

  12. Changes in protein solubility, fermentative capacity, viscoelasticity ...

    African Journals Online (AJOL)

    SAM

    2014-05-14

    May 14, 2014 ... solubility, fermentative capacity and viscoelasticity of frozen dough. In addition to examining ... A dynamic ... ten protein fractions of higher molecular weight and are .... An SE-HPLC system (Varian ProStar equipment, Model.

  13. STUDY ON VISCOELASTIC BEHAVIOR OF PAPER COATING

    Institute of Scientific and Technical Information of China (English)

    Heng Zhang; Kefu Chen; Rendang Yang

    2004-01-01

    The flow behavior of paper coating is critical to the coating operation. In this work, the influence of the added agents on the flow behavior and the viscoelastic behavior is investigated using rheometer in steady and dynamic oscillatory modes.

  14. Understanding Viscoelasticity An Introduction to Rheology

    CERN Document Server

    Phan-Thien, Nhan

    2013-01-01

    This book presents an introduction to viscoelasticity; in particular, to the theories of dilute polymer solutions and dilute suspensions of rigid particles in viscous and incompressible fluids. These theories are important, not just because they apply to practical problems of industrial interest, but because they form a solid theoretical base upon which mathematical techniques can be built, from which more complex theories can be constructed, to better mimic material behaviour. The emphasis is not on the voluminous current topical research, but on the necessary tools to understand viscoelasticity at a first year graduate level. The main aim is to provide a still compact book, sufficient at the level of first year graduate course for those who wish to understand viscoelasticity and to embark in modeling of viscoelastic multiphase fluids. To this end, a new chapter on Dissipative Particle Dynamics (DPD) was introduced which is relevant to model complex-structured fluids. All the basic ideas in DPD are reviewed,...

  15. Understanding viscoelasticity an introduction to rheology

    CERN Document Server

    Phan-Thien, Nhan

    2017-01-01

    This book presents an introduction to viscoelasticity, in particular, to the theories of dilute polymer solutions and dilute suspensions of rigid particles in viscous and incompressible fluids. These theories are important, not just because they apply to practical problems of industrial interest, but because they form a solid theoretical base upon which mathematical techniques can be built, from which more complex theories can be constructed, to better mimic material behaviour. The emphasis of this book is not on the voluminous current topical research, but on the necessary tools to understand viscoelasticity. This is a compact book for a first year graduate course in viscoelasticity and modelling of viscoelastic multiphase fluids. The Dissipative Particle Dynamics (DPD) is introduced as a particle-based method, relevant in modelling of complex-structured fluids. All the basic ideas in DPD are reviewed. The third edition has been updated and expanded with new results in the meso-scale modelling, links between...

  16. Dynamic response of visco-elastic plates

    Science.gov (United States)

    Kadıoǧlu, Fethi; Tekin, Gülçin

    2016-12-01

    In this study, a comprehensive analysis about the dynamic response characteristics of visco-elastic plates is given. To construct the functional in the Laplace-Carson domain for the analysis of visco-elastic plates based on the Kirchhoff hypothesis, functional analysis method is employed. By using this new energy functional in the Laplace-Carson domain, moment values that are important for engineers can be obtained directly with excellent accuracy and element equations can be written explicitly. Three-element model is considered for modelling the visco-elastic material behavior. The solutions obtained in the Laplace-Carson domain by utilizing mixed finite element formulation are transformed to the time domain using the Durbin's inverse Laplace transform technique. The proposed mixed finite element formulation is shown to be simple to implement and gives satisfactory results for dynamic response of visco-elastic plates.

  17. Enhanced active swimming in viscoelastic fluids

    CERN Document Server

    Riley, Emily E

    2014-01-01

    Swimming microorganisms often self propel in fluids with complex rheology. While past theoretical work indicates that fluid viscoelasticity should hinder their locomotion, recent experiments on waving swimmers suggest a possible non-Newtonian enhancement of locomotion. We suggest a physical mechanism, based on fluid-structure interaction, leading to swimming in a viscoelastic fluid at a higher speed than in a Newtonian one. Using Taylor's two-dimensional swimming sheet model, we solve for the shape of an active swimmer as a balance between the external fluid stresses, the internal driving moments, and the passive elastic resistance. We show that this dynamic balance leads to a generic transition from hindered rigid swimming to enhanced flexible locomotion. The results are physically interpreted as due to a viscoelastic suction increasing the swimming amplitude in a non-Newtonian fluid and overcoming viscoelastic damping.

  18. Recent advances in elasticity, viscoelasticity and inelasticity

    CERN Document Server

    Rajagopal, KR

    1995-01-01

    This is a collection of papers dedicated to Prof T C Woo to mark his 70th birthday. The papers focus on recent advances in elasticity, viscoelasticity and inelasticity, which are related to Prof Woo's work. Prof Woo's recent work concentrates on the viscoelastic and viscoplastic response of metals and plastics when thermal effects are significant, and the papers here address open questions in these and related areas.

  19. Visco-elastic response of thermoplastics

    OpenAIRE

    Kristensen, Vegard Berge

    2013-01-01

    In this study a recently developed visco-elastic visco-plastic material model has been evaluated with the intention of improving the simulated behaviour of polymers. In order for polymers to become a more reliable construction material the behaviour has to be rendered realistically in simulations. A set of eleven experimental tests have been conducted to establish a database for further simulations. By use of some of these experimental tests the visco-elastic visco-plastic material model has ...

  20. VISCOELASTIC STRUCTURAL MODEL OF ASPHALT CONCRETE

    Directory of Open Access Journals (Sweden)

    V. Bogomolov

    2016-06-01

    Full Text Available The viscoelastic rheological model of asphalt concrete based on the generalized Kelvin model is offered. The mathematical model of asphalt concrete viscoelastic behavior that can be used for calculation of asphalt concrete upper layers of non-rigid pavements for strength and rutting has been developed. It has been proved that the structural model of Burgers does not fully meet all the requirements of the asphalt-concrete.

  1. Dynamic response of a viscoelastic Timoshenko beam

    Science.gov (United States)

    Kalyanasundaram, S.; Allen, D. H.; Schapery, R. A.

    1987-01-01

    The analysis presented in this study deals with the vibratory response of viscoelastic Timoshenko (1955) beams under the assumption of small material loss tangents. The appropriate method of analysis employed here may be applied to more complex structures. This study compares the damping ratios obtained from the Timoshenko and Euler-Bernoulli theories for a given viscoelastic material system. From this study the effect of shear deformation and rotary inertia on damping ratios can be identified.

  2. Droplet impact on soft viscoelastic surfaces

    Science.gov (United States)

    Chen, Longquan; Bonaccurso, Elmar; Deng, Peigang; Zhang, Haibo

    2016-12-01

    In this work, we experimentally investigate the impact of water droplets onto soft viscoelastic surfaces with a wide range of impact velocities. Several impact phenomena, which depend on the dynamic interaction between the droplets and viscoelastic surfaces, have been identified and analyzed. At low We , complete rebound is observed when the impact velocity is between a lower and an upper threshold, beyond which droplets are deposited on the surface after impact. At intermediate We , entrapment of an air bubble inside the impinging droplets is found on soft surfaces, while a bubble entrapment on the surface is observed on rigid surfaces. At high We , partial rebound is only identified on the most rigid surface at We ≳92 . Rebounding droplets behave similarly to elastic drops rebounding on superhydrophobic surfaces and the impact process is independent of surface viscoelasticity. Further, surface viscoelasticity does not influence drop spreading after impact—as the surfaces behave like rigid surfaces—but it does affect drop recoiling. Also, the postimpact drop oscillation on soft viscoelastic surfaces is influenced by dynamic wettability of these surfaces. Comparing sessile drop oscillation with a damped harmonic oscillator allows us to conclude that surface viscoelasticity affects the damping coefficient and liquid surface tension sets the spring constant of the system.

  3. Nonlinear Viscoelastic Mechanism for Aftershock Triggering and Decay

    Science.gov (United States)

    Shcherbakov, R.; Zhang, X.

    2016-12-01

    Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. They also occur in other natural or experimental systems, for example, in solar flares, in fracture experiments on porous materials and acoustic emissions, after stock market crashes, in the volatility of stock prices returns, in internet traffic variability and e-mail spamming, to mention a few. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle control the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and

  4. Deformation and relaxation of an incompressible viscoelastic body with surface viscoelasticity

    Science.gov (United States)

    Liu, Liping; Yu, Miao; Lin, Hao; Foty, Ramsey

    2017-01-01

    Measuring mechanical properties of cells or cell aggregates has proven to be an involved process due to their geometrical and structural complexity. Past measurements are based on material models that completely neglect the elasticity of either the surface membrane or the interior bulk. In this work, we consider general material models to account for both surface and bulk viscoelasticity. The boundary value problems are formulated for deformations and relaxations of a closed viscoelastic surface coupled with viscoelastic media inside and outside of the surface. The linearized surface elasticity models are derived for the constant surface tension model and the Helfrich-Canham bending model for coupling with the bulk viscoelasticity. For quasi-spherical surfaces, explicit solutions are obtained for the deformation, stress-strain and relaxation behaviors under a variety of loading conditions. These solutions can be applied to extract the intrinsic surface and bulk viscoelastic properties of biological cells or cell aggregates in the indentation, electro-deformation and relaxation experiments.

  5. Visco-elastic effects on wave dispersion in three-phase acoustic metamaterials

    Science.gov (United States)

    Krushynska, A. O.; Kouznetsova, V. G.; Geers, M. G. D.

    2016-11-01

    This paper studies the wave attenuation performance of dissipative solid acoustic metamaterials (AMMs) with local resonators possessing subwavelength band gaps. The metamaterial is composed of dense rubber-coated inclusions of a circular shape embedded periodically in a matrix medium. Visco-elastic material losses present in a matrix and/or resonator coating are introduced by either the Kelvin-Voigt or generalized Maxwell models. Numerical solutions are obtained in the frequency domain by means of k(ω)-approach combined with the finite element method. Spatially attenuating waves are described by real frequencies ω and complex-valued wave vectors k. Complete 3D band structure diagrams including complex-valued pass bands are evaluated for the undamped linear elastic and several visco-elastic AMM cases. The changes in the band diagrams due to the visco-elasticity are discussed in detail; the comparison between the two visco-elastic models representing artificial (Kelvin-Voigt model) and experimentally characterized (generalized Maxwell model) damping is performed. The interpretation of the results is facilitated by using attenuation and transmission spectra. Two mechanisms of the energy absorption, i.e. due to the resonance of the inclusions and dissipative effects in the materials, are discussed separately. It is found that the visco-elastic damping of the matrix material decreases the attenuation performance of AMMs within band gaps; however, if the matrix material is slightly damped, it can be modeled as linear elastic without the loss of accuracy given the resonator coating is dissipative. This study also demonstrates that visco-elastic losses properly introduced in the resonator coating improve the attenuation bandwidth of AMMs although the attenuation on the resonance peaks is reduced.

  6. 3D Viscoelastic traction force microscopy.

    Science.gov (United States)

    Toyjanova, Jennet; Hannen, Erin; Bar-Kochba, Eyal; Darling, Eric M; Henann, David L; Franck, Christian

    2014-10-28

    Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, which could play an important role in how cells sense and transduce tractions. To expand the realm of cell traction measurements and to encompass all materials from elastic to viscoelastic, this paper presents a general, and comprehensive approach for quantifying 3D cell tractions in viscoelastic materials. This methodology includes the experimental characterization of the time-dependent material properties for any viscoelastic material with the subsequent mathematical implementation of the determined material model into a 3D traction force microscopy (3D TFM) framework. Utilizing this new 3D viscoelastic TFM (3D VTFM) approach, we quantify the influence of viscosity on the overall material traction calculations and quantify the error associated with omitting time-dependent material effects, as is the case for all other TFM formulations. We anticipate that the 3D VTFM technique will open up new avenues of cell-material investigations on even more physiologically relevant time-dependent materials including collagen and fibrin gels.

  7. Parametric imaging of viscoelasticity using optical coherence elastography

    Science.gov (United States)

    Wijesinghe, Philip; McLaughlin, Robert A.; Sampson, David D.; Kennedy, Brendan F.

    2015-03-01

    We demonstrate imaging of soft tissue viscoelasticity using optical coherence elastography. Viscoelastic creep deformation is induced in tissue using step-like compressive loading and the resulting time-varying deformation is measured using phase-sensitive optical coherence tomography. From a series of co-located B-scans, we estimate the local strain rate as a function of time, and parameterize it using a four-parameter Kelvin-Voigt model of viscoelastic creep. The estimated viscoelastic strain and time constant are used to visualize viscoelastic creep in 2D, dual-parameter viscoelastograms. We demonstrate our technique on six silicone tissue-simulating phantoms spanning a range of viscoelastic parameters. As an example in soft tissue, we report viscoelastic contrast between muscle and connective tissue in fresh, ex vivo rat gastrocnemius muscle and mouse abdominal transection. Imaging viscoelastic creep deformation has the potential to provide complementary contrast to existing imaging modalities, and may provide greater insight into disease pathology.

  8. Clinical Application of Surrounding Puncture

    Institute of Scientific and Technical Information of China (English)

    GUO Yao-jie; HAN Chou-ping

    2003-01-01

    Surrounding puncture can stop pathogenic qi from spreading, consolidate the connection between local meridians and enrich local qi and blood, which can eventually supplement anti-pathogenic qi and remove pathogenic qi, and consequently remedy diseases. The author of this article summrized and analyzed the clinical application of surrounding puncture for the purpose of studying this technique and improving the therapeutic effect.

  9. Random Response of Linear Viscoelastic Systems under Random Excitation

    Institute of Scientific and Technical Information of China (English)

    张天舒; 方同

    2001-01-01

    A method of analyzing random response of linear viscoelastic systems under random excitation has been presented. The covariance matrices of random responses of a single-degree-freedom linear viscoelastic system subjected to stationary white noise and filtered white noise excitations have been obtained in closed form. For illustration, a numerical example has been included. It is observed that viscoelasticity has damping effect on the mean square random responses of the system, the higher is viscoelastic behavior, the higher the damping effect.

  10. Aftershock production rate of driven viscoelastic interfaces.

    Science.gov (United States)

    Jagla, E A

    2014-10-01

    We study analytically and by numerical simulations the statistics of the aftershocks generated after large avalanches in models of interface depinning that include viscoelastic relaxation effects. We find in all the analyzed cases that the decay law of aftershocks with time can be understood by considering the typical roughness of the interface and its evolution due to relaxation. In models where there is a single viscoelastic relaxation time there is an exponential decay of the number of aftershocks with time. In models in which viscoelastic relaxation is wave-vector dependent we typically find a power-law dependence of the decay rate that is compatible with the Omori law. The factors that determine the value of the decay exponent are analyzed.

  11. Viscoelastic modes in chiral liquid crystals

    Indian Academy of Sciences (India)

    K A Suresh

    2003-08-01

    Viscoelastic properties of liquid crystals are very important for applications like display technology. However, there are not many direct techniques to study them. In this review, we describe our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic modes corresponding to the C director fluctuations in the chiral smectic C phase and the behaviour of the Goldstone-mode near the chiral smectic C–smectic A phase transition. In cholesteric liquid crystals, we consider the director fluctuations in a wavevector range comparable to the inverse pitch of the cholesteric. Here, the study of the scattered light in the vicinity of the Bragg reflection using a novel geometry will be presented.

  12. Conformal higher-order viscoelastic fluid mechanics

    CERN Document Server

    Fukuma, Masafumi

    2012-01-01

    We present a generally covariant formulation of conformal higher-order viscoelastic fluid mechanics with strain allowed to take arbitrarily large values. We give a general prescription to determine the dynamics of a relativistic viscoelastic fluid in a way consistent with the hypothesis of local thermodynamic equilibrium and the second law of thermodynamics. We then elaborately study the transient time scales at which the strain almost relaxes and becomes proportional to the gradients of velocity. We particularly show that a conformal second-order fluid with all possible parameters in the constitutive equations can be obtained without breaking the hypothesis of local thermodynamic equilibrium, if the conformal fluid is defined as the long time limit of a conformal second-order viscoelastic system. We also discuss how local thermodynamic equilibrium could be understood in the context of the fluid/gravity correspondence.

  13. Conformal higher-order viscoelastic fluid mechanics

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2012-06-01

    We present a generally covariant formulation of conformal higher-order viscoelastic fluid mechanics with strain allowed to take arbitrarily large values. We give a general prescription to determine the dynamics of a relativistic viscoelastic fluid in a way consistent with the hypothesis of local thermodynamic equilibrium and the second law of thermodynamics. We then elaborately study the transient time scales at which the strain almost relaxes and becomes proportional to the gradients of velocity. We particularly show that a conformal second-order fluid with all possible parameters in the constitutive equations can be obtained without breaking the hypothesis of local thermodynamic equilibrium, if the conformal fluid is defined as the long time limit of a conformal second-order viscoelastic system. We also discuss how local thermodynamic equilibrium could be understood in the context of the fluid/gravity correspondence.

  14. Viscoelastic love-type surface waves

    Science.gov (United States)

    Borcherdt, Roger D.

    2008-01-01

    The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.

  15. Viscoelastic properties of cellular polypropylene ferroelectrets

    Science.gov (United States)

    Gaal, Mate; Bovtun, Viktor; Stark, Wolfgang; Erhard, Anton; Yakymenko, Yuriy; Kreutzbruck, Marc

    2016-03-01

    Viscoelastic properties of cellular polypropylene ferroelectrets (PP FEs) were studied at low frequencies (0.3-33 Hz) by dynamic mechanical analysis and at high frequencies (250 kHz) by laser Doppler vibrometry. Relaxation behavior of the in-plane Young's modulus ( Y11 ' ˜ 1500 MPa at room temperature) was observed and attributed to the viscoelastic response of polypropylene matrix. The out-of-plane Young's modulus is very small ( Y33 ' ≈ 0.1 MPa) at low frequencies, frequency- and stress-dependent, evidencing nonlinear viscoelastic response of PP FEs. The high-frequency mechanical response of PP FEs is shown to be linear viscoelastic with Y33 ' ≈ 0.8 MPa. It is described by thickness vibration mode and modeled as a damped harmonic oscillator with one degree of freedom. Frequency dependence of Y33 * in the large dynamic strain regime is described by the broad Cole-Cole relaxation with a mean frequency in kHz range attributed to the dynamics of the air flow between partially closed air-filled voids in PP FEs. Switching-off the relaxation contribution causes dynamic crossover from the nonlinear viscoelastic regime at low frequencies to the linear viscoelastic regime at high frequencies. In the small strain regime, contribution of the air flow seems to be insignificant and the power-law response, attributed to the mechanics of polypropylene cell walls and closed air voids, dominates in a broad frequency range. Mechanical relaxation caused by the air flow mechanism takes place in the sound and ultrasound frequency range (10 Hz-1 MHz) and, therefore, should be taken into account in ultrasonic applications of the PP FEs deal with strong exciting or receiving signals.

  16. The viscoelastic effects on thermal convection of an Oldroyd-B fluid in open-top porous media

    Institute of Scientific and Technical Information of China (English)

    NIU Jun; SHI Zai-hong; TAN Wen-chang

    2013-01-01

    The effects of two viscoelastic parameters on the thermal convection of a viscoelastic Oldroyd-B fluid in an open-top porous square box with constant heat flux are investigated.The results show that the increase of relaxation time is able to destabilize the fluid flow leading to a higher heat transfer rate,while the increase of retardation time tends to stabilize the flow and suppress the heat transfer.The flow bifurcation appears earlier with the increase of the relaxation time and the decrease of the retardation time,resulting in more complicated flow patterns in the porous medium.

  17. Wind turbine blade with viscoelastic damping

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Ryan A.; Mullings, Justin L.

    2017-01-10

    A wind turbine blade (60) damped by viscoelastic material (54, 54A-F) sandwiched between stiffer load-bearing sublayers (52A, 52B, 56A, 56B) in portions of the blade effective to damp oscillations (38) of the blade. The viscoelastic material may be located in one or more of: a forward portion (54A) of the shell, an aft portion (54D) of the shell, pressure and suction side end caps (54B) of an internal spar, internal webbing walls (54C, 54E), and a trailing edge core (54F).

  18. Molecular and structural analysis of viscoelastic properties

    Science.gov (United States)

    Yapp, Rebecca D.; Kalyanam, Sureshkumar; Insana, Michael F.

    2007-03-01

    Elasticity imaging is emerging as an important tool for breast cancer detection and monitoring of treatment. Viscoelastic image contrast in breast lesions is generated by disease specific processes that modify the molecular structure of connective tissues. We showed previously that gelatin hydrogels exhibit mechanical behavior similar to native collagen found in breast tissue and therefore are suitable as phantoms for elasticity imaging. This paper summarizes our study of the viscoelastic properties of hydrogels designed to discover molecular-scale sources of elasticity image contrast.

  19. Hydrodynamic description of (visco)elastic composite materials and relative strains as a new macroscopic variable

    CERN Document Server

    Menzel, Andreas M

    2016-01-01

    One possibility to adjust material properties to a specific need is to embed units of one substance into a matrix of another substance. Even materials that are readily tunable during operation can be generated in this way. In (visco)elastic substances, both the matrix material as well as the inclusions and/or their immediate environment can be dynamically deformed. If the typical dynamic response time of the inclusions and their surroundings approach the macroscopic response time, their deformation processes need to be included into a dynamic macroscopic characterization. Along these lines, we present a hydrodynamic description of (visco)elastic composite materials. For this purpose, additional strain variables reflect the state of the inclusions and their immediate environment. These additional strain variables in general are not set by a coarse-grained macroscopic displacement field. Apart from that, during our derivation, we also include the macroscopic variables of relative translations and relative rotat...

  20. A boundary integral method for a dynamic, transient mode I crack problem with viscoelastic cohesive zone

    KAUST Repository

    Leise, Tanya L.

    2009-08-19

    We consider the problem of the dynamic, transient propagation of a semi-infinite, mode I crack in an infinite elastic body with a nonlinear, viscoelastic cohesize zone. Our problem formulation includes boundary conditions that preclude crack face interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation is preceeded by significant crazing in a thin region surrounding the crack tip. We present a combined analytical/numerical solution method that involves reducing the problem to a Dirichlet-to-Neumann map along the crack face plane, resulting in a differo-integral equation relating the displacement and stress along the crack faces and within the cohesive zone. © 2009 Springer Science+Business Media B.V.

  1. 2.5-D frequency-domain viscoelastic wave modelling using finite-element method

    Science.gov (United States)

    Zhao, Jian-guo; Huang, Xing-xing; Liu, Wei-fang; Zhao, Wei-jun; Song, Jian-yong; Xiong, Bin; Wang, Shang-xu

    2017-10-01

    2-D seismic modelling has notable dynamic information discrepancies with field data because of the implicit line-source assumption, whereas 3-D modelling suffers from a huge computational burden. The 2.5-D approach is able to overcome both of the aforementioned limitations. In general, the earth model is treated as an elastic material, but the real media is viscous. In this study, we develop an accurate and efficient frequency-domain finite-element method (FEM) for modelling 2.5-D viscoelastic wave propagation. To perform the 2.5-D approach, we assume that the 2-D viscoelastic media are based on the Kelvin-Voigt rheological model and a 3-D point source. The viscoelastic wave equation is temporally and spatially Fourier transformed into the frequency-wavenumber domain. Then, we systematically derive the weak form and its spatial discretization of 2.5-D viscoelastic wave equations in the frequency-wavenumber domain through the Galerkin weighted residual method for FEM. Fixing a frequency, the 2-D problem for each wavenumber is solved by FEM. Subsequently, a composite Simpson formula is adopted to estimate the inverse Fourier integration to obtain the 3-D wavefield. We implement the stiffness reduction method (SRM) to suppress artificial boundary reflections. The results show that this absorbing boundary condition is valid and efficient in the frequency-wavenumber domain. Finally, three numerical models, an unbounded homogeneous medium, a half-space layered medium and an undulating topography medium, are established. Numerical results validate the accuracy and stability of 2.5-D solutions and present the adaptability of finite-element method to complicated geographic conditions. The proposed 2.5-D modelling strategy has the potential to address modelling studies on wave propagation in real earth media in an accurate and efficient way.

  2. Monitoring on n-alkanes in Small and Medium-sized Reservoirs and Lakes in Guangzhou City and Its Surrounding%广州市及其周边城市中小型水库和湖泊正构烷烃监测

    Institute of Scientific and Technical Information of China (English)

    徐超

    2011-01-01

    [目的]研究广州市及其周边城市中小型水库和湖泊正构烷烃(n-alkanes)的污染情况.[方法]n-alkanes样品采自广州市及其周边14座中小型水库或者湖泊,采用日本岛津2010型气相色谱质谱仪对n-alkanes样品进行定性与定量测定.[结果]各水库水相中的20种n-alkanes(记作∑(nC15-nC34))的浓度为0.12 ~3.55 g/L;颗粒物中∑(nC15-nCu)浓度为9.9 ~1 272 μg/g;水体总浓度(溶解态+颗粒物)为0.33~46.9 μg/L;各功能区n-alkanes平均浓度水平依次为:商贸区>农业区>工业区>水源区,略高于珠江三角洲河道水系.溶解态n-alkanes的总浓度与溶解态有机碳存在较好的线性关系,表明分析水相中n-alkanes具有指示水中溶解态有杌污染总量的作用.水体中n-alkanes来源复杂,主要来自化石燃料的燃烧和生活污水排放.[结论]广州市各水库的水体受到的n-alkanes污染处于中等水平,市区的3个湖泊污染严重.%[Objective] The study aimed to research the contamination of n-alkanes in small and medium-sized reservoirs and lakes in Guangzhou City and its surrounding. [ Method] The n-alkanes samples were collected from 14 small and medium-sized reservoirs and lakes in Guangzhou City and its surrounding and they were made for the qualitative and quantitative determination by Japanese Daojin 2010 type gas chroma-tography mass spectrometer [Result] In the various reservoirs, 20 kinds of n-alkanes (recorded as Σ (nC15-nC34)) concn. In the water phase was 0. 12 -3.55 μg/L; that in the paniculate matter was9.9 -1 272 μg/g; that in the water (dissolved + particles) was 0.33 -46.9 μg/L in total; the average concn. Of n-alkanes in various function areas were: business regions > agricultural regions > industrial regions > water resource regions, being slightly higher than the river stream of Pearl River Delta. The total concn. Of dissolved n-alkanes had a good linear relationship to the dissolved organic carbon, showing

  3. Visual surround suppression in schizophrenia

    Directory of Open Access Journals (Sweden)

    Marc Samuel Tibber

    2013-02-01

    Full Text Available Compared to unaffected observers patients with schizophrenia show characteristic differences in visual perception, including a reduced susceptibility to the influence of context on judgements of contrast - a manifestation of weaker surround suppression. To examine the generality of this phenomenon we measured the ability of 24 individuals with schizophrenia to judge the luminance, contrast, orientation and size of targets embedded in contextual surrounds that would typically influence the target’s appearance. Individuals with schizophrenia demonstrated weaker surround suppression compared to matched controls for stimuli defined by contrast or size, but not for those defined by luminance or orientation. As perceived luminance is thought to be regulated at the earliest stages of visual processing our findings are consistent with a suppression deficit that is predominantly cortical in origin. In addition, we propose that preserved orientation surround suppression in schizophrenia may reflect the sparing of broadly tuned mechanisms of suppression. We attempt to reconcile these data with findings from previous studies.

  4. Educational Success and Surrounding Culture

    Science.gov (United States)

    Walters, Garrison

    2016-01-01

    The curriculum, instruction, and services we provide in schools, colleges, and universities matter a lot, but if we continue to ignore our students' "surrounding culture," progress toward a more educated nation will continue to be disappointing.

  5. Educational Success and Surrounding Culture

    Science.gov (United States)

    Walters, Garrison

    2016-01-01

    The curriculum, instruction, and services we provide in schools, colleges, and universities matter a lot, but if we continue to ignore our students' "surrounding culture," progress toward a more educated nation will continue to be disappointing.

  6. Multichannel spatial surround sound system

    Institute of Scientific and Technical Information of China (English)

    RAO Dan; XIE Bosun

    2004-01-01

    Based on the consideration of being compatible with 5.1 channel horizontal surround sound system, a spatial surround sound system is proposed. Theoretical and experimental results show that the system has a wide listening area. It can not only recreate stable image in the front and rear direction, but also eliminate the defect of poor lateral image of 5.1 channel system. The system can be used to reproduce special 3D sound effect and the spaciousness of hall.

  7. Viscoelastic behavior of discrete human collagen fibrils

    DEFF Research Database (Denmark)

    2010-01-01

    on the strain. The slope of the viscous response showed a strain rate dependence corresponding to a power function of powers 0.242 and 0.168 for the two patellar tendon fibrils, respectively. In conclusion, the present work provides direct evidence of viscoelastic behavior at the single fibril level, which has...

  8. Numerical solution methods for viscoelastic orthotropic materials

    Science.gov (United States)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1988-01-01

    Numerical solution methods for viscoelastic orthotropic materials, specifically fiber reinforced composite materials, are examined. The methods include classical lamination theory using time increments, direction solution of the Volterra Integral, Zienkiewicz's linear Prony series method, and a new method called Nonlinear Differential Equation Method (NDEM) which uses a nonlinear Prony series. The criteria used for comparison of the various methods include the stability of the solution technique, time step size stability, computer solution time length, and computer memory storage. The Volterra Integral allowed the implementation of higher order solution techniques but had difficulties solving singular and weakly singular compliance function. The Zienkiewicz solution technique, which requires the viscoelastic response to be modeled by a Prony series, works well for linear viscoelastic isotropic materials and small time steps. The new method, NDEM, uses a modified Prony series which allows nonlinear stress effects to be included and can be used with orthotropic nonlinear viscoelastic materials. The NDEM technique is shown to be accurate and stable for both linear and nonlinear conditions with minimal computer time.

  9. Viscoelasticity of suspensions of long, rigid rods

    NARCIS (Netherlands)

    Dhont, Jan K.G.; Briels, W.J.

    2003-01-01

    A microscopic theory for the viscoelastic behaviour of suspensions of rigid rods with excluded volume interactions is presented, which is valid in the asymptotic limit of very long and thin rods. Stresses arising from translational and rotational Brownian motion and direct interactions are calculate

  10. Viscoelastic behavior of discrete human collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, René; Hassenkam, Tue; Hansen, Philip

    2010-01-01

    Whole tendon and fibril bundles display viscoelastic behavior, but to the best of our knowledge this property has not been directly measured in single human tendon fibrils. In the present work an atomic force microscopy (AFM) approach was used for tensile testing of two human patellar tendon fibr...

  11. Viscoelastic properties of laryngeal posturing muscles

    Science.gov (United States)

    Alipour, Fariborz; Hunter, Eric; Titze, Ingo

    2003-10-01

    Viscoelastic properties of canine laryngeal muscles were measured in a series of in vitro experiments. Laryngeal posturing that controls vocal fold length and adduction/abduction is an essential component of the voice production. The dynamics of posturing depends on the viscoelastic and physiological properties of the laryngeal muscles. The time-dependent and nonlinear behaviors of these tissues are also crucial in the voice production and pitch control theories. The lack of information on some of these muscles such as posterior cricoarytenoid muscle (PCA), lateral cricoarytenoid muscle (LCA), and intraarytenoid muscle (IA) was the major incentive for this study. Samples of PCA and LCA muscles were made from canine larynges and mounted on a dual-servo system (Ergometer) as described in our previous works. Two sets of experiments were conducted on each muscle, a 1-Hz stretch and release experiment that provides stress-strain data and a stress relaxation test. Data from these muscles were fitted to viscoelastic models and Young's modulus and viscoelastic constants are obtained for each muscle. Preliminary data indicates that elastics properties of these muscles are similar to those of thyroarytenoid and cricothyroid muscles. The relaxation response of these muscles also shows some similarity to other laryngeal muscles in terms of time constants.

  12. Viscoelastic properties of the false vocal fold

    Science.gov (United States)

    Chan, Roger W.

    2004-05-01

    The biomechanical properties of vocal fold tissues have been the focus of many previous studies, as vocal fold viscoelasticity critically dictates the acoustics and biomechanics of phonation. However, not much is known about the viscoelastic response of the ventricular fold or false vocal fold. It has been shown both clinically and in computer simulations that the false vocal fold may contribute significantly to the aerodynamics and sound generation processes of human voice production, with or without flow-induced oscillation of the false fold. To better understand the potential role of the false fold in phonation, this paper reports some preliminary measurements on the linear and nonlinear viscoelastic behavior of false vocal fold tissues. Linear viscoelastic shear properties of human false fold tissue samples were measured by a high-frequency controlled-strain rheometer as a function of frequency, and passive uniaxial tensile stress-strain response of the tissue samples was measured by a muscle lever system as a function of strain and loading rate. Elastic moduli (Young's modulus and shear modulus) of the false fold tissues were calculated from the measured data. [Work supported by NIH.

  13. Viscoelastic Pavement Modeling with a Spreadsheet

    DEFF Research Database (Denmark)

    Levenberg, Eyal

    2016-01-01

    The aim herein was to equip civil engineers and students with an advanced pavement modeling tool that is both easy to use and highly adaptive. To achieve this, a mathematical solution for a layered viscoelastic half-space subjected to a moving load was developed and subsequently implemented...

  14. Dynamics of a reinforced viscoelastic plate

    Directory of Open Access Journals (Sweden)

    Igor V. Andrianov

    2006-01-01

    Full Text Available Oscillations and static bending deformation of a viscoelastic reinforced plate are considered. Analytical solutions are derived. An asymptotic technique, based on the homogenization method, is used for this purpose. In addition, a special perturbation approach is employed. An example is given for the purpose of illustration. The approximate analytical expressions are shown to adequately meet the requirements of optimal structural design.

  15. The role of viscoelasticity in subducting plates

    Science.gov (United States)

    Farrington, R. J.; Moresi, L.-N.; Capitanio, F. A.

    2014-11-01

    of tectonic plates into Earth's mantle occurs when one plate bends beneath another at convergent plate boundaries. The characteristic time of deformation at these convergent boundaries approximates the Maxwell relaxation time for olivine at lithospheric temperatures and pressures, it is therefore by definition a viscoelastic process. While this is widely acknowledged, the large-scale features of subduction can, and have been, successfully reproduced assuming the plate deforms by a viscous mechanism alone. However, the energy rates and stress profile within convergent margins are influenced by viscoelastic deformation. In this study, viscoelastic stresses have been systematically introduced into numerical models of free subduction, using both the viscosity and shear modulus to control the Maxwell relaxation time. The introduction of an elastic deformation mechanism into subduction models produces deviations in both the stress profile and energy rates within the subduction hinge when compared to viscous only models. These variations result in an apparent viscosity that is variable throughout the length of the plate, decreasing upon approach and increasing upon leaving the hinge. At realistic Earth parameters, we show that viscoelastic stresses have a minor effect on morphology yet are less dissipative at depth and result in an energy transfer between the energy stored during bending and the energy released during unbending. We conclude that elasticity is important during both bending and unbending within the slab hinge with the resulting stress loading and energy profile indicating that slabs maintain larger deformation rates at smaller stresses during bending and retain their strength during unbending at depth.

  16. Viscoelastic coagulation testing: technology, applications, and limitations.

    Science.gov (United States)

    McMichael, Maureen A; Smith, Stephanie A

    2011-06-01

    Use of viscoelastic point-of-care (POC) coagulation instrumentation is relatively new to veterinary medicine. In human medicine, this technology has recently undergone resurgence owing to its capacity to detect hypercoagulability. The lack of sensitive tests for detecting hypercoagulable states, along with our current understanding of in vivo coagulation, highlights the deficiencies of standard coagulation tests, such as prothrombin and partial thromboplastin times, which are performed on platelet-poor plasma. Viscoelastic coagulation analyzers can provide an assessment of global coagulation, from the beginning of clot formation to fibrinolysis, utilizing whole blood. In people, use of this technology has been reported to improve management of hemostasis during surgery and decrease usage of blood products and is being used as a rapid screen for hypercoagulability. In veterinary medicine, clinical use of viscoelastic technology has been reported in dogs, cats, foals, and adult horses. This article will provide an overview of the technology, reagents and assays, applications in human and veterinary medicine, and limitations of the 3 viscoelastic POC analyzers in clinical use.

  17. Seismic Analysis of a Viscoelastic Damping Isolator

    Directory of Open Access Journals (Sweden)

    Bo-Wun Huang

    2015-01-01

    Full Text Available Seismic prevention issues are discussed much more seriously around the world after Fukushima earthquake, Japan, April 2011, especially for those countries which are near the earthquake zone. Approximately 1.8×1012 kilograms of explosive energy will be released from a magnitude 9 earthquake. It destroys most of the unprotected infrastructure within several tens of miles in diameter from the epicenter. People can feel the earthquake even if living hundreds of miles away. This study is a seismic simulation analysis for an innovated and improved design of viscoelastic damping isolator, which can be more effectively applied to earthquake prevention and damage reduction of high-rise buildings, roads, bridges, power generation facilities, and so forth, from earthquake disaster. Solidworks graphic software is used to draw the 3D geometric model of the viscoelastic isolator. The dynamic behavior of the viscoelastic isolator through shock impact of specific earthquake loading, recorded by a seismometer, is obtained via ANSYS finite element package. The amplitude of the isolator is quickly reduced by the viscoelastic material in the device and is shown in a time response diagram. The result of this analysis can be a crucial reference when improving the design of a seismic isolator.

  18. A sub-cellular viscoelastic model for cell population mechanics.

    Directory of Open Access Journals (Sweden)

    Yousef Jamali

    Full Text Available Understanding the biomechanical properties and the effect of biomechanical force on epithelial cells is key to understanding how epithelial cells form uniquely shaped structures in two or three-dimensional space. Nevertheless, with the limitations and challenges posed by biological experiments at this scale, it becomes advantageous to use mathematical and 'in silico' (computational models as an alternate solution. This paper introduces a single-cell-based model representing the cross section of a typical tissue. Each cell in this model is an individual unit containing several sub-cellular elements, such as the elastic plasma membrane, enclosed viscoelastic elements that play the role of cytoskeleton, and the viscoelastic elements of the cell nucleus. The cell membrane is divided into segments where each segment (or point incorporates the cell's interaction and communication with other cells and its environment. The model is capable of simulating how cells cooperate and contribute to the overall structure and function of a particular tissue; it mimics many aspects of cellular behavior such as cell growth, division, apoptosis and polarization. The model allows for investigation of the biomechanical properties of cells, cell-cell interactions, effect of environment on cellular clusters, and how individual cells work together and contribute to the structure and function of a particular tissue. To evaluate the current approach in modeling different topologies of growing tissues in distinct biochemical conditions of the surrounding media, we model several key cellular phenomena, namely monolayer cell culture, effects of adhesion intensity, growth of epithelial cell through interaction with extra-cellular matrix (ECM, effects of a gap in the ECM, tensegrity and tissue morphogenesis and formation of hollow epithelial acini. The proposed computational model enables one to isolate the effects of biomechanical properties of individual cells and the

  19. Construction of constant-Q viscoelastic model with three parameters

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng-yu; YIN Xing-yao

    2007-01-01

    The popularly used viscoelastic models have some shortcomings in describing relationship between quality factor (Q) and frequency, which is not consistent with the observation data. Based on the theory of viscoelasticity, a new approach to construct constant-Q viscoelastic model in given frequency band with three parameters is developed. The designed model describes the frequency-independence feature of quality factor very well, and the effect of viscoelasticity on seismic wave field can be studied relatively accurate in theory with this model. Furthermore, the number of required parameters in this model has been reduced fewer than that of other constant-Q models, this can simplify the solution of the viscoelastic problems to some extent. At last, the accuracy and application range have been analyzed through numerical tests. The effect of viscoelasticity on wave propagation has been briefly illustrated through the change of frequency spectra and waveform in several different viscoelastic models.

  20. Scattering of homogeneous and inhomogeneous seismic waves in low-loss viscoelastic media

    Science.gov (United States)

    Moradi, Shahpoor; Innanen, Kristopher A.

    2015-09-01

    Motivated by the need to derive and characterize increasingly sophisticated seismic data analysis and inversion methods incorporating wave dissipation, we consider the problem of scattering of homogeneous and inhomogeneous waves from perturbations in five viscoelastic parameters (density, P- and S-wave velocities, and P- and S-wave quality factors), as formulated in the context of the Born approximation. Within this approximation the total wave field is the superposition of an incident plane wave and a scattered wave, the latter being a spherical wave weighted by a function of solid angle called the scattering potential. In elastic media the scattering potential is real, but if dissipation is included through a viscoelastic model, the potential becomes complex and thus impacts the amplitude and phase of the outgoing wave. The isotropic-elastic scattering framework of Stolt and Weglein, extended to admit viscoelastic media, exposes these amplitude and phase phenomena to study, and in particular allows certain well-known layered-medium viscoelastic results due to Borcherdt to be re-considered in an arbitrary heterogeneous Earth. The main theoretical challenge in doing this involves the choice of coordinate system over which to evaluate and analyse the waves, which in the viscoelastic case must be based on complex vector analysis. We present a candidate system within which several of Borcherdt's key results carry over; for instance, we show that elliptically polarized P and SI waves cannot be scattered into linearly polarized SII waves. Furthermore, the elastic formulation is straightforwardly recovered in the limit as P- and S-wave quality factors tend to infinity.

  1. Validity of the second Fick's law for modeling ion-exchange diffusion in non-crystalline viscoelastic media (glasses)

    Science.gov (United States)

    Tagantsev, D. K.; Ivanenko, D. V.

    2016-04-01

    It is shown that, in general case, the diffusion equation (or the second Fick's law) does not provide an adequate description of ion-exchange transport phenomena in viscoelastic media, including glassy or any other non-crystalline media. In this connection the general phenomenological model of ion-exchange diffusion in viscoelastic media has been developed. A theoretical analysis of the model shows that, in the case of a linear dependence of medium density on the concentration of diffusing ions, the necessary and sufficient condition of the absolute validity of the diffusion equation in viscoelastic media is Φ ≫ 1, where Φ = τD/τR is the dimensionless value (or criterion of similarity), with τD = L2/D being the characteristic time of diffusion and τR = η/G being the characteristic time of stress relaxation, where L, D, η, and G are the characteristic length of diffusion, the diffusivity, the viscosity, and the shear modulus, respectively. The value of 1/Φ characterizes the accuracy which is provided if the second Fick's law is used in the simulation of ion-exchange diffusion in viscoelastic media. We have demonstrated the applicability of this criterion experimentally. Our experimental studies on ion-exchange diffusion in an oxide glass (typical viscoelastic media) have shown that under the condition the Φ > 105 the experimental concentration profiles are close to those predicted by the second Fick's law to within an accuracy of 1%.

  2. Axial Dynamic Stiffness of Tubular Piles in Viscoelastic Soil

    Directory of Open Access Journals (Sweden)

    Mehdi Bayat

    2016-09-01

    Full Text Available Large offshore wind turbines are founded on jacket structures. In this study, an elastic full-space jacket structure foundation in an elastic and viscoelastic medium is investigated by using boundary integral equations. The jacket structure foundation is modeled as a hollow, long circular cylinder when the dynamic vertical excitation is applied. The smooth surface along the entire interface is considered. The Betti reciprocal theorem along with Somigliana’s identity and Green’s function are employed to drive the dynamic stiffness of jacket structures. Modes of the resonance and anti-resonance are presented in series of Bessel’s function. Important responses, such as dynamic stiffness and phase angle, are compared for different values of the loss factor as the material damping, Young’s modulus and Poisson’s ratio in a viscoelastic soil. Results are verified with known results reported in the literature. It is observed that the dynamic stiffness fluctuates with the loss factor, and the turning point is independent of the loss factor while the turning point increases with load frequency. It is seen that the non-dimensional dynamic stiffness is dependent on Young’s modulus and Poisson’s ratio, whilst the phase angle is independent of the properties of the soil. It is shown that the non-dimensional dynamic stiffness changes linearly with high-frequency load. The conclusion from the results of this study is that the material properties of soil are significant parameters in the dynamic stiffness of jacket structures, and the presented approach can unfold the behavior of soil and give an approachable physical meaning for wave propagation.

  3. Dewetting of a water film between a solid and a viscoelastic liquid

    Science.gov (United States)

    Brochard-Wyart, F.

    1994-10-01

    A water film squeezed between a hydrophobic solid (S) and a polymer melt (P) is metastable and dewets by nucleation and growth of a dry patch (radius R(t) at time t) surrounded by a rim (collecting the rejected water). Taking into account the viscoelastic behaviour of P, we are led to predict : a) a pure elastic regime if R caoutchouc, avec R(t) sim t^{3/4} ; b) un régime visqueux, aux temps longs, où le bourrelet est étiré par sa grande friction avec P, et se déplace à vitesse constante.

  4. Analysis of afterslip distribution following the 2007 September 12 southern Sumatra earthquake using poroelastic and viscoelastic media

    Science.gov (United States)

    Lubis, Ashar Muda; Hashima, Akinori; Sato, Toshinori

    2013-01-01

    Most studies of afterslip distribution consider only elastic media. However, the effects of poroelastic rebound in the upper crust and viscoelastic relaxation in the asthenosphere are part of the observed post-seismic deformation. Therefore, these effects should be removed to give a more reliable and correct afterslip distribution. We developed a method for calculating an afterslip distribution in elastic, poroelastic and viscoelastic media, and we applied this method to the case of the 2007 southern Sumatra earthquake (Mw 8.5). To estimate the coseismic slip and time evolution of the afterslip distribution, we applied Akaike's Bayesian Information Criterion (ABIC) inversion method of coseismic displacement, and analysed 15 months of GPS post-seismic deformation data in 3-month observation periods. To calculate afterslip in each period, we considered not only viscoelastic responses to coseismic slip but also viscoelastic responses to afterslip in the preceding periods. We used viscoelastic model to compute post-seismic deformation models every 3 months during the 15 months after the earthquake. The viscosity value for the asthenosphere layer is a crucial unknown parameter. To overcome this problem, we used a grid search method to determine the best-viscosity value, and we found that the best viscosity for the Sumatra subduction zone was 2.5 × 1018 Pa·s. After removing the poroelastic and viscoelastic responses, we obtained maximum afterslip of 0.5 m during the 15-month investigation (the same as maximum afterslip estimated using the elastic medium only), but the poroelastic and viscoelastic responses brought the afterslip distribution to a shallower depth than the main coseismic rupture area. The results showed that the poroelastic and viscoelastic responses added significant corrections to the afterslip distribution. Compared with the traditional method, this method improved the determination of the afterslip distribution. We conclude that consideration of

  5. The advantage of linear viscoelastic material behavior in passive damper design-with application in broad-banded resonance dampers for industrial high-precision motion stages

    Science.gov (United States)

    Verbaan, Cornelis A. M.; Peters, Gerrit W. M.; Steinbuch, Maarten

    2017-01-01

    In this paper we demonstrate the advantage of applying viscoelastic materials instead of purely viscous materials as damping medium in mechanical dampers. Although the loss modulus decreases as function of frequency in case of viscoelastic behavior, which can be interpreted as a decrease of damping, the viscoelastic behavior still leads to an increased modal damping for mechanical structures. This advantage holds for inertial-mass-type dampers that are tuned for broad-banded resonance damping. It turns out that an increase of the storage modulus as function of frequency contributes to the effectiveness of mechanical dampers with respect to energy dissipation at different mechanical resonance frequencies. It is shown that this phenomenon is medium specific and is independent of the amount of damper mass.

  6. Nonlinear Dynamics of Coiling in Viscoelastic Jets

    CERN Document Server

    Majmudar, Trushant; Hartt, William; McKinley, Gareth

    2010-01-01

    Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain less well understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in great detail; buckling instability in viscous jets leads to regular periodic coiling of the jet that exhibits a non-trivial frequency dependence with the height of the fall. Very few experimental or theoretical studies exist for continuous viscoelastic jets beyond the onset of the first instability. Here, we present a systematic study of the effects of viscoelasticity on the dynamics of free surface continuous jets of surfactant solutions that form worm-like micelles. We observe complex nonlinear spatio-temporal dynamics of the jet and uncover a transition from periodic to doubly-periodic or quasi-periodic to a multi-frequency, possibly chaotic dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the "leaping shampoo effect" or the Kaye effe...

  7. Viscoelasticity of Xenon near the Critical Point

    Science.gov (United States)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    1999-01-01

    Using a novel, overdamped, oscillator flown aboard the Space Shuttle, we measured the viscosity of xenon near the liquid-vapor critical point in the frequency range 2 Hz less than or equal to f less than or equal to 12 Hz. The measured viscosity divergence is characterized by the exponent z(sub eta) = 0.0690 +/- 0.0006, in agreement with the value z(sub eta) = 0.067 +/- 0.002 calculated from a two-loop perturbation expansion. Viscoelastic behavior was evident when t = (T - T(sub c))/T(sub c) less than 10(exp -5) and dominant when t less than 10(exp -6), further from T(sub c) than predicted. Viscoelastic behavior scales as Af(tau) where tau is the fluctuation decay time. The measured value of A is 2.0 +/- 0.3 times the result of a one-loop calculation. (Uncertainties stated are one standard uncertainty.)

  8. A Viscoelastic Constitutive Law For FRP Materials

    Science.gov (United States)

    Ascione, Luigi; Berardi, Valentino Paolo; D'Aponte, Anna

    2011-09-01

    The present study deals with the long-term behavior of fiber-reinforced polymer (FRP) materials in civil engineering. More specifically, the authors propose a mechanical model capable of predicting the viscoelastic behavior of FRP laminates in the field of linear viscoelasticity, starting from that of the matrix material and fiber. The model is closely connected with the low FRP stress levels in civil engineering applications. The model is based on a micromechanical approach which assumes that there is a perfect adhesion between the matrix and fiber. The long-term behavior of the phases is described through a four-parameter rheological law. A validation of the model has also been developed by matching the predicted behavior with an experimental one available in the literature.

  9. On viscoelastic instability in polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1999-01-01

    The 3D Lagrangian Integral Method is used to simulate the effects of surface tension on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates. It is shovn that the surface tension delays the onset of the instability. Furthermore...... it is demonstrated that surface tension plays a key role in the selection of the most unstable mode...

  10. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, Vera [Konkoly Thege Miklos Astronomical Institute, Research Centre of Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Konkoly Thege Miklós út 15-17, Budapest (Hungary); Turner, Edwin L., E-mail: dobos@konkoly.hu [Department of Astrophysical Sciences, Princeton University, 08544, 4 Ivy Lane, Peyton Hall, Princeton, NJ (United States)

    2015-05-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.

  11. Visual Surround Suppression in Schizophrenia

    Science.gov (United States)

    Tibber, Marc S.; Anderson, Elaine J.; Bobin, Tracy; Antonova, Elena; Seabright, Alice; Wright, Bernice; Carlin, Patricia; Shergill, Sukhwinder S.; Dakin, Steven C.

    2013-01-01

    Compared to unaffected observers patients with schizophrenia (SZ) show characteristic differences in visual perception, including a reduced susceptibility to the influence of context on judgments of contrast – a manifestation of weaker surround suppression (SS). To examine the generality of this phenomenon we measured the ability of 24 individuals with SZ to judge the luminance, contrast, orientation, and size of targets embedded in contextual surrounds that would typically influence the target’s appearance. Individuals with SZ demonstrated weaker SS compared to matched controls for stimuli defined by contrast or size, but not for those defined by luminance or orientation. As perceived luminance is thought to be regulated at the earliest stages of visual processing our findings are consistent with a suppression deficit that is predominantly cortical in origin. In addition, we propose that preserved orientation SS in SZ may reflect the sparing of broadly tuned mechanisms of suppression. We attempt to reconcile these data with findings from previous studies. PMID:23450069

  12. Viscoelastic material inversion using Sierra-SD and ROL

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aquino, Wilkins [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ridzal, Denis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kouri, Drew Philip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart Gustaaf [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Urbina, Angel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.

  13. Modelling the viscoelasticity of ceramic tiles by finite element

    Science.gov (United States)

    Pavlovic, Ana; Fragassa, Cristiano

    2016-05-01

    This research details a numerical method aiming at investigating the viscoelastic behaviour of a specific family of ceramic material, the Grès Porcelain, during an uncommon transformation, known as pyroplasticity, which occurs when a ceramic tile bends under a combination of thermal stress and own weight. In general, the theory of viscoelasticity can be considered extremely large and precise, but its application on real cases is particularly delicate. A time-depending problem, as viscoelasticity naturally is, has to be merged with a temperature-depending situation. This paper investigates how the viscoelastic response of bending ceramic materials can be modelled by commercial Finite Elements codes.

  14. Quantitative modelling of viscoelasticity of isotropic fibrous composites with viscoelastic matrices

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Despite the wide usage of isotropic fibrous composites with a viscoelastic polymer matrix,no analytic model for their mechanical behaviour is known.This paper develops such a model for time-dependent Young's modulus,showing that for typical constituents the time constants of composites are up to about 6% greater than the matrix shear time constant.Viscoelasticity is strongly suppressed for stiff fibres even at modest fibre volume fractions.Comparison with known results for particle and oriented fibre compos...

  15. Role of viscoelasticity in instability in plane shear flow over a deformable solid

    Indian Academy of Sciences (India)

    Paresh Chokshi

    2015-05-01

    The stability of the flow of a viscoelastic fluid over a deformable elastic solid medium is reviewed focusing on the role played by the fluid elasticity on the earlier known instability modes for the Newtonian fluids. In particular, two classes of modes are emphasized: the viscous mode for the creeping flow, and the wall mode for high Reynolds number flow. The flow geometry is restricted to plane Couette flow of fluid supported on elastic substrate of finite thickness. The viscoelastic fluid is described using the Oldroyd-B model and the dynamics of the deformable solid continuum is described by either Hookean or neo-Hookean elastic model. In the limit of $Re \\to 0$, the introduction of fluid elasticity delays the onset of instability and for sufficiently viscoelastic fluid with dilute polymer concentration, the instability is suppressed rendering the flow stable. For concentrated solution and polymer melt, the instability persists, but with higher value of critical shear rate than for the Newtonian fluid, indicating stabilizing role of fluid elasticity in creeping flow regime. However, for high Reynolds number flow of dilute polymer solution, the polymer addition plays a destabilizing role for wall modes, indicated by reduction in critical Reynolds number by an order of magnitude.

  16. Elasto-inertial particle focusing under the viscoelastic flow of DNA solution in a square channel.

    Science.gov (United States)

    Kim, Bookun; Kim, Ju Min

    2016-03-01

    Particle focusing is an essential step in a wide range of applications such as cell counting and sorting. Recently, viscoelastic particle focusing, which exploits the spatially non-uniform viscoelastic properties of a polymer solution under Poiseuille flow, has attracted much attention because the particles are focused along the channel centerline without any external force. Lateral particle migration in polymer solutions in square channels has been studied due to its practical importance in lab-on-a-chip applications. However, there are still many questions about how the rheological properties of the medium alter the equilibrium particle positions and about the flow rate ranges for particle focusing. In this study, we investigated lateral particle migration in a viscoelastic flow of DNA solution in a square microchannel. The elastic property is relevant due to the long relaxation time of a DNA molecule, even when the DNA concentration is extremely low. Further, the shear viscosity of the solution is essentially constant irrespective of shear rate. Our current results demonstrate that the particles migrate toward the channel centerline and the four corners of a square channel in the dilute DNA solution when the inertia is negligible (elasticity-dominant flow). As the flow rate increases, the multiple equilibrium particle positions are reduced to a single file along the channel centerline, due to the elasto-inertial particle focusing mechanism. The current results support that elasto-inertial particle focusing mechanism is a universal phenomenon in a viscoelastic fluid with constant shear viscosity (Boger fluid). Also, the effective flow rate ranges for three-dimensional particle focusing in the DNA solution were significantly higher and wider than those for the previous synthetic polymer solution case, which facilitates high throughput analysis of particulate systems. In addition, we demonstrated that the DNA solution can be applied to focus a wide range of

  17. The effect of viscoelasticity and tabletting speed on consolidation and relaxation of a viscoelastic material

    NARCIS (Netherlands)

    Maarschalk, KV; Vromans, H; Bolhuis, GK; Lerk, CF

    This paper evalutes the applicability of Dynamic Mechanical Analysis (DMA) as a tool to explain consolidation and relaxation behaviour of a viscoelastic powder compressed at different speeds. From the DMA-data it is concluded that the material becomes more rigid and more elastic with increasing

  18. Role of viscoelasticity in mantle convection models

    Science.gov (United States)

    Patocka, Vojtech; Cadek, Ondrej; Tackley, Paul

    2015-04-01

    A present limitation of global thermo-chemical convection models is that they assume a purely viscous or visco-plastic flow law for solid rock, i.e. elasticity is ignored. This may not be a good assumption in the cold, outer boundary layer known as the lithosphere, where elastic deformation may be important. Elasticity in the lithosphere plays at least two roles: It changes surface topography, which changes the relationship between topography and gravity, and it alters the stress distribution in the lithosphere, which may affect dynamical behaviour such as the formation of plate boundaries and other tectonics features. A method for adding elasticity to a viscous flow solver to make a visco-elastic flow solver, which involves adding advected elastic stress to the momentum equation and introducing an "effective" viscosity has been proposed (e.g. Moresi, 2002). The proposed method is designed primarily for a regional-scale numerical model which employs tracers for advection and co-rotation of the stress field. In this study we test a grid-based version of the method in context of thermal convection in the Boussinesq approximation. A simple finite difference/volume model with staggered grid is used, with the aim to later use the same method to implement viscoelasticity into StagYY (Tackley, 2008). The main obstacle is that Maxwell viscoelastic rheology produces instantaneous deformation if instantaneous change of the driving forces occurs. It is not possible to model such deformation in a velocity formulated convection model, as velocity undergoes a singularity for an instantaneous deformation. For a given Rayleigh number there exists a certain critical value of the Deborah number above which it is necessary to use a thermal time step different from the one used in viscoelastic constitutive equation to avoid this numerical instability from happening. Critical Deborah numbers for various Rayleigh numbers are computed. We then propose a method to decouple the thermal and

  19. The Local Interstellar Medium

    CERN Document Server

    Redfield, S

    2006-01-01

    The Local Interstellar Medium (LISM) is a unique environment that presents an opportunity to study general interstellar phenomena in great detail and in three dimensions. In particular, high resolution optical and ultraviolet spectroscopy have proven to be powerful tools for addressing fundamental questions concerning the physical conditions and three-dimensional (3D) morphology of this local material. After reviewing our current understanding of the structure of gas in the solar neighborhood, I will discuss the influence that the LISM can have on stellar and planetary systems, including LISM dust deposition onto planetary atmospheres and the modulation of galactic cosmic rays through the astrosphere - the balancing interface between the outward pressure of the magnetized stellar wind and the inward pressure of the surrounding interstellar medium. On Earth, galactic cosmic rays may play a role as contributors to ozone layer chemistry, planetary electrical discharge frequency, biological mutation rates, and cl...

  20. Mud-Wave Interaction: A Viscoelastic Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This study is devoted to the interaction between water surface waves and a thin layer of viscoelastic mud on the bottom. On the assumption that the mud layer is comparable in thickness with the wave boundary layer and is much smaller than the wavelength, a two-layer Stokes boundary layer model is adopted to determine the mud motions under the waves. Analytical expressions are derived for the near-bottom water and mud velocity fields, surface wave-damping rate, and interface wave amplitude and phase lag. Examined in particular is how these kinematic quantities may depend on the viscous and elastic properties of the mud.

  1. Viscoelastic Phase Separation of Protein Solutions

    Science.gov (United States)

    Tanaka, Hajime; Nishikawa, Yuya

    2005-08-01

    In addition to the known behavior of normal phase separation and gelation, we report novel phase-separation behavior of protein solutions as their intermediate case. A network structure of the protein-rich phase may be formed even if it is the minority phase, contrary to the conventional wisdom. This behavior is characteristic of viscoelastic phase separation found in polymer solutions. This kinetic pathway may play crucial roles in the complex phase ordering of protein solutions, in particular, protein network formation in biological systems and foods.

  2. Transient waves in finite viscoelastic rods

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, F. (Bologna Univ. (Italy). Ist. di Fisica); Nervosi, R. (Bologna Univ. (Italy))

    1980-11-29

    A method based on the Laplace transform is presented to compute wave-front expansions for transient waves in finite viscoelastic rods using the creep or the relaxation representation. The response is related to the basic solution of the semi-infinite problem, for which a series expansion is obtained by a recursive procedure. The convergence is guaranteed in any space-time domain if the material functions are entirely of exponential type. However, for numerical computation an acceleration of convergence is required and the Pade approximants turn out to be successful as shown by some examples.

  3. Absolute instability in viscoelastic mixing layers

    Science.gov (United States)

    Ray, Prasun K.; Zaki, Tamer A.

    2014-01-01

    The spatiotemporal linear stability of viscoelastic planar mixing layers is investigated. A one-parameter family of velocity profiles is used as the base state with the parameter, S, controlling the amount of shear and backflow. The influence of viscoelasticity in dilute polymer solutions is modeled with the Oldroyd-B and FENE-P constitutive equations. Both models require the specification of the ratio of the polymer-relaxation and convective time scales (the Weissenberg number, We) and the ratio of solvent and solution viscosities (β). The maximum polymer extensibility, L, must also be specified for the FENE-P model. We examine how the variation of these parameters along with the Reynolds number, Re, affects the minimum value of S at which the flow becomes locally absolutely unstable. With the Oldroyd-B model, the influence of viscoelasticity is shown to be almost fully captured by the elasticity, E^* equiv (1-β ) We/Re, and Scrit decreases as elasticity is increased, i.e., elasticity is destabilizing. A simple approximate dispersion relation obtained via long-wave asymptotic analysis is shown to accurately capture this destabilizing influence. Results obtained with the FENE-P model exhibit a rich variety of behavior. At large values of the extensibility, L, results are similar to those for the Oldroyd-B fluid as expected. However, when the extensibility is reduced to more realistic values (L ≈ 100), one must consider the scaled shear rate, η _c equiv We S/2L, in addition to the elasticity. When ηc is large, the base-state polymer stress obtained by the FENE-P model is reduced, and there is a corresponding reduction in the overall influence of viscoelasticity on stability. Additionally, elasticity exhibits a stabilizing effect which is driven by the streamwise-normal perturbation polymer stress. As ηc is reduced, the base-state and perturbation normal polymer stresses predicted by the FENE-P model move towards the Oldroyd-B values, and the destabilizing

  4. Light scanner based on a viscoelastic stretchable grating

    NARCIS (Netherlands)

    Simonov, A.N.; Akhzar-Mehr, O.; Vdovine, G.V.

    2005-01-01

    We present a new technique for light scanning by use of viscoelastic-based deformable phase diffraction gratings. Mechanical stretching of the grating permits control of its spatial period, and thus the orders of diffraction can be spatially deflected. In the experiments the viscoelastic gratings wi

  5. Convergence of the Solution to General Viscoelastic Koiter Shell Equations

    Institute of Scientific and Technical Information of China (English)

    Fu Shan LI

    2007-01-01

    By applying the inequality of Korn's type without boundary conditions on a general surface, we prove that the scaled displacement of the two-dimensional linearly viscoelastic Koiter's shell converges to the solution of two-dimensional model system of linearly viscoelastic "membrane" shell.

  6. Semi-analytical computation of displacement in linear viscoelastic materials

    Science.gov (United States)

    Spinu, S.; Gradinaru, D.

    2015-11-01

    Prediction of mechanical contact performance based on elastic models is not accurate in case of viscoelastic materials; however, a closed-form description of the viscoelastic contact has yet to be found. This paper aims to advance a semi-analytical method for computation of displacement induced in viscoelastic materials by arbitrary surface tractions, as a prerequisite to a semi-analytical solution for the viscoelastic contact problem. The newly advanced model is expected to provide greater generality, allowing for arbitrary contact geometry and / or arbitrary loading history. While time-independent equations in the purely elastic model can be treated numerically by imposing a spatial discretization only, a viscoelastic constitutive law requires supplementary temporal discretization capable of simulating the memory effect specific to viscoelastic materials. By deriving new influence coefficients, computation of displacement induced in a viscoelastic material by a known but otherwise arbitrary history of surface tractions can be achieved via superposition authorized by the Boltzmann superposition theory applicable in the frame of linear viscoelasticity.

  7. EXPERIMENTAL MODAL ANALYSIS OF VISCO-ELASTICALLY DAMPED STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The form of the modal analysis of viscoelastically damped structures is simplified and this simplified form is similar to the form of the modal analysis of linear viscously damped structures. As a result of this simplified form, the experimental modal analysis methods of linear viscously damped structures are applied to the experimental modal analysis of viscoelastically damped structures.

  8. Effect of Viscoelasticity on Adhesion of Bioinspired Micropatterned Epoxy Surfaces

    NARCIS (Netherlands)

    Castellanos, G.; Arzt, E.; Kamperman, M.M.G.

    2011-01-01

    The effect of viscoelasticity on adhesion was investigated for micropatterned epoxy surfaces and compared to nonpatterned surfaces. A two-component epoxy system was used to produce epoxy compositions with different viscoelastic properties. Pillar arrays with flat punch tip geometries were fabricated

  9. Light scanner based on a viscoelastic stretchable grating

    NARCIS (Netherlands)

    Simonov, A.N.; Akhzar-Mehr, O.; Vdovine, G.V.

    2005-01-01

    We present a new technique for light scanning by use of viscoelastic-based deformable phase diffraction gratings. Mechanical stretching of the grating permits control of its spatial period, and thus the orders of diffraction can be spatially deflected. In the experiments the viscoelastic gratings wi

  10. Numerical simulations of viscoelastic flows with free surfaces

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    We present a new methodology to simulate viscoelastic flows with free-surfaces. These simulations are motivated by the modelling of polymers manufacturing techniques, such as extrusion and injection moulding. One of the consequences of viscoelasticity is that polymeric materials have a “memory...

  11. Effects of viscoelasticity in the high Reynolds number cylinder wake

    KAUST Repository

    Richter, David

    2012-01-16

    At Re = 3900, Newtonian flow past a circular cylinder exhibits a wake and detached shear layers which have transitioned to turbulence. It is the goal of the present study to investigate the effects which viscoelasticity has on this state and to identify the mechanisms responsible for wake stabilization. It is found through numerical simulations (employing the FENE-P rheological model) that viscoelasticity greatly reduces the amount of turbulence in the wake, reverting it back to a state which qualitatively appears similar to the Newtonian mode B instability which occurs at lower Re. By focusing on the separated shear layers, it is found that viscoelasticity suppresses the formation of the Kelvin-Helmholtz instability which dominates for Newtonian flows, consistent with previous studies of viscoelastic free shear layers. Through this shear layer stabilization, the viscoelastic far wake is then subject to the same instability mechanisms which dominate for Newtonian flows, but at far lower Reynolds numbers. © Copyright Cambridge University Press 2012.

  12. Rheology of human blood plasma: Viscoelastic versus Newtonian behavior

    CERN Document Server

    Brust, M; Pan, L; Garcia, M; Arratia, P E; Wagner, C; 10.1103/PhysRevLett.110.078305

    2013-01-01

    We investigate the rheological characteristics of human blood plasma in shear and elongational flows. While we can confirm a Newtonian behavior in shear flow within experimental resolution, we find a viscoelastic behavior of blood plasma in the pure extensional flow of a capillary break-up rheometer. The influence of the viscoelasticity of blood plasma on capillary blood flow is tested in a microfluidic device with a contraction-expansion geometry. Differential pressure measurements revealed that the plasma has a pronounced flow resistance compared to that of pure water. Supplementary measurements indicate that the viscoelasticity of the plasma might even lead to viscoelastic instabilities under certain conditions. Our findings show that the viscoelastic properties of plasma should not be ignored in future studies on blood flow.

  13. Is viscoelastic coagulation monitoring with ROTEM or TEG validated?

    Science.gov (United States)

    Solomon, Cristina; Asmis, Lars M; Spahn, Donat R

    2016-10-01

    Recent years have seen increasing worldwide interest in the use of viscoelastic coagulation monitoring tests, performed using devices such as ROTEM and TEG. The use of such tests to guide haemostatic therapy may help reduce transfusion of allogeneic blood products in bleeding patients and is supported in European guidelines for managing trauma and severe perioperative bleeding. In addition, viscoelastic tests form the basis of numerous published treatment algorithms. However, some publications have stated that viscoelastic tests are not validated. A specific definition of the term validation is lacking and regulatory requirements of the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) have been fulfilled by ROTEM and TEG assays. Viscoelastic tests have been used in pivotal clinical trials, and they are approved for use in most of the world's countries. Provided that locally approved indications are adhered to, the regulatory framework for clinicians to use viscoelastic tests in routine clinical practice is in place.

  14. Interfacial Dynamics of Thin Viscoelastic Films and Drops

    CERN Document Server

    Barra, Valeria; Kondic, Lou

    2016-01-01

    We present a computational investigation of thin viscoelastic films and drops on a solid substrate subject to the van der Waals interaction force. The governing equations are obtained within a long-wave approximation of the Navier-Stokes equations with Jeffreys model for viscoelastic stresses. We investigate the effects of viscoelasticity, Newtonian viscosity, and the substrate slippage on the dynamics of thin viscoelastic films. We also study the effects of viscoelasticity on drops that spread or recede on a prewetted substrate. For dewetting films, the numerical results show the presence of multiple secondary droplets for higher values of elasticity, consistently with experimental findings. For drops, we find that elastic effects lead to deviations from the Cox-Voinov law for partially wetting fluids. In general, elastic effects enhance spreading, and suppress retraction, compared to Newtonian ones.

  15. Mechanical vibration of viscoelastic liquid droplets

    Science.gov (United States)

    Sharp, James; Harrold, Victoria

    2014-03-01

    The resonant vibrations of viscoelastic sessile droplets supported on different substrates were monitored using a simple laser light scattering technique. In these experiments, laser light was reflected from the surfaces of droplets of high Mw poly acrylamide-co-acrylic acid (PAA) dissolved in water. The scattered light was allowed to fall on the surface of a photodiode detector and a mechanical impulse was applied to the drops using a vibration motor mounted beneath the substrates. The mechanical impulse caused the droplets to vibrate and the scattered light moved across the surface of the photodiode. The resulting time dependent photodiode signal was then Fourier transformed to obtain the mechanical vibrational spectra of the droplets. The frequencies and widths of the resonant peaks were extracted for droplets containing different concentrations of PAA and with a range of sizes. This was repeated for PAA loaded water drops on surfaces which displayed different values of the three phase contact angle. The results were compared to a simple model of droplet vibration which considers the formation of standing wave states on the surface of a viscoelastic droplet. We gratefully acknowledge the support of the Leverhulme trust under grant number RPG-2012-702.

  16. Polymer engineering science and viscoelasticity an introduction

    CERN Document Server

    Brinson, Hal F

    2015-01-01

    This book provides a unified mechanics and materials perspective on polymers: both the mathematics of viscoelasticity theory as well as the physical mechanisms behind polymer deformation processes. Introductory material on fundamental mechanics is included to provide a continuous baseline for readers from all disciplines. Introductory material on the chemical and molecular basis of polymers is also included, which is essential to the understanding of the thermomechanical response. This self-contained text covers the viscoelastic characterization of polymers including constitutive modeling, experimental methods, thermal response, and stress and failure analysis. Example problems are provided within the text as well as at the end of each chapter.   New to this edition:   ·         One new chapter on the use of nano-material inclusions for structural polymer applications and applications such as fiber-reinforced polymers and adhesively bonded structures ·         Brings up-to-date polymer pro...

  17. Viscoelastic struts for vibration mitigation of FORTE

    Science.gov (United States)

    Maly, Joseph R.; Butler, Thomas A.

    1996-05-01

    FORTE is a small satellite being developed by Los Alamos National Laboratory (LANL) and Sandia National Laboratories Albuquerque (SNLA). It will be placed into orbit via a Pegasus launch in 1996. Testing a full-scale engineering model of the structure using the proto- qualification, system-level vibration spectrum indicated that acceleration levels caused by structural resonances exceed component levels to which certain sensitive components had previously been qualified. Viscoelastic struts were designed to reduce response levels associated with these resonances by increasing the level of damping in key structural modes of the spacecraft. Four identical shear-lap struts were fabricated and installed between the two primary equipment decks. The struts were designed using a system finite element model (FEM) of the spacecraft, a component FEM of the strut, and measured viscoelastic properties. Direct complex stiffness testing was performed to characterize the frequency-dependent behavior of the struts, and these measured properties (shear modulus and loss factor) were used to represent the struts in the spacecraft model. System-level tests were repeated with the struts installed and the response power spectral densities at critical component locations were reduced by as much as 10 dB in the frequency range of interest.

  18. Droplet breakup dynamics of weakly viscoelastic fluids

    Science.gov (United States)

    Marshall, Kristin; Walker, Travis

    2016-11-01

    The addition of macromolecules to solvent, even in dilute quantities, can alter a fluid's response in an extensional flow. For low-viscosity fluids, the presence of elasticity may not be apparent when measured using a standard rotational rheometer, yet it may still alter the response of a fluid when undergoing an extensional deformation, especially at small length scales where elastic effects are enhanced. Applications such as microfluidics necessitate investigating the dynamics of fluids with elastic properties that are not pronounced at large length scales. In the present work, a microfluidic cross-slot configuration is used to study the effects of elasticity on droplet breakup. Droplet breakup and the subsequent iterated-stretching - where beads form along a filament connecting two primary droplets - were observed for a variety of material and flow conditions. We present a relationship on the modes of bead formation and how and when these modes will form based on key parameters such as the properties of the outer continuous-phase fluid. The results are vital not only for simulating the droplet breakup of weakly viscoelastic fluids but also for understanding how the droplet breakup event can be used for characterizing the extensional properties of weakly-viscoelastic fluids.

  19. Measurement of tissue viscoelasticity with ultrasound

    Science.gov (United States)

    Greenleaf, J. F.; Alizad, A.

    2017-02-01

    Tissue properties such as elasticity and viscosity have been shown to be related to such tissue conditions as contraction, edema, fibrosis, and fat content among others. Magnetic Resonance Elastography has shown outstanding ability to measure the elasticity and in some cases the viscosity of tissues, especially in the liver, providing the ability to stage fibrotic liver disease similarly to biopsy. We discuss ultrasound methods of measuring elasticity and viscosity in tissues. Many of these methods are becoming widely available in the extant ultrasound machines distributed throughout the world. Some of the methods to be discussed are in the developmental stage. The advantages of the ultrasound methods are that the imaging instruments are widely available and that many of the viscoelastic measurements can be made during a short addition to the normal ultrasound examination time. In addition, the measurements can be made by ultrasound repetitively and quickly allowing evaluation of dynamic physiologic function in circumstances such as muscle contraction or artery relaxation. Measurement of viscoelastic tissue mechanical properties will become a consistent part of clinical ultrasound examinations in our opinion.

  20. Tidally Heated Terrestrial Exoplanets: Viscoelastic Response Models

    CERN Document Server

    Henning, Wade G; Sasselov, Dimitar D; 10.1088/0004-637X/707/2/1000

    2009-01-01

    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a Hot Earth and Hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid, and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale parti...

  1. Viscoelastic properties of actin-coated membranes

    Science.gov (United States)

    Helfer, E.; Harlepp, S.; Bourdieu, L.; Robert, J.; Mackintosh, F. C.; Chatenay, D.

    2001-02-01

    In living cells, cytoskeletal filaments interact with the plasma membrane to form structures that play a key role in cell shape and mechanical properties. To study the interaction between these basic components, we designed an in vitro self-assembled network of actin filaments attached to the outer surface of giant unilamellar vesicles. Optical tweezers and single-particle tracking experiments are used to study the rich dynamics of these actin-coated membranes (ACM). We show that microrheology studies can be carried out on such an individual microscopic object. The principle of the experiment consists in measuring the thermally excited position fluctuations of a probe bead attached biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin network modifies strongly the membrane dynamics with respect to a fluid, lipid bilayer one. It induces first a finite (ω=0) two-dimensional (2D) shear modulus G02D~0.5 to 5 μN/m in the membrane plane. Moreover, the frequency dependence at high frequency of the shear modulus [G'2D(f )~f0.85+/-0.07] and of the bending modulus (κACM(f)~f0.55+/-0.21) demonstrate the viscoelastic behavior of the composite membrane. These results are consistent with a common exponent of 0.75 for both moduli as expected from our model and from prior measurements on actin solutions.

  2. Viscoelasticity and shear thinning of nanoconfined water

    Science.gov (United States)

    Kapoor, Karan; Amandeep, Patil, Shivprasad

    2014-01-01

    Understanding flow properties and phase behavior of water confined to nanometer-sized pores and slits is central to a wide range of problems in science, such as percolation in geology, lubrication of future nano-machines, self-assembly and interactions of biomolecules, and transport through porous media in filtration processes. Experiments with different techniques in the past have reported that viscosity of nanoconfined water increases, decreases, or remains close to bulk water. Here we show that water confined to less than 20-nm-thick films exhibits both viscoelasticity and shear thinning. Typically viscoelasticity and shear thinning appear due to shearing of complex non-Newtonian mixtures possessing a slowly relaxing microstructure. The shear response of nanoconfined water in a range of shear frequencies (5 to 25 KHz) reveals that relaxation time diverges with reducing film thickness. It suggests that slow relaxation under confinement possibly arises due to existence of a critical point with respect to slit width. This criticality is similar to the capillary condensation in porous media.

  3. Viscoelastic deformation of lipid bilayer vesicles†

    Science.gov (United States)

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L.

    2015-01-01

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic. PMID:26268612

  4. Viscoelastic deformation of lipid bilayer vesicles.

    Science.gov (United States)

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L; Malmstadt, Noah

    2015-10-07

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic.

  5. Interplay between optical, viscous and elastic forces on an optically trapped Brownian particle immersed in a viscoelastic fluid

    CERN Document Server

    Domínguez-García, P; Jeney, Sylvia

    2016-01-01

    We provide a detailed study of the interplay between the different interactions which appear in the Brownian motion of a micronsized sphere immersed in a viscoelastic fluid measured with optical trapping interferometry. To explore a wide range of viscous, elastic and optical forces, we analyze two different viscoelastic solutions at various concentrations, which provide a dynamic polymeric structure surrounding the Brownian sphere. Our experiments show that, depending of the fluid, optical forces, even if small, slightly modify the complex modulus at low frequencies. Based on our findings, we propose an alternative methodology to calibrate this kind of experimental set-up when non-Newtonian fluids are used. Understanding the influence of the optical potential is essential for a correct interpretation of the mechanical properties obtained by optically-trapped probe-based studies of biomaterials and living matter.

  6. Interplay between optical, viscous, and elastic forces on an optically trapped Brownian particle immersed in a viscoelastic fluid

    Science.gov (United States)

    Domínguez-García, P.; Forró, László; Jeney, Sylvia

    2016-10-01

    We provide a detailed study of the interplay between the different interactions which appear in the Brownian motion of a micronsized sphere immersed in a viscoelastic fluid measured with optical trapping interferometry. To explore a wide range of viscous, elastic, and optical forces, we analyze two different viscoelastic solutions at various concentrations, which provide a dynamic polymeric structure surrounding the Brownian sphere. Our experiments show that, depending on the fluid, optical forces, even if small, slightly modify the complex modulus at low frequencies. Based on our findings, we propose an alternative methodology to calibrate this kind of experimental set-up when non-Newtonian fluids are used. Understanding the influence of the optical potential is essential for a correct interpretation of the mechanical properties obtained by optically-trapped probe-based studies of biomaterials and living matter.

  7. Exposing the nonlinear viscoelastic behavior of asphalt-aggregate mixes

    Science.gov (United States)

    Levenberg, Eyal; Uzan, Jacob

    2012-05-01

    In this study asphalt-aggregate mixes are treated as both viscoelastic and viscoplastic. Following a damage mechanics approach, a nonlinear viscoelastic constitutive formulation is generated from a linear formulation by replacing `applied stresses' with `effective viscoelastic stresses'. A non-dimensional scalar entity called `relative viscoelastic stiffness' is introduced; it is defined as the ratio of applied to effective viscoelastic stress and encapsulates different types of nonlinearities. The paper proposes a computational scheme for exposing these nonlinearities by uncovering, through direct analysis of any test data, changes experienced by the `relative viscoelastic stiffness'. In general terms, the method is based on simultaneous application of creep and relaxation formulations while preserving the interrelationship between the corresponding time functions. The proposed scheme is demonstrated by analyzing a uniaxial tension test and a uniaxial compression test (separately). Results are presented and discussed, unveiling and contrasting the character of viscoelastic nonlinearities in both cases. A conceptual viewpoint is offered to explain the observations, illustrating the requirements from any candidate constitutive theory.

  8. Linear and nonlinear viscoelastic arterial wall models: application on animals

    CERN Document Server

    Ghigo, Arthur; Armentano, Ricardo; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2016-01-01

    This work deals with the viscoelasticity of the arterial wall and its influence on the pulse waves. We describe the viscoelasticity by a non-linear Kelvin-Voigt model in which the coefficients are fitted using experimental time series of pressure and radius measured on a sheep's arterial network. We obtained a good agreement between the results of the nonlinear Kelvin-Voigt model and the experimental measurements. We found that the viscoelastic relaxation time-defined by the ratio between the viscoelastic coefficient and the Young's modulus-is nearly constant throughout the network. Therefore, as it is well known that smaller arteries are stiffer, the viscoelastic coefficient rises when approaching the peripheral sites to compensate the rise of the Young's modulus, resulting in a higher damping effect. We incorporated the fitted viscoelastic coefficients in a nonlinear 1D fluid model to compute the pulse waves in the network. The damping effect of viscoelasticity on the high frequency waves is clear especiall...

  9. Spatial-temporal dynamics of Newtonian and viscoelastic turbulence in channel flow

    Science.gov (United States)

    Wang, Sung-Ning; Shekar, Ashwin; Graham, Michael

    2016-11-01

    Introducing a trace amount of polymer into liquid turbulent flows can result in substantial reduction of friction drag. This phenomenon has been widely used in fluid transport; however, the mechanism is not well understood. Past studies have found that in minimal domain turbulent simulations, there areoccasional time periods when flow exhibits features such as weaker vortices, lower friction drag and larger log-law slope; these have been denoted as "hibernatingturbulence". Here we address the question of whether similar behavior arises spatio-temporally in extended domains, focusing on turbulence at friction Reynolds numbers near transition and Weissenberg numbers resulting in low-medium drag reduction. By using image analysis and conditional sampling tools, we identify the hibernating states in extended domains and show that they display striking similarity as those in minimal domains. The hibernating states among different Weissenberg numbers exhibit similar flow statistics, suggesting they are unaltered by low to medium viscoelasticity. In addition, the polymer is much less stretched during hibernation. Finally, these hibernating states vanish as Reynolds number increases. However, they reoccur and gradually become dominant with increasing viscoelasticity.

  10. Determination of viscoelastic properties by analysis of probe-particle motion in molecular simulations

    Science.gov (United States)

    Karim, Mir; Kohale, Swapnil C.; Indei, Tsutomu; Schieber, Jay D.; Khare, Rajesh

    2012-11-01

    We present a technique for the determination of viscoelastic properties of a medium by tracking the motion of an embedded probe particle by using molecular dynamics simulations. The approach involves the analysis of the simulated particle motion by continuum theory; it is shown to work in both passive and active modes. We demonstrate that, for passive rheology, an analysis based on the generalized Stokes-Einstein relationship is not adequate to obtain the values of the viscoelastic moduli over the frequency range studied. For both passive and active modes, it is necessary to account for the medium and particle inertia when analyzing the particle motion. For a polymer melt system consisting of short chains, the values calculated from the proposed approach are in good quantitative agreement with previous literature results that were obtained using completely different simulation approaches. The proposed particle rheology simulation technique is general and could provide insight into the characterization of the mechanical properties in biological systems, such as cellular environments and polymeric systems, such as thin films and nanocomposites that exhibit spatial variation in properties over the nanoscale.

  11. Dynamical Behavior of Nonlinear Viscoelastic Timoshenko Beams with Damage on a Viscoelastic Foundation

    Institute of Scientific and Technical Information of China (English)

    盛冬发; 张燕; 程昌钧

    2004-01-01

    Based on convolution-type constitutive equations for linear viscoelastic materials with damage and the hypotheses of Timoshenko beams with large deflections, the nonlinear equations governing dynamical behavior of Timoshenko beams with damage on viscoelastic foundation were firstly derived. By using the Galerkin method in spatial domain, the nonlinear integro-partial differential equations were transformed into a set of integro-ordinary differential equations. The numerical methods in nonlinear dynamical systems, such as the phase-trajectory diagram, Poincare section and bifurcation figure, were used to solve the simplified systems of equations. It could be seen that simplified dynamical systems possess the plenty of nonlinear dynamical properties. The influence of load and material parameters on the dynamic behavior of nonlinear system were investigated in detail.

  12. Binaural Rendering in MPEG Surround

    Directory of Open Access Journals (Sweden)

    Kristofer Kjörling

    2008-04-01

    Full Text Available This paper describes novel methods for evoking a multichannel audio experience over stereo headphones. In contrast to the conventional convolution-based approach where, for example, five input channels are filtered using ten head-related transfer functions, the current approach is based on a parametric representation of the multichannel signal, along with either a parametric representation of the head-related transfer functions or a reduced set of head-related transfer functions. An audio scene with multiple virtual sound sources is represented by a mono or a stereo downmix signal of all sound source signals, accompanied by certain statistical (spatial properties. These statistical properties of the sound sources are either combined with statistical properties of head-related transfer functions to estimate “binaural parameters” that represent the perceptually relevant aspects of the auditory scene or used to create a limited set of combined head-related transfer functions that can be applied directly on the downmix signal. Subsequently, a binaural rendering stage reinstates the statistical properties of the sound sources by applying the estimated binaural parameters or the reduced set of combined head-related transfer functions directly on the downmix. If combined with parametric multichannel audio coders such as MPEG Surround, the proposed methods are advantageous over conventional methods in terms of perceived quality and computational complexity.

  13. Reduced surround inhibition in musicians.

    Science.gov (United States)

    Shin, Hae-Won; Kang, Suk Y; Hallett, Mark; Sohn, Young H

    2012-06-01

    To investigate whether surround inhibition (SI) in the motor system is altered in professional musicians, we performed a transcranial magnetic stimulation (TMS) study in 10 professional musicians and 15 age-matched healthy non-musicians. TMS was set to be triggered by self-initiated flexion of the index finger at different intervals ranging from 3 to 1,000 ms. Average motor evoked potential (MEP) amplitudes obtained from self-triggered TMS were normalized to average MEPs of the control TMS at rest and expressed as a percentage. Normalized MEP amplitudes of the abductor digiti minimi (ADM) muscles were compared between the musicians and non-musicians with the primary analysis being the intervals between 3 and 80 ms (during the movement). A mixed-design ANOVA revealed a significant difference in normalized ADM MEPs during the index finger flexion between groups, with less SI in the musicians. This study demonstrated that the functional operation of SI is less strong in musicians than non-musicians, perhaps due to practice of movement synergies involving both muscles. Reduced SI, however, could lead susceptible musicians to be prone to develop task-specific dystonia.

  14. Binaural Rendering in MPEG Surround

    Science.gov (United States)

    Breebaart, Jeroen; Villemoes, Lars; Kjörling, Kristofer

    2008-12-01

    This paper describes novel methods for evoking a multichannel audio experience over stereo headphones. In contrast to the conventional convolution-based approach where, for example, five input channels are filtered using ten head-related transfer functions, the current approach is based on a parametric representation of the multichannel signal, along with either a parametric representation of the head-related transfer functions or a reduced set of head-related transfer functions. An audio scene with multiple virtual sound sources is represented by a mono or a stereo downmix signal of all sound source signals, accompanied by certain statistical (spatial) properties. These statistical properties of the sound sources are either combined with statistical properties of head-related transfer functions to estimate "binaural parameters" that represent the perceptually relevant aspects of the auditory scene or used to create a limited set of combined head-related transfer functions that can be applied directly on the downmix signal. Subsequently, a binaural rendering stage reinstates the statistical properties of the sound sources by applying the estimated binaural parameters or the reduced set of combined head-related transfer functions directly on the downmix. If combined with parametric multichannel audio coders such as MPEG Surround, the proposed methods are advantageous over conventional methods in terms of perceived quality and computational complexity.

  15. An immersed boundary method for two-phase fluids and gels and the swimming of Caenorhabditis elegans through viscoelastic fluids

    Science.gov (United States)

    Lee, Pilhwa; Wolgemuth, Charles W.

    2016-01-01

    The swimming of microorganisms typically involves the undulation or rotation of thin, filamentary objects in a fluid or other medium. Swimming in Newtonian fluids has been examined extensively, and only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here, we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic (e.g., a polymer melt or network). We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D (i.e., a sheet). A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparing theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. These results suggest that our methodology provides an accurate means for exploring the physics of swimming through non-Newtonian fluids and gels.

  16. Interrogating the viscoelastic properties of tissue using viscoelastic response (VISR) ultrasound

    Science.gov (United States)

    Selzo, Mallory Renee

    Affecting approximately 1 in 3,500 newborn males, Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic disorders in humans. Boys with DMD suffer progressive loss of muscle strength and function, leading to wheelchair dependence, cardiac and respiratory compromise, and death during young adulthood. There are currently no treatments that can halt or reverse the disease progression, and translating prospective treatments into clinical trials has been delayed by inadequate outcome measures. Current outcome measures, such as functional and muscle strength assessments, lack sensitivity to individual muscles, require subjective effort of the child, and are impacted by normal childhood growth and development. The goal of this research is to develop Viscoelastic Response (VisR) ultrasound which can be used to delineate compositional changes in muscle associated with DMD. In VisR, acoustic radiation force (ARF) is used to produce small, localized displacements within the muscle. Using conventional ultrasound to track the motion, the displacement response of the tissue can be evaluated against a mechanical model. In order to develop signal processing techniques and assess mechanical models, finite element method simulations are used to model the response of a viscoelastic material to ARF excitations. Results are then presented demonstrating VisR differentiation of viscoelastic changes with progressive dystrophic degeneration in a dog model of DMD. Finally, clinical feasibility of VisR imaging is demonstrated in two boys with DMD.

  17. MICROMECHANICS ANALYSIS ON EVOLUTION OF CRACK IN VISCOELASTIC MATERIALS

    Institute of Scientific and Technical Information of China (English)

    张双寅

    2002-01-01

    A preliminary analysis on crack evolution in viscoelastic materials was presented Based on the equivalent inclusion concept of micro mechanics theory, the explicit expressions of crack opening displacement δ and energy release rate G were derived,indicating that both δ and G are increasing with time. The equivalent modulus of the viscoelastic solid comprising cracks was evaluated. It is proved that the decrease of the modulus comes from two mechanisms: one is the viscoelasticity of the material; the other is the crack opening which is getting larger with time.

  18. Study of the interconversion between viscoelastic behaviour functions of PMMA

    Science.gov (United States)

    Fernández, P.; Rodríguez, D.; Lamela, M. J.; Fernández-Canteli, A.

    2011-05-01

    The use of polymers and polymer-based composites in mechanical, civil and electronic engineering has been growing owing to advances in the technology of materials. The different applications and working conditions of these materials require knowledge about their viscoelastic material functions: relaxation modulus, compliance, complex modulus, etc. Interconversion between these functions may be required for different reasons such as the impossibility of direct experimentation under certain excitation conditions. In this work, a DMA is used to calculate the experimental viscoelastic functions of a linear viscoelastic material (PMMA). The same functions are estimated by interconversion methods and compared with experimental ones. The results show that the interconversion functions fit properly the experimental functions.

  19. Folding, stowage, and deployment of viscoelastic tape springs

    DEFF Research Database (Denmark)

    Kwok, Kawai; Pellegrino, Sergio

    2013-01-01

    This paper presents an experimental and numerical study of the folding, stowage, and deployment behavior of viscoelastic tape springs. Experiments show that during folding the relationship between load and displacement is nonlinear and varies with rate and temperature. In particular, the limit...... deployment and ends with a slow creep recovery. Unlike elastic tape springs, localized folds in viscoelastic tape springs do not move during deployment. Finite-element simulations based on a linear viscoelastic constitutive model with an experimentally determined relaxation modulus are shown to accurately...

  20. Wave Dispersion and Attenuation in Viscoelastic Split Hopkinson Pressure Bar

    Directory of Open Access Journals (Sweden)

    Z.Q. Cheng

    1998-01-01

    Full Text Available A viscoelastic split Hopkinson pressure bar intended for testing soft materials with low acoustic impedance is studied. Using one-dimensional linear viscoelastic wave propagation theory, the basic equations have been established for the determination of the stress—strain—strain rate relationship for the tested material. A method, based on the spectral analysis of wave motion and using measured wave signals along the split Hopkinson pressure bar, is developed for the correction of the dispersion and attenuation of viscoelastic waves. Computational simulations are performed to show the feasibility of the method.

  1. Thermal convection of viscoelastic shear-thinning fluids

    Science.gov (United States)

    Albaalbaki, Bashar; Khayat, Roger E.; Ahmed, Zahir U.

    2016-12-01

    The Rayleigh-Bénard convection for non-Newtonian fluids possessing both viscoelastic and shear-thinning behaviours is examined. The Phan-Thien-Tanner (PTT) constitutive equation is implemented to model the non-Newtonian character of the fluid. It is found that while the shear-thinning and viscoelastic effects could annihilate one another for the steady roll flow, presence of both behaviours restricts the roll stability limit significantly compared to the cases when the fluid is either inelastic shear-thinning or purely viscoelastic with constant viscosity.

  2. The viscoelastic properties of the cervical mucus plug

    DEFF Research Database (Denmark)

    Bastholm, Sara K.; Becher, Naja; Stubbe, Peter Reimer;

    2014-01-01

    ObjectiveTo characterize the viscoelastic properties of cervical mucus plugs (CMPs) shed during labor at term. DesignExperimental research. SettingDepartment of Obstetrics and Gynecology, Aarhus University Hospital, Denmark. Population/SampleSpontaneously shed CMPs from 18 healthy women in active...... labor. MethodsViscoelastic properties of CMPs were investigated with a dynamic oscillatory rheometer using frequency and stress sweep experiments within the linear viscoelastic region. Main outcome measuresThe rheological variables obtained were as follows: elastic modulus (G), viscous modulus (G...

  3. NUMERICAL SIMULATIONS OF VISCOELASTIC FLOWS THROUGH ONE SLOT CHANNEL

    Institute of Scientific and Technical Information of China (English)

    YIN Hong-jun; ZHONG Hui-ying; FU Chun-quan; WANG Lei

    2007-01-01

    In this article, the Modified Upper-Convected Maxwell equation (MUCM) is proposed. The viscoelastic polymer solution flow characteristics are described by the numerical method. The stream function contour, velocity contour and stress modulus contour of fluid in slot channel are drawn. The non-Newtonian power law property and viscoelasticity of MUCM fluid influence on the stream function are analyzed. The velocity contour move towards dead oil area with the viscoelasticity increase, flow area increase and the sweep area enlarges, so the sweep efficiency is enhanced.

  4. [Viscoelastic properties of relaxed papillary muscle at physiological hypertrophy].

    Science.gov (United States)

    Smoliuk, L T; Lisin, R V; Kuznetsov, D A; Protsenko, Iu L

    2012-01-01

    Viscoelastic properties of relaxed rat papillary muscles at physiological hypertrophy (intensive swimming for 5 weeks) have been obtained. It has been ascertained that viscoelastic properties of hypertrophied muscles are not significantly distinguished from those of control papillary muscles. A three-dimensional model of myocardial fascicle has been verified in compliance with experimental data of biomechanical tests of hypertrophied muscles. Elastic and viscous parameters of structural elements of the model negligibly differ from the parameters of the model of a control muscle. It is shown that physiological hypertrophy has a slight influence on viscoelastic properties of papillary muscles.

  5. A nonlinear viscoelastic constitutive equation - Yield predictions in multiaxial deformations

    Science.gov (United States)

    Shay, R. M., Jr.; Caruthers, J. M.

    1987-01-01

    Yield stress predictions of a nonlinear viscoelastic constitutive equation for amorphous polymer solids have been obtained and are compared with the phenomenological von Mises yield criterion. Linear viscoelasticity theory has been extended to include finite strains and a material timescale that depends on the instantaneous temperature, volume, and pressure. Results are presented for yield and the correct temperature and strain-rate dependence in a variety of multiaxial deformations. The present nonlinear viscoelastic constitutive equation can be formulated in terms of either a Cauchy or second Piola-Kirchhoff stress tensor, and in terms of either atmospheric or hydrostatic pressure.

  6. Collective dynamics of sperm in viscoelastic fluid

    Science.gov (United States)

    Tung, Chih-Kuan; Harvey, Benedict B.; Fiore, Alyssa G.; Ardon, Florencia; Suarez, Susan S.; Wu, Mingming

    Collective dynamics in biology is an interesting subject for physicists, in part because of its close relations to emergent behaviors in condensed matter, such as phase separation and criticality. However, the emergence of order is often less drastic in systems composed of the living cells, sometimes due to the natural variability among individual organisms. Here, using bull sperm as a model system, we demonstrate that the cells migrate collectively in viscoelastic fluids, exhibiting behavior similar to ``flocking''. This collectiveness is greatly reduced in similarly viscous Newtonian fluids, suggesting that the cell-cell interaction is primarily a result of the elastic property or the memory effect of the fluids, instead of pure hydrodynamic interactions. Unlike bacterial swarming, this collectiveness does not require a change in phenotype of the cells; therefore, it is a better model system for physicists. Supported by NIH grant 1R01HD070038.

  7. Generalized Fractional Derivative Anisotropic Viscoelastic Characterization

    Directory of Open Access Journals (Sweden)

    Harry H. Hilton

    2012-01-01

    Full Text Available Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.

  8. Viscoelastic models for explosive binder materials

    Energy Technology Data Exchange (ETDEWEB)

    Bardenhagen, S.G.; Harstad, E.N.; Maudlin, P.J.; Gray, G.T. [Los Alamos National Lab., NM (United States); Foster, J.C. Jr. [Wright Lab., Eglin AFB, FL (United States)

    1997-07-01

    An improved model of the mechanical properties of the explosive contained in conventional munitions is needed to accurately simulate performance and accident scenarios in weapons storage facilities. A specific class of explosives can he idealized as a mixture of two components: energetic crystals randomly suspended in a polymeric matrix (binder). Strength characteristics of each component material are important in the macroscopic behavior of the composite (explosive). Of interest here is the determination of an appropriate constitutive law for a polyurethane binder material. This paper is a continuation of previous work in modeling polyurethane at moderately high strain rates and for large deformations. Simulation of a large deformation (strains in excess of 100%) Taylor Anvil experiment revealed numerical difficulties which have been addressed. Additional experimental data have been obtained including improved resolution Taylor Anvil data, and stress relaxation data at various strain rates. A thorough evaluation of the candidate viscoelastic constitutive model is made and possible improvements discussed.

  9. Stress and deformation analysis on deep surrounding rock at different time stages and its application

    Institute of Scientific and Technical Information of China (English)

    Li Ming; Mao Xianbiao; Yu Yuanlin; Li Kai; Ma Chao; Peng Yan

    2012-01-01

    Based on the characteristics of the deep circular tunnel,the surrounding rock was divided into three regions:the cracked region,the plastic region and the viscoelastic region.The process of rock stress deformation and change was divided into three stages after the roadway excavation.By using the elastic-plastic mechanics theory,the analytical solutions of the surrounding stress and displacement at different stages and the radii of cracked and plastic regions were formulated.We additionally explained the surrounding rock stress and displacement which appeared in practical project.Simultaneously,based on the problem which emerged from a mine in Xuzhou during the excavating process of rock roadway's transport,we got the theoretical solutions for the stress and displacement in the process of rock roadway's excavation and considered that the broken area of rock roadway was largely loosing circle.The results indicate that according to the rheological characteristics of surrounding rock,in the primeval excavation of rock roadway,we should increase the length of anchor bolt and cooperate it with anchor nets cable-U steel supporting frame.In addition,when the deformation rate of the surrounding rock is descending after the 15 days' excavation,we should use the "three anchor" supporting method (anchor bolt spray,anchor note and anchor rope) and set aside about 20 cm as the reserved deformation layer.

  10. Oscillatory and electrohydrodynamic instabilities in flow over a viscoelastic gel

    Indian Academy of Sciences (India)

    R M Thaokar

    2015-05-01

    The stability of oscillatory flows over compliant surfaces is studied analytically and numerically. The type of compliant surfaces studied is the incompressible viscoelastic gel model. The stability is determined using the Floquet analysis, where amplitude of perturbations at time intervals separated by one time period is examined to determine whether perturbations grow or decay. Oscillatory flows pas viscoelastic gels exhibit an instability in the limit of zero Reynolds number, and the transition amplitude of the oscillatory velocity increases with the frequency of oscillations. The transition amplitude has a minimum at a finite wavenumber for the viscoelastic gel model. The instability is found to depend strongly on the gel viscosity $\\eta_{g}$, and the effect of oscillations on the continuation of viscous modes at intermediate Reynolds number shows a complicated dependence on the oscillation frequency. Experimental studies are carried out on the stability of an oscillatory flow past a viscoelastic gel at zero Reynolds number, and these confirm the theoretical predictions.

  11. STABILITY ANALYSIS OF VISCOELASTIC CURVED PIPES CONVEYING FLUID

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong-min; ZHANG Zhan-wu; ZHAO Feng-qun

    2005-01-01

    Based on the Hamilton's principle for elastic systems of changing mass, a differential equation of motion for viscoelastic curved pipes conveying fluid was derived using variational method, and the complex characteristic equation for the viscoelastic circular pipe conveying fluid was obtained by normalized power series method. The effects of dimensionless delay time on the variation relationship between dimensionless complex frequency of the clamped-clamped viscoelastic circular pipe conveying fluid with the Kelvin-Voigt model and dimensionless flow velocity were analyzed. For greater dimensionless delay time, the behavior of the viscoelastic pipe is that the first, second and third mode does not couple, while the pipe behaves divergent instability in the first and second order mode, then single-mode flutter takes place in the first order mode.

  12. Linear Viscoelasticity, Reptation, Chain Stretching and Constraint Release

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Schieber, Jay D.; Venerus, David C.

    2000-01-01

    A recently proposed self-consistent reptation model - alreadysuccessful at describing highly nonlinear shearing flows of manytypes using no adjustable parameters - is used here to interpretthe linear viscoelasticity of the same entangled polystyrenesolution. Using standard techniques, a relaxatio...

  13. Free vibration and transverse stresses of viscoelastic laminated plates

    Institute of Scientific and Technical Information of China (English)

    Ming-yong HU; An-wen WANG

    2009-01-01

    Based on Reddy's layerwise theory, the governing equations for dynamic response of viscoelastic laminated plate are derived by using the quadratic interpolation function for displacement in the direction of plate thickness. Vibration frequencies and loss factors are calculated for flee vibration of simply supported viscoelastic sandwich plate, showing good agreement with the results in the literature. Harmonious transverse stresses can be obtained. The results show that the transverse shear stresses are the main factor to the delamination of viscoelastic laminated plate in lower-frequency free vibra-tion, and the transverse normal stress is the main one in higher-frequency free vibration. Relationship between the modulus of viscoelastic materials and transverse stress is an-alyzed. Ratio between the transverse stress's maximum value and the in-plane stress's maximum-value is obtained. The results show that the proposed method, and the adopted equations and programs are reliable.

  14. Lid-driven cavity flow of viscoelastic liquids

    CERN Document Server

    Sousa, R G; Afonso, A M; Pinho, F T; Oliveira, P J; Morozov, A; Alves, M A

    2016-01-01

    The lid-driven cavity flow is a well-known benchmark problem for the validation of new numerical methods and techniques. In experimental and numerical studies with viscoelastic fluids in such lid-driven flows, purely-elastic instabilities have been shown to appear even at very low Reynolds numbers. A finite-volume viscoelastic code, using the log-conformation formulation, is used in this work to probe the effect of viscoelasticity on the appearance of such instabilities in two-dimensional lid-driven cavities for a wide range of aspect ratios (0.125 < height/length < 4.0), at different Deborah numbers under creeping-flow conditions and to understand the effects of regularization of the lid velocity. The effect of the viscoelasticity on the steady-state results and on the critical conditions for the onset of the elastic instabilities are described and compared to experimental results.

  15. Experimental characterisation of a novel viscoelastic rectifier design

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Okkels, Fridolin; Szabo, Peter

    2012-01-01

    A planar microfluidic system with contractions and obstacles is characterized in terms of anisotropic flow resistance due to viscoelastic effects. The working mechanism is illustrated using streak photography, while the diodicity performance is quantified by pressure drop measurements. The point...

  16. Cyclic viscoelasticity and viscoplasticity of polypropylene/clay nanocomposites

    DEFF Research Database (Denmark)

    Drozdov, Aleksey; Christiansen, Jesper de Claville; Hog Lejre, Anne-Lise

    2012-01-01

    Observations are reported in tensile relaxation tests under stretching and retraction on poly-propylene/clay nanocomposites with various contents of filler. A two-phase constitutive model is developed in cyclic viscoelasticity and viscoplasticity of hybrid nanocomposites. Adjustable parameters...

  17. Viscoelastic behavior of yellow pitahaya treated with 1-MCP

    National Research Council Canada - National Science Library

    Laura Sofia Torres Valenzuela; Alfredo Adolfo Ayala-Aponte; Liliana Serna

    2016-01-01

    .... The purpose of this work was to evaluate the effect of the application of 1-MCP on the viscoelastic properties of minimally processed yellow pitahaya during refrigeration storage, by using a stress relaxation test...

  18. Simulation of transient viscoelastic flow with second order time integration

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1995-01-01

    The Lagrangian Integral Method (LIM) for the simulation of time-dependent flow of viscoelastic fluids is extended to second order accuracy in the time integration. The method is tested on the established sphere in a cylinder benchmark problem.......The Lagrangian Integral Method (LIM) for the simulation of time-dependent flow of viscoelastic fluids is extended to second order accuracy in the time integration. The method is tested on the established sphere in a cylinder benchmark problem....

  19. Micro-mechanisms of residual oil mobilization by viscoelastic fluids

    Institute of Scientific and Technical Information of China (English)

    Zhang Lijuan; Yue Xiang'an; Guo Fenqiao

    2008-01-01

    Four typical types of residual oil, residual oil trapped in dead ends, oil ganglia in pore throats,oil at pore comers and oil film adhered to pore walls, were studied. According to main pore structure characteristics and the fundamental morphological features of residual oil, four displacement models for residual oil were proposed, in which pore-scale flow behavior of viscoelastic fluid was analyzed by a numerical method and micro-mechanisms for mobilization of residual oil were discussed. Calculated results indicate that the viscoelastic effect enhances micro displacement efficiency and increases swept volume. For residual oil trapped in dead ends, the flow field of viscoelastic fluid is developed in dead ends more deeply, resulting in more contact with oil by the displacing fluid, and consequently increasing swept volume. In addition, intense viscoelastic vortex has great stress, under which residual oil becomes small oil ganglia, and finally be carried into main channels. For residual oil at pore throats, its displacement mechanisms are similar to the oil trapped in dead ends. Vortices are developed in the depths of the throats and oil ganglia become smaller. Besides, viscoelastic fluid causes higher pressure drop on oil ganglia, as a driving force, which can overcome capillary force, consequently, flow direction can be changed and the displacing fluid enter smaller throats. For oil at pore comers, viscoelastic fluid can enhance displacement efficiency as a result of greater velocity and stress near the comers. For residual oil adhered to pore wall,viscoelastic fluid can provide a greater displacing force on the interface between viscoelastic fluid and oil,thus, making it easier to exceed the minimum interfacial tension for mobilizing the oil film.

  20. Modelling water hammer in viscoelastic pipelines: short brief

    Science.gov (United States)

    Urbanowicz, K.; Firkowski, M.; Zarzycki, Z.

    2016-10-01

    The model of water hammer in viscoelastic pipelines is analyzed. An appropriate mathematical model of water hammer in polymer pipelines is presented. An additional term has been added to continuity equation to describe the retarded deformation of the pipe wall. The mechanical behavior of viscoelastic material is described by generalized Kelvin-Voigt model. The comparison of numerical simulation and experimental data from well known papers is presented. Short discussion about obtained results are given.

  1. Viscoelastic assessment of anal canal function using acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J;

    2012-01-01

    Anal acoustic reflectometry is a new reproducible technique that allows a viscoelastic assessment of anal canal function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new reproducible technique that allows a viscoelastic assessment of anal canal function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, opening and closing elastance, and hysteresis....

  2. Estimation of piezoelastic and viscoelastic properties in laminated structures

    DEFF Research Database (Denmark)

    Araujo, A. L.; Soares, C. M. Mota; Herskovits, J.;

    2009-01-01

    An inverse method for material parameter estimation of elastic, piezoelectric and viscoelastic laminated plate structures is presented. The method uses a gradient based optimization technique in order to solve the inverse problem, through minimization of an error functional which expresses...... the difference between experimental free vibration data and corresponding numerical data produced by a finite element model. The complex modulus approach is used to model the viscoelastic material behavior, assuming hysteretic type damping. Applications that illustrate the influence of adhesive material...

  3. FEM simulation of non-isothermal viscoelastic fluids

    OpenAIRE

    Damanik, Hogenrich

    2011-01-01

    Thermo-mechanically coupled transport processes of viscoelastic fluids are important components in many applications in mechanical and chemical engineering. The aim of this thesis is the development of efficient numerical techniques for incompressible, non-isothermal, viscoelastic fluids which take into account the multiscale behaviour in space and time, the multiphase character and significant geometrical changes. Based on special CFD techniques including adaptivity/local grid alignment in s...

  4. Viscoelasticity imaging using ultrasound: parameters and error analysis

    OpenAIRE

    Sridhar, M; Liu, J; Insana, M F

    2007-01-01

    Techniques are being developed to image viscoelastic features of soft tissues from time-varying strain. A compress-hold-release stress stimulus commonly used in creep-recovery measurements is applied to samples to form images of elastic strain and strain retardance times. While the intended application is diagnostic breast imaging, results in gelatin hydrogels are presented to demonstrate the techniques. The spatiotemporal behaviour of gelatin is described by linear viscoelastic theory formul...

  5. Hybrid Vibration Control under Broadband Excitation and Variable Temperature Using Viscoelastic Neutralizer and Adaptive Feedforward Approach

    Directory of Open Access Journals (Sweden)

    João C. O. Marra

    2016-01-01

    Full Text Available Vibratory phenomena have always surrounded human life. The need for more knowledge and domain of such phenomena increases more and more, especially in the modern society where the human-machine integration becomes closer day after day. In that context, this work deals with the development and practical implementation of a hybrid (passive-active/adaptive vibration control system over a metallic beam excited by a broadband signal and under variable temperature, between 5 and 35°C. Since temperature variations affect directly and considerably the performance of the passive control system, composed of a viscoelastic dynamic vibration neutralizer (also called a viscoelastic dynamic vibration absorber, the associative strategy of using an active-adaptive vibration control system (based on a feedforward approach with the use of the FXLMS algorithm working together with the passive one has shown to be a good option to compensate the neutralizer loss of performance and generally maintain the extended overall level of vibration control. As an additional gain, the association of both vibration control systems (passive and active-adaptive has improved the attenuation of vibration levels. Some key steps matured over years of research on this experimental setup are presented in this paper.

  6. A robust algorithm for the contact of viscoelastic materials

    Science.gov (United States)

    Spinu, S.; Cerlinca, D.

    2016-08-01

    Existing solutions for the contact problem involving viscoelastic materials often require numerical differentiation and integration, as well as resolution of transcendental equations, which can raise convergence issues. The algorithm advanced in this paper can tackle the contact behaviour of the viscoelastic materials without any convergence problems, for arbitrary contact geometry, arbitrary loading programs and complex constitutive models of linear viscoelasticity. An updated algorithm for the elastic frictionless contact, coupled with a semi-analytical method for the computation of viscoelastic displacement, is employed to solve the viscoelastic contact problem at a series of small time increments. The number of equations in the linear system resulting from the geometrical condition of deformation is set by the number of cells in the contact area, which is a priori unknown. A trial-and-error approach is implemented, resulting in a series of linear systems which are solved on evolving contact areas, until static equilibrium equations and complementarity conditions are fully satisfied for every cell in the computational domain. At any iteration, cells with negative pressure are excluded from the contact area, while cells with negative gap (i.e. cells where the contacting bodies are predicted to overlap) are reincluded. The solution is found when pressure is stabilized in relation to the imposed normal load. This robust algorithm is expected to solve a large variety of contact problems involving viscoelastic materials.

  7. MECHANISM FOR VISCOELASTIC POLYMER SOLUTION PERCOLATING THROUGH POROUS MEDIA

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-juan; YUE Xiang-an

    2007-01-01

    The pore throat of porous media is modeled as a constricted channel or expanded channel. The flow of viscoelastic polymer solution in pore throat model is studied by numerical method. Relationship between pressure drop and flow rate is developed, viscoelasticity and throat size are found to be two main factors in high flow resistance. According to pore throat model, 2-D stochastic channel bundle is put forward to model porous media, which is composed of pore throat models in series - parallel connection with size and length accord to Haring - Greenkorn stochastic distribution. Percolation model of viscoelastic fluid is developed on the basis of Darcy equation and pressure drop vs. flow rate relation in 2-D stochastic channel bundle. Results indicate that the seepage ability of viscoelastic polymer solution decreases with the increase of viscoelasticity, injection rate, and heterogeneity as well as the decrease of mean pore size of porous media. The high pressure drop of viscoelastic fluid at the connection of pore to throat plays a great role in its anomalous high flow resistance through porous media.

  8. Dynamic Behaviors of Axially Moving Viscoelastic Plate with Varying Thicknessn

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yinfeng; WANG Zhongmin

    2009-01-01

    Structural components of varying thickness draw increasing attention these days due to economy and light-weight considerations. In view of the absence of research in vibration analysis of viscoelastic plate with varying thickness, this study devotes to investigate the dynamic behaviors of axially moving viscoelastic plate with varying thickness. Based on the thin plate theory and the two-dimensional viscoelastic differential constitutive relation, the differential equation of motion of the axially moving viscoelastic rectangular plate is derived, the plate constituted by Kelvin-Voigt model has linearly varying thickness in the y-direction. The dimensionless complex frequencies of axially moving viscoelastic plate with four edges simply supported are calculated by the differential quadrature method, curves of real parts and imaginary parts of the first three-order dimensionless complex frequencies versus dimensionless moving speed are obtained, the effects of the aspect ratio, thickness ratio, the dimensionless moving speed and delay time on the dynamic behaviors of the axially moving viscoelastic rectangular plate with varying thickness are analyzed. When other parameters keep constant, with the decrease of thickness ratio, the real parts of the first three-order natural frequencies decrease, and the critical divergence speeds of various modes decrease too, moreover, whether the delay time is large or small, the frequencies are all complex numbers.

  9. Inverse Solutions for a Second-Grade Fluid for Porous Medium Channel and Hall Current Effects

    Indian Academy of Sciences (India)

    Muhammad R Mohyuddin; Ehsan Ellahi Ashraf

    2004-02-01

    Assuming certain forms of the stream function inverse solutions of an incompressible viscoelastic fluid for a porous medium channel in the presence of Hall currents are obtained. Expressions for streamlines, velocity components and pressure fields are described in each case and are compared with the known viscous and second-grade cases.

  10. The physics of aerobreakup. III. Viscoelastic liquids

    Science.gov (United States)

    Theofanous, T. G.; Mitkin, V. V.; Ng, C. L.

    2013-03-01

    We extend the work of Theofanous and Li [Phys. Fluids 20, 052103 (2008), 10.1063/1.2907989] on aerobreakup physics of water-like, low viscosity liquid drops, and of Theofanous et al. [Phys. Fluids 24, 022104 (2012), 10.1063/1.3680867] for Newtonian liquids of any viscosity, to polymer-thickened liquids over wide ranges of viscoelasticity. The scope includes the full range of aerodynamics from near incompressible to supersonic flows and visualizations are recorded with μs/μm resolutions. The key physics of Rayleigh-Taylor piercing (RTP, first criticality) and of Shear-Induced Entrainment (SIE, second criticality) are verified and quantified on the same scaling approach as in our previous work, but with modifications due to the shear-thinning and elastic nature of these liquids. The same holds for the onset of surface waves by Kelvin-Helmholtz instability, which is a key attribute of the second criticality. However, in the present case, even at conditions well-past the first criticality, there is no breakup (particulation) to be found; instead the apparently unstable (extensively stretched into sheets) drops rebound elastically to reconstitute an integral mass. Such a resistance to breakup is found also past the second criticality, now with extensive filament formation that maintain a significant degree of cohesiveness, until the gas-dynamic pressure is high enough to cause filament ruptures. Thereby we define the onset of a third criticality peculiar to viscoelastic liquids—SIER, for SIE with ruptures. Past this criticality the extent of particulation increases and the characteristic dimension of fragments generated decreases in a more or less continuous fashion with increasing dynamic pressure. We outline a rheology-based scaling approach for these elasticity-modulated phenomena and suggest a path to similitude (with polymer and solvent variations) in terms of a critical rupture stress that can be measured independently. The advanced stages of breakup and

  11. An investigation on the motion and deformation of viscoelastic drops descending in another viscoelastic media

    Science.gov (United States)

    Davoodi, M.; Norouzi, M.

    2016-10-01

    In the present study, an investigation of the motion and shape deformation of drops is carried out in creeping flow to highlight the effect of viscoelastic properties on the problem. A perturbation method is employed to derive an analytical solution for the general case that both interior and exterior fluids are viscoelastic, both fluids obeying the Giesekus model. An experiment is also performed for the limiting case of an immiscible drop of a 0.03% (w/w) polyacrylamide in an 80:20 glycerol/water solution falling through a viscous Newtonian silicon oil (410 cP polydimethylsiloxane oil) in order to check the accuracy of the analytical solution. It is shown that the addition of elastic properties to the interior fluid may cause a decrease in the terminal velocity of the droplet while an increase in the elastic properties of the exterior fluid results in the opposite behavior and increases the terminal velocity. The well-known spherical shape of creeping drops for Newtonian fluids is modified by elasticity into either prolate or oblate shapes. Using the analytical solution, it is shown that normal stresses play a key role on the final steady-state shape of the drops. To keep the drops spherical in viscoelastic phases, it is shown that the effect of normal stresses on the interior and exterior media can cancel out under certain conditions. The results presented here may be of interest to industries dealing with petroleum and medicine processing, paint and power-plant related fields where knowledge of the shape and terminal velocity of descending droplets is of great importance.

  12. INTERACTION OF GENERAL PLANE P WAVE AND CYLINDRICAL INCLUSION PARTIALLY DEBONDED FROM ITS VISCOELASTIC MATRIX

    Institute of Scientific and Technical Information of China (English)

    魏培君; 章梓茂; 汪越胜

    2002-01-01

    The interaction of a general plane P wave and an elastic cylindrical inclusion of infinite length partially debonded from its surrounding viscoelastic matrix of infinite extension is investigated. The debonded region is modeled as an arc-shaped interface crack between inclusion and matrix with non-contacting faces. With wave functions expansion and singular integral equation technique, the interaction problem is reduced to a set of simultaneous singular integral equations of crack dislocation density function. By analysis of the fundamental solution of the singular integral equation, it is found that dynamic stress field at the crack tip is oscillatory singular,which is related to the frequency of incident wave. The singular integral equations are solved numerically, and the crack open displacement and dynamic stress intensity factor are evaluated for various incident angles and frequencies.

  13. Dynamics of magnetic nanoparticles in viscoelastic media

    Science.gov (United States)

    Remmer, Hilke; Roeben, Eric; Schmidt, Annette M.; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    We compare different models for the description of the complex susceptibility of magnetic nanoparticles in an aqueous gelatin solution representing a model system for a Voigt-Kelvin scheme. The analysis of susceptibility spectra with the numerical model by Raikher et al. [7] is compared with the analysis applying a phenomenological, modified Debye model. The fit of the models to the measured data allows one to extract the viscoelastic parameter dynamic viscosity η and shear modulus G. The experimental data were recorded on single-core thermally blocked CoFe2O4 nanoparticles in an aqueous solution with 2.5 wt% gelatin. Whereas the dynamic viscosities obtained by fitting the model - extended by distributions of hydrodynamic diameters and viscosities - agree very well, the derived values for the shear modulus show the same temporal behavior during the gelation process, but vary approximately by a factor of two. To verify the values for viscosity and shear modulus obtained from nanorheology, macrorheological measurements are in progress.

  14. Dynamic homogenization of viscoelastic phononic metasolids

    Science.gov (United States)

    Pichard, Hélène; Torrent, Daniel

    2016-12-01

    The effects of dissipation in metamaterials is a sensitive issue and, although experiments show that they are more than relevant, their theoretical study and modeling has received less attention. In this work, we study the effects of viscosity on the dissipation of elastic metamaterials. It is found that these metasolids present effective constitutive parameters that are in general complex, in contrast with common elastic materials where the mass density is a real valued scalar quantity and dissipation enters only through the stiffness tensor. It is also found that, while in the low frequency limit the dissipation is higher as the viscoelastic coefficient is also higher, near a resonance of the metamaterial this condition does not hold, since the imaginary part of the constitutive parameters is higher as the viscosity is smaller. Finally, the effects of viscosity are studied on the non-local properties of the effective parameters, and it is found that this property is attenuated with dissipation although still has to be considered.

  15. Sliding viscoelastic drops on slippery surfaces

    Science.gov (United States)

    Xu, H.; Clarke, A.; Rothstein, J. P.; Poole, R. J.

    2016-06-01

    We study the sliding of drops of constant-viscosity dilute elastic liquids (Boger fluids) on various surfaces caused by sudden surface inclination. For smooth or roughened hydrophilic surfaces, such as glass or acrylic, there is essentially no difference between these elastic liquids and a Newtonian comparator fluid (with identical shear viscosity, surface tension, and static contact angle). In contrast for embossed polytetrafluoroethylene superhydrophobic surfaces, profound differences are observed: the elastic drops slide at a significantly reduced rate and complex branch-like patterns are left on the surface by the drop's wake including, on various scales, beads-on-a-string like phenomena. Microscopy images indicate that the strong viscoelastic effect is caused by stretching filaments of fluid from isolated islands, residing at pinning sites on the surface pillars, of the order ˜30 μm in size. On this scale, the local strain rates are sufficient to extend the polymer chains, locally increasing the extensional viscosity of the solution, retarding the drop and leaving behind striking branch-like structures on much larger scales.

  16. Viscoelastic Models of Tidally Heated Exomoons

    CERN Document Server

    Dobos, Vera

    2015-01-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life is intensely studied on Solar System moons such as Europa or Enceladus, where the surface ice layer covers tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. For studying the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models, because it takes into account the temperature dependency of the tidal heat flux, and the melting of the inner material. With the use of this model we introduced the circumplanetary Tidal Temperate Zone (TTZ), that strongly depends on the orbital period of the moon, and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ usi...

  17. Parametric vibrations and stability of viscoelastic shells

    Science.gov (United States)

    Ilyasov, M. H.

    2010-05-01

    The problem of dynamic stability of viscoelastic extremely shallow and circular cylindrical shells with any hereditary properties, including time-dependence of Poisson’s ratio, are reduced to the investigation of stability of the zero solution of an ordinary integro-differential equation with variable coefficients. Using the Laplace integral transform, an integro-differential equation is reduced to the new integro-differential one of which the main part coincides with the damped Hill equation and the integral part is proportional to the product of two small parameters. Changing this equation for the system of two linear equations of the first order and using the averaging method, the monodromy matrix of the obtained system is constructed. Considering the absolute value of the eigen-values of monodromy matrix is greater than unit, the condition for instability of zero solution is obtained in the three-dimensional space of parameters corresponding to the frequency, viscosity and amplitude of external action. Analysis of form and size of instability domains is carried out.

  18. Effects of a Pseudophysiological Environment on the Elastic and Viscoelastic Properties of Collagen Gels

    Directory of Open Access Journals (Sweden)

    Sébastien Meghezi

    2012-01-01

    Full Text Available Vascular tissue engineering focuses on the replacement of diseased small-diameter blood vessels with a diameter less than 6 mm for which adequate substitutes still do not exist. One approach to vascular tissue engineering is to culture vascular cells on a scaffold in a bioreactor. The bioreactor establishes pseudophysiological conditions for culture (medium culture, 37°C, mechanical stimulation. Collagen gels are widely used as scaffolds for tissue regeneration due to their biological properties; however, they exhibit low mechanical properties. Mechanical characterization of these scaffolds requires establishing the conditions of testing in regard to the conditions set in the bioreactor. The effects of different parameters used during mechanical testing on the collagen gels were evaluated in terms of mechanical and viscoelastic properties. Thus, a factorial experiment was adopted, and three relevant factors were considered: temperature (23°C or 37°C, hydration (aqueous saline solution or air, and mechanical preconditioning (with or without. Statistical analyses showed significant effects of these factors on the mechanical properties which were assessed by tensile tests as well as stress relaxation tests. The last tests provide a more consistent understanding of the gels' viscoelastic properties. Therefore, performing mechanical analyses on hydrogels requires setting an adequate environment in terms of temperature and aqueous saline solution as well as choosing the adequate test.

  19. A viscoelastic-viscoplastic model for short-fibre reinforced polymers with complex fibre orientations

    Directory of Open Access Journals (Sweden)

    Nciri M.

    2015-01-01

    Full Text Available This paper presents an innovative approach for the modelling of viscous behaviour of short-fibre reinforced composites (SFRC with complex distributions of fibre orientations and for a wide range of strain rates. As an alternative to more complex homogenisation methods, the model is based on an additive decomposition of the state potential for the computation of composite’s macroscopic behaviour. Thus, the composite material is seen as the assembly of a matrix medium and several linear elastic fibre media. The division of short fibres into several families means that complex distributions of orientation or random orientation can be easily modelled. The matrix behaviour is strain-rate sensitive, i.e. viscoelastic and/or viscoplastic. Viscoelastic constitutive laws are based on a generalised linear Maxwell model and the modelling of the viscoplasticity is based on an overstress approach. The model is tested for the case of a polypropylene reinforced with short-glass fibres with distributed orientations and subjected to uniaxial tensile tests, in different loading directions and under different strain rates. Results demonstrate the efficiency of the model over a wide range of strain rates.

  20. Viscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-thinning worm.

    Science.gov (United States)

    Backholm, Matilda; Ryu, William S; Dalnoki-Veress, Kari

    2013-03-19

    Undulatory motion is common to many creatures across many scales, from sperm to snakes. These organisms must push off against their external environment, such as a viscous medium, grains of sand, or a high-friction surface; additionally they must work to bend their own body. A full understanding of undulatory motion, and locomotion in general, requires the characterization of the material properties of the animal itself. The material properties of the model organism Caenorhabditis elegans were studied with a micromechanical experiment used to carry out a three-point bending measurement of the worm. Worms at various developmental stages (including dauer) were measured and different positions along the worm were probed. From these experiments we calculated the viscoelastic properties of the worm, including the effective spring constant and damping coefficient of bending. C. elegans moves by propagating sinusoidal waves along its body. Whereas previous viscoelastic approaches to describe the undulatory motion have used a Kelvin-Voigt model, where the elastic and viscous components are connected in parallel, our measurements show that the Maxwell model, where the elastic and viscous components are in series, is more appropriate. The viscous component of the worm was shown to be consistent with a non-Newtonian, shear-thinning fluid. We find that as the worm matures it is well described as a self-similar elastic object with a shear-thinning damping term and a stiffness that becomes smaller as one approaches the tail.

  1. Viscoelastic, Spectroscopic, and Microscopic Characterization of Novel Bio-Based Plasticized Poly(vinyl chloride Compound

    Directory of Open Access Journals (Sweden)

    Mei Chan Sin

    2014-01-01

    Full Text Available Plasticized poly(vinyl chloride (PVC is one of the most widely consumed commodity plastics. Nevertheless, the commonly used plasticizers, particularly phthalates, are found to be detrimental to the environment and human health. This study aimed to investigate the ability of an alternative greener material, medium-chain-length polyhydroxyalkanoates (mcl-PHA, a kind of biopolyester and its thermally degraded oligoesters, to act as a compatible bioplasticizer for PVC. In this study, mcl-PHA were synthesized by Pseudomonas putida PGA1 in shake flask fermentation using saponified palm kernel oil (SPKO and subsequently moderately thermodegraded to low molecular weight oligoesters (degPHA. SEM, ATR-FTIR, 1H-NMR, and DMA were conducted to study the film morphology, microstructure, miscibility, and viscoelastic properties of the PVC-PHA and PVC/degPHA binary blends. Increased height and sharpness of tan δmax⁡ peak for all binary blends reveal an increase in chain mobility in the PVC matrix and high miscibility within the system. The PVC-PHA miscibility is possibly due to the presence of specific interactions between chlorines of PVC with the C=O group of PHA as evidenced by spectroscopic analyses. Dynamic viscoelastic measurements also showed that mcl-PHA and their oligoesters could reduce the Tg of PVC, imparting elasticity to the PVC compounds and decreasing the stiffness of PVC.

  2. An immersed boundary method for two-phase fluids and gels and the swimming of Caenorhabditis elegans through viscoelastic fluids

    Science.gov (United States)

    Lee, Pilhwa; Wolgemuth, Charles

    2016-11-01

    While swimming in Newtonian fluids has been examined extensively, only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic. We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D. A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparison to theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. NIH R01 GM072004, NIH P50GM094503.

  3. Contour detection by surround suppression of texture

    NARCIS (Netherlands)

    Petkov, Nicolai; Tavares, JMRS; Jorge, RMN

    2007-01-01

    Based on a keynote lecture at Complmage 2006, Coimbra, Oct. 20-21, 2006, an overview is given of our activities in modelling and using surround inhibition for contour detection. The effect of suppression of a line or edge stimulus by similar surrounding stimuli is known from visual perception studie

  4. A surface wave elastography technique for measuring tissue viscoelastic properties.

    Science.gov (United States)

    Zhang, Xiaoming

    2017-04-01

    A surface wave elastography method is proposed to study the viscoelastic properties of skin by measuring the surface wave speed and attenuation on the skin. Experiments were carried out on porcine skin tissues. The surface wave speed is measured by the change of phase with distance. The wave attenuation is measured by the decay of wave amplitude with distance. The change of viscoelastic properties with temperature was studied at room and body temperatures. The wave speed was 1.83m/s at 22°C but reduced to 1.52m/s at 33°C. The viscoelastic ratio was almost constant from 22°C to 33°C. Fresh and decayed tissues were studied. The wave speed of the decayed tissue increased from 1.83m/s of fresh state to 2.73m/s. The viscoelastic ratio was 0.412/mm at the decayed state compared to 0.215/mm at the fresh state. More tissue samples are needed to study these viscoelastic parameters according to specific applications.

  5. Tailoring Hydrogel Viscoelasticity with Physical and Chemical Crosslinking

    Directory of Open Access Journals (Sweden)

    Michal Bartnikowski

    2015-12-01

    Full Text Available Biological tissues are viscoelastic, demonstrating a mixture of fluid and solid responses to mechanical strain. Whilst viscoelasticity is critical for native tissue function, it is rarely used as a design criterion in biomaterials science or tissue engineering. We propose that viscoelasticity may be tailored to specific levels through manipulation of the hydrogel type, or more specifically the proportion of physical and chemical crosslinks present in a construct. This theory was assessed by comparing the mechanical properties of various hydrogel blends, comprising elastic, equilibrium, storage and loss moduli, as well as the loss tangent. These properties were also assessed in human articular cartilage explants. It was found that whilst very low in elastic modulus, the physical crosslinks found in gellan gum-only provided the closest approximation of loss tangent levels found in cartilage. Blends of physical and chemical crosslinks (gelatin methacrylamide (GelMA combined with gellan gum gave highest values for elastic response. However, a greater proportion of gellan gum to GelMA than investigated may be required to achieve native cartilage viscoelasticity in this case. Human articular chondrocytes encapsulated in hydrogels remained viable over one week of culture. Overall, it was shown that viscoelasticity may be tailored similarly to other mechanical properties and may prove a new criterion to be included in the design of biomaterial structures for tissue engineering.

  6. The ultratough peeling of elastic tapes from viscoelastic substrates

    Science.gov (United States)

    Afferrante, L.; Carbone, G.

    2016-11-01

    The peeling of an elastic thin tape from a flat smooth viscoelastic substrate is investigated. Based on a Green function approach and on the translational invariance, a closed form analytical solution is proposed, which takes into account the viscoelastic dissipation in the substrate material. We find that peeling is prevented from taking place, only when the external force is smaller than the one predicted by Kendall's formula for elastic tapes on rigid substrates. However, we also find that, regardless of the value of the applied force, steady state detachment may occur when the elastic tape is sufficiently stiff. In this case, the constant peeling velocity can be modulated by properly defining the geometrical parameters and the material properties of tape and viscoelastic foundation. On the other hand, for relatively high peeling angles or compliant tapes a threshold value of the peeling force is found, above which the steady-state equilibrium is no longer possible and unstable detachment occurs. The present study contributes to shed light on the behavior of pressure sensitive adhesives in contact with viscoelastic substrates like the human skin. At the same time, it can be considered a first step towards a better understanding of the effect of viscoelastic dissipation on the fracture behavior of solids.

  7. VOID GROWTH AND CAVITATION IN NONLINEAR VISCOELASTIC SOLIDS

    Institute of Scientific and Technical Information of China (English)

    张赟; 黄筑平

    2003-01-01

    This paper discusses the growth of a pre-existing void in a nonlinear viscoelastic material subjected to remote hydrostatic tensions with different loading rates. The constitutive relation of this viscoelastic material is the one recently proposed by the present authors, which may be considered as a generalization of the non-Gaussian statistical theory in rubber elasticity. As the first order approximation, the above constitutive relation can be reduced to the "neo-Hookean" type viscoelastic one.Investigations of the influences of the material viscosity and the loading rate on the void growth, or on the cavitation are carried out. It is found that: (1) for generalized "inverse Langevin approximation"nonlinear viscoelastic materials, the cavitation limit does not exist, but there is a certain (remote)stress level at which the void will grow rapidly; (2) for generalized "Gaussian statistics" (neo-Hookean type) viscoelastic materials, the cavitation limit exists, and is an increasing function of the loading rate.The present discussions may be of importance in understanding the material failure process under high triaxial stress.

  8. Onset of Primary and Secondary Instabilities of Viscoelastic Fluids Saturating a Porous Layer Heated from below by a Constant Flux

    Directory of Open Access Journals (Sweden)

    Abdoulaye Gueye

    2017-07-01

    Full Text Available We analyze the thermal convection thresholds and linear characteristics of the primary and secondary instabilities for viscoelastic fluids saturating a porous horizontal layer heated from below by a constant flux. The Galerkin method is used to solve the eigenvalue problem by taking into account the elasticity of the fluid, the ratio between the viscosity of the solvent and the total viscosity of the fluid and the lateral confinement of the medium. For the primary instability, we found out that depending on the rheological parameters, two types of convective structures may appear when the basic conductive solution loses its stability: stationary long wavelength instability as for Newtonian fluids and oscillatory convection. The effect of the lateral confinement of the porous medium by adiabatic walls is to stabilize the oblique and longitudinal rolls and therefore selects transverse rolls at the onset of convection. In the range of the rheological parameters where stationary long wave instability develops first, we use a parallel flow approximation to determine analytically the velocity and temperature fields associated with the monocellular convective flow. The linear stability analysis of the monocellular flow is performed, and the critical conditions above which the flow becomes unstable are determined. The combined influence of the viscoelastic parameters and the lateral confinement on the characteristics of the secondary instability is quantified. The major new findings concerning the secondary instabilities may be summarized as follows: (i For concentrated viscoelastic fluids, computations showed that the most amplified mode of convection corresponds to oscillatory transverse rolls, which appears via a Hopf bifurcation. This pattern selection is independent of both the fluid elasticity and the lateral confinement of the porous medium. (ii For diluted viscoelastic fluids, the preferred mode of convection is found to be oscillatory

  9. A review of results and open problems on mathematical models of motion of viscoelastic media of Jeffreys' type

    CERN Document Server

    Vorotnikov, Dmitry A

    2009-01-01

    The Jeffreys model (also associated with the names of Lethersich and Oldroyd) is one of the crucial conceptions in the theory of viscoelastic fluids. The models of Jeffreys type describe behaviour of bitumens, blood, polymers and their solutions, dough, the earth's crust, concrete, lubricants etc. Study of BVPs corresponding to their statics and dynamics meets a lot of mathematical difficulties, which turn out to be much harder than the ones that are related to the celebrated Navier-Stokes system. In this work, we make an attempt to review the recent results and main unsolved problems for equations of motion for the mediums of Jeffreys' type.

  10. The viscoelastic flow behavior of pitches

    Science.gov (United States)

    Fleurot, Olivier

    1998-11-01

    For the first time, a commercial impregnating coal-tar pitch was air-blown (or heat-treated) for various periods of time to produce series of treated pitches. Each pitch was chemically and rheologically characterized. During air-blowing, the formation of large, aromatic, cross- linked molecules increased the elasticity of the pitch and prevented mesophase formation. During heat-treatment, large, planar, aromatic molecules formed and aggregated in mesophase spheres. These two-phase materials exhibited yield stress behavior. Also, their elasticity was similar to that of air-blown pitches. The flow/microstructure relationship in mesophase pitches was investigated. It was found that the steady and transient shear behaviors of mesophase pitches were qualitatively similar to that of LCPs. Also, the size of the structure decreased with increasing shear rate. Upon cessation of flow, the structure slowly coarsened. New techniques were proposed to estimate (1) relaxation time for structure recovery, and (2) the average elastic constant of mesophase pitches. Using Marrucci's model (originally designed for LCPs) it was possible for the first time to predict mesophase pitches' structure shrinkage during pure shear. Finally, the flow-induced structural development that occurs during extrusion of mesophase pitch through capillaries was observed and accurately predicted by coupling computational fluid dynamics (CFD) to Marrucci's model. Using a viscoelastic stress tensor to characterize the pitch flow behavior, the model was able to accurately predict the magnitude of the vortex experimentally observed at the spinnerette capillary counterbore as well as the extend of die swell at the exit of the capillary.

  11. Lattice Boltzmann simulation of transverse wave travelling in Maxwell viscoelastic fluid

    Institute of Scientific and Technical Information of China (English)

    Li Hua-Bing; Fang Hai-Ping

    2004-01-01

    A nine-velocity lattice Boltzmann method for Maxwell viscoelastic fluid is proposed. Travelling of transverse wave in Maxwell viscoelastic fluid is simulated. The instantaneous oscillating velocity, transverse shear speed and decay rate agree with theoretical results very well.

  12. Microfluidic high viability neural cell separation using viscoelastically tuned hydrodynamic spreading

    DEFF Research Database (Denmark)

    Wu, Zhigang; Hjort, Klas; Wicher, Grzegorz

    2008-01-01

    A high viability microfluidic cell separation technique of high throughput was demonstrated based on size difference continuous mode hydrodynamic spreading with viscoelastic tuning. Using water with fluorescent dye as sample fluid and in parallel introducing as elution a viscoelastic biocompatibl...

  13. Stability analysis of a viscoelastic model for ion-irradiated silicon

    CERN Document Server

    Norris, Scott A

    2012-01-01

    To study the effect of stress within the thin amorphous film generated atop Si irradiated by Ar+, we model the film as a viscoelastic medium into which the ion beam continually injects biaxial compressive stress. We find that at normal incidence, the model predicts a steady compressive stress of a magnitude comparable to experiment. However, linear stability analysis at normal incidence reveals that this mechanism of stress generation is unconditionally stabilizing due to a purely kinematic material flow, depending on none of the material parameters. Thus, despite plausible conjectures in the literature as to its potential role in pattern formation, we conclude that beam stress at normal incidence is unlikely to be a source of instability at any energy, supporting recent theories attributing hexagonal ordered dots to the effects of composition. In addition, we find that the elastic moduli appear in neither the steady film stress nor the leading order smoothening, suggesting that the primary effects of stress ...

  14. Chemically reacting dusty viscoelastic fluid flow in an irregular channel with convective boundary

    Directory of Open Access Journals (Sweden)

    R. Sivaraj

    2013-03-01

    Full Text Available In this paper, we have studied the combined effects of free convective heat and mass transfer on an unsteady MHD dusty viscoelastic (Walters liquid model-B fluid flow between a vertical long wavy wall and a parallel flat wall saturated with porous medium subject to the convective boundary condition. The coupled partial differential equations are solved analytically using perturbation technique. The velocity, temperature and concentration fields have been studied for various combinations of physical parameters such as magnetic field, heat absorption, thermal radiation, radiation absorption, Biot number and chemical reaction parameters. The skin friction, Nusselt number and Sherwood number are also presented and displayed graphically. Further, it is observed that the velocity profiles of dusty fluid are higher than the dust particles.

  15. Effect of dynamic visco-elasticity on vertical and torsional vibrations of a half-space

    Indian Academy of Sciences (India)

    Prakash Chandra Pal

    2001-08-01

    By expressing the dynamic visco-elastic characteristic of a material in terms of the complex shear modulus, the vertical vibrations of a visco-elastic half-space as well as that of a mass in visco-elastic half-space are considered here. Torsional vibrations of a visco-elastic half-space is also considered. Numerical results are derived for two cases and shown graphically.

  16. Viscoelastic Analysis of Asphalt Mixture Based on Creep Test

    Directory of Open Access Journals (Sweden)

    Lihua Zhao

    2013-01-01

    Full Text Available Two kinds of mineral fibers were added to AC-16C asphalt mixture. Trabecular bending creep experiments of asphalt mixtures were carried out at -10 and 20°C. The influence of mineral fibers on the low temperature viscoelasticity of asphalt mixtures were analyzed systemically. Furthermore, by using Origin, Burgers viscoelastic model was used to investigate the parameter regression for the creep test results at the different temperatures. The results show that the addition of mineral fibers can effectively improve the bending creep rate of asphalt mixtures, indicates the increase of crack resistance of asphalt mixtures. Good agreement between experimental data and Burgers model was found. The parameters of Burgers model at different temperatures can also provide data support for the viscoelastic design of asphalt pavements.

  17. Light scanner based on a viscoelastic stretchable grating.

    Science.gov (United States)

    Simonov, A N; Akhzar-Mehr, O; Vdovin, G

    2005-05-01

    We present a new technique for light scanning by use of viscoelastic-based deformable phase diffraction gratings. Mechanical stretching of the grating permits control of its spatial period, and thus the orders of diffraction can be spatially deflected. In the experiments the viscoelastic gratings with triangular and rectangular profiles have been characterized at lambda = 633 nm. It is demonstrated that the reversible elongation can exceed 20% of the initial length. For the triangular profile grating, the diffraction angle of the first order changed from 6.6 degrees to 5.4 degrees while the diffraction efficiency remained almost constant at approximately 17%. Dynamic scanning of a laser beam at frequencies of approximately 1 kHz is demonstrated by use of electromechanically driven viscoelastic gratings.

  18. Light scanner based on a viscoelastic stretchable grating

    Science.gov (United States)

    Simonov, A. N.; Akhzar-Mehr, O.; Vdovin, G.

    2005-05-01

    We present a new technique for light scanning by use of viscoelastic-based deformable phase diffraction gratings. Mechanical stretching of the grating permits control of its spatial period, and thus the orders of diffraction can be spatially deflected. In the experiments the viscoelastic gratings with triangular and rectangular profiles have been characterized at lambda = 633 nm. It is demonstrated that the reversible elongation can exceed 20% of the initial length. For the triangular profile grating, the diffraction angle of the first order changed from 6.6μ to 5.4μ while the diffraction efficiency remained almost constant at ~17%. Dynamic scanning of a laser beam at frequencies of ~1 kHz is demonstrated by use of electromechanically driven viscoelastic gratings.

  19. Self-propulsion in viscoelastic fluids: pushers vs. pullers

    CERN Document Server

    Zhu, Lailai; Brandt, Luca

    2012-01-01

    We use numerical simulations to address locomotion at zero Reynolds number in viscoelastic (Giesekus) fluids. The swimmers are assumed to be spherical, to self-propel using tangential surface deformation, and the computations are implemented using a finite element method. The emphasis of the study is on the change of the swimming kinematics, energetics, and flow disturbance from Newtonian to viscoelastic, and on the distinction between pusher and puller swimmers. In all cases, the viscoelastic swimming speed is below the Newtonian one, with a minimum obtained for intermediate values of the Weissenberg number, $We$. An analysis of the flow field places the origin of this swimming degradation in non-Newtonian elongational stresses. The power required for swimming is also systematically below the Newtonian power, and always a decreasing function of $We$. A detail energetic balance of the swimming problem points at the polymeric part of the stress as the primary $We$-decreasing energetic contribution, while the c...

  20. Local viscoelasticity of living cells measured by rotational magnetic spectroscopy.

    Science.gov (United States)

    Berret, J-F

    2016-01-05

    When submitted to a magnetic field, micron-size wires with superparamagnetic properties behave as embedded rheometers and represent interesting sensors for microrheology. Here we use rotational magnetic spectroscopy to measure the shear viscosity of the cytoplasm of living cells. We address the question of whether the cytoplasm is a viscoelastic liquid or an elastic gel. The main result of the study is the observation of a rotational instability between a synchronous and an asynchronous regime of rotation, found for murine fibroblasts and human cancer cells. For wires of susceptibility 3.6, the transition occurs in the range 0.01-1 rad s(-1). The determination of the shear viscosity (10-100 Pa s) and elastic modulus (5-20 Pa) confirms the viscoelastic character of the cytoplasm. In contrast to earlier studies, it is concluded that the interior of living cells can be described as a viscoelastic liquid, and not as an elastic gel.

  1. Uniform Decay for Solutions of an Axially Moving Viscoelastic Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kelleche, Abdelkarim, E-mail: kellecheabdelkarim@gmail.com [Université des Sciences et de la Technologie Houari Boumediene, Faculté des Mathématiques (Algeria); Tatar, Nasser-eddine, E-mail: tatarn@Kfupm.edu.sa [King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics (Saudi Arabia)

    2017-06-15

    The paper deals with an axially moving viscoelastic structure modeled as an Euler–Bernoulli beam. The aim is to suppress the transversal displacement (transversal vibrations) that occur during the axial motion of the beam. It is assumed that the beam is moving with a constant axial speed and it is subject to a nonlinear force at the right boundary. We prove that when the axial speed of the beam is smaller than a critical value, the dissipation produced by the viscoelastic material is sufficient to suppress the transversal vibrations. It is shown that the rate of decay of the energy depends on the kernel which arise in the viscoelastic term. We consider a general kernel and notice that solutions cannot decay faster than the kernel.

  2. GPU accelerated numerical simulations of viscoelastic phase separation model.

    Science.gov (United States)

    Yang, Keda; Su, Jiaye; Guo, Hongxia

    2012-07-05

    We introduce a complete implementation of viscoelastic model for numerical simulations of the phase separation kinetics in dynamic asymmetry systems such as polymer blends and polymer solutions on a graphics processing unit (GPU) by CUDA language and discuss algorithms and optimizations in details. From studies of a polymer solution, we show that the GPU-based implementation can predict correctly the accepted results and provide about 190 times speedup over a single central processing unit (CPU). Further accuracy analysis demonstrates that both the single and the double precision calculations on the GPU are sufficient to produce high-quality results in numerical simulations of viscoelastic model. Therefore, the GPU-based viscoelastic model is very promising for studying many phase separation processes of experimental and theoretical interests that often take place on the large length and time scales and are not easily addressed by a conventional implementation running on a single CPU.

  3. Theoretical analysis of a Love wave biosensor in liquid with a viscoelastic wave guiding layer

    Science.gov (United States)

    Wu, Huiyan; Xiong, Xiangming; Zu, Hongfei; Wang, James H.-C.; Wang, Qing-Ming

    2017-02-01

    The Love mode surface acoustic wave biosensor is considered as one of the most promising probing methods in biomedical research and diagnosis, which has been applied to detect the mechano-biological behaviors of cells attached to the surface of the device. Recent studies have reported the structural and functional optimization of Love wave biosensors for reducing propagation loss and improving sensitivity; however, the relevant device performance needs to be analyzed in depth in terms of device structure, electromechanical properties of piezoelectric crystal substrates, viscoelastic properties of wave guiding layers, and the effect of liquid loading. In this study, a 36° YX-LiTaO3 based Love wave sensor with a parylene-C wave guiding layer is considered as a cell-based biosensor. A theoretical model is proposed to describe the Love wave propagation in the wave guiding layer and penetration in the liquid medium. Decay length δ for the Love wave penetration in liquid is found to be in the order of ˜50 nm, which agrees well with experimental observations. In addition, the effects of the viscoelastic wave guiding layer and liquid medium on the effective electromechanical coupling coefficient K2 of the sensor, the propagation loss PL, and sensor response to mass loading (mass sensitivity) are investigated. The numerical results indicate that the maximum propagation velocity is found at h/λ = 0, where h is the thickness of the wave guiding layer and λ is the wavelength; and the optimal coupling coefficient and mass sensitivity can be obtained at h/λ = 0.045 and h/λ = ˜0.06 in a vacuum or ˜0.058 in water, respectively. For a good combination of these device performance parameters, it is suggested that the optimal wave guiding layer thickness in a Love wave biosensor is at the vicinity of h/λ = ˜0.05 in a vacuum and ˜0.048 in liquid (water).

  4. Controllability of a viscoelastic plate using one boundary control in displacement or bending

    OpenAIRE

    Pandolfi, L.

    2016-01-01

    In this paper we consider a viscoelastic plate (linear viscoelasticity of the Maxwell-Boltzmann type) and we compare its controllability properties with the (known) controllability of a purely elastic plate (the control acts on the boundary displacement or bending). By combining operator and moment methods, we prove that the viscoelastic plate inherits the controllability properties of the purely elastic plate.

  5. NUMERICAL ANALYSIS OF A FEM FOR A TRANSIENT VISCOELASTIC FLOW

    Institute of Scientific and Technical Information of China (English)

    穆君; 冯民富

    2004-01-01

    We present the numerical analysis of a coupled method for the numerical simulation of transient viscoelastic flow obeying a differential constitutive equation with a Newtonian viscosity. The scheme used is based on Euler implicit method in time and maintains at each time step a couple of the velocity u and the viscoelastic part of the stress σ. Approximation in space is made by finite element method. The approximate stress, velocity and pressure are, respectively, P1-continuous, p2-continuous, and p1continuous. Upwinding needed for convection of σ is made by a "Streamline Upwind Petrov Galerkin" method (SUPG).

  6. Micromechanics Models for Viscoelastic Plain-Weave Composite Tape Springs

    DEFF Research Database (Denmark)

    Kwok, Kawai; Pellegrino, Sergio

    2017-01-01

    The viscoelastic behavior of polymer composites decreases the deployment force and the postdeployment shape accuracy of composite deployable space structures. This paper presents a viscoelastic model for single-ply cylindrical shells (tape springs) that are deployed after being held folded...... for a given period of time. The model is derived from a representative unit cell of the composite material, based on the microstructure geometry. Key ingredients are the fiber volume density in the composite tows and the constitutive behavior of the fibers (assumed to be linear elastic and transversely...

  7. DYNAMICAL BEHAVIOR OF VISCOELASTIC CYLINDRICAL SHELLS UNDER AXIAL PRESSURES

    Institute of Scientific and Technical Information of China (English)

    程昌钧; 张能辉

    2001-01-01

    The hypotheses of the Kármán-Donnell theory of thin shells with large deflections and the Boltzmann laws for isotropic linear, viscoelastic materials, the constitutive equations of shallow shells are first derived. Then the governing equations for the deflection equations of elastic thin plates. Introducing proper assumptions, an approximate theory for viscoelastic cylindrical shells under axial pressures can be obtained. Finally, the dynamical behavior is studied in detail by using several numerical methods. Dynamical properties,such as, hyperchaos , chaos, strange attractor, limit cycle etc., are discovered.

  8. HYDROMAGNETIC DIVERGENT CHANNEL FLOW OF A VISCOELASTIC ELECTRICALLY CONDUCTING FLUID

    Directory of Open Access Journals (Sweden)

    RITA CHOUDHURY

    2011-10-01

    Full Text Available A theoretical study for the two-dimensional boundary layer flow through a divergent channel of a visco-elastic electrically conducting fluid in presence of transverse magnetic field has been considered. Similarity solutions are obtained by considering a special form of magnetic field. The analytical expressions for velocity and skin friction at the wall have been obtained and numerically worked out for different values of the flow parametersinvolved in the solution. The velocity and the skin friction coefficient have been presented graphically to observe the visco-elastic effects for various values of the flow parameters across the boundary layer.

  9. Effective viscoelastic behavior of particulate polymer composites at finite concentration

    Institute of Scientific and Technical Information of China (English)

    LI Dan; HU Geng-kai

    2007-01-01

    Polymeric materials usually present some viscoelastic behavior. To improve the mechanical behavior of these materials, ceramics materials are often filled into the polymeric materials in form of fiber or particle. A micromechanical model was proposed to estimate the overall viscoelastic behavior for particulate polymer composites, especially for high volume concentration of filled particles. The method is based on Laplace transform technique and an elastic model including two-particle interaction. The effective creep compliance and the stress and strainrelation at a constant loading rate are analyzed. The results show that the proposed method predicts a significant stiffer response than those based on Mori-Tanaka's method at high volume concentration of particles.

  10. Buckling and Multiple Equilibrium States of Viscoelastic Rectangular Plates

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    On the basis of Karman's theory of thin plates with large deflection, the Boltzmann law on linear viscoelastic materials and the mathematical model of dynamic analysis on viscoelastic thin plates, a set of nonlinear integro-partial-differential equations is first presented by means of a structural function introduced in this paper. Then,by using the Galerkin technique in spatial field and a backward difference scheme in temporal field, the set of nonlinear integro-partial-differential equations reduces to a system of nonlinear algebraic equations. After solving the algebraic equations, the buckling behavior and multiple equilibrium states can be obtained.

  11. DYNAMICAL STABILITY OF VISCOELASTIC COLUMN WITH FRACTIONAL DERIVATIVE CONSTITUTIVE RELATION

    Institute of Scientific and Technical Information of China (English)

    李根国; 朱正佑; 程昌钧

    2001-01-01

    The dynamic stability of simple supported viscoelastic column, subjected to a periodic axial force, is investigated. The viscoelastic material was assumed to obey the fractional derivative constitutive relation. The governing equation of motion was derived as a weakly singular Volterra integro-partial-differential equation, and it was simplified into a weakly singular Volterra integro-ordinary-differential equation by the Galerkin method. In terms of the averaging method, the dynamical stability was analyzed. A new numerical method is proposed to avoid storing all history data. Numerical examples are presented and the numerical results agree with the analytical ones.

  12. Strain analysis of nonlocal viscoelastic Kelvin bar in tension

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xue-chuan; LEI Yong-jun; ZHOU Jian-ping

    2008-01-01

    Based on viscoelastic Kelvin model and nonlocal relationship of strain and stress, a nonlocal constitutive relationship of viscoelasticity is obtained and the strain response of a bar in tension is studied. By transforming governing equation of the strain analysis into Volterra integration form and by choosing a symmetric exponential form of kernel function and adapting Neumann series, the closed-form solution of strain field of the bar is obtained. The creep process of the bar is presented. When time approaches infinite, the strain of bar is equal to the one of nonlocal elasticity.

  13. GENERALIZED VARIATIONAL PRINCIPLESFOR VISCOELASTIC THIN AND THICK PLATES WITH DAMAGE

    Institute of Scientific and Technical Information of China (English)

    ShengDongfa; ChengChangjun

    2004-01-01

    From the constitutive model with generalized force fields for a viscoelastic body with damage, the differential equations of motion for thin and thick plates with damage are derived under arbitrary boundary conditions. The convolution-type functionals for the bending of viscoelastic thin and thick plates with damage are presented, and the corresponding generalized variational principles are given. From these generalized principles, all the basic equations of the displacement and damage variables and initial and boundary conditions can be deduced. As an example, we compare the difference between the dynamical properties of plates with and without damage and consider the effect of damage on the dynamical properties of plates.

  14. Relationship Between Structure and Viscoelastic Properties of Geosynthetics

    Directory of Open Access Journals (Sweden)

    Loginova Irina

    2016-01-01

    Full Text Available In this work, a study on viscoelastic properties of geosynthetic materials used in civil engineering is presented. Six samples of geofabrics and geogrids with different structures including woven geotextile fabric, nonwoven geotextile fabrics, warp-knitted geogrids and extruded geogrid were investigated. The tensile properties of geosynthetics including tensile strength, strain at maximum load and tensile load at specified strain have been determined. The creep and relaxation tests were carried out. The structure type was found to significantly affect the viscoelastic properties of the geosynthetics materials. In the article some results of numerous conducted tests are presented, analyzed and may be used to preselection of geosynthetics materials.

  15. The bounce-splash of a viscoelastic drop

    CERN Document Server

    Hernandez-Sanchez, Federico; Zenit, Roberto

    2008-01-01

    This is an entry for the Gallery of Fluid Motion of the 61st Annual Meeting of the APS-DFD (fluid dynamics videos). This video shows the collision and rebound of viscoelastic drops against a solid wall. Using a high speed camera, the process of approach, contact and rebound of drops of a viscoelastic liquid is observed. We found that these drops first splash, similar to what is observed in Newtonian colliding drops; after a few instants, the liquid recoils, recovering its original drop shape and bounce off the wall.

  16. QUASI-STATIC ANALYSIS FOR VISCOELASTIC TIMOSHENKO BEAMS WITH DAMAGE

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on convolution-type constitutive equations for linear viscoelastic materials with damage and the hypotheses of Timoshenko beams, the equations governing quasi-static and dynamical behavior of Timoshenko beams with damage were first derived. The quasi-static behavior of the viscoelastic Timoshenko beam under step loading was analyzed and the analytical solution was obtained in the Laplace transformation domain. The deflection and damage curves at different time were obtained by using the numerical inverse transform and the influences of material parameters on the quasi-static behavior of the beam were investigated in detail.

  17. DYNAMIC STABILITY OF AXIALLY MOVING VISCOELASTIC BEAMS WITH PULSATING SPEED

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-dong; CHEN Li-qun

    2005-01-01

    Parametric vibration of an axially moving, elastic, tensioned beam with pulsating speed was investigated in the vicinity of subharmonic and combination resonance. The method of averaging was used to yield a set of autonomous equations when the parametric excitation frequency is twice or the combination of the natural frequencies. Instability boundaries were presented in the plane of parametric frequency and amplitude. The analytical results were numerically verified. The effects of the viscoelastic damping, steady speed and tension on the instability boundaries were numerically demonstrated. It is found that the viscoelastic damping decreases the instability regions and the steady speed and the tension make the instability region drift along the frequency axis.

  18. Agroforestry practice in villages surrounding Nyamure former ...

    African Journals Online (AJOL)

    cntaganda

    Key words: Agroforestry, fuel wood, tree products, woodlot, forest plantation. INTRODUCTION ... The study area included three administrative cells in the surroundings of Nyamure ..... Table 6: Distance and time spent on firewood collection.

  19. Explaining preferences for home surroundings and locations

    Directory of Open Access Journals (Sweden)

    Hans Skifter Andersen

    2011-01-01

    Full Text Available This article is based on a survey carried out in Denmark that asked a random sample of the population about their preferences for home surroundings and locations. It shows that the characteristics of social surroundings are very important and can be divided into three independent dimensions: avoiding social nuisances, preferring social homogeneity and living close to one’s social network and place of origin. The study shows that most people have many detailed preferences, whereas some have very few. This confirms an earlier theory that some people are very connected to certain places with given characteristics and thus do not have priorities regarding home surroundings and locations. For others, mostly young people and singles, home is just a place to sleep and relax, whereas life is lived elsewhere. For this group, there are only preferences for location and there are few specific preferences for surroundings.

  20. Surround-Masking Affects Visual Estimation Ability

    Science.gov (United States)

    Jastrzebski, Nicola R.; Hugrass, Laila E.; Crewther, Sheila G.; Crewther, David P.

    2017-01-01

    Visual estimation of numerosity involves the discrimination of magnitude between two distributions or perceptual sets that vary in number of elements. How performance on such estimation depends on peripheral sensory stimulation is unclear, even in typically developing adults. Here, we varied the central and surround contrast of stimuli that comprised a visual estimation task in order to determine whether mechanisms involved with the removal of unessential visual input functionally contributes toward number acuity. The visual estimation judgments of typically developed adults were significantly impaired for high but not low contrast surround stimulus conditions. The center and surround contrasts of the stimuli also differentially affected the accuracy of numerosity estimation depending on whether fewer or more dots were presented. Remarkably, observers demonstrated the highest mean percentage accuracy across stimulus conditions in the discrimination of more elements when the surround contrast was low and the background luminance of the central region containing the elements was dark (black center). Conversely, accuracy was severely impaired during the discrimination of fewer elements when the surround contrast was high and the background luminance of the central region was mid level (gray center). These findings suggest that estimation ability is functionally related to the quality of low-order filtration of unessential visual information. These surround masking results may help understanding of the poor visual estimation ability commonly observed in developmental dyscalculia.

  1. Rheological properties of novel viscoelastic micelle systems containing anionic-nonionic dimeric surfactant

    Institute of Scientific and Technical Information of China (English)

    方波; 曹丹红; 江体乾

    2008-01-01

    The viscoelastic micelle systems formed by novel anionic-nonionic dimeric surfactant and conventional cationic surfactant cetyltrimethylammonium(1631) were studied.The viscoelasticity,thixotropy,flow curves and constitutive equation for the novel viscoelastic micelle systems were investigated.The results show that the micelle systems possess viscoelasticity,thixotropy,and shear thinning property.Some micelle systems possess hysteresis loops showing both viscoelasticity and thixotropy.It is proved that the flow curves are characterized by the co-rotational Jeffreys constitutive equation correctly.

  2. Viscoelastic properties of oat ß-glucan-rich aqueous dispersions

    Science.gov (United States)

    C-trim is a healthy food product containing the dietary of soluble fiber ß-glucan. The suspension of C-trim in water is a hydrocolloid biopolymer. The linear and non-linear rheological properties for suspensions of C-trim biopolymers were investigated. The linear viscoelastic behaviors for C-trim...

  3. Viscoelasticity of brain corpus callosum in biaxial tension

    Science.gov (United States)

    Labus, Kevin M.; Puttlitz, Christian M.

    2016-11-01

    Computational models of the brain rely on accurate constitutive relationships to model the viscoelastic behavior of brain tissue. Current viscoelastic models have been derived from experiments conducted in a single direction at a time and therefore lack information on the effects of multiaxial loading. It is also unclear if the time-dependent behavior of brain tissue is dependent on either strain magnitude or the direction of loading when subjected to tensile stresses. Therefore, biaxial stress relaxation and cyclic experiments were conducted on corpus callosum tissue isolated from fresh ovine brains. Results demonstrated the relaxation behavior to be independent of strain magnitude, and a quasi-linear viscoelastic (QLV) model was able to accurately fit the experimental data. Also, an isotropic reduced relaxation tensor was sufficient to model the stress-relaxation in both the axonal and transverse directions. The QLV model was fitted to the averaged stress relaxation tests at five strain magnitudes while using the measured strain history from the experiments. The resulting model was able to accurately predict the stresses from cyclic tests at two strain magnitudes. In addition to deriving a constitutive model from the averaged experimental data, each specimen was fitted separately and the resulting distributions of the model parameters were reported and used in a probabilistic analysis to determine the probability distribution of model predictions and the sensitivity of the model to the variance of the parameters. These results can be used to improve the viscoelastic constitutive models used in computational studies of the brain.

  4. Viscoelastic Model Analogy of the Dark Cosmic Fluid

    CERN Document Server

    Brevik, Iver

    2015-01-01

    A one-component dark energy fluid model of the late universe is considered ($w \\zeta$. This is just as one would expect physically. The corresponding entropy production is also considered. A special point emphasized in the paper is the analogy that exists between the cosmic fluid and a so-called Maxwell fluid in viscoelasticity.

  5. Oscillatory squeeze flow for the study of linear viscoelastic behavior

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole

    2016-01-01

    The squeezing of a sample between parallel plates has been used for many years to characterize the rheological behavior of soft, purely viscous materials, and in recent times, small-amplitude oscillatory squeezing has been proposed as a means to determine the linear viscoelastic properties of mol...

  6. Stationary solutions of equations of incompressible viscoelastic polymer liquid

    Science.gov (United States)

    Bambaeva, N. V.; Blokhin, A. M.

    2014-05-01

    The equations describing flows of an incompressible viscoelastic polymer liquid are studied. Stationary solutions similar to the Poiseuille and Couette solutions for the system of the Navier-Stokes equations are constructed. Stationary discontinuous solutions of the polymer liquid equation are also considered.

  7. Cutting edge science: Laser surgery illuminates viscoelasticity of merotelic kinetochores.

    Science.gov (United States)

    Cabello, Simon; Gachet, Yannick; Tournier, Sylvie

    2016-03-28

    Increasing evidence in eukaryotic cells suggests that mechanical forces are essential for building a robust mitotic apparatus and correcting inappropriate chromosome attachments. In this issue, Cojoc et al. (2016. J. Cell Biol., http://dx.doi.org/10.1083/jcb.201506011) use laser microsurgery in vivo to measure and study the viscoelastic properties of kinetochores.

  8. About the Interactions Controlling Nafion's Viscoelastic Properties and Morphology

    NARCIS (Netherlands)

    Melchior, Jan-Patrick; Bräuniger, Thomas; Wohlfarth, Andreas; Portale, Giuseppe; Kreuer, Klaus-Dieter

    2015-01-01

    Interactions controlling the viscoelastic properties of Nafion are identified by investigating morphological changes induced through stretching at a wide range of controlled temperature and relative humidity. H-2-goniometer NMR exploiting the pseudonematic effect in D2O-containing membranes provides

  9. Theoretical and Experimental Studies of the Mechanics of Viscoelastic Liquids.

    Science.gov (United States)

    1985-02-15

    Ref. 6 D. D. Joseph, M. Renardy, and J-C. Saut , "Hyper- bolicity and change of type in the flow of viscoelastic fluids," Archive for Rational Mechanics...J. C. Saut and D. D. Joseph, "Fading Memory," Archive for Rational Mechanics and Analysis, Vol. 81(1), pp. 53-95, 1983. Fading memory expresses the

  10. Stress memory effect in viscoelastic stagnant lid convection

    Science.gov (United States)

    Patočka, V.; Čadek, O.; Tackley, P. J.; Čížková, H.

    2017-06-01

    Present thermochemical convection models of planetary evolution often assume a purely viscous or viscoplastic rheology. Ignoring elasticity in the cold, outer boundary layer is, however, questionable since elastic effects may play an important role there and affect surface topography as well as the stress distribution within the stiff cold lithosphere. Here we present a modelling study focused on the combined effects of Maxwell viscoelastic rheology and a free surface in the stagnant lid planetary convection. We implemented viscoelastic rheology in the StagYY code using a tracer-based stress advection scheme that suppresses subgrid oscillations. We apply this code to perform thermal convection models of the cooling planetary mantles and we demonstrate that while the global characteristics of the mantle flow do not change significantly when including viscoelasticity, the stress state of the cold lithosphere may be substantially different. Transient cooling of an initially thin upper thermal boundary layer results in a complex layered stress structure due to the memory effects of viscoelastic rheology. The stress state of the lid may thus contain a record of the planetary thermal evolution.

  11. On stability cylindrical shell with a viscoelastic core

    OpenAIRE

    2013-01-01

    Stability of cylindrical shell with a viscoelastic core is investigated under action both of external uniform pressure and constant temperature field. Core effect is modelled by means of Winkler formula. Besides of instant and prolonged critical parameters, the instability critical time are defined.

  12. Viscoelastic materials with anisotropic rigid particles: stress-deformation behavior

    NARCIS (Netherlands)

    Sagis, L.M.C.; Linden, van der E.

    2001-01-01

    In this paper we have derived constitutive equations for the stress tensor of a viscoelastic material with anisotropic rigid particles. We have assumed that the material has fading memory. The expressions are valid for slow and small deformations from equilibrium, and for systems that are nearly

  13. Nonrigid Registration of Monomodal MRI Using Linear Viscoelastic Model

    Directory of Open Access Journals (Sweden)

    Jian Yang

    2014-01-01

    Full Text Available This paper describes a method for nonrigid registration of monomodal MRI based on physical laws. The proposed method assumes that the properties of image deformations are like those of viscoelastic matter, which exhibits the properties of both an elastic solid and a viscous fluid. Therefore, the deformation fields of the deformed image are constrained by both sets of properties. After global registration, the local shape variations are assumed to have the properties of the Maxwell model of linear viscoelasticity, and the deformation fields are constrained by the corresponding partial differential equations. To speed up the registration, an adaptive force is introduced according to the maximum displacement of each iteration. Both synthetic datasets and real datasets are used to evaluate the proposed method. We compare the results of the linear viscoelastic model with those of the fluid model on the basis of both the standard and adaptive forces. The results demonstrate that the adaptive force increases in both models and that the linear viscoelastic model improves the registration accuracy.

  14. Simulations of flow induced ordering in viscoelastic fluids

    NARCIS (Netherlands)

    Santos de Oliveira, I.S.

    2012-01-01

    In this thesis we report on simulations of colloidal ordering phenomena in shearthinning viscoelastic fluids under shear flow. Depending on the characteristics of the fluid, the colloids are observed to align in the direction of the flow. These string-like structures remain stable as long as the she

  15. Atomization mechanism of a charged viscoelastic liquid sheet

    Directory of Open Access Journals (Sweden)

    Liu Lujia

    2015-04-01

    Full Text Available In order to study atomization mechanism of a viscoelastic liquid sheet in an electric field, the spatial–temporal stability analysis of a viscoelastic liquid sheet injected into a dielectric stationary ambient gas in the presence of a vertical electric field is conducted. The dispersion relations of both sinuous and varicose disturbance modes are solved to explore the spatial–temporal instability of a charged viscoelastic sheet, by setting both the wave number and frequency complex. A parametric study is performed to test the influence of the dimensionless parameters on the absolute instability of the sheet. The results show that the increase of liquid Weber number and time constant ratio, or decrease of gas to liquid density ratio and Reynolds number, can damp the absolute instability. The effect of the liquid elasticity depends on the value of time constant ratio: when time constant ratio is small, the increase of liquid elasticity could amplify absolute growth rate, but the effect is weak when the elasticity number is relatively large; when time constant ratio is large, the increase of liquid elasticity cannot affect the absolute growth rate. Moreover, the variation of electrical Euler number can hardly influence the absolute instability of a charged viscoelastic sheet.

  16. Viscoelasticity and microstructure of non-ionic microemulsions

    NARCIS (Netherlands)

    Eshuis, A.; Mellema, J.

    1984-01-01

    Non-ionic microemulsions were investigated by viscoelastic measurements in the kHz region. We found that in some parts of the phase diagram our systems consisted of a dispersion of spherical oil doplets, stabilized by a non-ionic surfactant, in a continuous phase of almost pure water. Because of the

  17. The forward undulatory locomotion of Ceanorhabditis elegans in viscoelastic fluids

    Science.gov (United States)

    Shen, Amy; Ulrich, Xialing

    2013-11-01

    Caenorhabditis elegans is a soil dwelling roundworm that has served as model organisms for studying a multitude of biological and engineering phenomena. We study the undulatory locomotion of nematode in viscoelastic fluids with zero-shear viscosity varying from 0.03-75 Pa .s and relaxation times ranging from 0-350 s. We observe that the averaged normalized wavelength of swimming worm is essentially the same as that in Newtonian fluids. The undulatory frequency f shows the same reduction rate with respect to zero-shear viscosity in viscoelastic fluids as that found in the Newtonian fluids, meaning that the undulatory frequency is mainly controlled by the fluid viscosity. However, the moving speed Vm of the worm shows more distinct dependence on the elasticity of the fluid and exhibits a 4% drop with each 10-fold increase of the Deborah number De, a dimensionless number characterizing the elasticity of a fluid. To estimate the swimming efficiency coefficient and the ratio K =CN /CL of resistive coefficients of the worm in various viscoelastic fluids, we show that whereas it would take the worm around 7 periods to move a body length in a Newtonian fluid, it would take 27 periods to move a body length in a highly viscoelastic fluid.

  18. Viscoelastic finite-element analysis of human skull - dura mater ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... In the work, the dynamic characteristics of the human skull-dura mater ... Ansys' finite element processor, a simplified three-dimensional finite element ... brain, cerebrospinal fluid (CSF), and the brain's blood ... ICP is often not preventable. .... The creep of linear viscoelastic solid can be simulated by the.

  19. Random vibrations of linear viscoelastic beams with lumped masses

    Science.gov (United States)

    Dinca, F.; Sireteanu, T.

    1974-01-01

    A method is presented of determining the mean square transversal deflection of an isotropic and homogeneous linear viscoelastic beam having a certain number of lengthwise distributed lumped masses. It is assumed that the beam is acted upon by a stationary random process uniformly distributed along the beam. The method is useful in vibration level control by means of additional lumped masses.

  20. Post-seismic relaxation theory on laterally heterogeneous viscoelastic model

    Science.gov (United States)

    Pollitz, F.F.

    2003-01-01

    Investigation was carried out into the problem of relaxation of a laterally heterogeneous viscoelastic Earth following an impulsive moment release event. The formal solution utilizes a semi-analytic solution for post-seismic deformation on a laterally homogeneous Earth constructed from viscoelastic normal modes, followed by application of mode coupling theory to derive the response on the aspherical Earth. The solution is constructed in the Laplace transform domain using the correspondence principle and is valid for any linear constitutive relationship between stress and strain. The specific implementation described in this paper is a semi-analytic discretization method which assumes isotropic elastic structure and a Maxwell constitutive relation. It accounts for viscoelastic-gravitational coupling under lateral variations in elastic parameters and viscosity. For a given viscoelastic structure and minimum wavelength scale, the computational effort involved with the numerical algorithm is proportional to the volume of the laterally heterogeneous region. Examples are presented of the calculation of post-seismic relaxation with a shallow, laterally heterogeneous volume following synthetic impulsive seismic events, and they illustrate the potentially large effect of regional 3-D heterogeneities on regional deformation patterns.

  1. A NEW ALGORITHM OF TIME STEPPING IN DYNAMIC VISCOELASTIC PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    杨海天; 高强; 郭杏林; 邬瑞锋

    2001-01-01

    A new scheme of time stepping for solving the dynamic viscoelastic problems are presented. By expanding variables at a discrete time interval, FEM based recurrent formulae are derived. A self-adaptive algorithm for different sizes of time steps can be carried out to improve computing accuracy. Numerical validation shows satisfactory performance.

  2. Viscoelastic-Viscoplastic Modelling of the Scratch Response of PMMA

    Directory of Open Access Journals (Sweden)

    G. Kermouche

    2013-01-01

    Full Text Available This paper aims at understanding how to model the time-dependent behavior of PMMA during a scratch loading at a constant speed and at middle strain levels. A brief experimental study is first presented, consisting of the analysis of microscratches carried out at various scratching velocities and normal loads. The loading conditions have been chosen in such a way that neither (viscoelasticity nor (viscoplasticity of the PMMA may be neglected a priori. The main analyzed parameter is the tip penetration depth measured during the steady state. Then, a finite element model is used to investigate the potential of classical elastic-viscoplastic constitutive models to reproduce these experimental results. It is mainly shown that these models lead to unsatisfying results. More specifically, it is pointed out here that the time-independent Young modulus used in such models is not suitable. To take into account this feature, a viscoelastic-viscoplastic model based on the connection in series of a viscoelastic part with a viscoplastic part is proposed. It is shown that it leads to more acceptable results, which points out the importance of viscoelasticity in the scratch behavior of solid polymers.

  3. Analytic Approximate Solutions for MHD Boundary-Layer Viscoelastic Fluid Flow over Continuously Moving Stretching Surface by Homotopy Analysis Method with Two Auxiliary Parameters

    Directory of Open Access Journals (Sweden)

    M. M. Rashidi

    2012-01-01

    Full Text Available In this study, a steady, incompressible, and laminar-free convective flow of a two-dimensional electrically conducting viscoelastic fluid over a moving stretching surface through a porous medium is considered. The boundary-layer equations are derived by considering Boussinesq and boundary-layer approximations. The nonlinear ordinary differential equations for the momentum and energy equations are obtained and solved analytically by using homotopy analysis method (HAM with two auxiliary parameters for two classes of visco-elastic fluid (Walters’ liquid B and second-grade fluid. It is clear that by the use of second auxiliary parameter, the straight line region in ℏ-curve increases and the convergence accelerates. This research is performed by considering two different boundary conditions: (a prescribed surface temperature (PST and (b prescribed heat flux (PHF. The effect of involved parameters on velocity and temperature is investigated.

  4. Smart Chips for Smart Surroundings - 4S

    NARCIS (Netherlands)

    Schuler, Eberhard; König, Ralf; Becker, Jürgen; Rauwerda, Gerard; Burgwal, van de Marcel; Smit, Gerard J.M.; Cardoso, João M.P.; Hübner, Michael

    2011-01-01

    The overall mission of the 4S project (Smart Chips for Smart Surroundings) was to define and develop efficient flexible, reconfigurable core building blocks, including the supporting tools, for future Ambient System Devices. Reconfigurability offers the needed flexibility and adaptability, it provid

  5. The modified Langevin description for probes in a nonlinear medium

    Science.gov (United States)

    Krüger, Matthias; Maes, Christian

    2017-02-01

    When the motion of a probe strongly disturbs the thermal equilibrium of the solvent or bath, the nonlinear response of the latter must enter the probe’s effective evolution equation. We derive that induced stochastic dynamics using second order response around the bath thermal equilibrium. We discuss the nature of the new term in the evolution equation which is no longer purely dissipative, and the appearance of a novel time-scale for the probe related to changes in the dynamical activity of the bath. A major application for the obtained nonlinear generalized Langevin equation is in the study of colloid motion in a visco-elastic medium.

  6. On the environment surrounding close-in exoplanets

    CERN Document Server

    Vidotto, A A; Jardine, M; Moutou, C; Donati, J -F

    2015-01-01

    Exoplanets in extremely close-in orbits are immersed in a local interplanetary medium (i.e., the stellar wind) much denser than the local conditions encountered around the solar system planets. The environment surrounding these exoplanets also differs in terms of dynamics (slower stellar winds, but higher Keplerian velocities) and ambient magnetic fields (likely higher for host stars more active than the Sun). Here, we quantitatively investigate the nature of the interplanetary media surrounding the hot Jupiters HD46375b, HD73256b, HD102195b, HD130322b, HD179949b. We simulate the three-dimensional winds of their host stars, in which we directly incorporate their observed surface magnetic fields. With that, we derive mass-loss rates (1.9 to 8.0 $\\times 10^{-13} M_{\\odot}$/yr) and the wind properties at the position of the hot-Jupiters' orbits (temperature, velocity, magnetic field intensity and pressure). We show that these exoplanets' orbits are super-magnetosonic, indicating that bow shocks are formed surrou...

  7. On the environment surrounding close-in exoplanets

    Science.gov (United States)

    Vidotto, A. A.; Fares, R.; Jardine, M.; Moutou, C.; Donati, J.-F.

    2015-06-01

    Exoplanets in extremely close-in orbits are immersed in a local interplanetary medium (i.e. the stellar wind) much denser than the local conditions encountered around the Solar system planets. The environment surrounding these exoplanets also differs in terms of dynamics (slower stellar winds, but higher Keplerian velocities) and ambient magnetic fields (likely higher for host stars more active than the Sun). Here, we quantitatively investigate the nature of the interplanetary media surrounding the hot Jupiters HD 46375b, HD 73256b, HD 102195b, HD 130322b and HD 179949b. We simulate the three-dimensional winds of their host stars, in which we directly incorporate their observed surface magnetic fields. With that, we derive mass-loss rates (1.9-8.0 × 10-13 M⊙ yr-1) and the wind properties at the position of the hot Jupiters' orbits (temperature, velocity, magnetic field intensity and pressure). We show that these exoplanets' orbits are supermagnetosonic, indicating that bow shocks are formed surrounding these planets. Assuming planetary magnetic fields similar to Jupiter's, we estimate planetary magnetospheric sizes of 4.1-5.6 planetary radii. We also derive the exoplanetary radio emission released in the dissipation of the stellar wind energy. We find radio fluxes ranging from 0.02 to 0.13 mJy, which are challenging to be observed with present-day technology, but could be detectable with future higher sensitivity arrays (e.g. Square Kilometre Array). Radio emission from systems having closer hot Jupiters, such as from τ Boo b or HD 189733b, or from nearby planetary systems orbiting young stars, are likely to have higher radio fluxes, presenting better prospects for detecting exoplanetary radio emission.

  8. SUPERNOVA REMNANTS: A LINK BETWEEN MASSIVE STARS AND THE SURROUNDING MEDIUM

    Directory of Open Access Journals (Sweden)

    G. Dubner

    2008-01-01

    Full Text Available Las estrellas de gran masa mueren explotando como supernovas (SNs tras sufrir un catastrófico colapso gravitacional. Dicha explosión origina poderosos frentes de choque que modifican irreversiblemente la materia circundante, creando grandes burbujas, comprimiendo nubes circundantes, etc. Este trabajo repasa los mecanismos que conducen al colapso y explosión de las estrellas de alta masa y las posibles conexiones entre la estrella precursora, los mecanismos de explosión y los remanentes de supernovas (RSN. Se discute el desacuerdo existente en nuestra Galaxia entre el n´umero esperado y el observado de RSN y de estrellas de neutrones asociadas.

  9. VizieR Online Data Catalog: Circumgalactic medium surrounding z~2 quasars (Prochaska+, 2014)

    Science.gov (United States)

    Prochaska, J. X.; Lau, M. W.; Hennawi, J. F.

    2017-08-01

    The sample of quasar pairs analyzed here is a subset of the sample studied in QPQ6 (Cantalupo et al. 2014Natur.506...63C) for H I Lyα absorption. Specifically, we have restricted the current study to those pairs where the signal-to-noise ratio (S/N) at H I Lyα exceeds 9.5 per rest-frame Å. This facilitates a more precise evaluation of H I Lyα and generally insures sufficient S/N redward of Lyα for the metal-line analysis. Quasar emission redshifts are taken directly from QPQ6 (Cantalupo et al. 2014Natur.506...63C), following the methodology described in that manuscript. Briefly, we adopt a custom line-centering algorithm to centroid one or more far-UV emission lines and adopt the analysis of Shen et al. (2007, J/AJ/133/2222) to combine these measurements and assess systematic uncertainty in the final value. The median emission redshift of the 427 pairs is zemmedian=2.35 and the median uncertainty in the redshift measurements is ~520 km/s. The impact parameters range from R{perp}=39 kpc to 1 Mpc, with 52 pairs having R{perp}<200 kpc. (3 data files).

  10. The Interstellar Cloud Surrounding the Solar System

    Science.gov (United States)

    Frisch, P. C.

    Ultraviolet spectral data of nearby stars indicate that the cloud surrounding the solar system has an average neutral density n(HI)~0.1 cm-3, temperature ~6800 K, and turbulence ~1.7 km/s. Comparisons between the anomalous cosmic ray data and ultraviolet data suggest that the electron density is in the range n(e-)~0.22 to 0.44 cm-3. This cloud is flowing past the Sun from a position centered in the Norma-Lupis region. The cloud properties are consistent with interstellar gas which originated as material evaporated from the surfaces of embedded clouds in the Scorpius-Centaurus Association, and which was then displaced towards the Sun by a supernova event about 4 Myrs ago. The Sun and surrounding cloud velocities are nearly perpendicular in space, and this cloud is sweeping past the Sun. The morphology of this cloud can be reconstructed by assuming that the cloud moves in a direction parallel to the surface normal. With this assumption, the Sun entered the surrounding cloud 2000 to 8000 years ago, and is now about 0.05 to 0.16 pc from the cloud surface. Prior to its recent entry into the surrounding cloud complex, the Sun was embedded in a region of space with average density lower than 0.0002 cm-3. If a denser cloud velocity component seen towards alpha Cen A,B is real, it will encounter the solar system within 50,000 yr. The nearby magnetic field seen upwind has a spatial orientation that is parallel to the cloud surface. The nearby star Sirius is viewed through the wake of the solar system, but this direction also samples the hypothetical cloud interface. Comparisons of anomalous cosmic ray and interstellar absorption line data suggest that trace elements in the surrounding cloud are in ionization equilibrium. Data towards nearby white dwarfs indicate partial helium ionization, N(N(HI)(/N(HeI)>~13.7, which is consistent with pickup ion data within the solar system if less than 40% hydrogen ionization occurs in the heliopause region. However, the white dwarfs may

  11. Modeling of Shock Propagation and Attenuation in Viscoelastic Components

    Directory of Open Access Journals (Sweden)

    R. Rusovici

    2001-01-01

    Full Text Available Protection from the potentially damaging effects of shock loading is a common design requirement for diverse mechanical structures ranging from shock accelerometers to spacecraft. High damping viscoelastic materials are employed in the design of geometrically complex, impact-absorbent components. Since shock transients are characterized by a broad frequency spectrum, it is imperative to properly model frequency dependence of material behavior over a wide frequency range. The Anelastic Displacement Fields (ADF method is employed herein to model frequency-dependence within a time-domain finite element framework. Axisymmetric, ADF finite elements are developed and then used to model shock propagation and absorption through viscoelastic structures. The model predictions are verified against longitudinal wave propagation experimental data and theory.

  12. Microscopic origin of shear relaxation in a model viscoelastic liquid.

    Science.gov (United States)

    Ashwin, J; Sen, Abhijit

    2015-02-01

    An atomistic description of shear stress relaxation in a viscoelastic liquid is developed from first principles through accurate molecular dynamic simulations in a model Yukawa system. It is shown that the relaxation time τ(M)(ex) of the excess part of the shear stress autocorrelation function provides a correct measure of the relaxation process. Below a certain critical value Γ(c) of the Coulomb coupling strength, the lifetime of local atomic connectivity τ(LC) converges to τ(M)(ex) and is the microscopic origin of the relaxation. At Γ≫Γ(c), i.e., in the potential energy dominated regime, τ(M)(ex)→τ(M) (the Maxwell relaxation time) and can, therefore, fully account for the elastic or "solidlike" behavior. Our results can help provide a better fundamental understanding of viscoelastic behavior in a variety of strongly coupled systems such as dusty plasmas, colloids, and non-Newtonian fluids.

  13. Fitting methods for relaxation modulus of viscoelastic materials

    Institute of Scientific and Technical Information of China (English)

    DUAN Ji-an; YANG Cheng-ling; SHUAI Ci-jun

    2007-01-01

    Based on viscoelastic theory, two new computational methods of solving linear equations and minimum value of the 1-norm were put forward for transforming Kohlrausch-William-Watts (KWW) function of viscoelastic materials to the generalized Maxwell model. The computational methods for the Maxwell model fitting were achieved in MATLAB software. It is found that fitting precision of the two methods is very high. The method of solving linear equations needs more fitting points and more numbers of Maxwell units. It makes the program of finite element analysis complex. While the method of solving minimum value of 1-norm can obtain very high precision only using less fitting points. These methods can fit not only experimental curve of KWW function,but also the experimental data directly.

  14. Thin viscoelastic disc subjected to radial non-stationary loading

    Directory of Open Access Journals (Sweden)

    Adámek V.

    2010-07-01

    Full Text Available The investigation of non-stationary wave phenomena in isotropic viscoelastic solids using analytical approaches is the aim of this paper. Concretely, the problem of a thin homogeneous disc subjected to radial pressure load nonzero on the part of its rim is solved. The external excitation is described by the Heaviside function in time, so the nonstationary state of stress is induced in the disc. Dissipative material behaviour of solid studied is represented by the discrete material model of standard linear viscoelastic solid in the Zener configuration. After the derivation of motion equations final form, the method of integral transforms in combination with the Fourier method is used for finding the problem solution. The solving process results in the derivation of integral transforms of radial and circumferential displacement components. Finally, the type of derived functions singularities and possible methods for their inverse Laplace transform are mentioned.

  15. Wave propagation and energy dissipation in viscoelastic granular media

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In terms of viscoelasticity, the relevant theory of wave in granular media is analyzed in this paper.Under the conditions of slight deformation of granules, wave equation, complex number expressions of propagation vector and attenuation vector, attenuation coefficient expressions of longitudinal wave and transverse wave,etc, are analyzed and deduced. The expressions of attenuation coefficients of viscoelastic longitudinal wave and transverse wave show that the attenuation of wave is related to frequency. The higher the frequency is, the more the attenuation is, which is tested by the laboratory experiment. In addition, the energy dissipation is related to the higher frequency wave that is absorbed by granular media. The friction amongst granular media also increase the energy dissipation. During the flowing situation the expression of transmission factor of energy shows that the granular density difference is the key factor which leads to the attenuation of vibrating energy.This has been proved by the experiment results.

  16. Swimming speeds of filaments in nonlinearly viscoelastic fluids

    CERN Document Server

    Fu, Henry C; Powers, Thomas R; 10.1063/1.3086320

    2010-01-01

    Many microorganisms swim through gels and non-Newtonian fluids in their natural environments. In this paper, we focus on microorganisms which use flagella for propulsion. We address how swimming velocities are affected in nonlinearly viscoelastic fluids by examining the problem of an infinitely long cylinder with arbitrary beating motion in the Oldroyd-B fluid. We solve for the swimming velocity in the limit in which deflections of the cylinder from its straight configuration are small relative to the radius of the cylinder and the wavelength of the deflections; furthermore, the radius of the cylinder is small compared to the wavelength of deflections. We find that swimming velocities are diminished by nonlinear viscoelastic effects. We apply these results to examine what types of swimming motions can produce net translation in a nonlinear fluid, comparing to the Newtonian case, for which Purcell's "scallop" theorem describes how time-reversibility constrains which swimming motions are effective. We find that...

  17. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers

    Science.gov (United States)

    Denissen, Wim; Droesbeke, Martijn; Nicolaÿ, Renaud; Leibler, Ludwik; Winne, Johan M.; Du Prez, Filip E.

    2017-03-01

    Vinylogous urethane based vitrimers are polymer networks that have the intrinsic property to undergo network rearrangements, stress relaxation and viscoelastic flow, mediated by rapid addition/elimination reactions of free chain end amines. Here we show that the covalent exchange kinetics significantly can be influenced by combination with various simple additives. As anticipated, the exchange reactions on network level can be further accelerated using either Brønsted or Lewis acid additives. Remarkably, however, a strong inhibitory effect is observed when a base is added to the polymer matrix. These effects have been mechanistically rationalized, guided by low-molecular weight kinetic model experiments. Thus, vitrimer elastomer materials can be rationally designed to display a wide range of viscoelastic properties.

  18. Viscoelastic and optical properties of four different PDMS polymers

    Science.gov (United States)

    Deguchi, Shinji; Hotta, Junya; Yokoyama, Sho; Matsui, Tsubasa S.

    2015-09-01

    Polydimethylsiloxane (PDMS) is the most commonly used silicone elastomer with a wide range of applications including microfluidics and microcontact printing. Various types of PDMS are currently available, and their bulk material properties have been extensively investigated. However, because the properties are rarely compared in a single study, it is often unclear whether the large disparity of the reported data is attributable to the difference in methodology or to their intrinsic characteristics. Here we report on viscoelastic properties and optical properties of four different PDMS polymers, i.e. Sylgard-184, CY52-276, SIM-360, and KE-1606. Our results show that all the PDMSs are highly elastic rather than viscoelastic at the standard base/curing agent ratios, and their quantified elastic modulus, refractive index, and optical cleanness are similar but distinct in magnitude.

  19. Nonlinear wave breaking in self-gravitating viscoelastic quantum fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Aniruddha, E-mail: anibabun@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Roychoudhury, Rajkumar, E-mail: rajdaju@rediffmail.com [Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700075 (India); Department of Mathematics, Bethune College, Kolkata 700006 (India); Bhar, Radhaballav [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Khan, Manoranjan, E-mail: mkhan.ju@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India)

    2017-02-12

    The stability of a viscoelastic self-gravitating quantum fluid has been studied. Symmetry breaking instability of solitary wave has been observed through ‘viscosity modified Ostrovsky equation’ in weak gravity limit. In presence of strong gravitational field, the solitary wave breaks into shock waves. Response to a Gaussian perturbation, the system produces quasi-periodic short waves, which in terns predicts the existence of gravito-acoustic quasi-periodic short waves in lower solar corona region. Stability analysis of this dynamical system predicts gravity has the most prominent effect on the phase portraits, therefore, on the stability of the system. The non-existence of chaotic solution has also been observed at long wavelength perturbation through index value theorem. - Highlights: • In weak gravitational field, viscoelastic quantum fluid exhibits symmetry breaking instability. • Gaussian perturbation produces quasi-periodic gravito-acoustic waves into the system. • There exists no chaotic state of the system against long wavelength perturbations.

  20. Complex variable element-free Galerkin method for viscoelasticity problems

    Institute of Scientific and Technical Information of China (English)

    Cheng Yu-Min; Li Rong-Xin; Peng Miao-Juan

    2012-01-01

    Based on the complex variable moving least-square (CVMLS) approximation,the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presented in this paper.The Galerkin weak form is employed to obtain the equation system,and the penalty method is used to apply the essential boundary conditions,then the corresponding formulae of the CVEFG method for two-dimensional viscoelasticity problems under the creep condition are obtained. Compared with the element-free Galerkin (EFG) method,with the same node distribution,the CVEFG method has higher precision,and to obtain the similar precision,the CVEFG method has greater computational efficiency. Some numerical examples are given to demonstrate the validity and the efficiency of the method.

  1. A Galerkin least squares approach to viscoelastic flow.

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schunk, Peter Randall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    A Galerkin/least-squares stabilization technique is applied to a discrete Elastic Viscous Stress Splitting formulation of for viscoelastic flow. From this, a possible viscoelastic stabilization method is proposed. This method is tested with the flow of an Oldroyd-B fluid past a rigid cylinder, where it is found to produce inaccurate drag coefficients. Furthermore, it fails for relatively low Weissenberg number indicating it is not suited for use as a general algorithm. In addition, a decoupled approach is used as a way separating the constitutive equation from the rest of the system. A Pressure Poisson equation is used when the velocity and pressure are sought to be decoupled, but this fails to produce a solution when inflow/outflow boundaries are considered. However, a coupled pressure-velocity equation with a decoupled constitutive equation is successful for the flow past a rigid cylinder and seems to be suitable as a general-use algorithm.

  2. Microscopic Origin of Shear Relaxation in a Model Viscoelastic Liquid

    Science.gov (United States)

    Ashwin, J.; Sen, Abhijit

    2015-02-01

    An atomistic description of shear stress relaxation in a viscoelastic liquid is developed from first principles through accurate molecular dynamic simulations in a model Yukawa system. It is shown that the relaxation time τMex of the excess part of the shear stress autocorrelation function provides a correct measure of the relaxation process. Below a certain critical value Γc of the Coulomb coupling strength, the lifetime of local atomic connectivity τLC converges to τMex and is the microscopic origin of the relaxation. At Γ ≫Γc, i.e., in the potential energy dominated regime, τMex→τM (the Maxwell relaxation time) and can, therefore, fully account for the elastic or "solidlike" behavior. Our results can help provide a better fundamental understanding of viscoelastic behavior in a variety of strongly coupled systems such as dusty plasmas, colloids, and non-Newtonian fluids.

  3. Numerical modeling of transient two-dimensional viscoelastic waves

    CERN Document Server

    Lombard, Bruno

    2010-01-01

    This paper deals with the numerical modeling of transient mechanical waves in linear viscoelastic solids. Dissipation mechanisms are described using the Zener model. No time convolutions are required thanks to the introduction of memory variables that satisfy local-in-time differential equations. By appropriately choosing the Zener parameters, it is possible to accurately describe a large range of materials, such as solids with constant quality factors. The evolution equations satisfied by the velocity, the stress, and the memory variables are written in the form of a first-order system of PDEs with a source term. This system is solved by splitting it into two parts: the propagative part is discretized explicitly, using a fourth-order ADER scheme on a Cartesian grid, and the diffusive part is then solved exactly. Jump conditions along the interfaces are discretized by applying an immersed interface method. Numerical experiments of wave propagation in viscoelastic and fluid media show the efficiency of this nu...

  4. Viscoelastic behavior of multiwalled carbon nanotubes into phenolic resin

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Edson Cocchieri; Costa, Michelle Leali; Braga, Carlos Isidoro, E-mail: ebotelho@feg.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil). Dept. de Materiais e Tecnologia; Burkhart, Thomas [Institut fuer Verbundwerkstoffe GmbH, Kaiserslautern, (Germany); Lauke, Bernd [Leibniz-Institut fuer Polymerforschung, Dresden (Germany)

    2013-11-01

    Nanostructured polymer composites have opened up new perspectives for multi-functional materials. In particular, carbon nanotubes (CNTs) have the potential applications in order to improve mechanical and electrical performance in composites with aerospace application. This study focuses on the viscoelastic evaluation of phenolic resin reinforced carbon nanotubes, processed by using two techniques: aqueous-surfactant solution and three roll calender (TRC) process. According to our results a relative small amount of CNTs in a phenolic resin matrix is capable of enhancing the viscoelastic properties significantly and to modify the thermal stability. Also has been observed that when is used TRC process, the incorporation and distribution of CNT into phenolic resin is more effective when compared with aqueous solution dispersion process. (author)

  5. Viscoelastic models with consistent hypoelasticity for fluids undergoing finite deformations

    Science.gov (United States)

    Altmeyer, Guillaume; Rouhaud, Emmanuelle; Panicaud, Benoit; Roos, Arjen; Kerner, Richard; Wang, Mingchuan

    2015-08-01

    Constitutive models of viscoelastic fluids are written with rate-form equations when considering finite deformations. Trying to extend the approach used to model these effects from an infinitesimal deformation to a finite transformation framework, one has to ensure that the tensors and their rates are indifferent with respect to the change of observer and to the superposition with rigid body motions. Frame-indifference problems can be solved with the use of an objective stress transport, but the choice of such an operator is not obvious and the use of certain transports usually leads to physically inconsistent formulation of hypoelasticity. The aim of this paper is to present a consistent formulation of hypoelasticity and to combine it with a viscosity model to construct a consistent viscoelastic model. In particular, the hypoelastic model is reversible.

  6. Viscoelastic analysis of a dental metal-ceramic system

    Science.gov (United States)

    Özüpek, Şebnem; Ünlü, Utku Cemal

    2012-11-01

    Porcelain-fused-to-metal (PFM) restorations used in prosthetic dentistry contain thermal stresses which develop during the cooling phase after firing. These thermal stresses coupled with the stresses produced by mechanical loads may be the dominant reasons for failures in clinical situations. For an accurate calculation of these stresses, viscoelastic behavior of ceramics at high temperatures should not be ignored. In this study, the finite element technique is used to evaluate the effect of viscoelasticity on stress distributions of a three-point flexure test specimen, which is the current international standard, ISO 9693, to characterize the interfacial bond strength of metal-ceramic restorative systems. Results indicate that the probability of interfacial debonding due to normal tensile stress is higher than that due to shear stress. This conclusion suggests modification of ISO 9693 bond strength definition from one in terms of the shear stress only to that accounting for both normal and shear stresses.

  7. NON-LINEAR FORCED VIBRATION OF AXIALLY MOVING VISCOELASTIC BEAMS

    Institute of Scientific and Technical Information of China (English)

    Yang Xiaodong; Chen Li-Qun

    2006-01-01

    The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.

  8. Time-dependent viscoelastic behavior of an LDPE melt

    Institute of Scientific and Technical Information of China (English)

    Shuxin Huang; Chuanjing Lu; Yurun Fan

    2006-01-01

    Two differential constitutive equations,i.e.Giesekus model and Johnson-Segalman model were employed here to predict the time-dependent viscoelastic behavior of an LDPE melt in thixotropy-loop experiments and step shear rate experiment. Multiple relaxation modes were adopted, and the parameters used to describe the nonlinear viscoelasticity in the two models were obtained by fitting the shear-thinning viscosity. The predictions on those transient shear characteristics by the two models are found in qualitative agreement with our previous experiments. Johnson-Segalman model predicts oscillation behavior in the thixotropy-loop and step shear rate experiments, whereas Giesekus model does not. Both models predict higher shear stresses than the experimental data in the case of long time shearing, implying that both models are not able to completely characterize the time-dependent shear stress of the-melt at high shear rate.

  9. Dynamics of multilayered orthotropic viscoelastic plates of Maxwell solids

    Directory of Open Access Journals (Sweden)

    P. Pal Roy

    1988-01-01

    Full Text Available This paper is concerned with a simplified dynamical analysis of orthotropic viscoelastic plates that are made up of an arbitrary number of layers each of which is a Maxwell type solid. This study includes the case where some or all the layers are themselves constituted by thinly laminated materials with couple stresses. The recurrence equations for the shear stresses are obtained for an arbitrary number of layers and then applied to plates with two or three layers. The viscoelastic damping effect is determined by the process of linearization and then illustrated by a plate composed of one, two or three layers. It is found that the damping increases with anisotropy and wave number. These results are shown by graphical representations.

  10. Interface displacement for transient pulses in viscoelastic media

    Energy Technology Data Exchange (ETDEWEB)

    Pound, M.J.

    1985-01-01

    The authors investigate the problem of the displacement of the interface between two linear viscoelastic media under the influence of a transient incident pulse. An exact solution is given for the case when the incident signal is a Dirac delta-function, while asymptotic expressions are developed for a more complicated case. It is shown that the interface displacement may differ greatly in form from the incident signal. 11 references, 6 figures.

  11. Dynamic viscoelastic properties of polyvinyl chloride with physical aging

    Science.gov (United States)

    Tian, Fang; Luo, Yingshe; Yin, Shuiping; Wang, Hong; Cao, Chun

    2015-11-01

    The experimental research of dynamic viscoelastic properties of polyvinyl chloride was conducted by the dynamic mechanical analysis method in this paper. And the fitting equation of dynamic modulus of polymers has been presented. Based on the time-aging time equivalent principle, horizontal shift factor and vertical shift factor of aging time are carried out, which proposes a novel method for the research on time-aging time equivalent analysis of dynamic mechanical properties of polymers during physical aging.

  12. A Comparison of Viscoelastic Properties of Three Root Canal Sealers

    Directory of Open Access Journals (Sweden)

    Malihe Pishvaei

    2013-01-01

    Full Text Available Objective: Handling of endodontic sealers is greatly dependent on their elasticity and flow ability. We compared the viscoelastic properties of three root canal sealers.Materials and Methods: AH Plus (Dentsply, De Trey, Konstanz, Germany, Endofill (Dentsply Hero, Petrópolis, Rio de Janeiro, Brazil and AH26 (Dentsply, De Trey, Konstanz, Germany were mixed according to the manufacturers' instructions. The resulted pastes were placed on the plate of a rheometer (MCR 300, Anton-Paar, Graz, Austria. The experiments were performed at 25˚C and 37˚C. Viscoelastic properties of the sealers including loss modulus (G", storage modulus (G´ and complex viscosity (η* were studied using dynamic oscillatory shear tests. The shear module versus frequency (from 0.01 to 100 S-1 curves were gained using frequency deformation sweep test. Three samples of each material were examined at each temperature. The mean of these three measurements were recorded.Results: The storage modulus of AH plus was higher than its loss modulus at two temperatures. Endofill exhibited a crossover region in which the storage modulus crosses the loss modulus in both temperatures. At 25ºC the loss modulus of AH26 was higher than the storage modulus (G">G¢. In contrast, at 37ºC G¢was greater than G² (G¢>G². Both shear modules of AH Plus and Endofill decreased as the temperature raised from 25ºC to 37ºC. On the contrary, the loss modulus and storage modulus of AH26 increased at 37ºC.Conclusion: In both test temperatures, AH Plus behaved like viscoelastic solids and Endofill exhibited a gel-like viscoelastic behavior. AH26 at 25ºC behaved like liquids, while at 37ºC it was an elastic solid-like material

  13. Viscoelasticity of Axisymmetric Composite Structures: Analysis and Experimental Validation

    Science.gov (United States)

    2013-02-01

    are currently used for lightweight pressure vessels and highly efficient rotors for energy storage . For both applications, pre-stresses are built in...analysis can be applied to composite pressure vessels, gun barrels, and flywheels . 15. SUBJECT TERMS viscoelasticity, creep, composite, gun barrel... flywheel 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 28 19a. NAME OF RESPONSIBLE PERSON Jerome T

  14. Preparation of bacterial cellulose based hydrogels and their viscoelastic behavior

    OpenAIRE

    2015-01-01

    Bacterial cellulose (BC) based hydrogels have been prepared in blended with carboxymethylcellulose and polyvinyl pyrrolidone by using heat treatment. The properties of BC-CMC and BC-PVP hydrogels were compared with pure BC, CMC and PVP hydrogels. These hydrogels were investigated by measuring their structural, morphological and viscoelastic properties. Through the morphological images, alignment of the porous flake like structures could be seen clearly within the inter-polymeric network of th...

  15. The flow of a viscoelastic fluid in a spherical pendulum

    Science.gov (United States)

    Nikolakis, D.

    Stationary drift in a spherical cavity filled with viscoelastic fluid and in constant pendular motion suspended from a hinged rod is investigated analytically. The derivation of the governing equations is outlined, and numerical results from parametric studies are presented in graphs and streamline diagrams. It is shown that a reversal can occur in the stationary drift near the meridian plane due to the 'competition' between normal stress and inertia.

  16. Flow of Viscoelastic Polymer Solutions through Filter Screens

    Science.gov (United States)

    Machač, Ivan; Surý, Alexander; Šiška, Bedřich

    2011-07-01

    In this contribution, the measurements are presented of the pressure drop in the creeping flow of viscoelastic solution of polyacrylamides through metal wire screens, differing in wire diameter, aperture dimension, and type of weaving. In this flow, a strong elastic pressure drop excess manifest itself. Analysing the extensive set of experimental data, it was verified that for engineering estimation of the pressure drop excess, a simple form of the corrective Deborah number function can be used.

  17. The effect of gait on swimming in viscoelastic fluids

    CERN Document Server

    Elfring, Gwynn J

    2015-01-01

    In this paper, we give formulas for the swimming of simplified two-dimensional bodies in complex fluids using the reciprocal theorem. By way of these formulas we calculate the swimming velocity due to small-amplitude deformations on the simplest of these bodies, a two-dimensional sheet, to explore general conditions on the swimming gait under which the sheet may move faster, or slower, in a viscoelastic fluid compared to a Newtonian fluid.

  18. Observation of viscoelasticity in boron nitride nanosheet aerogel.

    Science.gov (United States)

    Zeng, Xiaoliang; Ye, Lei; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-07-14

    The viscoelasticity of boron nitride nanosheet (BNNS) aerogel has been observed and investigated. It is found that the BNNS aerogel has a high damping ratio (0.2), while it exhibits lightweight and negligible temperature dependence below 180 °C. The creep behavior of the BNNS aerogel markedly demonstrates its strain dependence on stress magnitude and temperature, and can be well simulated by the classical models.

  19. Nonexistence of self-similar singularities in ideal viscoelastic flows

    Directory of Open Access Journals (Sweden)

    Anthony Suen

    2012-06-01

    Full Text Available We prove the nonexistence of finite time self-similar singularities in an ideal viscoelastic flow in R^3. We exclude the occurrence of Leray-type self-similar singularities under suitable integrability conditions on velocity and deformation tensor. We also prove the nonexistence of asymptotically self-similar singularities in our system. The present work extends the results obtained by Chae in the case of magnetohydrodynamics (MHD.

  20. Time-dependent, non-Newtonian behavior of viscoelastic materials

    Science.gov (United States)

    Jachimiak, P. D.; Song, Y. S.; Brodkey, R. S.

    1974-01-01

    A kinetic model for characterizing the shear stress or shear strain rate of thixotropic materials is developed and combined with Oldroyd's viscoelastic model (1953) modified in this paper in order to predict the first normal stress difference. In order to test the method, transient and steady state data have been obtained with a Weissenberg rheogoniometer used to measure the constant stress and constant shear rate of a solution of polymethyl methacrylate in diethylphthalate. A computer was used to facilitate data acquisition.

  1. Investigation of mechanisms of viscoelastic behavior of collagen molecule.

    Science.gov (United States)

    Ghodsi, Hossein; Darvish, Kurosh

    2015-11-01

    Unique mechanical properties of collagen molecule make it one of the most important and abundant proteins in animals. Many tissues such as connective tissues rely on these properties to function properly. In the past decade, molecular dynamics (MD) simulations have been used extensively to study the mechanical behavior of molecules. For collagen, MD simulations were primarily used to determine its elastic properties. In this study, constant force steered MD simulations were used to perform creep tests on collagen molecule segments. The mechanical behavior of the segments, with lengths of approximately 20 (1X), 38 (2X), 74 (4X), and 290 nm (16X), was characterized using a quasi-linear model to describe the observed viscoelastic responses. To investigate the mechanisms of the viscoelastic behavior, hydrogen bonds (H-bonds) rupture/formation time history of the segments were analyzed and it was shown that the formation growth rate of H-bonds in the system is correlated with the creep growth rate of the segment (β=2.41βH). In addition, a linear relationship between H-bonds formation growth rate and the length of the segment was quantified. Based on these findings, a general viscoelastic model was developed and verified here, using the smallest segment as a building block, the viscoelastic properties of larger segments could be predicted. In addition, the effect of temperature control methods on the mechanical properties were studied, and it was shown that application of Langevin Dynamics had adverse effect on these properties while the Lowe-Anderson method was shown to be more appropriate for this application. This study provides information that is essential for multi-scale modeling of collagen fibrils using a bottom-up approach.

  2. The interstellar cloud surrounding the Sun -- a new perspective

    CERN Document Server

    Gry, Cecile

    2014-01-01

    Aims: We offer a new, simpler picture of the local interstellar medium around the Sun (LISM) made of a single continuous cloud enveloping the Sun. This new outlook enables the description of a diffuse cloud from within and brings to light some unexpected properties. Methods: We re-examine the kinematics and abundances of the local interstellar medium, as revealed by the published results for the ultraviolet absorption lines of MgII, FeII and HI. Results: In contrast to previous representations, our new picture of the LISM consists of a single, monolithic cloud that surrounds the Sun in all directions and accounts for most of the matter present in the first 50 parsecs around the Sun. The cloud fills the space around us out to about 9 pc in most directions, although its boundary is very irregular with possibly a few extensions up to 20 pc. The cloud does not behave like a rigid body: gas within the cloud is being differentially decelerated in the direction of motion, and the cloud is expanding in directions per...

  3. Persistent Confusion and Controversy Surrounding Gene Patents

    Science.gov (United States)

    Guerrini, Christi J.; Majumder, Mary A.; McGuire, Amy L.

    2016-01-01

    There is persistent confusion and controversy surrounding basic issues of patent law relevant to the genomics industry. Uncertainty and conflict can lead to the adoption of inefficient practices and exposure to liability. The development of patent-specific educational resources for industry members, as well as the prompt resolution of patentability rules unsettled by recent U.S. Supreme Court decisions, are therefore urgently needed. PMID:26849516

  4. A viscoelastic orthotropic Timoshenko beam subjected to general transverse loading

    Directory of Open Access Journals (Sweden)

    Adámek V.

    2008-12-01

    Full Text Available The investigation of lateral vibrations of a simply supported thin beam is the aim of this work. The analytical solution of the problem is derived based on the approximate Timoshenko beam theory for a general continuous loading acting on the upper beam face over the whole beam width and perpendicular to the beam axis. The material of the beam studied is assumed linear orthotropic viscoelastic. The generalized standard viscoelastic solid is chosen for representing of viscoelastic beam behaviour. Final system of partial integro-differential equations is solved by the standard method of integral transforms and resulting relations describing beam deflection, slope of the beam and corresponding stress and strain components are presented. Moreover, the derivation of final functions of beam deflection and slope of the beam for a specific impulse loading is presented and analytical results are compared with results obtained using numerical simulation in 2D (FEM. This confrontation shows very good agreement between results obtained. Furthermore, it was shown that the measure of agreement depends not only on the beam geometry.

  5. Nonlinear viscoelasticity and generalized failure criterion for biopolymer gels

    Science.gov (United States)

    Divoux, Thibaut; Keshavarz, Bavand; Manneville, Sébastien; McKinley, Gareth

    2016-11-01

    Biopolymer gels display a multiscale microstructure that is responsible for their solid-like properties. Upon external deformation, these soft viscoelastic solids exhibit a generic nonlinear mechanical response characterized by pronounced stress- or strain-stiffening prior to irreversible damage and failure, most often through macroscopic fractures. Here we show on a model acid-induced protein gel that the nonlinear viscoelastic properties of the gel can be described in terms of a 'damping function' which predicts the gel mechanical response quantitatively up to the onset of macroscopic failure. Using a nonlinear integral constitutive equation built upon the experimentally-measured damping function in conjunction with power-law linear viscoelastic response, we derive the form of the stress growth in the gel following the start up of steady shear. We also couple the shear stress response with Bailey's durability criteria for brittle solids in order to predict the critical values of the stress σc and strain γc for failure of the gel, and how they scale with the applied shear rate. This provides a generalized failure criterion for biopolymer gels in a range of different deformation histories. This work was funded by the MIT-France seed fund and by the CNRS PICS-USA scheme (#36939). BK acknowledges financial support from Axalta Coating Systems.

  6. Near critical swirling flow of a viscoelastic fluid

    Science.gov (United States)

    Ly, Nguyen; Rusak, Zvi; Tichy, John; Wang, Shixiao

    2016-11-01

    The interaction between flow inertia and elasticity in high Re, axisymmetric, and near-critical swirling flows of a viscoelastic fluid in a finite-length straight circular pipe is studied. The viscous stresses are described by the Giesekus constitutive model. The application of this model to columnar streamwise vortices is first investigated. Then, a nonlinear small-disturbance analysis is developed from the governing equations of motion. It explores the complicated interactions between flow inertia, swirl, and fluid viscosity and elasticity. An effective Re that links between steady states of swirling flows of a viscoelastic fluid and those of a Newtonian fluid is revealed. The effects of the fluid viscosity, relaxation time, retardation time and mobility parameter on the flow development and on the critical swirl for the appearance of vortex breakdown are explored. Decreasing the ratio of the viscoelastic characteristic times from one increases the critical swirl for breakdown. Increasing the Weissenberg number from zero or increasing the fluid mobility parameter from zero cause a similar effect. Results may explain changes in the appearance of breakdown zones as a function of swirl level that were observed in Stokes et al. (2001) experiments, where Boger fluids were used.

  7. Floquet stability analysis of viscoelastic flow over a cylinder

    KAUST Repository

    Richter, David

    2011-06-01

    A Floquet linear stability analysis has been performed on a viscoelastic cylinder wake. The FENE-P model is used to represent the non-Newtonian fluid, and the analysis is done using a modified version of an existing nonlinear code to compute the linearized initial value problem governing the growth of small perturbations in the wake. By measuring instability growth rates over a wide range of disturbance spanwise wavenumbers α, the effects of viscoelasticity were identified and compared directly to Newtonian results.At a Reynolds number of 300, two unstable bands exist over the range 0. ≤ α≤ 10 for Newtonian flow. For the low α band, associated with the "mode A" wake instability, a monotonic reduction in growth rates is found for increasing polymer extensibility L. For the high α band, associated with the "mode B" instability, first a rise, then a significant decrease to a stable state is found for the instability growth rates as L is increased from L= 10 to L= 30. The mechanism behind this stabilization of both mode A and mode B instabilities is due to the change of the base flow, rather than a direct effect of viscoelasticity on the perturbation. © 2011 Elsevier B.V.

  8. Modelling of Rough Contact between Linear Viscoelastic Materials

    Directory of Open Access Journals (Sweden)

    Sergiu Spinu

    2017-01-01

    Full Text Available The important gradients of stress arising in rough mechanical contacts due to interaction at the asperity level are responsible for damage mechanisms like rolling contact fatigue, wear, or crack propagation. The deterministic approach to this process requires computationally effective numerical solutions, capable of handling very fine meshes that capture the particular features of the investigated contacting surface. The spatial discretization needs to be supported by temporal sampling of the simulation window when time-dependent viscoelastic constitutive laws are considered in the description of the material response. Moreover, when real surface microtopography is considered, steep slopes inevitably lead to localized plastic deformation at the tip of the asperities that are first brought into contact. A computer model for the rough contact of linear viscoelastic materials, capable of handling deterministic contact geometry, complex viscoelastic models, and arbitrary loading histories, is advanced in this paper. Plasticity is considered in a simplified manner that preserves the information regarding the contact area and the pressure distribution without computing the residual strains and stresses. The model is expected to predict the contact behavior of deterministic rough surfaces as resulting from practical engineering applications, thus assisting the design of durable machine elements using elastomers or rubbers.

  9. Advances in the analysis and prediction of turbulent viscoelastic flows

    Science.gov (United States)

    Gatski, T. B.; Thais, L.; Mompean, G.

    2014-08-01

    It has been well-known for over six decades that the addition of minute amounts of long polymer chains to organic solvents, or water, can lead to significant turbulent drag reduction. This discovery has had many practical applications such as in pipeline fluid transport, oil well operations, vehicle design and submersible vehicle projectiles, and more recently arteriosclerosis treatment. However, it has only been the last twenty-five years that the full utilization of direct numerical simulation of such turbulent viscoelastic flows has been achieved. The unique characteristics of viscoelastic fluid flow are dictated by the nonlinear differential relationship between the flow strain rate field and the extra-stress induced by the additive polymer. A primary motivation for the analysis of these turbulent fluid flows is the understanding of the effect on the dynamic transfer of energy in the turbulent flow due to the presence of the extra-stress field induced by the presence of the viscoelastic polymer chain. Such analyses now utilize direct numerical simulation data of fully developed channel flow for the FENE-P (Finite Extendable Nonlinear Elastic - Peterlin) fluid model. Such multi-scale dynamics suggests an analysis of the transfer of energy between the various component motions that include the turbulent kinetic energy, and the mean polymeric and elastic potential energies. It is shown that the primary effect of the interaction between the turbulent and polymeric fields is to transfer energy from the turbulence to the polymer.

  10. Effects of viscoelastic ophthalmic solutions on cell cultures

    Directory of Open Access Journals (Sweden)

    Madhavan Hajib

    1998-01-01

    Full Text Available The development of mild but significant inflammation probably attributable to viscoelastic ophthalmic solutions in cataract surgery was recently brought to the notice of the authors, and hence a study of the effects of these solutions available in India, on cell cultures was undertaken. We studied the effects of 6 viscoelastic ophthalmic solutions (2 sodium hyaluronate designated as A and B, and 4 hydroxypropylmethylcellulose designated as C, D, E and F on HeLa, Vero and BHK-21 cell lines in tissue culture microtitre plates using undiluted, 1:10 and 1:100 dilutions of the solutions, and in cover slip cultures using undiluted solutions. Phase contrast microscopic examination of the solutions was also done to determine the presence of floating particles. The products D and F produced cytotoxic changes in HeLa cell line and these products also showed the presence of floating particles under phase contrast microscopy. Other products did not have any adverse effects on the cell lines nor did they show floating particles. The viscoelastic ophthalmic pharmaceutical products designated D and F have cytotoxic effects on HeLa cell line which appears to be a useful cell line for testing these products for their toxicity. The presence of particulate materials in products D and F indicates that the methods used for purification of the solution are not effective.

  11. Electrostatic streaming instability modes in complex viscoelastic quantum plasmas

    Science.gov (United States)

    Karmakar, P. K.; Goutam, H. P.

    2016-11-01

    A generalized quantum hydrodynamic model is procedurally developed to investigate the electrostatic streaming instability modes in viscoelastic quantum electron-ion-dust plasma. Compositionally, inertialess electrons are anticipated to be degenerate quantum particles owing to their large de Broglie wavelengths. In contrast, inertial ions and dust particulates are treated in the same classical framework of linear viscoelastic fluids (non-Newtonian). It considers a dimensionality-dependent Bohmian quantum correction prefactor, γ = [(D - 2)/3D], in electron quantum dynamics, with D symbolizing the problem dimensionality. Applying a regular Fourier-formulaic plane-wave analysis around the quasi-neutral hydrodynamic equilibrium, two distinct instabilities are explored to exist. They stem in ion-streaming (relative to electrons and dust) and dust-streaming (relative to electrons and ions). Their stability is numerically illustrated in judicious parametric windows in both the hydrodynamic and kinetic regimes. The non-trivial influential roles by the relative streams, viscoelasticities, and correction prefactor are analyzed. It is seen that γ acts as a stabilizer for the ion-stream case only. The findings alongside new entailments, as special cases of realistic interest, corroborate well with the earlier predictions in plasma situations. Applicability of the analysis relevant in cosmic and astronomical environments of compact dwarf stars is concisely indicated.

  12. Micro-Macro Simulation of Viscoelastic Fluids in Three Dimensions

    Science.gov (United States)

    Rüttgers, Alexander; Griebel, Michael

    2012-11-01

    The development of the chemical industry resulted in various complex fluids that cannot be correctly described by classical fluid mechanics. For instance, this includes paint, engine oils with polymeric additives and toothpaste. We currently perform multiscale viscoelastic flow simulations for which we have coupled our three-dimensional Navier-Stokes solver NaSt3dGPF with the stochastic Brownian configuration field method on the micro-scale. In this method, we represent a viscoelastic fluid as a dumbbell system immersed in a three-dimensional Newtonian liquid which leads to a six-dimensional problem in space. The approach requires large computational resources and therefore depends on an efficient parallelisation strategy. Our flow solver is parallelised with a domain decomposition approach using MPI. It shows excellent scale-up results for up to 128 processors. In this talk, we present simulation results for viscoelastic fluids in square-square contractions due to their relevance for many engineering applications such as extrusion. Another aspect of the talk is the parallel implementation in NaSt3dGPF and the parallel scale-up and speed-up behaviour.

  13. Flutter suppression of plates using passive constrained viscoelastic layers

    Science.gov (United States)

    Cunha-Filho, A. G.; de Lima, A. M. G.; Donadon, M. V.; Leão, L. S.

    2016-10-01

    Flutter in aeronautical panels is a self-excited aeroelastic phenomenon which occurs during supersonic flights due to dynamic instability of inertia, elastic and aerodynamic forces of the system. In the flutter condition, when the critical aerodynamic pressure is reached, the vibration amplitudes of the panel become dynamically unstable and increase exponentially with time, significantly affecting the fatigue life of the existing aeronautical components. Thus, in this paper, the interest is to investigate the possibility reducing the effects of the supersonic aeroelastic instability of rectangular plates by applying passive constrained viscoelastic layers. The rationale for such study is the fact that as the addition of viscoelastic materials provides decreased vibration amplitudes it becomes important to quantify the suppression of plate flutter coalescence modes that can be obtained. Moreover, despite the fact that much research on the suppression of panel flutter has been carried out by using passive, semi-active and active control techniques, few works have been proposed to deal with the problem of predicting the flutter boundary of aeroviscoelastic systems, since they must conveniently account for the frequency- and temperature-dependent behavior of the viscoelastic material. After the presentation of the theoretical foundations of the methodology, the description of a numerical study on the flutter analysis of a three-layer sandwich plate is addressed.

  14. GENERALIZED VARIATIONAL PRINCIPLES OF THE VISCOELASTIC BODY WITH VOIDS AND THEIR APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    盛东发; 程昌钧; 扶名福

    2004-01-01

    From the Boltzmann's constitutive law of viscoelastic materials and the linear theory of elastic materials with voids, a constitutive model of generalized force fields for viscoelastic solids with voids was given. By using the variational integral method, the convolution-type functional was given and the corresponding generalized variational principles and potential energy principle of viscoelastic solids with voids were presented. It can be shown that the variational principles correspond to the differential equations and the initial and boundary conditions of viscoelastic body with voids. As an application, a generalized variational principle of viscoelastic Timoshenko beams with damage was obtained which corresponds to the differential equations of generalized motion and the initial and boundary conditions of beams. The variational principles provide a way for solving problems of viscoelastic solids with voids.

  15. A THREE-DIMENSIONAL SOLUTION FOR LAMINATED ORTHOTROPIC RECTANGULAR PLATES WITH VISCOELASTIC INTERFACES

    Institute of Scientific and Technical Information of China (English)

    Yan Wei; Ying Ji; Chen Weiqiu

    2006-01-01

    When a body consists completely or even partly of viscoelastic materials, its response under static loading will be time-dependent. The adhesives used to glue together single plies in laminates usually exhibit a certain viscoelastic characteristic in a high temperature environment. In this paper, a laminated orthotropic rectangular plate with viscoelastic interfaces,described by the Kelvin-Voigt model, is considered. A power series expansion technique is adopted to approximate the time-variation of various field quantities. Results indicate that the response of the laminated plate with viscoelastic interfaces changes remarkably with time, and is much different from that of a plate with spring-like or viscous interfaces.

  16. PLANE SURFACE SUDDENLY SET IN MOTION IN A VISCOELASTIC FLUID WITH FRACTIONAL MAXWELL MODEL

    Institute of Scientific and Technical Information of China (English)

    谭文长; 徐明瑜

    2002-01-01

    The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced. The flow near a wall suddenly set in motion is studied for a non-Newtonian viscoelastic fluid with the fractional Maxwell model. Exact solutions of velocity and stress are obtained by using the discrete inverse Laplace transform of the sequential fractional derivatives. It is found that the effect of the fractional orders in the constitutive relationship on the flow field is significant. The results show that for small times there are appreciable viscoelastic effects on the shear stress at the plate, for large times the viscoelastic effects become weak.

  17. Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model

    Science.gov (United States)

    Wenchang, Tan; Mingyu, Xu

    2002-08-01

    The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced. The flow near a wall suddenly set in motion is studied for a non-Newtonian viscoelastic fluid with the fractional Maxwell model. Exact solutions of velocity and stress are obtained by using the discrete inverse Laplace transform of the sequential fractional derivatives. It is found that the effect of the fractional orders in the constitutive relationship on the flow field is significant. The results show that for small times there are appreciable viscoelastic effects on the shear stress at the plate, for large times the viscoelastic effects become weak.

  18. QUASI-STATIC AND DYNAMICAL ANALYSIS FOR VISCOELASTIC TIMOSHENKO BEAM WITH FRACTIONAL DERIVATIVE CONSTITUTIVE RELATION

    Institute of Scientific and Technical Information of China (English)

    朱正佑; 李根国; 程昌钧

    2002-01-01

    The equations of motion governing the quasi-static and dynamical behavior of a viscoelastic Timoshenko beam are derived. The viscoelastic material is assumed to obey a three-dimensional fractional derivative constitutive relation. The quasi-static behavior of the viscoelastic Timoshenko beam under step loading is analyzed and the analytical solution is obtained. The influence of material parameters on the deflection is investigated. The dynamical response of the viscoelastic Timoshenko beam subjected to a periodic excitation is studied by means of mode shape functions. And the effect of both transverse shear and rotational inertia on the vibration of the beam is discussed.

  19. Nonlinear vibration of viscoelastic embedded-DWCNTs integrated with piezoelectric layers-conveying viscous fluid considering surface effects

    Science.gov (United States)

    Fereidoon, A.; Andalib, E.; Mirafzal, A.

    2016-07-01

    This article studies the nonlinear vibration of viscoelastic embedded nano-sandwich structures containing of a double walled carbon nanotube (DWCNT) integrated with two piezoelectric Zinc oxide (ZnO) layers. DWCNT and ZnO layers are subjected to magnetic and electric fields, respectively. This system is conveying viscous fluid and the related force is calculated by modified Navier-Stokes relation considering slip boundary condition and Knudsen number. Visco-Pasternak model with three parameters of the Winkler modulus, shear modulus, and damp coefficient is used for simulation of viscoelastic medium. The nano-structure is simulated as an orthotropic Timoshenko beam (TB) and the effects of small scale, structural damping and surface stress are considered based on Eringen's, Kelvin-voigt and Gurtin-Murdoch theories. Energy method and Hamilton's principle are employed to derive motion equations which are then solved using differential quadrature method (DQM). The detailed parametric study is conducted, focusing on the combined effects of small scale effect, fluid velocity, thickness of piezoelectric layer, boundary condition, surface effects, van der Waals (vdW) force on the frequency and critical velocity of nano-structure. Results indicate that the frequency and critical velocity increases with assume of surface effects.

  20. Deep postseismic viscoelastic relaxation excited by an intraslab normal fault earthquake in the Chile subduction zone

    Science.gov (United States)

    Bie, Lidong; Ryder, Isabelle; Métois, Marianne

    2017-08-01

    The 2005 Mw 7.8 Tarapaca earthquake was the result of normal faulting on a west-dipping plane at a depth of 90 km within the subducting slab down-dip of the North Chilean gap that partially ruptured in the 2014 M 8.2 Iquique earthquake. We use Envisat observations of nearly four years of postseismic deformation following the earthquake, together with some survey GPS measurements, to investigate the viscoelastic relaxation response of the surrounding upper mantle to the coseismic stress. We constrain the rheological structure by testing various 3D models, taking into account the vertical and lateral heterogeneities in viscosity that one would expect in a subduction zone environment. A viscosity of 4-8 × 1018 Pa s for the continental mantle asthenosphere fits both InSAR line-of-sight (LOS) and GPS horizontal displacements reasonably well. In order to test whether the Tarapaca earthquake and associated postseismic relaxation could have triggered the 2014 Iquique sequence, we computed the Coulomb stress change induced by the co- and postseismic deformation following the Tarapaca earthquake on the megathrust interface and nodal planes of its M 6.7 foreshock. These static stress calculations show that the Tarapaca earthquake may have an indirect influence on the Iquique earthquake, via loading of the M 6.7 preshock positively. We demonstrate the feasibility of using deep intraslab earthquakes to constrain subduction zone rheology. Continuing geodetic observation following the 2014 Iquique earthquake may further validate the rheological parameters obtained here.

  1. Finite-Element Modeling of Viscoelastic Cells During High-Frequency Cyclic Strain

    Directory of Open Access Journals (Sweden)

    David W. Holdsworth

    2012-03-01

    Full Text Available Mechanotransduction refers to the mechanisms by which cells sense and respond to local loads and forces. The process of mechanotransduction plays an important role both in maintaining tissue viability and in remodeling to repair damage; moreover, it may be involved in the initiation and progression of diseases such as osteoarthritis and osteoporosis. An understanding of the mechanisms by which cells respond to surrounding tissue matrices or artificial biomaterials is crucial in regenerative medicine and in influencing cellular differentiation. Recent studies have shown that some cells may be most sensitive to low-amplitude, high-frequency (i.e., 1–100 Hz mechanical stimulation. Advances in finite-element modeling have made it possible to simulate high-frequency mechanical loading of cells. We have developed a viscoelastic finite-element model of an osteoblastic cell (including cytoskeletal actin stress fibers, attached to an elastomeric membrane undergoing cyclic isotropic radial strain with a peak value of 1,000 µstrain. The results indicate that cells experience significant stress and strain amplification when undergoing high-frequency strain, with peak values of cytoplasmic strain five times higher at 45 Hz than at 1 Hz, and peak Von Mises stress in the nucleus increased by a factor of two. Focal stress and strain amplification in cells undergoing high-frequency mechanical stimulation may play an important role in mechanotransduction.

  2. Finite-element modeling of viscoelastic cells during high-frequency cyclic strain.

    Science.gov (United States)

    Milner, Jaques S; Grol, Matthew W; Beaucage, Kim L; Dixon, S Jeffrey; Holdsworth, David W

    2012-03-22

    Mechanotransduction refers to the mechanisms by which cells sense and respond to local loads and forces. The process of mechanotransduction plays an important role both in maintaining tissue viability and in remodeling to repair damage; moreover, it may be involved in the initiation and progression of diseases such as osteoarthritis and osteoporosis. An understanding of the mechanisms by which cells respond to surrounding tissue matrices or artificial biomaterials is crucial in regenerative medicine and in influencing cellular differentiation. Recent studies have shown that some cells may be most sensitive to low-amplitude, high-frequency (i.e., 1-100 Hz) mechanical stimulation. Advances in finite-element modeling have made it possible to simulate high-frequency mechanical loading of cells. We have developed a viscoelastic finite-element model of an osteoblastic cell (including cytoskeletal actin stress fibers), attached to an elastomeric membrane undergoing cyclic isotropic radial strain with a peak value of 1,000 µstrain. The results indicate that cells experience significant stress and strain amplification when undergoing high-frequency strain, with peak values of cytoplasmic strain five times higher at 45 Hz than at 1 Hz, and peak Von Mises stress in the nucleus increased by a factor of two. Focal stress and strain amplification in cells undergoing high-frequency mechanical stimulation may play an important role in mechanotransduction.

  3. Magnetism and rotation effect on surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order

    Energy Technology Data Exchange (ETDEWEB)

    Abo-Dahab, S. M. [Taif University, Taif (Saudi Arabia); Abd-Alla, A. M. [SVU, Qena (Egypt); Khan, Aftab [Sohag University, Sohag (Egypt)

    2015-08-15

    The aim of this paper is to study the propagation of surface waves in a rotating fibre-reinforced viscoelastic media of higher order under the influence of magnetic field. The general surface wave speeds derived to study the effects of rotation and magnetic field on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed and dispersion relation for the waves has been deduced. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreement to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is observed that in a rotating medium the surface waves are dispersive. Also magnetic effects play a significant roll. It is observed that Love wave remain unaffected in a rotating medium but remain under the influence of magnetic field. Rayleigh waves are affected by rotation and magnetic field whereas Stoneley waves are independent of Maxwell stresses. It is also observed that, surface waves cannot propagate in a fast rotating medium or in the presence of magnetic field of high intensity. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation and magnetic field are very pronounced.

  4. Explaining preferences for home surroundings and locations

    DEFF Research Database (Denmark)

    Andersen, Hans Skifter

    2011-01-01

    : avoiding social nuisances, preferring social homogeneity and living close to one’s social network and place of origin. The study shows that most people have many detailed preferences, whereas some have very few. This confirms an earlier theory that some people are very connected to certain places...... with given characteristics and thus do not have priorities regarding home surroundings and locations. For others, mostly young people and singles, home is just a place to sleep and relax, whereas life is lived elsewhere. For this group, there are only preferences for location and there are few specific...

  5. Heat and Mass Transfer on MHD Flow of a Viscoelastic Fluid through Porous Media over a Shrinking Sheet.

    Science.gov (United States)

    Bhukta, D; Dash, G C; Mishra, S R

    2014-01-01

    An attempt has been made to study the heat and mass transfer effect in a boundary layer flow through porous medium of an electrically conducting viscoelastic fluid over a shrinking sheet subject to transverse magnetic field in the presence of heat source. Effects of radiation, viscous dissipation, and uniform heat sink on the heat transfer have been considered. The method of solution involves similarity transformation. The coupled nonlinear partial differential equations representing momentum, concentration, and nonhomogenous heat equation are reduced into a set of nonlinear ordinary differential equations. The transformed equations are solved by applying Kummer's function. The exact solution of temperature field is obtained for power-law surface temperature (PST) as well as power-law heat flux (PHF) boundary condition. The interaction of magnetic field is proved to be counterproductive in enhancing velocity and concentration distribution, whereas presence of porous matrix reduces the temperature field at all points.

  6. Analysis of viscoelasticity of POF gratings in the stress sensing

    Science.gov (United States)

    Luo, Yanhua; Wang, Xin; Yan, Binbin; Wang, Tongxin; Wu, Wenxuan; Peng, Gang-Ding; Zhang, Qijin

    2013-11-01

    The time-dependent behavior of polymer optical fiber (POF) grating under constant tensile stresses has been studied. We show that the evident time-dependence is due to the viscoelastic nature of POF grating materials that can be described with the Kelvin Model. Based on the Kelvin Model, the time-dependent relationship between the Bragg wavelength shift and stress has been analyzed in detail. The results show that the viscoelasticity has a great impact upon the stress response of POF gratings. With the increment of stress level, the visco response part increases faster than that of elastic response part. Especially, the response and recovery with and without stress can be fitted with dual exponential decay and the time constant of fast response and relaxation is ˜102 s and that of the slow is ˜103 s, which corresponds to the fast and slow movements of polymer segments, respectively. Experiments and regressions also show that the stress sensitivity is observed to be 369 pm/MPa for the immediate response and 598 pm/MPa for response balance, showing high stress sensitivity. All the spring stiffness and dashpot viscosity of Kelvin elements are larger than 1010 Pa and 1013 Pa s. The dashpot viscosity of slow Kelvin element (1014 Pa s) is around one order larger than that of fast Kelvin element (1013 Pa s) with stress. Further analysis demonstrate the response and recovery of POF gratings with and without the stress displays an evident non-linear viscoelasticity, which will bring more complexity for POF gratings in the mechanical sensing applications.

  7. Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites

    Science.gov (United States)

    Li, Ying; Liu, Zeliang; Jia, Zheng; Liu, Wing Kam; Aldousari, Saad M.; Hedia, Hassan S.; Asiri, Saeed A.

    2016-10-01

    Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material

  8. Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites

    Science.gov (United States)

    Li, Ying; Liu, Zeliang; Jia, Zheng; Liu, Wing Kam; Aldousari, Saad M.; Hedia, Hassan S.; Asiri, Saeed A.

    2017-02-01

    Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material

  9. Brain viscoelasticity alteration in chronic-progressive multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Kaspar-Josche Streitberger

    Full Text Available INTRODUCTION: Viscoelastic properties indicate structural alterations in biological tissues at multiple scales with high sensitivity. Magnetic Resonance Elastography (MRE is a novel technique that directly visualizes and quantitatively measures biomechanical tissue properties in vivo. MRE recently revealed that early relapsing-remitting multiple sclerosis (MS is associated with a global decrease of the cerebral mechanical integrity. This study addresses MRE and MR volumetry in chronic-progressive disease courses of MS. METHODS: We determined viscoelastic parameters of the brain parenchyma in 23 MS patients with primary or secondary chronic progressive disease course in comparison to 38 age- and gender-matched healthy individuals by multifrequency MRE, and correlated the results with clinical data, T2 lesion load and brain volume. Two viscoelastic parameters, the shear elasticity μ and the powerlaw exponent α, were deduced according to the springpot model and compared to literature values of relapsing-remitting MS. RESULTS: In chronic-progressive MS patients, μ and α were reduced by 20.5% and 6.1%, respectively, compared to healthy controls. MR volumetry yielded a weaker correlation: Total brain volume loss in MS patients was in the range of 7.5% and 1.7% considering the brain parenchymal fraction. All findings were significant (P<0.001. CONCLUSIONS: Chronic-progressive MS disease courses show a pronounced reduction of the cerebral shear elasticity compared to early relapsing-remitting disease. The powerlaw exponent α decreased only in the chronic-progressive stage of MS, suggesting an alteration in the geometry of the cerebral mechanical network due to chronic neuroinflammation.

  10. Effects of particle size and surrounding media on optical radiation efficiencies of spherical plasmonic metal nanoparticles

    Indian Academy of Sciences (India)

    Vinayak A Dhumale; Preeti V Shah; Rishi B Sharma; Katsuaki Tanabe

    2012-04-01

    The optical radiation efficiency (), the ratio of scattering cross-section to extinction cross-section, of spherical metal nanoparticles (M= Al, Ag, Au and Cu) surrounded by glass and water was calculated using classical electrostatics. The effect of varying particle diameter (∼100 nm) on was also studied for free space wavelengths in the range of 400–1200 nm. The variations in the value of with the diameter () of the metal nanoparticles were calculated on the basis of quasi-static approximation. The increases with the size of metal nanoparticles. Corresponding to a metal nanoparticle, was found to exhibit a sharp dip (dip) at a characteristic wavelength ()M in a particular medium ( = air, glass and water). ()M was independent of particle size. The (medium)M was found to be slightly blue shifted for all metal nanoparticles surrounded by glass or water with respect to those in the air.

  11. Viscoelastic machine elements elastomers and lubricants in machine systems

    CERN Document Server

    MOORE, D F

    2015-01-01

    Viscoelastic Machine Elements, which encompass elastomeric elements (rubber-like components), fluidic elements (lubricating squeeze films) and their combinations, are used for absorbing vibration, reducing friction and improving energy use. Examplesinclude pneumatic tyres, oil and lip seals, compliant bearings and races, and thin films. This book sets out to show that these elements can be incorporated in machine analysis, just as in the case of conventional elements (e.g. gears, cogs, chaindrives, bearings). This is achieved by introducing elementary theory and models, by describing new an

  12. Linear propagation of pulsatile waves in viscoelastic tubes.

    Science.gov (United States)

    Horsten, J B; Van Steenhoven, A A; Van Dongen, M E

    1989-01-01

    An experimental and theoretical analysis is made of pulsatile wave propagation in deformable latex tubes as a model of the propagation of pressure pulses in arteries. A quasi one-dimensional linear model is used in which, in particular, attention is paid to the viscous phenomena in fluid and tube wall. The agreement between experimental and theoretical results is satisfactory. It appeared that the viscoelastic behaviour of the tube wall dominates the damping of the pressure pulse. Several linear models are used to describe the wall behaviour. No significant differences between the results of these models were found.

  13. Shear viscoelastic properties of liquids and their boundary layers.

    Science.gov (United States)

    Badmaev, Badma B; Dembelova, Tuyana S; Damdinov, Bair B

    2003-07-01

    An acoustical resonance method with piezoquartz vibrator was used in the experimental determination of shear elasticity modulus and a tangent of mechanical loss angle of studied liquids and their boundary layers. It has been shown that liquid has an earlier unknown low frequency (approx. 100 kHz) viscoelastic relaxation process. The experimental results of investigation of low frequency shear elasticity of different class of liquids and their solutions have been presented. An experimental research of shear properties in dependence on shear deformation rate has been carried out. The possibility of the discovery of anomalous high viscosity of liquids has also been considered.

  14. Semigroup theory and numerical approximation for equations in linear viscoelasticity

    Science.gov (United States)

    Fabiano, R. H.; Ito, K.

    1990-01-01

    A class of abstract integrodifferential equations used to model linear viscoelastic beams is investigated analytically, applying a Hilbert-space approach. The basic equation is rewritten as a Cauchy problem, and its well-posedness is demonstrated. Finite-dimensional subspaces of the state space and an estimate of the state operator are obtained; approximation schemes for the equations are constructed; and the convergence is proved using the Trotter-Kato theorem of linear semigroup theory. The actual convergence behavior of different approximations is demonstrated in numerical computations, and the results are presented in tables.

  15. Solid particle erosion and viscoelastic properties of thermoplastic polyurethanes

    Directory of Open Access Journals (Sweden)

    G. Arena

    2015-03-01

    Full Text Available The wear resistance of several thermoplastic polyurethanes (TPUs having different chemical nature and micronscale arrangement of the hard and soft segments has been investigated by means of erosion and abrasion tests. The goal was correlating the erosion performances of the materials to their macroscopic mechanical properties. Unlike conventional tests, such as hardness and tensile measurements, viscoelastic analysis proved to be a valuable tool to study the erosion resistance of TPUs. In particular, a strict correlation was found between the erosion rate and the high-frequency (~107 Hz loss modulus. The latter reflects the actual ability of TPU to dissipate the impact energy of the erodent particles.

  16. Free Propagation of Wave in Viscoelastic Cables with Small Curvature

    Institute of Scientific and Technical Information of China (English)

    邹宗兰

    2003-01-01

    The coupled longitudinal-transverse waves propagating freely along a viscoelastic cable was studied. The frequency-spectrum equation governing propagating waves and the formulations of the phase velocities and the group velocities characterizing propagating waves were derived. The effects of viscosity parameters on the phase velocities and the group velocities were investigated with numerical simulation. The analyses show that viscosity has a strong influence on the phase velocity and the group velocity of propagating waves and attenuation waves for longitudinal-dominant waves, but the phase velocities of propagating waves of transverse-dominant waves do not change with viscosity.

  17. Influence of fluoride-detergent combinations on the visco-elasticity of adsorbed salivary protein films

    NARCIS (Netherlands)

    Veeregowda, Deepak H.; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant K.

    The visco-elasticity of salivary-protein films is related to mouthfeel, lubrication, biofilm formation, and protection against erosion and is influenced by the adsorption of toothpaste components. The thickness and the visco-elasticity of hydrated films (determined using a quartz crystal

  18. Characterizing the Microenvironment Surrounding Phosphorylated Protein Sites

    Institute of Scientific and Technical Information of China (English)

    Shi-Cai Fan; Xue-Gong Zhang

    2005-01-01

    Protein phosphorylation plays an important role in various cellular processes. Due to its high complexity, the mechanism needs to be further studied. In the last few years, many methods have been contributed to this field, but almost all of them investigated the mechanism based on protein sequences around protein sites. In this study, we implement an exploration by characterizing the microenvironment surrounding phosphorylated protein sites with a modified shell model, and obtain some significant properties by the rank-sum test, such as the lack of some classes of residues, atoms, and secondary structures. Furthermore, we find that the depletion of some properties affects protein phosphorylation remarkably. Our results suggest that it is a meaningful direction to explore the mechanism of protein phosphorylation from microenvironment and we expect further findings along with the increasing size of phosphorylation and protein structure data.

  19. Opportunity's Surroundings After Sol 1820 Drive

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,820th to 1,822nd Martian days, or sols, of Opportunity's surface mission (March 7 to 9, 2009). South is at the center; north at both ends. The rover had driven 20.6 meters toward the northwest on Sol 1820 before beginning to take the frames in this view. Tracks from that drive recede southwestward. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and small exposures of lighter-toned bedrock. This view is presented as a cylindrical projection with geometric seam correction.

  20. Exploiting Surrounding Text for Retrieving Web Images

    Directory of Open Access Journals (Sweden)

    S. A. Noah

    2008-01-01

    Full Text Available Web documents contain useful textual information that can be exploited for describing images. Research had been focused on representing images by means of its content (low level description such as color, shape and texture, little research had been directed to exploiting such textual information. The aim of this research was to systematically exploit the textual content of HTML documents for automatically indexing and ranking of images embedded in web documents. A heuristic approach for locating and assigning weight surrounding web images and a modified tf.idf weighting scheme was proposed. Precision-recall measures of evaluation had been conducted for ten queries and promising results had been achieved. The proposed approach showed slightly better precision measure as compared to a popular search engine with an average of 0.63 and 0.55 relative precision measures respectively.

  1. The interstellar cloud surrounding the Sun: a new perspective

    Science.gov (United States)

    Gry, Cécile; Jenkins, Edward B.

    2014-07-01

    Aims: We offer a new, simpler picture of the local interstellar medium, made of a single continuous cloud enveloping the Sun. This new outlook enables the description of a diffuse cloud from within and brings to light some unexpected properties. Methods: We re-examine the kinematics and abundances of the local interstellar gas, as revealed by the published results for the ultraviolet absorption lines of Mg II, Fe II, and H I. Results: In contrast to previous representations, our new picture of the local interstellar medium consists of a single, monolithic cloud that surrounds the Sun in all directions and accounts for most of the matter present in the first 50 parsecs around the Sun. The cloud fills the space around us out to about 9 pc in most directions, although its boundary is very irregular with possibly a few extensions up to 20 pc. The cloud does not behave like a rigid body: gas within the cloud is being differentially decelerated in the direction of motion, and the cloud is expanding in directions perpendicular to this flow, much like a squashed balloon. Average H I volume densities inside the cloud vary between 0.03 and 0.1 cm-3 over different directions. Metals appear to be significantly depleted onto grains, and there is a steady increase in depletion from the rear of the cloud to the apex of motion. There is no evidence that changes in the ionizing radiation influence the apparent abundances. Secondary absorption components are detected in 60% of the sight lines. Almost all of them appear to be interior to the volume occupied by the main cloud. Half of the sight lines exhibit a secondary component moving at about -7.2 km s-1 with respect to the main component, which may be the signature of a shock propagating toward the cloud's interior.

  2. Influence of molecular motors on the motion of particles in viscoelastic media.

    Science.gov (United States)

    Bouzat, Sebastián

    2014-06-01

    We study theoretically and by numerical simulations the motion of particles driven by molecular motors in a viscoelastic medium representing the cell cytoplasm. For this, we consider a generalized Langevin equation coupled to a stochastic stepping dynamics for the motors that takes into account the action of each motor separately. In the absence of motors, the model produces subdiffusive motion of particles characterized by a power-law scaling of the mean square displacement versus the lag time as t^{α}, with 0motors can induce a transition to a superdiffusive regime at large lag times with the characteristics of those found in experiments reported in the literature. We also show that at small lag times, the motors can act as static crosslinkers that slow down the natural subdiffusive transport. An analysis of previously reported experimental data in the relevant time scales provides evidence of this phenomenon. Finally, we study the effect of a harmonic potential representing an optical trap, and we show a way to approach to a macroscopic description of the active transport in cells. This last point stresses the relevance of the molecular motors for generating not only directed motion to specific targets, but also fast diffusivelike random motion.

  3. Effects of multiwall carbon nanotubes on viscoelastic properties of magnetorheological elastomers

    Science.gov (United States)

    Aziz, Siti Aishah Abdul; Amri Mazlan, Saiful; Intan Nik Ismail, Nik; Ubaidillah, U.; Choi, Seung-Bok; Khairi, Muntaz Hana Ahmad; Azhani Yunus, Nurul

    2016-07-01

    The effect of different types of multiwall carbon nanotubes (MWCNTs) on the morphological, magnetic and viscoelastic properties of magnetorheological elastomers (MREs) are studied in this work. A series of natural rubber MRE are prepared by adding MWCNTs as a new additive in MRE. Effects of functionalized MWCNT namely carboxylated MWCNT (COOH-MWCNT) and hydroxylated MWCNT (OH-MWCNT) on the rheological properties of MREs are investigated and the pristine MWCNTs is referred as a control. Epoxidised palm oil (EPO) is used as a medium to disperse carbonyl iron particle (CIP) and sonicate the MWCNTs. Morphological and magnetic properties of MREs are characterized by field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM), respectively. Rheological properties under different magnetic field are evaluated by using parallel plate rheometer. From the results obtained, FESEM images indicate that COOH-MWCNT and CIP have better compatibility which leads to the formation of interconnected network in the matrix. In addition, by adding functionalized COOH-MWCNT, it is shown that the saturation magnetization is 5% higher than the pristine MWCNTs. It is also found that with the addition of COOH-MWCNT, the magnetic properties are improved parallel with enhancement of MR effect particularly at low strain amplitude. It is finally shown that the use of EPO also can contribute to the enhancement of MR performance.

  4. Hydrodynamic interactions between two equally sized spheres in viscoelastic fluids in shear flow.

    Science.gov (United States)

    Snijkers, Frank; Pasquino, Rossana; Vermant, Jan

    2013-05-14

    The effect of using a viscoelastic suspending medium on the in-plane hydrodynamic interaction between two equally sized spheres in shear flow is studied experimentally to understand flow-induced assembly behavior (i.e., string formation). A counterrotating device equipped with a Couette geometry is used together with quantitative videomicroscopy. To evaluate the effects of differences in rheological properties of the suspending media, fluids have been selected that highlight specific constitutive features. These include a reference Newtonian fluid (N), a constant-viscosity, high-elasticity Boger fluid (BF), a wormlike micellar surfactant solution with a single dominant relaxation time (WMS), and a broad spectrum shear-thinning elastic polymer solution (ST). As expected, the trajectories are symmetric in the Newtonian fluid. In the BF, the midpoints of the spheres are observed to remain in the same plane before and after the interaction, as in the Newtonian fluid, although the path lines are in this case no longer symmetric. Interactions in the ST and WMS are highly asymmetric. Two fundamentally different kinds of path lines are observed in the WMS and ST: reversing and open trajectories. The type of trajectory depends on the initial configuration of the spheres with respect to each other and on the shear rate. On the basis of the obtained results, shear-thinning of the viscosity seems to be the key rheological parameter that determines the overall nature of the interactions, rather than the relative magnitude of the normal stress differences.

  5. Forced-Vibration Analysis of a Coupled System of SLGSs by Visco- Pasternak Medium Subjected to a Moving Nano-particle

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour-Arani

    2013-06-01

    Full Text Available In this study, forced-vibration analysis of a coupled system of single layered graphene sheets (SLGSs subjected to the moving nano-particle is carried out based on nonlocal elasticity theory of orthotropic plate. Two SLGSs are coupled with elastic medium which is simulated by Pasternak and Visco-Pasternak models. Using Hamilton’s principle, governing differential equations of motion are derived and solved analytically. The effects of small scale, aspect ratio, velocity of nano-particle, time parameter, mechanical properties of graphene sheets, Visco-elastic medium on the maximum dynamic responses of each SLGSs are studied. Results indicate that, if the medium (elastic or visco-elastic medium of coupled system becomes more rigid, the maximum dynamic displacements of both SLGSs will be closer together.

  6. Effects of Surrounding Information and Line Length on Text Comprehension from the Web

    Directory of Open Access Journals (Sweden)

    Jess McMullin

    2002-02-01

    Full Text Available The World Wide Web (Web is becoming a popular medium for transmission of information and online learning. We need to understand how people comprehend information from the Web to design Web sites that maximize the acquisition of information. We examined two features of Web page design that are easily modified by developers, namely line length and the amount of surrounding information, or whitespace. Undergraduate university student participants read text and answered comprehension questions on the Web. Comprehension was affected by whitespace; participants had better comprehension for information surrounded by whitespace than for information surrounded by meaningless information. Participants were not affected by line length. These findings demonstrate that reading from the Web is not the same as reading print and have implications for instructional Web design.

  7. Resonance scattering of canonical elastic shells in absorbing fluid medium

    Institute of Scientific and Technical Information of China (English)

    ZHUO Linkai; FAN Jun; TANG Weilin

    2008-01-01

    Resonance scattering of elastic spherical shell and cylindrical shell while the sur-rounding fluid medium has absorption is studied. The normal mode solution derived using exact elastic theory and the separation of variables is still applicable. However, the scattering form function has to be modified for the absorbing medium, otherwise the unreasonable resul twould be obtained. The backscattering form function in the absorbing medium is redefined, and the form function of elastic spherical and cylindrical shell with vacuum or solid matter filled is calculated in various absorption conditions. The results show that the absorption of surround-ing fluid leads to notable attenuation of the coincidence resonances in the mid-frequency, but it has a little in fluence on the low-frequency resonance scattering induced by the filler inside the shell.

  8. Seismic Behavior of Posttensioned Concrete Bridge Piers with External Viscoelastic Dampers

    Directory of Open Access Journals (Sweden)

    Anxin Guo

    2016-01-01

    Full Text Available This paper investigates the seismic performance of posttensioned concrete piers with external viscoelastic dampers to improve the energy dissipation capacity of this type of structure. An installation scheme for viscoelastic dampers on bridge piers is proposed, and the mechanical models of the damper are analyzed according to the installation scheme. By attaching the viscoelastic dampers to the posttensioned bridge piers, the analytical model of the hybrid system is established using the OpenSees finite element analysis package. Cyclic behavior and time history analyses are conducted on a posttensioned bridge with and without viscoelastic dampers using the established finite element model. The analysis results indicate that the viscoelastic dampers can effectively improve the seismic performance of the bridge structures with posttensioned piers.

  9. Vibration Analysis of Cylindrical Sandwich Aluminum Shell with Viscoelastic Damping Treatment

    Directory of Open Access Journals (Sweden)

    Tai-Hong Cheng

    2013-01-01

    Full Text Available This paper has applied the constrained viscoelastic layer damping treatments to a cylindrical aluminum shell using layerwise displacement theory. The transverse shear, the normal strains, and the curved geometry are exactly taken into account in the present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The damped natural frequencies, modal loss factors, and frequency response functions of cylindrical viscoelastic aluminum shells are compared with those of the base thick aluminum panel without a viscoelastic layer. The thickness and damping ratio of the viscoelastic damping layer, the curvature of proposed cylindrical aluminum structure, and placement of damping layer of the aluminum panel were investigated using frequency response function. The presented results show that the sandwiched viscoelastic damping layer can effectively suppress vibration of cylindrical aluminum structure.

  10. Time-resolved photoacoustic measurement for evaluation of viscoelastic properties of biological tissues

    Science.gov (United States)

    Zhao, Yue; Chen, Conggui; Liu, Hongwei; Yang, Sihua; Xing, Da

    2016-11-01

    In this letter, we proposed a method for viscoelastic characterization of biological tissues based on time-resolved photoacoustic measurement. The theoretical and experimental study was performed on the influence of viscoelasticity effects on photoacoustic generation. Taking the time delay between the photoacoustic signal and the exciting laser, the viscoelasticity distribution of biological tissues can be mapped. To validate our method, gelatin phantoms with different densities were measured. We also applied this method in discrimination between fat and liver to confirm the usefulness of the viscoelastic evaluation. Furthermore, pilot experiments were performed on atherosclerosis artery from an apolipoprotein E-knockout mouse to show the viscoelastic characterization of atherosclerotic plaque. Our results demonstrate that this technique has the potential for visualizing the biomechanical properties and lesions of biological tissues.

  11. Generalization of the ordinary state-based peridynamic model for isotropic linear viscoelasticity

    Science.gov (United States)

    Delorme, Rolland; Tabiai, Ilyass; Laberge Lebel, Louis; Lévesque, Martin

    2017-02-01

    This paper presents a generalization of the original ordinary state-based peridynamic model for isotropic linear viscoelasticity. The viscoelastic material response is represented using the thermodynamically acceptable Prony series approach. It can feature as many Prony terms as required and accounts for viscoelastic spherical and deviatoric components. The model was derived from an equivalence between peridynamic viscoelastic parameters and those appearing in classical continuum mechanics, by equating the free energy densities expressed in both frameworks. The model was simplified to a uni-dimensional expression and implemented to simulate a creep-recovery test. This implementation was finally validated by comparing peridynamic predictions to those predicted from classical continuum mechanics. An exact correspondence between peridynamics and the classical continuum approach was shown when the peridynamic horizon becomes small, meaning peridynamics tends toward classical continuum mechanics. This work provides a clear and direct means to researchers dealing with viscoelastic phenomena to tackle their problem within the peridynamic framework.

  12. Charmonium propagation through a dense medium

    Directory of Open Access Journals (Sweden)

    Kopeliovich B.Z.

    2015-01-01

    Full Text Available Attenuation of a colourless c̄c dipole propagating with a large momentum through a hot medium originates from two sources, Debye screening (melting, and inelastic collisions with surrounding scattering centres (absorption. The former never terminates completely production of a bound charmonium in heavy ion collisions, even at very high temperatures. The latter, is controlled my the magnitude of the dipole cross section, related to the transport coefficient, which is the rate of transverse momentum broadening in the medium. A novel procedure of Lorentz boosting of the Schrödinger equation is developed, which allows to calculate the charmonium survival probability employing the path-integral technique, incorporating both melting and absorption. A novel mechanism of charmonium regeneration in a dense medium is proposed.

  13. Viscoelasticity, Postseismic Slip, Fault Interactions, and the Recurrence of Large Earthquakes

    Science.gov (United States)

    Michael, A. J.

    2003-12-01

    Since Reid formulated the elastic rebound hypothesis, our view of earthquake occurrence has been based on the idea of uniform loading leading to recurrent failures. This view was reinforced by the discovery of plate tectonics but, recently, many studies have demonstrated the existence of transient, high deformation rates after large earthquakes due to either viscoelastic processes or post-seismic slip. Viscoelastic response of the lower crust and upper mantle to large earthquakes results in temporarily higher deformation rates in the region surrounding the mainshock. These higher deformation rates will result in faster than average reloading of strain energy onto the mainshock fault. If post-seismic slip is a planar downward extension of the mainshock, then the post-seismic slip will increase the stress stored on the mainshock fault plane. Again, this will result in faster than average loading of strain energy onto the mainshock fault plane for some time immediately following the mainshock. Thus, the loading of strain energy onto seismogenic faults is not temporally uniform and, in this study, I consider the effects of transient deformation on the estimation of earthquake probabilities by modifying the Brownian Passage Time (BPT) model of earthquake recurrence. The BPT inter-event time distribution is derived from a process where a state variable starts at 0, evolves by a superposition of a linear trend and Gaussian white noise until reaching a value of 1 when failure occurs and state is reset to 0. For earthquake recurrence the linear trend represents the uniform deformation due to plate motions and the noise represents fault interactions and other unknown perturbations to the process. To approximate the effects of viscoelasticity and post-seismic slip; I add a decaying exponential term to the BPT model's uniform loading term. The resulting inter-event time distributions remain approximately lognormal but the balance between the level of "noise"and the coefficient

  14. Hadrons in medium

    Indian Academy of Sciences (India)

    U Mosel

    2006-04-01

    In these lectures I first give the motivation for investigations of in-medium properties of hadrons. I discuss the relevant symmetries of QCD and how they might affect the observed hadron properties. I then discuss at length the observable consequences of in-medium changes of hadronic properties in reactions with elementary probes, and in particular photons, on nuclei. Here I put an emphasis on new experiments on changes of the - and -mesons in medium.

  15. Preparation of bacterial cellulose based hydrogels and their viscoelastic behavior

    Science.gov (United States)

    Shah, Rushita; Vyroubal, Radek; Fei, Haojei; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2015-04-01

    Bacterial cellulose (BC) based hydrogels have been prepared in blended with carboxymethylcellulose and polyvinyl pyrrolidone by using heat treatment. The properties of BC-CMC and BC-PVP hydrogels were compared with pure BC, CMC and PVP hydrogels. These hydrogels were investigated by measuring their structural, morphological and viscoelastic properties. Through the morphological images, alignment of the porous flake like structures could be seen clearly within the inter-polymeric network of the hydrogels. Also, the detail structure analysis of the polymers blended during the hydrogel formation confirms their interactions with each other were studied. Further, the viscoelastic behavior of all the hydrogels in terms of elastic and viscous property was studied. It is observed that at 1% strain, including CMC and PVP hydrogels, all the BC based hydrogels exhibited the linear trend throughout. Also the elastic nature of the material remains high compared to viscous nature. Moreover, the changes could be noticed in case of blended polymer based hydrogels. The values of complex viscosity (η*) decreases with increase in angular frequency within the range of ω = 0.1-100 rad.s-1.

  16. Fractional characteristic times and dissipated energy in fractional linear viscoelasticity

    Science.gov (United States)

    Colinas-Armijo, Natalia; Di Paola, Mario; Pinnola, Francesco P.

    2016-08-01

    In fractional viscoelasticity the stress-strain relation is a differential equation with non-integer operators (derivative or integral). Such constitutive law is able to describe the mechanical behavior of several materials, but when fractional operators appear, the elastic and the viscous contribution are inseparable and the characteristic times (relaxation and retardation time) cannot be defined. This paper aims to provide an approach to separate the elastic and the viscous phase in the fractional stress-strain relation with the aid of an equivalent classical model (Kelvin-Voigt or Maxwell). For such equivalent model the parameters are selected by an optimization procedure. Once the parameters of the equivalent model are defined, characteristic times of fractional viscoelasticity are readily defined as ratio between viscosity and stiffness. In the numerical applications, three kinds of different excitations are considered, that is, harmonic, periodic, and pseudo-stochastic. It is shown that, for any periodic excitation, the equivalent models have some important features: (i) the dissipated energy per cycle at steady-state coincides with the Staverman-Schwarzl formulation of the fractional model, (ii) the elastic and the viscous coefficients of the equivalent model are strictly related to the storage and the loss modulus, respectively.

  17. Modeling magnetosensitive ion channels in viscoelastic environment of living cells

    CERN Document Server

    Goychuk, Igor

    2015-01-01

    We propose and study a model of hypothetical magnetosensitive ionic channels which are long thought to be a possible candidate to explain the influence of weak magnetic fields on living organisms ranging from magnetotactic bacteria to fishes, birds, rats, bats and other mammals including humans. The core of the model is provided by a short chain of magnetosomes serving as a sensor which is coupled by elastic linkers to the gating elements of ion channels forming a small cluster in the cell membrane. The magnetic sensor is fixed by one end on cytoskeleton elements attached to the membrane and is exposed to viscoelastic cytosol. Its free end can reorient stochastically and subdiffusively in viscoelastic cytosol responding to external magnetic field changes and open the gates of coupled ion channels. The sensor dynamics is generally bistable due to bistability of the gates which can be in two states with probabilities which depend on the sensor orientation. For realistic parameters, it is shown that this model c...

  18. Vibrational shear flow of anisotropic viscoelastic fluid with small amplitudes

    Institute of Scientific and Technical Information of China (English)

    韩式方

    2008-01-01

    Using the constitutive equation of co-rotational derivative type for anisotropic viscoelastic fluid-liquid crystalline(LC),polymer liquids was developed.Two relaxation times are introduced in the equation:λn represents relaxation of the normal-symmetric stress components;λs represents relaxation of the shear-unsymmetric stress components.A vibrational rotating flow in gap between cylinders with small amplitudes is studied for the anisotropic viscoelastic fluid-liquid crystalline polymer.The time-dependent constitutive equation are linearized with respect to parameter of small amplitude.For the normal-symmetric part of stress tensor analytical expression of the shear stress is obtained by the constitutive equation.The complex viscosity,complex shear modulus,dynamic and imaginary viscosities,storage modulus and loss modulus are obtained for the normal-symmetric stress case which are defined by the common shear rate.For the shear-unsymmetric stress part,two shear stresses are obtained thus two complex viscosities and two complex shear modulus(i.e.first and second one) are given by the constitutive equation which are defined by rotating shear rate introduced by author.The dynamic and imaginary viscosities,storage modulus and loss modulus are given for each complex viscosities and complex shear modulus.Using the constituive equation the rotating flow with small amplitudes in gap between two coaxial cylinders is studied.

  19. Probing Viscoelasticity of Cholesteric Liquid Crystals in a Twisting Cell

    Science.gov (United States)

    Angelo, Joseph; Moheghi, Alireza; Diorio, Nick; Jakli, Antal

    2013-03-01

    Viscoelastic properties of liquid crystals are typically studied either using Poiseuille flow, which can be produced by a pressure gradient in a capillary tube,[2] or Couette flow, which can be generated by a shear between concentric cylinders.[3] We use a different method in which we twist the liquid crystal sandwiched between two cylindrical glass plates, one of which can rotate about its center, the other of which is fixed. When the cell is twisted, there is a force proportional to the twist angle and the twist elastic constant, and inversely proportional to the pitch and sample thickness, normal to the substrates due to the change in pitch in the cholesteric liquid crystal (CLC). Measuring this force on various CLCs with known pitch we could obtain the twist elastic constants. In addition to the equilibrium force, we observed a transient force during the rotation, which is related to the flow of the material, thus allowing us to determine the Leslie viscosity component α1, which typically cannot be assessed by other methods. We expect this apparatus to be a useful tool to study the visco-elastic properties of liquid crystals. The authors acknowledge support from NSF grant DMR-0907055.

  20. Particle migration in two-phase, viscoelastic flows

    Science.gov (United States)

    Jaensson, Nick; Hulsen, Martien; Anderson, Patrick

    2014-11-01

    Particles suspended in creeping, viscoelastic flows can migrate across stream lines due to gradients in normal stresses. This phenomenon has been investigated both numerically and experimentally. However, particle migration in the presence of fluid-fluid interfaces is hardly studied. We present results of simulations in 2D and 3D of rigid spherical particles in two-phase flows, where either one or both of the fluids are viscoelastic. The fluid-fluid interface is assumed to be diffuse and is described using Cahn-Hilliard theory. The particle boundary is assumed to be sharp and is described by a boundary-fitted, moving mesh. The governing equations are solved using the finite element method. We show that differences in normal stresses between the two fluids can induce a migration of the particle towards the interface in a shear flow. Depending on the magnitude of the surface tension and the properties of the fluids, particle migration can be halted due to the induced Laplace pressure, the particle can be adsorbed at the interface, or the particle can cross the interface into the other fluid. Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.

  1. Formation of porous crystals via viscoelastic phase separation

    Science.gov (United States)

    Tsurusawa, Hideyo; Russo, John; Leocmach, Mathieu; Tanaka, Hajime

    2017-10-01

    Viscoelastic phase separation of colloidal suspensions can be interrupted to form gels either by glass transition or by crystallization. With a new confocal microscopy protocol, we follow the entire kinetics of phase separation, from homogeneous phase to different arrested states. For the first time in experiments, our results unveil a novel crystallization pathway to sponge-like porous crystal structures. In the early stages, we show that nucleation requires a structural reorganization of the liquid phase, called stress-driven ageing. Once nucleation starts, we observe that crystallization follows three different routes: direct crystallization of the liquid phase, the Bergeron process, and Ostwald ripening. Nucleation starts inside the reorganized network, but crystals grow past it by direct condensation of the gas phase on their surface, driving liquid evaporation, and producing a network structure different from the original phase separation pattern. We argue that similar crystal-gel states can be formed in monatomic and molecular systems if the liquid phase is slow enough to induce viscoelastic phase separation, but fast enough to prevent immediate vitrification. This provides a novel pathway to form nanoporous crystals of metals and semiconductors without dealloying, which may be important for catalytic, optical, sensing, and filtration applications.

  2. Measurement of the linear viscoelastic behavior of antimisting kerosene

    Science.gov (United States)

    Ferry, J. D.

    1983-01-01

    Measurements of dynamic viscoelastic properties in very small oscillating shear deformations was made on solutions of a jet fuel, Jet A, containing an antimisting polymeric additive, FM-9. A few measurements were also made on solutions of FM-9 in a mixed solvent of mineral oil, Tetralin, and 0-terphenyl. Two samples of FM-9 had approximate number-average molecular weights of 12,000,000 and 8,100,000 as deduced from analysis of the measurements. The ranges of variables were 2.42 to 4.03 g/1 in concentration (0.3 to 0.5% by weight), 1 to 35 in temperature, 1.3 to 9.4 cp in solvent viscosity, and 103 to 6100 Hz in frequency. Measurements in the Jet A solvent were made both with and without a modifying carrier. The results were compared with the Zimm theory and the viscoelastic behavior was found to resemble rather closely that of ordinary non-polar polymers in theta solvents. The relation of the results to the antithixotropic behavior of such solutions a high shear rates is discussed in terms of intramolecular and intermolecular interactions.

  3. Thermo-Mechanical Compatibility of Viscoelastic Mortars for Stone Repair

    Directory of Open Access Journals (Sweden)

    Thibault Demoulin

    2016-01-01

    Full Text Available The magnitude of the thermal stresses that originate in an acrylic-based repair material used for the reprofiling of natural sandstone is analyzed. This kind of artificial stone was developed in the late 1970s for its peculiar property of reversibility in an organic solvent. However, it displays a high thermal expansion coefficient, which can be a matter of concern for the durability either of the repair or of the underlying original stone. To evaluate this risk we propose an analytical solution that considers the viscoelasticity of the repair layer. The temperature profile used in the numerical evaluation has been measured in a church where artificial stone has been used in a recent restoration campaign. The viscoelasticity of the artificial stone has been characterized by stress relaxation experiments. The numerical analysis shows that the relaxation time of the repair mortar, originating from a low T g , allows relief of most of the thermal stresses. It explains the good durability of this particular repair material, as observed by the practitioners, and provides a solid scientific basis for considering that the problem of thermal expansion mismatch is not an issue for this type of stone under any possible conditions of natural exposure.

  4. An experimental study of turbulent mixing of viscoelastic fluids

    Science.gov (United States)

    Bartels, Paul Vincent

    1988-07-01

    The viscoelastic behavior of fluids was related to the hydrodynamics, energy dissipation, and homogenization for turbulent pipeline flow and stirred tank reactors. For both mixing systems a significant influence of viscoelasticity on the hydrodynamics is found in locations with a high shear rate, such as occur in the boundary layer of pipeline flow and in the trailing vortices of the blade of a Rushton turbine. This results in a dramatic drop of the overall energy dissipation for very low values of elasticity number. In tube flow there is a threshold for the drag reduction phenomenon. The friction factor appears to be also a function of the elasticity number. The homogenization process of polymer solutions is also slower due to the lower energy dissipation, causing less dispersion. The energy dissipation and homogenization can be related to a characteristic fluid time and the elasticity number. The effect of inserted mixing elements on turbulent pipe flow was studied. The pressure drop of the mixers is almost independent of the concentration of polyacrylamide, but mixing will be less when the characteristic time of the solutions increases.

  5. Numerical simulations of rough contacts between viscoelastic materials

    Science.gov (United States)

    Spinu, S.; Cerlinca, D.

    2017-08-01

    The durability of the mechanical contact is often plagued by surface-related phenomena like rolling contact fatigue, wear or crack propagation, which are linked to the important gradients of stress arising in the contacting bodies due to interaction at the asperity level. The semi-analytical computational approach adopted in this paper is based on a previously reported algorithm capable of simulating the contact between bodies with arbitrary limiting surfaces and viscoelastic behaviour, which is enhanced and adapted for the contact of real surfaces with microtopography. As steep slopes at the asperity level inevitably lead to localized plastic deformation at the tip of the asperities that are first brought into contact, the viscoelastic behaviour is amended by limiting the maximum value of the pressure on the contact area to that of the material hardness, according to the Tabor equation. In this manner, plasticity is considered in a simplified manner that assures the knowledge of the contact area and of the pressure distribution without estimation of the residual state. The main advantage of this approach is the preservation of the algorithmic complexity, allowing the simulation of very fine meshes capable of capturing particular features of the investigated contacting surface. The newly advanced model is expected to predict the contact specifics of rough surfaces as resulting from various manufacturing processes, thus assisting the design of durable machine elements using elastomers or rubbers.

  6. Stability of viscoelastic dynamic contact lines: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Spaid, M.A.; Homsy, G.M. [Department of Chemical Engineering, Stanford University, Stanford, California 94305 (United States)

    1997-04-01

    An experimental study of the rivulet instability associated with spin coating a circular drop of fluid is conducted to examine the effect of elasticity on the onset and evolution of the instability. The spin coating experiments are conducted with viscoelastic drops consisting of a high molecular weight polystyrene in tricresyl phosphate (TCP), as well as the Newtonian solvent TCP. Results show an unequivocal delay in the onset of the instability when the appropriate Weissenberg number is sufficiently large, resulting in a larger coated area and more finger arms relative to Newtonian results. Experiments performed with the viscoelastic fluid at low Weissenberg number exhibit similar behavior to those performed with the Newtonian solvent as expected. Additionally, the growth rate of the instability is reduced for experiments in which the elastic forces are important, in agreement with the perturbation theory of Spaid and Homsy [Phys. Fluids {bold 8}, 460 (1996)], demonstrating that elastic forces have a stabilizing influence on the contact line instability. {copyright} {ital 1997 American Institute of Physics.}

  7. A large deformation viscoelastic model for double-network hydrogels

    Science.gov (United States)

    Mao, Yunwei; Lin, Shaoting; Zhao, Xuanhe; Anand, Lallit

    2017-03-01

    We present a large deformation viscoelasticity model for recently synthesized double network hydrogels which consist of a covalently-crosslinked polyacrylamide network with long chains, and an ionically-crosslinked alginate network with short chains. Such double-network gels are highly stretchable and at the same time tough, because when stretched the crosslinks in the ionically-crosslinked alginate network rupture which results in distributed internal microdamage which dissipates a substantial amount of energy, while the configurational entropy of the covalently-crosslinked polyacrylamide network allows the gel to return to its original configuration after deformation. In addition to the large hysteresis during loading and unloading, these double network hydrogels also exhibit a substantial rate-sensitive response during loading, but exhibit almost no rate-sensitivity during unloading. These features of large hysteresis and asymmetric rate-sensitivity are quite different from the response of conventional hydrogels. We limit our attention to modeling the complex viscoelastic response of such hydrogels under isothermal conditions. Our model is restricted in the sense that we have limited our attention to conditions under which one might neglect any diffusion of the water in the hydrogel - as might occur when the gel has a uniform initial value of the concentration of water, and the mobility of the water molecules in the gel is low relative to the time scale of the mechanical deformation. We also do not attempt to model the final fracture of such double-network hydrogels.

  8. Nonlinear waves in a fluid-filled thin viscoelastic tube

    Science.gov (United States)

    Zhang, Shan-Yuan; Zhang, Tao

    2010-11-01

    In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incompressible inviscid fluid is studied. The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin—Voigt model. Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall, a set of nonlinear partial differential equations governing the propagation of nonlinear pressure wave in the solid—liquid coupled system is obtained. In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT). Selecting the exponent α of the perturbation parameter in Gardner—Morikawa transformation according to the order of viscous coefficient η, three kinds of evolution equations with soliton solution, i.e. Korteweg—de Vries (KdV)—Burgers, KdV and Burgers equations are deduced. By means of the method of traveling-wave solution and numerical calculation, the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail. Finally, as a example of practical application, the propagation of pressure pulses in large blood vessels is discussed.

  9. Stability of Couette flow past a viscoelastic solid

    Science.gov (United States)

    Hess, Andrew; Gao, Tong

    2016-11-01

    Soft materials such as polymer gels have been widely used in engineering applications such as microfluidics, micro-optics, and active surfaces. It is important to obtain fundamental understandings of the dynamics of various soft materials when interacting with fluid. Here we investigate the material behavior of a viscoelastic solid film immersed in a simple Newtonian Couette flow. An Eulerian formulation of the Zener model is used to model the solid phase with the surface tension effect. A linear stability analysis is first performed to predict the material instabilities induced by the shear flow field, and provide an analytical basis to the numerical results. The nonlinear fluid/elastic structure interactions are further explored by using the direct numerical simulations. Phase tracking is accomplished through the use of a generalized Cahn-Hilliard model for the surface tension between the gel-like material and the ambient fluid. The coupled Cahn-Hilliard/Navier-Stokes/Zener equations are then solved on a staggered grid through a finite difference method. The results are compared with previous studies for both the hyperelastic and viscoelastic materials.

  10. Viscoelastic Characterization of Gels at Metal-Protein Interfaces

    Science.gov (United States)

    Martin, Elizabeth; Shull, Kenneth

    2015-03-01

    The interfacial gelation of proteins at metallic surfaces was investigated with an electrochemical quartz crystal microbalance (QCM). When Cr electrodes were corroded in proteinaceous solutions, it was found that gels will form at the Cr surfaces if molybdate ions are also present in the solution. A similar film will form on Cr when the proteins are replaced with a poly(allylamine) polyelectrolyte, suggesting that the gelation is due to a cross-linking reaction between the protein amine groups and the molybdate ions. Further, a method was developed to characterize the viscoelastic properties of thin polymeric films in liquid media using the QCM as a high frequency rheometer. By measuring the frequency and dissipation at multiple harmonics of the resonant frequency, the viscoelastic phase angle, density --modulus product, and mass per unit area of a film can be determined. The method was applied to characterize the protein films, demonstrating that they have a phase angle near 80° and a density --modulus product of ~107 Pa-g/cm3. Data imply that the gels are comprised of a weak proteinaceous network and exhibit similar mechanical properties as solutions containing 50 wt% protein. This project was funded by NSF Grant CMMI-1200529.

  11. Nonlinear waves in a fluid-filled thin viscoelastic tube

    Institute of Scientific and Technical Information of China (English)

    Zhang Shan-Yuan; Zhang Tao

    2010-01-01

    In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incom-pressible inviscid fluid is studied. The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin-Voigt model. Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall, a set of nonlinear partial differential equations governing the prop-agation of nonlinear pressure wave in the solid-liquid coupled system is obtained. In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT). Selecting the expo-η, three kinds of evolution equations with soliton solution, i.e. Korteweg-de Vries (KdV)-Burgers, KdV and Burgers equations are deduced. By means of the method of traveling-wave solution and numerical calculation, the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail. Finally, as a example of practical application, the propagation of pressure pulses in large blood vessels is discussed.

  12. Elastic and viscoelastic properties of a type I collagen fiber.

    Science.gov (United States)

    Sopakayang, Ratchada; De Vita, Raffaella; Kwansa, Albert; Freeman, Joseph W

    2012-01-21

    A new mathematical model is presented to describe the elastic and viscoelastic properties of a single collagen fiber. The model is formulated by accounting for the mechanical contribution of the collagen fiber's main constituents: the microfibrils, the interfibrillar matrix and crosslinks. The collagen fiber is modeled as a linear elastic spring, which represents the mechanical contribution of the microfibrils, and an arrangement in parallel of elastic springs and viscous dashpots, which represent the mechanical contributions of the crosslinks and interfibrillar matrix, respectively. The linear elastic spring and the arrangement in parallel of elastic springs and viscous dashpots are then connected in series. The crosslinks are assumed to gradually break under strain and, consequently, the interfibrillar is assumed to change its viscous properties. Incremental stress relaxation tests are conducted on dry collagen fibers reconstituted from rat tail tendons to determine their elastic and viscoelastic properties. The elastic and total stress-strain curves and the stress relaxation at different levels of strain collected by performing these tests are then used to estimate the parameters of the model and evaluate its predictive capabilities.

  13. Effect of viscoelasticity and RBC migration phenomena in stenotic microvessels

    Science.gov (United States)

    Dimakopoulos, Yiannis; Syrakos, Alexandros; Georgiou, Georgios; Tsamopoulos, John

    2014-11-01

    This study deals with the numerical simulation of the hemodynamics in stenotic microvessels. The blood flow in microvessels differs significantly from that in large arteries and veins, because the Red Blood Cells (RBCs) are comparable in size with the radius of the microvessels and, consequently, local effects such as cell interaction and migration are more pronounced. In terms of complexity of the flow, viscoelasticity along with stress-gradient induced migration effects have a more dominant role, which exceeds the viscous, inertial and transient effects. Recently, a non-homogeneous viscoelastic model has been proposed by Moyers-Gonzalez et al. (2008), which can accurately predict the Fahraeus effects. We developed a numerical algorithm for the time-integration of the set of differential equations that arise from the coupling of momentum, mass, and population balances for RBCs and aggregates with the constitutive laws for both species. The simulations show that a cell-depleted layer develops along the vessel wall with an almost constant thickness. Along this layer, the shear stresses are almost Newtonian because of the plasma, but the normal stresses that are exerted on the wall are high due to the contribution of the individual RBCs and rouleaux.

  14. Viscoelasticity-based MR elastography of skeletal muscle

    Science.gov (United States)

    Klatt, Dieter; Papazoglou, Sebastian; Braun, Jürgen; Sack, Ingolf

    2010-11-01

    An in vivo multifrequency magnetic resonance elastography (MRE) protocol was developed for studying the viscoelastic properties of human skeletal muscle in different states of contraction. Low-frequency shear vibrations in the range of 25-62.5 Hz were synchronously induced into the femoral muscles of seven volunteers and measured in a cross-sectional view by encoding the fast-transverse shear wave component parallel to the muscle fibers. The so-called springpot model was used for deriving two viscoelastic constants, μ and α, from the dispersion functions of the complex shear modulus in relaxed and in loaded muscle. Representing the shear elasticity parallel to the muscle fibers, μ increased in all volunteers upon contraction from 2.68 ± 0.23 kPa to 3.87 ± 0.50 kPa. Also α varied with load, indicating a change in the geometry of the mechanical network of muscle from relaxation (α = 0.253 ± 0.009) to contraction (α = 0.270 ± 0.009). These results provide a reference for a future assessment of muscular dysfunction using rheological parameters.

  15. Atomistic Mechanisms for Viscoelastic Damping in Inorganic Solids

    Science.gov (United States)

    Ranganathan, Raghavan

    Viscoelasticity, a ubiquitous material property, can be tuned to engineer a wide range of fascinating applications such as mechanical dampers, artificial tissues, functional foams and optoelectronics, among others. Traditionally, soft matter such as polymers and polymer composites have been used extensively for viscoelastic damping applications, owing to the inherent viscous nature of interactions between polymer chains. Although this leads to good damping characteristics, the stiffness in these materials is low, which in turn leads to limitations. In this context, hard inorganic materials and composites are promising candidates for enhanced damping, owing to their large stiffness and, in some cases large loss modulus. Viscoelasticity in these materials has been relatively unexplored and atomistic mechanisms responsible for damping are not apparent. Therefore, the overarching goal of this work is to understand mechanisms for viscoelastic damping in various classes of inorganic composites and alloys at an atomistic level from molecular dynamics simulations. We show that oscillatory shear deformation serves as a powerful probe to explain mechanisms for exceptional damping in hitherto unexplored systems. The first class of inorganic materials consists of crystalline phases of a stiff inclusion in a soft matrix. The two crystals within the composite, namely the soft and a stiff phase, individually show a highly elastic behavior and a very small loss modulus. On the other hand, a composite with the two phases is seen to exhibit damping that is about 20 times larger than predicted theoretical bounds. The primary reason for the damping is due to large anharmonicity in phonon-phonon coupling, resulting from the composite microstructure. A concomitant effect is the distribution of shear strain, which is observed to be highly inhomogeneous and mostly concentrated in the soft phase. Interestingly, the shear frequency at which the damping is greatest is observed to scale with

  16. Interaction of massive stars with their surroundings

    CERN Document Server

    Hensler, Gerhard

    2008-01-01

    Due to their short lifetimes but their enormous energy release in all stages of their lives massive stars are the major engines for the comic matter circuit. They affect not only their close environment but are also responsible to drive mass flows on galactic scales. Recent 2D models of radiation-driven and wind-blown HII regions are summarized which explore the impact of massive stars to the interstellar medium but find surprisingly small energy transfer efficiencies while an observable Carbon self-enrichment in the Wolf-Rayet phase is detected in the warm ionized gas. Finally, the focus is set on state-of-the-art modelling of HII regions and its present weaknesses with respect to uncertainties and simplifications but on a perspective of the requested art of their modelling in the 21st century.

  17. The lithosphere-asthenosphere Italy and surroundings

    CERN Document Server

    Panza, G F; Chimera, G; Pontevivo, A; Raykova, R

    2003-01-01

    The velocity-depth distribution of the lithosphere-asthenosphere in the Italian region and surroundings is imaged, with a lateral resolution of about 100 km, by surface wave velocity tomography and non-linear inversion. Maps of the Moho depth, of the thickness of the lithosphere and of the shear-wave velocities, down to depths of 200 km and more, are constructed. A mantle wedge, identified in the uppermost mantle along the Apennines and the Calabrian Arc, underlies the principal recent volcanoes, and partial melting can be relevant in this part of the uppermost mantle. In Calabria a lithospheric doubling is seen, in connection with the subduction of the Ionian lithosphere. The asthenosphere is shallow in the Southern Tyrrhenian Sea. High velocity bodies, cutting the asthenosphere, outline the Adria-lonian subduction in the Tyrrhenian Sea and the deep-reaching lithospheric root in the Western Alps. Less deep lithospheric roots are seen in the Central Apennines. The lithosphere-asthenosphere properties delineat...

  18. The lithosphere-asthenosphere: Italy and surroundings

    Institute of Scientific and Technical Information of China (English)

    GiulianoF.Panza; AntonellaPontevivo; GiordanoChimera; RenetaRaykova; AbdelkrimAoudia

    2003-01-01

    The velocity-depth distribution of the lithosphere-asthenosphere in the Italian region and surroundings is imaged, with a lateral resolution of about 100 km, by sur-face wave velocity tomography and non-linear inversion.Maps of the Moho depth, of the thickness of the lithos-phere and of the shear-wave velocities, down to depths of 200 km and more, are constructed. A mantle wedge, iden-tified in the uppermost mantle along the Apennines and the Calabrian Arc, underlies the prmctpat recent votca-noes, and partial melting can be relevant in this part of the uppermost mantle. In Calabria, a lithospheric dou-bling is seen, in connection with the subduction of the Ionian lithosphere. The asthenosphere is shallow in the Southern Tyrrhenian Sea. High velocity bodies, cutting the asthenosphere, outline the Adria-lonian subduction in the Tyrrhenian Sea and the deep-reaching lithospheric root in the Western Alps. Less deep lithospheric roots are seen in the Central Apennines. The lithosphere-asthenos-phere properties delineate a differentiation between the northern and the southern sectors of the Adriatic Sea,likely attesting the fragmentation of Adria.

  19. Preliminary design of surrounding heliostat fields

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco J. [Zaragoza University, Dpto. de Ingenieria Mecanica, CPS-B, Maria de Luna 3, 50018 Zaragoza (Spain)

    2009-05-15

    Recently, the author has shown elsewhere a simplified model that allows quick evaluations of the annual overall energy collected by a surrounding heliostat field. This model is the combination of an analytical flux density function produced by a heliostat, developed by the own author, and an optimized mirror density distribution developed by University of Houston for the Solar One Project. As main conclusion of this previous work, it was recognized that such pseudo-continuous simplified model should not substitute much more accurate discrete evaluations, which manage thousands of individual heliostat coordinates. Here in this work, the difficulty of generating a preliminary discrete layout of a large number of heliostats is addressed. The main novelty is the direct definition of thousands of heliostat coordinates through basically two parameters i.e. a simplified blocking factor and an additional security distance. Such procedure, which was formerly theoretically suggested by the author, is put into practice here, showing examples and commenting their problems and advantages. Getting a previous set of thousands of heliostat coordinates would be a major first step in the complex process of designing solar power tower (SPT). (author)

  20. Welsh-Medium Education.

    Science.gov (United States)

    Edwards, D. Gareth

    1984-01-01

    Examines the effect in the primary and secondary school levels of teaching through the medium of Welsh and the response of the University of Wales. The media and the educational system are two formal social organizations which help the threatened Welsh language to survive. Another would be the establishment of a Welsh-medium university. (SED)

  1. Medium is the message

    NARCIS (Netherlands)

    Kuipers, G.; Ritzer, G.

    2012-01-01

    "The medium is the message" is a phrase coined by Canadian media theorist Marshall McLuhan (1911-1980), in his book Understanding Media: The Extensions of Man (1964). In this book, McLuhan examines the impact of media on societies and human relations, arguing for the primacy of the medium -

  2. Medium is the message

    NARCIS (Netherlands)

    Kuipers, G.; Ritzer, G.

    2012-01-01

    "The medium is the message" is a phrase coined by Canadian media theorist Marshall McLuhan (1911-1980), in his book Understanding Media: The Extensions of Man (1964). In this book, McLuhan examines the impact of media on societies and human relations, arguing for the primacy of the medium - understo

  3. Synthetic laser medium

    Science.gov (United States)

    Stokowski, Stanley E.

    1989-01-01

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chormium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  4. Numerical Modeling of Surface Deformation due to Magma Chamber Inflation/Deflation in a Heterogeneous Viscoelastic Half-space

    Science.gov (United States)

    Dichter, M.; Roy, M.

    2015-12-01

    Interpreting surface deformation patterns in terms of deeper processes in regions of active magmatism is challenging and inherently non-unique. This study focuses on interpreting the unusual sombrero-shaped pattern of surface deformation in the Altiplano Puna region of South America, which has previously been modeled as the effect of an upwelling diapir of material in the lower crust. Our goal is to investigate other possible interpretations of the surface deformation feature using a suite of viscoelastic models with varying material heterogeneity. We use the finite-element code PyLith to study surface deformation due to a buried time-varying (periodic) overpressure source, a magma body, at depth within a viscoelastic half-space. In our models, the magma-body is a penny-shaped crack, with a cylindrical region above the crack that is weak relative to the surrounding material. We initially consider a magma body within a homogeneous viscoelastic half-space to determine the effect of the free surface upon deformation above and beneath the source region. We observe a complex depth-dependent phase relationship between stress and strain for elements that fall between the ground surface and the roof of the magma body. Next, we consider a volume of weak material (faster relaxation time relative to background) that is distributed with varying geometry around the magma body. We investigate how surface deformation is governed by the spatial distribution of the weak material and its rheologic parameters. We are able to reproduce a "sombrero" pattern of surface velocities for a range of models with material heterogeneity. The wavelength of the sombrero pattern is primarily controlled by the extent of the heterogeneous region, modulated by flexural effects. Our results also suggest an "optimum overpressure forcing frequency" where the lifetime of the sombrero pattern (a transient phenomenon due to the periodic nature of the overpressure forcing) reaches a maximum. Through further

  5. Innovative viscoelastic material selection strategy based on dma and mini-shaker tests for spacecraft applications

    Science.gov (United States)

    Kawak, B. J.; Cabon, B. H.; Aglietti, G. S.

    2017-02-01

    With the increase of payload sensitivity (such as high precision optics for sub-metric imager), micro-vibration disturbances generated by spinning actuators, if not controlled, may affect on-board instruments and may worsen the quality of pictures taken by an Earth observation imager. For the last two decades, viscoelastic materials have been gradually used in isolators designed for space applications. Their attractiveness comes from their ability to act as a second order low pass filter to minimise micro-vibration forces. In this study, an innovative viscoelastic material pre-selection process has been developed to assess the mechanical and thermal properties of viscoelastic isolators during early design stages. In order to characterise the viscoelastic isolators, tests have been performed at viscoelastic material level (material characterisation) and at viscoelastic isolator level (isolator characterisation). A qualitative correlation has been established between the master curves (material characterisation) and the transmissibility curves (isolator characterisation) which leads to a possible prediction of expected isolation performances of a viscoelastic material during early design stages.

  6. Modeling and experimental verification of frequency-, amplitude-, and magneto-dependent viscoelasticity of magnetorheological elastomers

    Science.gov (United States)

    Xin, Fu-Long; Bai, Xian-Xu; Qian, Li-Jun

    2016-10-01

    Magnetorheological elastomers (MREs), a smart composite, exhibit dual characteristics of both MR materials and particle reinforced composites, i.e., the viscoelasticity of MREs depends on external magnetic field as well as strain amplitude and excitation frequency. In this article, the principle of a frequency-, amplitude-, and magneto-dependent linear dynamic viscoelastic model for isotropic MREs is proposed and investigated. The viscoelasticity of MREs is divided into frequency- and amplitude-dependent mechanical viscoelasticity and frequency-, amplitude-, and magneto-dependent magnetic viscoelasticity. Based on the microstructures of ferrous particles and matrix, the relationships between mechanical shear modulus corresponding to the mechanical viscoelasticity and strain amplitude and excitation frequency are obtained. The relationships between magnetic shear modulus corresponding to the magnetic viscoelasticity with strain amplitude, excitation frequency, and further external magnetic field are derived using the magneto-elastic theory. The influence of magnetic saturation on the MR effect is also considered. The dynamic characteristics of a fabricated isotropic MRE sample under different strain amplitudes, excitation frequencies and external magnetic fields are tested. The parameters of the proposed model are identified with the experimental data and the theoretical expressions of shear storage modulus and shear loss modulus of the MRE sample are obtained. In the light of the theoretical expressions, the loss factors of the MRE sample under different loading conditions are analyzed and compared with the test results to evaluate the effectiveness of the proposed model.

  7. Analytical solutions for wall slip effects on magnetohydrodynamic oscillatory rotating plate and channel flows in porous media using a fractional Burgers viscoelastic model

    Science.gov (United States)

    Maqbool, Khadija; Anwar Bég, O.; Sohail, Ayesha; Idreesa, Shafaq

    2016-05-01

    The theoretical analysis of magnetohydrodynamic (MHD) incompressible flows of a Burgers fluid through a porous medium in a rotating frame of reference is presented. The constitutive model of a Burgers fluid is used based on a fractional calculus formulation. Hydrodynamic slip at the wall (plate) is incorporated and the fractional generalized Darcy model deployed to simulate porous medium drag force effects. Three different cases are considered: namely, the flow induced by a general periodic oscillation at a rigid plate, the periodic flow in a parallel plate channel and, finally, the Poiseuille flow. In all cases the plate(s) boundary(ies) are electrically non-conducting and a small magnetic Reynolds number is assumed, negating magnetic induction effects. The well-posed boundary value problems associated with each case are solved via Fourier transforms. Comparisons are made between the results derived with and without slip conditions. Four special cases are retrieved from the general fractional Burgers model, viz. Newtonian fluid, general Maxwell viscoelastic fluid, generalized Oldroyd-B fluid and the conventional Burgers viscoelastic model. Extensive interpretation of graphical plots is included. We study explicitly the influence of the wall slip on primary and secondary velocity evolution. The model is relevant to MHD rotating energy generators employing rheological working fluids.

  8. Calculation of Random Response Spectral Moments of Elastic-viscoelastic Combined Systems

    Institute of Scientific and Technical Information of China (English)

    张天舒; 冉志; 方同

    2003-01-01

    In random vibration analysis, the importance of spectral moments of the response stems from their relevance to system performance prediction. Usually,spectral moments are obtained by the frequency domain method. In present paper, the random response spectral moments of elastic-viscoelastic combined systems are calculated by complex modal analysis in the time domain. The analytical form results are obtained for random response spectral moments of an elastic-viscoelastic combined system to a stationary white noise excitation. The method presented is simple and easy to apply. It is hoped that this study would pave a way for the analysis of reliability of elastic-viscoelastic combined systems subjected to random excitations.

  9. DYNAMIC STABILITY OF A BEAM-MODEL VISCOELASTIC PIPE FOR CONVEYING PULSATIVE FLUID

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Yang; Tianzhi Yang; Jiduo Jin

    2007-01-01

    The dynamic stability in transverse vibration of a viscoelastic pipe for conveying pulsative fluid is investigated for the simply-supported case. The material property of the beammodel pipe is described by the Kelvin-type viscoelastic constitutive relation. The axial fluid speed is characterized as simple harmonic variation about a constant mean speed. The method of multiple scales is applied directly to the governing partial differential equation without discretization when the viscoelastic damping and the periodical excitation are considered small. The stability conditions are presented in the case of subharmonic and combination resonance. Numerical results show the effect of viscosity and mass ratio on instability regions.

  10. Explicit solution for the natural frequency of structures with partial viscoelastic treatment

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker

    2016-01-01

    the influence from residual vibration modes. The correction term is eliminated in terms of the corresponding natural frequency associated with the high-frequency stiffness of the viscoelastic treatment, whereby an expression is obtained for the complex-valued natural frequency, which only requires the solution......The free vibration characteristics of structures with viscoelastic treatment are represented by the complex-valued natural frequencies. The assumed single mode representation associated with the low-frequency stiffness of the viscoelastic treatment is modified by a correction term representing...

  11. A Study on Viscoelastic Fluid Flow in a Square-Section 90-Degrees Bend

    Institute of Scientific and Technical Information of China (English)

    Mizue Munekata; Kazuyoshi Matsuzaki; Hideki Ohba

    2003-01-01

    It is well known that the drag-reducing effect is obtained in a surfactant solution flow in a straight pipe. We investigate about a viscoelastic fluid flow such as a surfactant solution flow in a square-section 90° bend. In the experimental study, drag-reducing effect and velocity field in a surfactant solution flow are investigated by measurements of wall pressure loss and LDV measurements. For the numerical method, LES with FENE-P model is used in the viscoelastic fluid flow in the bend. The flow characteristics of viscoelastic fluid are discussed compared with that of a Newtonian fluid.

  12. Fatigue and residual strength of concrete and other aging viscoelastic materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1996-01-01

    The DVM-theory (Damaged Viscoelastic Material) previously developed by the author to predict lifetime of non-aging viscoelastic materials (like wood) is generalized in this paper such that aging viscoelastic materials such as concrete subjected to variable load can also be considered. Lifetime...... criterion. A simple time criterion is much better. The theory is successfully compared with methods previously presented in the field of concrete fatigue. Algorithms and design graphs are developed which can be used in fatigue design of concrete products....

  13. Soft-film dynamics of SH-SAW sensors in viscous and viscoelastic fluids

    Directory of Open Access Journals (Sweden)

    A. Vikström

    2016-12-01

    Full Text Available We theoretically investigate surface acoustic waves with horizontal polarization (SH-SAWs propagating in a three-layer system consisting of an elastic substrate and two viscoelastic overlayers. For the limiting case of an acoustically thin middle layer and an infinite top layer, we derive analytical expressions for the phase velocity shift and the wave attenuation. These expressions demonstrate the importance of taking into account the viscoelastic coupling between the two overlayers. Numerical calculations using a combined Maxwell/Voigt scheme confirm our analytical results and also indicate that it is possible for viscoelasticity to cause SH-SAWs to vanish.

  14. A preliminary investigation of the dynamic viscoelastic relaxation of bovine cortical bone

    Directory of Open Access Journals (Sweden)

    Loete T.J.C.

    2015-01-01

    Full Text Available A new experimental approach is proposed to characterize the dynamic viscoelastic relaxation behaviour of cortical bone. Theoretical models are presented to show that a linear viscoelastic material, when allowed to relax between two long elastic bars, will produce stress, strain and strain rate histories that contain characteristic features. Furthermore, typical experimental results are presented to show that these characteristic features are observed during split Hopkinson bar tests on bovine cortical bone using a Cone-in-Tube striker. The interpretation of this behaviour in the context of a standard linear viscoelastic model is discussed.

  15. Changes in the texture and viscoelastic properties of bread containing rice porridge during storage.

    Science.gov (United States)

    Tsai, Chia-Ling; Sugiyama, Junichi; Shibata, Mario; Kokawa, Mito; Fujita, Kaori; Tsuta, Mizuki; Nabetani, Hiroshi; Araki, Tetsuya

    2012-01-01

    The objective of this study was to investigate the effects of rice porridge on the texture and viscoelastic properties of bread during storage. Three types of bread, wheat flour bread, 15% rice flour bread, and 15% rice porridge bread, were prepared. After baking and storing the bread for 24 h, 48 h, and 72 h at room temperature, we measured the texture and viscoelastic properties of the bread crumbs by texture profile analysis (TPA) and creep test. The 15% rice porridge bread showed a significantly higher specific volume and maintained softer crumbs than the other two types (pporridge improves the specific volume, texture, and viscoelastic properties of bread crumbs during storage.

  16. Theoretical analysis of microscopic oil displacement mechanism by viscoelastic polymer solution

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The microscopic oil displacement mechanism in viscoelastic polymer flooding is theoretically analyzed with mechanical method.The effects of viscoelasticity of polymer solution on such three kinds of residual oil as in pore throat,in sudden expansion pore path,and in dead end are analyzed.Results show that the critical radius of mobile residual oil for viscoelastic polymer solution is larger than that for viscous polymer solution,which makes the oil that is immobile in viscous polymer flooding displaced u...

  17. Research on Viscoelasticity of Modiifed Bitumen Containing LDHs Anti-UV Aging Agent

    Institute of Scientific and Technical Information of China (English)

    LIU Xing; WU Shaopeng; LIU Gang; MA Shankui

    2015-01-01

    We applied LDHs to modify the bitumen by melt blending, and studied the viscoelasticity of LDHs modiifed bitumen by means of dynamic shear rheometer (DSR). The creep test was used to evaluate the viscoelastic behavior. The experimental results indicated that, due to the addition of the LDHs, the viscoelastic properties of modiifed bitumen were superior to those of pristine bitumen. Therefore, the LDHs would be an alternative to modiifers used in the bitumen to improve the UV-aging resistance during the service of asphalt pavement.

  18. ANALYSIS OF NONLINEAR DYNAMIC RESPONSE FOR VISCOELASTIC COMPOSITE PLATE WITH TRANSVERSE MATRIX CRACKS

    Institute of Scientific and Technical Information of China (English)

    FuYiming; LiPing'en; ZhengYufang

    2004-01-01

    Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the unidirectional fibre reinforced viscoelastic composite plates is developed. By using Karman theory, the nonlinear dynamic governing equations of the viscoelastic composite plates under transverse periodic loading are established. By applying the finite difference method in spatial domain and the Newton-Newmark method in time domain, and using the iterative procedure, the integral-partial differential governing equations are solved. Some examples are given and the results are compared with available data.

  19. Viscosity bound violation in holographic solids and the viscoelastic response

    CERN Document Server

    Alberte, Lasma; Pujolas, Oriol

    2016-01-01

    We argue that the Kovtun--Son--Starinets (KSS) lower bound on the viscosity to entropy density ratio holds in fluid systems but is violated in solid materials with a non-zero shear elastic modulus. We construct explicit examples of this by applying the standard gauge/gravity duality methods to massive gravity and show that the KSS bound is clearly violated in black brane solutions whenever the massive gravity theories are of solid type. We argue that the physical reason for the bound violation relies on the viscoelastic nature of the mechanical response in these materials. We speculate on whether any real-world materials can violate the bound and discuss a possible generalization of the bound that involves the ratio of the shear elastic modulus to the pressure.

  20. A note on adding viscoelasticity to earthquake simulators

    Science.gov (United States)

    Pollitz, Fred

    2017-01-01

    Here, I describe how time‐dependent quasi‐static stress transfer can be implemented in an earthquake simulator code that is used to generate long synthetic seismicity catalogs. Most existing seismicity simulators use precomputed static stress interaction coefficients to rapidly implement static stress transfer in fault networks with typically tens of thousands of fault patches. The extension to quasi‐static deformation, which accounts for viscoelasticity of Earth’s ductile lower crust and mantle, involves the precomputation of additional interaction coefficients that represent time‐dependent stress transfer among the model fault patches, combined with defining and evolving additional state variables that track this stress transfer. The new approach is illustrated with application to a California‐wide synthetic fault network.

  1. Inertial and viscoelastic forces on rigid colloids in microfluidic channels.

    Science.gov (United States)

    Howard, Michael P; Panagiotopoulos, Athanassios Z; Nikoubashman, Arash

    2015-06-14

    We perform hybrid molecular dynamics simulations to study the flow behavior of rigid colloids dispersed in a dilute polymer solution. The underlying Newtonian solvent and the ensuing hydrodynamic interactions are incorporated through multiparticle collision dynamics, while the constituent polymers are modeled as bead-spring chains, maintaining a description consistent with the colloidal nature of our system. We study the cross-stream migration of the solute particles in slit-like channels for various polymer lengths and colloid sizes and find a distinct focusing onto the channel center under specific solvent and flow conditions. To better understand this phenomenon, we systematically measure the effective forces exerted on the colloids. We find that the migration originates from a competition between viscoelastic forces from the polymer solution and hydrodynamically induced inertial forces. Our simulations reveal a significantly stronger fluctuation of the lateral colloid position than expected from thermal motion alone, which originates from the complex interplay between the colloid and polymer chains.

  2. Viscoelastic tides: models for use in Celestial Mechanics

    Science.gov (United States)

    Ragazzo, C.; Ruiz, L. S.

    2016-11-01

    This paper contains equations for the motion of linear viscoelastic bodies interacting under gravity. The equations are fully three dimensional and allow for the integration of the spin, the orbit, and the deformation of each body. The goal is to present good models for the tidal forces that take into account the possibly different rheology of each body. The equations are obtained within a finite dimension Lagrangian framework with dissipation function. The main contribution is a procedure to associate to each spring-dashpot model, which defines the rheology of a body, a potential and a dissipation function for the body deformation variables. The theory is applied to the Earth (solid part plus oceans) and a comparison between model and observation of the following quantities is made: norm of the Love numbers, rate of tidal energy dissipation, Chandler period, and Earth-Moon distance increase.

  3. Anisotropic viscoelastic models in large deformation for architectured membranes

    Science.gov (United States)

    Rebouah, Marie; Chagnon, Gregory; Heuillet, Patrick

    2016-08-01

    Due to the industrial elaboration process, membranes can have an in-plane anisotropic mechanical behaviour. In this paper, anisotropic membranes elaborated with two different materials were developed either by calendering or by inducing a force in one direction during the process. Experimental tests are developed to measure the differences of mechanical behaviour for both materials in different in-plane properties: stiffness, viscoelasticity and stress-softening. A uniaxial formulation is developed, and a homogenisation by means of a sphere unit approach is used to propose a three-dimensional formulation to represent the materials behaviour. An evolution of the mechanical parameters, depending on the direction, is imposed to reproduce the anisotropic behaviour of the materials. Comparison with experimental data highlights very promising results.

  4. The Stochastic Stability of a Viscoelastic Cable with Small Sag

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the almost sure stability of a viscoelastic cablesubjected to an initial stress on the uniform cross section is studied. The constitutive of the cable material is assumed to be the hereditary integral type, the relaxation kernels of which are represented by the sums of exponents. The initial stress and the damping coefficient to the environment and also relaxation kernel coefficients are a random wide-band stationary process. The partial differential-integral equation of motion is derived first. Then by applying Galerkins method, the governing equation is reduced to a set of second order differential integral equations. Based on the Liapunovs direct method, sufficient conditions for almost sure stability of viscoelstic cable are obtained.

  5. Axial Dynamic Stiffness of Tubular Piles in Viscoelastic Soil

    DEFF Research Database (Denmark)

    Bayat, Mehdi; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2016-01-01

    -resonance are presented .in series of Bessel's function. Important responses, such as dynamic stiffness and phase angle, are compared for different values of the loss factor as the material damping, Y0W1g's modulus and Poisson's ratio in a viscoelastic soil. Results are verified. with known results reported......, whilst the phase angle is independent of the properties of the soil. It is shown that the non-dimensional dynamic stiffness changes linearly with high-frequency load. The conclusion from the results of this study is that the material properties of soil are significant parameters in the dynamic stiffness...... when the dynamic vertical excitation is applied. The smooth surface along the entire interface is considered. The Betti reciprocal theorem along with Somigliana's identity and Green's function are employed to drive the dynamic stiffness of jacket structures. Modes of the resonance and anti...

  6. Viscoelastic and dynamic properties of embryonic stem cells

    DEFF Research Database (Denmark)

    Ritter, Christine

    ofthe cells themselves. In this thesis, the viscoelastic properties of mouse embryonic stem cells primedeither toward the epiblast (Epi) or the primitive endoderm (PrE) lineage were investigated.Optical tweezers were used to measure the fluctuations of endogenous lipid granules and therebydraw......Stem cells are often referred to as the ‘holy grail’ of regenerative medicine, because they possessthe ability to develop into any cell type. The use of stem cells within medicine is currently limited bythe effectivity of differentiation and cell reprogramming protocols, making it therefore...... imperative tounderstand stem cells’ differentiation mechanisms better. Studies have shown that mechanical cuescan have an influence on stem cell fate decision. However, in order to understand the reaction of stemcells to mechanical input, one should first investigate and understand the mechanical properties...

  7. Viscosity bound violation in holographic solids and the viscoelastic response

    Science.gov (United States)

    Alberte, Lasma; Baggioli, Matteo; Pujolàs, Oriol

    2016-07-01

    We argue that the Kovtun-Son-Starinets (KSS) lower bound on the viscosity to entropy density ratio holds in fluid systems but is violated in solid materials with a nonzero shear elastic modulus. We construct explicit examples of this by applying the standard gauge/gravity duality methods to massive gravity and show that the KSS bound is clearly violated in black brane solutions whenever the massive gravity theories are of solid type. We argue that the physical reason for the bound violation relies on the viscoelastic nature of the mechanical response in these materials. We speculate on whether any real-world materials can violate the bound and discuss a possible generalization of the bound that involves the ratio of the shear elastic modulus to the pressure.

  8. Creep characterization of gels and nonlinear viscoelastic material model

    Science.gov (United States)

    Ishikawa, Kiyotaka; Fujikawa, Masaki; Makabe, Chobin; Tanaka, Kou

    2016-07-01

    In this paper, we examine gel creep behavior and develop a material model for useful and simple numerical simulation of this behavior. This study has three stages and aims: (1) gel creep behavior is examined; (2) the material model is determined and the material constants are identified; and (3) the versatility of the material model and the constants are evaluated. The creep behavior is found to be independent of the initial stress level in the present experiment. Thus, the viscoelastic model proposed by Simo is selected, and its material constants are identified using the results of creep tests. Moreover, from the results of numerical calculations and experiments, it is found that the chosen material model has good reproducibility, predictive performance and high versatility.

  9. Stress retardation versus stress relaxation in linear viscoelasticity

    CERN Document Server

    Christov, Ivan C

    2016-01-01

    We present a preliminary examination of a new approach to a long-standing problem in non-Newtonian fluid mechanics. First, we summarize how a general implicit functional relation between stress and rate of strain of a continuum with memory is reduced to the well-known linear differential constitutive relations that account for "relaxation" and "retardation." Then, we show that relaxation and retardation are asymptotically equivalent for small Deborah numbers, whence causal pure relaxation models necessarily correspond to ill-posed pure retardation models. We suggest that this dichotomy could be a possible way to reconcile the discrepancy between the theory of and certain experiments on viscoelastic liquids that are conjectured to exhibit only stress retardation.

  10. Drop dynamics on a stretched viscoelastic filament: An experimental study

    Science.gov (United States)

    Peixinho, Jorge; Renoult, Marie-Charlotte; Crumeyrolle, Olivier; Mutabazi, Innocent

    2016-11-01

    Capillary pressure can destabilize a thin liquid filament during breakup into a succession of drops. Besides, the addition of a linear, high molecular weight, flexible and soluble polymer is enough to modify the morphology of this instability. In the time period preceding the breakup, the development of beads-on-a-string structures where drops are connected by thin threads is monitored. The drops dynamics involve drop formation, drop migration and drop coalescence. Experiments using a high-speed camera on stretched bridges of viscoelastic polymeric solutions were conducted for a range of viscosities and polymer concentrations. The rheological properties of the solutions are also quantified through conventional shear rheology and normal stress difference. The overall goal of this experimental investigation is to gain more insight into the formation and time evolution of the drops. The project BIOENGINE is co-financed by the European Union with the European regional development fund and by the Normandie Regional Council.

  11. Viscoelastic Behaviour of Solid Propellants based on Various Polymeric Binders

    Directory of Open Access Journals (Sweden)

    N. Prabhakaran

    1995-01-01

    Full Text Available The dynamic mechanical properties of different binders and corresponding propellants are studied in terms of storage modulus and loss tangent. The binders investigated are HTPB, CTPB, PBAN, HEF-20 and ISRO polyol. The viscoelastic behaviour is investigated using Rheovibron viscoelastometer at 35 Hz covering a wide temperature range (-100 degree centigrade to 100 degree centigrade. The properties of the binder and corresponding propellant are compared in terms of parameters, tan delta/sub max/, T/sub g/ and the trend of their master relaxation modulus curves. It is found that polybutadiene binders exhibit lowest T/sub g/ (around -60 degree centigrade and ISRO polyol the highest (near -20 degree centigrade. The propellants have higher moduli than the binders at any temperature. The master relaxation modulus curve is influenced by the type of propellant.

  12. Large-scale ordering of nanoparticles using viscoelastic shear processing

    Science.gov (United States)

    Zhao, Qibin; Finlayson, Chris E.; Snoswell, David R. E.; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P.; Petukhov, Andrei V.; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A.; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J.

    2016-06-01

    Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles.

  13. Convective heat transfer for viscoelastic fluid in a curved pipe

    Energy Technology Data Exchange (ETDEWEB)

    Norouzi, M.; Kayhani, M.H. [Shahrood University of Technology, Mechanical Engineering Department, Shahrood (Iran); Nobari, M.R.H. [Amirkabir University of Technology, Mechanical Engineering Department, Tehran (Iran); Joneidi, A.A. [Eindhoven University of Technology, Mechanical-Polymer Technology Group, Eindhoven (Netherlands)

    2010-10-15

    In this paper, fully developed convective heat transfer of viscoelastic flow in a curved pipe under the constant heat flux at the wall is investigated analytically using a perturbation method. Here, the curvature ratio is used as the perturbation parameter and the Oldroyd-B model is applied as the constitutive equation. In the previous studies, the Dirichlet boundary condition for the temperature at the wall has been used to simplify the solution, but here exactly the non-homogenous Neumann boundary condition is considered to solve the problem. Based on this solution, the non-axisymmetric temperature distribution of Dean flow is obtained analytically and the effect of flow parameters on the flow field is investigated in detail. The current analytical results indicate that increasing the Weissenberg number, viscosity ratio, curvature ratio, and Prandtl number lead to the increase of the heat transfer in the Oldroyd-B fluid flow. (orig.)

  14. Equilibrium circulation and stress distribution in viscoelastic creeping flow

    CERN Document Server

    Biello, Joseph A

    2015-01-01

    An analytic, asymptotic approximation of the nonlinear steady-state equations for viscoelastic creeping flow, modeled by the Oldroyd-B equations with polymer stress diffusion, is derived. Near the extensional stagnation point the flow stretches and aligns polymers along the outgoing streamlines of the stagnation point resulting in a stress-island, or birefringent strand. The polymer stress diffusion coefficient is used, both, as an asymptotic parameter and a regularization parameter. The structure of the singular part of polymer stress tensor is a Gaussian aligned with the incoming streamline of the stagnation point; a smoothed $\\delta$-distribution whose width is proportional to the square-root of the diffusion coefficient. The amplitude of the stress island scales with the Wiessenberg number and, although singular in the limit of vanishing diffusion, it is integrable in the cross stream direction due to its vanishing width; this yields a convergent secondary flow. The leading order velocity response to this...

  15. Viscoelastic Multicomponent Fluids in confined Flow-Focusing Devices

    CERN Document Server

    Gupta, Anupam

    2015-01-01

    The effects of elasticity on the break-up of liquid threads in microfluidic cross-junctions is investigated using numerical simulations based on the "lattice Boltzmann models" (LBM). Working at small Capillary numbers, we investigate the effects of non-Newtonian phases in the transition from droplet formation at the cross-junction (DCJ) and droplet formation downstream of the cross-junction (DC) (Liu & Zhang, ${\\it Phys. Fluids.}$ ${\\bf 23}$, 082101 (2011)). Viscoelasticity is found to influence the break-up point of the threads, which moves closer to the cross-junction and stabilizes. This is attributed to an increase of the polymer feedback stress forming in the corner flows, where the side channels of the device meet the main channel.

  16. Viscoelastic nature of Au nanoparticle–PDMS nanocomposite gels

    Indian Academy of Sciences (India)

    Ritu Gupta; Hima K Nagamanasa; Rajesh Ganapathy; Giridhar U Kulkarni

    2015-08-01

    A stable gel of Au nanoparticles in polydimethylsiloxane (PDMS) nanocomposite is prepared by employing the curing agent of PDMS elastomer as a reducing agent for the formation of Au nanoparticles by an in-situ process. The viscoelastic nature of these gels is very sensitive to the Au nanoparticle loading and the synthetic temperature conditions. Even a very low Au content of 0.09 wt% is sufficient enough to bring in the transition from sponge state to gel state at room temperature. Higher synthetic temperature also forms sponge formation. Infrared and ultraviolet–visible spectroscopy measurements have provided insight into PDMS crosslinking and nanoparticle formation, respectively. The optimization of the gel properties can have direct influence on the processability of Au nanoparticle–PDMS nanocomposite gels, with interesting implications in electronic, optical and microfluidic devices.

  17. Determination of the Creep Parameters of Linear Viscoelastic Materials

    Directory of Open Access Journals (Sweden)

    Alibay Iskakbayev

    2016-01-01

    Full Text Available Creep process of linear viscoelastic materials is described by the integral equation of Boltzmann-Volterra in which creep kernel is approximated by Rabotnov’s fractional exponential function. The creep equation contains four unknown parameters: α, singularity parameter; β, fading parameter; λ, rheological parameter; and ε0, conditionally instantaneous strain. Two-stage determination method of creep parameters is offered. At the first stage, taking into account weak singularity properties of Abel’s function at the initial moment of loading, parameters ε0 and α are determined. At the second stage, using already known parameters ε0 and α, parameters β and λ are determined. Analytical expressions for calculating these parameters are obtained. An accuracy evaluation of the offered method with using experimentally determined creep strains of material Nylon 6 and asphalt concrete showed its high accuracy.

  18. Fragmentation of a viscoelastic food by human mastication

    CERN Document Server

    Kobayashi, Naoki; Shiozawa, Kouichi

    2010-01-01

    Fragment-size distributions have been studied experimentally in masticated viscoelastic food (fish sausage).The mastication experiment in seven subjects was examined. We classified the obtained results into two groups, namely, a single lognormal distribution group and a lognormal distribution with exponential tail group. The facts suggest that the individual variability might affect the fragmentation pattern when the food sample has a much more complicated physical property. In particular, the latter result (lognormal distribution with exponential tail) indicates that the fragmentation pattern by human mastication for fish sausage is different from the fragmentation pattern for raw carrot shown in our previous study. The excellent data fitting by the lognormal distribution with exponential tail implies that the fragmentation process has a size-segregation-structure between large and small parts.In order to explain this structure, we propose a mastication model for fish sausage based on stochastic processes.

  19. Viscoelastic hydrodynamic interactions and anomalous CM diffusion in polymer melts

    Science.gov (United States)

    Meyer, Hendrik

    We have recently discovered that anomalous center-of-mass (CM) diffusion occurring on intermediate time scales in polymer melts can be explained by the interplay of viscoelastic and hydrodynamic interactions (VHI). The theory has been solved for unentangled melts in 3D and 2D and excellent agreement between theory and simulation is found, also for alkanes with a force field optimized from neutron scattering. The physical mechanism considers that hydrodynamic interactions are not screened: they are time dependent because of increasing viscosity before the terminal relaxation time. The VHI are generally active in melts of any topology. They are most important at early times well before the terminal relaxation time and thus affect the nanosecond time range typically observable in dynamic neutron scattering experiments. We illustrate the effects with recent molecular dynamics simulations of linear, ring and star polymers. Work performed with A.N. Semenov and J. Farago.

  20. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites

    Science.gov (United States)

    Boland, Conor S.; Khan, Umar; Ryan, Gavin; Barwich, Sebastian; Charifou, Romina; Harvey, Andrew; Backes, Claudia; Li, Zheling; Ferreira, Mauro S.; Möbius, Matthias E.; Young, Robert J.; Coleman, Jonathan N.

    2016-12-01

    Despite its widespread use in nanocomposites, the effect of embedding graphene in highly viscoelastic polymer matrices is not well understood. We added graphene to a lightly cross-linked polysilicone, often encountered as Silly Putty, changing its electromechanical properties substantially. The resulting nanocomposites display unusual electromechanical behavior, such as postdeformation temporal relaxation of electrical resistance and nonmonotonic changes in resistivity with strain. These phenomena are associated with the mobility of the nanosheets in the low-viscosity polymer matrix. By considering both the connectivity and mobility of the nanosheets, we developed a quantitative model that completely describes the electromechanical properties. These nanocomposites are sensitive electromechanical sensors with gauge factors >500 that can measure pulse, blood pressure, and even the impact associated with the footsteps of a small spider.