WorldWideScience

Sample records for surrounding soil environment

  1. Releases of phosphate fertilizer industry in the surrounding environment: investigation on heavy metals and polonium-210 in soil.

    Science.gov (United States)

    Aoun, M; El Samrani, A G; Lartiges, B S; Kazpard, V; Saad, Z

    2010-01-01

    Distribution of Cu, Zn, Pb, Cr, Ni, Mn concentrations and the activity of polonium-210 in the surrounding area of a phosphate fertilizer industry located on the eastern coast of the Mediterranean Sea has been determined. Nineteen sampling sites were distributed around the industrial zone on a surface area of about 100,000 m2. Atomic absorption spectroscopy and Alpha spectroscopy were used to quantify the heavy elements and polonium-210, respectively. Investigation on a particle scale was conducted by TEM and SEM coupled to EDX and X-ray cartography to determine the nature of heavy elements carriers and their distribution. Heavy elements were mainly concentrated inside the particle size fraction Polonium-210 with an enrichment factor of about 56, showed the same behavior of the spatial distribution of the trace elements.

  2. Impact of mine tailings on surrounding soils: Case

    African Journals Online (AJOL)

    H. ABDURAHMAN

    Article Number: AD77AF156458. ISSN 1996-0786 ... Key words: Contamination, heavy metals, soils, mine area, mine tailings, Marrakech – Morocco. INTRODUCTION ... thallium, and iron are transported to the environment (Lee and Kao, 2004 ...

  3. Mutual seismic interaction between tunnels and the surrounding granular soil

    Directory of Open Access Journals (Sweden)

    Mohamed Ahmed Abdel-Motaal

    2014-12-01

    Study results show that the maximum exerted straining actions in tunnel lining are directly proportional to the relative stiffness between tunnel and surrounding soil (lining thickness and soil shear modulus. Moreover, it is highly affected by the peak ground acceleration and the tunnel location (embedment depth. A comprehensive study is performed to show the effect of tunnel thickness and tunnel diameter on both the induced bending moment and lining deformation. In general, it is concluded that seismic analysis should be considered in regions subjected to peak ground acceleration greater than 0.15g.

  4. Mycotoxins in the soil environment

    OpenAIRE

    Elmholt, S.

    2008-01-01

    The paper outlines the current knowledge concerning fate of mycotoxins in the soil environment, including - outline of mycotoxins addressed (trichothecenes, zearalenone, fumonisins, aflatoxins, ochratoxins and patulin) - routes by which the mycotoxins enter the soil environment - routes by which they are immobilised or removed from the soil environment - mycotoxigenic fungi and mycotoxins in the soil environment

  5. Lead identification in soil surrounding a used lead acid battery smelter area in Banten, Indonesia

    Science.gov (United States)

    Adventini, N.; Santoso, M.; Lestiani, D. D.; Syahfitri, W. Y. N.; Rixson, L.

    2017-06-01

    A used lead acid battery smelter generates particulates containing lead that can contaminate the surrounding environment area. Lead is a heavy metal which is harmful to health if it enters the human body through soil, air, or water. An identification of lead in soil samples surrounding formal and informal used lead acid battery smelters area in Banten, Indonesia using EDXRF has been carried out. The EDXRF accuracy and precision evaluated from marine sediment IAEA 457 gave a good agreement to the certified value. A number of 16 soil samples from formal and informal areas and 2 soil samples from control area were taken from surface and subsurface soils. The highest lead concentrations from both lead smelter were approximately 9 folds and 11 folds higher than the reference and control samples. The assessment of lead contamination in soils described in Cf index was in category: moderately and strongly polluted by lead for formal and informal lead smelter. Daily lead intake of children in this study from all sites had exceeded the recommended dietary allowance. The HI values for adults and children living near both lead smelter areas were greater than the value of safety threshold 1. This study finding confirmed that there is a potential health risk for inhabitants surrounding the used lead acid battery smelter areas in Banten, Indonesia.

  6. On the environment surrounding close-in exoplanets

    Science.gov (United States)

    Vidotto, A. A.; Fares, R.; Jardine, M.; Moutou, C.; Donati, J.-F.

    2015-06-01

    Exoplanets in extremely close-in orbits are immersed in a local interplanetary medium (i.e. the stellar wind) much denser than the local conditions encountered around the Solar system planets. The environment surrounding these exoplanets also differs in terms of dynamics (slower stellar winds, but higher Keplerian velocities) and ambient magnetic fields (likely higher for host stars more active than the Sun). Here, we quantitatively investigate the nature of the interplanetary media surrounding the hot Jupiters HD 46375b, HD 73256b, HD 102195b, HD 130322b and HD 179949b. We simulate the three-dimensional winds of their host stars, in which we directly incorporate their observed surface magnetic fields. With that, we derive mass-loss rates (1.9-8.0 × 10-13 M⊙ yr-1) and the wind properties at the position of the hot Jupiters' orbits (temperature, velocity, magnetic field intensity and pressure). We show that these exoplanets' orbits are supermagnetosonic, indicating that bow shocks are formed surrounding these planets. Assuming planetary magnetic fields similar to Jupiter's, we estimate planetary magnetospheric sizes of 4.1-5.6 planetary radii. We also derive the exoplanetary radio emission released in the dissipation of the stellar wind energy. We find radio fluxes ranging from 0.02 to 0.13 mJy, which are challenging to be observed with present-day technology, but could be detectable with future higher sensitivity arrays (e.g. Square Kilometre Array). Radio emission from systems having closer hot Jupiters, such as from τ Boo b or HD 189733b, or from nearby planetary systems orbiting young stars, are likely to have higher radio fluxes, presenting better prospects for detecting exoplanetary radio emission.

  7. On the environment surrounding close-in exoplanets

    CERN Document Server

    Vidotto, A A; Jardine, M; Moutou, C; Donati, J -F

    2015-01-01

    Exoplanets in extremely close-in orbits are immersed in a local interplanetary medium (i.e., the stellar wind) much denser than the local conditions encountered around the solar system planets. The environment surrounding these exoplanets also differs in terms of dynamics (slower stellar winds, but higher Keplerian velocities) and ambient magnetic fields (likely higher for host stars more active than the Sun). Here, we quantitatively investigate the nature of the interplanetary media surrounding the hot Jupiters HD46375b, HD73256b, HD102195b, HD130322b, HD179949b. We simulate the three-dimensional winds of their host stars, in which we directly incorporate their observed surface magnetic fields. With that, we derive mass-loss rates (1.9 to 8.0 $\\times 10^{-13} M_{\\odot}$/yr) and the wind properties at the position of the hot-Jupiters' orbits (temperature, velocity, magnetic field intensity and pressure). We show that these exoplanets' orbits are super-magnetosonic, indicating that bow shocks are formed surrou...

  8. Soil microbial activities beneath Stipa tenacissima L. and in surrounding bare soil

    Science.gov (United States)

    Novosadová, I.; Ruiz Sinoga, J. D.; Záhora, J.; Fišerová, H.

    2010-05-01

    Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa). These steppes show a higher degree of variability in composition and structure. Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). On the other hand in "resource islands" and in surrounding bare soil exists the belowground zone of influence. The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). Secondary compounds and allelopathy restrict other species growth and contribute to patchy plant distribution. Active root segregation affects not only neighbourś growth but also soil microbial activities. The objective of this study was to assess the effect of Stipa tenacissima on the key soil microbial activities under controlled incubation conditions (basal and potential respiration; net nitrogen mineralization). The experimental plots were located in the province Almería in Sierra de los Filabres Mountains near the village Gérgal (southeast Spain) in the small catchment which is situated between 1090 - 1165 m a.s.l. The area with extent of 82 000 m2 is affected by soil degradation. The climate is semiarid Mediterranean. The mean annual rainfall is of about 240 mm mostly concentrated in autumn and spring. The mean annual temperature is 13.9° C. The studied soil has a loam to sandy clay texture and is classified as Lithosol (FAO-ISRIC and ISSS, 1998). The vegetation of these areas is an

  9. Source Identification of Heavy Metals in Soils Surrounding the Zanjan Zinc Town by Multivariate Statistical Techniques

    Directory of Open Access Journals (Sweden)

    M.A. Delavar

    2016-02-01

    Full Text Available Introduction: The accumulation of heavy metals (HMs in the soil is of increasing concern due to food safety issues, potential health risks, and the detrimental effects on soil ecosystems. HMs may be considered as the most important soil pollutants, because they are not biodegradable and their physical movement through the soil profile is relatively limited. Therefore, root uptake process may provide a big chance for these pollutants to transfer from the surface soil to natural and cultivated plants, which may eventually steer them to human bodies. The general behavior of HMs in the environment, especially their bioavailability in the soil, is influenced by their origin. Hence, source apportionment of HMs may provide some essential information for better management of polluted soils to restrict the HMs entrance to the human food chain. This paper explores the applicability of multivariate statistical techniques in the identification of probable sources that can control the concentration and distribution of selected HMs in the soils surrounding the Zanjan Zinc Specialized Industrial Town (briefly Zinc Town. Materials and Methods: The area under investigation has a size of approximately 4000 ha.It is located around the Zinc Town, Zanjan province. A regular grid sampling pattern with an interval of 500 meters was applied to identify the sample location, and 184 topsoil samples (0-10 cm were collected. The soil samples were air-dried and sieved through a 2 mm polyethylene sieve and then, were digested using HNO3. The total concentrations of zinc (Zn, lead (Pb, cadmium (Cd, Nickel (Ni and copper (Cu in the soil solutions were determined via Atomic Absorption Spectroscopy (AAS. Data were statistically analyzed using the SPSS software version 17.0 for Windows. Correlation Matrix (CM, Principal Component Analyses (PCA and Factor Analyses (FA techniques were performed in order to identify the probable sources of HMs in the studied soils. Results and

  10. Ecological risk assessment of heavy metals in soils surrounding oil waste disposal areas.

    Science.gov (United States)

    Xu, Jianling; Wang, Hanxi; Liu, Yuanyuan; Ma, Mengchao; Zhang, Tian; Zheng, Xiaoxue; Zong, Meihan

    2016-02-01

    More attention is being devoted to heavy metal pollution because heavy metals can concentrate in higher animals through the food chain, harm human health and threaten the stability of the ecological environment. In this study, the effects of heavy metals (Cu, Cr, Zn, Pb, Cd, Ni and Hg) emanating from oil waste disposal on surrounding soil in Jilin Province, China, were investigated. A potential ecological risk index was used to evaluate the damage of heavy metals and concluded that the degree of potential ecological damage of heavy metals can be ranked as follows: Hg > Cd > Pb > Cu > Ni > Cr > Zn. The average value of the potential ecological harm index (Ri) is 71.93, thereby indicating light pollution. In addition, this study researched the spatial distribution of soil heavy metals by means of ArcGIS (geographic information system) spatial analysis software. The results showed that the potential ecological risk index (R) of the large value was close to the distance from the oil waste disposal area; it is relatively between the degree of heavy metals in soil and the distance from the waste disposal area.

  11. Mercury's interior, surface, and surrounding environment latest discoveries

    CERN Document Server

    Clark, Pamela Elizabeth

    2015-01-01

    This SpringerBrief details the MESSENGER Mission, the findings of which present challenges to widely held conventional views and remaining mysteries surrounding the planet. The work answers the question of why Mercury is so dense, and the implications from geochemical data on its planetary formation. It summarizes imaging and compositional data from the terrestrial planet surface processes and explains the geologic history of Mercury.  It also discusses the lack of southern hemisphere coverage. Our understanding of the planet Mercury has been in a transitional phase over the decades since Mariner 10. The influx of new data from the NASA MESSENGER Mission since it was inserted into the orbit of Mercury in March of 2011 has greatly accelerated that shift. The combined compositional data of relatively high volatiles (S, K), relatively low refractories (Al, Ca), and low crustal iron, combined with an active, partially molten iron rich core, has major implications for Mercury and Solar System formation. From a s...

  12. Activity and population dynamics of heterotrophic and ammonia-oxidizing microorganisms in soil surrounding sludge bands spiked with linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Brandt, K. K.; Sørensen, J.; Krogh, P. H.

    2003-01-01

    Recent research has documented soil microorganisms to be rather sensitive to linear alkylbenzene sulfonates (LAS), which may enter the soil environment in considerable quantities following sewage sludge disposal. We here report field effects of LAS on selected microbial populations present...... in a sandy soil surrounding well-defined sludge bands spiked with high but realistic LAS levels (7.1 or 31.3 g/kg). Surprisingly, LAS had no effect on heterotrophic respiration in the sludge compartment per se but stimulated activity and metabolic quotient (microbial activity per unit of biomass......) in the surrounding soil. By contrast, autotrophic ammonia oxidation was initially inhibited in the LAS-spiked sludge. This led to dramatic transient increases of NH+4 availability in the sludge and surrounding soil, subsequently stimulating soil ammonia oxidizers. As judged from a Nitrosomonas europaea...

  13. SOILS AND GEOENVIRONMENTS OF THE NATIONAL PARK OF VIRUÁ AND SURROUNDING, RORAIMA: INTEGRATED VISION OF THE LANDSCAPE AND ENVIRONMENTAL SERVICE

    Directory of Open Access Journals (Sweden)

    Bruno Araujo Furtado de Mendonça

    2013-06-01

    Full Text Available http://dx.doi.org/10.5902/198050989287The Viruá National Park (PARNA Viruá occupies 227.011ha, in the region of the low ‘Branco’ river, in Roraima state. This area includes an extensive mosaic of complex seasonally flooded forested and non-forested environments. The present work had as general objective to characterize the pedology aspects and the geo-environmental units of the Park and surroundings, in an integrated vision of the landscape and, additionally, estimate the carbon stocks in the soils and geo-environments. We described and collected 29 soil profiles in the main vegetation types of Campinaranas and Forests of PARNA Viruá and surroundings. The main soil classes are: Espodossolo Humilúvico, Neossolo Quartzarênico, Neossolo Flúvico, Neossolo Litólicos, Latossolo Vermelho-Amarelo, Latossolo Vermelho, Cambissolo Háplico, Cambissolo Flúvico, Gleissolo Háplico and Plintossolo Háplico. The soils present spatial distribution marked by abrupt limits and close association with the vegetation type. We identified three pedo-environments: (1 sandy soils of the Campinaranas; (2 soils associated with the inselbergs and adjacencies; and (3 alluvial soils. We mapped and described 18 geoenvironmental units in PARNA Viruá National Park. The main geo-environments are: i Sandy plains and Paleodunes with grassy and arborous Campinarana on ‘Neossolos Quartzarênicos hidromórficos’ and ‘Espodossolos’; and Floodplains and; ii Terraces with Igapó Forest on sandy hydromorphic soils, occupying 24.6% and 20.1% of the studied area, respectively. In terms of total soil carbon stocks, the geo-environments of the sandy complexes of Campinaranas and associations stand out, with 9450.9 Gg C. The great extension and representativeness of the sandy areas of Campinaranas characterize PARNA Viruá PArk as an important conservation unit for protection Amazonian sandy soil systems. The areas under the domain of ‘Espodossolos’ possess the

  14. 454 Pyrosequencing-based assessment of bacterial diversity and community structure in termite guts, mounds and surrounding soils.

    Science.gov (United States)

    Makonde, Huxley M; Mwirichia, Romano; Osiemo, Zipporah; Boga, Hamadi I; Klenk, Hans-Peter

    2015-01-01

    Termites constitute part of diverse and economically important termite fauna in Africa, but information on gut microbiota and their associated soil microbiome is still inadequate. In this study, we assessed and compared the bacterial diversity and community structure between termites' gut, their mounds and surrounding soil using the 454 pyrosequencing-based analysis of 16S rRNA gene sequences. A wood-feeder termite (Microcerotermes sp.), three fungus-cultivating termites (Macrotermes michaelseni, Odontotermes sp. and Microtermes sp.), their associated mounds and corresponding savannah soil samples were analyzed. The pH of the gut homogenates and soil physico-chemical properties were determined. The results indicated significant difference in bacterial community composition and structure between the gut and corresponding soil samples. Soil samples (Chao1 index ranged from 1359 to 2619) had higher species richness than gut samples (Chao1 index ranged from 461 to 1527). The bacterial composition and community structure in the gut of Macrotermes michaelseni and Odontotermes sp. were almost identical but different from that of Microtermes and Microcerotermes species, which had unique community structures. The most predominant bacterial phyla in the gut were Bacteroidetes (40-58 %), Spirochaetes (10-70 %), Firmicutes (17-27 %) and Fibrobacteres (13 %) while in the soil samples were Acidobacteria (28-45 %), Actinobacteria (20-40 %) and Proteobacteria (18-24 %). Some termite gut-specific bacterial lineages belonging to the genera Dysgonomonas, Parabacteroides, Paludibacter, Tannerella, Alistipes, BCf9-17 termite group and Termite Treponema cluster were observed. The results not only demonstrated a high level of bacterial diversity in the gut and surrounding soil environments, but also presence of distinct bacterial communities that are yet to be cultivated. Therefore, combined efforts using both culture and culture-independent methods are suggested to

  15. The Effects of GH Transgenic Goats on the Microflora of the Intestine, Feces and Surrounding Soil.

    Directory of Open Access Journals (Sweden)

    Zekun Bao

    Full Text Available The development of genetically engineered animals has brought with it increasing concerns about biosafety issues. We therefore evaluated the risks of growth hormone from transgenic goats, including the probability of horizontal gene transfer and the impact on the microbial community of the goats' gastrointestinal tracts, feces and the surrounding soil. The results showed that neither the GH nor the neoR gene could be detected in the samples. Moreover, there was no significant change in the microbial community of the gastrointestinal tracts, feces and soil, as tested with PCR-denaturing gradient gel electrophoresis and 16S rDNA sequencing. Finally, phylogenetic analysis showed that the intestinal content, feces and soil samples all contained the same dominant group of bacteria. These results demonstrated that expression of goat growth hormone in the mammary of GH transgenic goat does not influence the microflora of the intestine, feces and surrounding soil.

  16. The Effects of GH Transgenic Goats on the Microflora of the Intestine, Feces and Surrounding Soil.

    Science.gov (United States)

    Bao, Zekun; Gao, Xue; Zhang, Qiang; Lin, Jian; Hu, Weiwei; Yu, Huiqing; Chen, Jianquan; Yang, Qian; Yu, Qinghua

    2015-01-01

    The development of genetically engineered animals has brought with it increasing concerns about biosafety issues. We therefore evaluated the risks of growth hormone from transgenic goats, including the probability of horizontal gene transfer and the impact on the microbial community of the goats' gastrointestinal tracts, feces and the surrounding soil. The results showed that neither the GH nor the neoR gene could be detected in the samples. Moreover, there was no significant change in the microbial community of the gastrointestinal tracts, feces and soil, as tested with PCR-denaturing gradient gel electrophoresis and 16S rDNA sequencing. Finally, phylogenetic analysis showed that the intestinal content, feces and soil samples all contained the same dominant group of bacteria. These results demonstrated that expression of goat growth hormone in the mammary of GH transgenic goat does not influence the microflora of the intestine, feces and surrounding soil.

  17. INTERACTION OF A LONG PILE OF FINITE STIFFNESS WITH SURROUNDING SOIL AND FOUNDATION CAP

    Directory of Open Access Journals (Sweden)

    Ter-Martirosyan Zaven Grigor’evich

    2015-09-01

    Full Text Available The article presents the formulation and analytical solution to a quantification of stress strain state of a two-layer soil cylinder enclosing a long pile, interacting with the cap. The solution of the problem is considered for two cases: with and without account for the settlement of the heel and the underlying soil. In the first case, the article is offering equations for determining the stresses of pile’s body and the surrounding soil according to their hardness and the ratio of radiuses of the pile and the surrounding soil cylinder, as well as formulating for determining equivalent deformation modulus of the system “cap-pile-surrounding soil” (the system. Assessing the carrying capacity of the soil under pile’s heel is of great necessity. In the second case, the article is solving a second-order differential equation. We gave the formulas for determining the stresses of the pile at its top and heel, as well as the variation of stresses along the pile’s body. The article is also formulating for determining the settlement of the foundation cap and equivalent deformation modulus of the system. It is shown that, pushing the pile into underlying layer results in the reducing of equivalent modulus of the system.

  18. Spatial distribution and accumulation of Hg in soil surrounding a Zn/Pb smelter.

    Science.gov (United States)

    Wu, Qingru; Wang, Shuxiao; Wang, Long; Liu, Fang; Lin, Che-Jen; Zhang, Lei; Wang, Fengyang

    2014-10-15

    Nonferrous metal smelting is an important atmospheric mercury (Hg) emission source that has significant local and global impacts. To quantify the impact of Hg emission from non-ferrous metal smelter on the surrounding soil, an integrated model parameterizing the processes of smelter emission, air dispersion, atmospheric deposition and Hg accumulation in soil was developed. The concentrations of gaseous elemental Hg (GEM) around the smelter and the spatial distribution of Hg in the surrounding soil were measured and compared with the model results. Atmospheric deposition of Hg emitted from the smelter was identified as the main source of Hg accumulation in the surrounding soil. From 1960 to 2011, the smelter emitted approximately 105 t of Hg into the atmosphere, of which 15 t deposited locally and resulted in an increase of Hg concentration in soil from 0.12 to 1.77 mg kg(-1). A detailed examination of wind rose and model data suggested that the area within 1.0-1.5 km northwest and southeast of the smelter was most severely impacted. It was estimated that the smelter operation from 1969 to 1990, when large scale emission controls were not implemented, resulted in 6450 μg m(-2)yr(-1) of Hg net deposition and a model simulated increase of 0.40 mg kg(-1) of Hg accumulation in the soil. During the period from 1991 to 2011, atmospheric Hg emission from the smelter alone increased the average concentration in soil from 0.41 mg kg(-1) to 0.45 mg kg(-1). In the past 50 years, over 86% of Hg emitted from this smelter went into the global pool, indicating the importance of controlling Hg emissions from non-ferrous metal smelters.

  19. Activity and population dynamics of heterotrophic and ammonia-oxidizing microorganisms in soil surrounding sludge bands spiked with linear alkylbenzene sulfonate: a field study.

    Science.gov (United States)

    Brandt, Kristian Koefoed; Krogh, Paul Henning; Sørensen, Jan

    2003-04-01

    Recent research has documented soil microorganisms to be rather sensitive to linear alkylbenzene sulfonates (LAS), which may enter the soil environment in considerable quantities following sewage sludge disposal. We here report field effects of LAS on selected microbial populations present in a sandy soil surrounding well-defined sludge bands spiked with high but realistic LAS levels (7.1 or 31.3 g/kg). Surprisingly, LAS had no effect on heterotrophic respiration in the sludge compartment per se but stimulated activity and metabolic quotient (microbial activity per unit of biomass) in the surrounding soil. By contrast, autotrophic ammonia oxidation was initially inhibited in the LAS-spiked sludge. This led to dramatic transient increases of NH4+ availability in the sludge and surrounding soil, subsequently stimulating soil ammonia oxidizers. As judged from a Nitrosomonas europaea bioluminescence toxicity assay, however, LAS or other sludge components never accumulated to toxic levels in the soil compartments and the LAS tolerance of the indigenous microbes further remained unchanged following LAS exposure. LAS effects on the investigated microbial populations largely occurred during the first two months and were confined to soil closer than 30 mm from LAS-spiked sludge. Our results strongly suggest that disposal of LAS-contaminated sludge does not pose a major risk to the function of the soil microbial community under field conditions.

  20. Emissions of Escherichia coli Carrying Extended-Spectrum β-Lactamase Resistance from Pig Farms to the Surrounding Environment

    Directory of Open Access Journals (Sweden)

    Lili Gao

    2015-04-01

    Full Text Available The dissemination of extended-spectrum β-lactamase (ESBL-producing Escherichia coli (E. coli from food-producing animals to the surrounding environment has attracted much attention. To determine the emissions of ESBL-producing E. coli from pig farms to the surrounding environment, fecal and environmental samples from six pig farms were collected. In total, 119 ESBL-producing E. coli were isolated from feces, air samples, water, sludge and soil samples. Antibiotic susceptibility testing showed that the ESBL-producing isolates were resistant to multiple antibiotics and isolates of different origin within the same farm showed similar resistance phenotypes. Both CTX-M and TEM ESBL-encoding genes were detected in these isolates. CTX-M-14 and CTX-M-15 were the predominant ESBL genes identified. ESBL producers from feces and environmental samples within the same farm carried similar CTX-M types. The results indicated that the ESBL-producing E. coli carrying multidrug resistance could readily disseminate to the surrounding environment.

  1. Soil mercury levels in the area surrounding the Cerro Prieto geothermal complex, MEXICO.

    Science.gov (United States)

    Pastrana-Corral, M A; Wakida, F T; García-Flores, E; Rodriguez-Mendivil, D D; Quiñonez-Plaza, A; Piñon-Colin, T D J

    2016-08-01

    Even though geothermal energy is a renewable energy source that is seen as cost-effective and environmentally friendly, emissions from geothermal plants can impact air, soil, and water in the vicinity of geothermal power plants. The Cerro Prieto geothermal complex is located 30 km southeast of the city of Mexicali in the Mexican state of Baja California. Its installed electricity generation capacity is 720 MW, being the largest geothermal complex in Mexico. The objective of this study was to evaluate whether the emissions generated by the geothermal complex have increased the soil mercury concentration in the surrounding areas. Fifty-four surface soil samples were collected from the perimeter up to an approximate distance of 7660 m from the complex. Additionally, four soil depth profiles were performed in the vicinity of the complex. Mercury concentration in 69 % of the samples was higher than the mercury concentration found at the baseline sites. The mercury concentration ranged from 0.01 to 0.26 mg/kg. Our results show that the activities of the geothermal complex have led to an accumulation of mercury in the soil of the surrounding area. More studies are needed to determine the risk to human health and the ecosystems in the study area.

  2. Metagenomic analysis of bacterial and archaeal assemblages in the soil-mousse surrounding a geothermal spring.

    Science.gov (United States)

    Bhatia, Sonu; Batra, Navneet; Pathak, Ashish; Joshi, Amit; Souza, Leila; Almeida, Paulo; Chauhan, Ashvini

    2015-09-01

    The soil-mousse surrounding a geothermal spring was analyzed for bacterial and archaeal diversity using 16S rRNA gene amplicon metagenomic sequencing which revealed the presence of 18 bacterial phyla distributed across 109 families and 219 genera. Firmicutes, Actinobacteria, and the Deinococcus-Thermus group were the predominant bacterial assemblages with Crenarchaeota and Thaumarchaeota as the main archaeal assemblages in this largely understudied geothermal habitat. Several metagenome sequences remained taxonomically unassigned suggesting the presence of a repertoire of hitherto undescribed microbes in this geothermal soil-mousse econiche.

  3. Soil pollution in Mitrovica town surroundings and absorption of heavy metals by carrot plant

    OpenAIRE

    , Afete Musliu; Seit Shallari

    2013-01-01

    In this paper is studied a heavy meal presence in soil in industrial zone surroundings in Mitrovica town and its impact on the vegetable species, referring on this paper to a carrot. The town of Mitrovica, has the largest complex metallurgy and mining in Europe known as "Trepca", known for exploitation of lead, zinc and cadmium, which town is one of the most polluted cities in Kosovo as in air, soil and water, in particular neighbourhood of industrial zone. The purpose of this work is to make...

  4. Metagenomic analysis of bacterial and archaeal assemblages in the soil-mousse surrounding a geothermal spring

    Directory of Open Access Journals (Sweden)

    Sonu Bhatia

    2015-09-01

    Full Text Available The soil-mousse surrounding a geothermal spring was analyzed for bacterial and archaeal diversity using 16S rRNA gene amplicon metagenomic sequencing which revealed the presence of 18 bacterial phyla distributed across 109 families and 219 genera. Firmicutes, Actinobacteria, and the Deinococcus-Thermus group were the predominant bacterial assemblages with Crenarchaeota and Thaumarchaeota as the main archaeal assemblages in this largely understudied geothermal habitat. Several metagenome sequences remained taxonomically unassigned suggesting the presence of a repertoire of hitherto undescribed microbes in this geothermal soil-mousse econiche.

  5. Natural radionuclides in soil profiles surrounding the largest coal-fired power plant in Serbia

    Directory of Open Access Journals (Sweden)

    Tanić Milan N.

    2016-01-01

    Full Text Available This study evaluates the influence of the largest Serbian coal-fired power plant on radionuclide concentrations in soil profiles up to 50 cm in depth. Thirty soil profiles were sampled from the plant surroundings (up to 10 km distance and analyzed using standard methods for soil physicochemical properties and gamma ray spectrometry for specific activities of natural radionuclides (40K, 226Ra and 232Th. Spatial and vertical distribution of radionuclides was determined and analyzed to show the relations between the specific activities in the soil and soil properties and the most influential factors of natural radionuclide variability were identified. The radiological indices for surface soil were calculated and radiological risk assessment was performed. The measured specific activities were similar to values of background levels for Serbia. The sampling depth did not show any significant influence on specific activities of natural radionuclides. The strongest predictor of specific activities of the investigated radionuclides was soil granulometry. All parameters of radiological risk assessment were below the recommended values and adopted limits. It appears that the coal-fired power plant does not have a significant impact on the spatial and vertical distribution of natural radionuclides in the area of interest, but technologically enhanced natural radioactivity as a consequence of the plant operations was identified within the first 1.5 km from the power plant. [Projekat Ministarstva nauke Republike Srbije br. III43009 i br. III41005

  6. Dispersion of Short- and Medium-Chain Chlorinated Paraffins (CPs) from a CP Production Plant to the Surrounding Surface Soils and Coniferous Leaves.

    Science.gov (United States)

    Xu, Jiazhi; Gao, Yuan; Zhang, Haijun; Zhan, Faqiang; Chen, Jiping

    2016-12-06

    Chlorinated paraffin (CP) production is one important emission source for short- and medium-chain CPs (SCCPs and MCCPs) in the environment. In this study, 48 CP congener groups were measured in the surface soils and coniferous leaves collected from the inner and surrounding environment of a CP production plant that has been in operation for more than 30 years to investigate the dispersion and deposition behavior of SCCPs and MCCPs. The average concentrations of the sum of SCCPs and MCCPs in the in-plant coniferous leaves and surface soils were 4548.7 ng g(-1) dry weight (dw) and 3481.8 ng g(-1) dw, which were 2-fold and 10-fold higher than those in the surrounding environment, respectively. The Gaussian air pollution model explained the spatial distribution of CPs in the coniferous leaves, whereas the dispersion of CPs to the surrounding surface soils fits the Boltzmann equation well. Significant fractionation effect was observed for the atmospheric dispersion of CPs from the production plant. CP congener groups with higher octanol-air partitioning coefficients (KOA) were more predominant in the in-plant environment, whereas the ones with lower KOA values had the elevated proportion in the surrounding environment. A radius of approximately 4 km from the CP production plant was influenced by the atmospheric dispersion and deposition of CPs.

  7. Soil pollution in surroundings of Litija as a reflectionofmining,metallurgy and natural conditions

    Directory of Open Access Journals (Sweden)

    Mateja Gosar

    2007-06-01

    Full Text Available The influence of mining and metallurgic activities as well as natural conditionson heavy metal pollution in Litija and surroundings was defined.Sampling gridinan area of 30 km2 was determined. Soil samples were collected on 120 equally distributed locations in two different depths: horizon A (0–5cm and horizon B (20–30cm.In total researched area concentrations of considered elements in upper soil horizon exceed the official limit concentration on 24km2, warning concentration on 20 km2 and critical concentration on 1.6 km2. Pollution of bottom soil horizon is several times lower. The highest are contents of lead, mercury and arsenic. Areas of enhanced concentrations include a hill Sitarjevec and hill base Podsitarjevec, where the dumps of mining waste and metallurgic slag are situated. Increased concentrations of heavy metals were determined also in the immediate vicinity of former smelter.

  8. Trace Metals in Surface Soil Contaminated by Release of Phosphate Industry in the Surroundings of Sfax-Tunisia

    Directory of Open Access Journals (Sweden)

    Ahmed Wali

    2013-10-01

    Full Text Available There is a worldwide growing concern about soil pollution caused by phosphate industry creating thus large amounts of phosphogypsum slurry. This slurry is piped from the processing facilities up into acidic wastewater ponds that sit atop the mountainous waste piles known as gypsum stacks. This issue is of special interest because of toxic metals threats to groundwater tables as well as to the surrounding environment.There is a worldwide growing concern about soil pollution caused by phosphate industry creating thus large amounts of phosphogypsum slurry. This slurry is piped from the processing facilities up into acidic wastewater ponds that sit atop the mountainous waste piles known as gypsum stacks. This issue is of special interest because of toxic metals threats to groundwater tables as well as to the surrounding environment.The aim of the present work is to assess the level of trace elements content in soil around stocked solid waste “a phosphogypsum” derived from a former phosphate fertilizers factory and to investigate their factors of variation. Twenty soil samples were collected at the depths of 20 cm and analyzed for their physicochemical properties, the content of their major elements (Ca, Mg, K, Na, Al, Fe, Mn, and some trace elements such as Zn, Pb, Cr, Cu, Co and Ni. Data were processed with multivariate statistical analysis in order to investigate relationships among the trace elements and the factors controlling their distribution in the phosphogypsum surrounding environment. Enrichment factors (EF were calculated to assess either natural and/or anthropogenic origins. The results indicate moderate levels of contamination and big differences in variability among elements. The maximal and mean concentrations found in soil, except the soil sample S5.1, were 95.2 and 36.5 mg Kg-1 for Zn, 75.2 and 30.23 mg Kg-1 for Pb, 28.4 and 17.5 mg Kg-1 for Cr, 61.9 and 15.6 mg Kg-1 for Cu, 5.28 and 2.7 mg Kg-1 for Co, and 13.2 and 6.4 mg Kg-1

  9. Camouflaging in a complex environment--octopuses use specific features of their surroundings for background matching.

    Science.gov (United States)

    Josef, Noam; Amodio, Piero; Fiorito, Graziano; Shashar, Nadav

    2012-01-01

    Living under intense predation pressure, octopuses evolved an effective and impressive camouflaging ability that exploits features of their surroundings to enable them to "blend in." To achieve such background matching, an animal may use general resemblance and reproduce characteristics of its entire surroundings, or it may imitate a specific object in its immediate environment. Using image analysis algorithms, we examined correlations between octopuses and their backgrounds. Field experiments show that when camouflaging, Octopus cyanea and O. vulgaris base their body patterns on selected features of nearby objects rather than attempting to match a large field of view. Such an approach enables the octopus to camouflage in partly occluded environments and to solve the problem of differences in appearance as a function of the viewing inclination of the observer.

  10. Camouflaging in a complex environment--octopuses use specific features of their surroundings for background matching.

    Directory of Open Access Journals (Sweden)

    Noam Josef

    Full Text Available Living under intense predation pressure, octopuses evolved an effective and impressive camouflaging ability that exploits features of their surroundings to enable them to "blend in." To achieve such background matching, an animal may use general resemblance and reproduce characteristics of its entire surroundings, or it may imitate a specific object in its immediate environment. Using image analysis algorithms, we examined correlations between octopuses and their backgrounds. Field experiments show that when camouflaging, Octopus cyanea and O. vulgaris base their body patterns on selected features of nearby objects rather than attempting to match a large field of view. Such an approach enables the octopus to camouflage in partly occluded environments and to solve the problem of differences in appearance as a function of the viewing inclination of the observer.

  11. [Concentration levels and spatial distribution of heavy metals in soil surrounding a municipal solid waste incineration plant (Shenzhen)].

    Science.gov (United States)

    Wang, Jun-Jian; Zhao, Hong-Wei; Zhong, Xiu-Ping; Liu, Yang-Sheng; Zeng, Hui

    2011-01-01

    The municipal solid waste (MSW) incineration has been well known among key sources of heavy metal (HM) emission. To investigate the multivariate relationships and spatial distribution of HMs from this source, 9 HMs (Hg, As, Cd, Cr, Cu, Ni, Pb, Se and Zn) were analysed by multivariate statistical analysis in 80 representative soil samples including surface soils and subsurface soils around the Shenzhen Qingshuihe MSW Incineration Plant (MSWIP). Results show that, the concentrations of Hg, As, Cd, Cr, Cu, Ni, Pb, Se and Zn range 0.012-0.136, 0.23-75.89, not detected (ND)-1.17, 21.7-116.0, ND-61.1, ND-47.0, ND-133.0, ND-16.4 and 8.6-246.9 mg x kg(-1), respectively. No significant elevation of concentrations of HMs in soils is observed, compared with the natural background. Based on the hierarchical cluster and historical analysis, the spatial correlations of HMs have been changed by the impact of MSWIP. According to the similarity of concentration, the HMs can be divided into 3 categories: (1) Cu, Ni, Cr, Se, Zn, Pb; (2) As, Cd; (3) Hg. Factors analysis was also performed and shows that the HM distribution patterns are dominantly affected by 3 principal components: local biogeochemical characteristics (48.6% of variance), impact of the MSWIP (16.6% of variance) as well as topographical characteristics (13.2% of variance). Subsequently the 3 maps of factor scores are calculated and exhibited. This study favors to estimate the long-term effects of HM emission from MSWIP on surrounding soil environment and facilitate the local health risk assessment.

  12. Sampling and analysis plan for assessment of beryllium in soils surrounding TA-40 building 15

    Energy Technology Data Exchange (ETDEWEB)

    Ruedig, Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-19

    Technical Area (TA) 40 Building 15 (40-15) is an active firing site at Los Alamos National Laboratory. The weapons facility operations (WFO) group plans to build an enclosure over the site in 2017, so that test shots may be conducted year-round. The enclosure project is described in PRID 16P-0209. 40-15 is listed on LANL OSH-ISH’s beryllium inventory, which reflects the potential for beryllium in/on soils and building surfaces at 40-15. Some areas in and around 40-15 have previously been sampled for beryllium, but past sampling efforts did not achieve complete spatial coverage of the area. This Sampling and Analysis Plan (SAP) investigates the area surrounding 40-15 via 9 deep (≥1-ft.) soil samples and 11 shallow (6-in.) soil samples. These samples will fill the spatial data gaps for beryllium at 40-15, and will be used to support OSH-ISH’s final determination of 40-15’s beryllium registry status. This SAP has been prepared by the Environmental Health Physics program in consultation with the Industrial Hygiene program. Industrial Hygiene is the owner of LANL’s beryllium program, and will make a final determination with regard to the regulatory status of beryllium at 40-15.

  13. Impact of mine tailings on surrounding soils and ground water: Case of Kettara old mine, Morocco

    Science.gov (United States)

    El Amari, K.; Valera, P.; Hibti, M.; Pretti, S.; Marcello, A.; Essarraj, S.

    2014-12-01

    The old ochre-pyrrhotite mine of Kettara, near Marrakech (Morocco) ceased operating some 30 years ago but its excavations, plants, and tailings have been totally abandoned since then. Geochemical analyses of the soils, stream sediments and waters of the surrounding area were carried out to assess the pollution impact of this mining site. Tailing characterization showed the presence of sulphide primary minerals, as well as secondary ones containing among others (Fe, S, Cu, Pb, Zn, Cd, Ni, Cr, Co, As, Se). In spite of the presence of theses pollutants in the Acid Mine Drainage (AMD) of Kettara, groundwater did not show significant levels of these metals probably related to the low ion circulation under the local dry climate with low annual rainfall that prevents metal ion circulation. The chemical analyses of soil and stream sediment samples included elements most of which are internationally considered as dangerous for human health (As, Cd, Co, Cr, Cu, Fe, Ni, Pb, S, Se and Zn). Geochemical maps of these elements showed that Cr and Ni were linked to mafic intrusions of Kettara sector. Sulphur is linked to the mining activity and the others are related both to lithological outcrops and mining activity. However, the levels of these contaminants did not exceed Italian Standards of soil pollution.

  14. Lithological and land-use based assessment of heavy metal pollution in soils surrounding a cement plant in SW Europe.

    Science.gov (United States)

    Cutillas-Barreiro, Laura; Pérez-Rodríguez, Paula; Gómez-Armesto, Antía; Fernández-Sanjurjo, María José; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos

    2016-08-15

    We study the influence of phasing out a cement plant on the heavy metal (Hg, Pb and Cr) content in the surrounding soils, taking into account factors often neglected, such as contributions due to local lithology or land use. The range of total Hg was 10-144µg kg(-1), reaching up to 41 and 145mgkg(-1) for total contents of Pb and Cr, respectively. Forest soils showed higher concentration of Hg than prairie soils, indicating the importance of land use on the accumulation of volatile heavy metals in soils. In forest soils, total Hg showed a trend to decrease with soil depth, whereas in prairie soils the vertical pattern of heavy metal concentrations was quite homogeneous. In most cases, the distance to the cement plant was not a factor of influence in the soils content of the analyzed heavy metals. Total Pb and Cr contents in soils nearby the cement plant were quite similar to those found in the local lithology, resulting in enrichment factor values (EF's) below 2. This suggests that soil parent material is the main source of these heavy metals in the studied soils, while the contribution of the cement plant to Pb and Cr soil pollution was almost negligible. On the contrary, the soils surrounding the cement plant accumulate a significant amount of Hg, compared to the underlying lithology. This was especially noticeable in forest soils, where Hg EF achieved values up to 36. These results are of relevance, bearing in mind that Hg accumulation in soils may be an issue of environmental concern, particularly in prairie soils, where temporal flooding can favor Hg transformation to highly toxic methyl-Hg. In addition, the concurrence of acid soils and total-Cr concentrations in the range of those considered phytotoxic should be also stressed.

  15. Bioavailability of Xenobiotics in the Soil Environment

    NARCIS (Netherlands)

    Katayama, A.; Bhula, R.; Burns, G.R.; Carazo, E.; Felsot, A.; Hamilton, D.; Harris, C.; Kim, Y.H.; Kleter, G.A.; Koedel, W.; Linders, J.; Peijnenburg, J.G.M.W.; Sabljic, A.; Stephenson, R.G.; Racke, D.K.; Rubin, B.; Tanaka, K.; Unsworth, J.; Wauchope, R.D.

    2010-01-01

    When synthetic, xenobiotic compounds such as agrochemicals and industrial chemicals are utilized, they eventually reach the soil environment where they are subject to degradation, leaching, volatilization, sorption, and uptake by organisms. The simplest assumption is that such chemicals in soil are

  16. Biological soil crusts as an integral component of desert environments

    Science.gov (United States)

    Belnap, Jayne; Weber, Bettina

    2013-01-01

    The biology and ecology of biological soil crusts, a soil surface community of mosses, lichens, cyanobacteria, green algae, fungi, and bacteria, have only recently been a topic of research. Most efforts began in the western U.S. (Cameron, Harper, Rushforth, and St. Clair), Australia (Rogers), and Israel (Friedmann, Evenari, and Lange) in the late 1960s and 1970s (e.g., Friedmann et al. 1967; Evenari 1985reviewed in Harper and Marble 1988). However, these groups worked independently of each other and, in fact, were often not aware of each other’s work. In addition, biological soil crust communities were seen as more a novelty than a critical component of dryland ecosystems. Since then, researchers have investigated many different aspects of these communities and have shown that although small to microscopic, biological soil crusts are critical in many ecological processes of deserts. They often cover most of desert soil surfaces and substantially mediate inputs and outputs from desert soils (Belnap et al. 2003). They can be a large source of biodiversity for deserts, as they can contain more species than the surrounding vascular plant community (Rosentreter 1986). These communities are important in reducing soil erosion and increasing soil fertility through the capture of dust and the fixation of atmospheric nitrogen and carbon into forms available to other life forms (Elbert et al. 2012). Because of their many effects on soil characteristics, such as external and internal morphological characteristics, aggregate stability, soil moisture, and permeability, they also affect seed germination and establishment and local hydrological cycles. Covering up to 70% of the surface area in many arid and semi-arid regions around the world (Belnap and Lange 2003), biological soil crusts are a key component within desert environments.

  17. Immersive Environments: Using Flow and Sound to Blur Inhabitant and Surroundings

    Science.gov (United States)

    Laverty, Luke

    Following in the footsteps of motif-reviving, aesthetically-focused Postmodern and deconstructivist architecture, purely computer-generated formalist contemporary architecture (i.e. blobitecture) has been reduced to vast, empty sculptural, and therefore, purely ocularcentric gestures for their own sake. Taking precedent over the deliberate relation to the people inhabiting them beyond scaleless visual stimulation, the forms become separated from and hostile toward their inhabitants; a boundary appears. This thesis calls for a reintroduction of human-centered design beyond Modern functionalism and ergonomics and Postmodern form and metaphor into architecture by exploring ecological psychology (specifically how one becomes attached to objects) and phenomenology (specifically sound) in an attempt to reach a contemporary human scale using the technology of today: the physiological mind. Psychologist Dr. Mihaly Csikszentmihalyi's concept of flow---when one becomes so mentally immersed within the current activity and immediate surroundings that the boundary between inhabitant and environment becomes transparent through a form of trance---is the embodiment of this thesis' goal, but it is limited to only specific moments throughout the day and typically studied without regard to the environment. Physiologically, the area within the brain---the medial prefrontal cortex---stimulated during flow experiences is also stimulated by the synthesis of sound, memory, and emotion. By exploiting sound (a sense not typically focused on within phenomenology) as a form of constant nuance within the everyday productive dissonance, the engagement and complete concentration on one's own interpretation of this sensory input affords flow experiences and, therefore, a blurred boundary with one's environment. This thesis aims to answer the question: How does the built environment embody flow? The above concept will be illustrated within a ubiquitous building type---the everyday housing tower

  18. The connection between AGN-driven dusty outflows and the surrounding environment

    Science.gov (United States)

    Ishibashi, W.; Fabian, A. C.

    2016-04-01

    Significant reservoirs of cool gas are observed in the circumgalactic medium (CGM) surrounding galaxies. The CGM is also found to contain substantial amounts of metals and dust, which require some transport mechanism. We consider AGN (active galactic nucleus) feedback-driven outflows based on radiation pressure on dust. Dusty gas is ejected when the central luminosity exceeds the effective Eddington luminosity for dust. We obtain that a higher dust-to-gas ratio leads to a lower critical luminosity, implying that the more dusty gas is more easily expelled. Dusty outflows can reach large radii with a range of velocities (depending on the outflowing shell configuration and the ambient density distribution) and may account for the observed CGM gas. In our picture, dust is required in order to drive AGN feedback, and the preferential expulsion of dusty gas in the outflows may naturally explain the presence of dust in the CGM. On the other hand, the most powerful AGN outflow events can potentially drive gas out of the local galaxy group. We further discuss the effects of radiation pressure of the central AGN on satellite galaxies. AGN radiative feedback may therefore have a significant impact on the evolution of the whole surrounding environment.

  19. Uranium in the Surrounding of San Marcos-Sacramento River Environment (Chihuahua, Mexico)

    Science.gov (United States)

    Rentería-Villalobos, Marusia; Cortés, Manuel Reyes; Mantero, Juan; Manjón, Guillermo; García-Tenorio, Rafael; Herrera, Eduardo; Montero-Cabrera, Maria Elena

    2012-01-01

    The main interest of this study is to assess whether uranium deposits located in the San Marcos outcrops (NW of Chihuahua City, Mexico) could be considered as a source of U-isotopes in its surrounding environment. Uranium activity concentrations were determined in biota, ground, and surface water by either alpha or liquid scintillation spectrometries. Major ions were analyzed by ICP-OES in surface water and its suspended matter. For determining uranium activity in biota, samples were divided in parts. The results have shown a possible lixiviation and infiltration of uranium from geological substrate into the ground and surface water, and consequently, a transfer to biota. Calculated annual effective doses by ingestion suggest that U-isotopes in biota could not negligibly contribute to the neighboring population dose. By all these considerations, it is concluded that in this zone there is natural enhancement of uranium in all environmental samples analyzed in the present work. PMID:22536148

  20. Uranium in the Surrounding of San Marcos-Sacramento River Environment (Chihuahua, Mexico

    Directory of Open Access Journals (Sweden)

    Marusia Rentería-Villalobos

    2012-01-01

    Full Text Available The main interest of this study is to assess whether uranium deposits located in the San Marcos outcrops (NW of Chihuahua City, Mexico could be considered as a source of U-isotopes in its surrounding environment. Uranium activity concentrations were determined in biota, ground, and surface water by either alpha or liquid scintillation spectrometries. Major ions were analyzed by ICP-OES in surface water and its suspended matter. For determining uranium activity in biota, samples were divided in parts. The results have shown a possible lixiviation and infiltration of uranium from geological substrate into the ground and surface water, and consequently, a transfer to biota. Calculated annual effective doses by ingestion suggest that U-isotopes in biota could not negligibly contribute to the neighboring population dose. By all these considerations, it is concluded that in this zone there is natural enhancement of uranium in all environmental samples analyzed in the present work.

  1. Uranium in the surrounding of San Marcos-Sacramento River environment (Chihuahua, Mexico).

    Science.gov (United States)

    Rentería-Villalobos, Marusia; Cortés, Manuel Reyes; Mantero, Juan; Manjón, Guillermo; García-Tenorio, Rafael; Herrera, Eduardo; Montero-Cabrera, Maria Elena

    2012-01-01

    The main interest of this study is to assess whether uranium deposits located in the San Marcos outcrops (NW of Chihuahua City, Mexico) could be considered as a source of U-isotopes in its surrounding environment. Uranium activity concentrations were determined in biota, ground, and surface water by either alpha or liquid scintillation spectrometries. Major ions were analyzed by ICP-OES in surface water and its suspended matter. For determining uranium activity in biota, samples were divided in parts. The results have shown a possible lixiviation and infiltration of uranium from geological substrate into the ground and surface water, and consequently, a transfer to biota. Calculated annual effective doses by ingestion suggest that U-isotopes in biota could not negligibly contribute to the neighboring population dose. By all these considerations, it is concluded that in this zone there is natural enhancement of uranium in all environmental samples analyzed in the present work.

  2. The impact of Mpererwe landfill in Kampala Uganda, on the surrounding environment

    Science.gov (United States)

    Mwiganga, M.; Kansiime, F.

    Mpererwe landfill site receives solid wastes from the city of Kampala, Uganda. This study was carried out to assess and evaluate the appropriateness of the location and operation of this landfill, to determine the composition of the solid waste dumped at the landfill and the extent of contamination of landfill leachate to the neighbouring environment (water, soil and plants). Field observations and laboratory measurements were carried out to determine the concentration of nutrients, metals and numbers of bacteriological indicators in the landfill leachate. The landfill is not well located as it is close to a residential area (waste by scavenger birds, flies and vermin. Industrial and hospital wastes are disposed of at the landfill without pre-treatment. The concentration of variables (nutrients, bacteriological indicators, BOD and heavy metals) in the leachate were higher than those recommended in the National Environment Standards for Discharge of Effluent into Water and on Land. A composite sample that was taken 1500 m down stream indicated that the wetland considerably reduced the concentration of the parameters that were measured except for sulfides. Despite the fact that there was accumulation of metals in the sediments, the concentration has not reached toxic levels to humans. Soil and plant analyses indicated deficiencies of zinc and copper. The concentration of these elements was lowest in the leachate canal.

  3. Radioactive influence of some phosphogypsum piles located at the SW Spain in their surrounding soils and salt-marshes

    Science.gov (United States)

    Bolivar, J. P.; Mosqueda, F.; Vaca, F.; Garcia-Tenorio, R.; Martinez-Sanchez, M. J.; Perez-Sirvent, C.; Martinez-Lopez, S.

    2012-04-01

    In the SW of Spain, just in the confluence of the mouths of the Tinto and Odiel River and in the vicinity of Huelva town, there is a big industrial complex which includes between others an industry devoted during more than 40 years to the production of phosphoric acid, by treating sedimentary phosphate rock by the so-called "wet acid method". As a by-product of the mentioned process it have been produced historically huge amounts of a compound called phosphogypsum, which composition is mostly di-hydrate calcium sulphate containing some of the impurities of heavy metals and natural radionuclides originally present in the raw material. Due to the lack of market for this by-product, it has been mostly piled over some salt-marshes located in the vicinity of the industry, on the bank of the Tinto River. About 100 million tons of phosphogypsum have been piled in an area covering more than 1000 hectares, constituting a clear environmental and radiological anomaly in the zone. The phosphogypsum piles set do not conform obviously a close system. They are interacting with the nearby environment mostly by leaching waters releases from the waters accumulated in them either for its previous use in transporting in suspension the PG from the factory or by rainfall. These waters leaks contain in solution enhanced amounts of heavy metals and radionuclides that can provoke the chemical and radioactive contamination in surroundings soil and salt-marshes areas. In this communication the radioactive influence by the phosphogypsum piles in the surrounding terrestrial environment is evaluated. This contamination is mostly due to radionuclides belonging to the uranium series, which are present originally in the raw material treated in the industry, and afterwards in the generated phosphogypsum, in enhanced amounts in relation to typical soils. In addition, the different dynamics and behavior of different radionuclides will be discussed and analyzed. The gained information in this study

  4. The Third Pole Environment Programme (TPE): A new base for the processes study of atmospheric physics and environment over the Tibetan Plateau and surrounding regions

    Science.gov (United States)

    Ma, Yaoming

    2016-04-01

    The Tibetan Plateau, with the most prominent and complicated terrain on the globe and an elevation of more than 4000 m on average above sea leave (msl), is often called the "Third Pole" due to its significance parallel with Antarctica and the Arctic. The exchange of energy, water vapor and some greenhouse gases between land surface and atmosphere over the Tibetan Plateau and the surrounding regions play an important role in the Asian monsoon system, which in turn is a major component of both the energy and water cycles of the global climate system. Supported by the Chinese Academy of Sciences and some international organizations, a Third Pole Environment (TPE) Research Platform (TPEP) is now implementing over the Tibetan Plateau and surrounding region. The background of the establishment of the TPEP, the establishing and monitoring plan of long-term scale (5-10 years) of the TPEP will be shown firstly. Then the preliminary observational analysis results, such as the characteristics of land surface heat fluxes, CO2 flux and evapotranspiration (ET) partitioning (diurnal variation, inter-monthly variation and vertical variation etc), aerosol optical properties between southern and northern sides of the Himalayas, the characteristics of atmospheric and soil variables, the structure of the Atmospheric Boundary Layer (ABL) and the turbulent characteristics have also been shown in this study.

  5. Importance of Soil Quality in Environment Protection

    Directory of Open Access Journals (Sweden)

    Márta Birkás

    2007-03-01

    Full Text Available Soil quality can be characterised by the harmony between it’s physical and biological state and the fertility. From the practical crop production viewpoint, some important contrasting factors of soil quality are: (1 soil looseness – compaction; (2 aggregation – clod and dust formation; friable structure – smeared or cracked structure; (3 organic material: conservation – decrease; (4 soil moisture: conservation – loss; water transmission – water-logging; (5 at least soil condition as a result of the long term effect of land use moderates or strengthens climatic harm. In our long-term research project practical soil quality factors were examined in arable field and experimental conditions. We state that prevention of the soil quality deterioration can be done by the developing and maintaining harmony between land use and environment. Elements of the soil quality conditions such as looseness, aggregation, workability, organic matter, water transport are examined and the improving methods are suggested. Tillage and production factors which can be adopted to alleviate the harmful climatic impacts are also summarised.

  6. Research on the Horizontal Displacement Coefficient of Soil Surrounding Pile in Layered Foundations by Considering the Soil Mass’s Longitudinal Continuity

    Directory of Open Access Journals (Sweden)

    Yao Wen-Juan

    2013-01-01

    Full Text Available When utilizing the p-y curve to simulate the nonlinear characteristics of soil surrounding pile in layered foundations, due to having not taken into account the soil mass’s longitudinal continuity, the calculation deviation of horizontal displacement increases with the growth of a load. This paper adopted the layered elasticity system theory to consider the soil mass’s longitudinal continuity, as well as utilizing the research method for layered isotropic bodies, assuming that the horizontal resistance is evenly distributed around the perimeter of the pile's cross-section. Then an appropriate transfer matrix method of horizontal displacement coefficient for the soil surrounding pile in layered foundations was established. According to the calculation principle of finite element equivalent load, the horizontal displacement coefficient matrix was deduced as well as providing a corrected formula for the horizontal displacement of soil surrounding pile through the p-y curve method when the external load was increased. Following the established model, a program was created which was used for calculating and analyzing the horizontal displacement coefficient matrix of three-layered soil in order to verify this method’s validity and rationale. Where there is a relatively large discrepancy in the soil layers’ properties, this paper’s method is able to reflect the influence on the layered soil’s actual distributional difference as well as the nearby soil layers’ interaction.

  7. Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wentao [Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Massey Simonich, Staci L. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States); Xue Miao; Zhao Jingyu; Zhang Na; Wang Rong; Cao Jun [Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Tao Shu, E-mail: taos@urban.pku.edu.c [Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China)

    2010-05-15

    The concentrations, profiles, sources and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) were determined in 40 surface soil samples collected from Beijing, Tianjin and surrounding areas, North China in 2007, and all sampling sites were far from industrial areas, roadsides and other pollution sources, and across a range of soil types in remote, rural villages and urban areas. The total concentrations of 16 PAHs ranged from 31.6 to 1475.0 ng/g, with an arithmetic average of 336.4 ng/g. The highest PAH concentrations were measured in urban soils, followed by rural village soils and soils from remote locations. The remote-rural village-urban PAH concentration gradient was related to population density, gross domestic product (GDP), long-range atmospheric transport and different types of land use. In addition, the PAH concentration was well correlated with the total organic carbon (TOC) concentration of the soil. The PAH profile suggested that coal combustion and biomass burning were primary PAH sources. - The concentration, profiles and possible sources of PAHs in Beijing, Tianjin and surrounding area soils were studied and related to population density and gross domestic product (GDP).

  8. Measuring and modelling the radiological impact of a phosphogypsum deposition site on the surrounding environment.

    Science.gov (United States)

    Bituh, Tomislav; Petrinec, Branko; Skoko, Božena; Vučić, Zlatko; Marović, Gordana

    2015-03-01

    Phosphogypsum (PG) is a waste product (residue) from the production of phosphoric acid characterized by technologically enhanced natural radioactivity. Croatia's largest PG deposition site is situated at the edge of Lonjsko Polje Nature Park, a sensitive ecosystem possibly endangered by PG particles. This field study investigates two aspects relevant for the general radiological impact of PG: risk assessment for the environment and risk assessment for occupationally exposed workers and local inhabitants. Activity concentrations of natural radionuclides ((238)U, (235)U, (232)Th, (226)Ra, (210)Pb, and (40)K) were measured in the PG (at the deposition site), soil, and grass samples (in the vicinity of the site). The ERICA Assessment Tool was used to estimate the radiological impact of PG particles on non-human biota of the Lonjsko Polje Nature Park. The average annual effective dose for occupationally exposed workers was 0.4 mSv which was within the worldwide range.

  9. Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests

    Science.gov (United States)

    2017-01-01

    Mediterranean biomes are biodiversity hotspots, and vineyards are important components of the Mediterranean landscape. Over the last few decades, the amount of land occupied by vineyards has augmented rapidly, thereby increasing threats to Mediterranean ecosystems. Land use change and agricultural management have important effects on soil biodiversity, because they change the physical and chemical properties of soil. These changes may also have consequences on wine production considering that soil is a key component of terroir. Here, we describe the taxonomic diversity and metabolic functions of bacterial and fungal communities present in forest and vineyard soils in Chile. To accomplish this goal, we collected soil samples from organic vineyards in central Chile and employed a shotgun metagenomic approach to sequence the microbial DNA. Additionally, we studied the surrounding native forest to obtain a baseline of the soil conditions in the area prior to the establishment of the vineyard. Our metagenomic analyses revealed that both habitats shared most of the soil microbial species. The most abundant genera in the two habitats were the bacteria Candidatus Solibacter and Bradyrhizobium and the fungus Gibberella. Our results suggest that the soil microbial communities are similar in these forests and vineyards. Therefore, we hypothesize that native forests surrounding the vineyards may be acting as a microbial reservoir buffering the effects of the land conversion. Regarding the metabolic diversity, we found that genes pertaining to the metabolism of amino acids, fatty acids, and nucleotides as well as genes involved in secondary metabolism were enriched in forest soils. On the other hand, genes related to miscellaneous functions were more abundant in vineyard soils. These results suggest that the metabolic function of microbes found in these habitats differs, though differences are not related to taxonomy. Finally, we propose that the implementation of

  10. Brominated flame retardants in the surrounding soil of two manufacturing plants in China: Occurrence, composition profiles and spatial distribution.

    Science.gov (United States)

    Li, Wen-Long; Liu, Li-Yan; Zhang, Zi-Feng; Song, Wei-Wei; Huo, Chun-Yan; Qiao, Li-Na; Ma, Wan-Li; Li, Yi-Fan

    2016-06-01

    Surface soil samples were collected surrounding two brominated flame retardants (BFRs) manufacturing plants in China in August 2014 and analyzed for 23 polybrominated diphenyl ethers (PBDEs) and 8 novel brominated flame retardants (NBFRs). BDE209 and decabromodiphenylethane (DBDPE) were the predominant compounds in soil with the median levels of 1600 and 560 ng/g dw, respectively. The PBDEs profiles in soil samples were consistent with that of commercial product (comDecaBDE). The percentage contributions to total PBDEs decreased from higher to lower brominated homologues. Lower concentrations of NBFRs (excluding DBDPE) were detected in soil surrounding the two plants, suggesting they are byproducts or degradation products of the manufacturing activities. The concentrations of most BFRs dropped exponentially within 3-5 km of the manufacturing plants, suggesting recent deposition of these compounds to the soil. Directional distribution indicated that PBDEs and DBDPE concentrations were highest in the north direction of Plants 1. Three-day air parcel forward trajectories confirmed that the air parcel was responsible for the higher concentration of BFRs in the soil of north direction of the plant.

  11. The infrared and molecular environment surrounding the Wolf-Rayet star WR130

    CERN Document Server

    Cichowolski, S; Pineault, S; Noriega-Crespo, A; Arnal, E M; Flagey, N

    2015-01-01

    We present a study of the molecular CO gas and mid/far infrared radiation arising from the environment surrounding the Wolf-Rayet (W-R) star 130. We use the multi-wavelength data to analyze the properties of the dense gas and dust, and its possible spatial correlation with that of Young Stellar Objects (YSOs). We use CO J=1-0 data from the FCRAO survey as tracer of the molecular gas, and mid/far infrared data from the recent WISE and Herschel space surveys to study the dust continuum radiation and to identify a population of associated candidate YSOs. The spatial distribution of the molecular gas shows a ring-like structure very similar to that observed in the HI gas, and over the same velocity interval. The relative spatial distribution of the HI and CO components is consistent with a photo-dissociation region. We have identified and characterized four main and distinct molecular clouds that create this structure. Cold dust is coincident with the dense gas shown in the CO measurements. We have found several ...

  12. Heat Dissipation from Suspended Carbon Nanotubes to their Surrounding Gas Environment

    Science.gov (United States)

    Hsu, I. Kai; Pettes, Michael T.; Aykol, Mehmet; Shi, Li; Cronin, Stephen

    2011-03-01

    The assistance of gas molecules to dissipate heat in 5- μ m-long, electrical heated suspended carbon nanotubes (CNTs) is observed by comparing the G band Raman phonon temperature profiles measured in different gas environments and in vacuum. The measurement results show that 50-60% of the heat generated in the CNT is carried away by its surrounding gas molecules. By analyzing the temperature profiles investigated in different gases, the thermal boundary conductance (TBC) between the gas molecules and the CNT can also be extracted. We find the TBC to be higher in carbon dioxide than in nitrogen, argon and helium. Moreover, we report another optical method to explore the heat spreading behavior on a longer suspended CNTs in air, in which one laser is used as a heat source while another laser is used as a local temperature probe. A fin-shape thermal transport model is applied to fit the exponentially decaying temperature profiles measured away from the heat source. These results yield a heat decay length and TBC for air to be around 6.5 μ m and 3 × 105 W/ m 2 K, respectively. I Kai Hsu et al. Journal of Applied Physics 2010, 108, (084307).

  13. Air pollution in surrounding environment of Sasa tailing dam – ambient air, plant dust and ceiling dust

    OpenAIRE

    Krstev, Boris; Krstev, Aleksandar; Golomeov, Blagoj; Golomeova, Mirjana; Zendelska, Afrodita; Danevski, Tome; Fidancev, Boris

    2013-01-01

    The current and recent activities in the lead-zinc Sasa mine or copper Bucim mine and flotation of galena and sphalerite or chalcopyrite, producing metals for market, are reason for possible troubles from tailing dam-pond and surrounding river, ambient air and plant or ceiling dust. This appearance is significant for the surrounding environment, but legislative and ecological law directive limited the quantity of these. In this paper will be present results of investigations from plant ...

  14. Molecular environment of the supernova remnant IC 443: Discovery of the molecular shells surrounding the remnant

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yang; Fang, Min; Yang, Ji [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Zhou, Ping; Chen, Yang [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

    2014-06-20

    We have carried out {sup 12}CO, {sup 13}CO, and C{sup 18}O observations toward the mixed morphology supernova remnant (SNR) IC 443. The observations cover a 1.°5 × 1.°5 area and allow us to investigate the overall molecular environment of the remnant. Some northern and northeastern partial shell structure of CO gas is around the remnant. One of the partial shells, about 5' extending beyond the northeastern border of the remnant's bright radio shell, seems to just confine the faint radio halo. On the other hand, some faint CO clumps can be discerned along the eastern boundary of the faint remnant's radio halo. Connecting the eastern CO clumps, the northeastern partial shell structures, and the northern CO partial shell, we can see that a half molecular ring structure appears to surround the remnant. The LSR velocity of the half-ring structure is in the range of –5 km s{sup –1} to –2 km s{sup –1}, which is consistent with that of the –4 km s{sup –1} molecular clouds. We suggest that the half-ring structure of the CO emission at V {sub LSR} ∼ –4 km s{sup –1} is associated with the SNR. The structures are possibly swept up by the stellar winds of SNR IC 443's massive progenitor. Based on the Wide-field Infrared Survey Explorer and the Two Micron All Sky Survey near-IR database, 62 young stellar object (YSO) candidates are selected within the radio halo of the remnant. These YSO candidates concentrated along the boundary of the remnant's bright radio shell are likely to be triggered by the stellar winds from the massive progenitor of SNR IC 443.

  15. Bioavailability of xenobiotics in the soil environment.

    Science.gov (United States)

    Katayama, Arata; Bhula, Raj; Burns, G Richard; Carazo, Elizabeth; Felsot, Allan; Hamilton, Denis; Harris, Caroline; Kim, Yong-Hwa; Kleter, Gijs; Koedel, Werner; Linders, Jan; Peijnenburg, J G M Willie; Sabljic, Aleksandar; Stephenson, R Gerald; Racke, D Kenneth; Rubin, Baruch; Tanaka, Keiji; Unsworth, John; Wauchope, R Donald

    2010-01-01

    It is often presumed that all chemicals in soil are available to microorganisms, plant roots, and soil fauna via dermal exposure. Subsequent bioaccumulation through the food chain may then result in exposure to higher organisms. Using the presumption of total availability, national governments reduce environmental threshold levels of regulated chemicals by increasing guideline safety margins. However, evidence shows that chemical residues in the soil environment are not always bioavailable. Hence, actual chemical exposure levels of biota are much less than concentrations present in soil would suggest. Because "bioavailability" conveys meaning that combines implications of chemical sol persistency, efficacy, and toxicity, insights on the magnitude of a chemicals soil bioavailability is valuable. however, soil bioavailability of chemicals is a complex topic, and is affected by chemical properties, soil properties, species exposed, climate, and interaction processes. In this review, the state-of-art scientific basis for bioavailability is addressed. Key points covered include: definition, factors affecting bioavailability, equations governing key transport and distributive kinetics, and primary methods for estimating bioavailability. Primary transport mechanisms in living organisms, critical to an understanding of bioavailability, also presage the review. Transport of lipophilic chemicals occurs mainly by passive diffusion for all microorganisms, plants, and soil fauna. Therefore, the distribution of a chemical between organisms and soil (bioavailable proportion) follows partition equilibrium theory. However, a chemical's bioavailability does not always follow partition equilibrium theory because of other interactions with soil, such as soil sorption, hysteretic desorption, effects of surfactants in pore water, formation of "bound residue", etc. Bioassays for estimating chemical bioavailability have been introduced with several targeted endpoints: microbial

  16. Site Cleanup of Radioactive Isotope Container Rinsing Pool and Surrounding Environment

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Radioactive isotope container rinsing pool and surrounding environmental site was a place of fabrication of container, and package, transportation and storage of radioactive isotopes. A heavy contamination existed in this area for burying of some radioactive wastes.

  17. Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China

    Science.gov (United States)

    Wang, Wentao; Massey Simonich, Staci L.; Xue, Miao; Zhao, Jingyu; Zhang, Na; Wang, Rong; Cao, Jun; Tao, Shu

    2013-01-01

    The concentrations, profiles, sources and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) were determined in 40 surface soil samples collected from Beijing, Tianjin and surrounding areas, North China in 2007, and all sampling sites were far from industrial areas, roadsides and other pollution sources, and across a range of soil types in remote, rural villages and urban areas. The total concentrations of 16 PAHs ranged from 31.6 to 1475.0 ng/g, with an arithmetic average of 336.4 ng/g. The highest PAH concentrations were measured in urban soils, followed by rural village soils and soils from remote locations. The remote–rural village–urban PAH concentration gradient was related to population density, gross domestic product (GDP), long-range atmospheric transport and different types of land use. In addition, the PAH concentration was well correlated with the total organic carbon (TOC) concentration of the soil. The PAH profile suggested that coal combustion and biomass burning were primary PAH sources. PMID:20199833

  18. Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.T.; Simonich, S.L.M.; Xue, M.A.; Zhao, J.Y.; Zhang, N.; Wang, R.; Cao, J.; Tao, S. [Peking University, Beijing (China)

    2010-05-15

    The concentrations, profiles, sources and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) were determined in 40 surface soil samples collected from Beijing, Tianjin and surrounding areas, North China in 2007, and all sampling sites were far from industrial areas, roadsides and other pollution sources, and across a range of soil types in remote, rural villages and urban areas. The total concentrations of 16 PAHs ranged from 31.6 to 1475.0 ng/g, with an arithmetic average of 336.4 ng/g. The highest PAH concentrations were measured in urban soils, followed by rural village soils and soils from remote locations. The remote-rural village-urban PAH concentration gradient was related to population density, gross domestic product (GDP), long-range atmospheric transport and different types of land use. In addition, the PAH concentration was well correlated with the total organic carbon (TOC) concentration of the soil. The PAH profile suggested that coal combustion and biomass burning were primary PAH sources.

  19. Research on the stability analysis and design of soil tunnel surrounding rock

    Institute of Scientific and Technical Information of China (English)

    Zheng Yingren; Qiu Chenyu; Xiao Qiang

    2010-01-01

    The paper first analyzes the failure mechanism and mode of tunnel according to model experiments and mechanical calculation and then discusses the deficiency of taking the limit value of displacement around the tunnel and the size of the plastic zone of surrounding rock as the criterion of stability.So the writers put forward the idea that the safety factor of surrounding rock calculated through strength reduction FEM(finit element method)should be regarded as the criterion of stability,which has strict mechanical basis and unified standard and would not be influenced by other factors.The paper also studies the safety factors of tunnel surrounding rock(safety factors of shear and tension failure)and lining and some methods of designing and calculating tunnels.At last,the writers take the loess tunnel for instance and show the design and calculation results of two-lane railway tunnel.

  20. Regional differences and sources of organochlorine pesticides in soils surrounding chemical industrial parks

    NARCIS (Netherlands)

    Wang, G.; Lu, Y.L.; Li, J.; Wang, T.Y.; Han, Jingyi; Luo, W.; Shi, Y.J.; Jiao, W.T.

    2009-01-01

    Concentrations of organochlorine pesticides (OCPs; dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB)) were investigated in 105 soil samples collected in vicinity of the chemical industrial parks in Tianjin, China. OCP concentrations significantly varied

  1. Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil.

    Science.gov (United States)

    García-Salamanca, Adela; Molina-Henares, M Antonia; van Dillewijn, Pieter; Solano, Jennifer; Pizarro-Tobías, Paloma; Roca, Amalia; Duque, Estrella; Ramos, Juan L

    2013-01-01

    Maize represents one of the main cultivar for food and energy and crop yields are influenced by soil physicochemical and climatic conditions. To study how maize plants influence soil microbes we have examined microbial communities that colonize maize plants grown in carbonate-rich soil (pH 8.5) using culture-independent, PCR-based methods. We observed a low proportion of unclassified bacteria in this soil whether it was planted or unplanted. Our results indicate that a higher complexity of the bacterial community is present in bulk soil with microbes from nine phyla, while in the rhizosphere microbes from only six phyla were found. The predominant microbes in bulk soil were bacteria of the phyla Acidobacteria, Bacteroidetes and Proteobacteria, while Gammaproteobacteria of the genera Pseudomonas and Lysobacter were the predominant in the rhizosphere. As Gammaproteobacteria respond chemotactically to exudates and are efficient in the utilization of plants exudate products, microbial communities associated to the rhizosphere seem to be plant-driven. It should be noted that Gammaproteobacteria made available inorganic nutrients to the plants favouring plant growth and then the benefit of the interaction is common.

  2. Hydrocarbon and Carbon Dioxide Fluxes from Natural Gas Well Pad Soils and Surrounding Soils in Eastern Utah.

    Science.gov (United States)

    Lyman, Seth N; Watkins, Cody; Jones, Colleen; Mansfield, Marc L; McKinley, Michael; Kenney, Donna; Evans, Jordan

    2017-09-07

    We measured fluxes of methane, non-methane hydrocarbons, and carbon dioxide from natural gas well pad soils and from nearby undisturbed soils in eastern Utah. Methane fluxes varied from less than zero to more than 38 g m-2 h-1. Fluxes from well pad soils were almost always greater than from undisturbed soils. Fluxes were greater from locations with higher concentrations of total combustible gas in soil and were inversely correlated with distance from well heads. Several lines of evidence show that the majority of emission fluxes (about 70%) were primarily due to subsurface sources of raw gas that migrated to the atmosphere, with the remainder likely caused primarily by re-emission of spilled liquid hydrocarbons. Total hydrocarbon fluxes during summer were only 39 (16, 97)% as high as during winter, likely because soil bacteria consumed the majority of hydrocarbons during summer months. We estimate that natural gas well pad soils account for 4.6×10-4 (1.6×10-4, 1.6×10-3)% of total emissions of hydrocarbons from the oil and gas industry in Utah's Uinta Basin. Our undisturbed soil flux measurements were not adequate to quantify rates of natural hydrocarbon seepage in the Uinta Basin.

  3. Determination of Total Chromium and Chromium Species in Kombolcha Tannery Wastewater, Surrounding Soil, and Lettuce Plant Samples, South Wollo, Ethiopia

    Directory of Open Access Journals (Sweden)

    Tilahun Belayneh Asfaw

    2017-01-01

    Full Text Available This research paper deals with the determination of total chromium (total Cr, Cr(III, and Cr(VI in Kombolcha leather industrial wastewater and the surrounding (soil and lettuce plant samples where the wastewater flows. The levels of total Cr, Cr(VI, and Cr(III in wastewater, soil, and lettuce plant samples were determined by FAAS, UV/Vis spectrophotometer, and difference (Cr(VI from total Cr, respectively. Among all samples taken, the maximum amounts of total Cr, Cr(III, and Cr(VI were obtained at the discharging point and the minimum amounts of total Cr and Cr(III were found downstream (400 m from the junction of Kombolcha leather industrial wastewater. On the other hand, the minimum concentration of Cr(VI was obtained in lettuce plant sample. The amounts of total Cr in all samples except soil sample were above the permissible limit as set by WHO/FAO. The concentrations of Cr(III in all wastewater samples were above the permissible level, whereas the concentration of Cr(VI in wastewater was above the permissible level except 400 m from the junction. The result showed that a remarkable elimination of total Cr and Cr species has not been achieved by this leather industry as its level was not much decreased when entered into the water systems. Therefore, effective treatment methods should be applied to the wastewater for the wellbeing of the surroundings.

  4. [Rare earth elements content in farmland soils and crops of the surrounding copper mining and smelting plant in Jiangxi province and evaluation of its ecological risk].

    Science.gov (United States)

    Jin, Shu-Lan; Huang, Yi-Zong; Wang, Fei; Xu, Feng; Wang, Xiao-Ling; Gao, Zhu; Hu, Ying; Qiao Min; Li, Jin; Xiang, Meng

    2015-03-01

    Rare earth elements content in farmland soils and crops of the surrounding copper mining and smelting plant in Jiangxi province was studied. The results showed that copper mining and smelting could increase the content of rare earth elements in soils and crops. Rare earth elements content in farmland soils of the surrounding Yinshan Lead Zinc Copper Mine and Guixi Smelting Plant varied from 112.42 to 397.02 mg x kg(-1) and 48.81 to 250.06 mg x kg(-1), and the average content was 254.84 mg x kg(-1) and 144.21 mg x kg(-1), respectively. The average contents of rare earth elements in soils in these two areas were 1.21 times and 0.68 times of the background value in Jiangxi province, 1.36 times and 0.77 times of the domestic background value, 3.59 times and 2.03 times of the control samples, respectively. Rare earth elements content in 10 crops of the surrounding Guixi Smelting Plant varied from 0.35 to 2.87 mg x kg(-1). The contents of rare earth elements in the leaves of crops were higher than those in stem and root. The contents of rare earth elements in Tomato, lettuce leaves and radish leaves were respectively 2.87 mg x kg(-1), 1.58 mg x kg(-1) and 0.80 mg x kg(-1), which were well above the hygienic standard limit of rare earth elements in vegetables and fruits (0.70 mg x kg(-1)). According to the health risk assessment method recommended by America Environmental Protection Bureau (USEPA), we found that the residents' lifelong average daily intake of rare earth elements was 17.72 mg x (kg x d)(-1), lower than the critical value of rare earth elements damage to human health. The results suggested that people must pay attention to the impact of rare earth elements on the surrounding environment when they mine and smelt copper ore in Jiangxi.

  5. Geochemical properties of soils surrounding the Deliklitaş Au deposit, Turkey

    Science.gov (United States)

    Kirat, Güllü; Aydin, Nasuh

    2016-08-01

    The Deliklitaş gold deposit is in northwest Turkey, where a renowned gold province containing many major hydrothermal deposits related to Tertiary volcanic rocks. Because of the limited outcrops in the region, one of the most effective ways to prospect for new deposits is soil sampling. In this study, 183 soil samples were systematically collected from the area around the Deliklitaş Au deposit. Metal content of the samples, and their relationships and distribution according to distance away from the ore body were statistically investigated. The analysis of metals and metalloids in soil samples yielded the following metal ranges: Au from 0.005 to 0.54 mg/kg (average 0.04); Ag from 0.03 to 2.66 (average 0.22); As from 3.4 to 315 (average 30.3); Sb from 0.15 to 19.25 (average 1.62); Cu from 2.5 to 35 (average 11.73); Pb from 17.4 to 545 (average 73.76) and from Zn 14-1240 mg/kg of soil (average 106.71). For the areal distribution of metals 50%, 70%, 90% and 95% of the cumulative data were used for contouring element contents in the soils, using 50% as the baseline value and 95% as the anomalous value. Eigen values, Varimax Rotation method with Kaiser Normalization tested and determined the suitability of the number of data sets. Factor numbers were determined as 3, according to Eigen values determined for the soil samples. Factor 1 refers to ore minerals of epithermal system, Factor 2 refers to main rock sources of Pb and Zn and Factor 3 refers to environmental effects. Agsbnd Au, Pbsbnd Zn and Sbsbnd As pairs show high correlation in the cluster analysis indicating element relations. Please add an overarching sentence here, on implications etc.

  6. Distribution coefficients of different soil types at Olkiluoto repository site and its surroundings, southwestern Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lahdenperae, Anne-Maj [Saanio and Riekkola Oy, Laulukuja 4, FI-00420 Helsinki (Finland); Ikonen, Ari T.K. [Environmental Research and Assessment EnviroCase, Ltd., Hallituskatu 1 D 4, 28100 Pori (Finland)

    2014-07-01

    In Finland, the Olkiluoto Island on the western coast has been selected as a repository site for the spent nuclear fuel. Due to shallow sea areas around the island, the post-glacial crustal rebound (around 6 mm/y) is changing the landscape significantly; during the next thousands of years new soil types are emerging, the present bays will narrow and form future lakes and mires assumedly similar to those farther inland at present. The effects of terrain development are important in long-term safety assessments for the repository, especially in the biosphere assessments addressing radiation exposure of people and biota in scenarios of radionuclide releases. 'In situ' distribution coefficients, K{sub d} values are used to indicate the relevant mobility of radionuclides of concern from nuclear waste. These radionuclides have very long half-lives and long interaction times with soils, ranging from centuries to millennia. By measuring the desorption K{sub d} values of the indigenous stable elements (Ag, Cl, Cs, I, Mo, Nb, Ni, Se and Sr) from field moist samples are a valid description of slow retention processes. The 'in situ' K{sub d} desorption values are calculated for humus, peat and different mineral soil samples taken from the Olkiluoto Island and the Reference Area used as an analogue of the future terrain. The solids are extracted alternatively by HNO{sub 3}-HF and NH{sub 4}Ac (pH 4.5). The K{sub d} values are highly dependent on environmental factors, including but not limited to pH, soil type, soil horizon, soil body, texture, element chemical form, organic matter, carbon content and biological activity. This is discussed in the contribution; e.g., for several elements pH and K{sub d} values correlate - the finer the soil or sediment, the higher the K{sub d} values - and humus and peat samples have a clear correlation with the organic matter and carbon contents. The contribution also compares the 'in situ' K{sub d} values to

  7. Swelling soils monitoring through PSI and DINSAR interferometry : Applications on eastern Paris surroundings (France)

    Science.gov (United States)

    Kaveh, F.; Deffontaines, B.; Fruneau, B.; Cojean, R.; Audiguier, M.; Arnaud, A.; Duro, J.

    2009-04-01

    Swelling soils may induce small surface displacements under various climatic conditions, that may affect individual buildings. The aim of this work, funded by MAIF foundation (Insurance foundation), is to monitor those small seasonal-dependant displacements through DINSAR and persistent scatterer interferometric methods. The eastern paris basin is locally composed of outcropping Marne de Pantin and Argiles Vertes particularily sensible to swelling phenomena observed during for instance the last dryness event of 2003. Radar differential interferometry (DINSAR) method which enables one to map surface displacements from two radar images acquired on a specific area gives rather poor results and is not that efficient in the eastern Paris Basin highly due to the temporal decorrelation. On the contrary, interesting results are obtained with Persistent Scatterer Interferometry (PSI) which reveal precisely the surface displacements, continuous in time. This new application of interferometry presents high potential to better understand the swelling soil natural hazards and the induced geologic processes.

  8. Variations of Heavy Metals from Geothermal Spring to Surrounding Soil and Mangifera Indica–Siloam Village, Limpopo Province

    Directory of Open Access Journals (Sweden)

    Olatunde S. Durowoju

    2016-01-01

    Full Text Available Assessment of seasonal variation in concentration of heavy metals–As, Cd, Co, Cr, Cu, Ni, Pb, and Zn from the Siloam Geothermal Spring and their impacts on surface soils and Mangifera indica were undertaken during winter and summer seasons in South Africa. This was done to determine the environmental pollution status of surface soils and Mangifera indica around the geothermal spring. The geothermal spring water, surface soil (0–15 cm and Mangifera indica (bark and leaves samples were collected during 2014 winter and summer seasons. Soil and Mangifera indica samples were treated and digested using microwave and block digestion methods, respectively. The heavy metal concentrations were determined with inductively coupled plasma-mass spectrometer (ICP-MS (Agilent 7700. The result from this study showed that levels of heavy metals were higher in summer compared to winter season for geothermal spring water, surface soil, and Mangifera indica (barks and leaves. In two-tailed tests (Mann–Whitney U-test, geothermal spring water alone showed significant differences (Z = −2.1035, p < 0.05, whereas the surface soil and barks and leaves of Mangifera indica showed no significant differences (Z = 0.053; 0; −0.524, p > 0.05 in both seasons. Some heavy metals concentrations were above the standard guidelines for drinking water and typical soil, making the soil contaminated. This is a cause for concern as it can affect the environment and the health of the inhabitants of Siloam village, who depend on the geothermal spring as their source of domestic water, irrigation, and other uses. This study also showed that Mangifera indica has a phytoremediative property, which lessens the heavy metal concentrations absorbed from the contaminated soil.

  9. Diversity of microorganisms isolated from the soil sample surround Chroogomphus rutilus in the Beijing region

    DEFF Research Database (Denmark)

    Wang, P; Liu, Y; Yin, Y

    2011-01-01

    to isolate and classify beneficial microorganisms that could affect its growth, which could be used in future research on artificial cultivation. In total, 342 isolates were isolated from soil samples collected around a C. rutilus colony in the Beijing region. Of these, 22 bacterial and 14 fungal isolates....... Using internal transcribed spacer (ITS) sequence analysis, fungal isolates were divided into four monophyletic clusters: Penicillium, Trichoderma, Mortierella, and Bionectria. Moreover, the phylogenetic diversity of these isolates was analysed. The results indicated that numerous microorganisms were...

  10. Contents of metals Pb, Cd, Zn and Cu in Agricultural Soils of Zagreb and Its Surroundings

    Directory of Open Access Journals (Sweden)

    Marija Romić

    1998-09-01

    The highest average cadmium content of 0.93 mg/kg Cd per designated regions was recorded in the youngest river valley along the Sava. Anomalous values were also encountered in the youngest valley along the Sava watercourse, where the average zinc content amounted to 87.08 mg/kg Zn, which are classified as highly contaminated soils. Higher copper values were determined in the hilly area of Mt. Medvednica and Pleistocene of sloping terrains, which seems to be related to the manner of land use (vineyards, gardens at private holdings.

  11. Diversity of soil fungal communities of Cerrado and its closely surrounding agriculture fields.

    Science.gov (United States)

    de Castro, Alinne Pereira; Quirino, Betania Ferraz; Pappas, Georgios; Kurokawa, Adriane Silva; Neto, Eduardo Leonardecz; Krüger, Ricardo Henrique

    2008-08-01

    Cerrado is a savanna-like region that covers a large area of Brazil. Despite its biological importance, the Cerrado has been the focus of few microbial diversity studies. A molecular approach was chosen to characterize the soil fungal communities in four areas of the Cerrado biome: a native Cerrado, a riverbank forest, an area converted to a soybean plantation, and an area converted to pasture. Global diversity of fungal communities in each area was assessed through Ribosomal intergenic spacer analysis which revealed remarkable differences among the areas studied. Sequencing of approximately 200 clones containing 18S rDNA sequences from each library was performed and, according to the genetic distance between sequences, these were assigned to operational taxonomic units (OTUs). A total of 75, 85, 85, and 70 OTUs were identified for the native Cerrado, riverbank forest, pasture, and soybean plantation, respectively. Analysis of sequences using a similarity cutoff value of 1% showed that the number of OTUs for the native Cerrado area was reduced by 35%; for the soybean plantation, a reduction by more than 50% was observed, indicating a reduction in fungal biodiversity associated with anthropogenic activity. This is the first study demonstrating the anthropogenic impact on Cerrado soil fungal diversity.

  12. Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants

    Science.gov (United States)

    Li, Rui; Wu, Han; Ding, Jing; Fu, Weimin; Gan, Lijun; Li, Yi

    2017-05-01

    Mercury contamination in food can pose serious health risks to consumers and coal-fired power plants have been identified as the major source of mercury emissions. To assess the current state of mercury pollution in food crops grown near coal-fired power plants, we measured the total mercury concentration in vegetables and grain crops collected from farms located near two coal-fired power plants. We found that 79% of vegetable samples and 67% of grain samples exceeded the PTWI's food safety standards. The mercury concentrations of soil samples were negatively correlated with distances from the studied coal-fired power plants, and the mercury contents in lettuce, amaranth, water spinach, cowpea and rice samples were correlated with the mercury contents in soil samples, respectively. Also, the mercury concentrations in vegetable leaves were much higher than those in roots and the mercury content of vegetable leaves decreased significantly after water rinses. Our calculation suggests that probable weekly intake of mercury for local residents, assuming all of their vegetables and grains are from their own farmland, may exceed the toxicologically tolerable values allowed, and therefore long-term consumptions of these contaminated vegetables and grains may pose serious health risks.

  13. Factor analysis of rock, soil and water geochemical data from Salem magnesite mines and surrounding area, Salem, southern India

    Science.gov (United States)

    Satyanarayanan, M.; Eswaramoorthi, S.; Subramanian, S.; Periakali, P.

    2017-09-01

    Geochemical analytical data of 15 representative rock samples, 34 soil samples and 55 groundwater samples collected from Salem magnesite mines and surrounding area in Salem, southern India, were subjected to R-mode factor analysis. A maximum of three factors account for 93.8 % variance in rock data, six factors for 84 % variance in soil data, five factors for 71.2 % in groundwater data during summer and six factors for 73.7 % during winter. Total dissolved solids are predominantly contributed by Mg, Na, Cl and SO4 ions in both seasons and are derived from the country rock and mining waste by dissolution of minerals like magnesite, gypsum, halite. The results also show that groundwater is enriched in considerable amount of minor and trace elements (Fe, Mn, Ni, Cr and Co). Nickel, chromium and cobalt in groundwater and soil are derived from leaching of huge mine dumps deposited by selective magnesite mining activity. The factor analysis on trivalent, hexavalent and total Cr in groundwater indicates that most of the Cr in summer is trivalent and in winter hexavalent. The gradational decrease in topographical elevation from northern mine area to the southern residential area, combined regional hydrogeological factors and distribution of ultramafic rocks in the northern part of the study area indicate that these toxic trace elements in water were derived from mine dumps.

  14. Factor analysis of rock, soil and water geochemical data from Salem magnesite mines and surrounding area, Salem, southern India

    Science.gov (United States)

    Satyanarayanan, M.; Eswaramoorthi, S.; Subramanian, S.; Periakali, P.

    2016-04-01

    Geochemical analytical data of 15 representative rock samples, 34 soil samples and 55 groundwater samples collected from Salem magnesite mines and surrounding area in Salem, southern India, were subjected to R-mode factor analysis. A maximum of three factors account for 93.8 % variance in rock data, six factors for 84 % variance in soil data, five factors for 71.2 % in groundwater data during summer and six factors for 73.7 % during winter. Total dissolved solids are predominantly contributed by Mg, Na, Cl and SO4 ions in both seasons and are derived from the country rock and mining waste by dissolution of minerals like magnesite, gypsum, halite. The results also show that groundwater is enriched in considerable amount of minor and trace elements (Fe, Mn, Ni, Cr and Co). Nickel, chromium and cobalt in groundwater and soil are derived from leaching of huge mine dumps deposited by selective magnesite mining activity. The factor analysis on trivalent, hexavalent and total Cr in groundwater indicates that most of the Cr in summer is trivalent and in winter hexavalent. The gradational decrease in topographical elevation from northern mine area to the southern residential area, combined regional hydrogeological factors and distribution of ultramafic rocks in the northern part of the study area indicate that these toxic trace elements in water were derived from mine dumps.

  15. Diversity of microorganisms isolated from the soil sample surround Chroogomphus rutilus in the Beijing region

    DEFF Research Database (Denmark)

    Wang, P; Liu, Y; Yin, Y;

    2011-01-01

    to isolate and classify beneficial microorganisms that could affect its growth, which could be used in future research on artificial cultivation. In total, 342 isolates were isolated from soil samples collected around a C. rutilus colony in the Beijing region. Of these, 22 bacterial and 14 fungal isolates....... Using internal transcribed spacer (ITS) sequence analysis, fungal isolates were divided into four monophyletic clusters: Penicillium, Trichoderma, Mortierella, and Bionectria. Moreover, the phylogenetic diversity of these isolates was analysed. The results indicated that numerous microorganisms were......Artificially cultivating Chroogomphus rutilus is too inefficient to be commercially feasible. Furthermore, isolating C. rutilus mycelia in the wild is difficult. Thus, it is important to de-termine the natural habitat of its fruiting body. This study focused on the ecology of the C. rutilus habitat...

  16. Investigation of the radiological impact on the coastal environment surrounding a fertilizer plant.

    Science.gov (United States)

    El Samad, O; Aoun, M; Nsouli, B; Khalaf, G; Hamze, M

    2014-07-01

    This investigation was carried out in order to assess the marine environmental radioactive pollution and the radiological impact caused by a large production plant of phosphate fertilizer, located in the Lebanese coastal zone. Natural radionuclides ((238)U, (235)U, (232)Th, (226)Ra, (210)Po, (210)Pb, (40)K) and anthropogenic (137)Cs were measured by alpha and gamma spectrometry in seawater, sediment, biota and coastal soil samples collected from the area impacted by this industry. The limited environmental monitoring program within 2 km of the plant indicates localized contamination with radionuclides of the uranium decay chain mainly due to the transport, the storage of raw materials and the free release of phosphogypsum waste.

  17. Variable Ly alpha sheds light on the environment surrounding GRB 090426

    CERN Document Server

    Thöne, C C; Lazzati, D; Postigo, A de Ugarte; Fynbo, J P U; Christensen, L; Levan, A J; Aloy, M A; Hjorth, J; Jakobsson, P; Levesque, E M; Malesani, D; Milvang-Jensen, B; Roming, P W A; Tanvir, N R; Wiersema, K; Gladders, M; Wuyts, E; Dahle, H

    2011-01-01

    Long duration gamma-ray bursts are commonly associated with the deaths of massive stars. Spectroscopic studies using the afterglow as a light source provide a unique opportunity to unveil the medium surrounding it, probing the densest region of their galaxies. This material is usually in a low ionisation state and at large distances from the burst site, hence representing the normal interstellar medium in the galaxy. Here we present the case of GRB 090426 at z=2.609, whose optical spectrum indicates an almost fully ionised medium together with a low column density of neutral hydrogen. For the first time, we also observe variations in the Ly alpha absorption line. Photoionisation modeling shows that we are probing material from the vicinity of the burst (~80 pc). The host galaxy is a complex of two luminous interacting galaxies, which might suggest that this burst could have occurred in an isolated star-forming region outside its host galaxy created in the interaction of the two galaxies.

  18. The connection between AGN-driven dusty outflows and the surrounding environment

    CERN Document Server

    Ishibashi, W

    2016-01-01

    Significant reservoirs of cool gas are observed in the circumgalactic medium (CGM) surrounding galaxies. The CGM is also found to contain substantial amounts of metals and dust, which require some transport mechanism. We consider AGN (active galactic nucleus) feedback-driven outflows based on radiation pressure on dust. Dusty gas is ejected when the central luminosity exceeds the effective Eddington luminosity for dust. We obtain that a higher dust-to-gas ratio leads to a lower critical luminosity, implying that the more dusty gas is more easily expelled. Dusty outflows can reach large radii with a range of velocities (depending on the outflowing shell configuration and the ambient density distribution) and may account for the observed CGM gas. In our picture, dust is required in order to drive AGN feedback, and the preferential expulsion of dusty gas in the outflows may naturally explain the presence of dust in the CGM. On the other hand, the most powerful AGN outflow events can potentially drive gas out of ...

  19. Diversity of Microorganisms Isolated from the Soil Sample surround Chroogomphus rutilus in the Beijing Region

    Directory of Open Access Journals (Sweden)

    Peng Wang, Yu Liu, Yonggang Yin, Haojie Jin, Shouxian Wang, Feng Xu, Shuang Zhao, Xiaoli Geng

    2011-01-01

    Full Text Available Artificially cultivating Chroogomphus rutilus is too inefficient to be commercially feasible. Furthermore, isolating C. rutilus mycelia in the wild is difficult. Thus, it is important to determine the natural habitat of its fruiting body. This study focused on the ecology of the C. rutilus habitat to isolate and classify beneficial microorganisms that could affect its growth, which could be used in future research on artificial cultivation. In total, 342 isolates were isolated from soil samples collected around a C. rutilus colony in the Beijing region. Of these, 22 bacterial and 14 fungal isolates were selected for sequencing and phylogenetic analysis, based on their growth characteristics and colony morphology. Using 16S rRNA gene sequence analysis, the bacterial isolates were divided into two monophyletic clusters which had significant hits to the genera Bacillus and Pseudomonas, respectively. Using internal transcribed spacer (ITS sequence analysis, fungal isolates were divided into four monophyletic clusters: Penicillium, Trichoderma, Mortierella, and Bionectria. Moreover, the phylogenetic diversity of these isolates was analysed. The results indicated that numerous microorganisms were present in C. rutilus habitat. This was the first reported examination of the microbiological ecology of C. rutilus.

  20. Quality evaluation of commercially sold table water samples in Michael Okpara University of Agriculture, Umudike, Nigeria and surrounding environments

    Directory of Open Access Journals (Sweden)

    D.O. Okorie

    2015-01-01

    Full Text Available In Michael Okpara University of Agriculture, Umudike, Nigeria (MOUAU and surrounding environments, table water of different brands is commercially hawked by vendors. To the best of our knowledge, there is no scientific documentation on the quality of these water samples. Hence this study which evaluated the quality of different brands of water samples commercially sold in MOUAU and surrounding environments. The physicochemical properties (pH, total dissolved solids (TDS, biochemical oxygen demand (BOD, total hardness, dissolved oxygen, Cl, NO3, ammonium nitrogen (NH3N, turbidity, total suspended solids (TSS, Ca, Mg, Na and K of the water samples as indices of their quality were carried out using standard techniques. Results obtained from this study indicated that most of the chemical constituents of these table water samples commercially sold in Umudike environment conformed to the standards given by the Nigerian Industrial Standard (NIS, World Health Organization (WHO and American Public Health Association (APHA, respectively, while values obtained for ammonium nitrogen in these water samples calls for serious checks on methods of their production and delivery to the end users.

  1. Roles of soil biota and biodiversity in soil environment – A concise communication

    Directory of Open Access Journals (Sweden)

    Suleiman Usman

    2016-10-01

    Full Text Available Soil biota (the living organisms in soil plays an important role in soil development and soil formation. They are the most important component of soil organic matter decomposition and behave efficiently in the development and formation of soil structure and soil aggregate. Their biodiversity provides many functional services to soil and soil components. They help in dissolving verities of plant and animal materials, which could left as decayed organic matter at the surface soil. Understanding the vital role of soil organisms would undoubtedly helps to increase food production and reduces poverty, hunger and malnutrition. Soil biota and biodiversity research in sub-Saharan Africa would play an important role in sustaining food security, environmental health, water quality and forest regeneration. This paper, briefly highlighted some of the biological functions of soil biota and suggests that proper understandings of biota and their biodiversity in soil environment would provide ways to get better understanding of soil health, soil function, soil quality and soil fertility under sustainable soil management activities in agricultural production.

  2. The importance of tissue environment surrounding the tumor on the development of cancer cachexia.

    Science.gov (United States)

    Chiba, Fumihiro; Soda, Kuniyasu; Yamada, Shigeki; Tokutake, Yuka; Chohnan, Shigeru; Konishi, Fumio; Rikiyama, Toshiki

    2014-01-01

    The relationship between host factors and cancer cachexia was investigated. A single cell clone (clone 5 tumor) established from colon 26 adenocarcinoma by limiting dilution cell cloning methods was employed to eliminate the inoculation site-dependent differences in the composition of cell clones. Clone 5 tumor did not provoke manifestations of cancer cachexia when inoculated in subcutaneous tissue. However, when inoculated in the gastrocnemius muscle, the peritoneal cavity or the thoracic cavity of CD2F1 male mice, typical manifestations of cancer cachexia were observed in all groups of mice with intergroup variations. The blood levels of various cytokines, chemokines and hormones were increased but with wide intergroup variations. Analyses by stepwise multiple regression models revealed that serum interleukin-10 was the most significant factor associated with manifestations of cancer cachexia, suggesting the possible involvement of mechanisms similar to cancer patients suffering cancer cachexia. White blood cells, especially neutrophils, seemed to have some roles on the induction of cancer cachexia, because massive infiltrations and an increase in peripheral blood were observed in cachectic mice bearing clone 5 tumors. The amount of malonyl-CoA in liver correlated with manifestations of cancer cachexia, however the mRNA levels of spermidine/spermine N-1 acetyl transferase (SSAT) (of which overexpression has been shown to provoke manifestations similar to cancer cachexia) were not necessarily associated with cancer cachexia. These data suggest that the induction of cancer cachexia depends on the environment in which the tumor grows and that the infiltration of host immune cells into the tumor and the resultant increase in inflammation result in the production of cachectic factors, such as cytokines, leading to SSAT activation. Further, multiple factors likely mediate the mechanisms of cancer cachexia. Finally, this animal model was suitable for the investigation

  3. Soils as records of past and present environments

    Science.gov (United States)

    Sauer, Daniela

    2015-04-01

    This contribution reflects selected pedological concepts that are helpful for interpreting soil properties related to past and present environments. These concepts are illustrated by examples from various landscapes, and their combination finally leads to some further conclusions. The concept of Targulian and Gerasimova (2009) distinguishes soil system and soil body. Soil system is defined as "open multiphase system functioning in any solid-phase substrate at its interface with the atmosphere, hydrosphere and biota", and soil body as "solid-phase part of a soil system produced by its long-term functioning and composed of a vertical sequence of genetic horizons". Soil system functioning corresponds to the recent environmental factors and includes heat and moisture dynamics, biomass production, biogeochemical cycles, and other processes. In contrast, a soil body is a record of the long-term functioning of a soil system. It thus provides a record not only of the functioning of the soil system under the present environmental conditions but also under past, possibly different, conditions. Hence, Targulian and Goryachkin (2004) called it the "memory" of the landscape. Richter and Yaalon (2012) argued that most soils comprise both, features that developed under the present environmental conditions and features that reflect different conditions that the soils experienced in the past; they concluded that most soils are polygenetic. Although the current functioning of the soil system in the concept of Targulian and Gerasimova (2009) is mainly controlled by the present-day combination of environmental factors, it should be added that past processes also influence the soil system, because past processes changed the soil properties in a way that also the present-day functioning of the soil system is affected by these changes. Earlier, Yaalon (1971) had categorised soil properties according to the time-span required for their adjustment to the actual environment, distinguishing

  4. Conservation tillage impacts on soil, crop and the environment

    Directory of Open Access Journals (Sweden)

    Mutiu Abolanle Busari

    2015-06-01

    Full Text Available There is an urgent need to match food production with increasing world population through identification of sustainable land management strategies. However, the struggle to achieve food security should be carried out keeping in mind the soil where the crops are grown and the environment in which the living things survive. Conservation agriculture (CA, practising agriculture in such a way so as to cause minimum damage to the environment, is being advocated at a large scale world-wide. Conservation tillage, the most important aspect of CA, is thought to take care of the soil health, plant growth and the environment. This paper aims to review the work done on conservation tillage in different agro-ecological regions so as to understand its impact from the perspectives of the soil, the crop and the environment. Research reports have identified several benefits of conservation tillage over conventional tillage (CT with respect to soil physical, chemical and biological properties as well as crop yields. Not less than 25% of the greenhouse gas effluxes to the atmosphere are attributed to agriculture. Processes of climate change mitigation and adaptation found zero tillage (ZT to be the most environmental friendly among different tillage techniques. Therefore, conservation tillage involving ZT and minimum tillage which has potential to break the surface compact zone in soil with reduced soil disturbance offers to lead to a better soil environment and crop yield with minimal impact on the environment.

  5. Lead, arsenic, and polycyclic aromatic hydrocarbons in soil and house dust in the communities surrounding the Sydney, Nova Scotia, tar ponds.

    OpenAIRE

    Lambert, Timothy W; Lane, Stephanie

    2004-01-01

    This study evaluated lead, arsenic, and polycyclic aromatic hydrocarbon (PAH) contamination in the residential communities adjacent to the Sydney, Nova Scotia, tar ponds, the area considered Canada's worst contaminated site. The tar pond remediation policy has been limited to the site and some residential properties. We compared background concentrations in 91 soil samples taken 5-20 km from the coke oven site with those in soil samples from the three communities surrounding the tar ponds: Wh...

  6. Changes of the soil environment affected by fly ash dumping site of the electric power plant

    Science.gov (United States)

    Weber, Jerzy; Gwizdz, Marta; Jamroz, Elzbieta; Debicka, Magdalena; Kocowicz, Andrzej

    2014-05-01

    In this study the effect of fly ash dumping site of the electric power plant on the surrounding soil environment was investigated. The fly ash dumping site collect wastes form brown coal combustion of Belchatow electric power station, central Poland. The dumping site is surrounding by forest, where pine trees overgrow Podzols derived from loose quartz sands. The soil profiles under study were located at a distance of 50, 100, 400 and 500 m from the dumping site, while control profiles were located 8 km away from the landfill. In all horizons of soil profiles the mpain hysico-chemical and chemical properties were determined. The humic substances were extracted from ectohumus horizons by Shnitzer's method, purified using XAD resin and freeze-dried. The fulvic acids were passed through a cation exchange column and freeze-dried. Optical density, elemental composition and atomic ratios were determined in the humic and fulvic acids. Organic carbon by KMnO4 oxidation was also determined in the organic soil horizons. The fly ash from the landfill characterized by high salinity and strong alkaline reaction (pH=10), which contributed significantly to the changes of the pH values in soils horizons. The alkalization of soils adjacent to the landfill was found, which manifested in increasing of pH values in the upper soil horizons. The impact of the landfill was also noted in the changes of the soil morphology of Podzols analysed. As a result of the alkalization, Bhs horizons have been converted into a Bs horizons. Leaching of low molecular humus fraction - typical for podzolization - has been minimized as a result of pH changes caused by the impact of the landfill, and originally occurring humic substances in the Bhs horizon (present in the control profiles) have been probably transported out of the soil profile and then into the groundwater.

  7. Evaluating model of frozen soil environment change under engineering actions

    Institute of Scientific and Technical Information of China (English)

    WU; Qingbai(吴青柏); ZHU; Yuanlin(朱元林); LIU; Yongzhi(刘永智)

    2002-01-01

    The change of frozen soil environment is evaluated by permafrost thermal stability, thermal thaw sensibility and surface landscape stability and the quantitatively evaluating model of frozen soil environment is proposed in this paper. The evaluating model of frozen soil environment is calculated by 28 ground temperature measurements along Qinghai-Xizang Highway. The relationships of thermal thaw sensibility and freezing and thawing processes and seasonally thawing depth, thermal stability and permafrost table temperature, mean annual ground temperature and seasonally thawing depth, and surface landscape stability and freezing and thawing hazards and their forming possibility are analyzed. The results show that thermal stability, thermal thaw sensibility and surface landscape stability can be used to evaluate and predict the change of frozen soil environment under human engineering action.

  8. Understanding Plant-Soil Relationships Using Controlled Environment Facilities

    Science.gov (United States)

    Andersen, C. P.; Rygiewicz, P. T.

    1999-01-01

    Although soil is a component of terrestrial ecosystems, it is comprised of a complex web of interacting organisms, and therefore can be considered itself as an ecosystem. Soil microflora and fauna derive energy from plants and plant residues and serve important functions in maintaining soil physical and chemical properties, thereby affecting net primary productivity (NPP), and in the case of contained environments, the quality of the life support system. We have been using 3 controlled-environment facilities (CEF's) that incorporate different levels of soil biological complexity and environmental control, and differ in their resemblance to natural ecosystems, to study relationships among plant physiology, soil ecology, fluxes of minerals and nutrients, and overall ecosystem function. The simplest system utilizes growth chambers and specialized root chambers with organic-less media to study the physiology of plant-mycorrhizal associations. A second system incorporates natural soil in open-top chambers to study soil bacterial and fungal population response to stress. The most complex CEF incorporates reconstructed soil profiles in a ``constructed'' ecosystem, enabling close examination of the soil foodweb. Our results show that closed ecosystem research is important for understanding mechanisms of response to ecosystem stresses. In addition, responses observed at one level of biological complexity may not allow prediction of response at a different level of biological complexity. In closed life support systems, incorporating soil foodwebs will require less artificial manipulation to maintain system stability and sustainability.

  9. A battery model that enables consideration of realistic anisotropic environment surrounding an active material particle and its application

    Science.gov (United States)

    Lin, Xianke; Lu, Wei

    2017-07-01

    This paper proposes a model that enables consideration of the realistic anisotropic environment surrounding an active material particle by incorporating both diffusion and migration of lithium ions and electrons in the particle. This model makes it possible to quantitatively evaluate effects such as fracture on capacity degradation. In contrast, the conventional model assumes isotropic environment and only considers diffusion in the active particle, which cannot capture the effect of fracture since it would predict results contradictory to experimental observations. With the developed model we have investigated the effects of active material electronic conductivity, particle size, and State of Charge (SOC) swing window when fracture exists. The study shows that the low electronic conductivity of active material has a significant impact on the lithium ion pattern. Fracture increases the resistance for electron transport and therefore reduces lithium intercalation/deintercalation. Particle size plays an important role in lithium ion transport. Smaller particle size is preferable for mitigating capacity loss when fracture happens. The study also shows that operating at high SOC reduces the impact of fracture.

  10. Analysis of black soil environment based on Arduino

    Science.gov (United States)

    Li, Y.; Zhang, Y. F.; Wu, C. H.; Wang, J. F.

    2017-05-01

    As everyone knows, the black soil of Heilongjiang bred rice is famous in the world. How to use networking technology to detection the growth environment of Heilongjiang rice, and expands it to the local planting environment to our country is the most important topic. However, the growth environment of rice is complex. In current research, some importnat factors such as carbon dioxide, oxygen, temperature and humidity, pH value and microbial content in black soil that affect the growth of plants are selected, and a kind of black land based on data acquisition and transmission system based on the Arduino development environment and the mechanism construction of Kingview has been realized. The collected data was employed to establish the simulation environment for the growth of rice in Heilongjiang. It can be applied to stimulate the rice growing environment of Heilongjiang province, and gives a improvement of rice quality in other areas. Keywords: Arduino; Kingview; living environment

  11. Competition and soil resource environment alter plant–soil feedbacks for native and exotic grasses

    Science.gov (United States)

    Larios, Loralee; Suding, Katharine N.

    2015-01-01

    Feedbacks between plants and soil biota are increasingly identified as key determinants of species abundance patterns within plant communities. However, our understanding of how plant–soil feedbacks (PSFs) may contribute to invasions is limited by our understanding of how feedbacks may shift in the light of other ecological processes. Here we assess how the strength of PSFs may shift as soil microbial communities change along a gradient of soil nitrogen (N) availability and how these dynamics may be further altered by the presence of a competitor. We conducted a greenhouse experiment where we grew native Stipa pulchra and exotic Avena fatua, alone and in competition, in soils inoculated with conspecific and heterospecific soil microbial communities conditioned in low, ambient and high N environments. Stipa pulchra decreased in heterospecific soil and in the presence of a competitor, while the performance of the exotic A. fatua shifted with soil microbial communities from altered N environments. Moreover, competition and soil microbial communities from the high N environment eliminated the positive PSFs of Stipa. Our results highlight the importance of examining how individual PSFs may interact in a broader community context and contribute to the establishment, spread and dominance of invaders. PMID:25425557

  12. A Survey of Deepwater Horizon (DWH Oil-Degrading Bacteria from the Eastern Oyster Biome and its Surrounding Environment

    Directory of Open Access Journals (Sweden)

    Jesse eThomas

    2014-04-01

    Full Text Available The Deepwater Horizon (DWH accident led to the release of an estimated 794,936,474 liters of crude oil into the northern Gulf of Mexico over an 85 day period in 2010, resulting in the contamination of the Gulf of Mexico waters, sediments, permeable beach sands, coastal wetlands and marine life. This study examines the potential response of the Eastern oyster’s microbiome to hydrocarbon contamination and compares it with the bacterial community responses observed from the overlaying water column and the oyster bed sediments. For this purpose, microcosms seeded with DWH crude oil were established and inoculated separately with oyster tissue (OT, mantle fluid (MF, overlaying water column (WC and sediments (S collected from Apalachicola Bay, FL. Shifts in the microbial community structure in the amended microcosms was monitored over a 3-month period using automated ribosomal intergenic spacer region analysis (ARISA, which showed that the microbiome of the oyster tissue and mantle fluid were more similar to the sediment communities than those present in the overlaying water column. This pattern remained largely consistent, regardless of the concentration of crude oil or the enrichment period. Additionally, 72 oil-degrading bacteria were isolated from the microcosms containing OT, MF, WC and S and identified using 16S ribosomal RNA (rRNA gene sequencing and compared by principal component analysis (PCA which clearly showed that the water column isolates were different to those identified from the sediment. Conversely, the oyster tissue and mantle fluid isolates clustered together; a strong indication that the oyster microbiome is uniquely structured relative to its surrounding environment. When selected isolates from the OT, MF, WC and S were assessed for their oil-degrading potential, we found that the DWH oil was biodegraded between 12%-42%, under the existing conditions.

  13. Basin-scale contributions of Cr, Ni and Co from Ortegal Complex to the surrounding coastal environment (SW Europe).

    Science.gov (United States)

    Prego, Ricardo; Caetano, Miguel; Ospina-Alvarez, Natalia; Raimundo, Joana; Vale, Carlos

    2014-01-15

    The enrichment of Cr and Ni in the coastal zones is usually associated with anthropogenic sources such as the tanning, galvanization, ceramic, and cement industries. However, geological complexes of specific lithologic composition located near shorelines may act as natural sources of metals to the continental shelf. Cape Ortegal (SW Europe) is an ultramafic complex that has Cr, Ni and Co enriched in rocks due to the minerals chromite, chromospinel, gersdorfite and pentlandite. Thus, the hypothesis that this geological complex contributes to metal enrichment in Ortigueira and Barqueiro Rias and the adjacent continental shelf was tested. Chromium, Ni, and Co were determined in water and in suspended particulate matter of ria tributaries, rainfall, surface sediments, mussels, and algae. High contents of Cr (max. 1670mg·kg(-1)) and Ni (max. 1360 mg · kg(-1)) were found in the sediments surrounding Cape Ortegal and the Ortigueira Ria as a result of erosion of exposed cliffs. Dissolved Cr and Ni concentrations in fluvial waters were significantly higher in the rivers that crosses the Ortegal Complex, i.e. Lourido (0.47 μg Cr · L(-1); 9.4 μg Ni · L(-1)) and Landoi (0.37 μg Cr · L(-1); 4.3 μg Ni · L(-1)), in comparison with the nearby basin out of the complex influence (Sor River: fluvial contributions of Cr and Ni to the Ortigueira Ria were higher than fluxes into the Barqueiro Ria. Moreover, the increase in Cr and Ni in the rainfall in summer demonstrated the importance of the atmosphere pathway for introducing these elements into the aquatic environment. As a consequence, the contents of these metals in soft tissues and shell of mussels and algae from the Ortigueira Ria were higher than the organisms from Barqueiro Ria. Thus, geological complexes, such as the Cape Ortegal, located in an uncontaminated area, can increase the land-sea exchange of trace metals.

  14. A survey of deepwater horizon (DWH) oil-degrading bacteria from the Eastern oyster biome and its surrounding environment.

    Science.gov (United States)

    Thomas, Jesse C; Wafula, Denis; Chauhan, Ashvini; Green, Stefan J; Gragg, Richard; Jagoe, Charles

    2014-01-01

    The deepwater horizon (DWH) accident led to the release of an estimated 794,936,474 L of crude oil into the northern Gulf of Mexico over an 85 day period in 2010, resulting in the contamination of the Gulf of Mexico waters, sediments, permeable beach sands, coastal wetlands, and marine life. This study examines the potential response of the Eastern oyster's microbiome to hydrocarbon contamination and compares it with the bacterial community responses observed from the overlaying water column (WC) and the oyster bed sediments. For this purpose, microcosms seeded with DWH crude oil were established and inoculated separately with oyster tissue (OT), mantle fluid (MF), overlaying WC, and sediments (S) collected from Apalachicola Bay, FL, USA. Shifts in the microbial community structure in the amended microcosms was monitored over a 3-month period using automated ribosomal intergenic spacer region analysis, which showed that the microbiome of the OT and MF were more similar to the sediment communities than those present in the overlaying WC. This pattern remained largely consistent, regardless of the concentration of crude oil or the enrichment period. Additionally, 72 oil-degrading bacteria were isolated from the microcosms containing OT, MF, WC, and S and identified using 16S ribosomal RNA gene sequencing and compared by principal component analysis, which clearly showed that the WC isolates were different to those identified from the sediment. Conversely, the OT and MF isolates clustered together; a strong indication that the oyster microbiome is uniquely structured relative to its surrounding environment. When selected isolates from the OT, MF, WC, and S were assessed for their oil-degrading potential, we found that the DWH oil was biodegraded between 12 and 42%, under the existing conditions.

  15. Application of ecological risk assessment based on a novel TRIAD-tiered approach to contaminated soil surrounding a closed non-sealed landfill.

    Science.gov (United States)

    Gutiérrez, Laura; Garbisu, Carlos; Ciprián, Estela; Becerril, José M; Soto, Manu; Etxebarria, Javier; Madariaga, Juan M; Antigüedad, Iñaki; Epelde, Lur

    2015-05-01

    The Ecological Risk Assessment (ERA) is a reliable tool for communicating risk to decision makers in a comprehensive and scientific evidence-based way. In this work, a site-specific ERA methodology based on the TRIAD approach was applied to contaminated soil surrounding a closed non-sealed landfill, as a case study to implement and validate such ERA methodology in the Basque Country (northern Spain). Initially, the procedure consisted of the application of a Parameter Selection Module aimed at selecting the most suitable parameters for the specific characteristics of the landfill contaminated soil, taking into consideration the envisioned land use, intended ecosystem services and nature of contaminants. Afterwards, the selected parameters were determined in soil samples collected from two sampling points located downstream of the abovementioned landfill. The results from these tests were normalized to make them comparable and integrable in a risk index. Then, risk assessment criteria were developed and applied to the two landfill contaminated soil samples. Although the lack of a proper control soil was evidenced, a natural land use was approved by the ERA (at Tier 2) for the two landfill contaminated soils. However, the existence of a potential future risk resulting from a hypothetical soil acidification must be considered.

  16. Magnetic Susceptibility of Soil to Differentiate Soil Environments in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Priscila Vogelei Ramos

    Full Text Available ABSTRACT The interest in new techniques to support digital soil mapping (DSM is increasing. Numerous studies pointed out that the measure of magnetic susceptibility (MS can be extremely useful in the identification of properties related with factors and processes of soil formation, applied to soil mapping. This study addressed the effectiveness of magnetic soil susceptibility to identify and facilitate the distinction of different pedogenic environments of a representative hillslope in the highland Planalto Médio in the state of Rio Grande do Sul (RS, Brazil. In a 350-ha area in the municipality of Santo Augusto, RS, a representative transect was selected, trenches opened for soil characterization and 29 grid points marked at regular distances of 50 m, where soil samples were collected (layers 0.00-0.05, 0.05-0.15, 0.15-0.30, and 0.30-0.60 m to analyze soil properties. Data from the transect samples were subjected to descriptive statistics. Limits of the pedogenetic environments along the slope were identified by the Split Moving Window (SMW Boundary Analysis. The combined use of soil magnetic susceptibility and the SMW technique was effective in identifying different pedogenetic environments in the study area.

  17. Contribution of soil fauna to soil functioning in degraded environments: a multidisciplinary approach

    Science.gov (United States)

    Gargiulo, Laura; Mele, Giacomo; Moradi, Jabbar; Kukla, Jaroslav; Jandová, Kateřina; Frouz, Jan

    2016-04-01

    The restoration of the soil functions is essential for the recovery of highly degraded sites and, consequently, the study of the soil fauna role in the soil development in such environments has great potential from a practical point of view. The soils of the post-mining sites represent unique models for the study of the natural ecological succession because mining creates similar environments characterized by the same substrate, but by different ages according to the year of closure of mines. The aim of this work was to assess the contribution of different species of macrofauna on the evolution of soil structure and on the composition and activity of the microbial community in soil samples subjected to ecological restoration or characterized by spontaneous ecological succession. For this purpose, an experimental test was carried out in two sites characterized by different post-mining conditions: 1) natural succession, 2) reclamation with planting trees. These sites are located in the post-mining area of Sokolov (Czech Republic). For the experimental test repacked soil cores were prepared in laboratory with sieved soil sampled from the two sites. The soil cores were prepared maintaining the sequence of soil horizons present in the field. These samples were inoculated separately with two genera of earthworms (Lumbricus and Aporrectodea) and two of centipedes (Julida and Polydesmus). In particular, based on their body size, were inoculated for each cylinder 2 individuals of millipedes, 1 individual of Lumbricus and 4 individuals of Aporrectodea. For each treatment and for control samples 5 replicates were prepared and all samples were incubated in field for 1 month in the two original sampling sites. After the incubation the samples were removed from the field and transported in laboratory in order to perform the analysis of microbial respiration, of PLFA (phospholipid-derived fatty acids) and ergosterol contents and finally for the characterization of soil structure

  18. Emission of SO2 and SO42- from copper smelter and its influence on the level of total s in soil and moss in Bor and the surroundings

    Directory of Open Access Journals (Sweden)

    Šerbula Snežana M.

    2015-01-01

    Full Text Available Bor and the surroundings (Eastern Serbia have been known for exploitation and processing of sulphide copper ores for more than 100 years. Emissions of waste gases and particulate matter rich in heavy metals are characteristic for pyrometallurgical production of copper. Long-term measurement results (2005-2008 indicate an increased sulphur dioxide level in the urban-industrial zone of Bor since it is closest to the copper smelter which is a dominant source of air pollution in the studied area. Average annual sulphur dioxide concentrations at four measuring sites in the urban-industrial zone exceeded the maximum allowable value of 50 μg/m3. However the maximum allowable value of the total atmospheric depositions (200 mg/m2/day on an annual basis exceeded only at two of 15 measuring sites in the urban-industrial and rural zone. The highest annual deposition rate of sulphates from deposition was detected in the urban-industrial zone. Since the maximum permitted value for sulphates is not defined by the Serbian Regulations, the extent of the pollution cannot be discussed. Since the environment can continuously be polluted through the wet and dry deposition, biomonitoring by moss was conducted, which revealed significantly higher concentrations of total sulphur in moss in the urban-industrial zone, compared to the background zone. The obtained results confirm the reliability of moss as a bioindicator of ambient pollution. Higher total S concentration in soil samples was noted at the rural site (Ostrelj located in the close vicinity of two tailing ponds. [Projekat Ministarstva nauke Republike Srbije, br. 46010, br. 33038 i br. 172037

  19. Metalloids, soil chemistry and the environment.

    Science.gov (United States)

    Lombi, Enzo; Holm, Peter E

    2010-01-01

    This chapter reviews physical chemical properties, origin and use ofmetalloids and their relevance in the environment. The elements boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te), polonium (Po) and astatine (At) are considered metalloids. Metalloids conduct heat and electricity intermediate between nonmetals and metals and they generally form oxides. The natural abundance ofmetalloids varies from Si being the second most common element in the Earth's crust to At as the rarest of natural elements on Earth. The metalloid elements Ge, Te, Po and At are normally present in trace or ultratrace levels in the environment and as such are not considered of relevance in terms of environmental health. The environmental geochemical processes, factors and parameters controlling the partitioning and the speciation of B, Si, As and Sb are reviewed in relation to the bioavailability of these metalloids. Approaches based on the hypothesis that metal toxicity is related to both the metal-ligand complexation processes and the metal interactions with competing cations at the cell surface (biotic ligand) have so far not been successful for assessing metalloid bioavailability. The chapter concludes that our understanding of metalloids toxicity will improve in the future if, in addition to the points discussed above, surface membrane potentials are considered. This should represent a robust approach to the prediction of metalloid toxicity.

  20. Multi-factors influencing the spatial distribution of polycyclic aromatic hydrocarbons in soils surrounding drinking water protection zone.

    Science.gov (United States)

    Jiao, Wentao; Wang, Tieyu; Lu, Yonglong; Chang, Andrew; Chen, Weiping

    2013-08-01

    We selected the Guanting Reservoir in Beijing, China as a case where an industrial area locates on the upwind corner to study the influence of human activities and natural processes on the distribution of polycyclic aromatic hydrocarbons (PAHs) in soils. Soil PAH concentrations in the study area follow a log-normal probability distribution function, suggesting that distribution of PAH in soils was affected by human activities. Distribution of PAHs in soils was significantly affected by the point source that high PAH concentrations were observed in near industrial area with an obvious declining trend from the northwest to the southeast which was the prevailing wind direction in this area. Away from the influence of point source, distribution of PAHs in soils was found to significantly correlate with total organic carbon content, while the influences of agricultural land uses and type of soil texture on the total soil PAHs contents and ring compositions were quite limited. The results can provide some evidences and data on the pollutant accumulation in drink water protection area influenced by natural processes and human activities.

  1. Elemental and isotopic imaging to study biogeochemical functioning of intact soil micro-environments

    Science.gov (United States)

    Mueller, Carsten W.

    2017-04-01

    The complexity of soils extends from the ecosystem-scale to individual micro-aggregates, where nano-scale interactions between biota, organic matter (OM) and mineral particles are thought to control the long-term fate of soil carbon and nitrogen. It is known that such biogeochemical processes show disproportionally high reaction rates within nano- to micro-meter sized isolated zones ('hot spots') in comparison to surrounding areas. However, the majority of soil research is conducted on large bulk (> 1 g) samples, which are often significantly altered prior to analysis and analysed destructively. Thus it has previously been impossible to study elemental flows (e.g. C and N) between plants, microbes and soil in complex environments at the necessary spatial resolution within an intact soil system. By using nano-scale secondary ion mass spectrometry (NanoSIMS) in concert with other imaging techniques (e.g. scanning electron microscopy (SEM) and micro computed tomography (µCT)), classic analyses (isotopic and elemental analysis) and biochemical methods (e.g. GC-MS) it is possible to exhibit a more complete picture of soil processes at the micro-scale. I will present exemplarily results about the fate and distribution of organic C and N in complex micro-scale soil structures for a range of intact soil systems. Elemental imaging was used to study initial soil formation as an increase in the structural connectivity of micro-aggregates. Element distribution will be presented as a key to detect functional spatial patterns and biogeochemical hot spots in macro-aggregate functioning and development. In addition isotopic imaging will be demonstrated as a key to trace the fate of plant derived OM in the intact rhizosphere from the root to microbiota and mineral soil particles. Especially the use of stable isotope enrichment (e.g. 13CO2, 15NH4+) in conjunction with NanoSIMS allows to directly trace the fate of OM or nutrients in soils at the relevant scale (e.g. assimilate C

  2. The partitioning behavior of trace element and its distribution in the surrounding soil of a cement plant integrated utilization of hazardous wastes.

    Science.gov (United States)

    Yang, Zhenzhou; Chen, Yan; Sun, Yongqi; Liu, Lili; Zhang, Zuotai; Ge, Xinlei

    2016-07-01

    In the present study, the trace elements partitioning behavior during cement manufacture process were systemically investigated as well as their distribution behaviors in the soil surrounding a cement plant using hazardous waste as raw materials. In addition to the experimental analysis, the thermodynamic equilibrium calculations were simultaneously conducted. The results demonstrate that in the industrial-scale cement manufacture process, the trace elements can be classified into three groups according to their releasing behaviors. Hg is recognized as a highly volatile element, which almost totally partitions into the vapor phase. Co, Cu, Mn, V, and Cr are considered to be non-volatile elements, which are largely incorporated into the clinker. Meanwhile, Cd, Ba, As, Ni, Pb, and Zn can be classified into semi-volatile elements, as they are trapped into clinker to various degrees. Furthermore, the trace elements emitted into the flue gas can be adsorbed onto the fine particles, transport and deposit in the soil, and it is clarified here that the soil around the cement plant is moderately polluted by Cd, slightly polluted by As, Cr, Ba, Zn, yet rarely influenced by Co, Mn, Ni, Cu, Hg, and V elements. It was also estimated that the addition of wastes can efficiently reduce the consumption of raw materials and energy. The deciphered results can thus provide important insights for estimating the environmental impacts of the cement plant on its surroundings by utilizing wastes as raw materials.

  3. Characterization of contaminated soil and groundwater surrounding an illegal landfill (S. Giuliano, Venice, Italy) by principal component analysis and kriging

    Energy Technology Data Exchange (ETDEWEB)

    Critto, Andrea; Carlon, Claudio; Marcomini, Antonio

    2003-04-01

    Information on soil and groundwater contamination was used to develop a site conceptual model and to identify exposure scenarios. - The characterization of a hydrologically complex contaminated site bordering the lagoon of Venice (Italy) was undertaken by investigating soils and groundwaters affected by the chemical contaminants originated by the wastes dumped into an illegal landfill. Statistical tools such as principal components analysis and geostatistical techniques were applied to obtain the spatial distribution of chemical contaminants. Dissolved organic carbon (DOC), SO{sub 4}{sup 2-} and Cl{sup -} were used to trace the migration of the contaminants from the top soil to the underlying groundwaters. The chemical and hydrogeological available information was assembled to obtain the schematic of the conceptual model of the contaminated site capable to support the formulation of major exposure scenarios, which are also provided.

  4. Soil data for a thermokarst bog and the surrounding permafrost plateau forest, located at Bonanza Creek Long Term Ecological Research Site, Interior Alaska

    Science.gov (United States)

    Manies, Kristen L.; Fuller, Christopher C.; Jones, Miriam C.; Waldrop, Mark P.; McGeehin, John P.

    2017-01-19

    Peatlands play an important role in boreal ecosystems, storing a large amount of soil organic carbon. In northern ecosystems, collapse-scar bogs (also known as thermokarst bogs) often form as the result of ground subsidence following permafrost thaw. To examine how ecosystem carbon balance changes with the loss of permafrost, we measured carbon and nitrogen storage within a thermokarst bog and the surrounding forest, which continues to have permafrost. These sites are a part of the Bonanza Creek Long Term Ecological Research (LTER) site and are located within Interior Alaska. Here, we report on methods used for core collection analysis as well as the cores’ physical, chemical, and descriptive properties.

  5. Challenges of E-Waste pollution to soil environments in Nigeria - A ...

    African Journals Online (AJOL)

    Challenges of E-Waste pollution to soil environments in Nigeria - A Review. ... Animal Research International ... In this paper this category of wastes will be assessed and in relation to its possible influence on soil environment in forms ...

  6. Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil).

    Science.gov (United States)

    Rodriguez-Iruretagoiena, Azibar; Fdez-Ortiz de Vallejuelo, Silvia; Gredilla, Ainara; Ramos, Claudete G; Oliveira, Marcos L S; Arana, Gorka; de Diego, Alberto; Madariaga, Juan Manuel; Silva, Luis F O

    2015-03-01

    Hazard element contamination coming from coal power plants is something obvious, but when this contamination is accompanied by other contamination sources, such as, urban, coal mining and farming activities the study gets complicated. This is the case of an area comprised in the southern part of Santa Catarina state (Brazil) with the largest private power plant generator. After the elemental analysis of 41 agricultural soils collected in an extensive area around the thermoelectric (from 0 to 47 km), the high presence of As, Co, Cr, Cu, Fe, Mn, Mo, Pb, Sb, Sn, Tl, V and Zn was found in some specific areas around the power plant. Nevertheless, as the NWAC (Normalized-and-Weighted Average Concentration) confirmed, only soils from one site were classified as of very high concern due to the presence of potential toxic elements. This site was located within the sedimentation basin of the power plant. The spatial distribution obtained by kriging in combination with the analysis of the data by Principal Component Analysis (PCA) revealed three important hotspots in the area according to soil uses and geographic localization: the thermoelectric, its area of influence due to volatile compound deposition, and the area comprised between two urban areas. Farming practice turn out to be an important factor too for the quantity of hazard element stored in soils.

  7. Use of a culture independent method to analyze the diversity of soil fungi surrounding Chroogomphus rutilus in the Beijing region of China

    DEFF Research Database (Denmark)

    Liu, Yu; Wang, Shouxian; Yin, Yonggang

    2012-01-01

    Large-scale cultivation of Chroogomphus rutilus is too inefficient to be commercially feasible. In addition, isolating C. rutilus mycelia in the wild is difficult. Thus, determining the natural habitat of its fruiting body is important. The present study focused on the ecology of the C. rutilus...... habitat to facilitate its large-scale cultivation. A culture-independent molecular approach—a powerful technology for microbiological ecology studies—was used to investigate the diversity of soil fungal communities in samples surrounding C. rutilus from the Beijing region of China. Metagenomic DNA...... was isolated from soil samples collected around C. rutilus, and an internal transcribed spacer (ITS) gene library was constructed. Subsequently, polymerase chain reaction products were digested with HinfI, HaeIII, MspI, TaqI, or MboI. Clones were selected and sequenced based on their restriction fragment...

  8. Radioactivity measurements in soils surrounding four coal-fired power plants in Serbia by gamma-ray spectrometry and estimated dose

    Directory of Open Access Journals (Sweden)

    Vukašinović Ivana Ž.

    2014-01-01

    Full Text Available The study of spatial distribution of activity concentration of 238U, 226Ra, 210Pb, 232Th, 40K, and 137Cs radionuclides in the surface soil samples (n = 42 collected in the vicinity of four coal-fired power plants in Serbia is presented. Radioactivity measurements in soils performed by gamma-ray spectrometry showed values [Bqkg-1] in the range: 15-117 for 238U, 21-115 for 226Ra, 33-65 for 210Pb, 20-69 for 232Th, 324-736 for 40K, and 2-59 for 137Cs. Surface soil radio-activity that could have resulted from deposition of radionuclides from airborne discharges or resuspension of ash from disposal sites showed no enhanced levels. It was found that variation of soil textural properties, pH values, and carbonate content influenced activity levels of natural radionuclides while radiocesium activities were associated with soil organic matter content. Modification of some soil properties was observed in the immediate vicinity (<1 km of power plants where the soil was more alkaline with coarser particles (0.2-0.05 mm and carbonates accumulated. Calculated average values of the absorbed gamma dose rate and annual external effective dose originating from the terrestrial radionuclides were 69.4 nGy/h and 0.085 mSv, respectively. [Projekat Ministarstva nauke Republike Srbije, br. 4007: Studying climate change and its influence on the environment: impacts, adaptation and mitigation

  9. Surface shapes and surrounding environment analysis of single- and double-stranded DNA-binding proteins in protein-DNA interface.

    Science.gov (United States)

    Wang, Wei; Liu, Juan; Sun, Lin

    2016-07-01

    Protein-DNA bindings are critical to many biological processes. However, the structural mechanisms underlying these interactions are not fully understood. Here, we analyzed the residues shape (peak, flat, or valley) and the surrounding environment of double-stranded DNA-binding proteins (DSBs) and single-stranded DNA-binding proteins (SSBs) in protein-DNA interfaces. In the results, we found that the interface shapes, hydrogen bonds, and the surrounding environment present significant differences between the two kinds of proteins. Built on the investigation results, we constructed a random forest (RF) classifier to distinguish DSBs and SSBs with satisfying performance. In conclusion, we present a novel methodology to characterize protein interfaces, which will deepen our understanding of the specificity of proteins binding to ssDNA (single-stranded DNA) or dsDNA (double-stranded DNA). Proteins 2016; 84:979-989. © 2016 Wiley Periodicals, Inc.

  10. Levels and distribution of methoxylated and hydroxylated polybrominated diphenyl ethers in plant and soil samples surrounding a seafood processing factory and a seafood market.

    Science.gov (United States)

    Sun, Jianteng; Liu, Jiyan; Liu, Yanwei; Jiang, Guibin

    2013-05-01

    Polybrominated diphenyl ethers (PBDEs) along with hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs) were found in plant and soil samples collected surrounding a seafood processing factory and a seafood market in China. The profiles of MeO-PBDE congeners were different between seafood processing factory and seafood market. The detection frequency and concentration of 6-OH-BDE-47 were lower than that of MeO-PBDEs. Near seafood processing factory, a decreasing trend of analyte concentrations in plants was found downstream the river where factory wastewater was discharged. Concentrations of ΣMeO-PBDEs in plant and soil samples showed difference as root > soil > leaf. However, at seafood market, the concentrations of ΣMeO-PBDEs were much higher in leaves than those in soil. The concentration of ΣMeO-PBDEs in leaves showed a remarkable difference between Calystegia soldanella (Linn.) R. Br. and Setaira viridis (L.) Beauv.

  11. Occurrence, sources, and potential human health risks of polycyclic aromatic hydrocarbons in agricultural soils of the coal production area surrounding Xinzhou, China.

    Science.gov (United States)

    Zhao, Long; Hou, Hong; Shangguan, Yuxian; Cheng, Bin; Xu, Yafei; Zhao, Ruifen; Zhang, Yigong; Hua, Xiaozan; Huo, Xiaolan; Zhao, Xiufeng

    2014-10-01

    A comprehensive investigation of the levels, distribution patterns, and sources of polycyclic aromatic hydrocarbons (PAHs) in agricultural soils of the coal production area surrounding Xinzhou, China, was conducted, and the potential human health risks associated with the levels observed were addressed. A total of 247 samples collected from agricultural soils from the area were analyzed for sixteen PAHs, including highly carcinogenic isomers. The PAH concentrations had a range of n.d. to 782ngg(-1), with a mean value of 202ngg(-1). The two-three ring PAHs were the dominant species, making up 60 percent of total PAHs. Compared with the pollution levels and carcinogenic potential risks reported in other studies, the soil PAH concentrations in the study area were in the low to intermediate range. A positive matrix factorization model indicates that coal/biomass combustion, coal and oil combustion, and coke ovens are the primary PAH sources, accounting for 33 percent, 26 percent, and 24 percent of total PAHs, respectively. The benzo[a]pyrene equivalent (BaPeq) concentrations had a range of n.d. to 476ngg(-1) for PAH7c, with a mean value of 34ngg(-1). The BaPeq concentrations of PAH7c accounted for more than 99 percent of the ∑PAH16, which suggests that seven PAHs were major carcinogenic contributors of ∑PAH16. According to the Canadian Soil Quality Guidelines, only six of the soil samples had concentrations above the safe BaPeq value of 600ngg(-1); the elevated concentrations observed at these sites can be attributed to coal combustion and industrial activities. Exposure to these soils through direct contact probably poses a significant risk to human health as a result of the carcinogenic effects of PAHs. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Accumulation of sulfur and heavy metals in soil and tree leaves sampled from the surroundings of Tuncbilek Thermal Power Plant.

    Science.gov (United States)

    Cicek, A; Koparal, A S

    2004-11-01

    In this study, the quantities of sulfur and heavy metals, resulting from the Tuncbilek Thermal Power Plant (TPP) in Turkey, have been assessed in tree leaves and soil samples within a 10 km radius of the plant. Leaves of Salix alba L., Populus tremula L., Robinia pseudoacacia L., Quercus infectoria L., Pinus nigra Arn. ssp. pallasiana (Lamb) Holmboe. trees have been used with the aim of determining how far the gas and particles emitted from the TPP are carried, and for assessment of environmental impact. The results obtained from locations chosen at various distances to the TPP, indicate that the contaminating agents are very dense and effective; particularly in the prevailing wind direction and within 10 km of the plant. They gradually lose their density and effect beyond this distance. The sulfur and heavy metal analyses made in soils taken from these locations indicate a similarity with the data obtained from the leaves.

  13. Multivariate spatial analyses of the distribution and origin of trace and major elements in soils surrounding a secondary lead smelter.

    Science.gov (United States)

    Schneider, Arnaud R; Morvan, Xavier; Saby, Nicolas P A; Cancès, Benjamin; Ponthieu, Marie; Gommeaux, Maxime; Marin, Béatrice

    2016-08-01

    Major and trace elements in soils originate from natural processes and different anthropogenic activities which are difficult to discriminate. On a 17-ha impacted site in northern France, two industrial sources of soil contamination were xidentified: a former iron foundry and a current secondary lead smelter. To discriminate and map natural and anthropogenic sources of major and trace elements on this site, the rarely applied MULTISPATI-principal component analysis (PCA) method was used. Using a 20-m × 20-m grid, 247 topsoil horizons were sampled and analysed with a field-portable X-ray fluorescence analyser for screening soil contamination. The study site was heavily contaminated with Pb and, to a lesser degree, with Sn. Summary statistics and enrichment factors allowed the differentiation of the main lithogenic or anthropogenic origin of the elements. The MULTISPATI-PCA method, which explained 73.9 % of the variability with the three first factors, evidenced strong spatial structures. Those spatial structures were attributed to different natural and artificial processes in the study area. The first axis can be interpreted as a lithogenic effect. Axes 2 and 3 reflect the two different contamination sources. Pb, Sn and S originated from the secondary lead smelter while Fe and Ca were mainly derived from the old iron foundry activity and the old railway built with foundry sand. This study demonstrated that the MULTISPATI-PCA method can be successfully used to investigate multicontaminated sites to discriminate the various sources of contamination.

  14. The analyse of chlorobenzenes (CBS in the soil environment

    Directory of Open Access Journals (Sweden)

    Ferdi Brahushi

    2013-05-01

    Full Text Available Chlorobenzenes (CBs are a group of substituted benzene compounds with only chlorine and hydrogen atoms on the benzene ring. They are mainly used as solvents, pesticides, fire retardants, degreasers, heat transmitters, chemical intermediates and are released in the environment due to their extensive use. This study presents a developing method for determination of chlorobenzenes in the soil, including extraction techniques, concentration, clean up and injection in GC-ECD system which was equipped with a DB-5 capillary column and an AS 2000 autosampler. The detection limit of the method was calculated based on the chlorobenzene recoveries of the presented analytical method and on the detection limits in GC of each chlorobenzes. The extraction with ASE technique presented the best results as the recoveries of MCB, 1,2,4-TCB and HCB from soil with were 100,5±2,5, 88,0±3,3 and 88,0±5,0, respectively. The detection limits of chlorobenzens in the GC-ECD varied from 0,38 pg/µl for HCB to 250,00 pg/µl for MCB. Also, the total recovery of chlorobenzenes was high for HCB (84,13 ± 4,30 and very low for MCB (9,80 ± 1,16. The values of method detection limits of chlorobenzenes in soil were from 0,14 µg/kg soil for HCB to 765,31 µg/kg soil for MCB, whereas other clorobenzenes had intermediate values. Therefore, by using this determination method, high chlorinated benzenes as HCB and PCB could be detected in very small amounts in soil samples.

  15. Vapor Flow Resistance of Dry Soil Layer to Soil Water Evaporation in Arid Environment: An Overview

    Directory of Open Access Journals (Sweden)

    Xixi Wang

    2015-08-01

    Full Text Available Evaporation from bare sandy soils is the core component of the hydrologic cycle in arid environments, where vertical water movement dominates. Although extensive measurement and modeling studies have been conducted and reported in existing literature, the physics of dry soil and its function in evaporation is still a challenging topic with significant remaining issues. Thus, an overview of the previous findings will be very beneficial for identifying further research needs that aim to advance our understanding of the vapor flow resistance (VFR effect on soil water evaporation as influenced by characteristics of the dry soil layer (DSL and evaporation zone (EZ. In this regard, six measurement and four modeling studies were overviewed. The results of these overviewed studies, along with the others, affirm the conceptual dynamics of DSL and EZ during drying or wetting processes (but not both within dry sandy soils. The VFR effect tends to linearly increase with DSL thickness (δ when δ < 5 cm and is likely to increase as a logarithmic function of δ when δ ≥ 5 cm. The vaporization-condensation-movement (VCM dynamics in a DSL depend on soil textures: sandy soils can form a thick (10 to 20 cm DSL while sandy clay soils may or may not have a clear DSL; regardless, a DSL can function as a transient EZ, a vapor condensation zone, and/or a vapor transport medium. Based on the overview, further studies will need to generate long-term continuous field data, develop hydraulic functions for very dry soils, and establish an approach to quantify the dynamics and VFR effects of DSLs during wetting-drying cycles as well as take into account such effects  when using conventional (e.g., Penman-Monteith evaporation models.

  16. Soil microbial diversity patterns of a lowland spring environment.

    Science.gov (United States)

    Vasileiadis, Sotirios; Puglisi, Edoardo; Arena, Maria; Cappa, Fabrizio; van Veen, Johannes A; Cocconcelli, Pier S; Trevisan, Marco

    2013-11-01

    The Po river plain lowland springs represent unique paradigms of managed environments. Their current locations used to be swamps that were drained 6-7 centuries ago, and they have been in constant use ever since. Our aims were to identify the effects of land use on the microbial communities of these soils, look for associated diversity drivers, and assess the applicability of ecology theories with respect to identified patterns. We screened the microbial diversity across a land use transect via high-throughput sequencing of partial 16S rrRNA gene amplicons. Land use had a major effect on soil properties and microbial community structures. Total organic carbon and pH were major diversity drivers for Bacteria, and pH was important for Archaea. We identified the potential contribution of soil amendments to the indigenous microbial communities, and also gained insights into potential roles of taxa in the organic carbon turnover. Verrucomicrobia coincided with the higher values of the recalcitrant organic carbon. Actinobacteria and Acidobacteria correlated with the more labile organic carbon. Finally, the higher diversity found in the soils less enzymatically active and relatively poorer in nutrients, may be explained to an extent by niche-based theories such as the resource heterogeneity hypothesis and Connell's intermediate disturbance hypothesis.

  17. Landslide susceptibility assessment in ash-fall pyroclastic deposits surrounding Mount Somma-Vesuvius: Application of geophysical surveys for soil thickness mapping

    Science.gov (United States)

    De Vita, P.; Agrello, D.; Ambrosino, F.

    2006-06-01

    Along the steep slopes of the carbonate mountains that surround the Campanian Plain and Mount Somma-Vesuvius, rainfall-triggered debris slides occur in unconsolidated ash-fall pyroclastic deposits. The initial debris slides evolve into debris flows that often cause significant property damage and loss of human life in the towns located at the foot of the slopes. In this particular geological situation, the pyroclastic soil thickness, the slope angle, and the morphological variations of the slope profile are the most important factors that contribute to landslide susceptibility. In this paper, the results of an experimental application of shallow resistivity and refraction seismic soundings in mapping the thickness of pyroclastic soils are presented. These geophysical methods are proposed as low-cost and versatile methods to be used in the difficult morphological conditions of the steep slopes in which debris-slides initiate. The methods have been used experimentally in a sample area located on the upper slope of Mount Pizzo d'Alvano, from which debris flows initiated that dramatically hit the town of Sarno on 5-6 May 1998. The inversion of geoelectrical soundings has been calibrated with resistivity values measured directly on pyroclastic outcrops and with soil thickness estimations derived from refraction seismic soundings and from the application of a mobile dynamic penetrometer. The results of the field experimentation can be summarised as follows: (i) unconsolidated ash-fall pyroclastic deposits, ranging in particle size from fine ash to lapilli, can be differentiated from fractured carbonate bedrock by means of electrical resistivity and velocity values of longitudinal seismic waves; (ii) thickness of ash-fall pyroclastic soils can be empirically related to the slope angle using an inverse relationship; and (iii) the empirical model has been applied to Digital Elevation Model data, allowing pyroclastic soil thickness mapping in the sample area.

  18. Comparation of the Uptake and Accumulation of Heavy Metals by Rape Species Grown in Contaminated Soil Surrounding Mining Tails in Chenzhou, China

    Directory of Open Access Journals (Sweden)

    YANG Yang

    2015-08-01

    Full Text Available The rape is usually used for phytoremediation of metal-contaminated soils, because it has the characteristics of rapid growth, large biomass, and high potential to tolerate and accumulate large quantities of heavy metals. In this work, accumulation and transformation of Cu, Zn, Pb, Cd in four rape species(B. juncea L.(BJ, Brassica napus L.(BL, Canadian Brassica napus L.(CBL, local rape(LRwere investigated in soils surrounding mine area contaminated by lead-zinc ore tailings in Chenzhou, Hunan Province. The results showed a significantly high accumulation of Cu, Zn and Cd in leaves and roots of four rape species. However, the concentration of Pb in roots of all rape species was usually one or two orders of magnitude than other parts, and the concentration of heavy metals in stems and fruits was lower. The accumulation of heavy metals in leaves parts was in the order: Zn >Cu >Pb >Cd, and in roots was as: Pb >Zn >Cu >Cd; the order of bioconcentration factor(BCFof heavy metals in above-ground parts(leavesof rape species was: Cu: BJ ≥LR >BL >CBL, Zn: BL >CBL >BJ >LR, Pb: BJ≈LR > BL≈CBL, Cd: BL >CBL >BJ >LR; and the order of translocation factor(TFfrom stems to leaves was: Cu: LR >BJ≈CBL >BL,Zn: BL >LR > BJ >CBL, Pb: BJ >CBL≈LR >BL,Cd: BJ >BL >CBL >LR. It indicated there were significant differences among the species. The results of the field experiment suggested that B. juncea L. was suitable for phytoextraction of Cu, Pb contaminated soil, Brassica napus L. could be used to remediate Zn, Cd or heavy metal combined polluted soils.

  19. Modelling the relationship between soil color and particle size for soil survey in Ferralsol environments

    Directory of Open Access Journals (Sweden)

    B. Kone

    2009-05-01

    Full Text Available Soil texture is an important property for evaluating its inherent fertility especially by using pedo-transfers functions requiring particle size data. However, there is no existing quantitative method for in situ estimation of soil particle size, delaying judgement of soil chemical properties in the field. For this purpose, laboratory particle size analyses of 1028 samples from 281 Ferralsol profiles, located between latitudes 7º N and 10º N in Côte d’Ivoire and their respective colour notation by Munsell chart were used to generate prediction models. Multiple Linear Regression Analysis by Group was processed to identify clay, sand and silt contents in the soil based on color hue (2.5YR, 5YR, 7.5YR, and 10YR and Chroma (1, 2, 3, 4, 5, 6, 7, 8. The evaluation was conducted for each horizon coded as H1 (0-20 cm, H2 (20-60 cm, H3 (60-80 cm and H4 (80-150 cm and used as grouping variables. Highly significant (P< 0.001 models were identified for clay and sand. These models were used to estimate successfully clay and sand contents for other Ferralsol samples by comparing calculated and measured mean using the null hypothesis of difference and Tukey’s tests. They were accurate for at all depths, except 80 - 150 cm, for sand in 10YR soils. The method was deemed appropriate for in situ estimation of soil particle size contents in Ferralsol environment for improving reconnaissance agricultural soil surveys.

  20. Soil bioremediation approaches for petroleum hydrocarbon polluted environments

    Directory of Open Access Journals (Sweden)

    Eman Koshlaf

    2017-01-01

    Full Text Available Increasing industrialisation, continued population growth and heavy demand and reliance on petrochemical products have led to unprecedented economic growth and development. However, inevitably this dependence on fossil fuels has resulted in serious environmental issues over recent decades. The eco-toxicity and the potential health implications that petroleum hydrocarbons pose for both environmental and human health have led to increased interest in developing environmental biotechnology-based methodologies to detoxify environments impacted by petrogenic compounds. Different approaches have been applied for remediating polluted sites with petroleum derivatives. Bioremediation represents an environmentally sustainable and economical emerging technology for maximizing the metabolism of organic pollutants and minimizing the ecological effects of oil spills. Bioremediation relies on microbial metabolic activities in the presence of optimal ecological factors and necessary nutrients to transform organic pollutants such as petrogenic hydrocarbons. Although, biodegradation often takes longer than traditional remediation methods, the complete degradation of the contaminant is often accomplished. Hydrocarbon biodegradation in soil is determined by a number of environmental and biological factors varying from site to site such as the pH of the soil, temperature, oxygen availability and nutrient content, the growth and survival of hydrocarbon-degrading microbes and bioavailability of pollutants to microbial attack. In this review we have attempted to broaden the perspectives of scientists working in bioremediation. We focus on the most common bioremediation technologies currently used for soil remediation and the mechanisms underlying the degradation of petrogenic hydrocarbons by microorganisms.

  1. The influence of environment and energy macro surroundings on the development of tourism in the 21st century.

    Science.gov (United States)

    Jovicić, Dobrica

    2012-06-01

    Trying to anticipate the future of tourism may be a particularly fraught task. However, this does not mean that trying to predict the future of tourism is not without value. From a business perspective, examining the future enables firms to anticipate new business conditions and develop new strategies. From a destination perspective, reflections on the future enable consideration of how to maintain or improve the qualities of a destination. The paper is focused on an analysis of the impacts of the energy and ecological macro environments on tourism trends in 21st century. Mass international tourism has thrived on the abundant and cheap supply of energy, and this may be about to change as the world moves towards 'Peak Oil'. The resultant scarcity and high price of all energy fuels will produce changes in human activities, specifically in tourism. The basis of the health of the economy is the health of the environment. Therefore issues of global environmental changes are increasingly influencing consideration of trends in tourism. In this looming transitional era tourism needs to make some dramatic changes to harmonize with the new realities of a post-energy world affected additionaly by global warming and other environmental changes.

  2. Roles of soil biota and biodiversity in soil environment – A concise communication

    OpenAIRE

    Suleiman Usman; Yakubu Muhammad; Alhaji Chiroman

    2016-01-01

    Soil biota (the living organisms in soil) plays an important role in soil development and soil formation. They are the most important component of soil organic matter decomposition and behave efficiently in the development and formation of soil structure and soil aggregate. Their biodiversity provides many functional services to soil and soil components. They help in dissolving verities of plant and animal materials, which could left as decayed organic matter at the surface soil. Understandin...

  3. Validation of numeric methods for calculating interactions between district heating pipelines and the surrounding soil; Validierung numerischer Verfahren zur Berechnung des Interaktionsverhaltens 'Fernwaermeleitung - Baugrund'

    Energy Technology Data Exchange (ETDEWEB)

    Salveter, G.

    2000-07-01

    In this thesis, the results of experimental research work on global bearing behaviour with respect to the existing theoretical basis are systematically analysed for the evaluation and interpretation of measuring results. Among other things, the geometry of the pipeline route, the compactness of the backfilling material and the temperature dependence are considered. The mutual influence of friction and bedding resistances in the region of bends could not yet be determined for a local analysis by existing numerical models. This requires the determination of the induced stress distribution on the pipe perimeter due to lateral displacement of the pipe. The influence is therefore described by a numerical consideration of relative displacements between the pipe and the surrounding soil. Ultimately, relative displacements are verified on the basis of our own complementary results from experimental research carried out in a laboratory for soil mechanics with specially designed test equipment. The global analysis of bearing loads and displacements is done with a numerical model, in which the plastic jacked pipe is idealized as a beam, and the effect of the soil is idealized by spring elements with non-linear force displacement characteristics. An existing numerical model is extended with regard to the new findings and while taking vertical displacements into account. It is used for numerical simulations of selected tests on the global bearing behaviour of underground district heating pipelines which were carried out as part of the research cooperation project. Apart from a good correspondence between calculated results and test results this also provides a plausible description of interrelations. At the same time, however, it also makes itclear that further research is necessary. This thesis provides a contribution to the validation of recent methods for the calculated modelling of the interaction between a district heating pipeline and the subsoil on the basis of

  4. Disentangling above- and below-ground facilitation drivers in arid environments: the role of soil microorganisms, soil properties and microhabitat.

    Science.gov (United States)

    Lozano, Yudi M; Armas, Cristina; Hortal, Sara; Casanoves, Fernando; Pugnaire, Francisco I

    2017-03-06

    Nurse plants promote establishment of other plant species by buffering climate extremes and improving soil properties. Soil biota plays an important role, but an analysis to disentangle the effects of soil microorganisms, soil properties and microclimate on facilitation is lacking. In three microhabitats (gaps, small and large Retama shrubs), we placed six microcosms with sterilized soil, two per soil origin (i.e. from each microhabitat). One in every pair received an alive, and the other a sterile, inoculum from its own soil. Seeds of annual plants were sown into the microcosms. Germination, survival and biomass were monitored. Soil bacterial communities were characterized by pyrosequencing. Germination in living Retama inoculum was nearly double that of germination in sterile inoculum. Germination was greater under Retama canopies than in gaps. Biomass was up to three times higher in nurse than in gap soils. Soil microorganisms, soil properties and microclimate showed a range of positive to negative effects on understory plants depending on species identity and life stage. Nurse soil microorganisms promoted germination, but the effect was smaller than the positive effects of soil properties and microclimate under nurses. Nurse below-ground environment (soil properties and microorganisms) promoted plant growth and survival more than nurse microhabitat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database.

    Science.gov (United States)

    Bissett, Andrew; Fitzgerald, Anna; Meintjes, Thys; Mele, Pauline M; Reith, Frank; Dennis, Paul G; Breed, Martin F; Brown, Belinda; Brown, Mark V; Brugger, Joel; Byrne, Margaret; Caddy-Retalic, Stefan; Carmody, Bernie; Coates, David J; Correa, Carolina; Ferrari, Belinda C; Gupta, Vadakattu V S R; Hamonts, Kelly; Haslem, Asha; Hugenholtz, Philip; Karan, Mirko; Koval, Jason; Lowe, Andrew J; Macdonald, Stuart; McGrath, Leanne; Martin, David; Morgan, Matt; North, Kristin I; Paungfoo-Lonhienne, Chanyarat; Pendall, Elise; Phillips, Lori; Pirzl, Rebecca; Powell, Jeff R; Ragan, Mark A; Schmidt, Susanne; Seymour, Nicole; Snape, Ian; Stephen, John R; Stevens, Matthew; Tinning, Matt; Williams, Kristen; Yeoh, Yun Kit; Zammit, Carla M; Young, Andrew

    2016-01-01

    Microbial inhabitants of soils are important to ecosystem and planetary functions, yet there are large gaps in our knowledge of their diversity and ecology. The 'Biomes of Australian Soil Environments' (BASE) project has generated a database of microbial diversity with associated metadata across extensive environmental gradients at continental scale. As the characterisation of microbes rapidly expands, the BASE database provides an evolving platform for interrogating and integrating microbial diversity and function. BASE currently provides amplicon sequences and associated contextual data for over 900 sites encompassing all Australian states and territories, a wide variety of bioregions, vegetation and land-use types. Amplicons target bacteria, archaea and general and fungal-specific eukaryotes. The growing database will soon include metagenomics data. Data are provided in both raw sequence (FASTQ) and analysed OTU table formats and are accessed via the project's data portal, which provides a user-friendly search tool to quickly identify samples of interest. Processed data can be visually interrogated and intersected with other Australian diversity and environmental data using tools developed by the 'Atlas of Living Australia'. Developed within an open data framework, the BASE project is the first Australian soil microbial diversity database. The database will grow and link to other global efforts to explore microbial, plant, animal, and marine biodiversity. Its design and open access nature ensures that BASE will evolve as a valuable tool for documenting an often overlooked component of biodiversity and the many microbe-driven processes that are essential to sustain soil function and ecosystem services.

  6. N2O and N2 emissions from contrasting soil environments - interactive effects of soil nitrogen, hydrology and microbial communities

    Science.gov (United States)

    Christiansen, Jesper; Elberling, Bo; Ribbons, Relena; Hedo, Javier; José Fernández Alonso, Maria; Krych, Lukasz; Sandris Nielsen, Dennis; Kitzler, Barbara

    2016-04-01

    Reactive nitrogen (N) in the environment has doubled relative to the natural global N cycle with consequences for biogeochemical cycling of soil N. Also, climate change is expected to alter precipitation patterns and increase soil temperatures which in Arctic environments may accelerate permafrost thawing. The combination of changes in the soil N cycle and hydrological regimes may alter microbial transformations of soil N with unknown impacts on N2O and N2 emissions from temperate and Arctic soils. We present the first results of soil N2O and N2 emissions, chemistry and microbial communities over soil hydrological gradients (upslope, intermediate and wet) across a global N deposition gradient. The global gradient covered an N-limited high Arctic tundra (Zackenberg-ZA), a pacific temperate rain forest (Vancouver Island-VI) and an N saturated forest in Austria (Klausenleopoldsdorf-KL). The N2O and N2 emissions were measured from intact cores at field moisture in a He-atmosphere system. Extractable NH4+ and NO3-, organic and microbial C and N and potential enzyme-activities were determined on soil samples. Soil genomic DNA was subjected to MiSeq-based tag-encoded 16S rRNA and ITS gene amplicon sequencing for the bacterial and fungal community structure. Similar soil moisture levels were observed for the upslope, intermediate and wet locations at ZA, VI and KL, respectively. Extractable NO3- was highest at the N rich KL and lowest at ZA and showed no trend with soil moisture similar to NH4+. At ZA and VI soil NH4+ was higher than NO3- indicating a tighter N cycling. N2O emissions increased with soil moisture at all sites. The N2O emissions for the wet locations ranked similarly to NO3- with the largest response to soil moisture at KL. N2 emissions were remarkably similar across the sites and increased with soil wetness. Microbial C and N also increased with soil moisture and were overall lowest at the N rich KL site. The potential activity of protease enzyme was site

  7. The impact of atmospheric dust deposition and trace elements levels on the villages surrounding the former mining areas in a semi-arid environment (SE Spain)

    Science.gov (United States)

    Sánchez Bisquert, David; Matías Peñas Castejón, José; García Fernández, Gregorio

    2017-03-01

    It is understood that particulate matter in the atmosphere from metallic mining waste has adverse health effects on populations living nearby. Atmospheric deposition is a process connecting the mining wasteswith nearby ecosystems. Unfortunately, very limited information is available about atmospheric deposition surrounding rural metallic mining areas. This article will focus on the deposition from mining areas, combined with its impact on nearby rural built areas and populations. Particle samples were collected between June 2011 and March 2013. They were collected according to Spanish legislation in ten specialised dust collectors. They were located near populations close to a former Mediterranean mining area, plus a control, to assess the impact of mining waste on these villages. This article and its results have been made through an analysis of atmospheric deposition of these trace elements (Mn, Zn, As, Cd and Pb). It also includes an analysis of total dust flux. Within this analysis it has considered the spatial variations of atmospheric deposition flux in these locations. The average annual level of total bulk deposition registered was 42.0 g m-2 per year. This was higher than most of the areas affected by a Mediterranean climate or in semi-arid conditions around the world. Regarding the overall analysis of trace elements, the annual bulk deposition fluxes of total Zn far exceeded the values of other areas. While Mn, Cd and Pb showed similar or lower values, and in part much lower than those described in other Mediterranean mining areas. This study confirmed some spatial variability of dust and trace elements, contained within the atmospheric deposition. From both an environmental and a public health perspective, environmental managers must take into account the cumulative effect of the deposition of trace elements on the soil and air quality around and within the villages surrounding metallic mining areas.

  8. Adaptation of ammonia-oxidizing microorganisms to environment shift of paddy field soil.

    Science.gov (United States)

    Ke, Xiubin; Lu, Yahai

    2012-04-01

    Adaptation of microorganisms to the environment is a central theme in microbial ecology. The objective of this study was to investigate the response of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) to a soil medium shift. We employed two rice field soils collected from Beijing and Hangzhou, China. These soils contained distinct AOB communities dominated by Nitrosomonas in Beijing rice soil and Nitrosospira in Hangzhou rice soil. Three mixtures were generated by mixing equal quantities of Beijing soil and Hangzhou soil (BH), Beijing soil with sterilized Hangzhou soil (BSH), and Hangzhou soil with sterilized Beijing soil (HSB). Pure and mixed soils were permanently flooded, and the surface-layer soil where ammonia oxidation occurred was collected to determine the response of AOB and AOA to the soil medium shift. AOB populations increased during the incubation, and the rates were initially faster in Beijing soil than in Hangzhou soil. Nitrosospira (cluster 3a) and Nitrosomonas (communis cluster) increased with time in correspondence with ammonia oxidation in the Hangzhou and Beijing soils, respectively. The 'BH' mixture exhibited a shift from Nitrosomonas at day 0 to Nitrosospira at days 21 and 60 when ammonia oxidation became most active. In 'HSB' and 'BSH' mixtures, Nitrosospira showed greater stimulation than Nitrosomonas, both with and without N amendment. These results suggest that Nitrosospira spp. were better adapted to soil environment shifts than Nitrosomonas. Analysis of the AOA community revealed that the composition of AOA community was not responsive to the soil environment shifts or to nitrogen amendment. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Metal concentrations in the soils and native plants surrounding the old flotation tailings pond of the copper mining and smelting complex Bor (Serbia).

    Science.gov (United States)

    Antonijević, M M; Dimitrijević, M D; Milić, S M; Nujkić, M M

    2012-03-01

    In this study concentrations of metals in the native plants and soils surrounding the old flotation tailings pond of the copper mine were determined. It has been established that the soil is heavily contaminated with copper, iron and arsenic, the mean concentrations being 1585.6, 29,462.5 and 171.7 mg kg(-1) respectively. All the plants, except manganese, accumulated metallic elements in concentrations which were either in the range of critical and phytotoxic values (Pb and As) or higher (Zn), and even much higher (Cu and Fe) than these values. Otherwise, the accumulation of Mn, Pb and As was considerably lower than that of Cu, Fe and Zn. In most plants the accumulation of target metals was highest in the root. Several plant species showed high bioaccumulation and translocation factor values, which classify them into species for potential use in phytoextraction. The BCF and TF values determined in Prunus persica were 1.20 and 3.95 for Cu, 1.5 and 6.0 for Zn and 1.96 and 5.44 for Pb. In Saponaria officinalis these values were 2.53 and 1.27 for Zn, and in Juglans regia L. they were 8.76 and 17.75 for Zn. The translocation factor in most plants, for most metals, was higher than one, whereas the highest value was determined in Populus nigra for Zn, amounting to 17.8. Among several tolerant species, the most suitable ones for phytostabilization proved to be Robinia pseudoacacia L. for Zn and Verbascum phlomoides L., Saponaria officinalis and Centaurea jacea L. for Mn, Pb and As. This journal is © The Royal Society of Chemistry 2012

  10. Expression of allelopathy in the soil environment: Soil concentration and activity of benzoxazinoid compounds released by rye cover crop residue

    Science.gov (United States)

    The activity of allelopathic compounds is often reduced in the soil environment where processes involving release from donor plant material, soil adsorption and degradation, and uptake by receptor plants naturally result in complex interactions. Rye (Secale cereale L.) cover crops are known to supp...

  11. SOIL EROSION AND ITS IMPACTS ON ENVIRONMENT IN YIXING TEA PLANTATION OF JIANGSU PROVINCE

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; ZHANG Hong; PENG Bu-zhuo; YANG Hao

    2003-01-01

    Soil erosion on sloping field has led to a lot of environmental problems. In order to reveal the seriousnessof the damage of soil erosion on sloping fields 137Cs tracer method was used to estimate soil erosion rate. 137Cs referenceinventory of 2200Bq/m2 in Yixing, southern Jiangsu Province, was estimated and a model for estimating erosion of cultivat-ed soil was established in order to avoid overestimating soil erosion rates. Then based on the soil erosion rates and mea-sured soil physical and chemical properties, direct and indirect impacts of soil erosion on environment were further dis-cussed. Direct impacts of erosion on environment included on-site and off-site impacts. The on-site impacts were thatsoil layer became thin, soil structure was deteriorated and soil nutrients decreased. The off-site impacts were that waterbodies were polluted. The indirect impacts of soil erosion on environment were the increase of fertilizer application andenergy consumption, and change of adaptability of land uses. Although erosion intensity was not serious in the studyarea, its environmental impacts should not be ignored because of great soil nutrient loss and coarseness of soil particles.

  12. Soil CO2 Uptake in Deserts and Its Implications to the Groundwater Environment

    Directory of Open Access Journals (Sweden)

    Wenfeng Wang

    2016-09-01

    Full Text Available Recent studies of soil carbon cycle in arid and semi-arid ecosystems demonstrated that there exists an abiotic CO2 absorption by saline-alkali soils (Aa at desert ecosystems and suggested potential contributions of CO2 dissolution beneath deserts to the terrestrial ecosystems carbon balance. However, the overall importance of such soil CO2 uptake is still undetermined and its implications to the groundwater environment remain unaddressed. In this manuscript, a simple method is proposed for the direct computation of Aa from the total soil CO2 flux (Fa as well as for the evaluation of Aa importance to Fa. An artificial soil-groundwater system was employed to investigate the implications to groundwater environment and it was found that soil CO2 uptake in deserts can contribute a possible influence on the evolution of the groundwater environment, providing that the absorbed CO2 largely remained in the soil-groundwater system.

  13. Characteristics of the road and surrounding environment in metropolitan shopping strips: association with the frequency and severity of single-vehicle crashes.

    Science.gov (United States)

    Stephan, Karen L; Newstead, Stuart V

    2014-01-01

    Modeling crash risk in urban areas is more complicated than in rural areas due to the complexity of the environment and the difficulty obtaining data to fully characterize the road and surrounding environment. Knowledge of factors that impact crash risk and severity in urban areas can be used for countermeasure development and the design of risk assessment tools for practitioners. This research aimed to identify the characteristics of the road and roadside, surrounding environment, and sociodemographic factors associated with single-vehicle crash (SVC) frequency and severity in complex urban environments, namely, strip shopping center road segments. A comprehensive evidence-based list of data required for measuring the influence of the road, roadside, and other factors on crash risk was developed. The data included a broader range of factors than those traditionally considered in accident prediction models. One hundred and forty-two strip shopping segments located on arterial roads in metropolitan Melbourne, Australia, were identified. Police-reported casualty data were used to determine how many SVC occurred on the segments between 2005 and 2009. Data describing segment characteristics were collected from a diverse range of sources; for example, administrative government databases (traffic volume, speed limit, pavement condition, sociodemographic data, liquor licensing), detailed maps, on-line image sources, and digital images of arterial roads collected for the Victorian state road authority. Regression models for count data were used to identify factors associated with SVC frequency. Logistic regression was used to determine factors associated with serious and fatal outcomes. One hundred and seventy SVC occurred on the 142 selected road segments during the 5-year study period. A range of factors including traffic exposure, road cross section (curves, presence of median), road type, requirement for sharing the road with other vehicle types (trams and bicycles

  14. EuroSoil2012: Soil science for the benefit of mankind and environment

    Science.gov (United States)

    EuroSoil2012 was convened in Bari ITALY from 2-6 July 2012 as the 4th International Congress of the European Confederation of Soil Science Societies (ECSSS). The theme of EuroSoil2012 as “soil science for the benefit of mankind and environment” aimed to cover several broad aspects of soil science w...

  15. The role of spatial heterogeneity of the environment in soil fauna recovery after fires

    Science.gov (United States)

    Gongalsky, K. B.; Zaitsev, A. S.

    2016-12-01

    Forest fires are almost always heterogeneous, leaving less-disturbed sites that are potentially suitable as habitats for soil-dwelling creatures. The recovery of large soil animal communities after fires is therefore dependent on the spatial structure of the burned habitats. The role of locally less disturbed sites in the survival of soil macrofauna communities along with traditionally considered immigration from the surrounding undisturbed habitats is shown by the example of burnt areas located in three geographically distant regions of European Russia. Such unburned soil cover sites (perfugia) occupy 5-10% of the total burned habitats. Initially, perfugia are characterized by much higher (200-300% of the average across a burned area) diversity and abundance of soil fauna. A geostatistical method made it possible to estimate the perfugia size for soil macrofauna at 3-8 m.

  16. Sulphonamide and trimethoprim resistance genes persist in sediments at Baltic Sea aquaculture farms but are not detected in the surrounding environment.

    Directory of Open Access Journals (Sweden)

    Windi Indra Muziasari

    Full Text Available Persistence and dispersal of antibiotic resistance genes (ARGs are important factors for assessing ARG risk in aquaculture environments. Here, we quantitatively detected ARGs for sulphonamides (sul1 and sul2 and trimethoprim (dfrA1 and an integrase gene for a class 1 integron (intI1 at aquaculture facilities in the northern Baltic Sea, Finland. The ARGs persisted in sediments below fish farms at very low antibiotic concentrations during the 6-year observation period from 2006 to 2012. Although the ARGs persisted in the farm sediments, they were less prevalent in the surrounding sediments. The copy numbers between the sul1 and intI1 genes were significantly correlated suggesting that class 1 integrons may play a role in the prevalence of sul1 in the farm sediments through horizontal gene transfer. In conclusion, the presence of ARGs may limit the effectiveness of antibiotics in treating fish illnesses, thereby causing a potential risk to the aquaculture industry. However, the restricted presence of ARGs at the farms is unlikely to cause serious effects in the northern Baltic Sea sediment environments around the farms.

  17. ECO-ENVIRONMENT CHANGE AND SOIL EROSION PROCESS IN THE RECLAIMED FORESTLAND OF THE LOESS PLATEAU

    Institute of Scientific and Technical Information of China (English)

    ZHA Xiao-chun; TANG Ke-li

    2003-01-01

    Serious soil erosion has made the eco-environment fragile in the Loess Plateau. Based on the 10-year da-ta observed from 1989 to 1998 in the Ziwuling Survey Station in loess hilly region, the eco-environment change and soil erosion process in reclaimed forestland were studied in this paper. The results showed that the intensity of man-made soil erosion caused by forestland reclamation was 1000 times more than that of the natural erosion. From the analysis of soil physical and mechanical properties, in the 10th year after forestland was reclaimed, the clay content and physical clay content decreased 2.74 percentage point and 3.01 percentage point respectively, the >0.25mm water-stable aggregate content decreased 31.59 percentage point, the soil bulk density increased and soil shear strength de-creased, all of which were easier to cause soil erosion. The correlation analysis showed that >0.25mm waterstable ag-gregate content was the key factor affecting soil erosion, and the secondary factors were soil coarse grain and soil shear strength. The relation between the >0.25mm waterstable aggregate content, the soil sheer strength and the soil erosion intensity were analyzed, which showed that the first year and the seventh erosion year were the turn years of the soil erosion intensity after the forestland was reclaimed, revealed that the change ofeco-environment was the main cause to accelerate soil erosion, and the worse environment caused soil erosion to be serious rapidly.

  18. An investigation of model forensic bone in soil environments studied using infrared spectroscopy.

    Science.gov (United States)

    Howes, Johanna M; Stuart, Barbara H; Thomas, Paul S; Raja, Sophil; O'Brien, Christopher

    2012-09-01

    Infrared spectroscopy has been used to examine changes to bone chemistry as a result of soil burial. Pig carcasses were buried as part of a controlled field study, and pig bone was used in soil environments established in the laboratory. The variables of species type, bone pretreatment, soil type and pH, moisture content, temperature, and burial time were investigated. The crystallinity index (CI) and the organic and carbonate contents of the bones were monitored. The data revealed decreasing trends in the organic and carbonate contents and an increase in the CI of the bone with burial time. An acidic soil environment and soil type are the factors that have the most influence on bone chemistry as a result of burial. The study demonstrates the potential of infrared spectroscopy as a straightforward method of monitoring the changes associated with aging of bones in a variety of soil environments.

  19. UNDERSTANDING PLANT-SOIL RELATIONSHIPS USING CONTROLLED ENVIRONMENT FACILITIES

    Science.gov (United States)

    Although soil is a component of terrestrial ecosystems, it is comprised of a complex web of interacting organisms, and therefore, can be considered itself as an ecosystem. Soil microflora and fauna derive energy from plants and plant residues and serve important functions in mai...

  20. Concept of Prostration in Traditional Malay Mosque Design to the Surrounding Environment with Case Study of Tranquerah Mosque in Malacca, Malaysia

    Directory of Open Access Journals (Sweden)

    Ahmad Sanusi Hassan

    2011-10-01

    Full Text Available This study discusses symbol of prostration concept in the traditional Malay mosque design in Malacca. The literature review covers definition of the keywords, which are sustainable elements, traditional mosque design in Malacca and prostration. The purpose is to identify factors that have significant roles in defining symbol of obedience concept based on Islamic perspectives in the traditional Malay mosque design. In this study, concept of obedience is defined as the acts of prostration to the surrounding environment. The level of prostration is measured based on five Islamic laws as follows; obligation (wajib, desirability (sunat, permissibility (harus, undesirability (makruh and prohibition (haram. These laws are used as measurable scale in the research analysis to measure the level of prostration in the mosque design. Tranquerah Mosque located in Tranquerah district, Malacca is selected as the case study. This mosque is the oldest mosque in Malacca and second oldest mosque in Malaysia. The analysis shows that the mosque’s symbol of prostration concept is influenced by the local climatic context with reference to comfort and health as the primary indicators. The design elements comprise pyramid roof form, tiered roof system, roof overhangs, roof ridge form, building orientation, open veranda and wall openings.

  1. Vegetative growth and yield of strawberry under irrigation and soil mulches for different cultivation environments

    OpenAIRE

    Pires Regina Célia de Matos; Folegatti Marcos Vinícius; Passos Francisco Antonio; Arruda Flávio Bussmeyer; Sakai Emílio

    2006-01-01

    The vegetative growth and yield of strawberry in relation to irrigation levels and soil mulches are still not well known, mainly for different environmental conditions. Two experiments were carried out in Atibaia, SP, Brazil, during 1995, one in a protected environment and the other in an open field, to evaluate the cultivar Campinas IAC-2712, under different irrigation levels and soil mulches (black and clear polyethylene). Three water potential levels in the soil were used in order to defin...

  2. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    Science.gov (United States)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  3. Soil microbiome transfer method affects microbiome composition, including dominant microorganisms, in a novel environment.

    Science.gov (United States)

    Howard, Mia M; Bell, Terrence H; Kao-Kniffin, Jenny

    2017-06-15

    We show that choice of soil microbiome transfer method, i.e. direct soil transfers and a common soil wash procedure, dramatically influences the microbiome that develops in a new environment, using high-throughput amplicon sequencing of 16S rRNA genes and the fungal internal transcribed spacer (ITS) region. After 3 weeks of incubation in commercial potting mix, microbiomes were most similar to the source soil when a greater volume of initial soil was transferred (5% v/v transfer), and least similar when using a soil wash. Abundant operational taxonomic units were substantially affected by transfer method, suggesting that compounds transferred from the source soil, shifts in biotic interactions, or both, play an important role in their success. © FEMS 2017.

  4. Numerical Approaches to Identification of Characteristic Soil Layers in an Urban Environment

    Institute of Scientific and Technical Information of China (English)

    YUAN Da-Gang; ZHANG Gan-Lin; GONG Zi-Tong

    2008-01-01

    Pedogenetic soil horizons are one of the fundamental building blocks of modern soil classification; however,in soils of urban areas which are often strongly disturbed by human activities,horizons are difficult to distinguish but substitutive morphological layers may be identified.To identify the characteristic soil layers in an urban environment,224 soil layers of 36 in-situ pedons were examined and described in urban and suburban Nanjing,and 27 variables were extracted for multivariate analysis.Three groups and six subdivisions were identified by TwoStep cluster analysis combined with hierarchical cluster analysis based on factor scores.Soil forming factors and soil forming processes could be interpreted from the principal component analysis (PCA) of variables,cluster analysis of soil layers,and discriminant analysis of soil layer groups and their subdivisions.Parent materials,moisture regimes,organic matter accumulation,and especially nutrient accumulation were the main causes of characteristic soil layer formations.The numerical approaches used in this study were useful tools for characteristic soil layer identification of urban soils.

  5. Organic fertilisers of the mac trial and their impact on soil quality, environment and climate change

    NARCIS (Netherlands)

    Koopmans, C.J.; Zanen, M.; Bokhorst, G.J.

    2010-01-01

    After 8 years, the MAC field trial in Lelystad, the Netherlands, shows the effects of different fertiliser strategies, ranging from animal manure to plant compost to mineral fertiliser. The impact on yield, soil quality, soil health, environment and climate change is discussed. The trial is unique i

  6. Mineral characterization of soil type ranker formed on serpentines occurring in southern Belgrade environs Bubanj Potok

    National Research Council Canada - National Science Library

    Cekić Božidar Đ; Ivanovski Valentin N; Đorđević Aleksandar; Aleksić Velimir; Tomić Zorica; Bogdanović Stefan; Umićević Ana B

    2012-01-01

    ... located in the southern Belgrade environs, Serbia. Characterization of the ranker soil was conducted by scanning electron microscopy, X-ray diffraction, micro-Raman spectroscopy and transmission 57Fe...

  7. Investigation of Mercury Pollution in Surrounding Environment of Mercury Mine%汞矿周围环境与动植物汞污染情况的调查

    Institute of Scientific and Technical Information of China (English)

    施云刚; 李秀富; 万洁妤; 欧德渊

    2014-01-01

    To understand the mercury pollution and the enrichment regularity in Wanshan mercury miner ar-ea in Guizhou,this paper researched the mercury contents in grains,vegetables,soil,water and livestock in surrounding atea of mercury mine.The results showed that the highest content of mercury in the environ-ment is the soil,followed by grass,cabbage,rice,corn,radishes;The mercury accumulation in pigs is as follows:muscle>kidney>heart>liver> lung>spleen;The mercury accumulation in cattle is as follows:muscle>kidney>liver>spleen>lung>heart;The mercury accumulation in sheep is as follows:muscle>liver> kidney > lung> spleen> heart.The content of mercury in poultry is not out of limits.The result showed that the mercury accumulation of muscle,kidney and liver of livestock is severely out of limits, which indicates that the serious food safety problems is exist in livestock around mercury mine.%以汞矿周围环境和畜禽为研究对象,调查汞含量和富集规律。结果表明,环境中除水体外,其余测定值均高于国家限量值。环境中汞含量最高的为土壤,其次为牧草、白菜、大米、玉米、萝卜;猪体内汞蓄积量为肌肉>肾脏>心脏>肝脏>肺脏>脾脏;牛体内汞蓄积量为肌肉>肾脏>肝脏>脾脏>肺脏>心脏;羊体内汞蓄积量为肌肉>肝脏>肾脏>肺脏>脾脏>心脏;家禽未见超标现象。本研究结果表明,家畜肌肉、肾脏、肝脏中汞蓄积量严重超过国家限量值,汞矿周围饲养的家畜存在严重的食品安全问题。

  8. PREVALENCE AND ANTIMICROBIAL RESISTANCE OF SALMONELLA ISOLATED FROM CARCASSES, PROCESSING FACILITIES AND THE ENVIRONMENT SURROUNDING SMALL SCALE POULTRY SLAUGHTERHOUSES IN THAILAND.

    Science.gov (United States)

    Chotinun, Suwit; Rojanasthien, Suvichai; Unger, Fred; Tadee, Pakpoom; Patchanee, Prapas

    2014-11-01

    Salmonella is a major food-borne pathogen worldwide, including Thai- land, and poultry meat plays a role as a vehicle for the spread of the disease from animals to humans. The prevalence and characteristics of Salmonella isolated from 41 small scale poultry slaughterhouses in Chiang Mai, Thailand were determined during July 2011 through May 2012. Salmonella's prevalence in live poultry, car- casses, waste water, and soil around processing plants were 3.2%, 7.3%, 22.0% and 29.0%, respectively. Eighteen different serotypes were identified, the most common being Corvallis (15.2%), followed by Rissen (13.9%), Hadar (12.7%), Enteritidis (10.1%), [I. 4,5,12:i:-] (8.8%), Stanley (8.8%), and Weltevreden (8.8%). Antimicrobial susceptibility tests revealed that 68.4% of the Salmonella spp were resistant to at least one antimicrobial while 50.6% showed multiple drug resis- tance (MDR). Specifically, 44.3% of Salmonella were resistant to nalidixic acid, followed by streptomycin (41.8%), ampicillin (34.2%), tetracycline (34.2%), and sulfamethoxazole/trimethoprim (20.3%). Salmonella contamination was found in processing lines, carcasses, and in the environment around the processing sta- tions. These findings indicate that improving hygiene management in small scale poultry slaughterhouses as well as prudent use of antimicrobial drugs is urgently needed if Salmonella contamination is to be reduced.

  9. Influence of Environmental Factors on Feammox Activity in Soil Environments

    Science.gov (United States)

    Huang, S.; Jaffe, P. R.

    2015-12-01

    The oxidation of ammonium (NH4+) under iron reducing conditions, referred to as Feammox, has been described in recent years by several investigators. The environmental characteristics in which the Feammox process occurs need to be understood in order to determine its contribution to the nitrogen cycle. In this study, a total of 66 locations were selected covering 4 different types of soils/sediments: wetland soils (W), river sediments (R), forest soils (F), and paddy soils (P) from several locations in central New Jersey, at Tims Branch at Savannah River in South Carolina, both in the Unities States, and at several locations in the Guangdong province in China. Though soil chemical analyses, serial culturing experiments, analysis of microbial communities, and using a canonical correspondence analysis, the occurrence of the Feammox reaction and the presence of Acidimicrobiaceae bacterium A6, which plays a key role in the Feammox process(1), were found in 17 samples. Analyses showed that the soil pH, as well as its Fe(III) and NH4+ content were the most important factors controlling the distribution of these Feammox microorganisms. Based on the results, soils in the subtropical forests and soils that are near agricultural areas could be Feammox hotspot. Under the conditions that favor the presence and activity of Feammox microorganisms and their oxidation of NH4+, denitrification bacteria were also active. However, the presence of nitrous oxide (N2O) reducers was limited under these conditions, implying that at locations where the Feammox process is active, conditions are favoring a higher ratio of N2O: N2 as the nitrogen (N) end products. Incubations of soils where the presence of Acidimicrobiaceae bacterium A6 was detected, were conducted for 120 days under two different DO levels (DO ammonia-oxidizing bacteria and anammox bacteria) decreased, while in the incubations with DO = 0.8~1.0 mg/L the opposite trend was observed. References Huang S., and Jaffé P.R., 2015

  10. Assessing the effects of urbanization on the environment with soil legacy and current-use insecticides: a case study in the Pearl River Delta, China.

    Science.gov (United States)

    Wei, Yan-Li; Bao, Lian-Jun; Wu, Chen-Chou; He, Zai-Cheng; Zeng, Eddy Y

    2015-05-01

    To evaluate the impacts of anthropogenic events on the rapid urbanized environment, the levels of legacy organochlorine pesticides (OCPs) and current-use insecticides (CUPs), i.e., dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexanes (HCHs), pyrethroids and organophosphates in soil of the Pearl River Delta (PRD) and surrounding areas were examined. Spatial concentration distributions of legacy OCPs and CUPs shared similar patterns, with higher concentrations occurred in the central PRD with more urbanization level than that in the PRD's surrounding areas. Furthermore, relatively higher concentrations of OCPs and CUPs were found in the residency land than in other land-use types, which may be attributed to land-use change under rapid urbanization. Moderate correlations between gross domestic production or population density and insecticide levels in fifteen administrative districts indicated that insecticide spatial distributions may be driven by economic prosperity. The soil-air diffusive exchanges of DDTs and HCHs demonstrated that soil was a sink of atmospheric o,p'-DDE, o,p'-DDD, p,p'-DDD and o,p'-DDT, and was a secondary source of HCHs and p,p'-DDT to atmosphere. The soil inventories of DDTs and HCHs (100 ± 134 and 83 ± 70 tons) were expected to decrease to half of their current values after 18 and 13 years, respectively, whereas the amounts of pyrethroids and organophosphates (39 and 6.2 tons) in soil were estimated to decrease after 4 and 2 years and then increase to 87 and 1.0 tons after 100 years. In this scenario, local residents in the PRD and surrounding areas will expose to the high health risk for pyrethroids by 2109. Strict ban on the use of technical DDTs and HCHs and proper training of famers to use insecticides may be the most effective ways to alleviate the health effect of soil contamination.

  11. Water consumption and soil moisture distribution in melon crop with mulching and in a protected environment

    Directory of Open Access Journals (Sweden)

    Rodrigo Otávio Câmara Monteiro

    2013-06-01

    Full Text Available Mulching has become an important technique for land cover, but there are some technical procedures which should be adjusted for these new modified conditions to establish optimum total water depth. It is also important to observe the soil-water relations as soil water distribution and wetted volume dimensions. The objective of the present study was to estimate melon evapotranspiration under mulching in a protected environment and to verify the water spatial distribution around the melon root system in two soil classes. Mulching provided 27 mm water saving by reducing water evaporation. In terms of volume each plant received, on average, the amount of 175.2 L of water in 84 days of cultivation without mulching, while when was used mulching the water requirement was 160.2 L per plant. The use of mulching reduced the soil moisture variability throughout the crop cycle and allowed a greater distribution of soil water that was more intense in the clay soil. The clayey soil provided on average 43 mm more water depth retention in 0.50 m soil deep relative to the sandy loam soil, and reduced 5.6 mm the crop cycle soil moisture variation compared to sandy loam soil.

  12. The effects of soil environment on postmortem interval: a macroscopic analysis.

    Science.gov (United States)

    Jaggers, Kimberley A; Rogers, Tracy L

    2009-11-01

    Burial environment, in particular soil moisture, has a significant impact on the type, rate, and extent of bone degradation, which ultimately affects estimations of the postmortem interval (PMI). The purpose of this research is to determine the effects of soil moisture on the color, weight, condition, and texture of bone as it relates to the PMI. Bone changes occurring over two different time intervals (2 and 5 months) were examined using 120 sus scrofa leg bones. During each time interval bones were buried in two soil environments, one of which was drier than the other. The bones in both environments lost weight over time but the net weight loss was greater for bones in the higher moisture environment. There was no change in color, texture, or overall condition, indicating that 150 days is not long enough for such alterations to occur, regardless of the moisture level of the burial environment.

  13. A new extreme environment for aerobic anoxygenic phototrophs: biological soil crusts.

    Science.gov (United States)

    Csotonyi, Julius T; Swiderski, Jolantha; Stackebrandt, Erko; Yurkov, Vladimir

    2010-01-01

    Biological soil crusts improve the health of arid or semiarid soils by enhancing water content, nutrient relations and mechanical stability, facilitated largely by phototrophic microorganisms. Until recently, only oxygenic phototrophs were known from soil crusts. A recent study has demonstrated the presence of aerobic representatives of Earth's second major photosynthetic clade, the evolutionarily basal anoxygenic phototrophs. Three Canadian soil crust communities yielded pink and orange aerobic anoxygenic phototrophic strains possessing the light-harvesting pigment bacteriochlorophyll a. At relative abundances of 0.1-5.9% of the cultivable bacterial community, they were comparable in density to aerobic phototrophs in other documented habitats. 16S rDNA sequence analysis revealed the isolates to be related to Methylobacterium, Belnapia, Muricoccus and Sphingomonas. This result adds a new type of harsh habitat, dry soil environments, to the environments known to support aerobic anoxygenic phototrophs.

  14. Occurrence of the carcinogenic compound ptaquiloside in the soil environment

    DEFF Research Database (Denmark)

    Rasmussen, Lars Holm; Kroghsbo, Stine; Frisvad, Jens Christian

    2003-01-01

    -content in the standing biomass, which could be transferred to the soil by the end of the growing season, ranged between 10 and 260 mgm2, with nine sites having ptaquiloside loads over 100 mgm2. The carbon-content in the O-horizon, the precipitation, the amount of Bracken-litter, the turnover rate and the size of Bracken...

  15. 3D Visualisation and Artistic Imagery to Enhance Interest in "Hidden Environments"--New Approaches to Soil Science

    Science.gov (United States)

    Gilford, J.; Falconer, R. E.; Wade, R.; Scott-Brown, K. C.

    2014-01-01

    Interactive Virtual Environments (VEs) have the potential to increase student interest in soil science. Accordingly a bespoke "soil atlas" was created using Java3D as an interactive 3D VE, to show soil information in the context of (and as affected by) the over-lying landscape. To display the below-ground soil characteristics, four sets…

  16. Planting Rice on the Surrounding Dry Land Soil Salinity and Soil Moisture Content Influence the Research%种稻对周围旱地土壤盐分和土壤水分含量的影响

    Institute of Scientific and Technical Information of China (English)

    田生昌; 陈新会; 马建军; 田慧萍; 冒海军

    2012-01-01

    为了研究种稻对周围旱地影响的程度和范围,选择稻旱田之间无沟和有沟相隔型两种类型,以不受种稻影响的老旱田作对照,在距稻田50.、80、150和200 m处各埋设定位观测井,监测种稻对地下水埋深、土壤水分含量和土壤盐分含量的影响.结果表明,耕层土壤水分含量与地下水埋深相关极显著,耕层土壤盐分含量与地下水埋深相关极显著,在上升期,旱田距稻田距离与地下水埋深相关极显著.因此,稻旱田之间无沟相隔时,种稻对周围旱地的影响表现为稻田水直接向旱田侧渗,而使距稻田附近旱田的地下水位上升,在距稻田220.7 m内地下水位会上升到危害旱作物生长的程度;稻旱田之间有沟相隔时,种稻会导致稻旱田之间排水沟水位上升,从而对周围旱田产生不利影响,这种影响即可通过沟水向旱田的侧渗发生,又表现在阻止旱田的排水上,其不利影响范围在200 m以内.%In order to study the impact of rice growing on surrounding dry land, we choose two types of rice fields, non-ditch separated, ditch separated and dry land as the control to monitor the ground-water depth, soil moisture and soil salt content at different distances (50, 80, 150 and 200 m) away from the rice fields by observation wells. The results showed that: topsoil moisture content was significantly related to groundwater depth. Topsoil soil salt content was significantly related to groundw-ater depth. In the rising period the distances away from the rice fields was significantly associated with groundwater depth. In conclusion, for the dry land and the non-ditch separated rice field, the lateral water seepage from rice field to dry land can increase the ground water level of dry land and in the distance away from the rice fields of 220. 7 m it can cause damage to the growth of dry land crops; for the dry land and ditch separated rice field, it will lead to the ditch water level rising, which

  17. Impact of triazophos insecticide on paddy soil environment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A laboratory incubation study was carried out to elucidate the dynamic response of insecticide (triazophos) on a paddy field soil health under controlled moisture (flooded soil) and temperature (25℃).The insecticide was applied at five levels that were 0.0 (control),0.5 field rate (FR),1.0 FR,5.0 FR,and 10.0 FR,where FR was 1500 ml/hm2,and the parameters were studied at 1,4,7,14,and 21days after treatments' addition.The electron transport system (ETS)/dehydrogenase activity exhibited a negative correlation with insecticide concentrations,and the activity affected adversely as the concentration increased.The higher doses of 5 and 10 field rates significantly reduced the ETS activity,while lower rates failed to produce any significant inhibiting effect against the control.The toxicity of insecticide decreased towards decreasing the ETS activity with the advancement of incubation period.The insecticide caused an improvement in the soil phenol content and it increased with increasing concentration of insecticide.The insecticide incorporation applied at various concentrations did not produce any significant change in soil protein content and it remained stable throughout the incubation period of 21 - days.The response of biomass phospholipid content was nearly similar to ETS activity.The phospholipid content was decreased with the addition of insecticide and the toxicity was in the order:10 FR (field rate) > 5 FR > 1.0 FR > 0.5 FR > control and it also decreased with incubation period.

  18. Implications for soil environment from uranium isotopes of stalagmites

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By analyzing U and Th isotopic compositions of 41 samples in two stalagmites from Hulu Cave, Nanjing, we first discovered that variations of 238U and d 234U0 along the stalagmite growth-sequence (covering a period from 75 to 18 kaBP) are in high similarity to summer insolation curve at 33°N and d 18O-based climate record of the studied stalagmites. The concentration of 238U is mainly controlled by content of organic matter in the soil above the cave. This mechanism can be used to explain our result that 238U curve of stalagmites is in phase with fluctuation of the d 18O record of the same stalagmites and summer insolation at cave locality. However, 238U concentration curve vs. age is, in amplitude, inconsistent with the climatic curves, possibly due to complex processes of soil-water-rock interaction. d 234U0 indicates pedogenic intensity of soil profile above the cave and sensitively reflects alternations of pedogenesis and aeolian accumulation processes of Xiashu loess in Nanjing. Consequently, uranium concentration and its isotope ratio in stalagmites may provide a new proxy for climate change.

  19. Evolution of soil microbial biomass in restoration process of Robinia pseudoacacia plantations in an eroded environment

    Institute of Scientific and Technical Information of China (English)

    Sha XUE; Guobin LIU; Quanhou DAI; Chao ZHANG; Na YU

    2008-01-01

    biomass, qCO2 and physical and chemical properties and restoration duration. Therefore, we conclude that it is possible to artificially improve the ecological environment and soil quality in the hilly area of the Loess Plateau; a long time, even more than 100 years, is needed to reach the climax of the present natural forest.

  20. Investigation of Arsenic Pollution in Surrounding Environment of the Phosphate Mine%磷矿周围环境砷污染情况调查

    Institute of Scientific and Technical Information of China (English)

    万洁妤; 施云刚; 吴荣华; 李进国; 翁林; 艾淼; 欧德渊

    2014-01-01

    The objective of this work was to investigate the arsenic pollution and the enrichment regularity in Kan-yang arsenic mine area in Guizhou,to provide theoretical basis of researching and grasping the food safety in live-stock around the phosphate mine.All samples were determined with method of atomic absorption spectrophotome-try.The results showed that the highest content of arsenic in the environment is in water,followed by cabbage, soil,rice,corn,then grasses.The peppers and radishes were not detected for arsenic;The arsenic accumulation from high to low in chicken tissues is as follows:kidney,lung,heart,liver,spleen,muscle;The arsenic accumu-lation from high to low in duck tissues is as follows:kidney,liver,lung,muscle,spleen,heart.The arsenic accu-mulation from high to low in swine tissues is as follows:intestine,kidney,liver,spleen and the heart.Lung and muscle were not detected for arsenic.The results indicated that the serious arsenic pollution exists in livestock a-round the phosphate mine.%调查磷矿周围环境和畜禽组织砷含量,为掌握磷矿区周围畜禽产品安全提供依据。采用原子吸收光谱法进行测定。结果表明,环境中砷含量从高到低依次为水体、白菜、土壤、大米、玉米、牧草,而辣椒和萝卜未检出砷;鸡内脏及肌肉砷含量从高到低依次为肾脏、肺脏、心脏、肝脏、脾脏、肌肉;鸭内脏及肌肉砷含量从高到低依次为肾脏、肝脏、肺脏、肌肉、脾脏、心脏;猪内脏及肌肉砷含量从高到低依次为肠、肾脏、肝脏、脾脏,而心脏、肺脏和肌肉未检出。说明磷矿周围饲养的畜禽存在砷污染现象。

  1. Changes in Gene Expression during Adaptation of Listeria monocytogenes to the Soil Environment

    Science.gov (United States)

    Piveteau, Pascal; Depret, Géraldine; Pivato, Barbara; Garmyn, Dominique; Hartmann, Alain

    2011-01-01

    Listeria monocytogenes is a ubiquitous opportunistic pathogen responsible for listeriosis. In order to study the processes underlying its ability to adapt to the soil environment, whole-genome arrays were used to analyse transcriptome modifications 15 minutes, 30 minutes and 18 h after inoculation of L. monocytogenes EGD-e in soil extracts. Growth was observed within the first day of incubation and large numbers were still detected in soil extract and soil microcosms one year after the start of the experiment. Major transcriptional reprofiling was observed. Nutrient acquisition mechanisms (phosphoenolpyruvate-dependent phosphotransferase systems and ABC transporters) and enzymes involved in catabolism of specific carbohydrates (β-glucosidases; chitinases) were prevalent. This is consistent with the overrepresentation of the CodY regulon that suggests that in a nutrient depleted environment, L. monocytogenes recruits its extensive repertoire of transporters to acquire a range of substrates for energy production. PMID:21966375

  2. Turnover of eroded soil organic carbon after deposition in terrestrial and aquatic environments

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten

    The fate of eroded soil organic carbon (SOC) after deposition is a large uncertainty in assessing the impact of soil erosion on C budgets. Globally, large amounts of SOC are transported by erosion and a substantial part is transferred into adjacent inland waters, linking terrestrial and aquatic C...... cellulose. Physical and chemical soil properties and SOC molecular composition were assessed as potential controls on C turnover. SOC deposition in aquatic environments resulted in upto 3.5 times higher C turnover than deposition on downslope soils. Labile C inputs enlarged total CO2 emissions......, with the largest increase for aquatic conditions. Solid-state 13C NMR and FT-IR spectroscopy showed broad similarities in SOC molecular composition. Soil and SOC properties could not (yet) fully explain variation in SOC turnover between the sites. However, temporal trends in CO2 emissions clearly differed between...

  3. Monitoring the persistence of genes deriving from genetically modified plants in the soil environment.

    Science.gov (United States)

    Degand, I; Laporte, J; Pussemier, L

    2002-01-01

    To study the gene persistence in the soil environment, soil samples were collected from sugar beet (Beta vulgaris) and chicory (Cichorium intybus) experimental fields just before harvest. They were homogenized, mixed and stored at constant humidity in a non-heated room. Sub-samples of soils were subsequently collected at regular intervals, dried and sieved through a 1.8-mm mesh before DNA was extracted. Specific primers were then used for the detection of plant DNA by hot start PCR. Results reveal that, under laboratory conditions, transgenic and non-transgenic sugar beet DNA was still detected after 25 days incubation in the soil taken from a sugar beet experimental plot while detection of chicory DNA was still possible after 50 days incubation in soil taken from the chicory experimental plot. This might be in correlation with the stronger resistance of chicory radicles to decomposition as compared to radicles from sugar beets.

  4. About the species composition of microscopic fungi in soils and woody plant roots in urban environment

    Directory of Open Access Journals (Sweden)

    Bukharina Irina,

    2016-11-01

    Full Text Available The living state and the presence of mycorrhizal fungi in the roots of woody plants in relation to the level of soil pollution in the urban environment have been studied. The DNA analysis of the roots and soil revealed that in a more severe pollution in the roots of woody plants in a good living state the DNA of end trophic mycorrhizal fungi was detected.

  5. BEHAVIOR OF ORGANIC POLLUTANTS IN THE SOIL ENVIRONMENT. SPECIAL FOCUS ON GLYPHOSATE AND AMPA

    Directory of Open Access Journals (Sweden)

    Gorana Todorovic Rampazzo

    2009-12-01

    Full Text Available In industrialized countries, soil and groundwater contamination by various forms of harmful substances is a contemporary problem in this highly industrialized age. In this document, the state of the art regarding the main mechanisms, processes and factors governing the fate and behavior of organic contaminants in the soil-ground water system is reviewed. The behavior of organic contaminants in soils is generally governed by a variety of complex dynamic physical, chemical and biological processes, including sorption–desorption, volatilization, chemical and biological degradation, uptake by plants, run-off, and leaching. These processes directly control the transport of contaminants within the soil and their transfer from the soil to water, air or food. The relative importance of these processes varies with the chemical nature of the contaminant and the properties of the soil. Both the direction and rate of these processes depend on the chemical nature of the organic contaminant and the chemical, biological, and hydraulic properties of the soil. Some organic contaminants are degraded in the soil within a certain time. On the other hand some are degraded only slowly or are sequestered within soil particles thus being inaccessible for microbial degradation. Persistence in soils increases the potential for environmental consequences. Mobility in soil environments is a key factor in assessing the environmental risk. Compounds interacting weakly or not at all with soil surfaces will be leached together with the soil solution and have the potential for contaminating surface or ground water reservoirs far from the point of getting into the soil. Clays, oxides and organic matter are the primary constituents in soils responsible for the sorption of organic contaminants. Among the organic contaminants used in agriculture, one of the most world-wide applied herbicides is glyphosate, an organophosphonate product, with broad spectrum of application. Results

  6. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments

    Science.gov (United States)

    Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao

    2016-09-01

    Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % ( P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be used as an

  7. Soil microbial diversity patterns of a lowland spring environment

    NARCIS (Netherlands)

    Vasileiadis, S.; Puglisi, E.; Arena, M.; Cappa, F.; Van Veen, J.A.; Cocconcelli, P.S.; Trevisan, M.

    2013-01-01

    The Po river plain lowland springs represent unique paradigms of managed environments. Their current locations used to be swamps that were drained 6–7 centuries ago, and they have been in constant use ever since. Our aims were to identify the effects of land use on the microbial communities of these

  8. Avatars Go to Class: A Virtual Environment Soil Science Activity

    Science.gov (United States)

    Mamo, M.; Namuth-Covert, D.; Guru, A.; Nugent, G.; Phillips, L.; Sandall, L.; Kettler, T.; McCallister, D.

    2011-01-01

    Web 2.0 technology is expanding rapidly from social and gaming uses into the educational applications. Specifically, the multi-user virtual environment (MUVE), such as SecondLife, allows educators to fill the gap of first-hand experience by creating simulated realistic evolving problems/games. In a pilot study, a team of educators at the…

  9. Profitability of the organic production of lettuce as a function of the environment, preparation of the soil and planting season

    National Research Council Canada - National Science Library

    Sebastião Elviro Araújo Neto; Nápoli Correia de Paula da Silva; Regina Lúcia Félix Ferreira; Arthur Bernardes Cecílio Filho

    2012-01-01

    .... The objective of this study therefore was to identify combinations of environment, soil preparation and planting season which would improve economic performance and yield in the organic farming...

  10. A new environment for aerobic anoxygenic phototrophic bacteria: biological soil crusts.

    Science.gov (United States)

    Csotonyi, Julius T; Swiderski, Jolantha; Stackebrandt, Erko; Yurkov, Vladimir

    2010-10-01

    Phototrophic microorganisms are critical to the carbon cycling and productivity of biological soil crusts, which enhance water content, nutrient relations and mechanical stability of arid soils. Only oxygen-producing phototrophs, including cyanobacteria and algae, are known from soil crusts, but Earth's second major branch of photosynthetic organisms, the evolutionarily earlier anoxygenic phototrophs, is unreported. We announce the discovery of aerobic anoxygenic phototrophs in three Canadian soil crust communities. We found in a culture-based study that they comprised 0.1-5.9% of the cultivable bacterial community in moss-, lichen- and cyanobacteria-dominated crust from sand dunes and sandy soils. Comparable in density to aerobic phototrophs in other habitats, the bacteriochlorophyll a-possessing pink and orange isolates were related to species of Methylobacterium (99.0-99.5%), Belnapia (97.4-98.8%), Muricoccus (94.4%) and Sphingomonas (96.6-98.5%), based on 16S rRNA gene sequences. Our results demonstrate that proteobacterial anoxygenic phototrophs may be found in dry soil environments, implying desiccation resistance as yet unreported for this group. By utilizing sunlight for part of their energy needs, aerobic phototrophs can accelerate organic carbon cycling in nutrient-poor arid soils. Their effects will be especially important as global climate change enhances soil erosion and consequent nutrient loss.

  11. Activity and population dynamics of heterotrophic and ammonia-oxidizing microorganisms in soil surrounding sludge bands spiked with linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Brandt, K. K.; Sørensen, J.; Krogh, P. H.

    2003-01-01

    bioluminescence toxicity assay, however, LAS or other sludge components never accumulated to toxic levels in the soil compartments and the LAS tolerance of the indigenous microbes further remained unchanged following LAS exposure. LAS effects on the investigated microbial populations largely occurred during...

  12. SOME CONSIDERATIONS CONCERNING THE ROLE OF COSMIC ENVIRONMENT IN SOIL GENESIS AND EVOLUTION

    Directory of Open Access Journals (Sweden)

    I. Munteanu

    2011-12-01

    Full Text Available The present day concept of soil is strongly connected to the terrestrial environment. Among the cosmic factors of soil genesis the energy (as light and heat provided by the Sun is by far the most important. The other outer space possible agents e.g. meteorites, comets, cosmic radiation and cosmic dust, are usually neglected or scarcely mentioned. The advancing of cosmic exploration spurred soil scientists to extend their interest upon the extraterrestrial regoliths of Earth-like planets (Mars, Venus and Moon. The concept of “Universal soil” in whose genesis the biotic factor and water are not mandatory, has been recently advanced. The first papers about “lunar soils” are already quoted in soil science literature; some also speak about “Martian soil” or “Venusian soil”. Although these seem to be mere regoliths quite different from the “terrestrial soil” (by absence of life and water one believes that they may give information about impact upon lithological material of severe environment of these planets. This paper tries to outline the cosmic destiny of the soil, to enlarge its meaning and to reveal the hidden connections that the soil has with some planetary and cosmic parameters. In cosmic vision the “soil” – either “lunar”, “martian”, or “terrestrial” – can be viewed as the interface of energy and matter exchange between the land masses of these celestial body and their cosmic environment. The role of the solar activity, extragalactic events, distance from the Sun, obliquity (tilt of Earth’s rotation axis and Earth’s orbit circularity are analyzed in connection with Quaternary glaciations and their influences upon the development of terrestrial soils. The influence of Moon is emphasized as being very important in shaping the zonal geography of the terrestrial soils.

  13. Arsenic in the environment: enrichments in the Slovenian soils

    Directory of Open Access Journals (Sweden)

    Mateja Gosar

    2005-12-01

    Full Text Available Arsenic, a toxic element with metalloid properties, is found in detectable concentrations in environmental samples. In nature it is enriched in metal (sulphide ore deposits, mainly as arsenides of Cu, Ni and Fe. Arsenic compounds are used mainly in agricultureand forestry as pesticides and herbicides. The ecosystem can be contaminated with arsenic via both natural and anthropogenic sources. Uses of arsenic contaminated water present so far the greatest health hazard. Occurrences of mining related arsenic problems havealso been recorded in many parts of the world.The impact of mining and metallurgic industry with regard to arsenic contents in soils in some potentially contaminated areas in Slovenia is discussed. Enriched contents of arsenic were found in Mežica. Arsenic correlates very well with lead, zinc and other heavymetals which are enriched as a result of long lasting lead production in the area. Also in Celje and Jesenice arsenic has the same distribution pattern as other anthropogenically introduced pollutants. In Idrija there are some slightly arsenic enriched areas, but there is no correlation with mercury, so the origin of arsenic in not clear yet.

  14. Distribution of hydrocarbon-degrading bacteria in the soil environment and their contribution to bioremediation.

    Science.gov (United States)

    Fukuhara, Yuki; Horii, Sachie; Matsuno, Toshihide; Matsumiya, Yoshiki; Mukai, Masaki; Kubo, Motoki

    2013-05-01

    A real-time PCR quantification method for indigenous hydrocarbon-degrading bacteria (HDB) carrying the alkB gene in the soil environment was developed to investigate their distribution in soil. The detection limit of indigenous HDB by the method was 1 × 10(6) cells/g-soil. The indigenous HDB were widely distributed throughout the soil environment and ranged from 3.7 × 10(7) to 5.0 × 10(8) cells/g-soil, and the ratio to total bacteria was 0.1-4.3 %. The dynamics of total bacteria, indigenous HDB, and Rhodococcus erythropolis NDKK6 (carrying alkB R2) during bioremediation were analyzed. During bioremediation with an inorganic nutrient treatment, the numbers of these bacteria were slightly increased. The numbers of HDB (both indigenous bacteria and strain NDKK6) were gradually decreased from the middle stage of bioremediation. Meanwhile, the numbers of these bacteria were highly increased and were maintained during bioremediation with an organic nutrient. The organic treatment led to activation of not only the soil bacteria but also the HDB, so an efficient bioremediation was carried out.

  15. Index for characterizing post-fire soil environments in temperate coniferous forests

    Science.gov (United States)

    Jain, Theresa B.; Pilliod, David S.; Graham, Russell T.; Lentile, Leigh B.; Sandquist, Jonathan E.

    2012-01-01

    Many scientists and managers have an interest in describing the environment following a fire to understand the effects on soil productivity, vegetation growth, and wildlife habitat, but little research has focused on the scientific rationale for classifying the post-fire environment. We developed an empirically-grounded soil post-fire index (PFI) based on available science and ecological thresholds. Using over 50 literature sources, we identified a minimum of five broad categories of post-fire outcomes: (a) unburned, (b) abundant surface organic matter ( > 85% surface organic matter), (c) moderate amount of surface organic matter ( ≥ 40 through 85%), (d) small amounts of surface organic matter ( < 40%), and (e) absence of surface organic matter (no organic matter left). We then subdivided each broad category on the basis of post-fire mineral soil colors providing a more fine-tuned post-fire soil index. We related each PFI category to characteristics such as soil temperature and duration of heating during fire, and physical, chemical, and biological responses. Classifying or describing post-fire soil conditions consistently will improve interpretations of fire effects research and facilitate communication of potential responses or outcomes (e.g., erosion potential) from fires of varying severities.

  16. Geochemistry of natural radionuclide in soils surrounding a mining and plant uranium concentration;Geoquimica de radionuclindeos naturais em solos de areas circunvizinhas a uma unidade de mineracao e atividade de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Gildevan Viana, E-mail: gildevan.cardoso@vta.incra.gov.b [Instituto Nacional de Colonizacao e Reforma Agraria (INCRA), Rio de Janeiro, RJ (Brazil); Amaral Sobrinho, Nelson Moura Brasil do; Mazur, Nelson, E-mail: nelmoura@ufrrj.b, E-mail: nelmazur@ufrrj.b [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil). Inst. de Agronomia. Dept. de Solos; Wasserman, Maria Angelica Vergara, E-mail: angelica@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2009-11-15

    The environmental impacts resulting from uranium exploration and processing are to a great extent identical to those caused by extractive mining activities in general. This study aimed to determine the geochemical partitioning of the natural radionuclides {sup 238}U, {sup 226}Ra and {sup 210}Pb in areas surrounding the Uranium Mining and Concentration Plant (URA) of the Brazilian Nuclear Industries S.A., in the uranium deposit region of Lagoa Real, in Caetite, southwestern Bahia state. Representative soil samples of the main regional soil classes were collected from the layer 0-20 cm, in five areas around the URA. The level of total activity and geochemical fractionation (F1 slightly acidic, F2 reducible, F3 oxidisable, F4 alkaline, and F5 residual) were determined for the five areas. The average total radioactivity levels were, in Bq kg{sup -1} soil: 50 for {sup 238}U, 51 for {sup 226}Ra, and 159 for {sup 210}Pb. During the potentially bioavailable phase (F1) 11 % were extracted for {sup 238}U, 13 % for {sup 226}Ra and 3 % for {sup 210}Pb. The bioavailability of {sup 238}U was higher in more acidic soils and the affinity for iron oxides was greater, unlike in the case of {sup 226}Ra, with the greatest bioavailability. {sup 210}Pb was predominantly associated with F5. The high percentage of {sup 238}U, {sup 226}Ra and {sup 210}Pb in the geochemical fraction F5 indicates that the concentrations observed in the five soils are predominantly associated to the parent material of these soils, rather than to an artificial contamination caused by the URA activity. (author)

  17. The assessment of source attribution of soil pollution in a typical e-waste recycling town and its surrounding regions using the combined organic and inorganic dataset.

    Science.gov (United States)

    Luo, Jie; Qi, Shihua; Xie, Xianming; Gu, X W Sophie; Wang, Jinji

    2017-01-01

    Guiyu is a well-known electronic waste dismantling and recycling town in south China. Concentrations and distribution of the 21 mineral elements and 16 polycyclic aromatic hydrocarbons (PAHs) collected there were evaluated. Principal component analyses (PCA) applied to the data matrix of PAHs in the soil extracted three major factors explaining 85.7% of the total variability identified as traffic emission, coal combustion, and an unidentified source. By using metallic or metalloid element concentrations as variables, five principal components (PCs) were identified and accounted for 70.4% of the information included in the initial data matrix, which can be denoted as e-waste dismantling-related contamination, two different geological origins, anthropogenic influenced source, and marine aerosols. Combining the 21 metallic and metalloid element datasets with the 16 PAH concentrations can narrow down the coarse source and decrease the unidentified contribution to soil in the present study and therefore effectively assists the source identification process.

  18. Entomopathogenic fungi Metarhizium spp. in the soil environment of an agroecosystem

    DEFF Research Database (Denmark)

    Steinwender, Bernhardt Michael

    ecological knowledge of Metarhizium is necessary. The present PhD project contributed to this knowledge, particularly of Metarhizium spp. occurrence and abundance within a single Danish agroecosystem, with emphasis on the molecular diversity and ecological traits. Metarhizium was isolated from bulk soil...... several sympatric species and genotypes. The isolated species and their genotypes were evaluated for ecological traits including UVB tolerance, temperature dependent in vitro growth, virulence and conidia production on infected cadavers, and mycelial growth from insect cadavers into the surrounding soil....... The results showed a broad variety of ecological characteristics of the different genotypes, indicating their potential adaptations to different ecological niches within the agroecosystem. The presented knowledge of co-existence of diverse Metarhizium species and genotypes will be valuable for the development...

  19. Food and soil-borne Penicillia in Arctic environments: Chemical diversity

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian

    Penicillia are very common inhabitants of cold environments, including arctic soil, plants, animals, and foods. We have investigated the mycobiota of Greenland inland ice and soil, and found a very unique and pronounced diversity among the Penicillia. Nearly all species were new to science....... The species found in inland ice were both of the soil-borne type, and Penicillia that grow and sporulate well at 25°C. The latter group of Penicillia have been found earlier in refrigerated foods, including P. nordicum, and in glacier ice and melting water from Svalbard (se Sonjak et al., this conference......). This “food-borne group” of arctic fungi also contained some new species, but not as many as in arctic soil. The chemical diversity of the Penicillium species was remarkably high and in most cases even larger than the chemical diversity of Penicillia in the tropics. Several new secondary metabolites were...

  20. Photodegradation of antibiotics on soil surfaces: laboratory studies on sulfadiazine in an ozone-controlled environment.

    Science.gov (United States)

    Wolters, André; Steffens, Markus

    2005-08-15

    Among the processes affecting transport and degradation of antibiotics released to the environment during application of manure and slurry to agricultural land, photochemical transformations are of particular interest. Drying-out of the top soil layer under field conditions enables sorption of surface-applied antibiotics to soil dust, thus facilitating direct, indirect, and sensitized photodegradation at the soil/atmosphere interface. For studying various photochemical transformation processes of sulfadiazine, a photovolatility chamber designed in accordance with the requirements of the USEPA Guideline and 161-3 was used. Application of 14C-labeled sulfadiazine enabled complete mass balances and allowed for investigating the impact of various surfaces (glass and soil dust) and environmental factors, i.e., irradiation and atmospheric ozone, on photodegradation and volatilization. Volatilization was shown to be a negligible process. Even after increasing the air temperature up to 35 degrees C only minor amounts of sulfadiazine and transformation products (0.01-0.28% of applied radioactivity) volatilized. Due to direct and indirect photodegradation, the highest extent of mineralization to 14CO2 (3.9%), the formation of degradation products and of nonextractable soil residues was measured in irradiated soil dust experiments using ozone concentrations of 200 ppb. However, even in the dark significant mineralization was observed when ozone was present, indicating ozone-controlled transformation of sulfadiazine to occur at the soil surface.

  1. Entomopathogenic fungi Metarhizium spp. in the soil environment of an agroecosystem

    DEFF Research Database (Denmark)

    Steinwender, Bernhardt Michael

    Species of the entomopathogenic fungal genus Metarhizium are found worldwide predominantly in the soil environment where they infect a broad spectrum of insects, but also associate with plant roots. To increase performance of Metarhizium as biological control agents against pests, fundamental...

  2. Biogeosystem technique as the way to certainty of soil, hydrosphere, environment and climate

    Science.gov (United States)

    Kalinitchenko, Valery; Batukaev, Abdulmalik; Zarmaev, Ali; Startsev, Viktor; Chernenko, Vladimir; Dikaev, Zaurbek; Sushkova, Svetlana

    2016-04-01

    processed soil of 150% higher compared to initial. Save of fresh water by intrasoil irrigation up to 20 times. Biological return of matter and high biological productivity of soil by environmentally safe intrasoil waste recycling. On the base of BGT* are opened the opportunities for: controlled, stable, safe, biologically effective soil, environment and landscape; improved equilibriums in soil, environment and landscape; reduced water consumption; improved waste management; reduced flux of nutrients to water systems; carbon transformation into the soil to the state of elements of plant nutrition; reducing degradation of biological matter to the state of greenhouse gases; increasing biologi al consumption of carbon dioxide by photosynthesis in terrestrial system; prolongation of the phase of carbon in terrestrial biological system for greenhouse gases sequestration; extension of the active area of biosphere on terrestrial part of the Earth; high rate oxidation of methane and hydrogen sulfide by oxygen, which is ionized in photosynthesis, and thus is biologically active; high biological product output of biosphere. The higher biomass on the Earth, the more ecologically safe food, raw material and biofuel can be produced, better conditions for technologies of Noosphere. Uncertainty of soil, hydrosphere, environment and climate will be reduced by the BGT* methods. Are available BGT* robotic systems of low cost and minimal consumption of energy and material.

  3. Sorption, Uptake, and Translocation of Pharmaceuticals across Multiple Interfaces in Soil Environment

    Science.gov (United States)

    Zhang, W.; Liu, C. H.; Bhalsod, G.; Zhang, Y.; Chuang, Y. H.; Boyd, S. A.; Teppen, B. J.; Tiedje, J. M.; Li, H.

    2015-12-01

    Pharmaceuticals are contaminants of emerging concern frequently detected in soil and water environments, raising serious questions on their potential impact on human and ecosystem health. Overuse and environmental release of antibiotics (i.e., a group of pharmaceuticals extensively used in human medicine and animal agriculture) pose enormous threats to the health of human, animal, and the environment, due to proliferation of antibiotic resistant bacteria. Recently, we have examined interactions of pharmaceuticals with soil geosorbents, bacteria, and vegetable crops in order to elucidate pathways of sorption, uptake, and translocation of pharmaceuticals across the multiple interfaces in soils. Sorption of pharmaceuticals by biochars was studied to assess the potential of biochar soil amendment for reducing the transport and bioavailability of antibiotics. Our preliminary results show that carbonaceous materials such as biochars and activated carbon had strong sorption capacities for antibiotics, and consequently decreased the uptake and antibiotic resistance gene expression by an Escherichia coli bioreporter. Thus, biochar soil amendment showed the potential for reducing selection pressure on antibiotic resistant bacteria. Additionally, since consumption of pharmaceutical-tainted food is a direct exposure pathway for humans, it is important to assess the uptake and accumulation of pharmaceuticals in food crops grown in contaminated soils or irrigated with reclaimed water. Therefore, we have investigated the uptake and accumulations of pharmaceuticals in greenhouse-grown lettuce under contrasting irrigation practices (i.e., overhead or surface irrigations). Preliminary results indicate that greater pharmaceutical concentrations were measured in overhead irrigated lettuce than in surface irrigated lettuce. This could have important implications when selecting irrigation scheme to use the reclaimed water for crop irrigation. In summary, proper soil and water management

  4. Dynamic Soil-Structure-Soil-Interaction Analysis of Structures in Dense Urban Environments

    OpenAIRE

    Jones, Katherine Carys

    2013-01-01

    Urban centers are increasingly becoming the locus of enterprise, innovation, and population. This pull toward the center of cities has steadily elevated the importance of these areas. Growth has necessarily spawned new construction. Consequently, modern buildings are often constructed alongside legacy structures, new deep basements are constructed alongside existing shallow foundations, and city blocks composed of a variety of building types result. The underlying soil, foundation, and super...

  5. Sustainable soil and water resources: modelling soil erosion and its impact on the environment

    OpenAIRE

    2011-01-01

    With the projected increase in world population to 9 billion by 2050, along with per capita income growth, the demand for land and water resources is going to increase significantly. Conversion of land to intensive agriculture has led to dramatic decreases in plant, animal and insect biodiversity, with approximately 40% of the world’s land surface now covered by croplands and pastures. Intensive agricultural practices cause erosion and lead to transport of soil particles and associated sorbed...

  6. Impacts of manganese mining activity on the environment: interactions among soil, plants, and arbuscular mycorrhiza.

    Science.gov (United States)

    Rivera-Becerril, Facundo; Juárez-Vázquez, Lucía V; Hernández-Cervantes, Saúl C; Acevedo-Sandoval, Otilio A; Vela-Correa, Gilberto; Cruz-Chávez, Enrique; Moreno-Espíndola, Iván P; Esquivel-Herrera, Alfonso; de León-González, Fernando

    2013-02-01

    The mining district of Molango in the Hidalgo State, Mexico, possesses one of the largest deposits of manganese (Mn) ore in the world. This research assessed the impacts of Mn mining activity on the environment, particularly the interactions among soil, plants, and arbuscular mycorrhiza (AM) at a location under the influence of an open Mn mine. Soils and plants from three sites (soil under maize, soil under native vegetation, and mine wastes with some vegetation) were analyzed. Available Mn in both soil types and mine wastes did not reach toxic levels. Samples of the two soil types were similar regarding physical, chemical, and biological properties; mine wastes were characterized by poor physical structure, nutrient deficiencies, and a decreased number of arbuscular mycorrhizal fungi (AMF) spores. Tissues of six plant species accumulated Mn at normal levels. AM was absent in the five plant species (Ambrosia psilostachya, Chenopodium ambrosoides, Cynodon dactylon, Polygonum hydropiperoides, and Wigandia urens) established in mine wastes, which was consistent with the significantly lower number of AMF spores compared with both soil types. A. psilostachya (native vegetation) and Zea mays showed mycorrhizal colonization in their root systems; in the former, AM significantly decreased Mn uptake. The following was concluded: (1) soils, mine wastes, and plant tissues did not accumulate Mn at toxic levels; (2) despite its poor physical structure and nutrient deficiencies, the mine waste site was colonized by at least five plant species; (3) plants growing in both soil types interacted with AMF; and (4) mycorrhizal colonization of A. psilostachya influenced low uptake of Mn by plant tissues.

  7. Tracing dynamics of soil - vegetation interactions in northern environments with stable isotopes

    Science.gov (United States)

    Sprenger, Matthias; Tetzlaff, Doerthe; Soulsby, Chris

    2017-04-01

    Understanding the influence of vegetation on the water storage and flux in the upper soil is crucial in assessing the consequences of climate and land use changes. We sampled the upper 20 cm of peaty podzols at 5 cm intervals in four sites differing in their vegetation (Scots Pine and heather (Calluna sp. and Erica Sp)) and aspect. The sites were located within the long-term experimental catchment Bruntland Burn in the Scottish Highlands, a low energy, wet environment. Sampling took place on 11 occasions between September 2015 and September 2016 to capture seasonal variability in isotope dynamics. The pore waters of the soil samples were analyzed for their isotopic composition (deuterium and oxygen-18) with the direct equilibration method. On 7 sampling days, vegetation samples were also taken (by clipping of heather branches and coring of trees) and their isotopic composition was determined by cryogenic extraction. The soil water isotopes show that the water in the topsoil is, despite the low potential evaporation rates in such northern latitudes, kinetically fractionated compared to the precipitation input throughout the year. This fractionation signal decreases within the upper 15 cm resulting in the top 5 cm being isotopically differentiated to the soil at 15 - 20 cm soil depth. There are significant differences in the fractionation signal between soils beneath heather and soils beneath Scots pine, with the latter being more pronounced. But again, this difference diminishes within the upper 15 cm of soil. The enrichment in heavy isotopes of the topsoil follows a seasonal hysteresis pattern, indicating a lag time between the fractionation signal in the soil and the increase/decrease of soil evaporation in spring/autumn. A similar hysteresis pattern is shown by the vegetation data, but the response in the fractionation signal of the plant water is even more lagged. We used the data set for benchmarking a soil water isotope model that takes kinetic fractionation

  8. Soil nitrogen balance assessment and its application for sustainable agriculture and environment

    Institute of Scientific and Technical Information of China (English)

    Rabindra Nath Roy; Ram Vimal Misra

    2005-01-01

    Soil nitrogen balance assessment (SNBA) serves as an effective tool for estimating the magnitude of nitrogen loss/gain of the agro-eco systems and to appraise their sustainability.SNBA brings forth awareness of soil fertility problems, besides providing information relating to the resultant release of nitrogen into the environment consequent to agricultural practices.Quantitative information relating to nitrogen escape into the environment through such exercises can be gainfully utilized for identification of causative factors, enhancing fertilizer use efficiency and formulating programmes aimed at plugging N leakages. An overview of nitrogen balance approaches and methodologies is presented. A deeper understanding and insight into the agro-eco systems provided by the SNBA exercises can lay the basis for the formulation of effective agronomic interventions and policies aimed at promoting sustainable agriculture and a benign environment.

  9. Soil mulching can mitigate soil water deifciency impacts on rainfed maize production in semiarid environments

    Institute of Scientific and Technical Information of China (English)

    ZHU Lin; LIU Jian-liang; LUO Sha-sha; BU Ling-duo; CHEN Xin-ping; LI Shi-qing

    2015-01-01

    Temporaly irregular rainfal distribution and inefifcient rainwater management create severe constraints on crop production in rainfed semiarid areas. Gravel and plastic iflm mulching are effective methods for improving agricultural productivity and water utilization. However, the effects of these mulching practices on soil water supply and plant water use associated with crop yield are not wel understood. A 3-yr study was conducted to analyze the occurrence and distribution of dry spels in a semiarid region of Northwest China and to evaluate the effects of non-mulching (CK), gravel mulching (GM) and plastic iflm mulching (FM) on the soil water supply, plant water use and maize (Zea mays L.) grain yield. Rainfal analysis showed that dry spels of ≥5 days occurred frequently in each of 3 yr, accounting for 59.9–69.2% of the maize growing periods. The >15-d dry spels during the jointing stage would expose maize plants to particularly severe water stress. Compared with the CK treatment, both the GM and FM treatments markedly increased soil water storage during the early growing season. In general, the total evapotranspiration (ET) was not signiifcantly different among the three treatments, but the mulched treatments signiifcantly increased the ratio of pre- to post-silking ET, which was closely associated with yield improvement. As a result, the grain yield signiifcantly increased by 17.1, 70.3 and 16.7% for the GM treatment and by 28.3, 87.6 and 38.2% for the FM treatment in 2010, 2011 and 2012, respectively, compared with the CK treatment. It’s concluded that both GM and FM are effective strategies for mitigating the impacts of water deifcit and improving maize production in semiarid areas. However, FM is more effective than GM.

  10. Uranium ((234)U, (235)U and (238)U) contamination of the environment surrounding phosphogypsum waste heap in Wiślinka (northern Poland).

    Science.gov (United States)

    Olszewski, Grzegorz; Boryło, Alicja; Skwarzec, Bogdan

    2015-08-01

    The aim of this work was to determine the uranium concentration ((234)U, (235)U and (238)U) and values of the activity ratio (234)U/(238)U in soil samples collected near phosphogypsum waste heap in Wiślinka (northern Poland). On the basis of the studies it was found that the values of the (234)U/(238)U activity ratio in the analyzed soils collected in the vicinity of phosphogypsum dump in Wiślinka are in most cases close to one and indicate the phosphogypsum origin of the analyzed nuclides. The obtained results of uranium concentrations are however much lower than in previous years before closing of the phosphogypsum stockpile. After this process and covering the phosphogypsum stockpile in Wiślinka with sewage sludge, phosphogypsum particles are successfully immobilized. In the light of the results the use of phosphate fertilizers seems to be a major problem. Prolonged and heavy rains can cause leaching accumulated uranium isotopes in the phosphogypsum stockpile, which will be washed into the Martwa Wisła and on the fields in the immediate vicinity of this storage.

  11. Natural radioactivity levels in soils, rocks and water at a mining concession of Perseus gold mine and surrounding towns in Central Region of Ghana.

    Science.gov (United States)

    Faanu, A; Adukpo, O K; Tettey-Larbi, L; Lawluvi, H; Kpeglo, D O; Darko, E O; Emi-Reynolds, G; Awudu, R A; Kansaana, C; Amoah, P A; Efa, A O; Ibrahim, A D; Agyeman, B; Kpodzro, R; Agyeman, L

    2016-01-01

    Levels of naturally occurring radioactive materials prior to processing of gold ore within and around the new eastern concession area of Perseus Mining (Ghana) Limited were carried out to ascertain the baseline radioactivity levels. The study was based on situ measurements of external gamma dose rate at 1 m above ground level as well as laboratory analysis by direct gamma spectrometry to quantify the radionuclides of interest namely; (238)U, (232)Th and (40)K in soil, rock, ore samples and gross alpha/beta analysis in water samples. The average absorbed dose rate in air at 1 m above sampling point using a radiation survey metre was determined to be 0.08 ± 0.02 μGyh(-1) with a corresponding average annual effective dose calculated to be 0.093 ± 0.028 mSv. The average activity concentrations of (238)U, (232)Th, and (40)K in the soil, rock, and ore samples were 65.1 ± 2.2, 71.8 ± 2.2 and 1168.3 Bqkg(-1) respectively resulting in an average annual effective dose of 0.91 ± 0.32 mSv. The average Radium equivalent activity value was 257.8 ± 62.4 Bqkg(-1) in the range of 136.6-340.2 Bqkg(-1). The average values of external and internal indices were 0.7 ± 0.2 and 0.9 ± 0.2 respectively. The average gross alpha and gross beta activity concentrations in the water samples were determined to be 0.0032 ± 0.0024 and 0.0338 ± 0.0083 Bql(-1) respectively. The total annual effective dose from the pathways considered for this study (gamma ray from the soil, rock and ore samples as well as doses determined from the gross alpha/beta activity concentration in water samples) was calculated to be 0.918 mSv. The results obtained in this study shows that the radiation levels are within the natural background radiation levels found in literature and compare well with similar studies for other countries and the total annual effective dose is below the ICRP recommended level of 1 mSv for public exposure control.

  12. In situ Shear Tests of Soil Samples with Grass Roots in Alpine Environment

    Directory of Open Access Journals (Sweden)

    E. Comino

    2009-01-01

    Full Text Available Problem statement: The presence of vegetation increases the soil burden stability along slopes and reduces soil erosion. Its contribution is due to mechanical (reinforcing soil shear resistance and hydrologic controls on streambank and superficial landslides. This study presented the results carried out from experimental in situ test focused to study the increased shear resistance of soil blocks due to root-reinforcement. A shear apparatus was set up in order to realize the measure. Approach: In this research the researchers tested the capacity root reinforcement of Festuca pratensis, Lolium perenne and Poa pratensis (Poaceae families, Medicago sativa, Trifolium pratensis and Lotus corniculatus (Fabaceae families grass species widespread in the Alpine environment. Results: In situ shear tests results revealed that grass roots fail progressively and their tendency were to slip, without failing. Shear-strengths calculated for root-reinforced soil with Fabaceae, yielded values between 19 and 166% higher than directly measured shear-strengths in soil with no roots. The shear displacement had an increase included between 493 and 1.900%. The shear time was always superior. The clod with roots, after the trials, were always packed together. Conclusion: These data were lower than those obtained with Poaceae tests (from 50-318%, but the two grass families were functional for a grass mix useful in technical seeding.

  13. Probing the fate of soil-derived core and intact polar GDGTs in aquatic environments

    Science.gov (United States)

    Peterse, F.; Moy, C. M.; Eglinton, T. I.

    2014-07-01

    We have performed incubation experiments in order to examine the fate of branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids upon entering an aquatic environment and to asses the suitability of brGDGTs as tracers for fluvial land-sea transport of soil organic carbon. We incubated a soil from the Rakaia River catchment on the South Island of New Zealand using Rakaia River water and ocean water collected near the river mouth as inocula for a period of up to 152 days. The concentrations of brGDGTs derived from intact polar ("living"; IPL) lipids and core ("fossil"; CL) lipids remained stable over the course of the experiment, suggesting an absence of significant brGDGT production or degradation. Moreover, the lack of change in brGDGT distribution during the experiment implies that the initial soil signature remains unaltered during transport through the aquatic environment, at least over the time frame of the experiment. In contrast, the total pool of isoprenoid GDGTs (isoGDGTs), currently attributed to soil Thaumachaeota, increased substantially (27-72%) in all incubation setups by the end of the experiment. As a consequence, a decrease in Branched and Isoprenoid Tetraether (BIT) index values - a proxy for the relative input of fluvially discharged soil material into a marine system - became evident after an incubation period of 30 days, with a maximum final decrease of 0.88 to 0.74 in the experiment with river water. The relative distribution within the isoGDGT pool shows changes with time, suggesting different membrane adaptation rates to the aquatic environment, or a shift in source organism(s). While the stability of soil brGDGTs in aquatic environments reinforces their potential as tracers for land-sea transport of soil organic carbon and their use in paleoclimate reconstructions, the distributional differences between GDGTs in river water and nearby soil indicate that further research is needed to pinpoint the sources of GDGTs that are

  14. Assessment of the impact of an old MSWI. Part 1. Level of PCDD/Fs and PCBs in surrounding soils and eggs

    Energy Technology Data Exchange (ETDEWEB)

    Pirard, C.; Focant, J.F.; Massart, A.C.; Pauw, E. De [Mass Spectrometry Lab., Univ. of Liege (Belgium)

    2004-09-15

    This paper reports dioxin and PCB concentrations in soils and chicken eggs collected near an old municipal solid waste incinerator (MSWI). The specimens were collected in 11 homes from Maincy (France), a rural area located 60km south of Paris and 5km from Melun, a 40000 inhabitants industrial city. Less than 2km away from Maincy stands the Vaux-le-Penil MSWI. It began to operate in 1974 and was closed in June 2002 following a dioxin measures campaign of atmospheric emission. The facility with a capacity of 4 t/h, handled approximately 40000 tons of domestic waste per year, without any specific dioxin removal. Measured dioxin level was 226 ngTEQ/Nm{sup 3}, more than 2000 fold higher than the actual European norm of 0.1ngTEQ/Nm{sup 3}.

  15. Sub-soil contamination due to oil spills in zones surrounding oil pipeline-pump stations and oil pipeline right-of-ways in Southwest-Mexico.

    Science.gov (United States)

    Iturbe, Rosario; Flores, Carlos; Castro, Alejandrina; Torres, Luis G

    2007-10-01

    Oil spills due to oil pipelines is a very frequent problem in Mexico. Petroleos Mexicanos (PEMEX), very concerned with the environmental agenda, has been developing inspection and correction plans for zones around oil pipelines pumping stations and pipeline right-of-way. These stations are located at regular intervals of kilometres along the pipelines. In this study, two sections of an oil pipeline and two pipeline pumping stations zones are characterized in terms of the presence of Total Petroleum Hydrocarbons (TPHs) and Polycyclic Aromatic Hydrocarbons (PAHs). The study comprehends sampling of the areas, delimitation of contamination in the vertical and horizontal extension, analysis of the sampled soils regarding TPHs content and, in some cases, the 16 PAHs considered as priority by USEPA, calculation of areas and volumes contaminated (according to Mexican legislation, specifically NOM-EM-138-ECOL-2002) and, finally, a proposal for the best remediation techniques suitable for the contamination levels and the localization of contaminants.

  16. Scenario analysis of Agro-Environment measure adoption for soil erosion protection in Sicilian vineyard (Italy)

    Science.gov (United States)

    Novara, Agata; Gristina, Luciano; Fantappiè, Maria; Costantini, Edoardo

    2014-05-01

    Most of the challenges in designing land use policies that address sustainability issues are inherent to the concept of Agro-Environmental Measures (AEM). Researchers, farmers and mainly policy makers need to evaluate the impact of new and existing policies for soil protection. In Europe, farmers commit themselves, for a minimum period of at least five years, to adopt environmentally-friendly farming techniques that undergone legal obligations. On the other hand, farmers receive payments that provide compensation for additional costs and income foregone resulting from applying those environmentally friendly farming practices in line with the stipulations of agri-environment contracts. In this context we prospect scenarios on soil erosion variations in a detailed case study after the application of Agro-Environmental Measures (AEM). The study area is located in the South part of Sicily. In a district area of 11,588 ha, 35.5 % is devoted to vineyard cultivation, 32.2 % is arable land and only 11.1 % cultivated to olive grow. 2416 ha are urbanized areas and other less important crops. A paired-site approach was chosen to study the difference in soil organic carbon stocks after AEM adoption, following criteria based on Conteh (1999) also applied in several research studies. For the purpose of comparison, the members of a paired site were selected to be similar with respect to the type of soil, slope, elevation, and drainage, but not to AEM. The comparisons were made between adjacent patches of land with different AEM, and a known history of land use and management. 100 paired sites (two adjacent plots) were chosen and three soil samples (0-30 cm depth) were collected in each plot (600 soil samples). The rainfall erosivity (R) factor (Mj mm ha-1 hour-1 year-1) was estimated with the formula specifically proposed for Sicily by Ferro and coauthors in 1999. The soil erodibility factor (K, in tons hour MJ-1 mm-1) was mapped on the base of soil texture and soil organic

  17. Soil microbial activities in Mediterranean environment as desertification indicators along a pluviometric gradient.

    Science.gov (United States)

    Novosadova, I.; Zahora, J.; Ruiz Sinoga, J. D.

    2009-04-01

    In the Mediterranean areas of Southern Spain, unsuitable agricultural practices with adverse environmental conditions (López Bermúdez and Albaladejo, 1990), have led to a permanent degradation and loss of soil fertility. This includes deterioration of the natural plant cover, which protects against erosion by contributing organic matter, the main prerequisite of ecosystem sustainability (Grace et al., 1994). Physico-chemical, microbiological and biochemical soil properties are very responsive and provide immediate and precise information on small changes occurring in soil (Dick and Tabatabai, 1993). There is increasing evidence that such parameters are also sensitive indicators of ecology stress suffered by a soil and its recovery, since microbial activity has a direct influence on the stability and fertility of ecosystems (Smith and Papendick, 1993). One method for recovering degraded soils of such semiarid regions, with their low organic matter content, is to enhance primary productivity and carbon sequestration without any additional nitrogen fertilization and preferably without incorporation of leguminous plants (Martinez Mena et al., 2008). Carbon rich materials can sustain microbial activity and growth, thus enhancing biogeochemical nutrient cycles (Pascual et al., 1997). The present study is focused in the role of physico-chemical and microbial soil properties in Mediterranean environment, in terms of in situ and ex situ microbial transformation of soil carbon and nitrogen, in order to characterise the key soil microbial activities which could strongly affect carbon and nitrogen turnover in soil and hereby soil fertility and soil organic matter "quality". These microbial activities could at unsuitable agricultural practices with adverse environmental conditions induce unfavourable hydrologycal tempo-spatial response. The final results shown modifications in the soil properties studied with the increasing of the aridity. Such changes suppose the soil

  18. Can Breast Tumors Affect the Oxidative Status of the Surrounding Environment? A Comparative Analysis among Cancerous Breast, Mammary Adjacent Tissue, and Plasma.

    Science.gov (United States)

    Panis, C; Victorino, V J; Herrera, A C S A; Cecchini, A L; Simão, A N C; Tomita, L Y; Cecchini, R

    2015-01-01

    In this paper, we investigated the oxidative profile of breast tumors in comparison with their normal adjacent breast tissue. Our study indicates that breast tumors present enhanced oxidative/nitrosative stress, with concomitant augmented antioxidant capacity when compared to the adjacent normal breast. These data indicate that breast cancers may be responsible for the induction of a prooxidant environment in the mammary gland, in association with enhanced TNF-α and nitric oxide.

  19. Characteristics of woodland rhizobial populations from surface- and deep-soil environments of the sonoran desert.

    Science.gov (United States)

    Waldon, H B; Jenkins, M B; Virginia, R A; Harding, E E

    1989-12-01

    A collection of 74 rhizobial isolates recovered from nodules of the desert woody legumes Prosopis glandulosa, Psorothamnus spinosus, and Acacia constricta were characterized by using 61 nutritional and biochemical tests. We compared isolates from A. constricta and Prosopis glandulosa and tested the hypothesis that the rhizobia from a deep-phreatic rooting zone of a Prosopis woodland in the Sonoran Desert of southern California were phenetically distinct from rhizobia from surface soils. Cluster analysis identified four major homogeneous groups. The first phenon contained slow-growing (SG) Prosopis rhizobia from surface and deep-phreatic-soil environments. These isolates grew poorly on most of the media used in the study, probably because of their requirement for a high medium pH. The second group of isolates primarily contained SG Prosopis rhizobia from the deep-phreatic rooting environment and included two fast-growing (FG) Psorothamnus rhizobia. These isolates were nutritionally versatile and grew over a broad pH range. The third major phenon was composed mainly of FG Prosopis rhizobia from surface and dry subsurface soils. While these isolates used a restricted range of carbohydrates (including sucrose) as sole carbon sources, they showed better growth on a range of organic acids as sole carbon sources and amino acids as sole carbon and nitrogen sources than did other isolates in the study. They grew better at 36 degrees C than at 26 degrees C. The FG Acacia rhizobia from surface-soil environments formed a final major phenon that was distinct from the Prosopis isolates. They produced very high absorbance readings on all of the carbohydrates tested except sucrose, grew poorly on many of the other substrates tested, and preferred a 36 to a 26 degrees C incubation temperature. The surface populations of Prosopis rhizobia required a higher pH for growth and, under the conditions used in this study, were less tolerant of low solute potential and high growth

  20. Notes on dematiaceous hyphomycetes from soil in Mount Taibai and its surrounding area Ⅱ%太白山及其周围地区土壤中的暗色丝孢菌Ⅱ

    Institute of Scientific and Technical Information of China (English)

    于金凤; 宋伟; 吴悦明; 张天宇

    2008-01-01

    In this sequel of report on soil dernatiaceous hyphomycetes from Mount Taibai and its surrounding area,18 species in 10 additional genera are included.The fungi were identified from 96 isolates.Among them Scolecobasidium pallescens is a new species,while Myrothecium inundatum,Oidiodendron flavum,Oidiodendron truncatum,Scopulariopsis chartarum are new records to China.Scolecobasidium pallescens is characterized by its relatively light coloured(pale brown)conidia and conidiophores,differing from its similar species,S.microspora.Latin diagnosis is given for the new species.Brief descriptions and illustrations of the new records are provided based on Chinese isolates.The other 13 species being previously known from China in several genera are also listed.All specimens(dried cultures and slides)and living cultures studied have been deposited in the Herbarium of Shandong Agricultural University:Plant Pathology(HSAUP).

  1. Crystal structure control of aluminized clay minerals on the mobility of caesium in contaminated soil environments.

    Science.gov (United States)

    Dzene, Liva; Ferrage, Eric; Viennet, Jean-Christophe; Tertre, Emmanuel; Hubert, Fabien

    2017-02-24

    Radioactive caesium pollution resulting from Fukushima Dai-ichi and Chernobyl nuclear plant accidents involves strong interactions between Cs(+) and clays, especially vermiculite-type minerals. In acidic soil environments, such as in Fukushima area, vermiculite is subjected to weathering processes, resulting in aluminization. The crystal structure of aluminized clays and its implications for Cs(+) mobility in soils remain poorly understood due to the mixture of these minerals with other clays and organic matter. We performed acidic weathering of a vermiculite to mimic the aluminization process in soils. Combination of structure analysis and Cs(+) extractability measurements show that the increase of aluminization is accompanied by an increase in Cs(+) mobility. Crystal structure model for aluminized vermiculite is based on the interstratification of unaltered vermiculite layers and aluminized layers within the same particle. Cs(+) in vermiculite layers is poorly mobile, while the extractability of Cs(+) is greatly enhanced in aluminized layers. The overall reactivity of the weathered clay (cation exchange capacity, Cs(+) mobility) is then governed by the relative abundance of the two types of layers. The proposed layer model for aluminized vermiculite with two coexisting populations of caesium is of prime importance for predicting the fate of caesium in contaminated soil environments.

  2. Crystal structure control of aluminized clay minerals on the mobility of caesium in contaminated soil environments

    Science.gov (United States)

    Dzene, Liva; Ferrage, Eric; Viennet, Jean-Christophe; Tertre, Emmanuel; Hubert, Fabien

    2017-01-01

    Radioactive caesium pollution resulting from Fukushima Dai-ichi and Chernobyl nuclear plant accidents involves strong interactions between Cs+ and clays, especially vermiculite-type minerals. In acidic soil environments, such as in Fukushima area, vermiculite is subjected to weathering processes, resulting in aluminization. The crystal structure of aluminized clays and its implications for Cs+ mobility in soils remain poorly understood due to the mixture of these minerals with other clays and organic matter. We performed acidic weathering of a vermiculite to mimic the aluminization process in soils. Combination of structure analysis and Cs+ extractability measurements show that the increase of aluminization is accompanied by an increase in Cs+ mobility. Crystal structure model for aluminized vermiculite is based on the interstratification of unaltered vermiculite layers and aluminized layers within the same particle. Cs+ in vermiculite layers is poorly mobile, while the extractability of Cs+ is greatly enhanced in aluminized layers. The overall reactivity of the weathered clay (cation exchange capacity, Cs+ mobility) is then governed by the relative abundance of the two types of layers. The proposed layer model for aluminized vermiculite with two coexisting populations of caesium is of prime importance for predicting the fate of caesium in contaminated soil environments. PMID:28233805

  3. Crystal structure control of aluminized clay minerals on the mobility of caesium in contaminated soil environments

    Science.gov (United States)

    Dzene, Liva; Ferrage, Eric; Viennet, Jean-Christophe; Tertre, Emmanuel; Hubert, Fabien

    2017-02-01

    Radioactive caesium pollution resulting from Fukushima Dai-ichi and Chernobyl nuclear plant accidents involves strong interactions between Cs+ and clays, especially vermiculite-type minerals. In acidic soil environments, such as in Fukushima area, vermiculite is subjected to weathering processes, resulting in aluminization. The crystal structure of aluminized clays and its implications for Cs+ mobility in soils remain poorly understood due to the mixture of these minerals with other clays and organic matter. We performed acidic weathering of a vermiculite to mimic the aluminization process in soils. Combination of structure analysis and Cs+ extractability measurements show that the increase of aluminization is accompanied by an increase in Cs+ mobility. Crystal structure model for aluminized vermiculite is based on the interstratification of unaltered vermiculite layers and aluminized layers within the same particle. Cs+ in vermiculite layers is poorly mobile, while the extractability of Cs+ is greatly enhanced in aluminized layers. The overall reactivity of the weathered clay (cation exchange capacity, Cs+ mobility) is then governed by the relative abundance of the two types of layers. The proposed layer model for aluminized vermiculite with two coexisting populations of caesium is of prime importance for predicting the fate of caesium in contaminated soil environments.

  4. Study of the Lead Source in the Surrounding Soil of the Lead-zinc Smelters by Isotope Tracing%铅锌冶炼厂周边土壤铅源的铅同位素示踪

    Institute of Scientific and Technical Information of China (English)

    于凯; 李旭祥; 支泽林; 王海波; 郑刘孙

    2014-01-01

    Taken the soil samples nearby a lead-zinc smelter as the research object,the lead content of the lead-zinc ore,the metallurgical coal and the nearby soil were detected.It was concluded that lead content in the soil surrounding the lead-zinc smelter varied from 22.73 mg/kg to 126.51 mg/kg,and the average content was 42.68 mg/kg which was higher by a factor of 1.85 than the local soil background level.Meanwhile the possible contamination sources were analyzed by means of the spatial variability analysis and the lead isotope mixed model formula.It was concluded that the spatial distribution of soil heavy metal nearby the lead-zinc smelter and the lead isotope rates were close to the metallurgical coal and so that the metallurgical coal was the largest contribu-tion to the soil pollution.%以某铅锌冶炼厂周边土壤为研究对象,通过对其原料及周边土壤中铅含量的检测,结果显示:该冶炼厂周边土壤铅质量比在22.73 mg/kg~126.51 mg/kg之间,平均值为42.68 mg/kg,是当地土壤铅背景值的1.85倍。采用铅质量比空间分布分析和同位素混合模型计算分析了冶炼厂周边土壤中铅的可能来源,分析表明:土壤铅质量比的空间分布及铅同位素比值与冶炼厂的焦化原料煤相近,焦化原料煤对周边土壤铅污染贡献最大。

  5. Identification of Environment Chase in Surround of Sermo Reservoir; and the Influence Possibility for Function and at the Age of Reservoi

    Directory of Open Access Journals (Sweden)

    Sudarmadji Sudarmadji

    2004-01-01

    materials from land slide occuring around the reservoir; due to distruction of land in constructing the relatively new ring-road close to the shore line of the reservoir: Of course, the sediment is also coming from rivers entering die reservoir. Sermo reservoir is a relatively young reservoir; the early observation of environmental changes of the reservoir could hopely be used as indicator to study ecological changes of the area within and around of the reservoir; and could be used as a comparison to other reservoirs, as well as basic environmental management of the reservoir and its surrounding.

  6. Toxaphene residues from cotton fields in soils and in the coastal environment of Nicaragua.

    Science.gov (United States)

    Carvalho, F P; Montenegro-Guillén, S; Villeneuve, J P; Cattini, C; Tolosa, I; Bartocci, J; Lacayo-Romero, M; Cruz-Granja, A

    2003-11-01

    Toxaphene (camphechlor) was intensively used in the cotton growing fields of Nicaragua for decades with application rates as high as 31 kg ha(-1) in 1985. Although the use of this compound has recently been discontinued in the country, its intensive use in the past and its long persistence in soil allowed for the build up of large reservoirs of toxaphene in agriculture soils and a wide dispersal of residues in the environment. Measurements of toxaphene in coastal areas on the coast of the Pacific Ocean show that environmental concentrations are particularly high in the district of Chinandega, the traditional cotton growing region. Toxaphene residues measured in soils attained 44 microg g(-1) (dry weight) while concentrations in lagoon sediments attained 6.9 microg g(-1) (dry weight) near the mouth of the rivers flowing across the agricultural region. Measurements in aquatic biota showed concentrations as high as 1.6 microg g(-1) (dry weight) in the soft tissues of clams. The toxaphene reservoir in soils combined with the obvious persistence of this compound in soils and lagoon sediments allows predicting that toxaphene will remain in the coastal ecosystem at relatively high concentrations for many years. Toxic effects in lagoon fauna are likely to be observed especially in benthic species that may recycle this compound from sediments. Consumption of seafood, in particular of clams (Anadara spp.) from the more contaminated areas, may expose the population to unacceptably high intake of toxaphene, 30 microg d(-1) per person, with the diet.

  7. Soil properties and environmental tracers: A DEM based assessment in an Australian Mediterranean environment

    Science.gov (United States)

    Hancock, G. R.; Murphy, D. V.; Li, Y.

    2013-02-01

    Terrain properties vary at the hillslope and catchment scale and play a significant role in the distribution of water and sediment. Of particular interest in recent years has been the role of hillslope and catchment properties in the spatial and temporal distribution of soil organic carbon (SOC) and the ability to predict SOC from DEM terrain analysis. SOC plays a significant role in soil health and productivity as well as providing a significant store of terrestrial carbon. This study examined SOC concentration along representative pasture transects in a catchment located in southern Western Australia with a Mediterranean climate. Results demonstrate that the majority of SOC (%) is located in the near-surface (300 mm) and is concentrated in the top 0.2 m. There was no relationship found between SOC (or microbial biomass) and topography or topographic derivatives such as wetness and terrain indices from DEMs. Significant relationships were however found between SOC and environmental tracers (137Cs and 210Pbex) down the soil profile. Weak, yet significant, relationships were found between SOC and the environmental tracers along the hillslope transects, suggesting that organic carbon moves along the same pathways as clay particles in soil. An erosion assessment using 137Cs and also a numerical soil erosion and landscape evolution model found low and comparable erosion rates at the site. The results demonstrate that SOC concentration is relatively uniform across the study site and that a transect scale assessment can provide a measure of hillslope and catchment scale SOC in this environment.

  8. Speciation and bioavailability of soil nutrients: effect on crop production and environment

    Directory of Open Access Journals (Sweden)

    Maria Martin

    2009-04-01

    Full Text Available The agricultural production, determining the quality of the foodstuffs, depends on the biological characteristics of the crops and on the environmental properties, where soil environment plays a central role. Crops absorb water and nutritive elements from soil, but they can intake toxic elements as well. The potential benefits, or dangers, due to the presence of a certain element in soil, depend on its chemical speciation regulating its bioavailability, toxicity, environmental mobility, and biogeochemistry. Elements may exist in soil in different redox species and organic or inorganic forms. They may thus undergo different chemical processes occurring in solution, in the solid phase, or at the solid-water interface. The chemical speciation and bioavailability of the elements are affected by soil and environmental properties, which may undergo natural or anthropogenic modifications. As an example, we reported here some aspects linked to the chemical speciation, bioavailability and environmental fate of two chemically similar elements. The former, phosphorus, is a macronutrient element, essential for plant growth, while the latter, arsenic, is strongly toxic for most living organisms.

  9. SOIL EROSION AND CONSERVATION IN ROMANIA - SOME FIGURES, FACTS AND ITS IMPACT ON ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Sevastel Mircea

    2010-01-01

    Full Text Available Being a common and finite resource, soil - as a natural and very complex ecosystem, is essential to human society. Inseveral regions of Europe, including Romania too, soil resources are degraded due to different causes, or, sometimes,irreversibly lost, mainly due to erosion, decline in organic matter or contamination. As regard to soil erosion only, inRomania, about 42% of the total agricultural lands are affected by water erosion in different forms and intensities.Soil degradation has negative impacts on other areas also, not only in-site but also off-site, areas which are alsoconsidered of common interest for the people (e.g. air and water quality, biodiversity and climate change. Costs torestore such a damages and environmental quality in general may be very high and thus preferable to be avoided.To maintain and/or improve a good quality of the soils for a long period of time, there needed to be implemented inRomania , as much as possible, some agri-environmental schemes, according to the current EU models and policies, inparticular, through the Common Agricultural Policy (CAP.The paper briefly presents and analyzes such agri-environmental schemes developed for the agricultural lands from thehilly areas in Romania that is very affected by water erosion and landslides – the Curvature zone of Sub-Carpathians.The schemes, developed within the Research Station for Soil Erosion and Conservation Aldeni-Buzau, which belongs tothe University of Agricultural Sciences in Bucharest, is based on friendly agricultural practices to be implemented onagricultural lands located on slopes. Also, the new conceptual European model, known as Driving Forces-Pressures-State-Impacts-Responces (DPSIR, adapted for the soil erosion impact assesment on environment, will be herepresented, in order to be promoted and used on a large scale in Romania as well.

  10. Notes on soil dematiaceous hyphomycetes from Mount Taibai and its surrounding area, China Ⅰ%太行山及其周围地区土壤中的暗色丝孢菌Ⅰ

    Institute of Scientific and Technical Information of China (English)

    宋伟; 于金凤; 张天宇

    2008-01-01

    A total of 103 isolates of soil dematiaceous hyphomycetes belonging to 27 species in 15 genera were obtained from soil samples of Mount Taibai and its surrounding area, Shaanxi Province, China. Among them Eladia pachyphialis and Gliomastix pallescens are new species, while Acremoniula sarcinellae, Allescheriella crocea, Chrysosporium merdarium, Chrysosporium pannorum are new records to China. The main distinction between E. pachyphialis and its similar species E. saccula is that the phialide of the former is wider and the conidia are smaller than those of the latter. Gliomastix pallescens is characterized by having light colored, long and unbranched conidiophores by which it can be separated from its similar species, G. cerealis. Latin descriptions are given for the new species. Brief descriptions and illustrations of the new records are also provided based on Chinese isolates. The other 21 species being previously known from China in several genera are also listed. All specimens (dried cultures and slides) and living cultures studied have been deposited in the Herbarium of Shandong Agricultural University: Plant Pathology (HSAUP).

  11. Fate and transport of radionuclides in soil-water environment. Review.

    Science.gov (United States)

    Konoplev, Aleksei

    2017-04-01

    The ease in which radionuclides move through the environment and are taken up by plants and animals is governed by their chemical forms and by site-specific environmental characteristics. The objective of this paper is to review basic mechanisms of the behavior of radiocesium and radiostrontium in the environment after the nuclear accident. Our understanding of radionuclide's speciation and migration processes seems to be adequate and explains similarities and differences of radiocesium (r-Cs) behavior in the environment after Fukushima and Chernobyl accidents. Climate and geographical conditions in Fukushima Prefecture of Japan and Chernobyl's near-field zone are obviously different. In particular, precipitation differs substantially, with the annual average for Fukushima being about 3 times higher than at Chernobyl. The landscapes and soils also differ significantly. What is more, the speciation of r-Cs in the releases was distinct (large fraction of radionuclides was deposited as fuel particles in 30-km zone around Chernobyl NPP, while in Fukushima radiocesium is mostly part of condensation particles including glassy hot particles). Radiocesium (r-Cs) in the environment is strongly bound to soil and sediment particles containing micaceous clay minerals (illite, vermiculite, etc.), which is associated with two basic processes - high selective reversible sorption and fixation. The r-Cs distribution coefficient Kd in Fukushima rivers was found to be 1-2 orders of magnitude higher than corresponding values for rivers and surface runoff of Chernobyl area. This is indicative of higher ability of Fukushima soils and sediments to bind r-Cs. Dissolved r-Cs wash-off for Fukushima river watersheds is essentially slower than those for Chernobyl. However, steeper slopes and higher precipitation in Fukushima area cause higher erosion and higher particulate r-Cs wash-off. For a comparable time after the accident the total r-Cs wash-off from contaminated catchments in Fukushima

  12. Characterization of polychlorinated dibenzo-p-dioxins and dibenzofurans, dioxin-like polychlorinated biphenyls, and polychlorinated naphthalenes in the environment surrounding secondary copper and aluminum metallurgical facilities in China.

    Science.gov (United States)

    Hu, Jicheng; Zheng, Minghui; Liu, Wenbin; Nie, Zhiqiang; Li, Changliang; Liu, Guorui; Xiao, Ke

    2014-10-01

    Unintentionally produced persistent organic pollutants (UP-POPs) were determined in ambient air from around five secondary non-ferrous metal processing plants in China, to investigate the potential impacts of the emissions of these plants on their surrounding environments. The target compounds were polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (dl-PCBs), and polychlorinated naphthalenes (PCNs). The PCDD/F, dl-PCB, and PCN concentrations in the ambient air downwind of the plants were 4.70-178, 8.23-7520 and 152-4190 pg/m(3), respectively, and the concentrations upwind of the plants were lower. Clear correlations were found between ambient air and stack gas concentrations of the PCDD/Fs, dl-PCBs, and PCNs among the five plants, respectively. Furthermore, the UP-POPs homolog and congener patterns in the ambient air were similar to the patterns in the stack gas samples. These results indicate that UP-POPs emissions from the plants investigated have obvious impacts on the environments surrounding the plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Soil carbon dynamics during secondary succession in a semi-arid Mediterranean environment

    Directory of Open Access Journals (Sweden)

    A. Novara

    2011-11-01

    Full Text Available Clarifying which factors cause an increase or decrease in soil organic carbon (SOC after agricultural abandonment requires integration of data on the temporal dynamics of the plant community and SOC. A chronosequence of abandoned vineyards was studied on a volcanic island (Pantelleria, Italy. Vegetation in the abandoned fields was initially dominated by annual and perennial herbs, then by Hyparrhenia hirta (L. Stapf, and finally by woody communities. As a consequence, the dominant photosynthetic pathway changed from C3 to C4 and then back to C3.

    Conversion of a plant community dominated by one photosynthetic pathway to another changes the 13C/12C ratio of inputs to soil organic carbon (SOC. Using the time since abandonment and the shift in belowground δ13C of SOC relative to the aboveground δ13C plant community, we estimated SOC turnover rate.

    SOC content (g kg−1 increased linearly (R2 = 0.79 and 0.73 for 0–15 and 15–30 cm soil depth with the age of abandonment, increasing from 12 g kg−1 in cultivated vineyards to as high as 26 g kg−1 in the last stage of the succession.

    δ13C increased in the bulk soil and its three fractions during succession, but only for soil fractions the effects of soil depth and its interaction with succession age were significant. Polynomial curves described the change in δ13C over the chronosequence for both depths. δ13C in the bulk soil had increased from −28 to −24‰ by 30 yr after abandonment for both depths but then decreased to −26‰ at 60 yr after abandonment (corresponding with maturity of the woody plant community. Overall, the results indicate that abandoned vineyards on volcanic soil in a semi-arid environment are C sinks and that C storage in these soils is closely related to plant succession.

  14. Tannin-Metal Interactions in Soils: An Incubation-Extraction Approach in Hill-Land Environments

    Science.gov (United States)

    Gonzalez, J. M.; Halvorson, J. J.

    2007-12-01

    Tannins, plant polyphenols known to react with proteins, metals and soil organic matter, are commonly found in the vegetation growing in Appalachian hill-lands. Establishing silvopastoral grazing systems in these environments is a means for improving productivity however the fate of tannins in soils and, in particular, the effect on solubility/mobility of metals in soils is poorly understood. Soils from forest and pasture systems were sampled from two depths, treated with tannic acid or related phenolic compounds, and analyzed for metals in solution. The amount of Mn and Ca detected in solution varied among the different phenolic treatments, highest for gallic acid, and was also influenced by depth and land use. As expected, the Ca content in solution was correlated with the electrical conductivity (EC) and the Mn content was correlated with the redox potential in solution. Interestingly, the EC was also correlated with both Mn content and redox potential. The higher Ca content found in solution may result from the low pH of the phenolic compounds. The higher Mn in solution may result from the redox reaction of Mn (IV) oxides with the phenolic compounds, producing soluble Mn2+ and quinones. These quinones are very reactive compounds that can self-polymerize and/or copolymerize with other biomolecules, such as amino-containing compounds and carbohydrates, to form humic-like substances. Successful management of silvopastures, requires an understanding of factors that affect the quality and quantity of plant secondary compounds like tannins entering soil not only to increase forage productivity but also to enhance formation/stabilization of soil organic matter to increase nutrient cycling and reduce the toxicity risk of some metals such as Mn.

  15. Analysis of the Surrounding Environment Influence Caused by Rectangular Pipe Jacking Construction in Shanghai%上海地区某大口径矩形顶管施工周边环境影响监测分析

    Institute of Scientific and Technical Information of China (English)

    孙亚峰

    2015-01-01

    顶管技术作为非开挖的技术中的一种,可以在不用开挖地表土的情况下将管道铺设完毕,具有其他开挖方式无可比拟的优点,其应用也越来越广泛。但是在顶管施工中,不可避免地会破坏管道周围土体原有的平衡,造成地面的沉降,对周边环境造成影响。相对于圆形顶管,矩形顶管对周围土体的扰动更大,从而引起的地面变形也更大。本文以上海市徐汇区某地下通道矩形顶管工程为背景,通过现场监测数据分析,得出了一些有益的结论。%As one of Trench less Technology ,Pipe jacking has the unparalleled advantage of finishing pipeline laying without excavating surface soil ,and has become widely used .However ,pipe jacking will inevitably break the original soil balance around the pipe ,leading to land subsidence and affect buildings surrounded ,even endangers their safety .Rela-tive to circular pipe jacking ,rectangular pipe jacking construction may disturb the soil more heavily and cause more sur-face deformation.This thesis based on the rectangular pipe jacking construction project of Shanghai Xuhui District under -ground passage .Through on-site monitoring data analysis ,some useful conclusions are obtained .

  16. Diversity of ammonia-oxidizing bacteria in relation to soil environment in Ebinur Lake Wetland

    Directory of Open Access Journals (Sweden)

    Wenge Hu

    2016-03-01

    Full Text Available Ammonia oxidation is the first and rate-limiting step of nitrification and is carried out by ammonia-oxidizing bacteria (AOB. Ebinur Lake Wetland, the most representative temperate arid zone wetland ecosystem in China, is the centre of oasis and desertification of the northern slope of Tianshan conjugate. Soil samples were collected from three sites (Tamarix ramosissima, Halocnemum strobilaceum and Phragmites australis and different soil layers (0–5, 5–15, 15–25 and 25–35 cm in this wetland in spring, summer and autumn and were used to characterize the diversity of AOB based on the ammonia monooxygenase (amoA gene. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE and bivariate correlation analysis were used to analyse the relationship between the diversity of AOB and soil environment factors. The PCR-DGGE indicated that the diversity of AOB was high in the entire sample and the Shannon diversity index varied from 1.369 to 2.471. The phylogenetic analysis showed that the amoA fragments were grouped into Nitrosospira sp. and Nitrosomonas sp. Most amoA gene sequences fell within the Nitrosospira sp. cluster, and only a few sequences were clustered with Nitrosomonas sp., indicating that Nitrosospira sp. may be more adaptable than Nitrosomonas sp. in this area. Bivariate correlation analysis showed that the diversity of AOB was significantly correlated with soil organic matter, conductivity, total phosphorus and nitrate in the Ebinur Lake Wetland in Xinjiang.

  17. Iron mineralogy and uranium-binding environment in the rhizosphere of a wetland soil

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I.; Kukkadapu, Ravi; Seaman, John C.; Arey, Bruce W.; Dohnalkova, Alice C.; Buettner, Shea; Li, Dien; Varga, Tamas; Scheckel, Kirk G.; Jaffé, Peter R.

    2016-11-01

    Wetlands mitigate the migration of groundwater contaminants through the creation of biogeochemical gradients that enhance multiple contaminant-binding processes. Our hypothesis was that wetland plants not only contribute organic carbon, produce strong redox gradients, and elevate microbial populations to soils, but together these conditions also promote the formation of Fe (oxyhydr)oxides within the plant rhizosphere that may also contribute to contaminant immobilization. Mineralogy and U binding environments of the rhizosphere (plant-impacted soil zone) were evaluated in samples collected from contaminated and non-contaminated areas of a wetland on the Savannah River Site in South Carolina. Based on Mossbauer spectroscopy, rhizosphere soil collected from the field study site was greatly enriched with poorly crystalline nanoparticulate Fe-oxide/ferrihydrite-like materials and nano-goethite (<15-nm). X-ray computed tomography or various microscopy techniques showed that root plaques, tens-of microns thick, were consisted of highly oriented nanoparticles in an orientation suggestive that the roots were involved in the Fe-nanoparticle formation. Because of detection limits, SEM/EDS could not confirm whether U was enriched in the rhizosphere but did demonstrate that U was enriched on root plaques. Uranium in the plaques was always found in association with P and frequently with Fe. Together these findings suggest that plants may not only alter soil microbial and chemical conditions, but also mineralogical conditions that may be conducive to aqueous contaminant immobilization in wetlands.

  18. Laboratory Test on Long-Term Deterioration of Cement Soil in Seawater Environment

    Institute of Scientific and Technical Information of China (English)

    杨俊杰; 闫楠; 刘强; 张玥宸

    2016-01-01

    Laboratory tests were conducted to study the effects of curing time, cement ratio and seawater pressure on cement soil deterioration formed at simulative marine soft clay sites. Deterioration depth was determined on the basis of characteristics of penetration resistance and penetration depth curves, and the deterioration depth of cement soil with the cement ratio of 7%, reached 31.8 mm after 720 d. Results of research indicated that deterioration ex-tended quickly under seawater environment and the deterioration depth increased with the prolonging curing time. In addition, the water pressure could speed up deterioration. With the increase of cement content, the strength of cement soil increased obviously. At the same time, the deterioration depth decreased significantly. The concentra-tion of calcium ion in the cement stabilized soil increased with the increase of depth, while that of magnesium ion gradually decreased. The variations were consistent with energy dispersive spectrometer(EDS)analysis results, and the calcium concentration with depth was in a good consistency with strength distribution at long term. The results showed that the deterioration became more serious with the curing time, and it was related to calcium leaching.

  19. Soil salinity mapping and hydrological drought indices assessment in arid environments based on remote sensing techniques

    Science.gov (United States)

    Elhag, Mohamed; Bahrawi, Jarbou A.

    2017-03-01

    Vegetation indices are mostly described as crop water derivatives. The normalized difference vegetation index (NDVI) is one of the oldest remote sensing applications that is widely used to evaluate crop vigor directly and crop water relationships indirectly. Recently, several NDVI derivatives were exclusively used to assess crop water relationships. Four hydrological drought indices are examined in the current research study. The water supply vegetation index (WSVI), the soil-adjusted vegetation index (SAVI), the moisture stress index (MSI) and the normalized difference infrared index (NDII) are implemented in the current study as an indirect tool to map the effect of different soil salinity levels on crop water stress in arid environments. In arid environments, such as Saudi Arabia, water resources are under pressure, especially groundwater levels. Groundwater wells are rapidly depleted due to the heavy abstraction of the reserved water. Heavy abstractions of groundwater, which exceed crop water requirements in most of the cases, are powered by high evaporation rates in the designated study area because of the long days of extremely hot summer. Landsat 8 OLI data were extensively used in the current research to obtain several vegetation indices in response to soil salinity in Wadi ad-Dawasir. Principal component analyses (PCA) and artificial neural network (ANN) analyses are complementary tools used to understand the regression pattern of the hydrological drought indices in the designated study area.

  20. Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments.

    Science.gov (United States)

    Yergeau, Etienne; Bokhorst, Stef; Kang, Sanghoon; Zhou, Jizhong; Greer, Charles W; Aerts, Rien; Kowalchuk, George A

    2012-03-01

    Because of severe abiotic limitations, Antarctic soils represent simplified systems, where microorganisms are the principal drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report highly consistent responses in microbial communities across disparate sub-Antarctic and Antarctic environments in response to 3 years of experimental field warming (+0.5 to 2 °C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio, which could result in an increase in soil respiration. Furthermore, shifts toward generalist bacterial communities following warming weakened the linkage between the bacterial taxonomic and functional richness. GeoChip microarray analyses also revealed significant warming effects on functional communities, specifically in the N-cycling microorganisms. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures.

  1. [Effects of sludge compost used as lawn medium on lawn growth and soil and water environment].

    Science.gov (United States)

    Jin, Shu-Quan; Zhou, Jin-Bo; Chen, Ruo-Xia; Lin, Bin; Wang, De-Yao

    2013-10-01

    To address effect of the sludge compost-containing medium on the growth of Manila lawn and environment quality, a pot experiment was conducted using six treatments based on contrasting sludge compost addition volume ratios in the soil system (i. e., 0% , 10% , 25% , 50% , 75% and 100%). The results indicated that the growth potential of Manila lawn was increased with increasing sludge compost addition volume ratio. The content of Hg in Manila plant was significantly positively correlated with that in the lawn medium. Although the contents of Cr, Cd and Hg in the lawn medium were synchronously increased with increasing sludge compost addition volume ratio in the soil system, their contents were all lower than the critical levels of third-class standard in the National Soil Environmental Quality Standard. The heavy metal and nitrate concentrations detected in percolating water were significantly positively correlated with those in the lawn medium, respectively. When the sludge compost addition volume ratio was more than 50% in this study, both heavy metal and nitrate concentrations in percolating water would exceed the maximum allowable levels of the National Groundwater Environment Quality Standard.

  2. Low soil organic carbon storage in a subarctic alpine permafrost environment

    Directory of Open Access Journals (Sweden)

    M. Fuchs

    2014-07-01

    Full Text Available This study investigates the soil organic carbon (SOC storage in Tarfala Valley, Northern Sweden. Field inventories upscaled based on land cover show that this alpine permafrost environment does not store large amounts of SOC, with an estimate mean of 0.9 ± 0.2 kg C m−2 for the upper meter of soil. This is one to two orders of magnitude lower than what has been reported for lowland permafrost terrain. The SOC storage varies for different land cover classes and ranges from 0.05 kg C m−2 for stone-dominated to 8.4 kg C m−2 for grass-dominated areas. No signs of organic matter burial through cryoturbation or slope processes were found and radiocarbon dated SOC is generally of recent origin (−2. Under future climate warming an upward shift of vegetation zones may lead to a net ecosystem C uptake from increased biomass and soil development. As a consequence, alpine permafrost environments could act as a net carbon sink in the future, as there is no loss of older or deeper SOC from thawing permafrost.

  3. Speciation analysis and pollution risk assessment of heavy metals in the soils surrounding mine area%矿区周边土壤中重金属形态分析及污染风险评价

    Institute of Scientific and Technical Information of China (English)

    龙海洋; 王维生; 韦月越; 应成璋; 黄雪芬; 蒙敏

    2016-01-01

    为了解某矿区周边土壤的重金属污染状况及污染程度,以广西河池市某矿区周边6处矿山和农田土壤为研究对象,采用湿法消解和BCR连续提取法研究了土壤中重金属( Cd、Zn、Pb和Cu)的总量及形态分布,并用次生相与原生相比值法( RSP)评价了土壤中重金属潜在的生态风险。结果表明,样品中重金属呈现一定的富集效应,总量超过当地土壤背景值和土壤环境质量标准值,从总量超标倍数看,其污染程度为Cd>Zn>Pb抑Cu。 BCR结果显示,离矿山较近的5个采样点的可提取态重金属均占总量的50%以上,有较强的生物有效性和毒性,最远的采样点的重金属主要存在于残渣态中(>60%),可提取态低于40%。 RSP结果显示,离矿山较近的两个采样点的重金属污染风险最高( RSP在1.62~3.20),矿山周边3个采样点有轻度或中度的的污染风险(RSP在1.11~2.16),离矿山最远的采样点几乎没有污染风险(RSP在0.42~0.67)。说明该矿区周边土壤重金属活性较大,离矿区越近,污染风险越高。%In order to understand the pollution condition and level of heavy metals in a mining area and surrounding soils, the contents and speciation distribution of heavy metals ( Cd, Zn, Pb and Cu) in six mine/farmland soils surrounding mine area in Hechi city of Guangxi province were stud-ied by the wet digestion method and BCR sequential extraction procedure . The potential ecological risk of heavy metals in the soils was evaluated by the ratio of secondary phase and primary phase ( RSP) . The results showed that the enrichment of heavy metals in the soils was observed, and the contents of heavy metals were higher than the background values of the local soils, and the values of soil environmental quality standard ( SEQS) . According to the total contents of heavy metals in the soil, the sequence of heavy metal pollution level was obtained as Cd>Zn>Pb-Cu. The results of

  4. Impact of Huangshigang District School Surrounding Community Ecological Environment to Build Healthy Classroom%黄石港区学校周边社区生态环境对构建健康课堂的影响

    Institute of Scientific and Technical Information of China (English)

    彭玉平

    2015-01-01

    社区生态环境是物质环境和精神环境的总和,良好的社区生态环境有利于净化师生的心灵、有利于素质教育的开展、有利于规范师生的心理和行为习惯,也有利于良好师生关系、生生关系的形成。相反,不良的社区生态环境容易扰乱师生的心境、诱发青少年不良的行为习惯,容易使学生形成不良的思想道德品质,也不利于良好师生关系的构建。通过了解黄石港区部分学校周边社区生态环境的现状以及对构建健康课堂的影响,笔者提出了构建黄石港区学校周边社区生态环境的一些思考。%Community ecological environment is the sum of the physical environment and the spiritual environment, good community ecological environment conducive to purify the hearts of teachers and students, contributing to the de-velopment of quality education, teachers and students in favor of standardized psychological and behavior, but also con-ducive to good teacher-student relationship form life and relationships. Conversely, poor ecological community of tea-chers and students easily disrupt mood, induced bad teen behavior, easy for students to form a poor moral quality, is not conducive to building a good relationship between teachers and students. By understanding the current situation surro-unding community school district Huangshigang ecological environment as well as on the construction of part of the health class, I made some thinking to build schools in the districts surrounding communities Huangshigang ecological environment.

  5. Evaporation from Bare Soil in Extremely Arid Environment in Southern Israel

    Institute of Scientific and Technical Information of China (English)

    WANGXUEFENG; XUFUAN; 等

    1996-01-01

    Microlysimeters of different sizes(5cm 10cm and 15cm in length) were used extensively in the present study of the measurements of soil evaporation in situ in an extremely arid area in southern Israel,All of the data obtained from the microlysimeters were used to evaluate two conventional evaporation models developed by Black et al.and Ritchie,respectively.Our results indicated that the models could overestimate total cumulative evaporation by about 30% in the extremely arid environment.Reducing the power factor of the conventional model by a factor of 0.1 produced good agreement between the measured and simulated cumulative evaporation.Microlysimeter method proved to be a simple and accurate approach for the evaluation of soil evaporation.

  6. Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Acid Soil Environment with SRB

    Science.gov (United States)

    Wang, Dan; Xie, Fei; Wu, Ming; Liu, Guangxin; Zong, Yue; Li, Xue

    2017-06-01

    Self-designed experimental device was adopted to ensure the normal growth of sulphate-reducing bacteria (SRB) in sterile simulated Yingtan soil solution. Stress corrosion cracking (SCC) behavior of X80 pipeline steel in simulated acid soil environment was investigated by electrochemical impedance spectroscopy, slow strain rate test, and scanning electron microscope. Results show that the presence of SRB could promote stress corrosion cracking susceptibility. In a growth cycle, polarization resistance first presents a decrease and subsequently an increase, which is inversely proportional to the quantities of SRB. At 8 days of growth, SRB reach their largest quantity of 1.42 × 103 cells/g. The corrosion behavior is most serious at this time point, and the SCC mechanism is hydrogen embrittlement. In other SRB growth stages, the SCC mechanism of X80 steel is anodic dissolution. With the increasing SRB quantities, X80 steel is largely prone to SCC behavior, and the effect of hydrogen is considerably obvious.

  7. Practices Surrounding Event Photos

    NARCIS (Netherlands)

    Vyas, Dhaval; Nijholt, Antinus; van der Veer, Gerrit C.; Kotzé, P.; Marsden, G.; Lindgaard, G.; Wesson, J.; Winckler, M.

    Sharing photos through mobile devices has a great potential for creating shared experiences of social events between co-located as well as remote participants. In order to design novel event sharing tools, we need to develop indepth understanding of current practices surrounding these so called

  8. Transport and reactivity of nanoparticles in the soil-water environment

    Science.gov (United States)

    Ben Moshe, Tal

    The nanotechnology market is developing rapidly with new applications for nanoparticles emerging constantly. As a result of the increased exposure to nanoparticles through consumer use and release to the environment it is becoming necessary to investigate their environmental effects. Little is known about the behavior of such particles in the environment, in general, and in water resources, in particular. The aim of this study was to investigate the behavior of metal oxide nanoparticles in saturated porous media. The study focused on several aspects of this behavior: (1) Transport, mobility and capture of untreated nanoparticles in porous media: The mobility was found to be highly variable among the different particles and highly dependent on the experimental conditions. The mobility was quite low in most cases but could be enhanced by presence of humic acid. (2) Use of copper oxide nanoparticles for the remediation of water polluted by persistent organic compounds: The nanoparticles were shown to be highly efficient catalysts for the complete degradation of the pollutants without formation of hazardous byproducts and without the need for radiation for activation. The nanoparticles were immobilized on sand to enable easy recovery at the end of the experiment; they were shown to retain their catalytic behavior. This was demonstrated by monitoring organic dye degradation in a flow-through system. (3) Interactions between nanoparticles and soil, and changes in soil properties. The nanoparticles affect the micro properties of the soil, as demonstrated by FTIR and fluorescence spectroscopy, as well as the microbial activity. They had little effect on the macro properties of the soil.

  9. Quality Assessment of Soil Environment around Tailing Areas in a Uranium Mine%某铀矿尾矿区周边土壤环境质量评价

    Institute of Scientific and Technical Information of China (English)

    花明; 陈润羊

    2011-01-01

    The quality assessment of soil environment of tailing areas could provide a scientific basis for the tailings management and the remediation of contaminated soil in uranium mines.Taking a uranium tailing areas in China as a research object,the quality assessment of soil environment around the tailing areas was carried out by applying N.L.Nemerow model and using such six kinds of heavy metals as Cd,Pb,Ni,Zn,Cu,Cr as the evaluation factors.The results showed that Cd index of soil around the uranium tailings area is far beyond the standard,the quality index of soil overall environment in the uranium tailings area has exceeded the alert level,and the soil environment has been polluted by heavy metals,however,the uranium tailings pond basically did not cause pollution on the surrounding soil.%进行铀矿尾矿区周边土壤环境质量评价可为铀矿尾矿区治理和污染土壤修复提供科学依据。以我国某铀矿尾矿区为研究对象,在采样监测的基础上,应用内梅罗(N.L.Nemerow)模型,以Cd、Pb、Ni、Zn、Cu、Cr等6种重金属作为评价因子,对铀矿尾矿周边土壤进行了环境质量评价。结果表明,该铀矿尾矿区周边土壤中Cd严重超标,整体尾矿区周边土壤环境质量已超过警戒级的水平,受到了重金属污染,但铀尾矿库对周边土壤基本上没有造成污染。

  10. The Relative Roles of Soil, Land Cover, and Precipitation Uncertainty for Watershed-scale Soil Moisture Prediction in a Semi-arid Environment

    Science.gov (United States)

    Mocko, D. M.; Peters-Lidard, C. D.; Tischler, M. A.; Wu, Y.; Garcia, M. E.; Santanello, J. A.

    2006-05-01

    Soil moisture is one of the basic links between the water and energy cycles of land surfaces through its regulation of infiltration, runoff, transpiration, and thermal capacity. In this study, soil moisture was evaluated at the watershed scale using the community NOAH land-surface model (LSM) as included in the Land Information System (LIS) framework. NOAH simulates profiles of soil moisture (both liquid and frozen) and soil temperature, skin temperature, snowpack depth, snowpack water equivalent (and hence snowpack density), canopy water content, and surface water and energy fluxes, including runoff, infiltration, and evapotranspiration. The NOAH-LIS system was tested using soil moisture data from the Monsoon '90 experiment, carried out at the Walnut Gulch Experimental Watershed (WGEW), near Tombstone, Arizona over a 18-day period during July and August 1990. The primary evaluation criterion was surface soil moisture retrieved from the NASA PushBroom Microwave Radiometer (PBMR). The effect of using global-to-continental scale boundary-condition information for soil and vegetation properties was evaluated in the system against more fine-scale property information for the watershed, which is not typically available. Also, the effect of using forcing precipitation from a high-density rain gauge network in the watershed was evaluated against precipitation from a single- gauge, from a mean of the gauge network, and from a global-to-continental scale reanalysis. Changes to the vegetation property information in this watershed, from land cover type to the prescribed albedo and greenness, had virtually no effect on the top-layer simulated soil moisture. Although differences were found in the sensible and latent heat fluxes when modifying the vegetation properties, the runoff ratio remained nearly the same between the simulations. This result indicates that a tiling approach based on vegetation type may not be appropriate in a semi-arid environment. Changes to the soil

  11. Vegetative growth and yield of strawberry under irrigation and soil mulches for different cultivation environments

    Directory of Open Access Journals (Sweden)

    Pires Regina Célia de Matos

    2006-01-01

    Full Text Available The vegetative growth and yield of strawberry in relation to irrigation levels and soil mulches are still not well known, mainly for different environmental conditions. Two experiments were carried out in Atibaia, SP, Brazil, during 1995, one in a protected environment and the other in an open field, to evaluate the cultivar Campinas IAC-2712, under different irrigation levels and soil mulches (black and clear polyethylene. Three water potential levels in the soil were used in order to define irrigation time, corresponding to -0.010 (N1, -0.035 (N2, and -0.070 (N3 MPa, measured through tensiometers installed at the 10 cm depth. A 2 x 3 factorial arrangement was adopted, as randomized complete block, with 5 replicates. In the protected cultivation, the irrigation levels of -0.010 and -0.035 MPa and the clear plastic mulch favored the vegetative growth, evaluated through plant height, maximum horizontal dimension of the plant, leaf area index, as well as by total marketable fruit yield and its components (mean number and weight of fruits per plant. In the open field cultivation, no effect of treatments due to rainfall were observed.

  12. The Theoretical Study of the Beams Supported on a Straining Environment as an Interaction Problem Soil - Structure - Infrastructure Interaction

    Directory of Open Access Journals (Sweden)

    Ana-Raluca Chiriac

    2006-01-01

    Full Text Available Between structure, infrastructure (foundation and soil there is an effective interaction, which has to be taken into account as correctly as possible every time we do the calculation. This effective interaction can be analysed in a global form, considering on one hand the entire building, and on the other hand the soil -- establishment surface, or in an analytical form: we consider first the soil -- infrastructure (foundation interaction and then the structure -- infrastructure one. Without considering the interaction, we cannot make neither the calculation (for the soil according to the limiting deformation state which has to be compatible with the structure’s resistance system, nor calculation for the limiting resistance state, because the correct distribution of efforts along the contact surface between the soil and the structure is unknown, so we cannot determine the zones of plastical equilibrium in the soil massive and the conditions of limited equilibrium. Also, without considering the infrastructure, we cannot correctly calculate the efforts and the deformations which may occur in all resistance elements of the building. Therefore, we cannot talk about limiting state calculation without considering the interaction between the soil and the structure itself. The problem of interaction between building, on one hand and soil foundation, on the other hand, is not approached very much in the specialized literature, because of the big difficulties raised by summarizing all the factors that describe the structure and the environment, which would be more accessible to a practical calculation. A lot of buildings or elements of buildings standing on the soil or on another environment with finite rigidity can be taken into account as beams supported on a straining environment, (continuous foundations, resistance walls, longitudinal and transversal membranes of civil and industrial buildings, hydrotechnic works. Therefore, in the present paper we

  13. SCC of XT0 and Its Deteriorated Microstructure in Simulated Acid Soil Environment

    Institute of Scientific and Technical Information of China (English)

    Zhiyong Liu; Guoli Zhai; Xiaogang Li; Cuiwei Du

    2009-01-01

    In order to study the stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint in acid soil environment of southeast of China, two simulating methods were used here. The one was to obtain the bad microstructures in heat affected zone by annealing at 1300℃ for 10 min and air cooling to room temperature,the other was to get a series of simulating solutions of the acid soil environment. SCC susceptibilities of X70pipeline steels'before and after being normalized in the simulated solutions were studied by slow strain rate test (SSRT) and microstructural observation of fracture areas. Potentiodynamic polarization curves were used to study the electrochemical behaviour of different microstructures. SCC does occur to both the as-received material and normalized microstructure after heat treatment as the polarization potential decreased. Hydrogen embrittlement (HE) is indicated occurring to all tested materials at -850 mV (vs SCE) and -1200 mV(vs SCE). The SCC mechanisms are different within varying potential range. Anodic dissolution is the key cause as polarization potential higher than null current potential, and HE will play a more important role as polarization potential lower than the null current potential.

  14. Vegetation and soil environment influence the spatial distribution of root-associated fungi in a mature beech-maple forest.

    Science.gov (United States)

    Burke, David J; López-Gutiérrez, Juan C; Smemo, Kurt A; Chan, Charlotte R

    2009-12-01

    Although the level of diversity of root-associated fungi can be quite high, the effect of plant distribution and soil environment on root-associated fungal communities at fine spatial scales has received little attention. Here, we examine how soil environment and plant distribution affect the occurrence, diversity, and community structure of root-associated fungi at local patch scales within a mature forest. We used terminal restriction fragment length polymorphism and sequence analysis to detect 63 fungal species representing 28 different genera colonizing tree root tips. At least 32 species matched previously identified mycorrhizal fungi, with the remaining fungi including both saprotrophic and parasitic species. Root fungal communities were significantly different between June and September, suggesting a rapid temporal change in root fungal communities. Plant distribution affected root fungal communities, with some root fungi positively correlated with tree diameter and herbaceous-plant coverage. Some aspects of the soil environment were correlated with root fungal community structure, with the abundance of some root fungi positively correlated with soil pH and moisture content in June and with soil phosphorous (P) in September. Fungal distribution and community structure may be governed by plant-soil interactions at fine spatial scales within a mature forest. Soil P may play a role in structuring root fungal communities at certain times of the year.

  15. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  16. A preliminary assessment on the use of biochar as a soil additive for reducing soil-to-plant uptake of cesium isotopes in radioactively contaminated environments

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Terry F.; Martinelli, Roger E.; Kehl, Steven R.; Hayes, Michael H. B.; Smith, Iris J.; Peters, Sandra K. G.; Tamblin, Michael W.; Schmitt, Cindi L.; Hawk, Daniel

    2015-10-19

    A series of Kd tracer batch experiments were conducted to assess the absorptive-desorption properties of Biochar as a potential agent to selectively sequester labile soil Cs or otherwise help reduce the uptake of Cs isotopes into plants. A parallel experiment was conducted for strontium. Fine-grained fractionated Woodlands tree Biochar was found to have a relatively high affinity for Cs ions (Kd > 100) relative to coral soil (Kd < 10) collected from the Marshall Islands. The Biochar material also contains an abundance of K (and Mg). These findings support a hypothesis that the addition of Biochar as a soil amendment may provide a simple yet effective method for reducing soil-to-plant transfer of Cs isotopes in contaminated environments.

  17. Modeling microbial dynamics in heterogeneous environments: growth on soil carbon sources.

    Science.gov (United States)

    Resat, Haluk; Bailey, Vanessa; McCue, Lee Ann; Konopka, Allan

    2012-05-01

    We have developed a new kinetic model to study how microbial dynamics are affected by the heterogeneity in the physical structure of the environment and by different strategies for hydrolysis of polymeric carbon. The hybrid model represented the dynamics of substrates and enzymes using a continuum representation and the dynamics of the cells were modeled individually. Individual-based biological model allowed us to explicitly simulate microbial diversity, and to model cell physiology as regulated via optimal allocation of cellular resources to enzyme synthesis, control of growth rate by protein synthesis capacity, and shifts to dormancy. This model was developed to study how microbial community functioning is influenced by local environmental conditions in heterogeneous media such as soil and by the functional attributes of individual microbes. Microbial community dynamics were simulated at two spatial scales: micro-pores that resemble 6-20-μm size portions of the soil physical structure and in 111-μm size soil aggregates with a random pore structure. Different strategies for acquisition of carbon from polymeric cellulose were investigated. Bacteria that express membrane-associated hydrolase had different growth and survival dynamics in soil pores than bacteria that release extracellular hydrolases. The kinetic differences suggested different functional niches for these two microbe types in cellulose utilization. Our model predicted an emergent behavior in which co-existence of membrane-associated hydrolase and extracellular hydrolases releasing organisms led to higher cellulose utilization efficiency and reduced stochasticity. Our analysis indicated that their co-existence mutually benefits these organisms, where basal cellulose degradation activity by membrane-associated hydrolase-expressing cells shortened the soluble hydrolase buildup time and, when enzyme buildup allowed for cellulose degradation to be fast enough to sustain exponential growth, all the

  18. 3D visualisation and artistic imagery to enhance interest in `hidden environments' - new approaches to soil science

    Science.gov (United States)

    Gilford, J.; Falconer, R. E.; Wade, R.; Scott-Brown, K. C.

    2014-09-01

    Interactive Virtual Environments (VEs) have the potential to increase student interest in soil science. Accordingly a bespoke 'soil atlas' was created using Java3D as an interactive 3D VE, to show soil information in the context of (and as affected by) the over-lying landscape. To display the below-ground soil characteristics, four sets of artistic illustrations were produced, each set showing the effects of soil organic-matter density and water content on fungal density, to determine potential for visualisations and interactivity in stimulating interest in soil and soil illustrations, interest being an important factor in facilitating learning. The illustrations were created using 3D modelling packages, and a wide range of styles were produced. This allowed a preliminary study of the relative merits of different artistic styles, scientific-credibility, scale, abstraction and 'realism' (e.g. photo-realism or realism of forms), and any relationship between these and the level of interest indicated by the study participants in the soil visualisations and VE. The study found significant differences in mean interest ratings for different soil illustration styles, as well as in the perception of scientific-credibility of these styles, albeit for both measures there was considerable difference of attitude between participants about particular styles. There was also found to be a highly significant positive correlation between participants rating styles highly for interest and highly for scientific-credibility. There was furthermore a particularly high interest rating among participants for seeing temporal soil processes illustrated/animated, suggesting this as a particularly promising method for further stimulating interest in soil illustrations and soil itself.

  19. Correlation of soil microbes and soil micro-environment under long-term safflower (Carthamus tinctorius L.) plantation in China.

    Science.gov (United States)

    Lu, Shuang; Quan, Wang; Wang, Shao-Ming; Liu, Hong-Ling; Tan, Yong; Zeng, Guang-Ping; Zhang, Xia

    2013-04-01

    Microbial community structure and ecological functions are influenced by interactions between above and belowground biota. There is an urgent need for intensive monitoring of microbes feedback of soil micro-ecosystem for setting up a good agricultural practice. Recent researches have revealed that many soils characteristic can effect microbial community structure. In the present study factors affecting microbial community structure and soil in Carthamus tinctorius plantations in arid agricultural ecosystem of northern Xinjiang, China were identified. The result of the study revealed that soil type was the key factor in safflower yield; Unscientific field management resulted high fertility level (bacteria dominant) of soil to turn to low fertility level (fungi dominant), and Detruded Canonical Correspondence Analysis (DCCA) showed that soil water content, organic matter, available N, P and K were the dominant factors affecting distribution of microbial community. Soil water content showed a significant positive correlation with soil microbes quantity (P < 0.01), while others showed a significant quantity correlation with soil microbe quantity (P < 0.05).

  20. Effects of sulfadiazine on soil bacterial communities

    DEFF Research Database (Denmark)

    Hangler, Martin

    as fertilizers on agricultural lands they represent a route for antibiotics into the soil environment where they may persist and affect levels of antibiotic resistance in soil microbial communities over time. In this work the level of tolerance to the antibiotic sulfadiazine (SDZ) was studied in a number......-threshold, of a non-contaminated soil environment at various pH of which to compare other soils. Soil samples representing a broad range of natural pH were collected from the pH gradient at the Hoosfield acid strip, part of the long-term field experiment at the Rothamstead Research Station (UK) and exposed...... and transport of SDZ at the interphase between dewatered SDZ-amended sewage sludge and soil. SDZ was not mineralized within sludge aggregates and travelled more than 10 mm into the surrounding soil. The strongest PICT response was observed in soils fertilized with organic fertilizers or inorganic NPK fertilizer...

  1. Community-level physiological profiling analyses show potential to identify the copiotrophic bacteria present in soil environments

    Science.gov (United States)

    Lladó, Salvador; Baldrian, Petr

    2017-01-01

    Community-level physiological profiling (CLPP) analyses from very diverse environments are frequently used with the aim of characterizing the metabolic versatility of whole environmental bacterial communities. While the limitations of the methodology for the characterization of whole communities are well known, we propose that CLPP combined with high-throughput sequencing and qPCR can be utilized to identify the copiotrophic, fast-growing fraction of the bacterial community of soil environments, where oligotrophic taxa are usually dominant. In the present work we have used this approach to analyze samples of litter and soil from a coniferous forest in the Czech Republic using BIOLOG GN2 plates. Monosaccharides and amino acids were utilized significantly faster than other C substrates, such as organic acids, in both litter and soil samples. Bacterial biodiversity in CLPP wells was significantly lower than in the original community, independently of the carbon source. Bacterial communities became highly enriched in taxa that typically showed low abundance in the original soil, belonging mostly to the Gammaproteobacteria and the genus Pseudomonas, indicating that the copiotrophic strains, favoured by the high nutrient content, are rare in forest litter and soil. In contrast, taxa abundant in the original samples were rarely found to grow at sufficient rates under the CLPP conditions. Our results show that CLPP is useful to detect copiotrophic bacteria from the soil environments and that bacterial growth is substrate specific. PMID:28170446

  2. Geochemical effects on the behavior of LLW radionuclides in soil/groundwater environments

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, K.M.; Sterne, R.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-12-31

    Assessing the migration potential of radionuclides leached from low-level radioactive waste (LLW) and decommissioning sites necessitates information on the effects of sorption and precipitation on the concentrations of dissolved radionuclides. Such an assessment requires that the geochemical processes of aqueous speciation, complexation, oxidation/reduction, and ion exchange be taken into account. The Pacific Northwest National Laboratory (PNNL) is providing technical support to the U.S. Nuclear Regulatory Commission (NRC) for defining the solubility and sorption behavior of radionuclides in soil/ground-water environments associated with engineered cementitious LLW disposal systems and decommissioning sites. Geochemical modeling is being used to predict solubility limits for radionuclides under geochemical conditions associated with these environments. The solubility limits are being used as maximum concentration limits in performance assessment calculations describing the release of contaminants from waste sources. Available data were compiled regarding the sorption potential of radionuclides onto {open_quotes}fresh{close_quotes} cement/concrete where the expected pH of the cement pore waters will equal to or exceed 10. Based on information gleaned from the literature, a list of preferred minimum distribution coefficients (Kd`s) was developed for these radionuclides. The K{sub d} values are specific to the chemical environments associated with the evolution of the compositions of cement/concrete pore waters.

  3. Differential effect of soil and environment on metabolic expression of turmeric (Curcuma longa cv. Roma).

    Science.gov (United States)

    Sandeep, I S; Sanghamitra, Nayak; Sujata, Mohanty

    2015-06-01

    Curcuma longa (Zingiberaceae) is known for its uses in medicine, cosmetics, food flavouring and textile industries. The secondary metabolites of turmeric like essential oil, oleoresin and curcumin are important for its multipurpose uses. These traits of turmeric vary from place to place due to the influence of environment, soil and agro-climatic conditions. Here, we analyzed turmeric from different agroclimatic regions for influence of various factors on its growth and yield of important phytochemicals. A high curcumin yielding cultivar i.e., Roma was collected from high altitude research station, Koraput (HARS) and planted in nine agroclimatic regions of Odisha. Analysis of soil texture, pH, organic carbon, micro and macro nutrients were done from all the studied zones up to 2nd generation. Plants grown in their released station i.e., Eastern Ghat High Land showed 5% of curcumin and were taken as control. Plants grown in different agroclimatic zones showed a range of 1.4-5% of curcumin and 0.3-0.7% of rhizome essential oil and 0.3-1% of leaf essential oil content. Gas chromatography and mass spectra analysis showed tumerone and alpha phellandrene as the major compounds in all the zones with 10-20% variation. The present study will be immensely helpful for standardization and management of environmental and ecological factors for high phytochemical yield in turmeric plant.

  4. Managing the Selenium Content in Soils in Semiarid Environments through the Recycling of Organic Matter

    Directory of Open Access Journals (Sweden)

    R. Garcia Moreno

    2013-01-01

    Full Text Available Around 30% of the world’s population suffers from either a lack of one or more essential micronutrients, or the overconsumption of these minerals, which causes toxicity. Selenium (Se is a particularly important micronutrient component of the diet with a well-documented and wide-ranging role in maintaining health. However, this important micronutrient can be lacking because soil and crop management are focused on high yields to the detriment of the quality of crops required to ensure a healthy human diet. Currently around 15% of the global population has selenium deficiency. This paper focuses on Se availability in semiarid soils and how micronutrients can be effectively managed through the recycling of organic matter. Because many mineral reserves are being exploited unsustainably, we review the advantages of using organic by-products for the management of the biofortification of Se in crops. This type of practice is particularly useful in arid and semiarid environments because organic matter acts as a reservoir for Se, preventing bioaccumulation and leaching. There are also potential local economic benefits from using organic by-products, such as manures and sewage sludge.

  5. Study The Properties and Weight Loss Degradation of The Blend LDPE/Cellulose in Soil Environment

    Directory of Open Access Journals (Sweden)

    Zuhair Jabbar Abdul Ameer

    2017-05-01

    Full Text Available Wider applications of polyethylene (PE in packaging and agriculture have raised serious issue of waste disposal and pollution. Therefore, it is necessary to raise its biodegradability by additives.In this study, we will add cellulose to low density polyethylene to prepare polymer blend have ability to degradation in soil environment.The samples were prepared by using twin screw extruder.LDPE and CELL have been mixing with different weight proportions, and studied their properties in order to determine its compliance with the required specifications to be able to be used biodegradable polymers. To improve the viability of decomposition PEG has been added to the resulting blend. Several tests were applied to identify those properties such as tensile,hardness, density and creep test. FTIR, digital microscope and SEM test acheved in order to determine the miscibility and blend morphology befor and after degradation.The results show that,the blend weight loss increase with increasing CELL percent.

  6. Analysis of soil water repellency under different eco-geomorphological conditions in Mediterranean environments (South of Spain)

    Science.gov (United States)

    Jimenez-Donaire, Virginia; Gabarron-Galeote, Miguel A.; Martinez-Murillo, Juan F.; Ruiz-Sinoga, Jose D.

    2013-04-01

    Soil water repellency (SWR) is a soil property that reduces its water affinity. Although it has been frequently related to wildfires, different studies in recent decades have shown that repellent soils are not rare, and they are widely spread around the world under various climatic, soil and vegetation conditions, on burned and unburned soils. The research described here was carried out in two Mediterranean rangelands containing similar Mediterranean tree and shrub species but differing in soil conditions. The aim of the study was to evaluate the effects of vegetal species, pH, soil organic matter (SOM), soil water content (SWC) and prescribed fire over SWR. In June 2011, two samples from the first 5 cm of soil, one up and one downslope from plants, were collected under the dominant species of the two study areas (Nerja -NE- and Almogía -AL-), in a north-facing hillslope . In NE the selected species were Pinus halepensis (Ph), Cistus clusii (Cc), Rosmarinus officinalis (Ro), Thymus vulgaris (Tv) and Stipa tenacissima (St). In addition samples were collected in bare soil (Bs, at least 1.5m far away from the nearest shrub), under burned shrubs (Bsc) and in burned bare soil (Bbs). A controlled fire was conducted in April 2011. In AL the selected species were Quercus suber (Qs), Cistus monspeliensis (Cm) and Cistus albidus (Ca). The results indicate: i) SWR is a common phenomenon in Mediterranean environments, in acid as well as in alkaline soils, but with a great variability in every study area depending on the vegetal species (Ro and Qs) were those more repellent to water; ii) OM seems to be a more influential factor over soil water repellency than acidity, which only was found a controlling factor for alkaline soils; iii climate and vegetation type, influencing SOM leading to hydrophobic conditions, are more key factors controlling SWR than bedrock characteristics; iv) SWC threshold for water repellency to be disappeared were not clearly stated independently of

  7. Environmental risk of heavy metal pollution and contamination sources using multivariate analysis in the soils of Varanasi environs, India.

    Science.gov (United States)

    Singh, Shubhra; Raju, N Janardhana; Nazneen, Sadaf

    2015-06-01

    This study assessed soil pollution in the Varanasi environs of Uttar Pradesh in India. Assessing the concentration of potentially harmful heavy metals in the soils is imperative in order to evaluate the potential risks to human. To identify the concentration and sources of heavy metals and assess the soil environmental quality, 23 samples were collected from different locations covering dumping, road and agricultural area. The average concentrations of the heavy metals were all below the permissible limits according to soil quality guidelines except Cu (copper) and Pb (lead) in dumping and road soils. Soil heavy metal contamination was assessed on the basis of geoaccumulation index (Igeo), pollution index (PI) and integrated pollution index (IPI). The IPI of the metals ranged from 0.59 to 9.94, with the highest IPI observed in the dumping and road soils. A very significant correlation was found between Pb and Cu. The result of principal component analysis suggested that PC1 was mainly affected by the use of agrochemicals, PC2 was affected by vehicular emission and PC3 was affected by dumping waste. Meanwhile, PC4 was mainly controlled by parent material along with anthropogenic activities. Appropriate measures should be taken to minimize the heavy metal levels in soils and thus protect human health.

  8. Crossed optical and chemical evaluations of modern glass soiling in various European urban environments

    Science.gov (United States)

    Favez, Olivier; Cachier, Hélène; Chabas, Anne; Ausset, Patrick; Lefevre, Roger

    As part of the MULTI-ASSESS and VIDRIO EC projects, the soiling of modern glass is characterised in various European urban atmospheres. Our original methodology relies on crossed chemical measurements of the deposit (evaluation of the ion, elemental and organic carbon contents, and subsequent "mass closure") and exhaustive measurements of glass optical properties (light reflectance, transmittance and absorption). Samples were exposed sheltered from rain in Athens, Krakow, London, Montelibretti (Italy), Prague and Troyes (France), during increasing exposure durations, up to more than two years. Although a slowing down of the deposition rate is observed for some species at some sites, no obvious saturation phenomenon seems to occur for the particle deposition. The chemical composition of the deposit is shown to reflect the atmospheric environment of the exposure site. Some post-deposit evolutions, such as the disappearance of ammonium and possibly of particulate organic matter, are found to occur. For thin deposits, the glass optical properties (e.g. light absorption and diffuse transmittance) are found to evolve quasi-linearly with species concentrations (EC and ions, respectively). However, for conditions creating heavier deposits such as long time exposures in rather polluted environments, a saturation phenomenon is observed. Using a simple model, light absorption, which is primarily due to EC particles, is shown to reach the saturation level ( S) for A≈16% and the concentration for which the semi-saturation level is reached (C 1/2) is found to be about 15 μgC of EC/cm 2. For diffuse transmittance, due to scattering species, these parameters are found to be about 30% and 65 μg of ions/cm 2, respectively. These values may be considered as representative of the soiling in Europe.

  9. Interactions between fauna and environment in recent alluvial soils (Dunajec River, SE Poland)

    Science.gov (United States)

    Mikuś, Paweł; Uchman, Alfred

    2017-04-01

    between flooding events reaching into the soil profile. Not rarely, the vertical burrows follow living or dead roots. As the European mole feed on earthworms, their burrows commonly co-occur. Diversity and abundance of burrowing animals in the riverine environment are mainly controlled by water-level fluctuations, foremost these which cause floods or droughts. The highest biodiversity of infauna occurs under moderate level of river disturbances. With low level of disturbances, larger, long-living species dominate, whereas with high-level disturbances small, short-living forms prevail.

  10. Estimation of soil moisture-thermal infrared emissivity relation in arid and semi-arid environments using satellite observations

    Science.gov (United States)

    Grazia Blasi, Maria; Masiello, Guido; Serio, Carmine; Venafra, Sara; Liuzzi, Giuliano; Dini, Luigi

    2016-04-01

    The retrieval of surface parameters is very important for various aspects concerning the climatological and meteorological context. At this purpose surface emissivity represents one of the most important parameters useful for different applications such as the estimation of climate changes and land cover features. It is known that thermal infrared (TIR) emissivity is affected by soil moisture, but there are very few works in literature on this issue. This study is aimed to analyze and find a relation between satellite soil moisture data and TIR emissivity focusing on arid and semi-arid environments. These two parameters, together with the land surface temperature, are fundamental for a better understanding of the physical phenomena implied in the soil-atmosphere interactions and the surface energy balance. They are also important in several fields of study, such as climatology, meteorology, hydrology and agriculture. In particular, there are several studies stating a correlation between soil moisture and the emissivity at 8-9 μm in desertic soils, which corresponds to the quartz Reststrahlen, a feature which is typical of sandy soils. We investigated several areas characterized by arid or semi-arid environments, focusing our attention on the Dahra desert (Senegal), and on the Negev desert (Israel). For the Dahra desert we considered both in situ, provided by the International Soil Moisture Network, and satellite soil moisture data, from ASCAT and AMSR-E sensors, for the whole year 2011. In the case of the Negev desert soil moisture data are derived from ASCAT observations and we computed a soil moisture index from a temporal series of SAR data acquired by the Cosmo-SkyMed constellation covering a period of six months, from June 2015 to November 2015. For both cases soil moisture data were related to the retrieved TIR emissivity from the geostationary satellite SEVIRI in three different spectral channels, at 8.7 μm, 10.8 μm and 12 μm. A Kalman filter physical

  11. Late Pleistocene to Holocene soil development and environments in the Long Gang Volcanic Field area, Jilin Province, NE China

    Science.gov (United States)

    Sauer, Daniela; Zhang, Xinrong; Knöbel, Jette; Maerker, Lutz

    2014-05-01

    Late Pleistocene to Holocene shifts of climate and vegetation in the Long Gang Volcanic Field in NE China have been reconstructed, e. g. by Steblich et al. (2009), based on Maar lake sediment cores. In this study, we investigated soil development during the Late Pleistocene and Holocene and linked it to the climate and vegetation reported in the literature. Three pedons were described and analyzed on a crater wall surrounding a maar. The lower part of the slope is covered by basic pyroclastics that are obviously younger than the maar itself. Pedon 1 is located on the upper slope, where the younger pyroclastics are not present; thus it developed over the entire Holocene and part of the Late Pleistocene. Pedon 2 is on the toe slope and developed from the young basic pyroclastics. Vegetation remains, charred by fire that was caused by the volcanic ash fall, were found in the lowermost part of the pyroclastics layer, on top of a paleosol. Charcoal fragments were dated to 18950-18830 cal BP (using INTCAL 09). Thus, pedon 2 developed since around 18.9 ka BP, whereas the development of the paleosol that was buried under the pyroclastics (pedon 3), was stopped at this time. Pedons 1 and 2 are Vitric Andosols, developed mainly from basic pyroclastics, as evidenced by the composition of rock fragments in the soils, comprising 78 / 81 mass % lapilli and 22 / 19 mass % gneiss fragments, respectively. Pedon 3 is a Cutanic Luvisol (Chromic) that developed entirely from gneiss fragments produced by the maar explosion. Lab data suggest increasing intensity of pedogenesis in the direction: Pedon 3 (paleosol) < Pedon 2 < Pedon 1, reflected e. g. in increasing Fed/Fet ratios, decreasing molar ratios of (Ca+K+Na)/Al, and decreasing pH. However, it needs to be considered that lapilli are more readily weatherable than gneiss fragments. The profile morphology of the paleosol, characterized by reddish-brown color (7.5YR), strong angular blocky structure and well-expressed illuvial clay

  12. WIRE project- Soil water repellence in biodiverse semi arid environments: new insights and implications for ecological restoration

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Jiménez-Morillo, Nicasio T.; Jordan, Antonio; Zavala, Lorena M.; Stevens, Jason; González-Pérez, Jose Antonio

    2017-04-01

    Background Soil water repellency (SWR) can have a critical effect on the restoration of disturbed ecosystems causing poor plant establishment and promoting erosion processes. Although SWR has been reported in most continents of the world for different soil types, climate conditions and land uses, there are still many research gaps in the knowledge of its causes and controlling factors (Doerr et al.,2000; Jordan et al., 2013), particularly in Mediterranean arid semi arid environments which are largely affected by this phenomenon. The WIRE project aims to investigate SWR in soils under different vegetation types of dominant biodiverse ecosystems of Western Australia (WA), e.g. hummock grasslands and Banksia woodlands, as well as characterizing organic compounds that induce hydrophobicity in these soils. Banksia woodlands (BW) are of particular interest in this project. These are iconic ecosystems of WA composed by an overstorey dominated by Proteaceae that are threatened by sand mining activities and urban expansion. Conservation and restoration of these woodlands are critical but despite considerable efforts to restore these areas, the success of current rehabilitation programs is poor due to the high sensitivity of the ecosystem to drought stress and the disruption of water dynamics in mature BW soils that result in low seedling survival rates (5-30%). The main objectives of this collaborative research are: i) to identify SWR intensity and severity under different vegetation types and evaluate controlling factors in both hummock grasslands and BW (ii) to characterize hydrophobic compounds in soils using analytical pyrolysis techniques and iii) to investigate the impact of SWR on water economy in relation with soil functioning and plant strategies for water uptake in pristine BW. Methods In a series of field trials and experimental studies, we measured SWR of soil samples under lab conditions in oven-dry samples (48 h, 105 °C) that were previously collected under

  13. Evaluation of trace elements distribution in water, sediment, soil and cassava plant in Muria peninsula environment by NAA method

    Energy Technology Data Exchange (ETDEWEB)

    Muryono, H.; Sumining; Agus Taftazani; Kris Tri Basuki; Sukarman, A. [Yogyakarta Nuclear Research Center, Yogyakarta (Indonesia)

    1999-10-01

    The evaluation of trace elements distribution in water, sediment, soil and cassava plant in Muria peninsula by NAA method were done. The nuclear power plant (NPP) and the coal power plant (CPP) will be built in Muria peninsula, so, the Muria peninsula is an important site for samples collection and monitoring of environment. River-water, sediment, dryland-soil and cassava plant were choosen as specimens samples from Muria peninsula environment. The analysis result of trace elements were used as a contributed data for environment monitoring before and after NPP was built. The trace elements in specimens of river-water, sediment, dryland-soil and cassava plant samples were analyzed by INAA method. It was found that the trace elements distribution were not evenly distributed. Percentage of trace elements distribution in river-water, sediment, dryland-soil and cassava leaves were 0.00026-0.037% in water samples, 0.49-62.7% in sediment samples, 36.29-99.35% in soil samples and 0.21-99.35% in cassava leaves. (author)

  14. Phylogenetic diversity and environment-specific distributions of glycosyl hydrolase family 10 xylanases in geographically distant soils.

    Directory of Open Access Journals (Sweden)

    Guozeng Wang

    Full Text Available BACKGROUND: Xylan is one of the most abundant biopolymers on Earth. Its degradation is mediated primarily by microbial xylanase in nature. To explore the diversity and distribution patterns of xylanase genes in soils, samples of five soil types with different physicochemical characters were analyzed. METHODOLOGY/PRINCIPAL FINDINGS: Partial xylanase genes of glycoside hydrolase (GH family 10 were recovered following direct DNA extraction from soil, PCR amplification and cloning. Combined with our previous study, a total of 1084 gene fragments were obtained, representing 366 OTUs. More than half of the OTUs were novel (identities of <65% with known xylanases and had no close relatives based on phylogenetic analyses. Xylanase genes from all the soil environments were mainly distributed in Bacteroidetes, Proteobacteria, Acidobacteria, Firmicutes, Actinobacteria, Dictyoglomi and some fungi. Although identical sequences were found in several sites, habitat-specific patterns appeared to be important, and geochemical factors such as pH and oxygen content significantly influenced the compositions of xylan-degrading microbial communities. CONCLUSION/SIGNIFICANCE: These results provide insight into the GH 10 xylanases in various soil environments and reveal that xylan-degrading microbial communities are environment specific with diverse and abundant populations.

  15. Integration into plant biology and soil science has provided insights into the total environment.

    Science.gov (United States)

    Shao, Hongbo; Lu, Haiying; Xu, Gang; Marian, Brestic

    2017-02-01

    The total environment includes 5 closely-linking circles, in which biosphere and lithosphere are the active core. As global population increases and urbanization process accelerates, arable land is gradually decreasing under global climate change and the pressure of various types of environmental pollution. This case is especially for China. Land is the most important resources for human beings' survival. How to increase and manage arable land is the key for sustainable agriculture development. China has extensive marshy land that can be reclamated for the better potential land resources under the pre- condition of protecting the environment, which will be a good way for enlarging globally and managing arable land. Related studies have been conducted in China for the past 30years and now many results with obvious practical efficiency have been obtained. For summarizing these results, salt-soil will be the main target and related contents such as nutrient transport, use types, biodiversity and interactions with plants from molecular biology to ecology will be covered, in which the interactions among biosphere, lithosphere, atmosphere and anthroposphere will be focused on. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes

    OpenAIRE

    Ruchita Dixit; Wasiullah; Deepti Malaviya; Kuppusamy Pandiyan; Singh, Udai B; Asha Sahu; Renu Shukla; Singh, Bhanu P.; Jai P. Rai; Pawan Kumar Sharma; Harshad Lade; Diby Paul

    2015-01-01

    Heavy metals are natural constituents of the environment, but indiscriminate use for human purposes has altered their geochemical cycles and biochemical balance. This results in excess release of heavy metals such as cadmium, copper, lead, nickel, zinc etc. into natural resources like the soil and aquatic environments. Prolonged exposure and higher accumulation of such heavy metals can have deleterious health effects on human life and aquatic biota. The role of microorganisms and plants in bi...

  17. Effects of forage polyphenols on chemistry of ruminant excreta and fate of nitrogen in soils and the environment

    Science.gov (United States)

    The chemical composition of forages consumed by ruminants affects forage intake, digestion, meat and milk production, as well as manure chemistry and manure impacts on the environment. The digestion of forages by ruminants and the decomposition of organic materials applied to soils are governed by s...

  18. Modeling photodegradation kinetics of three systemic neonicotinoids-dinotefuran, imidacloprid, and thiamethoxam-in aqueous and soil environment.

    Science.gov (United States)

    Kurwadkar, Sudarshan; Evans, Amanda; DeWinne, Dustan; White, Peter; Mitchell, Forrest

    2016-07-01

    Environmental presence and retention of commonly used neonicotinoid insecticides such as dinotefuran (DNT), imidacloprid (IMD), and thiamethoxam (THM) are a cause for concern and prevention because of their potential toxicity to nontarget species. In the present study the kinetics of the photodegradation of these insecticides were investigated in water and soil compartments under natural light conditions. The results suggest that these insecticides are fairly unstable in both aqueous and soil environments when exposed to natural sunlight. All 3 insecticides exhibit strong first-order degradation rate kinetics in the aqueous phase, with rate constants kDNT , kIMD , and kTHM of 0.20 h(-1) , 0.30 h(-1) , and 0.18 h(-1) , respectively. However, in the soil phase, the modeled photodegradation kinetics appear to be biphasic, with optimal rate constants k1DNT and k2DNT of 0.0198 h(-1) and 0.0022 h(-1) and k1THM and k2THM of 0.0053 h(-1) and 0.0014 h(-1) , respectively. Differentially, in the soil phase, imidacloprid appears to follow the first-order rate kinetics with a kIMD of 0.0013 h(-1) . These results indicate that all 3 neonicotinoids are photodegradable, with higher degradation rates in aqueous environments relative to soil environments. In addition, soil-encapsulated imidacloprid appears to degrade slowly compared with dinotefuran and thiamethoxam and does not emulate the faster degradation rates observed in the aqueous phase. Environ Toxicol Chem 2016;35:1718-1726. © 2015 SETAC.

  19. Building organic matter of long-term sugarcane soils in a temperate environment

    Science.gov (United States)

    Mineral soils with a history of sugarcane monoculture cropping contain less soil organic matter (-35%), and plant macro- and micronutrients, including N (-20%), K (-26%), S (-7%), Ca (-8%), B (-33%), Zn (-88%), Mn (-29%), and Cu (-26%), than adjacent non-cultivated soils. Harvesting sugarcane ‘green...

  20. Understanding cropping systems in the semi-arid environments of Zimbabwe: options for soil fertility management

    NARCIS (Netherlands)

    Ncube, B.

    2007-01-01

    African smallholder farmers face perennial food shortages due to low crop yields. The major cause of poor crop yields is soil fertility decline. The diversity of sites and soils between African farming systems isgreat,therefore strategies to solve soil fertility problems

  1. Understanding cropping systems in the semi-arid environments of Zimbabwe: options for soil fertility management

    NARCIS (Netherlands)

    Ncube, B.

    2007-01-01

    African smallholder farmers face perennial food shortages due to low crop yields. The major cause of poor crop yields is soil fertility decline. The diversity of sites and soils between African farming systems isgreat,therefore strategies to solve soil fertility problems sho

  2. Effects of Soil Erosion on Ecohydrology of Constructed Slopes From Opencast Coal Mining in a Mediterranean-Continental Environment.

    Science.gov (United States)

    Moreno, M.; Nicolau, J.; Espigares, T.; Merino, L.

    2007-12-01

    Numerous works have revealed strong links between hydrological processes, soil moisture, and the structure and function of biological communities. Nevertheless, the influence of soil erosion on soil-water-plant interactions has been poorly documented, particularly on constructed slopes, wherein soil erosion has a key role for restoration success. The main objective of this work is to investigate the eco-hydrological implications of soil erosion on constructed slopes from the opencast coal mining in a Mediterranean-Continental environment: the Teruel coalfield (Spain). Water deficit is the main limiting factor for revegetation success in Mediterranean-Continental environments. Soil moisture in these artificial systems is controlled by feedback mechanisms between soil erosion and vegetation. Our hypothesis states that a major effect of soil erosion on plant communities deals with the increase of the climatic water deficit. Thus, the mechanisms involved are as follows: the crust formation, the reduction of soil superficial roughness and the efficient overland flow evacuation by means of rill network. The final result is a net reduction of water availability for plants through the increase of run-off and the decrease of infiltration and re- infiltration processes at slope scale. Moreover, the lack of vegetation development leads to increase run-off and soil erosion. This work has been carried out in five constructed slopes which were reclaimed with similar treatments and substrata, but differ in vegetation cover and erosion (from 0 up to 120 t/ha/year). These differences are mainly triggered by different amounts of run-on coming from external sources as mining tracks and banks. During 2005- 06 hydrological year, we monitored run-off and sediment yield as well as soil moisture and vegetation traits (cover, biomass, water potential) on these slopes. Our results reinforce the general hypothesis. In this way, on the least eroded slopes, biological control of hydrological

  3. 新城金矿深部热环境分析及围岩温度测试%Analysis on Deep Thermal Environment and Temperature Measurement of Surrounding Rock in Xincheng Gold Mine

    Institute of Scientific and Technical Information of China (English)

    刘凯; 朱兆文; 朱万成; 刘洪磊; 侯晨

    2016-01-01

    随着开采深度的增加,新城金矿已经进入深部开采阶段,逐步面临高温热害问题。鉴于此,开展地下深部热环境分析,分析矿区主要热源及其形成机理,应用工程热力学手段量测不同开采深度下巷道风流温度、湿度以及风速等环境因素。采用深孔测量法测定不同深度的围岩温度,研究地温梯度变化规律。测试结果表明,巷道风温、水温均随着开采深度的增加而增大,主要生产中段相对湿度在80% RH以上,矿区恒温带温度为23℃,正常地温梯度为0.018℃/m,调热圈半径为17~18 m。该结果为有效控制井下作业场所的热环境状况以及热害防治研究提供了基础数据。%With the increase of mining depth,Xincheng Gold Mine has entered the stage of deep mining,and is gradually facing with the problem of high temperature stress. In this regard,an analysis of deep underground thermal environment was conducted,the main heat sources and the formation mechanism in the mining area were analyzed,environmental factors such as air temperature,humidity and wind speed of different mining depths of roadways were measured by means of Engineering Ther-modynamics. The temperature of surrounding rock in different depths was determined by Deep Hole Measurement Method and the variation regularity of geothermal gradient was studied. Test results show that the air temperature and water temperature of the roadways increase with the increasing of mining depth,the relative humidity of main mining levels are above 80% RH,the temperature of underground constant temperature zone in the mine area is 23 ℃, the normal geothermal gradient is 0. 018 ℃/m,and the radius of heat adjustment circle is 17~18 m,all these will provide basic data for the effective control of thermal environment conditions in underground workplaces and the prevention and treatment of thermal hazard.

  4. Soil processes in recently deglaciated environments in Maritime Antarctica: a study case from Elephant Point (Livingston Island, South Shetland Islands)

    Science.gov (United States)

    Oliva, Marc; Ruiz-Fernández, Jesús; Quijano, Laura; Palazón, Leticia; Navas, Ana

    2016-04-01

    Many ice-free environments in the northern Antarctic Peninsula are undergoing rapid and substantial environmental changes in response to reent climate trends. This is the case of Elephant Point (Livingston Island, South Shetland Islands), where the glacier retreat recorded during the second half of the XX century, has exposed 17% of this small peninsula (1.16 km2). Glacier retreat has exposed new ice-free land surface in the northern part of Elephant Point: a moraine extending from the western to the eastern coastlines and a relatively flat proglacial surface. Besides, a sequence of present-day beach, Holocece marine terraces and bedrock plateaus are also distributed in the southern margin of the peninsula. Periglacial processes are widespread in all the peninsula, but the type and characteristics of soils depen on the timing of glacier retreat. In this research we aim to assess how the glacier retreat affects the recently formed soils. Ten sites were sampled along a transect crossing different geomorphological units (beach, raised beaches, moraine, proglacial environment), following the direction of glacier retreat. To this purpose the upper part of selected soil profiles was sectioned in 3 cm depth interval increments to examine main soil properties, grain size distribution, soil organic carbon and pH. Besides, elemental composition and patterns of fallout (FRNs) and environmental radionuclides (ERNs) were analysed to assess if soil profile characteristics within the active layer are affected by glacier retreat. The results obtained confirm the potential for using geomorphological, edaphic and geochemical data to derive information for assessing the influence of different stages of glacier retreat in the study soils.

  5. A PCR based method to detect Russula spp. in soil samples and Limodorum abortivum roots in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Eduardo Larriba

    2015-04-01

    Full Text Available Aim of study: Orchidaceaehas the largest number of species of any family in the plant kingdom. This family is subject to a high risk of extinction in natural environments, such as natural parks and protected areas. Recent studies have shown the prevalence of many species of orchids to be linked to fungal soil diversity, due to their myco-heterotrophic behaviour. Plant communities determine fungal soil diversity, and both generate optimal conditions for orchid development. Area of study: The work was carried out in n the two most important natural parks in Alicante (Font Roja and Sierra Mariola, in South-eastern of Spain. Material and Methods: We designed a molecular tool to monitor the presence of Russula spp. in soil and orchids roots, combined with phytosociological methods. Main results: Using a PCR-based method, we detected the presence in the soil and Limodorum abortivum orchid roots of the mycorrhizal fungi Russula spp. The species with highest coverage was Quercus rotundifolia in areas where the orchid was present. Research highlights: We present a useful tool based on PCR to detect the presence of Russula spp. in a natural environment. These results are consistent with those obtained in different studies that linked the presence of the mycorrhizal fungi Russula spp. in roots of the species Limodorum and the interaction between these fungal species and Quercus ilex trees in Mediterranean forest environments.

  6. Use of genotype x environment interactions to understand rooting depth and the ability of wheat to penetrate hard soils.

    Science.gov (United States)

    Acuña, Tina L Botwright; Wade, Len J

    2013-07-01

    Root systems are well-recognized as complex and a variety of traits have been identified as contributing to plant adaptation to the environment. A significant proportion of soil in south-western Australia is prone to the formation of hardpans of compacted soil that limit root exploration and thus access to nutrients and water for plant growth. Genotypic variation has been reported for root-penetration ability of wheat in controlled conditions, which has been related to field performance in these environments. However, research on root traits in field soil is recognized as difficult and labour intensive. Pattern analysis of genotype × environment (G × E) interactions is one approach that enables interpretation of these complex relationships, particularly when undertaken with probe genotypes with well-documented traits, in this case, for the ability to penetrate a wax layer. While the analytical approach is well-established in the scientific literature, there are very few examples of pattern analysis for G × E interactions applied to root traits of cereal crops. In this viewpoint, we aim to review the approach of pattern analysis for G × E interaction and the importance of environment and genotype characterization, with a focus on root traits. We draw on our research on G × E interaction for root depth and related studies on genotypic evaluation for root-penetration ability. In doing so, we wish to explore how pattern analysis can aid in the interpretation of complex root traits and their interaction with the environment and how this may explain patterns of adaptation and inform future research. With appropriate characterization of environments and genotypes, the G × E approach can be used to aid in the interpretation of the complex interactions of root systems with the environment, inform future research and therefore provide supporting evidence for selecting specific root traits for target environments in a crop breeding programme.

  7. Phyllosphere bacterial community of floating macrophytes in paddy soil environments as revealed by illumina high-throughput sequencing.

    Science.gov (United States)

    Xie, Wan-Ying; Su, Jian-Qiang; Zhu, Yong-Guan

    2015-01-01

    The phyllosphere of floating macrophytes in paddy soil ecosystems, a unique habitat, may support large microbial communities but remains largely unknown. We took Wolffia australiana as a representative floating plant and investigated its phyllosphere bacterial community and the underlying driving forces of community modulation in paddy soil ecosystems using Illumina HiSeq 2000 platform-based 16S rRNA gene sequence analysis. The results showed that the phyllosphere of W. australiana harbored considerably rich communities of bacteria, with Proteobacteria and Bacteroidetes as the predominant phyla. The core microbiome in the phyllosphere contained genera such as Acidovorax, Asticcacaulis, Methylibium, and Methylophilus. Complexity of the phyllosphere bacterial communities in terms of class number and α-diversity was reduced compared to those in corresponding water and soil. Furthermore, the bacterial communities exhibited structures significantly different from those in water and soil. These findings and the following redundancy analysis (RDA) suggest that species sorting played an important role in the recruitment of bacterial species in the phyllosphere. The compositional structures of the phyllosphere bacterial communities were modulated predominantly by water physicochemical properties, while the initial soil bacterial communities had limited impact. Taken together, the findings from this study reveal the diversity and uniqueness of the phyllosphere bacterial communities associated with the floating macrophytes in paddy soil environments.

  8. Impact on the environment from steel bridge paint deterioration using lead isotopic tracing, paint compositions and soil deconstruction.

    Science.gov (United States)

    Gulson, Brian; Chiaradia, Massimo; Davis, Jeffrey; O'Connor, Gary

    2016-04-15

    Deterioration and repair of lead paint on steel structures can result in contamination of the ambient environment but other sources of lead such as from past use of leaded paint and gasoline and industrial activities can also contribute to the contamination. Using a combination of high precision lead isotopic tracing, detailed paint examination, including with scanning electron microscopy, and soil deconstruction we have compared paint on a steel bridge and bulk soil and lead-rich particles separated from soil. The majority of Pb found in the paint derives from Australian sources but some also has a probable US origin. The isotopic data for the bulk soils and selected particles lie on a mixing line with end members the geologically ancient Broken Hill lead and possible European lead which is suggested to be derived from old lead paint and industrial activities. Data for gasoline-derived particulates lie on this array and probably contribute to soil Pb. Although paint from the bridge can be a source of lead in the soils, isotopic tracing, paint morphology and mineralogical identification indicate that other sources, including from paint, gasoline and industrial activities, are contributing factors to the lead burden. Even though physical characteristics and elemental composition are the same in some particles, the isotopic signatures demonstrate that the sources are different. Plots using (206)Pb/(208)Pb vs (206)Pb/(207)Pb ratios, the common representation these days, do not allow for source discrimination in this investigation.

  9. Isolation of a novel strain of Planomicrobium chinense from diesel contaminated soil of tropical environment.

    Science.gov (United States)

    Das, Reena; Tiwary, Bhupendra N

    2013-09-01

    A novel bacterial strain (B6) degrading high concentration of diesel oil [up to 2.5% (v/v)] was isolated from a site contaminated with petroleum hydrocarbons in the state of Chhattisgarh, India. The strain demonstrated efficient degradation for diesel oil range alkanes (C14 to C36 i.e., mostly linear chain alkanes). It was identified to be 99% similar to Planomicrobium chinense on the basis of partial 16S rRNA gene sequencing and biochemical characteristics. The efficiency of degradation was optimized at pH 7.2 and temperature at 32 °C. GC analysis demonstrated complete mineralization of higher chain alkanes into lower chain alkanes within 96 h. The organism also displayed surface tension reduction by producing stable emulsification on the onset of stationary phase. A multidimensional characteristics of the strain to grow at a high temperature range, resistance to various heavy metals as well as tolerance to moderate concentration of NaCl makes it suitable for bioremediation of soil contaminated with diesel oil in tropical environment. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 江西铜矿及冶炼厂周边土壤和农作物稀土元素含量与评价%Rare Earth Elements Content in Farmland Soils and Crops of the Surrounding Copper Mining and Smelting Plant in Jiangxi Province and Evaluation of Its Ecological RisK

    Institute of Scientific and Technical Information of China (English)

    金姝兰; 向猛; 黄益宗; 王斐; 徐峰; 王小玲; 高柱; 胡莹; 乔敏; 李季

    2015-01-01

    研究江西省铜矿开采和冶炼对周边农田土壤、农作物稀土元素含量的影响.结果表明,铜矿开采和冶炼可提高土壤及农作物稀土元素的含量.德兴银山铅锌铜矿和贵溪冶炼厂周边农田土壤中总稀土元素含量范围分别为112.42~397.02 mg·kg-1和48.81~250.06 mg·kg-1,总稀土元素平均值分别为254.84 mg·kg-1和144.21 mg·kg-1,分别是江西省背景值的1.21倍和0.68倍,全国背景值的1.36倍和0.77倍,对照样点的3.59倍和2.03倍.贵溪冶炼厂周边10种农作物样品中总稀土元素含量范围为0.35~2.87 mg·kg-1,作物叶子中的稀土元素含量高于茎和块根.番茄、空心菜叶和萝卜叶中总稀土元素含量分别为2.87、1.58和0.80 mg·kg-1,均超过我国蔬菜和水果卫生标准的总稀土元素含量限值(0.70 mg·kg-1).矿区居民终身摄入稀土元素的总量为17.72μg·( kg·d)-1,低于安全剂量和临界值,对人体还不构成健康风险.研究结果说明在江西进行铜矿开采和冶炼时必须重视稀土元素对周边环境的影响.%Rare earth elements content in farmland soils and crops of the surrounding copper mining and smelting plant in Jiangxi province was studied. The results showed that copper mining and smelting could increase the content of rare earth elements in soils and crops. Rare earth elements content in farmland soils of the surrounding Yinshan Lead Zinc Copper Mine and Guixi Smelting Plant varied from 112. 42 to 397. 02 mg·kg -1 and 48. 81 to 250. 06 mg·kg-1 , and the average content was 254. 84 mg · kg -1 and 144. 21 mg·kg-1 , respectively. The average contents of rare earth elements in soils in these two areas were 1. 21 times and 0. 68 times of the background value in Jiangxi province, 1. 36 times and 0. 77 times of the domestic background value, 3. 59 times and 2. 03 times of the control samples, respectively. Rare earth elements content in 10 crops of the surrounding Guixi Smelting Plant varied from 0. 35

  11. Implications of climate change for evaporation from bare soils in a Mediterranean environment.

    Science.gov (United States)

    Aydin, Mehmet; Yano, Tomohisa; Evrendilek, Fatih; Uygur, Veli

    2008-05-01

    The purpose of this study was to predict quantitative changes in evaporation from bare soils in the Mediterranean climate region of Turkey in response to the projections of a regional climate model developed in Japan (hereafter RCM). Daily RCM data for the estimation of reference evapotranspiration (ETr) and soil evaporation were obtained for the periods of 1994--2003 and 2070--2079. Potential evaporation (Ep) from bare soils was calculated using the Penman-Monteith equation with a surface resistance of zero. Simulation of actual soil evaporation (Ea) was carried out using Aydin model (Aydin et al., Ecological Modelling 182:91-105, 2005) combined with Aydin and Uygur (2006, A model for estimating soil water potential of bare fields. In Proceedings of the 18th International Soil Meeting (ISM) on Soils Sustaining Life on Earth, Managing Soil and Technology, Sanliurfa, 477-480pp.) model of predicting soil water potential at the top surface layer of a bare soil, after performances of Aydin model (R2 = 94.0%) and Aydin and Uygur model (R2 = 97.6) were tested. The latter model is based on the relations among potential soil evaporation, hydraulic diffusivity, and soil wetness, with some simplified assumptions. Input parameters of the model are simple and easily obtainable such as climatic parameters used to compute the potential soil evaporation, average diffusivity for the drying soil, and volumetric water content at field capacity. The combination of Aydin and Aydin and Uygur models appeared to be useful in estimating water potential of soils and Ea from bare soils, with only a few parameters. Unlike ETr and Ep projected to increase by 92 and 69 mm (equivalent to 8.0 and 7.3% increases) due to the elevated evaporative demand of the atmosphere, respectively, Ea from bare soils is projected to reduce by 50 mm (equivalent to a 16.5% decrease) in response to a decrease in rainfall by 46% in the Mediterranean region of Turkey by the 2070s predicted by RCM, and consequently

  12. (210)Pb as a tracer of soil erosion, sediment source area identification and particle transport in the terrestrial environment.

    Science.gov (United States)

    Matisoff, Gerald

    2014-12-01

    Although (137)Cs has been used extensively to study soil erosion and particle transport in the terrestrial environment, there has been much less work using excess or unsupported (210)Pb ((210)Pbxs) to study the same processes. Furthermore, since (137)Cs activities in soils are decreasing because of radioactive decay, some locations have an added complication due to the addition of Chernobyl-derived (137)Cs, and the activities of (137)Cs in the southern hemisphere are low, there is a need to develop techniques that use (210)Pbxs to provide estimates of rates of soil erosion and particle transport. This paper reviews the current status of (210)Pbxs methods to quantify soil erosion rates, to identify and partition suspended sediment source areas, and to determine the transport rates of particles in the terrestrial landscape. Soil erosion rates determined using (210)Pbxs are based on the unsupported (210)Pb ((210)Pbxs) inventory in the soil, the depth distribution of (210)Pbxs, and a mass balance calibration ('conversion model') that relates the soil inventory to the erosion rate using a 'reference site' at which neither soil erosion nor soil deposition has occurred. In this paper several different models are presented to illustrate the effects of different model assumptions such as the timing, depth and rates of the surface soil mixing on the calculated erosion rates. The suitability of model assumptions, including estimates of the depositional flux of (210)Pbxs to the soil surface and the post-depositional mobility of (210)Pb are also discussed. (210)Pb can be used as one tracer to permit sediment source area identification. This sediment 'fingerprinting' has been extended far beyond using (210)Pb as a single radioisotope to include numerous radioactive and stable tracers and has been applied to identifying the source areas of suspended sediment based on underlying rock type, land use (roads, stream banks, channel beds, cultivated or uncultivated lands, pasture lands

  13. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment.

    Science.gov (United States)

    Méndez-Rodríguez, Lia C; Alvarez-Castañeda, Sergio Ticul

    2016-07-01

    Areas where abandoned metal-extraction mines are located contain large quantities of mineral wastes derived from environmentally unsafe mining practices. These wastes contain many pollutants, such as heavy metals, which could be released to the environment through weathering and leaching, hence becoming an important source of environmental metal pollution. This study evaluates differences in the levels of lead, iron, nickel, manganese, copper and cadmium in rodents sharing the same type of diet under different microhabitat use in arid areas with past mining activities. Samples of soil, roots, branches and seeds of Palo Adán (Fouquieria diguetii) and specimens of two rodent species (Chaetodipus arenarius and C. spinatus) were collected in areas with impact from past metal mining activities as well as from areas with no mining impact. Both rodent species mirrored nickel and iron levels in soil and seeds, as well as lead levels in soil; however, C. arenarius accumulated higher levels of manganese, copper and cadmium.

  14. Understanding cropping systems in the semi-arid environments of Zimbabwe: options for soil fertility management

    OpenAIRE

    Ncube, B.

    2007-01-01

    African smallholder farmers face perennial food shortages due to low crop yields. The major cause of poor crop yields is soil fertility decline. The diversity of sites and soils between African farming systems isgreat,therefore strategies to solve soil fertility problems should suit the opportunities and problems encountered in the different climatic regions. This thesis characterizes the semi-arid regions of south-western Zimbabwe and explores some of the strategies that can be used to provi...

  15. Cd Mobility in Anoxic Fe-Mineral-Rich Environments - Potential Use of Fe(III)-Reducing Bacteria in Soil Remediation

    Science.gov (United States)

    Muehe, E. M.; Adaktylou, I. J.; Obst, M.; Schröder, C.; Behrens, S.; Hitchcock, A. P.; Tylsizczak, T.; Michel, F. M.; Krämer, U.; Kappler, A.

    2014-12-01

    Agricultural soils are increasingly burdened with heavy metals such as Cd from industrial sources and impure fertilizers. Metal contaminants enter the food chain via plant uptake from soil and negatively affect human and environmental health. New remediation approaches are needed to lower soil metal contents. To apply these remediation techniques successfully, it is necessary to understand how soil microbes and minerals interact with toxic metals. Here we show that microbial Fe(III) reduction initially mobilizes Cd before its immobilization under anoxic conditions. To study how microbial Fe(III) reduction influences Cd mobility, we isolated a new Cd-tolerant, Fe(III)-reducing Geobacter sp. from a heavily Cd-contaminated soil. In lab experiments, this Geobacter strain first mobilized Cd from Cd-loaded Fe(III) hydroxides followed by precipitation of Cd-bearing mineral phases. Using Mössbauer spectroscopy and scanning electron microscopy, the original and newly formed Cd-containing Fe(II) and Fe(III) mineral phases, including Cd-Fe-carbonates, Fe-phosphates and Fe-(oxyhydr)oxides, were identified and characterized. Using energy-dispersive X-ray spectroscopy and synchrotron-based scanning transmission X-ray microscopy, Cd was mapped in the Fe(II) mineral aggregates formed during microbial Fe(III) reduction. Microbial Fe(III) reduction mobilizes Cd prior to its precipitation in Cd-bearing mineral phases. The mobilized Cd could be taken up by phytoremediating plants, resulting in a net removal of Cd from contaminated sites. Alternatively, Cd precipitation could reduce Cd bioavailability in the environment, causing less toxic effects to crops and soil microbiota. However, the stability and thus bioavailability of these newly formed Fe-Cd mineral phases needs to be assessed thoroughly. Whether phytoremediation or immobilization of Cd in a mineral with reduced Cd bioavailability are feasible mechanisms to reduce toxic effects of Cd in the environment remains to be

  16. A laboratory experiment on the behaviour of soil-derived core and intact polar GDGTs in aquatic environments

    Science.gov (United States)

    Peterse, F.; Moy, C. M.; Eglinton, T. I.

    2015-02-01

    We have performed incubation experiments in order to examine the behaviour of soil-derived branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids upon entering an aquatic environment and to evaluate the processes that potentially take place during their fluvial transport from land to sea. We incubated a soil from the Rakaia River catchment on the South Island of New Zealand using Rakaia River water and ocean water collected near the river mouth as inocula for a period of up to 152 days. The concentrations, as well as the relative distribution of brGDGTs derived from intact polar ("living"; IPL) lipids and core ("fossil"; CL) lipids remained unaltered over the course of the experiment. Although the stability of the brGDGTs may be a consequence of the higher than natural soil : water ratio used in the laboratory experiment, the substantial increase (27-72%) in the total pool of isoprenoid GDGTs (isoGDGTs) in all incubation setups, including the control using distilled water, indicates that entering an aquatic environment does influence the behaviour of soil-derived GDGTs. However, the availability of water appears to be more important than its properties. As a consequence of increasing isoGDGT concentrations, a decrease in Branched and Isoprenoid Tetraether (BIT) index values - a proxy for the relative input of fluvially discharged soil material into a marine system - became evident after an incubation period of 30 days, with a maximum final decrease of 0.88 to 0.74 in the experiment with river water. The relative distribution within the isoGDGT pool shows changes with time, suggesting that isoGDGT producers may either have different rates of membrane adaptation or production/degradation, or that preferential release from the soil matrix or a shift in source organism(s) may take place. While the apparent stability of soil brGDGTs during this incubation experiment reinforces their potential as tracers for land-sea transport of soil organic carbon and

  17. Clinical Application of Surrounding Puncture

    Institute of Scientific and Technical Information of China (English)

    GUO Yao-jie; HAN Chou-ping

    2003-01-01

    Surrounding puncture can stop pathogenic qi from spreading, consolidate the connection between local meridians and enrich local qi and blood, which can eventually supplement anti-pathogenic qi and remove pathogenic qi, and consequently remedy diseases. The author of this article summrized and analyzed the clinical application of surrounding puncture for the purpose of studying this technique and improving the therapeutic effect.

  18. Occurrence of CTX-M producing Escherichia coli in soils, cattle and farm environment in France (Burgundy region.

    Directory of Open Access Journals (Sweden)

    Alain eHartmann

    2012-03-01

    Full Text Available CTX-M (extended spectrum beta-lactamase- ESBL producing Escherichia coli are increasingly involved in human infections worldwide. The aim of this study was to investigate potential reservoirs for such strains: soils, cattle and farm environment. The prevalence of blaCTX-M genes was determined directly from soil DNA extracts obtained from 120 sites in Burgundy (France using real time PCR. blaCTX-M targets were found in 20% of the DNA extracts tested. Samples of cattle feces (n=271 were collected from 182 farms in Burgundy. Thirteen ESBL-producing isolates were obtained from 12 farms and further characterized for the presence of bla genes. Of the 13 strains, five and eight strains carried blaTEM-71 genes and blaCTX-M-1 genes respectively. Ten strains of CTX-M-1 producing E. coli were isolated from cultivated and pasture soils as well as from composted manure within 2 of these farms. The genotypic analysis revealed that environmental and animal strains were clonally related. Our study confirms the occurrence of CTX-M producing E. coli in cattle and reports for the first time the occurrence of such strains in cultivated soils. The environmental competence of such strains has to be determined and might explain their long term survival since CTX-M isolates were recovered from a soil that was last amended with manure one year before sampling.

  19. Calcic, gypsic, and siliceous soil chronosequences in arid and semiarid environments

    Science.gov (United States)

    Harden, J.W.; Taylor, E.M.; Reheis, M.C.; McFadden, L.D.; ,

    1991-01-01

    We studied three soil chronosequences in the western USA to compare the development of calcic, gypsic, and siliceous soils through time. We compared calcic soils from the Silver Lake playa, southeastern California, gypsic-calcic soils from the Kane Fans in Big Horn County, Wyoming, and siliceous-calcic soils from Forty-mile Wash in southwestern Nevada. In these areas, carbonate, gypsum, and opaline silica appear to be derived primarily from eolian additions and, in advanced stages typical of old soils, are dissolved and precipitated as diagnostic calcic or petrocalcic, gypsic or petrogypsic, and duripan soil horizons. These three precipitates produce somewhat similar morphologic characteristics through time. Morphological stages progress from discrete coatings under clasts, to matrix and around clasts, to significant coatings of clasts and cementation of matrix, to laminar caps above plugged horizons in cases of carbonate and silica. Significant differences among the three soil types include development of color, change of pH, and the depth to which the precipitates begin to accumulate. The tops of gypsic horizons occur below the tops of calcic horizons in simple leaching regimes; the depth to the tops of siliceous horizons is more closely related to the presence and development of argillic horizons.

  20. Soil salinisation and irrigation management of date palms in a Saharan environment.

    Science.gov (United States)

    Haj-Amor, Zied; Ibrahimi, Mohamed-Khaled; Feki, Nissma; Lhomme, Jean-Paul; Bouri, Salem

    2016-08-01

    The continuance of agricultural production in regions of the world with chronic water shortages depends upon understanding how soil salinity is impacted by irrigation practises such as water salinity, irrigation frequency and amount of irrigation. A two-year field study was conducted in a Saharan oasis of Tunisia (Lazala Oasis) to determine how the soil electrical conductivity was affected by irrigation of date palms with high saline water. The study area lacked a saline shallow water table. Field results indicate that, under current irrigation practises, soil electrical conductivity can build up to levels which exceed the salt tolerance of date palm trees. The effects of irrigation practises on the soil electrical conductivity were also evaluated using model simulations (HYDRUS-1D) of various irrigation regimes with different frequencies, different amounts of added water and different water salinities. The comparison between the simulated and observed results demonstrated that the model gave an acceptable estimation of water and salt dynamics in the soil profile, as indicated by the small values of root mean square error (RMSE) and the high values of the Nash-Sutcliffe model efficiency coefficient (NSE). The simulations demonstrated that, under field conditions without saline shallow groundwater, saline irrigation water can be used to maintain soil electrical conductivity and soil water content at safe levels (soil electrical conductivity 0.04 cm(3) cm(-3)) if frequent irrigations with small amounts of water (90 % of the evapotranspiration requirements) were applied throughout the year.

  1. Geotechnical Properties of Soils as Influenced by Land Use in a Humid Environment

    Directory of Open Access Journals (Sweden)

    C.M. Idigbor

    2011-01-01

    Full Text Available We investigated some geotechnical properties of soils of Port Harcourt in 2009 under three land use types, namely mechanically cleared land, on-going building constructions and fallow land. A combination of target and random soil survey techniques guided field studies. Five soil samples were collected in each land use, giving a total of 15 soil samples which were air-dried and sieved. These soil samples were subjected to routine laboratory analysis and resulting data were analyzed statistically using means and correlation analysis. Soils were sandy, of slight to neutral acidity (pH = 5.9-7.6. Disturbed soils were older (silt-clay ratio= 0.13- water 0.50 when compared with fallow having a mean value of 2.1. Plasticity index values were low (< 35% and differed due to the land use: 11.63% (building site, 12.29% (mechanically cleared land and 14.57% (fallow. There was low colloidal activity: 0.36 (building site, 0.40 (fallow and 0.41 (mechanically cleared land. Highest recorded maximum dry density was found in building site (2.03 Mg mG3, while 24.87% optimum moisture content was obtained in fallow soils. Plasticity index showed good relationships with moisture, clay and colloidal activity in the study sites.

  2. Comparative analysis of soil erosion sensitivity using various quantizations within GIS environment

    NARCIS (Netherlands)

    Paparrizos, Spyridon; Maris, Fotios; Kitikidou, Kyriaki; Anastasiou, Theofilos; Potouridis, Simeon

    2015-01-01

    Soil erosion is a prominent cause of land degradation and desertification in Mediterranean countries. The detrimental effects of soil erosion are exemplified in climate (in particular climate change), topography, human activities and natural disasters. Modelling of erosion and deposition in compl

  3. Study on behavior of long-lived radionuclides in soil environment

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Shigemitsu; Watanabe, Hitoshi; Katagiri, Hiromi; Akatsu, Yasuo [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1996-04-01

    Distribution of {sup 99}Tc, {sup 239,240}Pu and {sup 237}Np in soil in Japan was measured. Dependency of concentration on physical and chemical properties of soil was studied. High sensitivity inductively coupled plasma mass spectroscopy was applied to the quantitative analysis of long-lived radionuclides. (J.P.N.)

  4. Prediction of soil shear strength in agricultural and natural environments of the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Reginaldo Barboza da Silva

    2015-01-01

    Full Text Available The objective of this work was to develop uni- and multivariate models to predict maximum soil shear strength (τmax under different normal stresses (σn, water contents (U, and soil managements. The study was carried out in a Rhodic Haplustox under Cerrado (control area and under no-tillage and conventional tillage systems. Undisturbed soil samples were taken in the 0.00-0.05 m layer and subjected to increasing U and σn, in shear strength tests. The uni- and multivariate models - respectively τmax=10(a+bU and τmax=10(a+bU+cσn - were significant in all three soil management systems evaluated and they satisfactorily explain the relationship between U, σn, and τmax. The soil under Cerrado has the highest shear strength (τ estimated with the univariate model, regardless of the soil water content, whereas the soil under conventional tillage shows the highest values with the multivariate model, which were associated to the lowest water contents at the soil consistency limits in this management system.

  5. Impact of Sewage and Industrial Effluent on Soil Plant Health Act on Environment

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available Effect of continuous irrigation with sewage effluent on soil properties and status of nutrients and pollutant elements in soils and plants in the adjoining areas of Agra and Mathura cities of Uttar Pradesh was ascertained. The physical properties of soils improved due to sewage water irrigation. An appreciable increase in organic carbon, available N, P, K contents was recorded in the sewage water irrigated soils. Electrical conductivity of sewage water irrigated soils was much below the threshold limit of salinity. Application of sewage water resulted in the accumulation of heavy metals in surface soil. The mean contents of total Cd, Cr, Pb in the soils irrigated with sewage water were 2.85, 75.40 and 40.26 mg kg- 1, respectively. The mean values of available Cd, Cr and Pb in soils were 0.21, 0.33 and 1.27 mg kg-1, respectively. The concentration of Cr in lettuce, cabbage and be seem plants grown on sewage water was higher as compared to its tolerance level indicating their accumulation in plants. In general, Cd was relatively higher in lettuce (0.88 mg kg-1. On the other hand, be seemed contained relatively higher amount of Cr and Pb.

  6. A simulation research on the natural degradation process of tetrabromobisphenol A in soil under the atmospheric different environments.

    Science.gov (United States)

    Liu, Chen; Niu, Xiaojun; Song, Xiaofei

    2016-08-01

    Tetrabromobisphenol A (TBBPA) is one of the most commonly used flame retardants and has become an environmental contaminant worldwide. More data on the basic characteristics of TBBPA are needed to better understand and used to describe its environmental fate. The aim of this study is to investigate the degradation of TBBPA with different degrees of bromination under the atmospheric different environments. TBBPA was removed quickly due to the strong oxidizing ability of ozone in the atmospheric environment. The half-life of TBBPA was approximately 2.5 h when the ozone concentration was 0.3 mg L(-1). The degradation reaction rates of TBBPA increase with increasing ozone concentration but decreased with increasing soil depth. When the ozone concentration was 10 mg L(-1), the removal rate of TBBPA reached 90.37 % at the soil surface after 2 h. Under UV irradiation, TBBPA was removed quickly, and the photodegradation reactions were faster than with solar irradiation. The conditions of alkaline soil and high ground temperature in the summer were both contributors to the degradation of TBBPA. These results could facilitate the improvement of waste treatment designs and could lead to better predictions of the outcome of TBBPA in the environment.

  7. The fascinating side of dirt: Soil and the global environment course

    Science.gov (United States)

    Grand, S.; Krzic, M.; Crowley, C.; Lascu, G.; Rosado, J.

    2012-04-01

    Soil has recently been attracting some renewed public attention due to its inextricable link to current environmental challenges such as climate change, food security and water resource protection. It is increasingly acknowledged that the world's future will require a better understanding of soil science. Yet enrolment in soil related programs at universities in North America and around the world has been declining. One of the proposed causes for this drop is the tendency for soil science education to emphasize the agricultural side of soil science, while our increasingly urban and environmentally conscious student population is more interested in environmental sciences. To address this issue, in 2011 we created an on-line, first-year soil science course designed specifically to communicate the significance of soil science to global environmental questions. We propose that this type of course is an effective way to help increase interest in higher level soil courses and reverse the downward trend in enrolments. The course content was centered on prominent environmental issues, which were used to introduce basic concepts of soil science. Course materials emphasized integration with other natural resources disciplines such as ecology, biogeochemistry and hydrology. The online format allowed for a seamless integration of multimedia components and web content into course materials, and is believed to be appealing to technologically savvy new generations of students. Online discussion boards were extensively used to maintain strong student engagement in the course. Discussion topics were based on soil-related news stories that helped demonstrate the relevance of soils to society and illustrate the complex and often controversial nature of environmental issues. Students also made significant use of an online bulletin board to post information about environmental events and share news stories related to the course. This course was offered for the first time in term 1 of

  8. Effects of maquis clearing on the properties of the soil and on the near-surface hydrological processes in a semi-arid Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Mario Pirastru

    2014-12-01

    Full Text Available Many hillslopes covered with maquis in the semi-arid Mediterranean environment have been cleared in recent decades. There is little information on what effect this has on the hydrology of the soil. We compared the hydraulic properties of the soil and the subsurface hydrological dynamics on two adjacent sites on a hillslope. One site was covered with maquis, the other with grass. The grass started to grow some 10 years ago, after the maquis had been cleared and the soil had been ploughed. Our study found that the hydraulic properties and the hydrological dynamics of the maquis and the grassed soil differed greatly. The grassed soil had less organic matter and higher apparent density than did the soil covered in maquis. Moreover, the maquis soil retained more water than the grassed soil in the tension range from saturation to 50 cm of water. Infiltration tests performed in summer and in winter indicated that the field saturated hydraulic conductivity (Kfs of the maquis soil was higher than that of the grassy soil. However the data showed that the Kfs of the two soils changed with the season. In the maquis soil the Kfs increased from summer to winter. This was assumed to be due to water flowing more efficiently through wet soil. By contrast, in the grassy soil the Kfs decreased from summer to winter. This was because the desiccation cracks closed in the wet soil. As result, the influence of the land use change was clear from the Kfs measurements in winter, but less so from those in the summer. Changes in land use altered the dynamics of the infiltration, subsurface drainage and soil water storage of the soil. The maquis soil profile never saturated completely, and only short-lived, event based perched water tables were observed. By contrast, soil saturation and a shallow water table were observed in the grass covered site throughout the wet season. The differences were assumed to be due to the high canopy interception of the maquis cover, and to

  9. Rhizosphere Environment and Labile Phosphorus Release from Organic Waste-Amended Soils.

    Science.gov (United States)

    Dao, Thanh H.

    2015-04-01

    Crop residues and biofertilizers are primary sources of nutrients for organic crop production. However, soils treated with large amounts of nutrient-enriched manure have elevated phosphorus (P) levels in regions of intensive animal agriculture. Surpluses occurred in these amended soils, resulting in large pools of exchangeable inorganic P (Pi) and enzyme-labile organic P (Po) that averaging 30.9 and 68.2 mg kg-1, respectively. Organic acids produced during crop residue decomposition can promote the complexation of counter-ions and decouple and release unbound Pi from metal and alkali metal phosphates. Animal manure and cover crop residues also contain large amounts of soluble organic matter, and likely generate similar ligands. However, a high degree of heterogeneity in P spatial distribution in such amended fields, arising from variances in substrate physical forms ranging from slurries to dried solids, composition, and diverse application methods and equipment. Distinct clusters of Pi and Po were observed, where accumulation of the latter forms was associated with high soil microbial biomass C and reduced phosphomonoesterases' activity. Accurate estimates of plant requirements and lability of soil P pools, and real-time plant and soil P sensing systems are critical considerations to optimally manage manure-derived nutrients in crop production systems. An in situ X-ray fluorescence-based approach to sensing canopy and soil XRFS-P was developed to improve the yield-soil P relationship for optimal nutrient recommendations in addition to allowing in-the-field verification of foliar P status.

  10. Element cycling in forest soils - modelling the effects of a changing environment

    Energy Technology Data Exchange (ETDEWEB)

    Walse, C.

    1998-11-01

    Element cycling and nutrient supply in forest ecosystems are of vital importance for short-term productivity and for longer-term land management in terms of nutrient leaching and CO{sub 2} fixation. This thesis includes a series of studies with the objective of modelling some aspects of the effect of acidification and climate change on element cycling and nutrient supply in forest soil. A reconstruction model of atmospheric deposition and nutrient uptake and cycling, MAKEDEP, was developed. An existing model of soil chemistry, SAFE, was analyzed and applied. SAFE+MAKEDEP were then applied in combination with the RAINS model to perform scenario analyses of soil acidification/recovery for six European forest sites. A decomposition model intended to run in conjunction with the SAFE model was developed. Key elements were N, Ca, K, Mg, S and Al. In the decomposition model, only carbon release was included to date.The results show, that understanding the history of soil geochemistry is important for modelling the system and for projecting the future impact of acidification on nutrient supply in forest soils. The applied reconstruction models of acid deposition (MAKEDEP, RAINS) seem to generate reasonable and consistent estimates of historic acid deposition, so that present day conditions can be simulated starting from pre-acidification conditions. From applications of the SAFE model to large-scale forest manipulation experiments, we conclude that the geochemical processes and the degree of detail in process descriptions included in SAFE are adequate to capture the most important aspects of soil solution dynamics of forest soils in northern and central Europe. Therefore, SAFE is appropriate for the simulation of acidification and recovery scenarios for these soils. The precision in model prediction on a more general scale is often limited by factors other than model formulation, such as consistency and representativity of input data. It is shown that the physical

  11. Poultry litter and the environment: Physiochemical properties of litter and soil during successive flock rotations and after remote site deposition.

    Science.gov (United States)

    Crippen, Tawni L; Sheffield, Cynthia L; Byrd, J Allen; Esquivel, Jesus F; Beier, Ross C; Yeater, Kathleen

    2016-05-15

    The U.S. broiler meat market has grown over the past 16 years and destinations for U.S. broiler meat exports expanded to over 150 countries. This market opportunity has spurred a corresponding increase in industrialized poultry production, which due to the confined space in which high numbers of animals are housed, risks accumulating nutrients and pollutants. The purpose of this research was to determine the level of pollutants within poultry litter and the underlying soil within a production facility; and to explore the impact of spent litter deposition into the environment. The study follows a production facility for the first 2.5 years of production. It monitors the effects of successive flocks and management practices on 15 physiochemical parameters: Ca, Cu, electrical conductivity, Fe, K, Mg, Mn, moisture, Na, NO3(-)/N, organic matter, P, pH, S, and Zn. Litter samples were collected in-house, after clean-outs and during stockpiling. The soil before house placement, after the clean-outs and following litter stockpiling was monitored. Management practices markedly altered the physiochemical profiles of the litter in-house. A canonical discriminant analysis was used to describe the relationship between the parameters and sampling times. The litter profiles grouped into five clusters corresponding to time and management practices. The soil in-house exhibited mean increases in all physiochemical parameters (2-297 fold) except Fe, Mg, %M, and pH. The spent litter was followed after deposition onto a field for use as fertilizer. After 20 weeks, the soil beneath the litter exhibited increases in EC, Cu, K, Na, NO3(-)/N, %OM, P, S and Zn; while %M decreased. Understanding the impacts of industrialized poultry farms on the environment is vital as the cumulative ecological impact of this land usage could be substantial if not properly managed to reduce the risk of potential pollutant infiltration into the environment.

  12. Visual surround suppression in schizophrenia

    Directory of Open Access Journals (Sweden)

    Marc Samuel Tibber

    2013-02-01

    Full Text Available Compared to unaffected observers patients with schizophrenia show characteristic differences in visual perception, including a reduced susceptibility to the influence of context on judgements of contrast - a manifestation of weaker surround suppression. To examine the generality of this phenomenon we measured the ability of 24 individuals with schizophrenia to judge the luminance, contrast, orientation and size of targets embedded in contextual surrounds that would typically influence the target’s appearance. Individuals with schizophrenia demonstrated weaker surround suppression compared to matched controls for stimuli defined by contrast or size, but not for those defined by luminance or orientation. As perceived luminance is thought to be regulated at the earliest stages of visual processing our findings are consistent with a suppression deficit that is predominantly cortical in origin. In addition, we propose that preserved orientation surround suppression in schizophrenia may reflect the sparing of broadly tuned mechanisms of suppression. We attempt to reconcile these data with findings from previous studies.

  13. Educational Success and Surrounding Culture

    Science.gov (United States)

    Walters, Garrison

    2016-01-01

    The curriculum, instruction, and services we provide in schools, colleges, and universities matter a lot, but if we continue to ignore our students' "surrounding culture," progress toward a more educated nation will continue to be disappointing.

  14. Educational Success and Surrounding Culture

    Science.gov (United States)

    Walters, Garrison

    2016-01-01

    The curriculum, instruction, and services we provide in schools, colleges, and universities matter a lot, but if we continue to ignore our students' "surrounding culture," progress toward a more educated nation will continue to be disappointing.

  15. Soil moisture variability and land use in a seasonally arid environment

    Science.gov (United States)

    Williams, A. G.; Ternan, J. L.; Fitzjohn, C.; de Alba, S.; Perez-Gonzalez, A.

    2003-02-01

    Soil moisture patterns were recorded for six different land uses, including oak forest, matorral scrub, olives, and a cultivated field, in central Spain during 1998-99. Volumetric water content was determined using time domain reflectometry at more than 140 sites in each, extending across a range of topographic units. Soil moisture content was a function of land use, with the oak forest being wetter than either the matorral shrubby area or the cultivated site. The spatial patterns for a wet period were kriged and are presented as interpolated contour plots. Geo-statistical analysis confirmed that the patterns were highly heterogeneous, as the variograms showed a pure nugget for each land use, except for the two olive sites, where some spatial structure could be observed. During the investigation the soils were in the dry state and the soil moisture distribution was controlled by local factors; it was not possible to determine which environmental factor had the most influence.

  16. Multichannel spatial surround sound system

    Institute of Scientific and Technical Information of China (English)

    RAO Dan; XIE Bosun

    2004-01-01

    Based on the consideration of being compatible with 5.1 channel horizontal surround sound system, a spatial surround sound system is proposed. Theoretical and experimental results show that the system has a wide listening area. It can not only recreate stable image in the front and rear direction, but also eliminate the defect of poor lateral image of 5.1 channel system. The system can be used to reproduce special 3D sound effect and the spaciousness of hall.

  17. Teaching Plant-Soil Relationships with Color Images of Rhizosphere pH.

    Science.gov (United States)

    Heckman, J. R.; Strick, J. E.

    1996-01-01

    Presents a laboratory exercise that uses a simple imaging technique to illustrate the profound effects that living roots exert on the pH of the surrounding soil environment. Achieves visually stimulating results that can be used to reinforce lectures on rhizosphere pH, nutrient availability, plant tolerance of soil acidity, microbial activity, and…

  18. A framework for soil food web diagnostics : extension of the nematode faunal analysis concept

    NARCIS (Netherlands)

    Ferris, H.; Bongers, T.; Goede, de R.G.M.

    2001-01-01

    Nematodes, the earth's most abundant metazoa, are ubiquitous in the soil environment. They are sufficiently large to be identifiable by light microscopy and sufficiently small to inhabit water films surrounding soil particles. They aggregate around and in food sources. They include component taxa of

  19. A framework for soil food web diagnostics : extension of the nematode faunal analysis concept

    NARCIS (Netherlands)

    Ferris, H.; Bongers, T.; Goede, de R.G.M.

    2001-01-01

    Nematodes, the earth's most abundant metazoa, are ubiquitous in the soil environment. They are sufficiently large to be identifiable by light microscopy and sufficiently small to inhabit water films surrounding soil particles. They aggregate around and in food sources. They include component taxa of

  20. Iodine-129, iodine-127 and caesium-137 in the environment: soils from Germany and Chile.

    Science.gov (United States)

    Daraoui, A; Michel, R; Gorny, M; Jakob, D; Sachse, R; Synal, H-A; Alfimov, V

    2012-10-01

    Soil profiles from Bavaria in southern Germany and from Chile were analysed for (129)I by accelerator mass spectrometry (AMS), for (127)I by inductively coupled plasma mass spectrometry (ICP-MS), and for (137)Cs by gamma-spectrometry. The mean deposition density of (137)Cs in soils from Bavaria was (41×1.5(±1)) kBq m(-2) (geometric mean and geometric standard deviation), originating mostly from the Chernobyl fall-out. The deposition density of (129)I in these soils was (109×1.5(±1)) mBq m(-2). The dominant sources of (129)I in Bavaria are, however, the reprocessing plants La Hague and Sellafield and not the Chernobyl fall-out. The (129)I/(127)I isotopic ratios of the Bavarian soils were between 10(-7) and 10(-10), i.e. 10(2)-10(5) times higher than the ratios observed for the samples from Chile. The (129)I integral deposition densities in Chile, Easter Island and Antarctica were between 0.3 mBq m(-2) and 2 mBq m(-2). In these soils, the observed (129)I/(127)I ratios were about 10(-12). The soils from Chile allow the determination of the (129)I fall-out from the atmospheric nuclear weapons explosions undisturbed from contaminations due to releases from reprocessing plants. An upper limit of the integral (129)I deposition density of the atmospheric nuclear weapons explosions on the Southern Hemisphere (27°S) is about 1 mBq m(-2). Finally, the dependence of the migration behaviour of (137)Cs, (127)I and of (129)I on the soil properties is discussed. It turns out that there is a distinctly different behaviour of (127)I, (129)I, and (137)Cs in the soils exhibiting different sorption mechanisms for old and recent iodine as well as for (137)Cs.

  1. Episodic soil succession on basaltic lava fields in a cool, dry environment

    Science.gov (United States)

    Vaughan, K.L.; McDaniel, P.A.; Phillips, W.M.

    2011-01-01

    Holocene- to late Pleistocene-aged lava flows at Craters of the Moon National Monument and Preserve provide an ideal setting to examine the early stages of soil formation under cool, dry conditions. Transects were used to characterize the amount and nature of soil cover on across basaltic lava flows ranging in age from 2.1 to 18.4 ka. Results indicate that on flows soils (Folists in Soil Taxonomy) are the dominant soil type, providing an areal coverage of up to ∼25%. On flows ≥13.9 ka, deeper mineral soils including Entisols, Aridisols, and Mollisols become dominant and the areal extent increases to ≥95% on flows older than 18.4 ka. These data suggest there are two distinct pedogenic pathways associated with lava flows of the region. The first pathway is illustrated by the younger flows, where Folists dominate. In the absence of a major source of loess, relatively little mineral material accumulates and soils provide only minor coverage of the lava flows. Our results indicate that this pathway of soil development has not changed appreciably over the past ∼10 ka. The second pedogenic pathway is illustrated by the flows older than 13.9 ka. These flows have been subject to deposition of large quantities of loess during and after the last regional glaciation, resulting in almost complete coverage. Subsequent pedogenesis has given rise to Aridisols and Mollisols with calcic and cambic horizons and mollic epipedons. This research highlights the importance of regional climate change on the evolution of Craters of the Moon soilscapes.

  2. Pseudomonas lini Strain ZBG1 Revealed Carboxylic Acid Utilization and Copper Resistance Features Required for Adaptation to Vineyard Soil Environment: A Draft Genome Analysis

    Science.gov (United States)

    Chan, Kok-Gan; Chong, Teik-Min; Adrian, Tan-Guan-Sheng; Kher, Heng Leong; Grandclément, Catherine; Faure, Denis; Yin, Wai-Fong; Dessaux, Yves; Hong, Kar-Wai

    2016-01-01

    Pseudomonas lini strain ZBG1 was isolated from the soil of vineyard in Zellenberg, France and the draft genome was reported in this study. Bioinformatics analyses of the genome revealed presence of genes encoding tartaric and malic acid utilization as well as copper resistance that correspond to the adaptation this strain in vineyard soil environment. PMID:27512520

  3. Soil erosion and runoff response in almond orchards under two shrub cover-crops strips in a high slope in semi-arid environment

    Energy Technology Data Exchange (ETDEWEB)

    Carceles-Rodriguez, B.; Francia-Martinez, J. R.; Martinez-Raya, A.; Duran-Zuazo, V. H.; Rodriguez-Pleguezuelo, C. R.; Casado-Mateos, J. P.

    2009-07-01

    Soil erosion is one of the main physical processes of land degradation in Spain. Several studies in the Mediterranean environment have demonstrated the positive effect of vegetation covers on the reduction of water erosion and their indirect improvement of the soil physical and chemical properties, essentially by the incorporation of organic matter. (Author)

  4. Rapid Separation of 239Pu and 241Am in Environment Soil Samples

    Institute of Scientific and Technical Information of China (English)

    YANG; Jin-ling; ZHANG; Ji-qiao; HUANG; Kun; DING; You-qian; ZHAO; Ya-ping

    2015-01-01

    In the nuclear sites and the surroundings which are the main environmental monitored area,the allowances of 239Pu and 241 Am are less than0.1Bq/g as the extremely toxic species.So it is very important and practical to establish rapid and convenient analysis methods for them.With

  5. Environment

    DEFF Research Database (Denmark)

    Valentini, Chiara

    2017-01-01

    The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....

  6. Impact of temperature and soil type on Mycobacterium bovis survival in the environment.

    Science.gov (United States)

    Barbier, Elodie; Rochelet, Murielle; Gal, Laurent; Boschiroli, Maria Laura; Hartmann, Alain

    2017-01-01

    Mycobacterium bovis, the causative agent of the bovine tuberculosis (bTB), mainly affects cattle, its natural reservoir, but also a wide range of domestic and wild mammals. Besides direct transmission via contaminated aerosols, indirect transmission of the M. bovis between wildlife and livestock might occur by inhalation or ingestion of environmental substrates contaminated through infected animal shedding. We monitored the survival of M. bovis in two soil samples chosen for their contrasted physical and-chemical properties (i.e. pH, clay content). The population of M. bovis spiked in sterile soils was enumerated by a culture-based method after 14, 30, 60, 90, 120 and 150 days of incubation at 4°C and 22°C. A qPCR based assay targeting the IS1561' locus was also performed to monitor M. bovis in both sterile and biotic spiked soils. The analysis of survival profiles using culture-based method showed that M. bovis survived longer at lower temperature (4°C versus 22°C) whereas the impact of soil characteristics on M. bovis persistence was not obvious. Furthermore, qPCR-based assay detected M. bovis for a longer period of time than the culture based method with higher gene copy numbers observed in sterile soils than in biotic ones. Impact of soil type on M. bovis persistence need to be deepened in order to fill the gap of knowledge concerning indirect transmission of the disease.

  7. Effects of Different Preceding Crops on Soil Micro-ecological Environment and Yield of Cucumber

    Institute of Scientific and Technical Information of China (English)

    LIU Shouwei; LIU Shuqin; PAN Kai; WANG Lili; WU Fengzhi

    2011-01-01

    Pepper, celery, eggplant and tomato were used as preceding crops to study their effects on the yield, soil microorganism quantity and soil enzyme activities of cucumber. Results showed that four preceding crops all increased soil microorganism quantity in cucumber, but decreased population of Fusarium oxysporum. The effect of pepper was more significant than that of the others Populations of soil bacteria, fungi and actinomyces of pepper treatment were significantly higher than those of the other treatments, except that the populations of fungi had no significant difference with celery and eggplant treatments on 50 days after transplanting, while that of Fusarium oxysporum was fewer than that of the other treatments. The soil microorganism quantity in celery and eggplant treatment was more significant than tomato, but lower population of Fusarium oxysporum. Four preceding crops all increased sol enzyme activities, lnvertase and urease activities of pepper treatment were significantly higher than those of the other treatments, catalase activities of pepper, celery and eggplant treatments were significantly higher than those of tomato and the control treatments All preceding crops remarkably increased cucumber yield, with pepper as the highest. Comparing with the control, cucumber yields of pepper, celery and eggplant treatments increased by 24.9%, 13.6% and 11.9%, respectively. Results suggested that four preceding crops all improved soil microbial ecology and increased cucumber yield. The pepper was the most suitable preceding crop, then followed by celery and eggplant. Tomato had the similar effect as the control.

  8. Improvement of red pepper yield and soil environment by summer catch aquatic crops in greenhouses

    Science.gov (United States)

    Du, X. F.; Wang, L. Z.; Peng, J.; Wang, G. L.; Guo, X. S.; Wen, T. G.; Gu, D. L.; Wang, W. Z.; Wu, C. W.

    2016-08-01

    To investigate effects of the rotation of summer catch crops on remediation retrogressed soils in continuous cropping, a field experiment was conducted. Rice, water spinach, or cress were selected as summer catch crops; bare fallow during summer fallow was used as the control group. Results showed that aquatic crops grown in summer fallow period could effectively reduce soil bulk density and pH, facilitate soil nutrient release, and improve soil physical and chemical properties compared with those grown in fallow period. Paddy-upland rotation could improve soil microbial members and increase bacterial and actinomycete populations; by contrast, paddy-upland rotation could reduce fungal populations and enhance bacterium-to-fungus ratio. Paddy-upland rotation could also actively promote activities of soil enzymes, such as urease, phosphatase, invertase, and catalase. The proposed paddy-upland rotation significantly affected the growth of red pepper; the yield and quality of the grown red pepper were enhanced. Summer catch crops, such as rice, water spinach, and cress significantly increased pepper yield in the following growing season by 15.4%, 10.2% and 14.0%, respectively, compared with those grown in fallow treatment. Therefore, the proposed paddy-upland crop rotation could be a useful method to alleviate continuous cropping problems involved in cultivating red pepper in greenhouses.

  9. Correlation between radioactivity levels and heavy metal content in the soils of the North Kosovska Mitrovica environment.

    Science.gov (United States)

    Gulan, Ljiljana; Milenkovic, Biljana; Stajic, Jelena M; Vuckovic, Biljana; Krstic, Dragana; Zeremski, Tijana; Ninkov, Jordana

    2013-09-01

    This paper reports the results of radioactivity concentrations and heavy metal content in soil samples collected from non-agricultural areas in the municipality and vicinity of North Kosovska Mitrovica, formerly the most important mining area in Europe. The estimated average activity concentrations of (226)Ra, (232)Th, (40)K and (137)Cs are 40.6 ± 19, 48 ± 25.4, 743.2 ± 200.5 and 81 ± 119 Bq kg(-1), respectively. The estimated average absorbed dose rate in the air and the annual effective dose are 78.7 nGy h(-1) and 96.6 μSv, respectively. The radium equivalent activity and external hazard index were also calculated. High contents of Pb, Zn, Cu, Cd, As and Ni were found in the analyzed soil samples, thus indicating pollution of the environment. Most metals have a wide range of values spanning 2 to 3 orders of magnitude, which is particularly evident for Pb and Zn. Correlations between the activity concentrations of the radionuclides, the heavy metal content in soil and the basic soil properties were determined by means of the Pearson linear coefficient. Strong positive correlations between the naturally occurring radionuclides, and also among Pb, Zn, Cu and Cd were found.

  10. Fruška gora mountainous environments - assessing the impact of geological setting and land use on soil properties

    Directory of Open Access Journals (Sweden)

    Đorđević Tamara

    2016-01-01

    Full Text Available On a global scale, it has been found that in the last decades the surface of the vulnerable land and land affected by degradation is increasing and that unsustainable land management is one of the key drivers of land degradation. In order to assess the effect that these changes have on biodiversity and ecosystem services, and to carry out the appropriate planning and management actions for conserving the environment it is essential to identify and quantify changes caused by land degradation. The aim of this study was to determine the impact of geological setting i.e. type of bedrock, and land use on soil physico-chemical properties in vulnerable mountainous areas of Fruškagora. For the purpose of this study the total of 30 soil samples at 0-20 cm depth were collected at four locations on the Fruškagora Mt. Geological setting was serpentinite and marl and land cover was forest and meadow. Following soil properties were determined: pH, redox potential (Eh, electrical conductivity (EC, total dissolved solids (TDS, concentrations of available cations Ca, Mg, K, Na, contents of organic carbon (Corg and nitrogen (N. The correlation between the obtained parameters was tested with two-way ANOVA and Principal Component Analyses (PCA. All of the obtained results indicate that the soil physico-chemical properties depend on geological setting and that rock composition has to be taken into consideration during land management. [Projekat Ministarstva nauke Republike Srbije, br. 176006 i br. 173011

  11. Emission of SO2 and SO4 2-: From copper smelter and its influence on the level of total S in soil and moss in Bor, Serbia, and the surroundings

    OpenAIRE

    Šerbula Snežana M.; Ţivković Dragana T.; Radojević Ana A.; Kalinović Tanja S.; Kalinović Jelena V.

    2015-01-01

    Bor and the surroundings (Eastern Serbia) have been known for exploitation and processing of sulphide copper ores for more than 100 years. Emissions of waste gases and particulate matter rich in heavy metals are characteristic for pyrometallurgical production of copper. Long-term measurement results (2005-2008) indicate an increased sulphur dioxide level in the urban-industrial zone of Bor since it is closest to the copper smelter which is a dominant source...

  12. A Review of Soil Erosion Models with Special Reference to the needs of Humid Tropical Mountainous Environments

    Directory of Open Access Journals (Sweden)

    Augustine Avwunudiogba

    2014-10-01

    Full Text Available Humid tropical mountainous environments (HTMEs are generally considered sensitive ecological regions because anthropogenic disturbance often accelerate hillslope processes such as runoff, erosion, and sediment flux. Reducing accelerated erosion is necessary for the maintenance of the integrity, stability and sustainability of HTMEs. Soil erosion models (SOMs are potential tools for predicting soil erosion, sediment flux, and thedesign and assessment of effectiveness of conservation management practices in HTMEs. Within this context, this study provides a critical review of the available SOMs with afocus on their applicability in HTMEs. The review indicates that because most SOMs have been developed for “flat agricultural lands” in temperate regions, to be useful inconservation planning in HTMEs models should be calibrated for local conditions. For humid tropical mountainous regions, lumped parameter models (LPMs linked toGeographical Information Systems (GIS are more practicable for conservation planning than sophisticated distributed parameter models (DPMs. This is due to the less stringent data requirements and ease to which land managers can implement LPMs, an essential consideration within the physical and socioeconomic context of HTMEs.Keywords:Soil erosion models; Humid tropics, Mountainous environments; Conservation planning

  13. Distribution of artificial sweeteners in dust and soil in China and their seasonal variations in the environment of Tianjin.

    Science.gov (United States)

    Gan, Zhiwei; Sun, Hongwen; Yao, Yiming; Zhao, Yangyang; Li, Yan; Zhang, Yanwei; Hu, Hongwei; Wang, Ruonan

    2014-08-01

    A nationwide investigation on the occurrence of artificial sweeteners (ASs) was conducted by collecting 98 paired outdoor dust and soil samples from mainland China. The ASs were widely detected in Chinese atmospheric dry deposition and soil samples, at concentrations up to 6450 and 1280 ng/g, respectively. To give a picture on AS distribution and source in the whole environment, the concentrations and seasonal variations of ASs in Tianjin were studied, including atmosphere, soil, and water samples. The AS levels were significantly higher in Haihe river at TJW (a sampling site in central city) in winter, while no obviously seasonal trends were obtained at BYL (close to a AS factory) and the site at a wastewater treatment plant. Saccharin, cyclamate, and acesulfame were the dominant ASs in both gas and particulate phase, with concentrations varying from 0.02 to 1940 pg/m(3). Generally, gas phase concentrations of the ASs were relatively higher in summer, while opposite results were acquired for particulate phase. Wet and dry deposition fluxes were calculated based on the measured AS levels. The results indicated that both wet and dry deposition could efficiently remove ASs in the atmosphere and act as important pollutant sources for the ASs in surface environment.

  14. Caenorhabditis elegans genomic response to soil bacteria predicts environment-specific genetic effects on life history traits.

    Directory of Open Access Journals (Sweden)

    Joseph D Coolon

    2009-06-01

    Full Text Available With the post-genomic era came a dramatic increase in high-throughput technologies, of which transcriptional profiling by microarrays was one of the most popular. One application of this technology is to identify genes that are differentially expressed in response to different environmental conditions. These experiments are constructed under the assumption that the differentially expressed genes are functionally important in the environment where they are induced. However, whether differential expression is predictive of functional importance has yet to be tested. Here we have addressed this expectation by employing Caenorhabditis elegans as a model for the interaction of native soil nematode taxa and soil bacteria. Using transcriptional profiling, we identified candidate genes regulated in response to different bacteria isolated in association with grassland nematodes or from grassland soils. Many of the regulated candidate genes are predicted to affect metabolism and innate immunity suggesting similar genes could influence nematode community dynamics in natural systems. Using mutations that inactivate 21 of the identified genes, we showed that most contribute to lifespan and/or fitness in a given bacterial environment. Although these bacteria may not be natural food sources for C. elegans, we show that changes in food source, as can occur in environmental disturbance, can have a large effect on gene expression, with important consequences for fitness. Moreover, we used regression analysis to demonstrate that for many genes the degree of differential gene expression between two bacterial environments predicted the magnitude of the effect of the loss of gene function on life history traits in those environments.

  15. Soil Compressibility under Irrigated Perennial and Annual Crops in a Semi-Arid Environment

    Directory of Open Access Journals (Sweden)

    Rafaela Watanabe

    Full Text Available ABSTRACT In irrigated soils, a continuous state of high moisture reduces resistance of the soil to applied external forces, favouring compaction. The aim of this study was to evaluate the susceptibility to compaction of developed calcareous soils in irrigated annual and perennial cropping systems of the Apodi Plateau, located in the Brazilian semi-arid region. Four areas of irrigated crops were evaluated: banana after two (B2 and 15 (B15 years cultivation, pasture (P, and a corn and beans succession (MB, as well as the reference areas for soil quality and corresponding natural vegetation (NVB2, NVB15, NVP and NVMB. Samples were collected at layers of 0.00-0.10 and 0.20-0.30 m; and for B2 and B15, samples were collected in the row and inter-row spaces. The following properties were determined: degree of compactness (DC, preconsolidation pressure (σp, compression index (Cc, maximum density (ρmax, critical water content (WCcrit, total organic carbon (TOC and carbon of light organic matter (Clom. Mean values were compared by the t-test at 5, 10, 15 and 20 % probability. An increase was seen in DC at a layer of 0.20-0.30 m in MB (p<0.15, showing the deleterious effects of preparing the soil by ploughing and chiselling, together with the cumulative traffic of heavy machinery. The TOC had a greater influence on ρmax than the stocks of Clom. Irrigation caused a reduction in Cc, and there was no effect on σp at field capacity. The planting rows showed different behaviour for Cc, ρmax, and WCcrit,, and in general the physical properties displayed better conditions than the inter-row spaces. Values for σp and Cc showed that agricultural soils display greater load-bearing capacity and are less susceptible to compaction in relation to soils under natural vegetation.

  16. Climate and soil moisture environment during develop-ment of the fifth palaeosol in Guanzhong Plain

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on weathering characteristics of the fifth palaeosol layer (S5) of four sections in Guanzhong Plain, the thickness of the weathered profile of the paleosol is determined to be greater than the ordi- nary soil, a weathered and leached loess layer thicker than 2 m. The distribution depth of the red argil- lans, the weathered and leached loess layer, Fe2O3, CaCO3 and Sr content under the S5 all indicate that the precipitation in Guanzhong Plain was over 900 mm at that time. The distribution depth of gravity water zone reached 4.2 m at least, and the soil moisture content was generally more than 20% within the range of 4.2 m. At that time there was sufficient soil moisture and no dried earth layer developed in Guanzhong Plain, suitable for the forest to develop. When this soil developed, the mean annual pre- cipitation was more than the annual soil moisture evaporation. The value of soil moisture balance was positive and the atmospheric precipitation could supply the underground water normally. Soil water was weak acidic in the middle and late stages when S5 developed in Guanzhong Plain. It was a kind of subtropical climate and even more humid and warmer than the northern edge of the subtropical climate zone in Guanzhong Plain when the S5 developed. At that time the subtropical climate was prevailing over the northern side and southern side of Qingling Mountains, showing the Mountains no longer to be the boundary between the subtropical zone and the temperate zone in China. The summer monsoon acted intensely and could go over Qingling Mountains frequently bring abundant precipitation.

  17. Climate and soil moisture environment during development of the fifth palaeosol in Guanzhong Plain

    Institute of Scientific and Technical Information of China (English)

    ZHAO JingBo; GU Jing; DU Juan

    2008-01-01

    Based on weathering characteristics of the fifth palaeosol layer (S5) of four sections in Guanzhong Plain, the thickness of the weathered profile of the paleosol is determined to be greater than the ordi-nary soil, a weathered and leached loess layer thicker than 2 m. The distribution depth of the red argil-lans, the weathered and leached loess layer, Fe2O3, CaCO3 and Sr content under the S5 all indicate that the precipitation in Guanzhong Plain was over 900 mm at that time. The distribution depth of gravity water zone reached 4.2 m at least, and the soil moisture content was generally more than 20% within the range of 4.2 m. At that time there was sufficient soil moisture and no dried earth layer developed in Guanzhong Plain, suitable for the forest to develop. When this soil developed, the mean annual pre-cipitation was more than the annual soil moisture evaporation. The value of soil moisture balance was positive and the atmospheric precipitation could supply the underground water normally. Soil water was weak acidic in the middle and late stages when S5 developed in Guanzhong Plain. It was a kind of subtropical climate and even more humid and warmer than the northern edge of the subtropical climate zone in Guanzhong Plain when the S5 developed. At that time the subtropical climate was prevailing over the northern side and southern side of Qingling Mountains, showing the Mountains no longer to be the boundary between the subtropical zone and the temperate zone in China. The summer monsoon acted intensely and could go over Qingling Mountains frequently bring abundant precipitation.

  18. Chemical analyses of soil samples collected from the Sandia National Laboratories/NM, Tonopah Test Range environs, 1994-2005.

    Energy Technology Data Exchange (ETDEWEB)

    Deola, Regina Anne; Oldewage, Hans D.; Herrera, Heidi M.; Miller, Mark Laverne

    2006-05-01

    From 1994 through 2005, the Environmental Management Department of Sandia National Laboratories (SNL) at the Tonopah Test Range (TTR), NV, has collected soil samples at numerous locations on-site, on the perimeter, and off-site for the purpose of determining potential impacts to the environs from operations at TTR. These samples were submitted to an analytical laboratory of metal-in-soil analyses. Intercomparisons of these results were then made to determine if there was any statistical difference between on-site, perimeter, and off-site samples, or if there were increasing or decreasing trends which indicated that further investigation may be warranted. This work provided the SNL Environmental Management Department with a sound baseline data reference against which to compare future operational impacts. In addition, it demonstrates the commitment that the Laboratories have to go beyond mere compliance to achieve excellence in its operations. This data is presented in graphical format with narrative commentaries on particular items of interest.

  19. A role of Bradyrhizobium elkanii and closely related strains in the degradation of methoxychlor in soil and surface water environments.

    Science.gov (United States)

    Satsuma, Koji; Masuda, Minoru; Sato, Kiyoshi

    2013-01-01

    We have reported that a leguminous bacterial strain, Bradyrhizobium sp. strain 17-4, isolated from river sediment, phylogenetically very close to Bradyrhizobium elkanii, degraded methoxychlor through O-demethylation and oxidative dechlorination. In the present investigation, we found that B. elkanii (USDA94), a standard species deposited in the Culture Collection, degraded methoxychlor. Furthermore, Bradyrhizobium sp. strain 4-1, also very close to B. elkanii, isolated from Japanese paddy field soil, degraded methoxychlor. These B. elkanii and closely related strains degraded methoxychlor through almost identical metabolic pathways, and cleaved the phenyl ring and mineralized. In contrast, another representative Bradyrhizobium species, B. japonicum (USDA110), did not degrade methoxychlor at all. Based on these findings, B. elkanii and closely related strains are likely to play an important role not only in providing the readily biodegradable substrates but also in completely degrading (mineralizing) methoxychlor by themselves in the soil and surface water environment.

  20. Soil salinity under deficit drip irrigation of potato and millet in in an arid environment

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2017-06-01

    Full Text Available The influence of deficit irrigation (DI with saline water on soil salinity in a drip-irrigated potato and millet fields was investigated. We had compared proportional soil salinity developed under Full and DI under drip irrigation. For both experiments, the treatments were (1 Full, control treatment where rooting zone soil water content was increased to field capacity at each irrigation; (2 DI80; (3 DI60 and DI40; 20, 40 and 60% deficit irrigation compared to Full treatment were applied, respectively. Soil salinity was assessed using the isosalinity maps constructed with grid soil sampling of plant root zone at harvest. Results show that high spatial variability was observed in salinity along soil profiles when applying saline water with drip irrigation for potato. For the DI40 and DI60 treatments, high soil salinity was recorded in the upper soil layer close to the emitter. Increase of soil salinity within soil depths of 30 cm or below was also observed under DI60 and DI40 treatments. The lowest increase was noted under the full treatment. Surface soil salinity was somewhat higher under DI60 and DI40 compared with that of full and DI80 irrigation treatments. The distribution of salts around the dripper changes during the crop season according to applied irrigation treatments, with overall higher concentrations between the drippers and towards the margin of wetted band. Iso-salinity maps at harvest of potato showed that the surface layer of 30 cm depth had the lowest salinity which gradually increased at deeper zones irrespective of the treatment. Salt accumulation essentially occurred at wetting front between the drippers and the plant row. Although salt accumulation was relatively highest along the row under DI treatments, the area of accumulation was relatively shifted toward the center between the rows and the drip line. The results also show the importance of the potato cropping season to benefit from the leaching of soluble salts with the

  1. Biochar: A review of its impact on pesticide behavior in soil environments and its potential applications.

    Science.gov (United States)

    Safaei Khorram, Mahdi; Zhang, Qian; Lin, Dunli; Zheng, Yuan; Fang, Hua; Yu, Yunlong

    2016-06-01

    Biochar is produced from the pyrolysis of carbon-rich plant- and animal-residues under low oxygen and high temperature conditions and has been increasingly used for its positive role in soil compartmentalization through activities such as carbon sequestration and improving soil quality. Biochar is also considered a unique adsorbent due to its high specific surface area and highly carbonaceous nature. Therefore, soil amendments with small amounts of biochar could result in higher adsorption and, consequently, decrease the bioavailability of contaminants to microbial communities, plants, earthworms, and other organisms in the soil. However, the mechanisms affecting the environmental fate and behavior of organic contaminants, especially pesticides in biochar-amended soil, are not well understood. The purpose of this work is to review the role of biochar in primary processes, such as adsorption-desorption and leaching of pesticides. Biochar has demonstrable effects on the fate and effects of pesticides and has been shown to affect the degradation and bioavailability of pesticides for living organisms. Moreover, some key aspects of agricultural and environmental applications of biochar are highlighted.

  2. Effectiveness of loess in rejuvenating soil and ecosystem properties in a high leaching environment, West Coast, New Zealand

    Science.gov (United States)

    Eger, A.; Almond, P. C.; Condron, L. M.

    2010-12-01

    In the absence of major disturbances, humid terrestrial ecosystems tend over long time scales towards deficiency of biogeochemically accessible nutrients. This phenomenon has been implicated in ecosystem retrogression. Aeolian deposition has been shown to be an important mitigating effect on nutrient depletion in soils and ecosystems of old landsurfaces (e.g. Hawaii, Amazon Basin). Significant nutrient loss has been demonstrated on surfaces as young as Holocene age in very high leaching environments (>2,000 mm/a) and ecosystem retrogression has been reported for landsurfaces formed ca. 100 ka. The aim of this study is to quantify the capacity of actively accumulating loess to replenish nutrient pools in soils and ecosystems in a super-humid, temperate environment on the west coast of the South Island, New Zealand. The study area, a sequence of Holocene dune ridges under a conifer (podocarp) rainforest, combines a loess flux gradient downwind of a braided riverbed on a 6,500 y old dune ridge and, distal from the loess source, an adjacent chronosequence of dune ridges (170-6,500 y BP age range). Pedogenesis is very rapid with Spodosols developing after 1,000 y under a thick organic root mat. Our approach is based on the principle that if loess deposition has rejuvenating effects on soils or ecosystems, then it will result in soils or ecosystems of a given age having properties consistent with those on a younger, less leached landsurface. How much younger determines the strength of the rejuvenating effect. We sampled and analysed soils, to a depth of 1 m by standard methods to determine total profile masses of important macro nutrients, conducted a vegetation survey and sampled tree foliage of fully expanded, fresh leaves of sunlit branches. Along the loess gradient, foliar nutrient P concentrations in two main canopy species increased according to a power law towards the river, corresponding to an inverse logarithmic increase in loess flux rate from 0 at 1,000 m

  3. In vitro experimental environments lacking or containing soil disparately affect competition experiments of Aspergillus flavus and co-occurring fungi in maize grains.

    Science.gov (United States)

    Falade, Titilayo D O; Syed Mohdhamdan, Sharifah H; Sultanbawa, Yasmina; Fletcher, Mary T; Harvey, Jagger J W; Chaliha, Mridusmita; Fox, Glen P

    2016-07-01

    In vitro experimental environments are used to study interactions between microorganisms, and to predict dynamics in natural ecosystems. This study highlights that experimental in vitro environments should be selected to match closely the natural environment of interest during in vitro studies to strengthen extrapolations about aflatoxin production by Aspergillus and competing organisms. Fungal competition and aflatoxin accumulation were studied in soil, cotton wool or tube (water-only) environments, for Aspergillus flavus competition with Penicillium purpurogenum, Fusarium oxysporum or Sarocladium zeae within maize grains. Inoculated grains were incubated in each environment at two temperature regimes (25 and 30°C). Competition experiments showed interaction between the main effects of aflatoxin accumulation and the environment at 25°C, but not so at 30°C. However, competition experiments showed fungal populations were always interacting with their environments. Fungal survival differed after the 72-h incubation in different experimental environments. Whereas all fungi incubated within the soil environment survived, in the cotton wool environment none of the competitors of A. flavus survived at 30°C. With aflatoxin accumulation, F. oxysporum was the only fungus able to interdict aflatoxin production at both temperatures. This occurred only in the soil environment and fumonisins accumulated instead. Smallholder farmers in developing countries face serious mycotoxin contamination of their grains, and soil is a natural reservoir for the associated fungal propagules, and a drying and storage surface for grains on these farms. Studying fungal dynamics in the soil environment and other environments in vitro can provide insights into aflatoxin accumulation post-harvest.

  4. Field Phenotyping and Long-Term Platforms to Characterise How Crop Genotypes Interact with Soil Processes and the Environment

    Directory of Open Access Journals (Sweden)

    Timothy S. George

    2014-05-01

    Full Text Available Unsustainable agronomic practices and environmental change necessitate a revolution in agricultural production to ensure food security. A new generation of crops that yield more with fewer inputs and are adapted to more variable environments is needed. However, major changes in breeding programmes may be required to achieve this goal. By using the genetic variation in crop yield in specific target environments that vary in soil type, soil management, nutrient inputs and environmental stresses, robust traits suited to specific conditions can be identified. It is here that long-term experimental platforms and field phenotyping have an important role to play. In this review, we will provide information about some of the field-based platforms available and the cutting edge phenotyping systems at our disposal. We will also identify gaps in our field phenotyping resources that should be filled. We will go on to review the challenges in producing crop ideotypes for the dominant management systems for which we need sustainable solutions, and we discuss the potential impact of three-way interactions between genetics, environment and management. Finally, we will discuss the role that modelling can play in allowing us to fast-track some of these processes to allow us to make rapid gains in agricultural sustainability.

  5. Appraising the role of environment friendly chelants in alleviating lead by Coronopus didymus from Pb-contaminated soils.

    Science.gov (United States)

    Sidhu, Gagan Preet Singh; Singh, Harminder Pal; Batish, Daizy R; Kohli, Ravinder Kumar

    2017-09-01

    In a screenhouse experiment, we investigated the role of two environment friendly chelants, Ammonium molybdate and EDDS for Pb mobilisation and its extraction by Coronopus didymus under completely randomized controlled conditions. Seedlings of C. didymus were grown in pots having Pb-contaminated soil (1200 and 2200 mg kg(-1)) for 6 weeks. Plants were harvested, 1 week after the addition of A. molybdate and EDDS. Results revealed that A. molybdate and EDDS enhanced the uptake and accumulation of Pb in roots and shoots of C. didymus. At 2200 mg kg(-1) Pb level, compared to Pb-alone treatment, the maximal concentration of Pb was increased upto ∼10% and ∼19%, in roots whereas ∼8% and ∼18%, respectively, in shoots on addition of 2 mmol kg(-1) A. molybdate and EDDS. Additionally, Pb + EDDS treatments enhanced the plant biomass and triggered strong antioxidative response, more efficaciously than Pb + A. molybdate and Pb-alone treated plants. In this study, EDDS relative to A. molybdate was more efficient in mobilising and extracting Pb from soil. Although, EDDS followed by A. molybdate had good efficacy in mitigating Pb from contaminated soils but C. didymus itself has the inherent affinity to tolerate and accumulate Pb from contaminated soils and hence in future, can be used either alone or with some other eco-friendly amendments for soil remediation purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Physical geography of the Nete basin and surroundings; Fysische geografie van het Netebekken en omgeving

    Energy Technology Data Exchange (ETDEWEB)

    Beerten, K.

    2011-05-15

    The report briefly describes the main features of the physical geography of the Nete basin (Campine region, Belgium) and its immediate surroundings. First, an integrated overview of the topography, morphology and hydrography is given. This overview serves as the basis for the assessment of the morphological stability of the region and also explains the relationship between the topography and the hydrology. Furthermore, special attention is paid to soil science including a quantitative survey of some soil characteristics data. Another part of this report deals with erosion processes caused by water and wind action, and the (potential) impact on the morphology. Finally, the palaeogeographical evolution during the Quaternary is discussed. This evolution shows that the environment is stable over 10 000 years or more in the current and similar climatic conditions. Altering climatic conditions, notably glacial-interglacial periods, have impacted erosion with periods of strong erosion.

  7. Development and Environment: An Assessment of Population Growth vis-a-vis Soil Erosion in Nepal

    Directory of Open Access Journals (Sweden)

    Rishikesh Pandey

    2014-05-01

    Full Text Available This paper discusses the environmental myths and narratives prevailing in Nepal in reference to the population growth and soil erosion. Soil erosion is taken as primary element of environmental degradation by the theory of the Himalayan Environmental Degradation (HED. Many myths and narratives were generated by the vested interest groups to develop the HED. Population growth and over exploitation of natural resource were considered as the prominent causes of soil erosion related environmental degradation. The myths and narratives based on the theory of the HED are still influential in development and environmental policy process in Nepal. In this background this paper highlights some of the research findings that are contrary to conventional belief i.e. population growth lead to soil erosion. The paper is based on literature review. The research evidences from both social and natural sciences are entertained. This paper generates alternative thinking to end the hegemony and unquestionable acceptance of the findings of research undertaken by 'Western, White men' as truth; and their recommendations as the 'blue print' solutions. Critics over orthodox environmentalism and neo-Malthusian accounts are made to validate the ‘hybrid knowledge’ generated in this paper. There are evidences that population pressure have promoted soil erosion. However, Himalayan environmental dynamism which is purely a natural process is far more responsible for soil erosion in the Himalaya. Hence, it is suggested that a critical assessment of any ‘facts’ obtained from research should be made before making them the narratives and reflecting them in policy process. DOI: http://dx.doi.org/10.3126/dsaj.v7i0.10442 Dhaulagiri Journal of Sociology and Anthropology Vol. 7, 2013; 173-196

  8. Sorption, degradation and mobility of ptaquiloside, a carcinogenic Bracken (Pteridium sp.) constituent, in the soil environment

    DEFF Research Database (Denmark)

    Rasmussen, Lars Holm; Lauren, Denis; Hansen, Hans Christian Bruun

    2005-01-01

    very low sorption affinity with distribution coefficients in the range 0.01–0.22 l kg1 at a solution concentration of 1 mg l1 except for the most acid soil; Freundlich affinity coefficients increased linearly with clay and organic matter contents. Negligible sorption was also observed in column studies......Ptaquiloside (PTA) is a carcinogenic norsesquiterpene glucoside produced by Bracken in amounts up to at least 13 500 mg m2. The toxin is transferred from Bracken to the underlying soil from where it may leach to surface and groundwaters impairing the quality of drinking water. The objectives...

  9. Effects of water application intensity of microsprinkler irrigation on water and salt environment and crop growth in coastal saline soils

    Institute of Scientific and Technical Information of China (English)

    CHU Lin-lin; KANG Yao-hu; WAN Shu-qin

    2015-01-01

    Laboratory and ifeld experiments were conducted to investigate the effects of water application intensity (WAI) on soil salinity management and the growth ofFestuca arundinacea (festuca) under three stages of water and salt management strategies using microsprinkler irrigation in Hebei Province, North China. The soil water content (è) and salinity of homogeneous coastal saline soils were evaluated under different water application intensities in the laboratory experiment. The results indicated that the WAI of microsprinkler irrigation inlfuenced theè, electrical conductivity (ECe) and pH of saline soils. As the WAI increased, the average values ofè and ECe in the 0–40 cm proifle also increased, while their average values in the 40–60 cm proifle decreased. The pH value also slightly decreased as depth increased, but no signiifcant differences were observed between the different treatments. The time periods of the water redistribution treatments had no obvious effects. Based on the results forè, ECe and pH, a smaler WAI was more desirable. The ifeld experiment was conducted after being considered the results of the technical parameter experiment and evaporation, wind and leaching duration. The ifeld experiment included three stages of water and salt regulation, based on three soil matric potentials (SMP), in which the SMP at a 20-cm depth below the surface was used to trigger irrigation. The results showed that the microsprinkler irrigation created an appropriate environment for festuca growth through the three stages of water and salt regulation. The low-salinity conditions that occurred at 0–10 cm depth during the ifrst stage (−5 kPa) continued to expand through the next two stages. The average pH value was less than 8.5. The tiler number of festuca increased as SMP decreased from the ifrst stage to the third stage. After the three stages of water and salt regulation, the highly saline soil gradualy changed to a low-saline soil. Overal, based on the

  10. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants.

    Science.gov (United States)

    Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K

    2012-08-02

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions.

  11. Current developments in soil water sensing for climate, environment, hydrology and agriculture

    Science.gov (United States)

    Knowledge of the four dimensional spatio-temporal status and dynamics of soil water content is becoming indispensable to solutions of agricultural, environmental, climatological and engineering problems at all scales. In agronomy alone, science is severely limited by scant or inaccurate knowledge of...

  12. Cropping systems and control of soil erosion in a Mediterranean environment

    Science.gov (United States)

    Cosentino, Salvatore; Copani, Venera; Testa, Giorgio; Scalici, Giovanni

    2013-04-01

    The research has been carried out over the years 1996-2010 in an area of the internal hill of Sicily region (Enna, c.da Geracello, 550 m a. s. l. 37° 23' N. Lat, 14° 21' E. Long) in the center of Mediterranean Sea, mainly devoted to durum wheat cultivation, using the experimental plots, established in 1996 on a slope of 26-28%, equipped to determine surface runoff and soil losses. The establishment consists of twelve plots, having 40 m length and 8 m width. In order to study the effect of different field crop systems in controlling soil erosion in slopes subjected to water erosion, the following systems were studied: permanent crops, tilled annual crops, no-tilled annual crops, set-aside. The used crops were: durum wheat, faba bean, rapeseed, subterranean clover, Italian ryegrass, alfalfa, sweetvetch, moon trefoil, barley, sweet sorghum, sunflower. The results pointed out that the cropping systems with perennial crops allowed to keep low the soil loss, while annual crop rotation determined a high amount of soil loss. Sod seeding showed promising results also for annual crop rotations.

  13. Review of cadmium transfers from soil to humans and its health effects and Jamaican environment

    Energy Technology Data Exchange (ETDEWEB)

    Lalor, Gerald C. [International Centre for Environmental and Nuclear Sciences, University of the West Indies Mona, Kingston 7 (Jamaica)], E-mail: gerald.lalor@uwimona.edu.jm

    2008-08-01

    Concerns about the effects of cadmium on human health have led to numerous guidelines and regulations limiting its concentrations in soils and food and allowable human intakes. These have socio-economic consequences in terms of land use and the marketing of food. The bauxite soils in Jamaica, which are both aluminium ores and agricultural soils contain orders of magnitude higher than world normal concentrations of cadmium resulting in elevated Cd concentrations in several foodstuffs and significant transfers to humans, which would seem to represent a risk factor for increased mortality and/or morbidity in the local populations. But, as in Shipham and other examples, there is no evidence of cadmium-related human distress. Macro-indicators like life expectancy and median ages of death do not show cadmium related geographical distributions. The present review focuses on the soils and foods and illnesses of high incidence especially cancers and renal disease that have been traditionally associated with cadmium. In view of the remarkable concentrations of cadmium involved in Jamaica, and often contradictory reports in the literature, it appears that much remains to be learned about certain details of cadmium toxicity.

  14. Review of cadmium transfers from soil to humans and its health effects and Jamaican environment.

    Science.gov (United States)

    Lalor, Gerald C

    2008-08-01

    Concerns about the effects of cadmium on human health have led to numerous guidelines and regulations limiting its concentrations in soils and food and allowable human intakes. These have socio-economic consequences in terms of land use and the marketing of food. The bauxite soils in Jamaica, which are both aluminium ores and agricultural soils contain orders of magnitude higher than world normal concentrations of cadmium resulting in elevated Cd concentrations in several foodstuffs and significant transfers to humans, which would seem to represent a risk factor for increased mortality and/or morbidity in the local populations. But, as in Shipham and other examples, there is no evidence of cadmium-related human distress. Macro-indicators like life expectancy and median ages of death do not show cadmium related geographical distributions. The present review focuses on the soils and foods and illnesses of high incidence especially cancers and renal disease that have been traditionally associated with cadmium. In view of the remarkable concentrations of cadmium involved in Jamaica, and often contradictory reports in the literature, it appears that much remains to be learned about certain details of cadmium toxicity.

  15. Evaluating pasture and soil allowance of manganese for Kajli rams grazing in semi-arid environment.

    Science.gov (United States)

    Khan, Zafar Iqbal; Ahmad, Kafeel; Ashraf, Muhammad; Naqvi, Syed Ali Hassan; Seidavi, Alireza; Akram, Nudrat Aisha; Laudadio, Vito; Tufarelli, Vincenzo

    2015-03-01

    The current research on the manganese (Mn) transfer from soil to plant as well as to grazing Kajli rams in the form of sampling periods was carried out under semi-arid environmental conditions. Forage, soil and blood plasma samples were collected during 4 months of the year after a 1-month interval, and Mn concentrations were assessed after wet digestion using an atomic absorption spectrophotometer. Results showed that Mn concentration in soil ranged from 48.28 to 59.44 mg/kg, with incoherent augment and decline across sampling periods, and effect of sampling period on soil Mn was also found to be significant (P crop requirement. The Mn concentration in forage ranged between 24.8 and 37.2 mg/kg, resulting deficient based on the requirement allowance of Mn for livestock grazing animals, therein with almost unchanged forage Mn concentration. The Mn values in blood plasma of rams varied from 0.066 to 0.089 mg/l, with a consistent increase based on sampling period, and the effect of sampling periods on plasma Mn was found to be highly significant (P crop residues and mixed pasture and a pronounced seasonal supply of Mn at the four sampling period of grazing land of diverse botanical composition.

  16. Nature and extent of metal-contaminated soils in urban environments (keynote talk).

    Science.gov (United States)

    Mielke, Howard W

    2016-08-01

    Research on the nature and extent of metal-contaminated soil began with an urban garden study in Baltimore, MD (USA). Largest quantities of soil metals were clustered in the inner city with lesser amounts scattered throughout metropolitan Baltimore. The probability values of metal clustering varied from P value 10(-15)-10(-23) depending on element. The inner-city clustering of lead (Pb) could not be explained by Pb-based paint alone. A major Pb source was tetraethyl lead (TEL), developed as an anti-knock agent for use in vehicle fuel, thereby making highway traffic flow a toxic substance delivery system in cities. Further study in Minneapolis and St. Paul confirmed the clustering of inner-city soil metals, especially Pb. Based on the evidence, the Minnesota State Legislature petitioned Congress to curtail Pb additives resulting in the rapid phasedown of TEL on January 1, 1986, 10 years ahead of the EPA scheduled ban. Further research in New Orleans, Louisiana (NOLA), verified the link between soil Pb, blood Pb, morbidity, and societal health. Although Pb is a known cause of clinical impairment, there is no known effective medical intervention for reducing children's blood Pb exposure. Ingestion and inhalation are routes of exposure requiring prevention, and soil is a reservoir of Pb. Children's blood Pb exposure observed in pre-Hurricane Katrina (August 29, 2005) NOLA underwent substantial decreases 10 years post-Katrina due to many factors including input of low Pb sediment residues by the storm surge and the introduction of low Pb landscaping materials from outside of the city. Investigation on the topic is ongoing.

  17. Occurrence of soil erosion after repeated experimental fires in a Mediterranean environment

    Science.gov (United States)

    Campo, J.; Andreu, V.; Gimeno-García, E.; González, O.; Rubio, J. L.

    2006-12-01

    In the Mediterranean area, forest fires have become a first-order environmental problem. Increased fire frequency progressively reduces ecosystem recovery periods. The fire season, usually followed by torrential rains in autumn, intensifies erosion processes and increases desertification risk. In this work, the effect of repeated experimental fires on soil response to water erosion is studied in the Permanent Field Station of La Concordia, Valencia, Spain. In nine 80 m 2 plots (20 m long × 4 m wide), all runoff and sediment produced were measured after each rainfall event. In 1995, two fire treatments with the addition of different biomass amounts were applied. Three plots were burned with high fire intensity, three with moderate intensity, and three were unburned to be used as control. In 2003, the plots with the fire treatments were burned again with low fire intensities. During the 8-year interval between fires, plots remained undisturbed, allowing regeneration of the vegetation-soil system. Results obtained during the first 5 months after both fire experiments show the high vulnerability of the soil to erosion after a repeated fire. For the burned plots, runoff rates increased three times more than those of 1995, and soil losses increased almost twice. The highest sediment yield (514 g m - 2 ) was measured in 2003, in the plots of the moderate fire intensity treatment, which yielded only 231 g m - 2 of sediment during the corresponding period in 1995. Runoff yield from the control plots did not show significant temporal changes, while soil losses decreased from 5 g m - 2 in the first post-fire period to 0.7 g m - 2 in the second one.

  18. Research on Two Types of Buffer Zone Impact on Surrounding Office Space Environment in Winter in Cold Climate Zone-a Fieldwork in Architectural Design Institute Building of Tsinghua University, Beijing

    Institute of Scientific and Technical Information of China (English)

    YeHao Song; JunJie Li; Ning Zhu; JiaLiang Wang; ShiMeng Hao

    2014-01-01

    Building buffer zone space is not only one of essential approaches for better mental quality of interior building space, but also an important factor that may influence interior thermal comfort and energy consumption. This study aims to analyze regulative advantages of buffer zone to the surrounding functional spaces. Based on a fieldwork test in a typical office building in cold climate zone in Beijing, China, the monitor data show interior physical performance in the Winter. The research selects two types of different buffer zones in the same building. One is a south⁃faced greenhouse which has large dimension with plenty of vegetation, and the other is a simple atrium in the middle of five floor building with mount of skylights. The factors and their influence to surrounding functional spaces and the whole building are found out from the comparisons of collected data by floor to floor monitor test on both buffer zones at the same time. The comparisons of two types of buffer zones conclude that the greenhouse is more effective to air quality regulation but not so clearly well⁃performed to thermal buffering as expected due to the dominate active central heating in the Winter. This fieldwork test results for building performance can be helpful for both architects and engineers in the early phase of sustainable design.

  19. Soil nitrogen balance assessment and its application for sustainable agriculture and environment

    Institute of Scientific and Technical Information of China (English)

    Rabindra; Nath; Roy

    2005-01-01

    [1]United Nations,World Population Prospects:The 1998 Revision,New York,1999.[2]FAO,Fertilizer Requirements in 2015 and 2030,Rome:FAO,2000.[3]IPCC,Climate Change 1995:The Science of Climate Change,Cambridge:Cambridge University Press,1996.[4]USEPA Impact Assessment Report US EPA,Office of Policy,Planning and Evaluation,Washington,DC,1997.[5]IFA/FAO,Global estimates of gaseous emissions of NH3,NO and N2O from agricultural land,Rome,2001.[6]Stoorvogel,J.J.,Smaling,E.M.A.,Assessment of Soil Nutrient Depletion in Sub-Saharan Africa:1983-2000.Report 28,Wageningen:Winland Staring Centre,1990.[7]Pieri,C.,Bilans minéraux des systèmes de cultures pluviales en zones arides et semi-arides,L'Agron.Trop.,1985,40:1 -20.[8]Henao,J.,Baanante,C.,Estimating Rates of Nutrient Depletion in Soils of Agriculture Lands in Africa,Muscle Shoals:International Fertilizer Development Center,1999.[9]OECD,OECD National Soil Surface Nitrogen Balances-Explanatory Notes,Paris:OECD Secretariat,200la.[10]OECD,Environmental Indicators for Agriculture,Volume 3:Methods and Results,Paris:OECD Secretariat,200lb.[11]Sheldrick,W.F.,Syers,J.K.,Lingard,J.,A conceptual model for conducting nutrient audits at national,regional,and global scales,Nut.Cyc.Agroecosys.,2002,62:61-72.[12]Sheldrick,W.F,Syers,J.K.,Lingard,J.,Soil nutrient audits for China to estimate nutrient balances and output/input relationships,Ag.Ecosys.Env.,2003a,94:341-354.[13]FAO,Scaling soil nutrient balances-enabling mesolevel applications for African realities,in Fertilizer and Plant Nutrition Bull.15,Rome:FAO,2004.[14]IFA/IFDC/FAO,Fertilizer Use by Crop,4th ed.,Rome:IFA/IFDC/FAO,2000.[15]De Willigen,P.,An analysis of the calculation of leaching and denitrification losses as practised in the NUTMON approach.Report 18,Wageningen:Plant Research International,2000.[16]Schoorl,J.M.,Veldkamp,A.,Bouma,J.,Modelling water and soil redistribution in a dynamic landscape context,Soil Sci.Soc.Am.,2002,66:1610- 1619.[17]Smaling,E

  20. Plasmid profiles of virulent Rhodococcus equi isolates from soil environment on horse-breeding farms in Hungary.

    Science.gov (United States)

    Makrai, L; Kira, K; Kono, A; Sasaki, Y; Kakuda, T; Tsubaki, S; Fodor, L; Varga, J; Taka, S

    2006-03-01

    The plasmid profiles of virulent Rhodococcus equi strains isolated on three horse-breeding farms located in different parts of Hungary were investigated. From 49 soil samples collected on the three farms, 490 R. equi isolates (10 from each sample) were obtained and tested for the presence of 15- to 17-kDa antigens (VapA) by immunoblotting and PCR. Ninety-eight VapA-positive isolates were detected from 30 of the 49 culture-positive samples with a prevalence ranging from 13.1% to 23.2%. Of the 98 virulent isolates, 70 contained an 85-kb type I plasmid, 13 contained an 87-kb type I plasmid, and 15 contained an 85-kb type III plasmid which had been uniquely isolated from soil isolates in the United States. This study demonstrates that the virulent form of R. equi is very widespread in the soil environment of these stud farms in Hungary and the plasmid pattern is different from farm to farm.

  1. Seed Priming with Polyethylene Glycol Induces Physiological Changes in Sorghum (Sorghum bicolor L. Moench) Seedlings under Suboptimal Soil Moisture Environments

    Science.gov (United States)

    Zhang, Fei; Yu, Jialin; Johnston, Christopher R.; Wang, Yanqiu; Zhu, Kai; Lu, Feng; Zhang, Zhipeng; Zou, Jianqiu

    2015-01-01

    Osmopriming with PEG has potential to improve seed germination, seedling emergence, and establishment, especially under stress conditions. This research investigated germination performance, seedling establishment, and effects of osmopriming with PEG on physiology in sorghum seedlings and their association with post-priming stress tolerance under various soil moisture stress conditions. Results showed that seed priming increased the environmental range suitable for sorghum germination and has potential to provide more uniform and synchronous emergence. Physiologically, seed priming strengthened the antioxidant activities of APX, CAT, POD, and SOD, as well as compatible solutes including free amino acid, reducing sugar, proline, soluble sugar, and soluble protein contents. As a result, seed priming reduced lipid peroxidation and stabilized the cell membrane, resulting in increased stress tolerance under drought or excessive soil moisture environments. Overall, results suggested that seed priming with PEG was effective in improving seed germination and seedling establishment of sorghum under adverse soil moisture conditions. Osmopriming effectively strengthened the antioxidant system and increased osmotic adjustment, likely resulting in increased stress tolerance. PMID:26469084

  2. VNIR-SWIR-TIR hyperspectral airborne campaign for soil and sediment mapping in semi-arid south african environments

    Science.gov (United States)

    Milewski, Robert; Chabrillat, Sabine; Eisele, Andreas

    2016-04-01

    Airborne hyperspectral remote sensing techniques has been proven to offer efficient procedures for soil and sediment mineralogical mapping in arid areas on larger scales. Optical methods based on traditional remote sensing windows using the solar reflective spectral wavelength range from the visible-near infrared (VNIR: 0.4-1.1 μm) to the short-wave infrared region (SWIR: 1.1-2.5 μm) allow mapping of common soil properties such as iron oxides, textural characteristics and organic carbon. However, soil mapping in semi-arid environments using VNIR-SWIR is currently limited due to specific spectral characteristics. Challenges appear in such environments due to the common presence of sandy soils (coarse textured) which grain size distribution is driven by the dominant mineral, quartz (SiO2), and which lacks any distinctive Si-O bond related spectral features within the VNIR-SWIR. Furthermore, another challenge is represented by the common presence of other specific spectral features due to different salts (gypsum, halite) or coatings of different forms (cyanobacteria, iron-oxides and/or -oxyhydroxides) for which few studies exists or that oft prevent detection of any other potential spectral feature of e.g. soil organics. In this context, more methodological developments are needed to overcome current limitations of hyperspectral remote sensing for arid areas, and to extent its scope using the thermal infrared (TIR) wavelength region within the atmospheric window between 8 and 14 μm (longwave infrared). In 2015 an extensive VNIR-SWIR-TIR airborne hyperspectral dataset consisting of HySpex-VNIR, HySpex-SWIR (NEO) and Hyper-Cam (TELOPS) data has been acquired in various Namibian and South African landscapes part of the Dimap/GFZ campaign in the frame of the BMBF-SPACES Geoarchive project. Research goals are 1) to demonstrate the capabilities to extract information from such a dataset and 2) to demonstrate the potential of advanced hyperspectral remote sensing

  3. Evaluation of copper, zinc, and chromium concentration in landfill soil and hospital waste ash of Shahrekord municipal solid waste landfill

    Directory of Open Access Journals (Sweden)

    M Hatami Manesh

    2015-08-01

    Conclusion: High concentrations of metals determined in the present study represents the high application of these metals in the structure of municipal and hospital solid wastes and also their inaccurate separation. Thus, awareness about physical and chemical characteristics of municipal and hospital wastes and also the landfill soil is necessary for evaluating their effects on the soil quality and surrounding environments.

  4. Soil carbon dynamics during secondary succession in a semi-arid Mediterranean environment

    OpenAIRE

    A. Novara; L. Gristina; Mantia, T.; J. Rühl

    2011-01-01

    Clarifying which factors cause an increase or decrease in soil organic carbon (SOC) after agricultural abandonment requires integration of data on the temporal dynamics of the plant community and SOC. A chronosequence of abandoned vineyards was studied on a volcanic island (Pantelleria, Italy). Vegetation in the abandoned fields was initially dominated by annual and perennial herbs, then by Hyparrhenia hirta (L.) Stapf, and finally by woody communities. As a consequence, th...

  5. Assessment of soil parent material formation in periglacial environments through medium scale landscape evolution modelling

    Science.gov (United States)

    Bock, M.; Günther, A.; Ringeler, A.; Baritz, R.; Böhner, J.

    2012-04-01

    Soil parental materials represent the weathering product of any surficial geological substrates comprising in-situ fragmented and dissolved rocks, unconsolidated sediments of various types and origins, or even paleosoils. Weathering, erosion, transport and accumulation processes of geological materials governing the formation of soil parent materials display a highly complex non-linear behaviour at larger spatial scales over smaller geological time periods (model (LEM) for the spatiotemporal investigation of soil parent material evolution following a lithologically differentiated approach. The well-established LEM tool GOLEM has been adapted and realized as a module for the open-source GIS SAGA to operate in a spatially distributed framework, taking advantage of the highly developed capabilities of SAGA for morphometric digital terrain analysis. The LEM is driven by high-resolution paleo-climatic data (temperature, precipitation) representative for periglacial areas in Northern Germany over the last 50.000 years. The initial conditions of the LEM are determined for a test site by a digital terrain model and a geological model. The geological model was parameterized through geological field data derived from rock mass rating procedures and soft sediment analyses to account for a lithologically differentiated LEM set up with respect to first-order mechanical properties of both rock-type and unconsolidated lithologies. Weathering, erosion and transport functions of the LEM are calibrated using the extrinsic (climatic) and intrinsic (lithology) parameter data. First results indicate that our differentiated LEM-based approach displays some evidence for the spatiotemporal prediction of important soil parental material properties (e.g., thickness, structure, texture, and composition). However, the results have to be validated against field data, and the influence of discrete events (landslides, floods) has to be evaluated.

  6. Sources of organochlorine pesticides in air in an urban Mediterranean environment: volatilisation from soil.

    Science.gov (United States)

    Lammel, Gerhard; Klánová, Jana; Erić, Ljiljana; Ilić, Predrag; Kohoutek, Jiří; Kovacić, Igor

    2011-12-01

    Organochlorine pesticide (OCP) cycling was studied in the area of Banja Luka, Bosnia and Herzegovina, over 3 days in summer with high temporal (4 h-means) and spatial (3 sites distanced 3-6 km) resolutions. Elevated levels of DDX compounds (i.e. o,p'- and p,p'-isomers of DDT, DDE and DDD, 44-74 pg m(-3) at the urban sites and 27 pg m(-3) as a background level), HCH (α-, β- and γ-isomers, 52-70 vs. 147 pg m(-3)), HCB (34-48 vs. <0.1 pg m(-3)) and pentachlorobenzene (6.8-9.9 vs. 6.0 pg m(-3)) were found. The variation of OCP levels at the two urban sites was not in phase, except for most DDX compounds. This was related to background levels, which for HCH were higher than in the urban area. Vertical profiles between samples collected from 1.1 and 2.3 m (part of the time 0.6 and 2.3 m) above a soil, which was only moderately contaminated by OCPs (0.12 ng g(-1) HCH, 0.11 ng g(-1) DDX, 0.44 ng g(-1) HCB) were analysed. Volatilisation from the ground caused negative vertical concentration gradients of HCH isomers (day and night), but not for HCB (except for 1 day-time sample) and DDX compounds (except p,p'-DDD, day-time, sporadically). The concentration in air and the vertical concentration gradient of the HCH isomers varied with air temperature (day-time maxima), while the variation of the HCB concentration was inversely related to air temperature and was determined by mixing (night-time maxima). α- and β-HCH were volatilised from soil throughout the three days, even during periods of cooling. Fugacity calculations, based on the absorption in soil organic matter as the process determining retention in soil, underestimated the volatilisation of β-HCH and p,p'-DDD. It is concluded that the representativeness of point measurements of OCPs in urban areas is limited by the spatial variability of soil contamination.

  7. Visual Surround Suppression in Schizophrenia

    Science.gov (United States)

    Tibber, Marc S.; Anderson, Elaine J.; Bobin, Tracy; Antonova, Elena; Seabright, Alice; Wright, Bernice; Carlin, Patricia; Shergill, Sukhwinder S.; Dakin, Steven C.

    2013-01-01

    Compared to unaffected observers patients with schizophrenia (SZ) show characteristic differences in visual perception, including a reduced susceptibility to the influence of context on judgments of contrast – a manifestation of weaker surround suppression (SS). To examine the generality of this phenomenon we measured the ability of 24 individuals with SZ to judge the luminance, contrast, orientation, and size of targets embedded in contextual surrounds that would typically influence the target’s appearance. Individuals with SZ demonstrated weaker SS compared to matched controls for stimuli defined by contrast or size, but not for those defined by luminance or orientation. As perceived luminance is thought to be regulated at the earliest stages of visual processing our findings are consistent with a suppression deficit that is predominantly cortical in origin. In addition, we propose that preserved orientation SS in SZ may reflect the sparing of broadly tuned mechanisms of suppression. We attempt to reconcile these data with findings from previous studies. PMID:23450069

  8. The soil environment of the intertidal area in the Westerschelde Netherlands Belgium

    NARCIS (Netherlands)

    Oenema, O.; Steneker, R.; Reynders, J.

    1988-01-01

    hydrodynamic forces and sediment discharges determine the sedimentary environment and surface morphology of the intertidal area in the Westerschelde estuary in the S.W. Netherlands. Sandflats (clay, content < 8%) are found in the central part, mudfla

  9. Spatial Interpolation of Soil Texture Using Compositional Kriging and Regression Kriging with Consideration of the Characteristics of Compositional Data and Environment Variables

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shi-wen; SHEN Chong-yang; CHEN Xiao-yang; YE Hui-chun; HUANG Yuan-fang; LAI Shuang

    2013-01-01

    The spatial interpolation for soil texture does not necessarily satisfy the constant sum and nonnegativity constraints. Meanwhile, although numeric and categorical variables have been used as auxiliary variables to improve prediction accuracy of soil attributes such as soil organic matter, they (especially the categorical variables) are rarely used in spatial prediction of soil texture. The objective of our study was to comparing the performance of the methods for spatial prediction of soil texture with consideration of the characteristics of compositional data and auxiliary variables. These methods include the ordinary kriging with the symmetry logratio transform, regression kriging with the symmetry logratio transform, and compositional kriging (CK) approaches. The root mean squared error (RMSE), the relative improvement value of RMSE and Aitchison’s distance (DA) were all utilized to assess the accuracy of prediction and the mean squared deviation ratio was used to evaluate the goodness of fit of the theoretical estimate of error. The results showed that the prediction methods utilized in this paper could enable interpolation results of soil texture to satisfy the constant sum and nonnegativity constraints. Prediction accuracy and model fitting effect of the CK approach were better, suggesting that the CK method was more appropriate for predicting soil texture. The CK method is directly interpolated on soil texture, which ensures that it is optimal unbiased estimator. If the environment variables are appropriately selected as auxiliary variables, spatial variability of soil texture can be predicted reasonably and accordingly the predicted results will be satisfied.

  10. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants

    OpenAIRE

    Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K.

    2012-01-01

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth ind...

  11. 模拟沼液灌溉对紫色土土壤环境的影响%Impact of Simulated Biogas Slurry Irrigation on Soil Environment in Purple Soil

    Institute of Scientific and Technical Information of China (English)

    王昊川; 史秋萍; 陈玉成

    2013-01-01

    The soil incubation method was used to study the impact of biogas slurry irrigation on soil environment in purple soil.The results showed that after the biogas slurry irrigation,the soil pH increased,but it tended to be stable with the increase of irrigation time.This indicated that the biogas slurry irrigation could effectively control soil acidification.Soil TN content and TP content increased,but soil TP content increased slowly with increasing irrigation time,soil TN content initially increased and then decreased with increasing irrigation time.Biogas slurry irrigation in dry farming mode could increase a spot of soil organic matter content,but in the mode of rice soil organic matter content had a little decrease.The soil heavy metals such as Cu,Zn,Pb,Cd content changed little,which they did not exceed the national soil environment secondary standard after biogas slurry irrigation.Results indicated that biogas slurry irrigation did not cause heavy metal pollution in soil environment during a certain period of time.%采用土壤培养方法研究沼液灌溉对紫色土土壤环境的影响.结果表明,沼液灌溉后土壤pH值有所增加,但随灌溉时间增加会基本趋于稳定,沼液灌溉能够有效防治土壤酸化;土壤TN、TP含量在沼液灌溉后均有增加,但土壤TP含量随灌溉时间增加缓慢增加,土壤TN含量增加一段时间后达到最大值,随后呈下降趋势;旱作模式下沼液灌溉会使土壤有机质含量稍微增加,但水稻模式下有机质含量有少量下降;沼液灌溉后土壤重金属Cu、Zn、Pb、Cd的含量变化均不大,都未超过国家土壤环境二级标准,沼液灌溉在一定时期内不会引起土壤环境重金属污染.

  12. Impacts of manure application on soil environment, rainfall use efficiency and crop biomass under dryland farming

    Science.gov (United States)

    Wang, Xiaojuan; Jia, Zhikuan; Liang, Lianyou; Yang, Baoping; Ding, Ruixia; Nie, Junfeng; Wang, Junpeng

    2016-02-01

    Because of inadequate nutrient and water supply, soils are often unproductive in Northwest China. We studied the effects of manure application at low (LM 7.5  t ha–1), medium (MM 15 t ha–1), and high (HM 22.5 t ha–1) rates combined with fixed levels of chemical fertilizers on maize growth and rainfall use efficiency compared with chemical fertilizers (CK) under semi-arid conditions over a three-year period. HM and MM treatments could significantly increase soil water storage (0–120 cm) at tasseling stage of maize compared with LM treatment and CK (P efficiency increased as manure application rate increasing (P efficiency by 6.5–12.7% at big trumpeting – tasseling stage compared with LM and MM treatments. HM and MM treatments increased rainfall use efficiency by 8.6–18.1% at tasseling – grain filling stage compared with CK. There was no significant difference on biomass between HM and MM treatments at grain filling and maturity stages of maize in 2009 and 2010.

  13. Changes in soil bacterial communities induced by the invasive plant Pennisetum setaceum in a semiarid environment

    Science.gov (United States)

    Rodriguez-Caballero, Gema; Caravaca, Fuensanta; del Mar Alguacil, María; Fernández-López, Manuel; José Fernández-González, Antonio; García-Orenes, Fuensanta; Roldán, Antonio

    2016-04-01

    Invasive alien species are considered as a global threat being among the main causes of biodiversity loss. Plant invasions have been extensively studied from different disciplines with the purpose of identifying predictor traits of invasiveness and finding solutions. However, less is known about the implication of the rhizosphere microbiota in these processes, even when it is well known the importance of the interaction between plant rhizosphere and microbial communities. The objective of this study was to determine whether native and invasive plants support different bacterial communities in their rhizospheres and whether there are bacterial indicator species that might be contributing to the invasion process of these ecosystems. We carried out a study in five independent locations under Mediterranean semiarid conditions, where the native Hyparrhenia hirta is being displaced by Pennisetum setaceum, an aggressive invasive Poaceae and soil bacterial communities were amplified and 454-pyrosequenced. Changes in the composition and structure of the bacterial communities, owing to the invasive status of the plant, were detected when the richness and alpha-diversity estimators were calculated as well as when we analyzed the PCoA axes scores. The Indicator Species Analysis results showed a higher number of indicators for invaded communities at all studied taxonomic levels. In conclusion, the effect of the invasiveness and its interaction with the soil location has promoted shifts in the rhizosphere bacterial communities which might be facilitating the invader success in these ecosystems.

  14. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment

    NARCIS (Netherlands)

    Elsas, van J.D.; Duarte, G.F.; Rosado, A.S.; Smalla, K.

    1998-01-01

    As the use of biotechnology products, such as genetically modified microorganisms (GMMs), in the environment might bring about undesirable ecological effects, it is important that the environmental fate of inoculant organisms, as well as any effects of their release, are assessed. Ideally, pilot stu

  15. Thermal Conductivity of Pyroclastic Soil ( Pozzolana) from the Environs of Rome

    Science.gov (United States)

    McCombie, M. L.; Tarnawski, V. R.; Bovesecchi, G.; Coppa, P.; Leong, W. H.

    2017-02-01

    The paper reveals the experimental procedure and thermo-physical characteristics of a coarse pyroclastic soil ( Pozzolana), from the neighborhoods of Rome, Italy. The tested samples are comprised of 70.7 % sand, 25.9 % silt, and 3.4 % clay. Their mineral composition contained 38 % pyroxene, 33 % analcime, 20 % leucite, 6 % illite/muscovite, 3 % magnetite, and no quartz content was noted. The effective thermal conductivity of minerals was assessed to be about 2.14 W{\\cdot } m^{-1}{\\cdot } K^{-1}. A transient thermal probe method was applied to measure the thermal conductivity (λ ) over a full range of the degree of saturation (Sr), at two porosities ( n) of 0.44 and 0.50, and at room temperature of about 25°C. The λ data obtained were consistent between tests and showed an increasing trend with increasing Sr and decreasing n. At full saturation (Sr=1), a nearly quintuple λ increase was observed with respect to full dryness (Sr=0). In general, the measured data closely followed the natural trend of λ versus Sr exhibited by published data at room temperature for other unsaturated soils and sands. The measured λ data had an average root-mean-squared error (RMSE) of 0.007 W{\\cdot } m^{-1}{\\cdot } K^{-1} and 0.008 W{\\cdot } m^{-1}{\\cdot } K^{-1} for n of 0.50 and 0.44, respectively, as well as an average relative standard deviation of the mean at the 95 % confidence level (RSDM_{0.95}) of 2.21 % and 2.72 % for n of 0.50 and 0.44, respectively.

  16. Fate and Phytotoxicity of CeO2 Nanoparticles on Lettuce Cultured in the Potting Soil Environment.

    Science.gov (United States)

    Gui, Xin; Zhang, Zhiyong; Liu, Shutong; Ma, Yuhui; Zhang, Peng; He, Xiao; Li, Yuanyuan; Zhang, Jing; Li, Huafen; Rui, Yukui; Liu, Liming; Cao, Weidong

    2015-01-01

    Cerium oxide nanoparticles (CeO2 NPs) have been shown to have significant interactions in plants. Previous study reported the specific-species phytotoxicity of CeO2 NPs by lettuce (Lactuca sativa), but their physiological impacts and vivo biotransformation are not yet well understood, especially in relative realistic environment. Butterhead lettuce were germinated and grown in potting soil for 30 days cultivation with treatments of 0, 50, 100, 1000 mg CeO2 NPs per kg soil. Results showed that lettuce in 100 mg·kg-1 treated groups grew significantly faster than others, but significantly increased nitrate content. The lower concentrations treatment had no impact on plant growth, compared with the control. However, the higher concentration treatment significantly deterred plant growth and biomass production. The stress response of lettuce plants, such as Superoxide dismutase (SOD), Peroxidase (POD), Malondialdehyde(MDA) activity was disrupted by 1000 mg·kg-1 CeO2 NPs treatment. In addition, the presence of Ce (III) in the roots of butterhead lettuce explained the reason of CeO2 NPs phytotoxicity. These findings demonstrate CeO2 NPs modification of nutritional quality, antioxidant defense system, the possible transfer into the food chain and biotransformation in vivo.

  17. Evaluation of the soil-seed environment through computerized tomography; Avaliacao do ambiente solo-semente por meio da tomografia computadorizada

    Energy Technology Data Exchange (ETDEWEB)

    Modolo, Alcir Jose [Universidade Tecnologica Federal do Parana (UTFPR), Pato Branco, PR (Brazil)). E-mail: alcir@ufpr.edu.br; Fernandes, Haroldo Carlos [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola]. E-mail: haroldo@ufv.br; Naime, Joao de Mendonca [Embrapa Instrumentacao Agropecuaria, Sao Carlos, SP (Brazil)]. E-mail: naime@cnpdia.embrapa.br; Schaefer, Carlos Ernesto G.R. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Solos]. E-mail: carlos.schaefer@ufv.br; Santos, Nerilson Terra [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Informatica]. E-mail: nsantos@ufv.br; Silveira, Joao Cleber Modernel da [Universidade Federal de Vicosa (UFV), MG (Brazil). Mecanizacao Agricola]. E-mail: jcmodernel@uol.com.br

    2008-03-15

    The physical conditioning of the soil around seeds is of great importance for an adequate initial development of a crop, ensuring a healthy plant population. A suitable soil-seed contact is a prerequisite for a fast crop germination and good establishment. In this study, computerized tomography of millimeter resolution was used to determine the soil-seed environment in a no tillage system, immediately after soybean planting. A split plot design was used, in which the plots consisted of three contents of soil water, corresponding to 0.27; 0,31 and 0.36 kg kg{sup -1}, respectively, and the split plots of four load levels applied by the compaction wheel, corresponding to 0, 50, 90 and 140 N, respectively. It was used a random block design, with four replications. The medium soil density in the seed area and the medium density profile in the sowing furrow were evaluated. According to the results, it may be concluded that: the loads applied by the compaction wheel increased soil density at the vertical planting level beneath planting depth as compared with values obtained before planting, and; the combination of wheel loads and soil water contents did not influence the mean soil density in the seed area. (author)

  18. Human Health Risk Assessment and Safety Threshold of Harmful Trace Elements in the Soil Environment of the Wulantuga Open-Cast Coal Mine

    Directory of Open Access Journals (Sweden)

    Jianli Jia

    2015-11-01

    Full Text Available In this study, soil samples were collected from a large-scale open-cast coal mine area in Inner Mongolia, China. Arsenic (As, cadmium (Cd, beryllium (Be and nickel (Ni in soil samples were detected using novel collision/reaction cell technology (CCT with inductively-coupled plasma mass spectrometry (ICP-MS; collectively ICP-CCT-MS after closed-vessel microwave digestion. Human health risk from As, Cd, Be and Ni was assessed via three exposure pathways—inhalation, skin contact and soil particle ingestion. The comprehensive carcinogenic risk from As in Wulantuga open-cast coal mine soil is 6.29–87.70-times the acceptable risk, and the highest total hazard quotient of As in soils in this area can reach 4.53-times acceptable risk levels. The carcinogenic risk and hazard quotient of Cd, Be and Ni are acceptable. The main exposure route of As from open-cast coal mine soils is soil particle ingestion, accounting for 76.64% of the total carcinogenic risk. Considering different control values for each exposure pathway, the minimum control value (1.59 mg/kg could be selected as the strict reference safety threshold for As in the soil environment of coal-chemical industry areas. However, acceptable levels of carcinogenic risk are not unanimous; thus, the safety threshold identified here, calculated under a 1.00 × 10−6 acceptable carcinogenic risk level, needs further consideration.

  19. Transformation of atenolol, metoprolol, and carbamazepine in soils: The identification, quantification, and stability of the transformation products and further implications for the environment.

    Science.gov (United States)

    Koba, Olga; Golovko, Oksana; Kodešová, Radka; Klement, Aleš; Grabic, Roman

    2016-11-01

    Pharmaceuticals are a large group of substances that have been recognized as environmental contaminants in recent years. Research on the pharmaceutical fate in soils is currently limited or missing. In this study, three pharmaceuticals (atenolol (ATE), carbamazepine (CAR), and metoprolol (MET)) were introduced to soils and exposed for 61 day under aerobic conditions. Thirteen different soils were used in the study to increase the understanding of pharmaceutical behaviour in the soil matrix. Ten metabolites were detected and tentatively identified. Some of them, such as atenolol acid (AAC), carbamazepine 10,11-epoxide (EPC), 10,11-dihydrocarbamazepine (DHC), trans-10,11-Dihydro-10,11-dihydroxy carbamazepine (RTC), and metoprolol acid (MAC), were consequently confirmed using commercial reference standards. It was concluded that the aerobic conditions of the experiment determined the pharmaceutical degradation pathway of studied compounds in the soils. The different amounts/rates and degradation of the transformation products can be attributed to differences in the soil properties. ATE degraded relatively quickly compared with CAR, whereas MET degradation in the soils was unclear. The persistence of CAR and its metabolites, in combination with low CAR sorption, enable the transportation of CAR and its metabolites within soils and into the ground water. Thus, CAR may cause adverse effects on the environment and humans.

  20. Toxic effects of crude-oil-contaminated soil in aquatic environment on Carassius auratus and their hepatic antioxidant defense system

    Institute of Scientific and Technical Information of China (English)

    WANG Yuanyuan; ZHOU Qixing; PENG Shengwei; MA Lena Q; NIU Xiaowei

    2009-01-01

    Under the indoor simulant conditions, toxic effects of crude-oil-contaminated soil which was put into aquatic environment on the young fishes Carassius auratus and their hepatic antioxidant system after a 20-d exposure were investigated. Results showed that the relationship between the mortality of C. auratus and the exposed doses could be divided to 3 phases: fishes exposed to the low dose groups (0.5--5.0 g/L) were dead due to the ingestion of crude-oil-contaminated soils in aquatic environment; at the medium dose groups (5.0--25.0 g/L) fishes were dead due to the penetration of toxic substances; at the high dose groups (25.0--50.0 g/L) fishes were dead due to environmental stress. The highest mortality and death speed were found in the 1.0 g/L dose group, and the death speed was sharply increased in the 50.0 g/L dose group in the late phase of the exposure. The activity of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) and the content of malaondialdehyde (MDA) in the hepatic tissues of C. auratus were induced significantly. The activity of SOD was first increased and then decreased, and was significantly inhibited in the 50.0 g/L dose group. The activity of CAT was highly induced, and restored to a little more than the control level when the exposed doses exceeded 10.0 g/L. The activity of GST was the most sensitive, it was significantly induced in all dose groups, and the highest elevation was up to 6 times in the 0.5 g/L dose group compared with the control. The MDA content was significantly elevated in the 50.0 g/L dose group, and the changes of the MDA content were opposite with the changes of the GST activity.

  1. Revisiting the concept of recalcitrance and organic matter persistence in soils and aquatic systems: Does environment trump chemistry?

    Science.gov (United States)

    Marin-Spiotta, E.

    2014-12-01

    Most ecological models of decomposition rely on plant litter chemistry. However, growing evidence suggests that the chemical composition of organic matter (OM) is not a good predictor of its eventual fate in terrestrial or aquatic environments. New data on variable decomposition rates of select organic compounds challenge concepts of chemical recalcitrance, i.e. the inherent ability of certain molecular structures to resist biodegradation. The role of environmental or "ecosystem" properties on influencing decomposition dates back to some of the earliest research on soil OM. Despite early recognition that the physical and aqueous matrices are critical in determining the fate of organic compounds, the prevailing paradigm hinges on intrinsic chemical properties as principal predictors of decay rate. Here I build upon recent reviews and discuss new findings that contribute to three major transformations in our understanding of OM persistence: (1) a shift away from an emphasis on chemical recalcitrance as a primary predictor of turnover, (2) new interpretations of radiocarbon ages which challenge predictions of reactivity, and (3) the recognition that most detrital OM accumulating in soils and in water has been microbially processed. Predictions of OM persistence due to aromaticity are challenged by high variability in lignin and black C turnover observed in terrestrial and aquatic environments. Contradictions in the behavior of lignin are, in part, influenced by inconsistent methodologies among research communities. Even black C, long considered to be one of the most recalcitrant components of OM, is susceptible to biodegradation, challenging predictions of the stability of aromatic structures. At the same time, revised interpretations of radiocarbon data suggest that organic compounds can acquire long mean residence times by various mechanisms independent of their molecular structure. Understanding interactions between environmental conditions and biological

  2. Numerical simulation and analysis of surrounding environment deformation influenced by excavation of foundation pits under complex conditions%复杂条件下基坑开挖对周边环境变形影响的数值模拟分析

    Institute of Scientific and Technical Information of China (English)

    冯晓腊; 熊宗海; 莫云; 庞建成

    2014-01-01

    For the deep foundation pit of Laopupian Commercial and Residential Building, the whole process of its excavation is simulated and analyzed by use of the finite element software PLAXIS. The situations of stress and deformation of supporting structures of foundation pit and surrounding environment under complex conditions are studied. The numerical analysis and monitoring results show that the deformations of supporting structure system of the foundation pit and the surrounding environment can meet the requirements of the specifications for deformation control. It proves that PLAXIS HS model can effectively simulate and analyze the deformation of the surrounding environment influenced by excavation of the foundation pit, and the semi-inverse method used in this project can effectively control the deformation of the surrounding environment influenced by excavation of the foundation pit under complex conditions.%以武汉老铺片商业及住宅项目深基坑工程为背景,采用有限元软件 PLAXIS 对其进行了基坑开挖全过程的数值模拟分析,结合模拟计算结果分析了复杂条件下基坑支护结构体系及周边环境的受力、变形情况。数值模拟计算及实测结果表明:支护结构、周边建(构)筑物及土体的变形均满足规范关于变形控制的要求,证明采用PlAXIS HS模型能够较好的完成复杂条件下基坑开挖对周边环境变形影响的数值模拟分析,同时也证明本工程采用的支护及半逆作施工方法,能够对复杂条件下基坑开挖对周边环境变形的影响起到有效控制作用。

  3. 北京市平谷应急水源地周边农业土壤中重金属分布及风险评价%Distribution and Ecological Risk Assessment of Heavy Metals in Agricultural Soils Surrounding a Contingency Water Source, Beijing

    Institute of Scientific and Technical Information of China (English)

    唐磊; 张会昌; 季宏兵; 冯金国; 姚俊; 闫广新

    2015-01-01

    采用ArcGIS空间分析技术和多元统计方法研究了北京市平谷应急水源地周边农业土壤中重金属空间分布及来源,并基于潜在生态危害指数法进行了生态风险评价。结果表明,土壤中重金属含量均值由大到小为Mn﹥Pb﹥Cr﹥As﹥Hg﹥Cd,所有重金属含量均值都高于北京市土壤背景值。Pb、Cd和As污染较为严重,含量均值分别为96.78、0.25、28.40 mg·kg-1,且主要是人为来源;Mn和Cr元素平均含量稍高于北京市土壤背景值,主要来源为自然源;Hg元素的平均含量也稍高于北京市土壤背景值,是自然源和人为源共同作用的结果。重金属元素单项污染潜在生态风险系数从大到小依次为Cd﹥Hg﹥As﹥Pb﹥Cr﹥Mn,6种重金属综合潜在生态风险指数RI值为169.29,为中等生态危害,东南方向土壤重金属生态危害高于西北方向。综上所述,该水源地的土壤已经受到重金属的潜在威胁,其生态风险不容忽视。%Heavy metals in soils surrounding water source area pose direct risks to the water safety. Here the spatial distribution and sources of heavy metals in agricultural soils around a contingency water source of Pinggu, Beijing, were elucidated by ArcGIS and multivariate anal-ysis. The ecological risk assessment of soil heavy metals was also performed using potential ecological risk index(RI). The mean concentra-tions of heavy metals in soils were in order of [Mn]﹥[Pb]﹥[Cr]﹥[As]﹥[Hg]﹥[Cd], all exceeding the soil background values of Beijing. The soils were seriously polluted by Pb, Cd and As, with the mean concentrations of 96.78, 0.25 and 28.40 mg·kg-1, respectively. These metals mainly came from the human activities via mineral exploitation and transportation. The concentrations of Mn, Cr and Hg were slightly higher than the soil background values. Manganese and Cr were derived from the natural sources by weathering of rock and soil parent materials

  4. Dry deposition of gaseous elemental mercury to plants and soils using mercury stable isotopes in a controlled environment

    Science.gov (United States)

    Rutter, Andrew P.; Schauer, James J.; Shafer, Martin M.; Creswell, Joel E.; Olson, Michael R.; Robinson, Michael; Collins, Ryan M.; Parman, Andrew M.; Katzman, Tanya L.; Mallek, Justin L.

    2011-02-01

    Uptake of gaseous elemental mercury (Hg 0(g)) by three plant species and two soil types was measured using mercury vapor enriched in the 198 isotope ( 198Hg 0(g)). The plant species and soil types were: White Ash ( Fraxinus Americana; WA); White Spruce ( Picea Glauca; WS); Kentucky Bluegrass ( Poa Partensis; KYBG); Plano Silt Loam (4% organic matter; PSL); and Plainfield Sand/Sparta Loamy Sand (1.25-1.5% organic matter: PS). The plants and soils were exposed to isotopically enriched Hg 0(g) in a 19 m 3 controlled environment room for 7 days under optimal plant growth conditions (20 °C, 140 Wm -2 between 300 nm and 700 nm; 70% RH) and atmospherically relevant Hg 0(g) concentrations. Mercury was recovered from the samples using acidic digestions and surface leaches, and then analyzed for enrichments in 198Hg by ICPMS. The method was sensitivity enough that statistically significant enrichments in 198Hg were measured in the plant foliage at the end of Day 1. Whole leaf digestions and surface-selective leaches revealed that accumulative uptake was predominantly to the interior of the leaf under the conditions studied. Uptake fluxes for WA increased between the first and third days and remained constant thereafter (WA; Day 1 = 7 ± 2 × 10 -5 ng m -2 s -1; Days 3-7 = 1.3 ± 0.1 × 10 -4 ng m -2 s -1; where m 2 refers to one sided leaf area). KYBG demonstrated similar behavior although no Day 3 measurement was available (Day 1 = 7.5 ± 0.5 × 10 -5 ng m -2 s -1; Day 7 = 1.2 ± 0.1 × 10 -4 ng m -2 s -1). Fluxes to White Spruce were lower, with little difference between Days 1 and 3 followed by a decrease at Day 7 (WS; Days 1-3 = 5 ± 2 × 10 -5 ng m -2 s -1; Day 7 = 2.4 ± 0.2 × 10 -5 ng m -2 s -1). Uptake of Hg to soils was below the method detection limit for those media (PSL = 3 × 10 -2 ng m -2 s -1; PS = 3 × 10 -3 ng m -2 s -1) over the 7 day study period. Foliar resistances calculated for each species compared well to previous studies.

  5. Mechanisms of nitrate capture in biochar: Are they related to biochar properties, post-treatment and soil environment?

    Science.gov (United States)

    Cimo, Giulia; Haller, Andreas; Spokas, Kurt; Novak, Jeff; Ippolito, Jim; Löhnertz, Otmar; Kammann, Claudia

    2017-04-01

    we found (7)that this captured nitrate was well protected against leaching, (8)that repeated drying-wetting cycles increased nitrate capture, with the amount protected against leaching remaining more or less constant; and (9) that an organic "coating" (or application of the nitrate in an organic solution, here: black tea) increased biochars' capability of nitrate capture. Our results thus underline that the phenomenon of nitrate capture is not purely due to ionic mechanisms but may partly rely on physical interactions and the pore structure of the biochar. Acknowledgement: JC acknowledges funding by the COST action TD1107 (short term scientific mission), CK acknowledges the financial support of DFG grant no. Ka3442/1-1 and of the HMWK Hessia funded OptiChar4EcoVin project. 1-Haider, G., Steffens, D., Müller, C. & Kammann, C. I. Standard extraction methods may underestimate nitrate stocks captured by field aged biochar. J. Environ. Qual. 45, 1196-1204 (2016). 2-Kammann, C. I. et al. Plant growth improvement mediated by nitrate capture in co-composted biochar. Scientific Reports 5, doi: 10.1038/srep11080 (2015). 3-Haider, G., Steffens, D., Moser, G., Müller, C. & Kammann, C. I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agri. Ecosys. Environ. 237, 80-94 (2017).

  6. Modeling dynamics of {sup 137}Cs in forest surface environments: Application to a contaminated forest site near Fukushima and assessment of potential impacts of soil organic matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Masakazu, E-mail: ohta.masakazu@jaea.go.jp; Nagai, Haruyasu; Koarashi, Jun

    2016-05-01

    A process-based model for {sup 137}Cs transfer in forest surface environments was developed to assess the dynamic behavior of Fukushima-derived {sup 137}Cs in a Japanese forest. The model simulation successfully reproduced the observed data from 3 year migration of {sup 137}Cs in the organic and mineral soil layers at a contaminated forest near Fukushima. The migration of {sup 137}Cs from the organic layer to the mineral soil was explained by the direct deposition pattern on the forest floor and the turnover of litter materials in the organic layer under certain ecological conditions. Long-term predictions indicated that more than 90% of the deposited {sup 137}Cs would remain within the top 5 cm of the soil for up to 30 years after the accident, suggesting that the forest acts as an effective long-term reservoir of {sup 137}Cs with limited transfer via the groundwater pathway. The model was also used to explore the potential impacts of soil organic matter (SOM) interactions on the mobility and bioavailability of {sup 137}Cs in the soil–plant system. The simulation results for hypothetical organic soils with modified parameters of {sup 137}Cs turnover revealed that the SOM-induced reduction of {sup 137}Cs adsorption elevates the fraction of dissolved {sup 137}Cs in the soil solution, thereby increasing the soil-to-plant transfer of {sup 137}Cs without substantially altering the fractional distribution of {sup 137}Cs in the soil. Slower fixation of {sup 137}Cs on the flayed edge site of clay minerals and enhanced mobilization of the clay-fixed {sup 137}Cs in organic-rich soils also appeared to elevate the soil-to-plant transfer of {sup 137}Cs by increasing the fraction of the soil-adsorbed (exchangeable) {sup 137}Cs. A substantial proportion (approximate 30%–60%) of {sup 137}Cs in these organic-rich soils was transferred to layers deeper than 5 cm decades later. These results suggested that SOM influences the behavior of {sup 137}Cs in forests over a prolonged

  7. The fate of caesium-137 in a soil environment controlled by immobilization on clay minerals

    OpenAIRE

    NAKAO, Atsushi; Funakawa, Shinya; Tsukada, Hirofumi; Kosaki, Takashi

    2012-01-01

    Caesium-137 (137Cs), with its high release rate and long half life, is the most important longterm contributor to environmental contamination of all the radionuclides released by the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. There have been many surveys of the fate of 137Cs in terrestrial environments, especially after the atmospheric nuclear tests of the 1950s and 60s and the Chernobyl accident in 1986. Previous surveys revealed that most of the 137Cs deposited on...

  8. Extreme environments in the critical zone: Linking acidification hazard of acid sulfate soils in mound spring discharge zones to groundwater evolution and mantle degassing.

    Science.gov (United States)

    Shand, Paul; Gotch, Travis; Love, Andrew; Raven, Mark; Priestley, Stacey; Grocke, Sonia

    2016-10-15

    A decrease in flow from the iconic travertine mound springs of the Great Artesian Basin in South Australia has led to the oxidation of hypersulfidic soils and extreme soil acidification, impacting their unique groundwater dependent ecosystems. The build-up of pyrite in these systems occurred over millennia by the discharge of deep artesian sulfate-containing groundwaters through organic-rich subaqueous soils. Rare iron and aluminium hydroxysulfate minerals form thick efflorescences due to high evaporation rates in this arid zone environment, and the oxidised soils pose a significant risk to local aquatic and terrestrial ecosystems. The distribution of extreme acidification hazard is controlled by regional variations in the hydrochemistry of groundwater. Geochemical processes fractionate acidity and alkalinity into separate parts of the discharge zone allowing potentially extreme environments to form locally. Differences in groundwater chemistry in the aquifer along flow pathways towards the spring discharge zone are related to a range of processes including mineral dissolution and redox reactions, which in turn are strongly influenced by degassing of the mantle along deep crustal fractures. There is thus a connection between shallow critical zone ecosystems and deep crustal/mantle processes which ultimately control the formation of hypersulfidic soils and the potential for extreme geochemical environments.

  9. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes

    Directory of Open Access Journals (Sweden)

    Ruchita Dixit

    2015-02-01

    Full Text Available Heavy metals are natural constituents of the environment, but indiscriminate use for human purposes has altered their geochemical cycles and biochemical balance. This results in excess release of heavy metals such as cadmium, copper, lead, nickel, zinc etc. into natural resources like the soil and aquatic environments. Prolonged exposure and higher accumulation of such heavy metals can have deleterious health effects on human life and aquatic biota. The role of microorganisms and plants in biotransformation of heavy metals into nontoxic forms is well-documented, and understanding the molecular mechanism of metal accumulation has numerous biotechnological implications for bioremediation of metal-contaminated sites. In view of this, the present review investigates the abilities of microorganisms and plants in terms of tolerance and degradation of heavy metals. Also, advances in bioremediation technologies and strategies to explore these immense and valuable biological resources for bioremediation are discussed. An assessment of the current status of technology deployment and suggestions for future bioremediation research has also been included. Finally, there is a discussion of the genetic and molecular basis of metal tolerance in microbes, with special reference to the genomics of heavy metal accumulator plants and the identification of functional genes involved in tolerance and detoxification.

  10. 黄土高原及周边地区土壤有机质对现代土壤磁化率的影响%Impact of soil organic matter on modern soil magnetic susceptibility in Loess Plateau and its surrounding areas

    Institute of Scientific and Technical Information of China (English)

    张博; 刘卫国

    2016-01-01

    Background, aim, and scope Magnetic susceptibility of soils can provide paleoclimatic information. In Chinese Loess Plateau, susceptibility enhancement is usually considered as a proxy of monsoon intensity. Several hypotheses were used to explain variations of this proxy. Here, we present a study on how soil magnetic susceptibility is related with soil organic matters. We analyzed magnetic susceptibility, organic carbon content, organic carbon isotopic composition, and C/N ratio of modern soils from Chinese Loess Plateau, in order to obtain the relationship between soil magnetic susceptibility and other parameters, as well as how soil organic matters affect soil magnetic susceptibility. Materials and methods Fifty modern soil samples were collected from the Loess Platform, forest areas at the Huangling and Huanglong Mount, and loess-desert area near the Tengger Desert. These soil samples represent modern soil types in the Loess Plateau. Samples were collected 2—3 cm below the surface. The sampling sites are at least 40 km away from any industrialized centers that could generate artificial, air-borne magnetic material. In this way, we minimized the effect of human and livestock activity. We tested magnetic susceptibility (χlf), organic carbon isotopic composition (δ13C), and organic carbon and nitrogen contents of these samples. Results The magnetic susceptibility varied from 26.6×10−8 m3∙kg−1 to 61.4×10−8 m3∙kg−1 for soils from the loess platform, and from 68.6×10−8 m3∙kg−1 to 107.5×10−8 m3∙kg−1 for soils from forest areas. The value of soil from forest areas is apparently higher than that from the loess platform. The magnetic susceptibility of soil samples from loess-desert area varied from 8.5×10−8 m3∙kg−1 to 44.4×10−8 m3∙kg−1.δ13C values of soil samples from the loess platform varied from−22‰to−24.4‰.δ13C values of soil samples from loess-desert area varied from−20.66‰to−24.69‰, whose range is

  11. [Native plant resources to optimize the performances of forest rehabilitation in Mediterranean and tropical environment: some examples of nursing plant species that improve the soil mycorrhizal potential].

    Science.gov (United States)

    Duponnois, Robin; Ramanankierana, Heriniaina; Hafidi, Mohamed; Baohanta, Rondro; Baudoin, Ezékiel; Thioulouse, Jean; Sanguin, Hervé; Bâ, Amadou; Galiana, Antoine; Bally, René; Lebrun, Michel; Prin, Yves

    2013-01-01

    The overexploitation of natural resources, resulting in an increased need for arable lands by local populations, causes a serious dysfunction in the soil's biological functioning (mineral deficiency, salt stress, etc.). This dysfunction, worsened by the climatic conditions (drought), requires the implementation of ecological engineering strategies allowing the rehabilitation of degraded areas through the restoration of essential ecological services. The first symptoms of weathering processes of soil quality in tropical and Mediterranean environments result in an alteration of the plant cover structure with, in particular, the pauperization of plant species diversity and abundance. This degradation is accompanied by a weakening of soils and an increase of the impact of erosion on the surface layer resulting in reduced fertility of soils in terms of their physicochemical characteristics as well as their biological ones (e.g., soil microbes). Among the microbial components particularly sensitive to erosion, symbiotic microorganisms (rhizobia, Frankia, mycorrhizal fungi) are known to be key components in the main terrestrial biogeochemical cycles (C, N and P). Many studies have shown the importance of the management of these symbiotic microorganisms in rehabilitation and revegetation strategies of degraded environments, but also in improving the productivity of agrosystems. In particular, the selection of symbionts and their inoculation into the soil were strongly encouraged in recent decades. These inoculants were selected not only for their impact on the plant, but also for their ability to persist in the soil at the expense of the residual native microflora. The performance of this technique was thus evaluated on the plant cover, but its impact on soil microbial characteristics was totally ignored. The role of microbial diversity on productivity and stability (resistance, resilience, etc.) of eco- and agrosystems has been identified relatively recently and has led

  12. [Assessment of the impacts of soil erosion on water environment based on the integration of soil erosion process and landscape pattern].

    Science.gov (United States)

    Liu, Yu; Wu, Bing-Fang; Zeng, Yuan; Zhang, Lei

    2013-09-01

    The integration of the effects of landscape pattern to the assessment of the impacts of soil erosion on eco-environmental is of practical significance in methodological prospect, being able to provide an approach for identifying water body's sediment source area, assessing the potential risks of sediment export of on-site soil erosion to the target water body, and evaluating the capacity of regional landscape pattern in preventing soil loss. In this paper, the RUSLE model was applied to simulate the on-site soil erosion rate. With the consideration of the soil retention potential of vegetation cover and topography, a quantitative assessment was conducted on the impacts of soil erosion in the water source region of the middle route for South-to-North Water Transfer Project on rivers and reservoirs by delineating landscape pattern at point (or cell) scale and sub-watershed level. At point (or grid cell) scale, the index of soil erosion impact intensity (I) was developed as an indicator of the potential risk of sediment export to the water bodies. At sub-watershed level, the landscape leakiness index (LI) was employed to indicate the sediment retention capacity of a given landscape pattern. The results revealed that integrating the information of landscape pattern and the indices of soil erosion process could spatially effectively reflect the impact intensity of in situ soil erosion on water bodies. The LI was significantly exponentially correlated to the mean sediment retention capacity of landscape and the mean vegetation coverage of watershed, and the sediment yield at sub-watershed scale was significantly correlated to the LI in an exponential regression. It could be concluded that the approach of delineating landscape pattern based on soil erosion process and the integration of the information of landscape pattern with its soil retention potential could provide a new approach for the risk evaluation of soil erosion.

  13. The Commuting Profiles of the Principals: Their Views on the Surrounding Built Environment and Infrastructure of their Schools and the Factors that Affect the Active Commuting of Students to and From School

    Directory of Open Access Journals (Sweden)

    Konstantinos Karakatsanis

    2015-03-01

    Full Text Available This study assesses the commuting profiles of the principals of the schools, their views on the built environment and infrastructure around schools and active commuting (non motorized transport of students to and from school. 369 principals voluntarily participated in this survey. All principals held a position from either elementary, junior high schools or senior high schools, in the most populous prefectures of Greece (Attica and Thessaloniki during the school year 2012-2013. The results confirm that there is inadequate safety of infrastructure such as dangerous intersections-roads, lack of pedestrian roads with limited car access in front of the school entrance etc. for the active commuting of students around schools. The majority of principals consider that it is important for students to walk or cycle for commuting to and from school but on the other hand, they do not apply it to themselves. Although half of them reside in a walkable or cycle-able distance within 2000m from their work, they commute to school by motorized means and do not set a good example for the students. Principals believe that is necessary to conduct courses or programs on road safety education in schools and suggest methods to enhance the active means of commuting. In this context they reacted positively in organizing an annual event day of active commuting to and from school. Future research will be able to use geographical information systems to assist in the implementation of targeted and safety networks around the school.

  14. Modeling dynamics of (137)Cs in forest surface environments: Application to a contaminated forest site near Fukushima and assessment of potential impacts of soil organic matter interactions.

    Science.gov (United States)

    Ota, Masakazu; Nagai, Haruyasu; Koarashi, Jun

    2016-05-01

    A process-based model for (137)Cs transfer in forest surface environments was developed to assess the dynamic behavior of Fukushima-derived (137)Cs in a Japanese forest. The model simulation successfully reproduced the observed data from 3year migration of (137)Cs in the organic and mineral soil layers at a contaminated forest near Fukushima. The migration of (137)Cs from the organic layer to the mineral soil was explained by the direct deposition pattern on the forest floor and the turnover of litter materials in the organic layer under certain ecological conditions. Long-term predictions indicated that more than 90% of the deposited (137)Cs would remain within the top 5cm of the soil for up to 30years after the accident, suggesting that the forest acts as an effective long-term reservoir of (137)Cs with limited transfer via the groundwater pathway. The model was also used to explore the potential impacts of soil organic matter (SOM) interactions on the mobility and bioavailability of (137)Cs in the soil-plant system. The simulation results for hypothetical organic soils with modified parameters of (137)Cs turnover revealed that the SOM-induced reduction of (137)Cs adsorption elevates the fraction of dissolved (137)Cs in the soil solution, thereby increasing the soil-to-plant transfer of (137)Cs without substantially altering the fractional distribution of (137)Cs in the soil. Slower fixation of (137)Cs on the flayed edge site of clay minerals and enhanced mobilization of the clay-fixed (137)Cs in organic-rich soils also appeared to elevate the soil-to-plant transfer of (137)Cs by increasing the fraction of the soil-adsorbed (exchangeable) (137)Cs. A substantial proportion (approximate 30%-60%) of (137)Cs in these organic-rich soils was transferred to layers deeper than 5cm decades later. These results suggested that SOM influences the behavior of (137)Cs in forests over a prolonged period through alterations of adsorption and fixation in the soil.

  15. Co-evolution of soil and water conservation policy and human-environment linkages in the Yellow River Basin since 1949

    NARCIS (Netherlands)

    Wang, F.; Mu, X.; Li, R.; Fleskens, L.; Stringer, L.C.; Ritsema, C.J.

    2015-01-01

    Policy plays a very important role in natural resource management as it lays out a government framework for guiding long-term decisions, and evolves in light of the interactions between human and environment. This paper focuses on soil and water conservation (SWC) policy in the Yellow River Basin (Y

  16. Co-evolution of soil and water conservation policy and human-environment linkages in the Yellow River Basin since 1949

    NARCIS (Netherlands)

    Wang, F.; Mu, X.; Li, R.; Fleskens, L.; Stringer, L.C.; Ritsema, C.J.

    2015-01-01

    Policy plays a very important role in natural resource management as it lays out a government framework for guiding long-term decisions, and evolves in light of the interactions between human and environment. This paper focuses on soil and water conservation (SWC) policy in the Yellow River Basin

  17. Contribution of soil, water and food consumption to metal exposure of children from geological enriched environments in the coastal zone of Lake Victoria, Kenya.

    NARCIS (Netherlands)

    E. Oyoo-Okoth; W. Admiraal; O. Osano; D Manguya-Lusega; V. Ngure; M.H.S. Kraak; V. Chepkirui-Boit; J. Makwali

    2013-01-01

    Geologically enriched environments may contain high concentrations of some metals. In areas where industrial exposures remain superficial, children may be exposed to these geological metals through soil, drinking water and consumption of food locally grown. The aim of this study was to assess the co

  18. Magnetic mapping of fly-ash pollution and heavy metals from soil samples around a point source in a dry tropical environment.

    Science.gov (United States)

    Sharma, Atul Prakash; Tripathi, B D

    2008-03-01

    The Singrauli region in the southeastern part of Uttar Pradesh, India is one of the most polluted industrial sites of Asia. It encompasses 11 open cast coal mines and six thermal power stations that generate about 7,500 MW (about 10% of India's installed generation capacity) electricity. Thermal power plants represent the main source of pollution in this region, emitting six million tonnes of fly-ash per annum. Fly-ash is deposited on soils over a large area surrounding thermal power plants. Fly-ashes have high surface concentrations of several toxic elements (heavy metals) and high atmospheric mobility. Fly ash is produced through high-temperature combustion of fossil fuel rich in ferromagnetic minerals. These contaminants can be identified using rock-magnetic methods. Magnetic susceptibility is directly linked to the concentration of ferromagnetic minerals, primarily high values of magnetite. In this study, magnetic susceptibility of top soil samples collected from surrounding areas of a bituminous-coal-fired power plant were measured to identify areas of high emission levels and to chart the spatial distribution of airborne solid particles. Sites close to the power plant have shown higher values of susceptibility that decreases with increasing distance from the source. A significant correlation between magnetic susceptibility and heavy metal content in soils is found. A comparison of the spatial distribution of magnetic susceptibility with heavy-metal concentrations in soil samples suggests that magnetic measurements can be used as a rapid and inexpensive method for proxy mapping of air borne pollution due to industrial activity.

  19. Invasive Plants Rapidly Reshape Soil Properties in a Grassland Ecosystem.

    Science.gov (United States)

    Gibbons, Sean M; Lekberg, Ylva; Mummey, Daniel L; Sangwan, Naseer; Ramsey, Philip W; Gilbert, Jack A

    2017-01-01

    Plant invasions often reduce native plant diversity and increase net primary productivity. Invaded soils appear to differ from surrounding soils in ways that impede restoration of diverse native plant communities. We hypothesize that invader-mediated shifts in edaphic properties reproducibly alter soil microbial community structure and function. Here, we take a holistic approach, characterizing plant, prokaryotic, and fungal communities and soil physicochemical properties in field sites, invasion gradients, and experimental plots for three invasive plant species that cooccur in the Rocky Mountain West. Each invader had a unique impact on soil physicochemical properties. We found that invasions drove shifts in the abundances of specific microbial taxa, while overall belowground community structure and functional potential were fairly constant. Forb invaders were generally enriched in copiotrophic bacteria with higher 16S rRNA gene copy numbers and showed greater microbial carbohydrate and nitrogen metabolic potential. Older invasions had stronger effects on abiotic soil properties, indicative of multiyear successions. Overall, we show that plant invasions are idiosyncratic in their impact on soils and are directly responsible for driving reproducible shifts in the soil environment over multiyear time scales. IMPORTANCE In this study, we show how invasive plant species drive rapid shifts in the soil environment from surrounding native communities. Each of the three plant invaders had different but consistent effects on soils. Thus, there does not appear to be a one-size-fits-all strategy for how plant invaders alter grassland soil environments. This work represents a crucial step toward understanding how invaders might be able to prevent or impair native reestablishment by changing soil biotic and abiotic properties.

  20. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility.

    Science.gov (United States)

    Zhou, Ming; Wang, Hui; Zhu, Shufa; Liu, Yana; Xu, Jingming

    2015-11-01

    Compared to soil pollution by heavy metals and organic pollutants, soil pollution by fluorides is usually ignored in China. Actually, fluorine-contaminated soil has an unfavorable influence on human, animals, plants, and surrounding environment. This study reports on electrokinetic remediation of fluorine-contaminated soil and the effects of this remediation technology on soil fertility. Experimental results showed that electrokinetic remediation using NaOH as the anolyte was a considerable choice to eliminate fluorine in contaminated soils. Under the experimental conditions, the removal efficiency of fluorine by the electrokinetic remediation method was 70.35%. However, the electrokinetic remediation had a significant impact on the distribution and concentrations of soil native compounds. After the electrokinetic experiment, in the treated soil, the average value of available nitrogen was raised from 69.53 to 74.23 mg/kg, the average value of available phosphorus and potassium were reduced from 20.05 to 10.39 mg/kg and from 61.31 to 51.58 mg/kg, respectively. Meanwhile, the contents of soil available nitrogen and phosphorus in the anode regions were higher than those in the cathode regions, but the distribution of soil available potassium was just the opposite. In soil organic matter, there was no significant change. These experiment results suggested that some steps should be taken to offset the impacts, after electrokinetic treatment.

  1. Binaural Rendering in MPEG Surround

    Directory of Open Access Journals (Sweden)

    Kristofer Kjörling

    2008-04-01

    Full Text Available This paper describes novel methods for evoking a multichannel audio experience over stereo headphones. In contrast to the conventional convolution-based approach where, for example, five input channels are filtered using ten head-related transfer functions, the current approach is based on a parametric representation of the multichannel signal, along with either a parametric representation of the head-related transfer functions or a reduced set of head-related transfer functions. An audio scene with multiple virtual sound sources is represented by a mono or a stereo downmix signal of all sound source signals, accompanied by certain statistical (spatial properties. These statistical properties of the sound sources are either combined with statistical properties of head-related transfer functions to estimate “binaural parameters” that represent the perceptually relevant aspects of the auditory scene or used to create a limited set of combined head-related transfer functions that can be applied directly on the downmix signal. Subsequently, a binaural rendering stage reinstates the statistical properties of the sound sources by applying the estimated binaural parameters or the reduced set of combined head-related transfer functions directly on the downmix. If combined with parametric multichannel audio coders such as MPEG Surround, the proposed methods are advantageous over conventional methods in terms of perceived quality and computational complexity.

  2. Reduced surround inhibition in musicians.

    Science.gov (United States)

    Shin, Hae-Won; Kang, Suk Y; Hallett, Mark; Sohn, Young H

    2012-06-01

    To investigate whether surround inhibition (SI) in the motor system is altered in professional musicians, we performed a transcranial magnetic stimulation (TMS) study in 10 professional musicians and 15 age-matched healthy non-musicians. TMS was set to be triggered by self-initiated flexion of the index finger at different intervals ranging from 3 to 1,000 ms. Average motor evoked potential (MEP) amplitudes obtained from self-triggered TMS were normalized to average MEPs of the control TMS at rest and expressed as a percentage. Normalized MEP amplitudes of the abductor digiti minimi (ADM) muscles were compared between the musicians and non-musicians with the primary analysis being the intervals between 3 and 80 ms (during the movement). A mixed-design ANOVA revealed a significant difference in normalized ADM MEPs during the index finger flexion between groups, with less SI in the musicians. This study demonstrated that the functional operation of SI is less strong in musicians than non-musicians, perhaps due to practice of movement synergies involving both muscles. Reduced SI, however, could lead susceptible musicians to be prone to develop task-specific dystonia.

  3. Binaural Rendering in MPEG Surround

    Science.gov (United States)

    Breebaart, Jeroen; Villemoes, Lars; Kjörling, Kristofer

    2008-12-01

    This paper describes novel methods for evoking a multichannel audio experience over stereo headphones. In contrast to the conventional convolution-based approach where, for example, five input channels are filtered using ten head-related transfer functions, the current approach is based on a parametric representation of the multichannel signal, along with either a parametric representation of the head-related transfer functions or a reduced set of head-related transfer functions. An audio scene with multiple virtual sound sources is represented by a mono or a stereo downmix signal of all sound source signals, accompanied by certain statistical (spatial) properties. These statistical properties of the sound sources are either combined with statistical properties of head-related transfer functions to estimate "binaural parameters" that represent the perceptually relevant aspects of the auditory scene or used to create a limited set of combined head-related transfer functions that can be applied directly on the downmix signal. Subsequently, a binaural rendering stage reinstates the statistical properties of the sound sources by applying the estimated binaural parameters or the reduced set of combined head-related transfer functions directly on the downmix. If combined with parametric multichannel audio coders such as MPEG Surround, the proposed methods are advantageous over conventional methods in terms of perceived quality and computational complexity.

  4. [Mercury pollution investigation in predominant plants surrounding Shenzhen Qingshuihe municipal solid waste incineration plant].

    Science.gov (United States)

    Zhao, Hong-Wei; Zhong, Xiu-Ping; Liu, Yang-Sheng; Wang, Jun-Jian; Hong, Yuan; Zhao, Kang-Sai; Zeng, Hui

    2009-09-15

    In order to investigate the effects of mercury emission from municipal solid waste incineration (MSWI) on the surrounding plants and soils, the mercury concentrations were examined in the plant samples including leaves and stems and the soil samples around Shenzhen Qingshuihe MSWI Plant. Results show that, these plants are significantly polluted by mercury, the mercury concentrations of the plant leaves are 0.030 9-0.246 7 mg x kg(-1), with the mean value 0.094 8 mg x kg(-1), among the local prominent plants, the mercury concentrations in the leaves are in the order of: Acacia confuse > Litsea rotundifolia > Acacia mangium > Acacia auriculaeformis > Schima superb > Ilex asprella. The mercury concentrations of the plant stems are 0.007 4-0.119 6 mg x kg(-1), with the mean value 0.041 7 mg x kg(-1). For the same plant, the mercury concentration in its leaf correlates positively with that in its stem, but presents little correlation with that in the soil where it grows. Under the direction of the dominant wind, the concentration of smoke diffusion is often influenced by the distance from the stack and the difference of terrain. The mercury concentrations of the plant leaves and stems vary almost in accordance with spatial heterogeneity patterns of smoke diffusion. These results demonstrate that the interaction of the smoke and plant leaves play the leading role in the mercury exchange between plants and environment.

  5. Increased N2O emission by inhibited plant growth in the CO2 leaked soil environment: Simulation of CO2 leakage from carbon capture and storage (CCS) site.

    Science.gov (United States)

    Kim, You Jin; He, Wenmei; Ko, Daegeun; Chung, Haegeun; Yoo, Gayoung

    2017-12-31

    Atmospheric carbon dioxide (CO2) concentrations is continuing to increase due to anthropogenic activity, and geological CO2 storage via carbon capture and storage (CCS) technology can be an effective way to mitigate global warming due to CO2 emission. However, the possibility of CO2 leakage from reservoirs and pipelines exists, and such leakage could negatively affect organisms in the soil environment. Therefore, to determine the impacts of geological CO2 leakage on plant and soil processes, we conducted a greenhouse study in which plants and soils were exposed to high levels of soil CO2. Cabbage, which has been reported to be vulnerable to high soil CO2, was grown under BI (no injection), NI (99.99% N2 injection), and CI (99.99% CO2 injection). Mean soil CO2 concentration for CI was 66.8-76.9% and the mean O2 concentrations in NI and CI were 6.6-12.7%, which could be observed in the CO2 leaked soil from the pipelines connected to the CCS sites. The soil N2O emission was increased by 286% in the CI, where NO3(-)-N concentration was 160% higher compared to that in the control. This indicates that higher N2O emission from CO2 leakage could be due to enhanced nitrification process. Higher NO3(-)-N content in soil was related to inhibited plant metabolism. In the CI treatment, chlorophyll content decreased and chlorosis appeared after 8th day of injection. Due to the inhibited root growth, leaf water and nitrogen contents were consistently lowered by 15% under CI treatment. Our results imply that N2O emission could be increased by the secondary effects of CO2 leakage on plant metabolism. Hence, monitoring the environmental changes in rhizosphere would be very useful for impact assessment of CCS technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Tectonic uplift and denudation rate influence soil chemical weathering intensity in a semi-arid environment, southeast Spain: physico-chemical and mineralogical evidence

    Science.gov (United States)

    Ameijeiras-Mariño, Yolanda; Opfergelt, Sophie; Schoonejans, Jérôme; Vanacker, Veerle; Sonnet, Philippe; Delmelle, Pierre

    2015-04-01

    Tectonic uplift is known to influence denudation rates. Denudation, including chemical weathering and physical erosion, affects soil production rates and weathering intensities. At topographic steady state, weathering can be transport- or weathering-limited. In the transport-limited regime, low denudation rates should lead to comparatively high weathering intensities, while in the weathering-limited case high denudation rates are associated with lower weathering intensities. Here, we test if this relationship applies to semi-arid environments where chemical weathering is generally slow. Three catchments (EST, FIL and CAB) were studied in the Internal Zone of the Betic Cordillera in southeast Spain, spanning a range of increasing uplift rates (10-170 mm/kyr) and increasing denudation rates (20-250 mm/kyr) from EST to CAB. In each catchment, two ridgetop soil profiles were sampled down to the bedrock. The three catchments have similar vegetation and climatic conditions, with precipitation of 250- 315 mm/yr and mean annual temperature of 15-17 °C. The mineralogy of the bedrock, as determined by XRD, is similar across the three catchments and is characterized by the presence of quartz, muscovite, clinochlore, biotite and plagioclase. This primary mineral assemblage is also found in the catchment soils, indicating that the soils studied derive from the same parent material. The soil clay-size fraction is dominated by kaolinite, vermiculite and illite. However, the proportions of the soil primary and secondary minerals vary between the catchment sites. The abundance of biotite decreases from CAB (14%) to EST (4%), whereas the quartz and clay contents show an opposite tendency (from 30 to 69% and 9.9 to 14.3%, respectively). Further, the abundance of vermiculite increases from CAB to EST. The results are interpreted in terms of increasing weathering intensity from CAB to EST by weathering of biotite into vermiculite and enrichment of soils on more weathering resistant

  7. Oskarshamn site investigation. Programme for further investigations of bedrock, soil, water and environment in Laxemar subarea

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-03-15

    SKB (the Swedish Nuclear Fuel and Waste Management Co), has been conducting a site investigation at Simpevarp and Laxemar in Oskarshamn for siting of a final repository for spent nuclear fuel. An equivalent investigation is being conducted in Forsmark in Ohmmeter's. The initial part of the site investigations had been completed for the both of the subareas Simpevarp and Laxemar in the autumn of 2004. Based on the results of these investigations, SKB preliminarily prioritized the Laxemar subarea for further investigations. A programme was presented for the first stage of the complete site investigation in the Laxemar subarea, along with the main features of the remainder of the site investigation. The programme included investigations up until the summer of 2005 and was particularly aimed at obtaining answers to several vital questions so that the subsequent investigations could be focused on the rock areas judged to be most suitable for a final repository. These investigations have now been completed. This report presents the programme for the remainder of the site investigation. The points of departure are the general goals for the Deep Repository Project during the site investigation phase, analyses and evaluations of data from completed investigations, and the needs for additional data to be able to evaluate the site as a siting alternative for the final repository. The account mainly covers the investigations on the site. All other work - analyses, site descriptive modelling, facility design, safety assessments and studies and assessments of consequences for the environment, human health and society - are only mentioned to the extent necessary in order to place the investigations in their context. The direction of the site investigation in Oskarshamn and the investigation programme presented in this report is based on SKB's preliminary decision to prioritize the Laxemar subarea for further investigations. A final decision on the direction of the site

  8. Effects of Environment-friendly Bast Fiber Film Degradation on Soil Ph%土壤pH对环保型麻地膜降解的影响

    Institute of Scientific and Technical Information of China (English)

    宋建龙; 王朝云; 易永健; 汪洪鹰; 聂兆君

    2009-01-01

    为了探明麻地膜降解性能与土壤pH和土壤微生物的相关性,利用生石灰调节土壤pH,将土壤pH调节为弱酸性、中性、弱碱性3个不同的水平,将麻地膜埋入3种不同的土壤中,定期测定其失重率及其周围土壤微生物种类和数量的变化.结果表明,麻地膜在3种不同pH条件下的降解速率表现为:弱碱性>中性>弱碱性.在土壤微生物方面,碱性土壤中土壤微生物的总量最多,中性土壤中居中,酸性土壤中越少,对比3种微生物的变化,在碱性土壤中放线菌的数量有显著性增加.碱性土壤有利于麻地膜的降解,由于在碱性土壤中放线菌的数量最多,且麻地膜的降解性能与土壤放线菌的数量呈显著正相关.%environment-friendly bast fiber film is buried in the ground floor of different soil pH value to study degradation and changes in the type and quantity of micro-organisms, to explore environment-friendly bast fiber film degradation relevance between micro-organisms and soil pH value. There are three types of soil, for example, weak acid soil, neutral soil, weak alkaline, in which film is buried. It is to determinate of weight loss and changes of quantity of micro-organisms around. The result shows that environment-friendly bast fiber film degradation in three different soil conditions performances at three different speeds, as follows weak alkaline soil>neutral soil>weak acid. In alkaline soil, the total quantity of micro-organisms is more than neutral and acidic soil, and in acidic soil atleast. Comparison of three micro-organisms, in the alkaline soil the number of actinomycetes has increased significandy. Alkaline soil is conducive to the degradation of film, because in alkaline soil has the most quantity of actinomycetes. There is a significant positive correlation between the degradation of environment-friendly bast fiber film and the quantity of actinomyces.

  9. Analysis of radioactivity levels in the surrounding of the Aube storage plant (F.M.A.-V.C.). year 2007. Presentation, results and methods; Analyse des niveaux de la radioactivite dans les environs du centre de stockage F.M.A.-V.C. de l'Aube. Annee 2007. Presentation, resultats et methodes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The study had three objectives: to collect information that explain the impact of the Aube storage center (C.S.A.) on environment and allow to evaluate the consequences for man, secondly, to build a referential for any future inquiry or follow-up, thirdly, to allow to the local commission of information to elaborate an information towards the side residents and local actors that take into account their questions. Trees, waters, sediments, soils, grass, products of gardens and vineyards were the object of sampling, their dosimetry is given in this report. Other dosimetry measures were made along the nuclear site and the results are equally in this report. (N.C.)

  10. Effects of Eichhornia crassipes and Ceratophyllum demersum on Soil and Water Environments and Nutrient Removal in Wetland Microcosms.

    Science.gov (United States)

    Sung, Kijune; Lee, Geun-Joo; Munster, Clyde

    2015-01-01

    Wetland plants are important components that influence the biogeochemistry of wetland ecosystems. Therefore, remediation performance in wetlands can differ depending on the growth forms of plants. In this study, the effects of Eichhornia crassipes (floating plant) and Ceratophyllum demersum (submerged plant) on the wetland soil and water environments were investigated using a microcosm study with simulated hydrology of retention-type wetlands between rainfall events. The C. demersum microcosm (SP) showed the fastest recovery with a diel fluctuation pattern of dissolved oxygen, pH, and oxidation-reduction potential (ORP) from the impacts of nutrient inflow. Moreover, SP exhibited the lowest decrease in sediment ORP, the highest dehydrogenase activity, and more organic forms of nitrogen and phosphorus. E. crassipes microcosms exhibited the lowest water temperature, and efficiently controlled algae. In the presence of plants, the total nitrogen and phosphorus concentrations in water rapidly decreased, and the composition of organic and inorganic nutrient forms was altered along with a decrease in concentration. The results indicate that wetland plants help retain nutrients in the system, but the effects varied based on the wetland plant growth forms.

  11. 苔藓植物对酸性恶劣土壤环境的适应性研究%Adaptability of Bryophytes to Acidic Soil Environment

    Institute of Scientific and Technical Information of China (English)

    张啸天

    2016-01-01

    苔藓植物结构简单,对土壤环境的变化反应敏感,是良好的生物指示植物。该研究通过室内模拟实验的方法,分析苔藓植物对富含酸的恶劣土壤环境的适应性。结果表明,苔藓植物对酸性恶劣土壤环境的适应性较差,但苔藓植物具有一定改善生存环境基质的能力,因而能作为恶劣土壤环境下的植物物种先锋,以帮助其它物种的安全进入。同时对本地区苔藓植物的多样性保护以及合理利用苔藓植物进行酸性环境污染监测有一定理论和实践价值。%Bryophytes are simple in organic structures and sensitive to changes of soil environment so they can be used as excellent bioindicators.Conducting simulation experiment indoors,this study analyzes the adaptive ability of bryophytes to the soil environment rich in acid.The result shows that bryophytes have poor adaptive ability to undesir⁃able acidic soil environment,but they are capable of improving poor soil environment.Therefore,it is possible to plant bryophytes as the initiatives in undesirable soil for other plants settling in.This study has theoretical and practi⁃cal values in multidimensional protection of local bryophytes and making good use of bryophytes to monitor acidic en⁃vironment pollution.

  12. Influence of accumulation of heaps of steel slag on the environment: determination of heavy metals content in the soils

    Directory of Open Access Journals (Sweden)

    Javier Garcia-Guinea

    2010-06-01

    Full Text Available The presence of high level of heavy metals involves a human healthy risk that could induce chronic diseases. This work reports on the metal contamination due to heaps of steel-slag accumulated during more than 40 years in allotments and industrial areas in the southern part of Madrid (Spain. Several slag and soil samples were collected in an area of 10 km² and characterized by different conventional (XRD and XRF and no so common methods (ESEM, thermoluminescence and EDS-WDS. The analysis reveal the presence of: (i important amounts of Fe (43%, Mg (26%, Cr (1.1%, Mn (4.6%, S (6.5% in the form of Fe-rich slag phases (wustite, magnetite..., Si and Ca-rich phases (larnite, ghelenite..., Cr (chromite, Mn (bustamite and graphite, (ii traces of some other contaminants such as Cr (7700 ppm, Zn (3500 ppm, Ba (3000 ppm, Pb (700 ppm or Cu (500 ppm on pathway soil samples that come from the steel slag, and (iii Co (13 ppm, Pb (78 ppm and V (54 ppm in farmland soil samples. Although the existing heavy metals content is not appropriate for the current use, the extremely high metal contamination of the surrounding areas is more worrying. The properties of the soil farmlands (pH circa 7, 13% of clay, mainly illite, and 1-4% of organic matter content show suitable conditions for the retention of cationic metals, but further studies on the movilization of these elements have to be performed to determine the possibility of severe human health risks. This sort of study can provide useful information for the politicians regarding the appropriate use of the territory to prevent possible health hazard for the population.A presença de altos niveis de metais pesados envolve riscos à saúde humana e pode induzir doenças crônicas. Este trabalho relata a contaminação metálica causada por pilhas de escória siderúrgica acumulada durante mais de 40 anos em áreas industriais na parte sul de Madrid (Espanha. Amostras de escória e solo foram coletadas em uma área de

  13. Geoquímica de radionuclídeos naturais em solos de áreas circunvizinhas a uma Unidade de Mineração e Atividade de Urânio Geochemistry of natural radionuclide in soils surrounding a Mining and Plant Uranium Concentration

    Directory of Open Access Journals (Sweden)

    Gildevan Viana Cardoso

    2009-12-01

    Full Text Available Os impactos ambientais advindos da exploração e do beneficiamento de U são, em grande parte, idênticos àqueles causados por atividades minero-extrativistas em geral. Este trabalho teve o objetivo de determinar a partição geoquímica dos radionuclídeos naturais 238U, 226Ra e 210Pb em áreas circunvizinhas à Unidade de Mineração e Atividade de Urânio (URA das Indústrias Nucleares do Brasil S.A., localizada na Província Uranífera de Lagoa Real, no município de Caetité, na região sudoeste do Estado da Bahia. Foram coletadas amostras de solo em cinco áreas circunvizinhas à URA, representando as principais classes de solos da região, na profundidade de 0-20 cm. Nas cinco áreas, foram determinados o teor de atividade total e o fracionamento geoquímico nas frações: F1 - levemente ácida, F2 - reduzível, F3 - oxidável, F4 - alcalina e F5 - residual. As atividades totais médias foram, em Bq kg-1 de solo, de 50 para 238U, 51 para 226Ra e 159 para 210Pb. Os extraídos na fase potencialmente biodisponível (F1 foram: 11 % para 238U, 13 % para 226Ra e 3 % para 210Pb. O 238U apresentou maior biodisponibilidade nos solos mais ácidos e maior afinidade pelos óxidos de Fe, o que não ocorreu para o 226Ra, tendo este apresentado a maior biodisponibilidade. O 210Pb apresentouse predominantemente associado a F5. As percentagens elevadas de 238U, 226Ra e 210Pb na fração geoquímica F5 indicam que as atividades observadas nos cinco solos estão, predominantemente, associadas ao material que deu origem a esses solos, e não a um processo de contaminação artificial em função da atividade da URA.The environmental impacts resulting from uranium exploration and processing are to a great extent identical to those caused by extractive mining activities in general. This study aimed to determine the geochemical partitioning of the natural radionuclides 238U, 226Ra and 210Pb in areas surrounding the Uranium Mining and Concentration Plant (URA

  14. Changes in soil quality indicators under long-term sewage irrigation in a sub-tropical environment

    Science.gov (United States)

    Masto, Reginald Ebhin; Chhonkar, Pramod K.; Singh, Dhyan; Patra, Ashok K.

    2009-01-01

    Though irrigation with sewage water has potential benefits of meeting the water requirements, the sewage irrigation may mess up to harm the soil health. To assess the potential impacts of long-term sewage irrigation on soil health and to identify sensitive soil indicators, soil samples were collected from crop fields that have been irrigated with sewage water for more than 20 years. An adjacent rain-fed Leucaena leucocephala plantation system was used as a reference to compare the impact of sewage irrigation on soil qualities. Soils were analyzed for different physical, chemical, biological and biochemical parameters. Results have shown that use of sewage for irrigation improved the clay content to 18-22.7%, organic carbon to 0.51-0.86% and fertility status of soils. Build up in total N was up to 2,713 kg ha-1, available N (397 kg ha-1), available P (128 kg ha-1), available K (524 kg ha-1) and available S (65.5 kg ha-1) in the surface (0.15 m) soil. Long-term sewage irrigation has also resulted a significant build-up of DTPA extractable Zn (314%), Cu (102%), Fe (715%), Mn (197.2), Cd (203%), Ni (1358%) and Pb (15.2%) when compared with the adjacent rain-fed reference soil. Soils irrigated with sewage exhibited a significant decrease in microbial biomass carbon (-78.2%), soil respiration (-82.3%), phosphatase activity (-59.12%) and dehydrogenase activity (-59.4%). An attempt was also made to identify the sensitive soil indicators under sewage irrigation, where microbial biomass carbon was singled out as the most sensitive indicator.

  15. Selective dissolution followed by EDDS washing of an e-waste contaminated soil: Extraction efficiency, fate of residual metals, and impact on soil environment.

    Science.gov (United States)

    Beiyuan, Jingzi; Tsang, Daniel C W; Valix, Marjorie; Zhang, Weihua; Yang, Xin; Ok, Yong Sik; Li, Xiang-Dong

    2017-01-01

    To enhance extraction of strongly bound metals from oxide minerals and organic matter, this study examined the sequential use of reductants, oxidants, alkaline solvents and organic acids followed by a biodegradable chelating agent (EDDS, [S,S]-ethylene-diamine-disuccinic-acid) in a two-stage soil washing. The soil was contaminated by Cu, Zn, and Pb at an e-waste recycling site in Qingyuan city, China. In addition to extraction efficiency, this study also examined the fate of residual metals (e.g., leachability, bioaccessibility, and distribution) and the soil quality parameters (i.e., cytotoxicity, enzyme activities, and available nutrients). The reductants (dithionite-citrate-bicarbonate and hydroxylamine hydrochloride) effectively extracted metals by mineral dissolution, but elevated the leachability and bioaccessibility of metals due to the transformation from Fe/Mn oxides to labile fractions. Subsequent EDDS washing was found necessary to mitigate the residual risks. In comparison, prior washing by oxidants (persulphate, hypochlorite, and hydrogen peroxide) was marginally useful because of limited amount of soil organic matter. Prior washing by alkaline solvents (sodium hydroxide and sodium bicarbonate) was also ineffective due to metal precipitation. In contrast, prior washing by low-molecular-weight organic acids (citrate and oxalate) improved the extraction efficiency. Compared to hydroxylamine hydrochloride, citrate and oxalate induced lower cytotoxicity (Microtox) and allowed higher enzyme activities (dehydrogenase, acid phosphatase, and urease) and soil nutrients (available nitrogen and phosphorus), which would facilitate reuse of the treated soil. Therefore, while sequential washing proved to enhance extraction efficacy, the selection of chemical agents besides EDDS should also include the consideration of effects on metal leachability/bioaccessibility and soil quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Evidence for occurrence, persistence, and growth potential of Escherichia coli and enterococci in Hawaii’s soil environments

    Science.gov (United States)

    Byappanahalli, Muruleedhara N.; Roll, Bruce M.; Fujioka, Roger S.

    2012-01-01

    High densities of Escherichia coli and enterococci are common in freshwaters on Oahu and other Hawaiian Islands. Soil along stream banks has long been suspected as the likely source of these bacteria; however, the extent of their occurrence and distribution in a wide range of soils remained unknown until the current investigation. Soil samples representing the seven major soil associations were collected on the island of Oahu and analyzed for fecal coliforms, E. coli, and enterococci by the most probable number method. Fecal coliforms, E. coli, and enterococci were found in most of the samples analyzed; log mean densities (MPN ± SE g soil−1) were 1.96±0.18, n=61; 1.21±0.17, n=57; and 2.99±0.12, n=62, respectively. Representative, presumptive cultures of E. coli and enterococci collected from the various soils were identified and further speciated using the API scheme; at least six species of Enterococcus, including Enterococcus faecalis and Enterococcus faecium, were identified. In mesocosm studies, E. coli and enterococci increased by 100-fold in 4 days, after mixing sewage-spiked soil (one part) with autoclaved soil (nine parts). E. coli remained metabolically active in the soil and readily responded to nutrients, as evidenced by increased dehydrogenase activity. Collectively, these findings indicate that populations of E. coli and enterococci are part of the natural soil microflora, potentially influencing the quality of nearby water bodies.

  17. Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai-Tibet highway.

    Science.gov (United States)

    Zhang, Hua; Wang, Zhaofeng; Zhang, Yili; Ding, Mingjun; Li, Lanhui

    2015-07-15

    The road transportation could affect roadside soils environment detrimentally, including heavy metal enrichment. In order to identify and evaluate the enrichment of heavy metals resulted from road transportation on the Tibetan Plateau, the 11 heavy metals (V, Cr, Co, Ni, Cu, Zn, As, Cd, Rb, Pb and Tl) in the topsoil (0-10 cm depth) from four sites along the Qinghai-Tibet highway were discussed in this study. Our results indicate that heavy metals such as Cr, Cu, Zn, As, Cd and Pb are related to road transportation. The content of most of these heavy metals in roadside soils decreased exponentially with the distance from the road, as did some of the Nemero Synthesis Indexes (PN values). The contamination factor for the traffic-related metals ranged from 0.56 (no pollution) to 5.67 (considerable pollution) and the Nemero Synthesis Indexes of these heavy metals ranged from 0.80 (no pollution) to 4.49 (severe pollution). Cd was of priority concern as it had the highest contamination factor. The highest PN value for these traffic-related heavy metals was found in soils at site TTH (alpine steppe). Although transportation contributed to the high contents of these traffic-related metals in roadside environments, regional differences such as wind and the terrain also had significant relationship with their enrichment in these roadside soils. The roadside distance at which there is a potential risk to livestock and wildlife from the contamination of soils by heavy metals should be determined scientifically along the Qinghai-Tibet highway, based on the different natural environments found in the region.

  18. Military installation sequestered more carbon than surrounding areas

    Science.gov (United States)

    Zhao, S.; Liu, S.; Li, Z.; Sohl, T.

    2008-12-01

    Land use activities greatly affect the temporal trends and spatial patterns of regional land-atmospheric exchange of carbon. Military installations generally have drastically different land management strategies from surrounding areas, and the carbon consequences have never been quantified and assessed. Here, we used the General Ensemble Biogeochemical Modeling System (GEMS) to simulate and compare ecosystem carbon dynamics between Fort Benning and surrounding areas from 1992 to 2050. GEMS was driven by unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes (predicted by FOREcasting SCEnarios of land cover change (FORE-SCE)). Our results indicated that the military installation sequestered more carbon than surrounding areas (0.77 vs. 0.16 Mg C ha-1 y-1 averaged from 1992 to 2007). Differences in land use activities were the primary cause behind the difference in carbon sequestration rates. From 1992 to 2007, no urban/residential expansion occurred at the installation, and transitional barren (primarily caused by forest harvesting) slightly increased from 0 to 0.2%. In contrast, urban land increased from 5.6 to 7.6% and transitional barren increased from 0.1 to 0.7% in the surrounding areas. Live biomass accumulation accounted for most of the carbon sink in both Fort Benning and surrounding areas (0.75 vs. 0.15 Mg C ha-1 y-1), while soil organic carbon accumulation was small (0.02 vs. 0.01 Mg C ha- 1 y-1), suggesting biomass removal caused by urbanization and harvesting resulted in much less carbon sequestration in surrounding areas. Fort Benning is likely to sequester more carbon in the future, although the rate of carbon sequestered per year will gradually reduce. The future carbon source/sink strength in the surrounding areas varied greatly, from a small sink to a strong source, depending on the path of land use change (e.g., increase of clear

  19. Variations in soil properties, species composition, diversity and biomass of herbaceous species due to ruminant dung residue in a seasonally dry tropical environment of India

    Directory of Open Access Journals (Sweden)

    Preeti Verma

    2015-05-01

    Full Text Available Ruminants directly or indirectly influence nutrient cycling and vegetation structure in grassland ecosystems. We assessed the impact of natural cattle dung deposition on soil attributes and the resulting effects on species composition, species diversity and biomass of herbaceous vegetation in a natural grassland in the seasonally dry tropical environment of Banaras Hindu University, India. For this 72 plots of 1 × 1 m [12 locations × 2 treatments (dung residue and control × 3 replicates] were selected in January 2013 and soil and vegetation samples collected. A total of 74 species belonging to 66 genera and 25 families were recorded. Principal Component Analysis (PCA ordination revealed that the dung residue (DP and control (CP plots were distinctly different in terms of soil attributes and species composition. The k-dominance plot showed greater species diversity in DPs than CPs, with higher soil nutrients and moisture and lower soil pH in DPs than CPs. Similarly, DPs showed more herbaceous species and greater biomass than CPs. This trend can be explained by the positive responses of forbs, erect plants, annuals, large-statured, non-native and non-leguminous species to dung residue, while increased biomass can be partly due to cattle preferentially not grazing areas adjacent to a dung pat. Overall, the study showed that deposition of dung during grazing by cattle stimulates growth of pasture species and increases species diversity. Therefore cattle dung could be used as a sustainable alternative to chemical fertilizers to manage soil pH, species composition and diversity, and forage production in the seasonally dry tropical grasslands of India, which are nutrient- and moisture-limited.Keywords: Animal manure, herbaceous vegetation, plant functional attributes, soil pH, species change.DOI: 10.17138/TGFT(3112-128 

  20. The Fate of Soil OC in the Marine Environment: Examples from the Rapidly Eroding Landscapes of Two New Zealand North Island Rivers

    Science.gov (United States)

    Blair, N. E.; Leithold, E. L.; Thompson, C. E.; Childress, L. B.; Fournillier, K. M.

    2014-12-01

    Approximately 10% of the OC lost from soils as a result of land use has been argued to be delivered to the ocean (Lal 2003). The fate of this OC is highly dependent on the organic geochemical composition of the soil pool and the nature of the marine environment that receives it. The conversion of bush to pastureland via burning in the Waipaoa and Waiapu watersheds increased erosion rates by an order of magnitude. Surface and bank erosion, coupled with landsliding and gullying deliver OC to the rivers. Visual observations, sediment budgets, C-isotope (12C, 13C, 14C) mass balances and biomarker analyses all indicate that the OC is a mixture of recent plant debris, charcoal, aged soil C (soil C are transported primarily as fines to deeper water. Marine OC is added to the fine-grained sediments as they encounter zones of primary production. Dissolved inorganic C (DIC) within the interstitial (pore) waters of the marine sediments is a mixture of seawater DIC and benthic respired C. The C-isotopic composition of the DIC reflects its source. Stable isotope and radiocarbon measurements indicate that contemporary terrestrial C3 plant OC oxidation dominates respiration on the Waiapu shelf nearshore (~60 m). Marine OC is preferentially oxidized at water depths >80 m. The rock-derived C does not seem to be oxidized on the shelf or upper slope. A comparison of riverine particulate organic C (POC) with shelf depocenter OC concentrations suggest the Waipaoa and Waiapu soil C burial efficiencies are ~50 and 85% respectively. This does not consider the fate of soil C dispersed beyond the depocenter where preservation efficiencies are expected to be lower because of greater exposure times to O2 at the sediment-water interface. Nevertheless, these small rivers are more efficient at the sequestration of soil C than some tropical counterparts (e.g. Amazon and Fly) in which extensive oxidation of the terrestrial OC has been documented.

  1. Soil plant microbe interactions in phytoremediation.

    Science.gov (United States)

    Karthikeyan, R; Kulakow, P A

    2003-01-01

    Use of vegetation in remediation of soil and groundwater contaminated with organic materials is a promising, cost-effective alternative to the more established treatment methods used at hazardous waste sites. Plants can transpire groundwater and lower the concentrations of organic contaminants in soils and groundwater. The evapotranspirational activity of vegetation acts as a natural pump-and-treatment system. Plants have shown the capacity to absorb, uptake, and convert organic contaminants to less toxic metabolites in laboratory and field studies. Vegetation also plays a significant role in bioremediation. This is because plants stimulate the degradation of organic compounds in the rhizosphere by the release of root exudates and enzymes. Success of any plant-based remediation system depends on the interaction of plants with the surrounding soil medium and the contaminant. Knowing the fate of an organic contaminant in the soil can help determine the persistence of the contaminant in the terrestrial environment and ultimately the success of any remediation method. Also, an understanding is needed of soil-plant-microbe interactions that determine the fate of organic contaminants in the soil-plant ecosystem. This paper presents an overview of the subsurface environment and fate and transport processes of organic contaminants as affected by soil-plant-microbe interactions.

  2. Validation and Scaling of Soil Moisture in a Semi-Arid Environment: SMAP Validation Experiment 2015 (SMAPVEX15)

    Science.gov (United States)

    Colliander, Andreas; Cosh, Michael H.; Misra, Sidharth; Jackson, Thomas J.; Crow, Wade T.; Chan, Steven; Bindlish, Rajat; Chae, Chun; Holifield Collins, Chandra; Yueh, Simon H.

    2017-01-01

    The NASA SMAP (Soil Moisture Active Passive) mission conducted the SMAP Validation Experiment 2015 (SMAPVEX15) in order to support the calibration and validation activities of SMAP soil moisture data products. The main goals of the experiment were to address issues regarding the spatial disaggregation methodologies for improvement of soil moisture products and validation of the in situ measurement upscaling techniques. To support these objectives high-resolution soil moisture maps were acquired with the airborne PALS (Passive Active L-band Sensor) instrument over an area in southeast Arizona that includes the Walnut Gulch Experimental Watershed (WGEW), and intensive ground sampling was carried out to augment the permanent in situ instrumentation. The objective of the paper was to establish the correspondence and relationship between the highly heterogeneous spatial distribution of soil moisture on the ground and the coarse resolution radiometer-based soil moisture retrievals of SMAP. The high-resolution mapping conducted with PALS provided the required connection between the in situ measurements and SMAP retrievals. The in situ measurements were used to validate the PALS soil moisture acquired at 1-km resolution. Based on the information from a dense network of rain gauges in the study area, the in situ soil moisture measurements did not capture all the precipitation events accurately. That is, the PALS and SMAP soil moisture estimates responded to precipitation events detected by rain gauges, which were in some cases not detected by the in situ soil moisture sensors. It was also concluded that the spatial distribution of the soil moisture resulted from the relatively small spatial extents of the typical convective storms in this region was not completely captured with the in situ stations. After removing those cases (approximately10 of the observations) the following metrics were obtained: RMSD (root mean square difference) of0.016m3m3 and correlation of 0.83. The

  3. Characterization of Minerals: From the Classroom to Soils to Talc Deposits

    Science.gov (United States)

    McNamee, Brittani D.

    2013-01-01

    This dissertation addresses different methods and challenges surrounding characterizing and identifying minerals in three environments: in the classroom, in soils, and in talc deposits. A lab manual for a mineralogy and optical mineralogy course prepares students for mineral characterization and identification by giving them the methods and tools…

  4. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Susan C., E-mail: swilso24@une.edu.a [School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 (Australia); Lockwood, Peter V., E-mail: peter.lockwood@une.edu.a [School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 (Australia); Ashley, Paul M., E-mail: pashley@une.edu.a [School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 (Australia); Tighe, Matthew, E-mail: mtighe2@une.edu.a [School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 (Australia)

    2010-05-15

    This article provides a critical review of the environmental chemistry of inorganic antimony (Sb) in soils, comparing and contrasting findings with those of arsenic (As). Characteristics of the Sb soil system are reviewed, with an emphasis on speciation, sorption and phase associations, identifying differences between Sb and As behaviour. Knowledge gaps in environmentally relevant Sb data for soils are identified and discussed in terms of the limitations this imposes on understanding the fate, behaviour and risks associated with Sb in environmental soil systems, with particular reference to mobility and bioavailability. - A critical and comparative review of Sb and As chemistry and associations in soil systems identifies research directions needed for better understanding of risks.

  5. Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India.

    Science.gov (United States)

    Ahirwal, Jitendra; Maiti, Subodh Kumar; Singh, Ashok Kumar

    2017-04-01

    Open strip mining of coal results in loss of natural carbon (C) sink and increased emission of CO2 into the atmosphere. A field study was carried out at five revegetated coal mine lands (7, 8, 9, 10 and 11years) to assess the impact of the reclamation on soil properties, accretion of soil organic C (SOC) and nitrogen (N) stock, changes in ecosystem C pool and soil CO2 flux. We estimated the presence of C in the tree biomass, soils, litter and microbial biomass to determine the total C sequestration potential of the post mining reclaimed land. To determine the C sequestration of the reclaimed ecosystem, soil CO2 flux was measured along with the CO2 sequestration. Reclaimed mine soil (RMS) fertility increased along the age of reclamation and decreases with the soil depths that may be attributed to the change in mine soils characteristics and plant growth. After 7 to 11years of reclamation, SOC and N stocks increased two times. SOC sequestration (1.71MgCha(-1)year(-1)) and total ecosystem C pool (3.72MgCha(-1)year(-1)) increased with the age of reclamation (CO2 equivalent: 13.63MgCO2ha(-1)year(-1)). After 11years of reclamation, soil CO2 flux (2.36±0.95μmolm(-2)s(-1)) was found four times higher than the natural forest soils (Shorea robusta Gaertn. F). The study shows that reclaimed mine land can act as a source/sink of CO2 in the terrestrial ecosystem and plays an important role to offset increased emission of CO2 in the atmosphere.

  6. 城市绿地对周边热环境影响遥感研究--以北京为例%Effect of urban green land on thermal environment of surroundings based on remote sensing:A case study in Beijing, China

    Institute of Scientific and Technical Information of China (English)

    栾庆祖; 叶彩华; 刘勇洪; 李书严; 高燕虎

    2014-01-01

    间范围、降温幅度以及绿地景观参数与降温幅度的相关关系,可为城市规划建设及环境评价等提供科学参考。%Urban green land (UGL) is one of the key factors that mitigate urban thermal environment effect. Not only in macro scale it has influence on urban weather condition, but also in the scale of community, it has direct impact on thermal environment of its surroundings. In this paper, from the view of landscape of UGL, we chose UGL in main urban zone as study target and buildings around them as bearing agent influenced by them. By employing remote sensing (RS) and geographic information system (GIS) technology, we analyzed dominant landscape feature parameters of UGL that impact thermal environment of buildings, and studied how far UGL could affect surrounding thermal environment and correlation between landscape coefficients of UGL and cooling range caused by UGL. First of all, we mapped 26 UGL patches artificially and extracted their neighbor buildings from TM image. Then, we retrieved canopy temperature of UGL and top roof temperature of buildings around UGL based on quantitative remote sensing theory, and computed UGL’s landscape information using GIS tools. Finally, spatial range that UGL affect its neighbor buildings’ thermal environment was inferred through both spatial statistic method and isotherm perimeter-temperature curve breakpoint method, and meanwhile, correlation between UGL’s temperature and its neighbor buildings’ temperature was explored. Studies showed that, at the scale of spatial resolution of 100 m, most UGL patches had a role in cooling effect on their surrounding buildings within 100 m range. All UGL patches over 0.5 km2 acted significant cooling effect on buildings near patches within 100 m, and the temperature drop ranged from 0.46 ℃ to 0.83 ℃, with average 0.72 ℃. Also UGL patches below 0.5 km2 with high fractional vegetation cover played a cooling role, while UGL patches below 0.5km2

  7. Changes in soil carbon with encroachment and mortality of velvet mesquite, Prosopis velutina, in a semi-arid environment

    Science.gov (United States)

    DeMarco, J.; Filley, T. R.; Throop, H.

    2013-12-01

    Encroachment of woody plants into grasslands is one of the major global land cover changes of the past century. This change in vegetation has the potential to alter soil carbon (C) storage through changes in the quality and quantity of litter inputs to the soil and subsequent dynamics of soil C stabilization or loss. In the Sonoran Desert, velvet mesquite (Prosopis velutina) has encroached into grasslands over the past 100 years. Past shrub management strategies such as herbicide treatment, cutting, and girdling and natural disturbances such as fire have resulted in standing dead shrubs that differ in their time since mortality. We assessed soil C quantity, quality, stability, and source under live shrubs, under dead shrubs that represented a chronosequence of shrub mortality, and in unencroached grass plots. Shrubs were killed 8, 18, or 52 years prior to this study. Soils were collected at 0-5 cm depth and were measured for total organic C to quantify soil C quantity, plant bio-polymers to quantify soil C quality and source, 13C to determine source (C4 grass vs. C3 shrub inputs), and density fractionation and C-mineralization potential to assess stability. Shrubs had strong influences on soil properties, but these influences degraded with increasing time since shrub mortality. Soil C concentrations under live shrubs were 2-4 times higher than in grass plots. Soil C did not differ between live, 8 y dead, and 18 y dead shrubs, but soil C was significantly lower under 52 y dead than live shrubs. Carbon mineralization potential was higher in live shrubs soils compared to grasses. Mineralization rates did not differ between live and 8 y dead shrub soils, but declined relative to live shrubs with 52 y since shrub death. Stable isotope analysis suggests that 55-75% of the soil C under live shrubs is mesquite derived, while only 30-40% of soil C in grass plots is mesquite derived. Soil from live shrubs contained 4-8% more light fraction (LF) mass than in the grass plots

  8. Conifer expansion reduces the competitive ability and herbivore defense of aspen by modifying light environment and soil chemistry.

    Science.gov (United States)

    Calder, W John; Horn, Kevin J; St Clair, Samuel B

    2011-06-01

    Disturbance patterns strongly influence plant community structure. What remains less clear, particularly at a mechanistic level, is how changes in disturbance cycles alter successional outcomes in plant communities. There is evidence that fire suppression is resulting in longer fire return intervals in subalpine forests and that these lengthened intervals increase competitive interactions between aspen and conifer species. We conducted a field and greenhouse study to compare photosynthesis, growth and defense responses of quaking aspen and subalpine fir regeneration under light reductions and shifts in soil chemistry that occur as conifers increase in dominance. The studies demonstrated that aspen regeneration was substantially more sensitive to light and soil resource limitations than that of subalpine fir. For aspen, light reductions and/or shifts in soil chemistry limited height growth, biomass gain, photosynthesis and the production of defense compounds (phenolic glycosides and condensed tannins). Biomass gain and phenolic glycoside concentrations were co-limited by light reduction and changes in soil chemistry. In contrast, subalpine fir seedlings tended to be more tolerant of low light conditions and showed no sensitivity to changes in soil chemistry. Unlike aspen, subalpine fir increased its root to shoot ratio on conifer soils, which may partially explain its maintenance of growth and defense. The results suggest that increasing dominance of conifers in subalpine forests alters light conditions and soil chemistry in a way that places greater physiological and growth constraints on aspen than subalpine fir, with a likely outcome being more successful recruitment of conifers and losses in aspen cover.

  9. 城市水土环境变化的地质指标体系%Geoindicator system for changes of urban water and soil environment

    Institute of Scientific and Technical Information of China (English)

    姚治华; 王红旗

    2011-01-01

    随着全球城市化进程的不断加快,城市水土环境变化日益引起人们的关注.借鉴国际地质指标研究的思路,有针对性地构建了城市水土环境变化的地质指标体系.首先明确了城市水土环境的概念内涵,确定了指标体系构建的原则,在此基础上提出了融合“CSR模型”和“PSR模型”的指标体系框架,在此框架指导下构建了城市水土环境变化调查指标体系和监测指标体系,二者共同构成了城市水土环境变化地质指标体系,为城市水土环境调查、监测与管理提供了前期的技术支撑.%The changes of urban water and soil environment have become more and more important with the process of global urbanization. Drawing on the experience obtained abroad in the study of geoindicators, the authors constructed the geoindicator system for changes of urban water and soil environment. The concept of urban water and soil environment and the principles of the indicator system were first identified. On such a basis, the framework of the indicator system was proposed with the integration of "CSR model" and "PSR model". The geoindicator system for changes of urban water and soil environment was finally constructed, which included the investigation geoindicator system and the monitoring geoindicator system. The results obtained by the authors can supply prior-stage technical support for investigation, monitoring and management of the urban water and soil environment.

  10. Contour detection by surround suppression of texture

    NARCIS (Netherlands)

    Petkov, Nicolai; Tavares, JMRS; Jorge, RMN

    2007-01-01

    Based on a keynote lecture at Complmage 2006, Coimbra, Oct. 20-21, 2006, an overview is given of our activities in modelling and using surround inhibition for contour detection. The effect of suppression of a line or edge stimulus by similar surrounding stimuli is known from visual perception studie

  11. Bioaccumulation and cancer risk of polycyclic aromatic hydrocarbons in leafy vegetables grown in soils within automobile repair complex and environ in Uyo, Nigeria.

    Science.gov (United States)

    Inam, Edu; Ibanga, Felicia; Essien, Joseph

    2016-12-01

    Using gas chromatography-mass spectrometry and an incremental lifetime cancer risks (ILCRs) assessment model, the bioaccumulation and cancer risk of 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) in leafy vegetables (Vernonia amygdalina and Lasianthera africanum) grown in soils within an automobile repair complex environment in Uyo, Nigeria was studied. The total PAHs concentrations recorded for soils ranged from 0.02 to 1.77 mg/kg. The highest level of 1.77 mg/kg was recorded for soils from the main automobile repair complex (site 1). Low molecular weight (LMW) PAHs were predominant although some high molecular weight (HMW) PAHs suites (0.04 mg/kg of chrysene and 0.04 of benzo[k]fluoranthene) were also found in site 1. The leafy vegetables accumulated PAHs were mostly LMW. Accumulation levels were similar but the extent of PAH uptake in vegetables was species dependent as V. amygdalina accumulated more (0.81 mg/kg). The bioaccumulation factors (BaFs) calculated ranged from 0.22 to 0.63 for L. africanum, and 0.18 to 0.55 for V. amygdalina in site 1 where high PAH levels were recorded in soil. Pearson correlation coefficient analysis revealed a strong positive relation between the PAH content of soil and the amount accumulated by L. africanum (r = 0.5) and V. amygdalina (r = 0.8) at p = 0.05. The vegetable's potential to bioaccumulate PAHs is indicative of their use as good bioindicators for PAH contamination in soil. Only two of the USEPA possible human carcinogenic PAHs were detected, and carcinogenic risk assessment based on occupational exposures to soil particles by adults revealed that the total risk level (7.17 × 10(-5)) contribution from incidental soil ingestion, dermal contact, and soil particle dust inhalation slightly exceed the USEPA acceptable limits (automobile repair complexes across Nigeria.

  12. Changes in soil carbon eight years after the death of mesquite, Prosopis velutina, in an arid environment

    Science.gov (United States)

    DeMarco, J.; Filley, T. R.; Throop, H. L.

    2012-12-01

    Encroachment of woody plants into grasslands is one of the major global land cover changes of the past century. Woody encroachment in semi-arid and arid ecosystems ("drylands") is of particular concern because these systems cover almost half of the global land surface and account for 30-35% of terrestrial net primary production. Understanding how C cycling is altered with shrub encroachment in drylands is therefore essential for understanding whether these systems will be a source or sink to regional or global C cycling. Little is known about how shrub encroachment influences the input source and stability of C in the soil. Shrub encroachment could lead to a shift in the source of aboveground litter and/or belowground inputs that can vary in their chemistry. These changes in inputs may influence the stability of soil C in the system. We used a chronosequence of shrub removal treatments and compared them to live shrubs and grass plots to assess changes in soil C sources and stability with time since shrub death. Our objectives were to 1) quantify whether soil C concentrations change with shrub encroachment, 2) quantify how woody encroachment alters the source and stability of soil C, and 3) to investigate how the source and stability of soil C changes with shrub death. We assessed changes in soil C following shrub encroachment and death in the Sonoran Desert by comparing soil from grassy areas, under live velvet mesquite (Prosopis velutina) canopies, and under mesquite skeletons that died 8 years prior to the study. Soils were collected at two depths (0-5 cm and 5-20 cm) and were measured for total organic C and total N. The lignin and cutin composition of the soils and the dominant plants in this system were also analyzed to assess the relative source and stability of C in these soils. The composition of lignin and cutin in plants are characteristic of major plant groups (grasses versus woody plants) and are preserved in the soil allowing assessment of the relative

  13. Testing of different soil combinations as substrates in slalom slopes and golf courses in the cold climate environment

    Science.gov (United States)

    Pihlaja, Jouni

    2010-05-01

    Testing of different soil combinations as substrates in slalom slopes and golf courses in the cold climate environment Jouni Pihlaja, Geological Survey of Finland, Northern Finland Office, P.O. Box 77, FIN-96101 Rovaniemi, Finland. jouni.pihlaja@gtk.fi, www.gtk.fi The Geological Survey of Finland (GTK) is, with some partners, carrying out a cooperative project, POMARA, in the Levi tourist center in northern Finland. The purpose of this applied geology project is to determine which soil combinations work best over the long term as substrates on slalom slopes and golf course areas. Since the tourist center is located in a cold climate area, it gives extra challenges to those landscaping activities. The average temperature in January is about -15°C and in July +14°C. In the Levi area, the slalom slopes have normally been covered by local carex peat during the shaping phase of slopes. The problem has been that on the top part of the fell, the peat has "disappeared" after some years and stones have come up under the peat layer, since these areas are naturally covered by block fields. The main assumption at the beginning of the project was that frost weathering is causing the problems. In this project, test areas have been prepared on the slopes. The most important task is to compare test areas covered by carex peat to areas covered by a combination of sandy till and carex peat. The reason why sandy till was chosen to be the additional material was that it is supposed to stand up better against frost weathering than peat itself. Also, when considering future landscaping, the sandy till is the most economically viable mineral material to be used because of its nearby location . In the golf course areas, a combination of fine sand and sphagnum peat has been used in landscaping. The peat was brought from the Simo area, 300 km south of Levi. In this project, the goal is to determine if the local carex peat is working properly in the green areas of the golf club. The

  14. Transmission of ESBL/AmpC-producing Escherichia coli from broiler chicken farms to surrounding areas.

    Science.gov (United States)

    Laube, H; Friese, A; von Salviati, C; Guerra, B; Rösler, U

    2014-08-27

    Although previous studies have demonstrated high carriage of ESBL/AmpC-producing Escherichia coli in livestock, especially in broiler chickens, data on emission sources of these bacteria into the environment are still rare. Therefore, this study was designed to systematically investigate the occurrence of ESBL/AmpC-producing E. coli in slurry, air (inside animal houses), ambient air (outside animal houses) and on soil surfaces in the areas surrounding of seven ESBL/AmpC-positive broiler chicken fattening farms, including investigation of the possible spread of these bacteria via the faecal route and/or exhaust air into the environment. Seven German broiler fattening farms were each investigated at three points in time (3-36 h after restocking, 14-18 and 26-35 days after housing) during one fattening period. The occurrence of ESBL/AmpC genes in the investigated samples was confirmed by PCR, detecting blaCTX-M, blaSHV, blaTEM and blaCMY-genes, and, if necessary, by sequencing and/or the disc diffusion method. The results showed a wide spread of ESBL/AmpC-producing E. coli in broiler farms, as well as emissions into the surroundings. 12 out of 14 (86%) slurry samples were positive for ESBL/AmpC-producing E. coli. Additionally, 28.8% (n=23/80) of boot swabs taken from various surfaces in the areas surrounding of the farms as well as 7.5% (n=3/40) of the exhaust air samples turned out to be positive for these microorganisms. Moreover, a small proportion of air samples from inside the barns were ESBL/AmpC-positive. By comparing selected isolates using pulsed field gel electrophoresis, we proved that faecal and airborne transfer of ESBL/AmpC-producing microorganisms from broiler fattening farms to the surrounding areas is possible. Two isolates from farm G2 (slurry and boot swab 50 m downwind), two isolates from farm G3 (slurry and individual animal swab) as well as two isolates from farm G6 (air sample in the barn and air sample 50 m downwind) showed 100% similarity in

  15. Soil Solution

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The characteristics of the soil solution in the root environment in the greenhouse industry differ much from those for field grown crops. This is caused firstly by the growing conditions in the greenhouse, which strongly differ from those in the field and secondly the function attributed to the soil

  16. 两层损耗土壤媒质附近HEMP环境%HEMP Environment Over Two-layer Lossy Soil

    Institute of Scientific and Technical Information of China (English)

    孙蓓云; 周辉

    2013-01-01

    To understand the HEMP environment near ground is important for HEMP effects research of ground -base electrical system.The methods to calculate the reflection wave of plane wave and electromagnetic environment over two-layer lossy media are presented.The reflection wave and electromagnetic environment of HEMP over two-layered soil are calculated.The results indicate that there are two peaks in the reflection wave and the time of the second peak is determined by the thickness of the first layer soil.The tail-wave amplitude of x-direction HEMP environment is reduced than one layer's,and the tail-wave amplitude of z-direction is increased.%介绍了分层损耗媒质反射波的计算方法,计算了大地由一定厚度的干土和湿土构成时,x方向和z方向的HEMP反射波及地面附近电磁环境.计算结果表明x方向和z方向的反射波都有双峰,第2个峰出现的时间与第1层土壤的厚度有关;地面附近x方向HEMP环境场波尾的幅度较单层的会有下降,而z方向较单层的会有增加.

  17. Seed Priming with Polyethylene Glycol Induces Physiological Changes in Sorghum (Sorghum bicolor L. Moench) Seedlings under Suboptimal Soil Moisture Environments

    National Research Council Canada - National Science Library

    Zhang, Fei; Yu, Jialin; Johnston, Christopher R; Wang, Yanqiu; Zhu, Kai; Lu, Feng; Zhang, Zhipeng; Zou, Jianqiu

    2015-01-01

    ... tolerance under various soil moisture stress conditions. Results showed that seed priming increased the environmental range suitable for sorghum germination and has potential to provide more uniform and synchronous emergence...

  18. Correlation Between Chemical Element Contents in Tree Rings and Soils

    Institute of Scientific and Technical Information of China (English)

    QIANJUN-LONG; KESHAN-ZHE; 等

    1993-01-01

    The annual growth rings of ten trees and the soils near the tree roots were sampled from the mining ares of lead-and zinc-dominant metals in the Xixia Mountain,Nanjing,for the determination of chemical element contents.The study results showed that the elemental contents in the tree rings were correlated with those in the soils,i.e.,the elemental contents in the tree rings increased with those in the soils,even in the cases of different environments and different tree species.Therefore,a time-concentration sequence could be set up on the basis of determining the elemental contents in the successive annual growth rings of trees to qualitatively reflect the annual variations of relevant elements in the soils,and a time-concentration sequence of elemental contents in soils could also be established in terms of related model to reproduce the dynamic changes of the surroundings.

  19. Research Regarding The Impact Of Chemical Fertilizers Upon The Soil

    Directory of Open Access Journals (Sweden)

    Daniel Călugăr

    2010-06-01

    Full Text Available Chemical fertilizers need to be used according to the natural fertility of the soil, to the ecological conditions and the cultivation requirements for nourishing elements. Keeping this in mind, they will not have any negative effects over the surrounding environment. But if the optimal doses are not respected the soil will be polluted. Regarding this matter a study has been made that showed that if the correct dosage is not respected this could lead to the acidification of the soil to such a level that it won’t be suitable for agricultural purposes. Even if excess usage of fertilizers does not cause any changes in the soils texture, it can still contribute to its pure quality. If the correct dosage and the period of administration is respected than the soil will be improved with nourishing elements, this leading to a better agricultural production.

  20. Heavy Metal Contamination in Urban Soils I Zinc Accumulation Phenomenon in Urban Environments as Clues of Study

    OpenAIRE

    Komai, Yutaka

    1981-01-01

    As an introduction of the continuing study on the heavy metal contamination in urban soils, zinc accumulation phenomenon observed in urban areas in south Osaka was reported. The survey of zinc concentration in soybean leaves taken in urban and suburban arable lands indicated its accumulation in a wide area. And a correlation between easy soluble zinc level in soils and leaf zinc content were shown. Zinc concentrations in suspended particles in air, falling dust and some water samples were che...

  1. Heavy Metals Pollution and Eco-security Evaluation in the Surrounding Soil of An Untapped Lead-zinc Mining%一个未开采的铅锌矿周边土壤重金属含量及生态安全评价

    Institute of Scientific and Technical Information of China (English)

    张广胜; 徐文彬; 李俊翔; 韦金莲

    2015-01-01

    金属污染情况大不相同,该拟开采铅锌矿在其后续的开采、选矿活动中,应高度重视重金属污染的研究和防治,采取合理措施,防止加剧周边土壤的重金属累积。%In order to comprehand the content and potential ecological risk of haavy metals in the surrounding soil of Jianbidong lead-zinc mining in Fengshun Guangdong, adopting the methods of field sampling and laboratory analysis test, regarding four different surface soil areas as analyzing case studies, the heavy metal contents (Pb、Zn、Cu、Cd、Cr、As) of the surrounding surface soil from the lead-zinc mining were determined.The analyzing methodologies include single factor evaluation, Nemerow comprehensive index method, evaluation of Hakanson potential ecological risk assessment and health risk assessment so that to assess the level and potential ecological risk of heavy metals from the soil. The result shows that: under the undeveloped situation of this lead-zinc mining, the soil around the mining area has occourred somewhat pollution of heavy metals, and most of the soil samples with Pb(average of 106.77 mg·kg-1), Cd(average of 0.27 mg·kg-1), Zn(average 55.75 mg·kg-1) from the four research areas were over the background value of Guangdong Province;The polluted index shows Pb(maximum value of 4.57), Cd(maximum value of 2.98), Zn(maximum value of 1.41) pollutions are the most common;Comprehensive index shows polluted degree of the soil of Laohuge paddy field area is the most serious and the value is accounting 3.47. Meanwhile, the number of the soil samples which have medium degree of pollution is equal 51.02% of the number of the whole;While the Hakanson potential ecological risk assessment indicated that the mining potential ecological risk at low level, the four area of potential ecological risk index (RI) was less than 150, the average value was 110.67, probably due to the fact that the mine area were still undeveloped, and influence of human

  2. Soil Erosion Prediction Using Morgan-Morgan-Finney Model in a GIS Environment in Northern Ethiopia Catchment

    Directory of Open Access Journals (Sweden)

    Gebreyesus Brhane Tesfahunegn

    2014-01-01

    Full Text Available Even though scientific information on spatial distribution of hydrophysical parameters is critical for understanding erosion processes and designing suitable technologies, little is known in Geographical Information System (GIS application in developing spatial hydrophysical data inputs and their application in Morgan-Morgan-Finney (MMF erosion model. This study was aimed to derive spatial distribution of hydrophysical parameters and apply them in the Morgan-Morgan-Finney (MMF model for estimating soil erosion in the Mai-Negus catchment, northern Ethiopia. Major data input for the model include climate, topography, land use, and soil data. This study demonstrated using MMF model that the rate of soil detachment varied from 170 t ha−1 y−1, whereas the soil transport capacity of overland flow (TC ranged from 5 t ha−1 y−1 to >42 t ha−1 y−1. The average soil loss estimated by TC using MMF model at catchment level was 26 t ha−1 y−1. In most parts of the catchment (>80%, the model predicted soil loss rates higher than the maximum tolerable rate (18 t ha−1 y−1 estimated for Ethiopia. Hence, introducing appropriate interventions based on the erosion severity predicted by MMF model in the catchment is crucial for sustainable natural resources management.

  3. Modelling soil moisture under different land covers in a sub-humid environment of Western Ghats, India

    Indian Academy of Sciences (India)

    B Venkatesh; Lakshman Nandagiri; B K Purandara; V B Reddy

    2011-06-01

    The objective of this study is to apply and test a simple parametric water balance model for prediction of soil moisture regime in the presence of vegetation. The intention was to evaluate the differences in model parameterization and performance when applied to small watersheds under three different types of land covers (Acacia, degraded forest and natural forest). The watersheds selected for this purpose are located in the sub-humid climate within the Western Ghats, Karnataka, India. Model calibration and validation were performed using a dataset comprising depth-averaged soil moisture content measurements made at weekly time steps from October 2004 to December 2008. In addition to this, a sensitivity analysis was carried out with respect to the water-holding capacity of the soils with the aim of explaining the suitability and adaptation of exotic vegetation types under the prevailing climatic conditions. Results indicated reasonably good performance of the model in simulating the pattern and magnitude of weekly average soil moisture content in 150 cm deep soil layer under all three land covers. This study demonstrates that a simple, robust and parametrically parsimonious model is capable of simulating the temporal dynamics of soil moisture content under distinctly different land covers. Also, results of sensitivity analysis revealed that exotic plant species such as Acacia have adapted themselves effectively to the local climate.

  4. Lead isotopes in soils and groundwaters as tracers of the impact of human activities on the surface environment: The Domizio-Flegreo Littoral (Italy) case study

    Science.gov (United States)

    Grezzi, G.; Ayuso, R.A.; de Vivo, B.; Lima, A.; Albanese, S.

    2011-01-01

    The isotopic signature of geogenic and anthropogenic materials, in combination with concentration data for pollutants, can help trace the origin and the extent of contamination in the environment. This approach is particularly effective if naturally occurring and anthropogenically introduced metals have different isotopic ratios. Lead isotope analysis on soils from 7 profiles (1. m depth) and on groundwaters from 8 wells have been used to determine the impact of human activities on the surface environment of Domizio-Flegreo Littoral. Result obtained show that in sub-rural areas the isotopic composition of the samples collected along the soil profiles of Domizio-Flegreo Littoral is likely mostly controlled by the nature of the parent geologic material (natural) while in more urbanized areas (Giugliano) Pb isotopic composition in superficial soils is mostly influenced by anthropic sources such as motor vehicles. Lead isotopic ratios in groundwaters also show that the use of pesticides and, probably, the influence of aerosols and the presence of illegal waste disposal can influence water quality. ?? 2010 Elsevier B.V.

  5. Management of the post accidental situation applied to Nogent-Sur-Seine nuclear power plant environment. First results of the decontamination of soil and food chain working group

    Energy Technology Data Exchange (ETDEWEB)

    Allain, E.; Mignon, F. [District Agricultural and Forestry Dept. (Aube Administrative AREA), 10 - Troyes (France); Cessac, B.; Gallay, F.; Metivier, J.M.; Reales, N. [Institute for Radiological Protection and Nuclear Safety, 10 - Troyes (France); Gofette, R. [Veterinary Div. (Aube Administrative AREA), 10 - Troyes (France); Mahot, M. [Farmer' s Association (Aube Administrative AREA), 10 - Troyes (France)

    2004-07-01

    From the beginning of 2002, Troyes prefecture has initiated a reflection about the management of a nuclear crisis caused by an accident at the Nogent-sur-Seine nuclear power plant. Five workshops have been created, dealing with the following themes: 'Administrative and economic organization', 'Health risk assessment and the epidemiology', 'Monitoring of environment', 'Movement in the contaminated area' and 'Decontamination of soil and Food chain'. The first results of the 'Decontamination of soil and Food chain' working group, which involves the District Agricultural and Forestry Department, the Farmer's Association, the Institute for Radiological Protection and Nuclear Safety and the Veterinary Division are presented in the poster. The scenario that had been developed for the accident considers the release of 3 radionuclides ({sup 131}I, {sup 134}Cs and {sup 137}Cs) in the environment. The scale of the crisis didn't require the evacuation and the sheltering of the population during the emergency phase. The consequences on the local agricultural products (cereal, beetroot, vine, milk, cow meat...) have been assessed up to 50 km and different strategies of agricultural countermeasures have been studied regarding to the local constraints (soil types, surfaces and quantities concerned) and to the consequences of their implementation (waste types and quantities, costs). Then, decision-making diagrams summed up the technical results and allowed to deepen the global thought. (author)

  6. Shallow Subsurface Soil Moisture Dynamics in the Root-Zone and Bulk Soil of Sparsely Vegetated Land Surfaces as Impacted by Near-Surface Atmospheric State

    Science.gov (United States)

    Trautz, A.; Illangasekare, T. H.; Tilton, N.

    2015-12-01

    Soil moisture is a fundamental state variable that provides the water necessary for plant growth and evapotranspiration. Soil moisture has been extensively studied in the context of bare surface soils and root zones. Less attention has focused on the effects of sparse vegetation distributions, such as those typical of agricultural cropland and other natural surface environments, on soil moisture dynamics. The current study explores root zone, bulk soil, and near-surface atmosphere interactions in terms of soil moisture under different distributions of sparse vegetation using multi-scale laboratory experimentation and numerical simulation. This research is driven by the need to advance our fundamental understanding of soil moisture dynamics in the context of improving water conservation and next generation heat and mass transfer numerical models. Experimentation is performed in a two-dimensional 7.3 m long intermediate scale soil tank interfaced with a climate-controlled wind tunnel, both of which are outfitted with current sensor technologies for measuring atmospheric and soil variables. The soil tank is packed so that a sparsely vegetated soil is surrounded by bulk bare soil; the two regions are separated by porous membranes to isolate the root zone from the bulk soil. Results show that in the absence of vegetation, evaporation rates vary along the soil tank in response to longitudinal changes in humidity; soil dries fastest upstream where evaporation rates are highest. In the presence of vegetation, soil moisture in the bulk soil closest to a vegetated region decreases more rapidly than the bulk soil farther away. Evapotranspiration rates in this region are also higher than the bulk soil region. This study is the first step towards the development of more generalized models that account for non-uniformly distributed vegetation and land surfaces exhibiting micro-topology.

  7. 区域土壤环境质量的可拓物元评价%Extension Matter-element Evaluation of Regional Soil Environment Quality

    Institute of Scientific and Technical Information of China (English)

    刘蕾; 李庆召; 姜灵彦; 高军侠

    2012-01-01

    In order to evaluate regional soil quality objectively, and land resources were planed and used rationally, matter-element model was introduced into the soil environment quality comprehensive evaluation, and the matter element model of the soil evaluation quality Evaluation was built. Through soil sampling and measuring, the effects of various factors on soil quality were analyzed with in a certain area with the matter-element method. The results indicated that Cu content was class II, other heavy metals was Class I in the evaluation area, the result of integrated soil environmental quality was Class I, the specific level was 1.342. In other words, the exact level was between Class I and Class II, more emphasis on I level. The assessment method was feasible, and could also detect the soil environmental grades scientifically. The effects of different pollution factors on soil environmental quality could be estimated, and the pollution grades could be divided and evaluated.%为了更加客观评价区域土壤环境质量,使土地资源得到合理规划和利用,将物元法引入土壤环境质量评价体系中,构建土壤环境质量评价的物元模型.通过实地土壤取样、测量,用物元分析法得出土壤中各种影响因子对一定区域内土壤环境质量的影响程度.实验结果表明:评价区内土壤中Cu含量为Ⅱ级,其他重金属含量均符合Ⅰ级标准,综合土壤环境质量评级结果为Ⅰ级,具体等级值为1.342,即精确的等级是介于Ⅰ级和Ⅱ级之间,更偏重于Ⅰ级.该评价方法可以科学、有效地应用监测数据,评价结果较为可信,能较科学地判定土壤环境质量级别,同时也可反映各污染因子对土壤环境质量的影响程度,并对污染程度加以区分和量化.

  8. INFLUENCE OF THE ENVIRONMENT ON THE CONTENT OF ARSENIC IN CULTIVATED SOILS IN ZGORZELEC-BOGATYNIA REGION

    Directory of Open Access Journals (Sweden)

    Ewa Kucharczak-Moryl

    2014-10-01

    Full Text Available The study was conducted in the area of influence of Mine and Power Plant “Turów” which, through the emission of gaseous and particulate pollutants contribute to soil contamination, among other things by arsenic. The aim of this study was to determine the total content of this metal in samples of anable soils collected in the area of the impact of the above-mentioned emitters. At the same time their grain-size distribution and their physico-chemical properties, as pH and percentage of organic matter were determined. Soils collected from a depth of 0.0 to 0.3 m below ground surface, and from 0.3 to 0.6 m b.g.s. came from the area of direct impact of the mine and power plant (area of Bogatynia and the region of Zgorzelec ,located out of the direct impact of emitters. Total arsenic content was determined by ICP- AES using a plasma spectrometer Varian Liberty Series II. All soil samples, independently of the place of origin, showed acid pH, and organic matter content in both research areas was higher at a depth of 0.0 to 0.3 m. In accordance with the classification of PTG 2008, soils from the area of Zgorzelec were classified as very light, light and medium (loose sand, loamy sand, sandy loam and light loam, with a high content of sand fraction it was also found. The soils of Bogatynia region were classified as medium and heavy silty (loamy silt and clayey silt, with a high content of silt fraction . Increased levels of arsenic in cultivated soils in the area of influence of the Mine and Power Plant, on the one hand they are connected with its anthropogenic its release during the combustion of coal, and on the other hand it is the influence of physico-chemical properties of soils. It is the reason of increased accumulation of this metal, mostly at a depth of 0.3 to 0.6 m. Significant, 3 times, higher level of this metal was showed in the area of direct impact of Mine and Power Plant “Turów”, compared with the area of Zgorzelec, apart from

  9. Treated wastewater irrigation effect on soil,crop and environment: Wastewater recycling in the loess area of China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A study was carried out at the Loess Plateau in Dongzhi,China,to test the feasibility of using secondary treatment sewage effluent and to determine whether the water quality would then meet the recommended irrigation norm.Seven crops,including celery,wheat,maize,millet,apples,rapeseed and yellow beans,were tested in the study.Physical and chemical properties of the soil,crop yield and quality and leachate at different soil depths were measured.In most cases,the quality of the crops that made use of treated sewage was not distinctively different from those that did not use treated sewage.However,yields for the former were much higher than they were for the latter.Leachates at different soil depths were analyzed and the results did not show alarming levels of constituents.For a period of approximately 14 months.the treated sewage irrigation had no significant effect on the loess soil and no cases of illness resulting from contact with the treated sewage were reported.With treated sewage irrigation,a slight increase in the organic content of the soil was observed.

  10. Agroforestry practice in villages surrounding Nyamure former ...

    African Journals Online (AJOL)

    cntaganda

    Key words: Agroforestry, fuel wood, tree products, woodlot, forest plantation. INTRODUCTION ... The study area included three administrative cells in the surroundings of Nyamure ..... Table 6: Distance and time spent on firewood collection.

  11. Explaining preferences for home surroundings and locations

    Directory of Open Access Journals (Sweden)

    Hans Skifter Andersen

    2011-01-01

    Full Text Available This article is based on a survey carried out in Denmark that asked a random sample of the population about their preferences for home surroundings and locations. It shows that the characteristics of social surroundings are very important and can be divided into three independent dimensions: avoiding social nuisances, preferring social homogeneity and living close to one’s social network and place of origin. The study shows that most people have many detailed preferences, whereas some have very few. This confirms an earlier theory that some people are very connected to certain places with given characteristics and thus do not have priorities regarding home surroundings and locations. For others, mostly young people and singles, home is just a place to sleep and relax, whereas life is lived elsewhere. For this group, there are only preferences for location and there are few specific preferences for surroundings.

  12. Nitrogen cycling in an extreme hyperarid environment inferred from δ(15)N analyses of plants, soils and herbivore diet.

    Science.gov (United States)

    Díaz, Francisca P; Frugone, Matías; Gutiérrez, Rodrigo A; Latorre, Claudio

    2016-03-09

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ(15)N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ(15)N and δ(13)C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ(15)N values span the entire gradient, soil δ(15)N values show a positive correlation with aridity as expected. In contrast, foliar δ(15)N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ(15)N values.

  13. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    Science.gov (United States)

    Díaz, Francisca P.; Frugone, Matías; Gutiérrez, Rodrigo A.; Latorre, Claudio

    2016-03-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N values span the entire gradient, soil δ15N values show a positive correlation with aridity as expected. In contrast, foliar δ15N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ15N values.

  14. Assessment of soil erosion sensitivity and post-timber-harvesting erosion response in a mountain environment of Central Italy

    Science.gov (United States)

    Borrelli, Pasquale; Schütt, Brigitta

    2014-01-01

    This study aimed to assess the effects of forest management on the occurrence of accelerated soil erosion by water. The study site is located in a mountainous area of the Italian Central Apennines. Here, forest harvesting is a widespread forestry activity and is mainly performed on the moderate to steep slopes of the highlands. Through modeling operations based on data on soil properties and direct monitoring of changes in the post-forest-harvesting soil surface level at the hillslope scale, we show that the observed site became prone to soil erosion after human intervention. Indeed, the measured mean soil erosion rate of 49 t ha- 1 yr- 1 for the harvested watershed is about 21 times higher than the rate measured in its neighboring undisturbed forested watershed (2.3 t ha- 1 yr- 1). The erosive response is greatly aggravated by exposing the just-harvested forest, with very limited herbaceous plant cover, to the aggressive attack of the heaviest annual rainfall without adopting any conservation practices. The erosivity of the storms during the first four months of field measurements was 1571 MJ mm h- 1 ha- 1 in total (i.e., from September to December 2008). At the end of the experiment (16 months), 18.8%, 26.1% and 55.1% of the erosion monitoring sites in the harvested watershed recorded variations equal or greater than 0-5, 5-10 and > 10 mm, respectively. This study also provides a quantification of Italian forestland surfaces with the same pedo-lithological characteristics exploited for wood supply. Within a period of ten years (2002-2011), about 9891 ha of coppice forest changes were identified and their potential soil erosion rates modeled.

  15. Surround-Masking Affects Visual Estimation Ability

    Science.gov (United States)

    Jastrzebski, Nicola R.; Hugrass, Laila E.; Crewther, Sheila G.; Crewther, David P.

    2017-01-01

    Visual estimation of numerosity involves the discrimination of magnitude between two distributions or perceptual sets that vary in number of elements. How performance on such estimation depends on peripheral sensory stimulation is unclear, even in typically developing adults. Here, we varied the central and surround contrast of stimuli that comprised a visual estimation task in order to determine whether mechanisms involved with the removal of unessential visual input functionally contributes toward number acuity. The visual estimation judgments of typically developed adults were significantly impaired for high but not low contrast surround stimulus conditions. The center and surround contrasts of the stimuli also differentially affected the accuracy of numerosity estimation depending on whether fewer or more dots were presented. Remarkably, observers demonstrated the highest mean percentage accuracy across stimulus conditions in the discrimination of more elements when the surround contrast was low and the background luminance of the central region containing the elements was dark (black center). Conversely, accuracy was severely impaired during the discrimination of fewer elements when the surround contrast was high and the background luminance of the central region was mid level (gray center). These findings suggest that estimation ability is functionally related to the quality of low-order filtration of unessential visual information. These surround masking results may help understanding of the poor visual estimation ability commonly observed in developmental dyscalculia.

  16. Effect of Bolax gummifera rhizosphere on the mobility of soil nutrients in a subantarctic environment (Mont Martial, Ushuaia-Argentina)

    Science.gov (United States)

    Otero, Xosé Luis; Pérez-Alberti, Augusto; Gónzalez, Adrián; Macias, Felipe

    2013-04-01

    The study area, Mount Martial, is located in the South of Argentina, in the Tierra de Fuego province (54°S, 68°W). The climate in Tierra del Fuego is temperate-cold and humid, with a strong and markedly seasonal oceanic influence. The mean air temperature that we recorded in the study zone, at 1050 m above sea level, between February 2005 and January 2010 was -1.9° C, with an absolute maximum of 12.5° C and an absolute minimum of -12.8° C. Although we have no rainfall data, in Ushuaia, which is close to sea level, the mean annual rainfall for 1961-1970 was 550 mm; however, it would be inaccurate to extrapolate this value given the marked variability in precipitation favoured by the relief. Biogeographically, the area is included in the so-called "Andean Desert", which is almost barren of large plants and with poor vegetable cover. At 800 a.s.l., the vegetation consists of shrubs of specialised taxons such as Bolax gummifera, Moschopsis rosulata and Saxifraga magellanica. In the present study, samples of Bolax gummifera rhizosphere (Umbelliferae), bulk soil and subsurface soils (>5 cm to rock layer) were collected from a small homogeneous area (≈500m2). The soils were characterized by analysis of pH (H2O and KCl), electrical conductivity, total organic carbon, total nitrogen, organic carbon, iron extracted with sodium pyrophosphate, and particle size. Sequential extraction of Fe in the samples was also carried out to determine the following fractions: F1: exchangeable fraction (extracted with 1M MgCl2), F2: amorphous Fe oxyhydroxides (extracted with sodium ascorbate-citrate buffering to pH 8 with sodium bicarbonate), F3: crystalline Fe oxyhydroxides (extracted with 0.11 sodium citrate+ sodium bicarbonate +3 g of sodium dithionite), and F4: organic Fe (extracted with 0.02M HNO3+30%H2O2 at 85°C) and bioavailability nutrients (soluble in Mehlich 3 extratant). The results obtained for the basic physicochemical characteristics of the soils revealed some

  17. [Research on hyperspectral information parameters of chlorophyll content of rice leaf in Cd-polluted soil environment].

    Science.gov (United States)

    Guan, Li; Liu, Xiang-Nan; Cheng, Cheng-Qi

    2009-10-01

    The remote sensing pollution mechanism in Cd-polluted soil is discussed depending on the research into the chlorophyll content of Cd-polluted rice leaf in the present paper. The response models of remote sensing information parameters, which reflected chlorophyll content variety of rice canopy with soil Cd pollution degree, were established based on Hyperion satellite data and a great number of ground experiment data. To extract sensitive remote sensing parameters for Cd pollution, multiple discriminant analysis (MDA) was applied to the reflectivity of 447-925 nm in Hyperion data and five remote sensing information parameters, including MCARI, NPCI, RVSI, NDVI and Depth671. Experiments indicated that MCARI is the most sensitive parameter to the chlorophyll content of Cd-polluted rice, whose response coefficient is 0.59. In the extent of 1.0-2.0 mg x kg(-1) of Cd pollution concentration in soil, MCARI curve shows a small decline. In the extent of 2.0-3.0 mg x kg(-1) of Cd pollution concentration in soil, MCARI curve is horizontal. Above 3.0 mg x kg(-1), MCARI shows a significant drop trend and so on. The research results showed that the chlorophyll content is a good indicator for nutrition situation of plant, capacity of photosynthesis and each developmental stage. And the chlorophyll remote sensing parameters in crop have a great significance for monitoring heavy metal pollution This study will help improve the precision and limitation of statistical methods and provide theoretical basis for and technical approach to monitoring soil Cd pollution in large area using hyperspectral remote sensing technology. However, the precision of pollution model needs to be improved.

  18. Effects of Sewage Sludge Compost on Soil Environment and Crop Growth of Saline-Alkali Soil%污泥堆肥对盐碱土土壤环境和作物生长的影响

    Institute of Scientific and Technical Information of China (English)

    朱琳莹; 许修宏; 姜虎; 李洪涛

    2012-01-01

    以城市污水处理厂污泥堆肥为研究对象,采用盆栽试验方法研究不同用量(0%,5%,10%,20%)污泥堆肥施入盐碱土后,对玉米、大豆生长情况及土壤环境的影响。结果表明,施用污泥堆肥可降低盐碱土pH值和总盐含量,提高土壤养分及酶活,增加土壤微生物量碳、微生物量氮,同时施用污泥堆肥土壤重金属Zn、Cu含量增加,当施用量为20%时,土壤Zn含量超标。另外,玉米和大豆在污泥堆肥施用比例分别为10%和5%时长势最佳,且作物籽粒中重金属含量在国家食品卫生标准范围内。%To study city sewage sludge compost with using pot experiment,the different dosages of sludge compost(0%,5%,10%,20%) were taken into saline-alkali soil,and its impacts on the maize and soybeans growth and soil environment were dissussed.The results showed that sludge compost could reduce the pH and salts of saline-alkali soil,improve soil nutrient content and the soil enzyme activity,enhance soil microbial biomass carbon,microbial biomass nitrogen,also increase the heavy metal content of Zn and Cu,when the addition amount of sludge compost was 20%,Zn content was over standard.In addition,maize and soybeans could maximally grow in 0~10%,0~5%,and the heavy metal contents in crop seeds were under the national food sanitation standard.

  19. Distribution of some natural and man-made radionuclides in soil from the city of Veles (Republic of Macedonia) and its environs.

    Science.gov (United States)

    Dimovska, Snezana; Stafilov, Trajce; Sajn, Robert; Frontasyeva, Marina

    2010-02-01

    A systematic study of soil radioactivity in the metallurgical centre of the Republic of Macedonia, the city of Veles and its environs, was carried out. The measurement of the radioactivity was performed in 55 samples from evenly distributed sampling sites. The gross alpha and gross beta radioactivity measurements were made as a screening, using a low background gas-flow proportional counter. For the analysis of (40)K, (238)U, (232)Th and (137)Cs, a P-type coaxial high purity germanium detector was used. The values for the activity concentrations of the natural radionuclides fall well within the worldwide range as reported in the literature. It is shown that the activity of man-made radionuclides, except for (137)Cs, is below the detection limit. (137)Cs originated from the atmospheric deposition and present in soil in the activity concentration range of 2-358 Bq kg(-1) is irregularly distributed over the sampled territory owing to the complicated orography of the land. The results of gamma spectrometry are compared to the K, U, and Th concentrations previously obtained by the reactor neutron activation analysis in the same soil samples.

  20. Variability in soil micronutrients extracted by DTPA and Mehlich-3 at the plot scale in an acidic environment

    Science.gov (United States)

    Paz-Ferreiro, Jorge; Lado, Marcos; de Abreu, Cleide A.

    2014-05-01

    Land use practices affect soil properties and nutrient supply. Very limited data are available on micronutrient extractability in northwest Spain. The aim of this study was to analyse long-term effects of land use on the concentration, variability and spatial distribution of soil nutrients. To this end, neighboring forest and cultivated stands were compared. The study was carried out in an acid, rich in organic matter soil developed over sediments at the province of Lugo, northwestern of Spain. Adjacent plots with a surface of 100 m2 were marked on regular square grids with 2-m spacing. Fe, Mn, Zn and Cu were extracted both by Mehlich-3 and DTPA solutions and determined by ICP-MS. General soil chemical and physical properties were routinely analyzed. In arable land, microelement concentration ranges were as follows: Fe (100 and 135 mg kg-1), Mn (7.6 and 21.5 mg kg-1), Zn (0.6 and 3.7 mg kg-1), and Cu (0.2 and 0.7 mg kg-1). In forest land, these ranges were: Fe (62 and 309 mg kg-1), Mn (0.2 and 2.1 mg kg-1), Zn (0.2 and 2.9 mg kg-1), and Cu (0.1 and 0.2 mg kg-1). With the exception of Fe-DTPA, microelement concentrations extracted both with DTPA and Mehlich-3 were higher in the cultivated than in the forest stand. Coefficients of variation were higher for the microelement content of the soil under forest. Principal component analysis was performed to evaluate associations between extractable microelements and general physico-chemical properties. At the studied scale, nutrient management was the main factor affecting the agricultural site, whereas soil-plant interactions were probably responsible for the higher variation within the forest site. Patterns of spatial variability of the studied nutrients at the small plot scale also were assessed by geostatistical techniques. Results were discussed in the frame of sustainable land use and organic matter decline with conventional tillage and sustainable land use

  1. 根际环境内污染土壤的生物修复研究%Bioremediation of Contaminated Soil Within the Rhizosphere Environment

    Institute of Scientific and Technical Information of China (English)

    李克中; 朱永恒

    2012-01-01

    The rhizosphere is an important environmental interface, and plays an extremely important role in the bioremediation of contaminated soil, thus,it become a hot topic in the current soil and environmental sci- ence. This article firstly discusses the absorption, degradation, fixation ecological functions of plant roots and root exudates to remedy contaminated soils, accumulate and solidify heavy metals, and absorb and degrade or- ganic pollutants in rhizosphere. And then it analyzes the adsorption, oxidation--reduction and chemotaxis functions of bacteria to remedy the heavy mentals and organic pollutants in contaminated soils in the rhizo- sphere environment. Moreover,it also introduces the absorption barriers and chelation functions of mycorrhi- zal fungi in the rhizosphere environment. Finally,it discusses the crushing, decomposition, digestion and en- richment functions of the soil fauna in the rhizosphere. Besides, the article also points out the directions of fu- ture research.%指出了根际环境是根系和土壤相互耦合的生态和环境界面,对根际环境在污染修复过程中的研究成为当前土壤学和土壤生态学研究中的一个重要课题。总结了根际环境内根系和根系分泌物对污染土壤中重金属,有机污染物的吸收、降解、固定的生态功能;根际环境内的细菌对污染土壤中重金属,有机污染物的吸附、氧化一还原以及趋化性作用;根际环境内的菌根真菌对污染土壤中重金属,有机污染物的吸收、屏障及螯合作用;根际环境内的土壤动物对污染土壤中重金属,有机污染物的破碎、分解、消化和富集作用,并探讨了应该加深的研究方向。

  2. The soil preservation and renewal. From the planning strategies to the management of the disposal process in the built environment

    Directory of Open Access Journals (Sweden)

    Michele Paleari

    2015-11-01

    Full Text Available The soil belongs to the nonrenewable resources and its preservation affects the different scales of architecture. The preservation has to be pursued through various actions: blocking the urban enlargement, redeveloping and renaturalizing the underused areas, reducing the row materials extraction, cautious managing of the end of life stage of buildings and materials. Within this contest, we briefly describe the outcomes of the environmental assessment of the 51 residential buildings demolition, near the Malpensa airport. The study inspires two considerations: at the urban scale, the ability to give a new identity to an area where the buildings life cycle comes to an end; at the materials scale, the possibility to reduce the environmental impacts on soil thanks to a favourable waste management.

  3. A three-scale analysis of bacterial communities involved in rocks colonization and soil formation in high mountain environments.

    Science.gov (United States)

    Esposito, Alfonso; Ciccazzo, Sonia; Borruso, Luigimaria; Zerbe, Stefan; Daffonchio, Daniele; Brusetti, Lorenzo

    2013-10-01

    Alpha and beta diversities of the bacterial communities growing on rock surfaces, proto-soils, riparian sediments, lichen thalli, and water springs biofilms in a glacier foreland were studied. We used three molecular based techniques to allow a deeper investigation at different taxonomic resolutions: denaturing gradient gel electrophoresis, length heterogeneity-PCR, and automated ribosomal intergenic spacer analysis. Bacterial communities were mainly composed of Acidobacteria, Proteobacteria, and Cyanobacteria with distinct variations among sites. Proteobacteria were more represented in sediments, biofilms, and lichens; Acidobacteria were mostly found in proto-soils; and Cyanobacteria on rocks. Firmicutes and Bacteroidetes were mainly found in biofilms. UniFrac P values confirmed a significant difference among different matrices. Significant differences (P rocks which shared a more similar community structure, while at deep taxonomic resolution two distinct bacterial communities between lichens and rocks were found.

  4. Impacts of Artificial Reefs on Surrounding Ecosystems

    Science.gov (United States)

    Manoukian, Sarine

    Artificial reefs are becoming a popular biological and management component in shallow water environments characterized by soft seabed, representing both important marine habitats and tools to manage coastal fisheries and resources. An artificial reef in the marine environment acts as an open system with exchange of material and energy, altering the physical and biological characteristics of the surrounding area. Reef stability will depend on the balance of scour, settlement, and burial resulting from ocean conditions over time. Because of the unstable nature of sediments, they require a detailed and systematic investigation. Acoustic systems like high-frequency multibeam sonar are efficient tools in monitoring the environmental evolution around artificial reefs, whereas water turbidity can limit visual dive and ROV inspections. A high-frequency multibeam echo sounder offers the potential of detecting fine-scale distribution of reef units, providing an unprecedented level of resolution, coverage, and spatial definition. How do artificial reefs change over time in relation to the coastal processes? How accurately does multibeam technology map different typologies of artificial modules of known size and shape? How do artificial reefs affect fish school behavior? What are the limitations of multibeam technology for investigating fish school distribution as well as spatial and temporal changes? This study addresses the above questions and presents results of a new approach for artificial reef seafloor mapping over time, based upon an integrated analysis of multibeam swath bathymetry data and geoscientific information (backscatter data analysis, SCUBA observations, physical oceanographic data, and previous findings on the geology and sedimentation processes, integrated with unpublished data) from Senigallia artificial reef, northwestern Adriatic Sea (Italy) and St. Petersburg Beach Reef, west-central Florida continental shelf. A new approach for observation of fish

  5. Why is seed production so variable among individuals? A ten-year study with oaks reveals the importance of soil environment.

    Directory of Open Access Journals (Sweden)

    Ignacio M Pérez-Ramos

    Full Text Available Mast-seeding species exhibit not only a large inter-annual variability in seed production but also considerable variability among individuals within the same year. However, very little is known about the causes and consequences for population dynamics of this potentially large between-individual variability. Here, we quantified seed production over ten consecutive years in two Mediterranean oak species - the deciduous Quercus canariensis and the evergreen Q. suber - that coexist in forests of southern Spain. First, we calibrated likelihood models to identify which abiotic and biotic variables best explain the magnitude (hereafter seed productivity and temporal variation of seed production at the individual level (hereafter CVi, and infer whether reproductive effort results from the available soil resources for the plant or is primarily determined by selectively favoured strategies. Second, we explored the contribution of between-individual variability in seed production as a potential mechanism of satiation for predispersal seed predators. We found that Q. canariensis trees inhabiting moister and more fertile soils were more productive than those growing in more resource-limited sites. Regarding temporal variation, individuals of the two studied oak species inhabiting these resource-rich environments also exhibited larger values of CVi. Interestingly, we detected a satiating effect on granivorous insects at the tree level in Q. suber, which was evident in those years where between-individual variability in acorn production was higher. These findings suggest that individual seed production (both in terms of seed productivity and inter-annual variability is strongly dependent on soil resource heterogeneity (at least for one of the two studied oak species with potential repercussions for recruitment and population dynamics. However, other external factors (such as soil heterogeneity in pathogen abundance or certain inherent characteristics of the

  6. Why is seed production so variable among individuals? A ten-year study with oaks reveals the importance of soil environment.

    Science.gov (United States)

    Pérez-Ramos, Ignacio M; Aponte, Cristina; García, Luis V; Padilla-Díaz, Carmen M; Marañón, Teodoro

    2014-01-01

    Mast-seeding species exhibit not only a large inter-annual variability in seed production but also considerable variability among individuals within the same year. However, very little is known about the causes and consequences for population dynamics of this potentially large between-individual variability. Here, we quantified seed production over ten consecutive years in two Mediterranean oak species - the deciduous Quercus canariensis and the evergreen Q. suber - that coexist in forests of southern Spain. First, we calibrated likelihood models to identify which abiotic and biotic variables best explain the magnitude (hereafter seed productivity) and temporal variation of seed production at the individual level (hereafter CVi), and infer whether reproductive effort results from the available soil resources for the plant or is primarily determined by selectively favoured strategies. Second, we explored the contribution of between-individual variability in seed production as a potential mechanism of satiation for predispersal seed predators. We found that Q. canariensis trees inhabiting moister and more fertile soils were more productive than those growing in more resource-limited sites. Regarding temporal variation, individuals of the two studied oak species inhabiting these resource-rich environments also exhibited larger values of CVi. Interestingly, we detected a satiating effect on granivorous insects at the tree level in Q. suber, which was evident in those years where between-individual variability in acorn production was higher. These findings suggest that individual seed production (both in terms of seed productivity and inter-annual variability) is strongly dependent on soil resource heterogeneity (at least for one of the two studied oak species) with potential repercussions for recruitment and population dynamics. However, other external factors (such as soil heterogeneity in pathogen abundance) or certain inherent characteristics of the tree might be

  7. Survey on smoking behaviors of junior high school students and influencing factors of surrounding environment in Guangxi in 2013%2013年广西初中生吸烟现状及生活环境影响因素调查分析

    Institute of Scientific and Technical Information of China (English)

    姚美; 黄高明; 梁绍伶; 张萌; 吕炜; 熊绮梦; 陆松仪; 周荣军

    2015-01-01

    Objective To explore the current smoking behaviors of junior school students in Guangxi and the influencing factors of surrounding environment .Methods The Global Youth Tobacco Epidemic Survey Questionnaire was applied to an anonymous questionnaire survey which conducted among 5 892 students from 36 junior schools in Guangxi by using the cluster sampling method.Results 5 858 valid questionnaires(99.4%) were collected,of which 24.8% had made a smoking attempt,the rate of smoking attempt in the males was significantly higher than that in the females(39.6% vs.8.8%,P <0.05).The current smoking rate was 11.2%,which was significantly higher in the males in contrast with that in the females (18.2% vs.3.4%,P <0.05).Multivariate unconditional logistic regression analysis revealed that parents′being smoker,seeing teacher′s smoking outside,seeing teacher′s indoor smoking,being able to buy the cigarettes near the school,and good friend′being smoker were risk factors for current smoking behaviors of junior school students(P <0.05).Conclusion The smoking rate of junior school students is high in Guangxi,and the surrounding environment has significant effects on smoking behaviors of junior school students.%目的:了解广西初中生吸烟现状及生活环境影响因素。方法采用整群抽样方法,使用全球青少年烟草流行调查问卷对广西36所5892名初中学生进行匿名问卷调查。结果收回有效问卷5858份(99.4%),尝试吸烟率为24.8%,其中男生尝试吸烟率为39.6%,明显高于女生的8.8%( P <0.05);现在吸烟率为11.2%,其中男生吸烟率为18.2%,明显高于女生的3.4%(P <0.05)。多因素非条件 logistic 回归分析显示,父母吸烟、见老师室外吸烟、见老师室内吸烟、学校附近买到烟、好朋友吸烟均是初中生现在吸烟的危险因素(P <0.05)。结论广西初中生吸烟率较高,生活环境对初中生吸烟行为有重要影响。

  8. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment.

    Science.gov (United States)

    Upadhyay, S K; Singh, D P

    2015-01-01

    Salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR) significantly influence the growth and yield of wheat crops in saline soil. Wheat growth improved in pots with inoculation of all nine ST-PGPR (ECe = 4.3 dS·m(-1) ; greenhouse experiment), while maximum growth and dry biomass was observed in isolate SU18 Arthrobacter sp.; simultaneously, all ST-PGPR improved soil health in treated pot soil over controls. In the field experiment, maximum wheat root dry weight and shoot biomass was observed after inoculation with SU44 B. aquimaris, and SU8 B. aquimaris, respectively, after 60 and 90 days. Isolate SU8 B. aquimaris, induced significantly higher proline and total soluble sugar accumulation in wheat, while isolate SU44 B. aquimaris, resulted in higher accumulation of reducing sugars after 60 days. Percentage nitrogen (N), potassium (K) and phosphorus (P) in leaves of wheat increased significantly after inoculation with ST-PGPR, as compared to un-inoculated plants. Isolate SU47 B. subtilis showed maximum reduction of sodium (Na) content in wheat leaves of about 23% at both 60 and 90 days after sowing, and produced the best yield of around 17.8% more than the control.

  9. Behavior of accidentally released radiocesium in soil-water environment: Looking at Fukushima from a Chernobyl perspective.

    Science.gov (United States)

    Konoplev, A; Golosov, V; Laptev, G; Nanba, K; Onda, Y; Takase, T; Wakiyama, Y; Yoshimura, K

    2016-01-01

    Quantitative characteristics of dissolved and particulate radiocesium wash-off from contaminated watersheds after the FDNPP accident are calculated based on published monitoring data. Comparative analysis is provided for radiocesium wash-off parameters and distribution coefficients, Kd, between suspended matter and water in rivers and surface runoff on Fukushima and Chernobyl contaminated areas for the first years after the accidents. It was found that radiocesium distribution coefficient in Fukushima rivers is essentially higher (1-2 orders of magnitude) than corresponding values for rivers and surface runoff within the Chernobyl zone. This can be associated with two factors: first, the high fraction of clays in the predominant soils and sediments of the Fukushima area and accordingly a higher value of the radiocesium Interception Potential, RIP, in general, and secondly the presence of water insoluble glassy particles containing radiocesium in the accidental fallout at Fukushima. It was found also that normalized dissolved wash-off coefficients for Fukushima catchments are 1-2 orders of magnitude lower than corresponding values for the Chernobyl zone. Normalized particulate wash-off coefficients are comparable for Fukushima and Chernobyl. Results of the investigation of radiocesium's ((134)Cs and (137)Cs) vertical distribution in soils of the close-in area of the Fukushima Dai-ichi NPP - Okuma town and floodplain of the Niida river are presented. The radiocesium migration in undisturbed forest and grassland soils at Fukushima contaminated area has been shown to be faster as compared to the Chernobyl 30-km zone during the first three years after the accidents. This may be associated with higher annual precipitation (by about 2.5 times) in Fukushima as compared to the Chernobyl zone, as well as the differences in the soil characteristics and temperature regime throughout a year. Investigation and analysis of Fukushima's radiocesium distribution in soils of Niida

  10. Current advancements and challenges in soil-root interactions modelling

    Science.gov (United States)

    Schnepf, Andrea; Huber, Katrin; Abesha, Betiglu; Meunier, Felicien; Leitner, Daniel; Roose, Tiina; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry

    2015-04-01

    Roots change their surrounding soil chemically, physically and biologically. This includes changes in soil moisture and solute concentration, the exudation of organic substances into the rhizosphere, increased growth of soil microorganisms, or changes in soil structure. The fate of water and solutes in the root zone is highly determined by these root-soil interactions. Mathematical models of soil-root systems in combination with non-invasive techniques able to characterize root systems are a promising tool to understand and predict the behaviour of water and solutes in the root zone. With respect to different fields of applications, predictive mathematical models can contribute to the solution of optimal control problems in plant recourse efficiency. This may result in significant gains in productivity, efficiency and environmental sustainability in various land use activities. Major challenges include the coupling of model parameters of the relevant processes with the surrounding environment such as temperature, nutrient concentration or soil water content. A further challenge is the mathematical description of the different spatial and temporal scales involved. This includes in particular the branched structures formed by root systems or the external mycelium of mycorrhizal fungi. Here, reducing complexity as well as bridging between spatial scales is required. Furthermore, the combination of experimental and mathematical techniques may advance the field enormously. Here, the use of root system, soil and rhizosphere models is presented through a number of modelling case studies, including image based modelling of phosphate uptake by a root with hairs, model-based optimization of root architecture for phosphate uptake from soil, upscaling of rhizosphere models, modelling root growth in structured soil, and the effect of root hydraulic architecture on plant water uptake efficiency and drought resistance.

  11. Smart Chips for Smart Surroundings - 4S

    NARCIS (Netherlands)

    Schuler, Eberhard; König, Ralf; Becker, Jürgen; Rauwerda, Gerard; Burgwal, van de Marcel; Smit, Gerard J.M.; Cardoso, João M.P.; Hübner, Michael

    2011-01-01

    The overall mission of the 4S project (Smart Chips for Smart Surroundings) was to define and develop efficient flexible, reconfigurable core building blocks, including the supporting tools, for future Ambient System Devices. Reconfigurability offers the needed flexibility and adaptability, it provid

  12. A fragrant neighborhood: volatile mediated bacterial interactions in soil.

    Science.gov (United States)

    Schulz-Bohm, Kristin; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    There is increasing evidence that volatile organic compounds (VOCs) play essential roles in communication and competition between soil microorganisms. Here we assessed volatile-mediated interactions of a synthetic microbial community in a model system that mimics the natural conditions in the heterogeneous soil environment along the rhizosphere. Phylogenetic different soil bacterial isolates (Burkholderia sp., Dyella sp., Janthinobacterium sp., Pseudomonas sp., and Paenibacillus sp.) were inoculated as mixtures or monoculture in organic-poor, sandy soil containing artificial root exudates (ARE) and the volatile profile and growth were analyzed. Additionally, a two-compartment system was used to test if volatiles produced by inter-specific interactions in the rhizosphere can stimulate the activity of starving bacteria in the surrounding, nutrient-depleted soil. The obtained results revealed that both microbial interactions and shifts in microbial community composition had a strong effect on the volatile emission. Interestingly, the presence of a slow-growing, low abundant Paenibacillus strain significantly affected the volatile production by the other abundant members of the bacterial community as well as the growth of the interacting strains. Furthermore, volatiles released by mixtures of root-exudates consuming bacteria stimulated the activity and growth of starved bacteria. Besides growth stimulation, also an inhibition in growth was observed for starving bacteria exposed to microbial volatiles. The current work suggests that volatiles produced during microbial interactions in the rhizosphere have a