WorldWideScience

Sample records for surrounding sn 1987a

  1. SN1987A's Twentieth Anniversary

    Science.gov (United States)

    2007-02-01

    provided further evidence for asymmetries in the explosion. The 'Bochum event' was a rapid change in the line profile observed with the Bochum telescope on La Silla. It is the signature of a radioactive blob rising from the inner ejecta to the surface. "The picture emerging from the observations of the first several weeks was certainly more complex than what had ever been assumed of supernovae before," says Bruno Leibundgut (ESO). ESO PR Photo 08f/07 ESO PR Photo 08f/07 A Ring Around SN1987A The 1-m telescope at La Silla was also extensively used in daytime observing the supernova in the near- and mid-infrared for more than one year after the explosion. A clear excess emission developed in the near-infrared already 10 days after the explosion, the origin of which is still not fully understood. It was most probably due to circumstellar material that was lighted up by the explosion. Dust condensation in the ejecta was discovered by spectroscopy about 500 days after the explosion. Macroscopic dust grains partially covered the ejecta, and most probably still do. They might explain why no compact object is seen at the location of the supernova. In 1989, when the NTT came into operation, it imaged for the first time the circumstellar ring around SN 1987A. And, about three years after the explosion, NTT images revealed a circumstellar structure around SN 1987A which resembled the triangular hat which Napoleon wore. Napoleon's hat gave the first opportunity for a 3-dimensional view of SN 1987A. "The existence of the ring presents an unsolved puzzle for SN 1987A," says Roberto Gilmozzi (ESO). "Even though it is not clear how to construct such a ring, it is likely that the star that exploded as SN 1987A had a companion." When ESO's Very Large Telescope came into operation, the interest in the supernova had not faded away. Far from it! Observations were done with the VLT's many instruments, including FORS, UVES, ISAAC, and VISIR, to probe in more detail the surroundings of the

  2. The 20th anniversary of SN1987A

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, A [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaragi, 305-0801 (Japan)], E-mail: atsuto.suzuki@kek.jp

    2008-07-15

    Observation of a neutrino burst from the supernova, SN1987A opened a new window of observational astronomy by neutrinos. And the history showed that the SN1987A neutrino burst observation was the vanguard of successive discoveries of neutrino properties by Super-Kamiokande, SNO, K2K, KamLAND and so on. On the occasion of the SN1987A 20th anniversary, the backstage story up to the discovery of the SN1987A neutrino bursts is summarized, tracing the Kamiokande log-note and including the IMB, LSD and Baksan data.

  3. Summary of George Mason University SN1987A workshop

    International Nuclear Information System (INIS)

    van den Bergh, S.

    1990-01-01

    The author summaries studies of SN 1987A. This discussion focuses on how theories of core collapse in supernovae have been confirmed by observations of neutrinos produced by SN1987A and observations of the exponential tail of the light curve of SN1987A give strong support to the prediction that this phase of supernova light curves is powered by 56 Co decay

  4. Supernova mechanisms: Before and after SN1987a

    International Nuclear Information System (INIS)

    Kahana, S.H.

    1987-01-01

    The impact of SN1987a on theoretical studies of the specific mechanism generating Type II supernovae is examined. The explosion energy extracted from analysis of the light curve for SN 1987a is on the edge of distinguishing between a prompt explosion from a hydrodynamic shock and a delayed, neutrino-induced, explosion. The detection of neutrinos from 1987a is also reanalyzed. 30 refs., 2 tabs

  5. SN 1987A. Theory

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1987-03-01

    SN 1987A was unique in many aspects. The most striking, undoubtedly, is its low luminosity, nearly two orders of magnitude below the expectations based on supernovae currently observed in external galaxies. The rise time of the optical emission, usually a few days, was for SN 1987A, of the order of a few hours. Also its surface temperature is surprisingly low, 5000K. The neutrino burst has been detected. It was observed twice, with a time difference of 5 hours, the second burst occurring within 3 hours of the onset of the optical signal. In this talk, I will discuss how these strange events fit with the theoretical models of supernova explosions, how they differ in some cases, and try to evaluate the degree of certainty -or uncertainty- of our present knowledge on how these extremely powerful star explosions occur

  6. Rapid ionization of the environment of SN 1987A

    International Nuclear Information System (INIS)

    Raga, A.C.

    1987-01-01

    It has been suggested by some authors that IUE observations of the supernova SN 1987A show the presence of a strong component of the interstellar C IV 1550 and Si IV 1393 absorption lines at a velocity that approximately corresponds to the velocity of the LMC. It is possible that this component might come from originally neutral (or at least not very highly ionized) gas which has been photoionized by the initially very strong ionizing radiation field of the supernova. Theoretical considerations of this scenario lead to the study of fast (with velocities of about c) ionization fronts. It is shown that for reasonable model parameters it is possible to obtain considerably large C IV column densities, in agreement with the IUE observations. On the other hand, the models do not so easily predict the large Si IV column densities that are also obtained from the IUE observations. It is found that only models in which the interstellar medium surrounding SN 1987A is initially composed of already ionized hydrogen and helium predict substantial Si IV column densities. This result provides an interesting prediction of the ionization state of the environment of the presupernova star. 9 references

  7. Rapid ionization of the environment of SN 1987A

    Science.gov (United States)

    Raga, A. C.

    1987-01-01

    It has been suggested by some authors that IUE observations of the supernova SN 1987A show the presence of a strong component of the interstellar C IV 1550 and Si IV 1393 absorption lines at a velocity that approximately corresponds to the velocity of the LMC. It is possible that this component might come from originally neutral (or at least not very highly ionized) gas which has been photoionized by the initially very strong ionizing radiation field of the supernova. Theoretical considerations of this scenario lead to the study of fast (with velocities of about c) ionization fronts. It is shown that for reasonable model parameters it is possible to obtain considerably large C IV column densities, in agreement with the IUE observations. On the other hand, the models do not so easily predict the large Si IV column densities that are also obtained from the IUE observations. It is found that only models in which the interstellar medium surrounding SN 1987A is initially composed of already ionized hydrogen and helium predict substantial Si IV column densities. This result provides an interesting prediction of the ionization state of the environment of the presupernova star.

  8. Hydrodynamical models of supernova SN 1987 A in the LMC

    International Nuclear Information System (INIS)

    Grassberg, E.K.; Imshennik, V.S.; Nadezhin, D.K.; Utrobin, V.P.

    1987-01-01

    It is shown that the properties of SN 1987A in LMC can be described well by hydrodynamical models of explosions of compact massive stars. In accordance with these models, the mass of the expelled envelope the presupernova radius and the total energy of explosion are evaluated for SN 1987A to be ∼ 16M Sun , ∼ 30R Sun , and ∼ 3.10 51 erg, respectively. The progenitor of supernova remnant Cas A may be considered as the prototype to the SN 1987A in our own Galaxy. In other galaxies, this subtype of supernovae can be represented by SN 1948B in NGC6946. If energy of explosion transfers from collapsed core of the star to the envelope within timescale less than 1 hour, then delay Δt ∼ 3 hours between the neutrino pulse and the steep rise of optical luminosity of SN 1987A does not contradict with scenario of explosions of compact massive stars

  9. SN REFSDAL: CLASSIFICATION AS A LUMINOUS AND BLUE SN 1987A-LIKE TYPE II SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P. L.; Filippenko, A. V.; Graham, M. L. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Brammer, G.; Strolger, L.-G.; Riess, A. G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Selsing, J.; Hjorth, J.; Christensen, L. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Foley, R. J. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801 (United States); Rodney, S. A. [Department of Physics and Astronomy, University of South Carolina, 712 Main St., Columbia, SC 29208 (United States); Treu, T. [University of California, Los Angeles, CA 90095 (United States); Steidel, C. C.; Strom, A.; Zitrin, A. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Schmidt, K. B.; McCully, C. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Bradač, M. [University of California, Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Jha, S. W. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Graur, O., E-mail: pkelly@astro.berkeley.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States); and others

    2016-11-10

    We have acquired Hubble Space Telescope (HST) and Very Large Telescope near-infrared spectra and images of supernova (SN) Refsdal after its discovery as an Einstein cross in fall 2014. The HST light curve of SN Refsdal has a shape consistent with the distinctive, slowly rising light curves of SN 1987A-like SNe, and we find strong evidence for a broad H α P-Cygni profile and Na I D absorption in the HST grism spectrum at the redshift ( z = 1.49) of the spiral host galaxy. SNe IIn, largely powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show broad and strong H α and Na I D absorption. From the grism spectrum, we measure an H α expansion velocity consistent with those of SN 1987A-like SNe at a similar phase. The luminosity, evolution, and Gaussian profile of the H α emission of the WFC3 and X-shooter spectra, separated by ∼2.5 months in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, photometry of SN Refsdal favors bluer B - V and V - R colors and one of the largest luminosities for the assumed range of potential magnifications. The evolution of the light curve at late times will provide additional evidence about the potential existence of any substantial circumstellar material. Using MOSFIRE and X-shooter spectra, we estimate a subsolar host-galaxy metallicity (8.3 ± 0.1 dex and <8.4 dex, respectively) near the explosion site.

  10. Implications of the Discovery of Millisecond Pulsar in SN 1987A

    OpenAIRE

    Nagataki, S.; Sato, K.

    2000-01-01

    From the observation of a millisecond pulsar in SN 1987A, the following implications are obtained. 1) The pulsar spindown in SN 1987A is caused by radiating gravitational waves rather than by magnetic dipole radiation and/or relativistic pulsar winds. 2) A mildly deformed shock wave would be formed at the core-collapse and explosion in SN 1987A, which is consistent with the conclusion given in Nagataki (2000). 3) The gravitational waves from the pulsar should be detected in several years usin...

  11. Neutrino properties and supernova SN1987a

    International Nuclear Information System (INIS)

    Nussinov, S.

    1989-01-01

    The use of SN1987a to indicate how limits on neutrino properties can be deduced from the observed neutrino signals is shown. Bounds on possible deviations from relativity are briefly considered. The possible evidence for a half-millisecond pulsar in the SN remnant and on speculative attempts at finding the same periodicity in the neutrino signal are commented on. 37 refs

  12. Neutrino spectrum from SN 1987A and from cosmic supernovae

    International Nuclear Information System (INIS)

    Yueksel, Hasan; Beacom, John F.

    2007-01-01

    The detection of neutrinos from SN 1987A by the Kamiokande-II and Irvine-Michigan-Brookhaven detectors provided the first glimpse of core collapse in a supernova, complementing the optical observations and confirming our basic understanding of the mechanism behind the explosion. One long-standing puzzle is that, when fitted with thermal spectra, the two independent detections do not seem to agree with either each other or typical theoretical expectations. We assess the compatibility of the two data sets in a model-independent way and show that they can be reconciled if one avoids any bias on the neutrino spectrum stemming from theoretical conjecture. We reconstruct the neutrino spectrum from SN 1987A directly from the data through nonparametric inferential statistical methods and present predictions for the diffuse supernova neutrino background based on SN 1987A data. We show that this prediction cannot be too small (especially in the 10-18 MeV range), since the majority of the detected events from SN 1987A were above 18 MeV (including 6 events above 35 MeV), suggesting an imminent detection in operational and planned detectors

  13. Gamma-ray observations of SN 1987A with an array of high-purity germanium detectors

    International Nuclear Information System (INIS)

    Sandie, W.G.; Nakano, G.H.; Chase, L.F. Jr.; Fishman, G.J.; Meegan, C.A.; Wilson, R.B.; Paciesas, W.

    1988-01-01

    A balloon borne gamma-ray spectrometer comprising an array of high-purity n-type germanium (HPGe) detectors having geometric area 119 cm 2 , resolution 2.5 keV at 1.0 MeV, surrounded by an active NaI (Tl) collimator and Compton suppressing anticoincidence shield nominally 10 cm thick, was flown from Alice Springs, Northern Territory, Australia, on May 29--30, 1987, 96 days after the observed neutrino pulse. The average column depth of residual atmosphere in the direction of SN 1987A at float altitude was 6.3 g cm-2 during the observation. SN 1987A was within the 22-deg full-width-half-maximum (FWHM) field of view for about 3300 s during May 29.9--30.3 UT. No excess gamma rays were observed at energies appropriate to the Ni(56)-Co(56) decay chain or from other lines in the energy region from 0.1 to 3.0 MeV. With 80% of the data analyzed, the 3-sigma upper limit obtained for the 1238-keV line from Co(56) at the instrument resolution (about 3 keV) is 1.3 x 10-3 photons cm-2 s-1

  14. Thermal x-rays from SN 1987A

    International Nuclear Information System (INIS)

    Nomoto, K.; Shigeyama, T.; Hayakawa, S.; Itoh, H.; Masai, K.

    1988-01-01

    The authors discuss how the x-ray spectrum of SN 1987A observed with the Ginga satellite may be explained by the ejecta-circumstellar matter collision model at photon energies below 15 keV. The harder x-rays may be ascribed to Compton degradation of the gamma-rays from 56 Co

  15. Search for TeV gamma rays from SN1987A during December 1987 and January 1988

    International Nuclear Information System (INIS)

    Bond, I.A.; Conway, M.J.; Budding, E.

    1988-04-01

    Very high energy γ rays from the supernova SN1987A were searched for at the Black Birch Range in New Zealand during December 1987 and January 1988. The total data obtained during 42 hours of observation time give an upper bound on the flux at 95 % confidence level of 6.1 x 10 -12 cm -2 s -1 for γ rays with energies larger than 3 TeV. Data obtained on January 14 and 15 are found to have excess counts, above the background level, corresponding to a flux of (1.9 ± 0.5) x 10 -11 cm -2 s -1 . The energy emitted in TeV γ rays, by attributing this excess to γ rays from SN1987A, is calculated ∼ 10 43 erg assuming that the duration of the excess was 2 ∼ 3 days. PACS numbers: 97.60.Bw, 95.85.Qx. (author)

  16. Very Deep inside the SN 1987A Core Ejecta: Molecular Structures Seen in 3D

    Energy Technology Data Exchange (ETDEWEB)

    Abellán, F. J.; Marcaide, J. M. [Departamento de Astronomía y Astrofísica, Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Indebetouw, R.; Chevalier, R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Gabler, M.; Janka, H.-Th. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching (Germany); Fransson, C.; Lundqvist, P. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, Alba Nova University Centre, SE-106 91 Stockholm (Sweden); Spyromilio, J. [ESO, Karl-Schwarzschild-Straße 2, D-85748 Garching (Germany); Burrows, D. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Cigan, P.; Gomez, H. L.; Matsuura, M. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Gaensler, B. M. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Kirshner, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Larsson, J. [KTH, Department of Physics, and the Oskar Klein Centre, AlbaNova, SE-106 91 Stockholm (Sweden); McCray, R. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Ng, C.-Y. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Park, S. [Department of Physics, University of Texas at Arlington, 108 Science Hall, Box 19059, Arlington, TX 76019 (United States); Roche, P., E-mail: francisco.abellan@uv.es [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); and others

    2017-06-20

    Most massive stars end their lives in core-collapse supernova explosions and enrich the interstellar medium with explosively nucleosynthesized elements. Following core collapse, the explosion is subject to instabilities as the shock propagates outward through the progenitor star. Observations of the composition and structure of the innermost regions of a core-collapse supernova provide a direct probe of the instabilities and nucleosynthetic products. SN 1987A in the Large Magellanic Cloud is one of very few supernovae for which the inner ejecta can be spatially resolved but are not yet strongly affected by interaction with the surroundings. Our observations of SN 1987A with the Atacama Large Millimeter/submillimeter Array are of the highest resolution to date and reveal the detailed morphology of cold molecular gas in the innermost regions of the remnant. The 3D distributions of carbon and silicon monoxide (CO and SiO) emission differ, but both have a central deficit, or torus-like distribution, possibly a result of radioactive heating during the first weeks (“nickel heating”). The size scales of the clumpy distribution are compared quantitatively to models, demonstrating how progenitor and explosion physics can be constrained.

  17. Very Deep inside the SN 1987A Core Ejecta: Molecular Structures Seen in 3D

    International Nuclear Information System (INIS)

    Abellán, F. J.; Marcaide, J. M.; Indebetouw, R.; Chevalier, R.; Gabler, M.; Janka, H.-Th.; Fransson, C.; Lundqvist, P.; Spyromilio, J.; Burrows, D. N.; Cigan, P.; Gomez, H. L.; Matsuura, M.; Gaensler, B. M.; Kirshner, R.; Larsson, J.; McCray, R.; Ng, C.-Y.; Park, S.; Roche, P.

    2017-01-01

    Most massive stars end their lives in core-collapse supernova explosions and enrich the interstellar medium with explosively nucleosynthesized elements. Following core collapse, the explosion is subject to instabilities as the shock propagates outward through the progenitor star. Observations of the composition and structure of the innermost regions of a core-collapse supernova provide a direct probe of the instabilities and nucleosynthetic products. SN 1987A in the Large Magellanic Cloud is one of very few supernovae for which the inner ejecta can be spatially resolved but are not yet strongly affected by interaction with the surroundings. Our observations of SN 1987A with the Atacama Large Millimeter/submillimeter Array are of the highest resolution to date and reveal the detailed morphology of cold molecular gas in the innermost regions of the remnant. The 3D distributions of carbon and silicon monoxide (CO and SiO) emission differ, but both have a central deficit, or torus-like distribution, possibly a result of radioactive heating during the first weeks (“nickel heating”). The size scales of the clumpy distribution are compared quantitatively to models, demonstrating how progenitor and explosion physics can be constrained.

  18. ASYMMETRY IN THE OUTBURST OF SN 1987A DETECTED USING LIGHT ECHO SPECTROSCOPY

    International Nuclear Information System (INIS)

    Sinnott, B.; Welch, D. L.; Sutherland, P. G.; Rest, A.; Bergmann, M.

    2013-01-01

    We report direct evidence for asymmetry in the early phases of SN 1987A via optical spectroscopy of five fields of its light echo system. The light echoes allow the first few hundred days of the explosion to be reobserved, with different position angles providing different viewing angles to the supernova. Light echo spectroscopy therefore allows a direct spectroscopic comparison of light originating from different regions of the photosphere during the early phases of SN 1987A. Gemini multi-object spectroscopy of the light echo fields shows fine structure in the Hα line as a smooth function of position angle on the near-circular light echo rings. Hα profiles originating from the northern hemisphere of SN 1987A show an excess in redshifted emission and a blue knee, while southern hemisphere profiles show an excess of blueshifted Hα emission and a red knee. This fine structure is reminiscent of the 'Bochum event' originally observed for SN 1987A, but in an exaggerated form. Maximum deviation from symmetry in the Hα line is observed at position angles 16° and 186°, consistent with the major axis of the expanding elongated ejecta. The asymmetry signature observed in the Hα line smoothly diminishes as a function of viewing angle away from the poles of the elongated ejecta. We propose an asymmetric two-sided distribution of 56 Ni most dominant in the southern far quadrant of SN 1987A as the most probable explanation of the observed light echo spectra. This is evidence that the asymmetry of high-velocity 56 Ni in the first few hundred days after explosion is correlated to the geometry of the ejecta some 25 years later.

  19. Rayleigh-Taylor instability and mixing in SN 1987A

    International Nuclear Information System (INIS)

    Ebisuzaki, T.; Shigeyama, T.; Nomoto, K.

    1989-01-01

    The stability of the supernova ejecta is compared with the Rayleigh-Taylor instability for a realistic model of SN 1987A. A linear analysis indicates that the layers around the composition interface between the hydrogen-rich and helium zones, and become Rayleigh-Taylor unstable between the helium and metal zones. In these layers, the pressure increases outward because of deceleration due to the reverse shock which forms when the blast shock hits the massive hydrogen-rich envelope. On the contrary, the density steeply decreases outward because of the preexisting nuclear burning shell. Then, these layers undergo the Raleigh-Taylor instability because of the opposite signs of the pressure and density gradients. The estimated growth rate is larger than the expansion rate of the supernova. The Rayleigh-Taylor instability near the composition interface is likely to induce mixing, which has been strongly suggested from observations of SN 1987A. 25 refs

  20. Recent results on SN 1987A

    International Nuclear Information System (INIS)

    Woosley, S.E.; Pinto, P.A.; Weaver, T.A.

    1988-01-01

    Several critical issues recently raised by observations of SN 1987A are addressed. These include: the evolution of the pre-supernova star, why it was blue, what its composition and core structure were; the detailed isotopic composition of the ejecta; why and to what extent the supernova composition was mixed in velocity space; the interpretation of recently observed infrared lines, especially their profiles and the existence of red-shifted 'wings'; and what has become of the neutron star. 64 refs., 14 figs., 1 tab

  1. The NASA SN1987A program

    International Nuclear Information System (INIS)

    Teegarden, B.J.

    1988-01-01

    The existing and planned experiments for making gamma-ray observations of SN1987A are reviewed. The main emphasis is on the NASA program which consists primarily of balloon-borne instruments. Some 11--13 experiments are or will be available. Four have already flown from Alice Springs, Australia with null results. Campaigns are planned on nominal six month centers with more possible if gamma-rays are detected. In addition long duration flights from Australia to South America are planned for January 88 and 89

  2. High-energy γ-ray observations of SN 1987A

    International Nuclear Information System (INIS)

    Sood, R.K.; Thomas, J.A.; Waldron, L.; Manchanda, R.K.; Rochester, G.K.; Sumner, T.J.; Frye, G.; Jenkins, T.; Koga, R.; Ubertini, P.; Bazzano, A.; La Padula, C.; Staubert, R.; Kendziorra, E.

    1988-01-01

    SN 1987A has been observed with a combined high energy γ-ray (50-500 MeV) and hard X-ray (15-50 keV) payload during a balloon flight on 5 April 1988 from Alice Springs, Australia. The γ-ray observations, along with our earlier ones on 19 April 1987 are the only such observations of the supernova to date. The γ-ray detector characteristics are described. The preliminary results of the recent flight and their implications in terms of the known supernova parameters are discussed. 17 refs., 6 figs

  3. Physics, SN1987A, and the next nearby supernova

    International Nuclear Information System (INIS)

    Burrows, A.

    1989-01-01

    The scientific community has extracted quite a bit of information from SN1987A, some of it enduring. I will summarize what I believe we learned, what we did not learn, and what we can learn about supernovae, neutrinos, and particle physics when the next galactic supernova explodes onto the news

  4. Gamma-ray observations of SN1987A

    International Nuclear Information System (INIS)

    Figueiredo, N.; Villela, T.; Jayanthi, U.B.; Souza, C.A.W.; Neri, J.A.C.F.; Cestal, R.C.; Martinez, M.L.

    1990-01-01

    This paper reports that on February 23, 1987, a Supernova (SN 1987A) was discovered in the Large Magellanic Cloud, a neighbor irregular galaxy only 55 kpc away. For the first time it was possible to observe a supernova whose progenitor star was known. This may also be the first time that it will be possible to prove the theoretical hypothesis that neutron stars are a consequence of a supernova explosion. The main peculiar characteristic of this supernova is that the progenitor star was a blue supergiant instead of a red supergiant as thy are generally believed to be. It was known as Sk -69 degrees 202, a 15-solar-mass star, spectral type B3I. Two hypothesis were invoked to explain such unexpected progenitor: the low metallicity of the LMC or large mass loss during the stage of red supergiant

  5. Asymmetry of the SN 1987A envelope

    International Nuclear Information System (INIS)

    Chugaj, N.N.

    1991-01-01

    The origin of the peculiar structure in the profiles of the emission lines observed in the spectrum of SN 1987A, namely, (1) redshift of maxima, and (2) fine structure of hydrogen lines, is considered. Among the three proposed hypothesis for the redshift, at least two (electron scattering in the spherically-symmetric envelope, and geometrical effects in the fragmented envelope) have serious drawbacks. More favorable is the third hypothesis which invokes asymmetric distribution of 56 Ni and of the iron-peak elements

  6. SUPERNOVA 1987A: A TEMPLATE TO LINK SUPERNOVAE TO THEIR REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, S.; Miceli, M.; Pumo, M. L.; Bocchino, F., E-mail: orlando@astropa.inaf.it [INAF—Osservatorio Astronomico di Palermo “G.S. Vaiana”, Piazza del Parlamento 1, I-90134 Palermo (Italy)

    2015-09-10

    The emission of supernova remnants (SNRs) reflects the properties of both the progenitor supernovae (SNe) and the surrounding environment. The complex morphology of the remnants, however, hampers the disentanglement of the two contributions. Here, we aim at identifying the imprint of SN 1987A on the X-ray emission of its remnant and at constraining the structure of the environment surrounding the SN. We performed high-resolution hydrodynamic simulations describing SN 1987A soon after the core-collapse and the following three-dimensional expansion of its remnant between days 1 and 15,000 after the SN. We demonstrated that the physical model reproducing the main observables of SN 1987A during the first 250 days of evolution also reproduces the X-ray emission of the subsequent expanding remnant, thus bridging the gap between SNe and SNRs. By comparing model results with observations, we constrained the explosion energy in the range 1.2–1.4 × 10{sup 51} erg and the envelope mass in the range 15–17 M{sub ⊙}. We found that the shape of X-ray lightcurves and spectra at early epochs (<15 years) reflects the structure of outer ejecta: our model reproduces the observations if the outermost ejecta have a post-explosion radial profile of density approximated by a power law with index α = −8. At later epochs, the shapes of X-ray lightcurves and spectra reflect the density structure of the nebula around SN 1987A. This enabled us to ascertain the origin of the multi-thermal X-ray emission, disentangle the imprint of the SN on the remnant emission from the effects of the remnant interaction with the environment, and constrain the pre-supernova structure of the nebula.

  7. Supernova 1987A in the Large Magellanic Cloud

    Science.gov (United States)

    Kafatos, Minas; Michalitsianos, Andrew G.

    2006-11-01

    Foreword; Acknowledgements; Workshop participants; 1. Images and spectrograms of Sanduleak - 69º202, the SN 1987a progenitor N. R. Walborn; 2. The progenitor of SN 1987A G. Sonneborn; 3. Another supernova with a blue progenitor C. M. Gaskell and W. C. Keel; 4. Optical and infrared observations of SN 1987A from Cerro Tololo Inter-American Observatory M. M. Phillips; 5. SN 1987A: observational results obtained at ESO I. J. Danziger, P. Bouchet, R. A. E. Fosbury, C. Gouiffes, L. B. Lucy, A. F. M. Moorwood, E. Oliva and F. Rufener; 6. Observations of SN 1987A at the South African Astronomical Observatory (SAAO) M. W. Feast; 7. Observations of SN 1987A at the Anglo-Australian Telescope W. J. Couch; 8. Linear polarimetric study of SN 1987A A. Clocchiatti, M. Méndez, O. Benvenuto, C. Feinstein, H. Marraco, B. García and N. Morrell; 9. Infrared spectroscopy of SN 1987A from the NASA Kuiper Airborne Observatory H. P. Larson, S. Drapatz, M. J. Mumma and H. A. Weaver; 10. Radio observations of SN 1987A N. Bartel et al.; 11. Ultraviolet observations of SN 1987A: clues to mass loss R. P. Kirshner; 12. On the energetics of SN 1987A N. Panagia; 13. On the nature and apparent uniqueness of SN 1987A A. V. Filippenko; 14. A comparison of the SN 1987A light curve with other type II supernovae, and the detectability of similar supernovae M. F. Schmitz and C. M. Gaskell; 15. P-Cygni features and photospheric velocities L. Bildsten and J. C. L. Wang; 16. The Neutrino burst from SN 1987A detected in the Mont Blanc LSD experiment M. Aglietta et al.; 17. Toward observational neutrino astrophysics M. Koshiba; 18. The discovery of neutrinos from SN 1987A with the IMB detector J. Matthews; 19. Peering into the abyss: the neutrinos from SN 1987A A. Burrows; 20. Phenomenological analysis of neutrino emission from SN 1987A J. N. Bahcall, D. N. Spergel and W. H. Press; 21. Mass determination of neutrinos H. Y. Chiu; 22. Neutrino transport in a type II supernova D. C. Ellison, P. M. Giovanoni

  8. Detection of a Very Bright Source Close to the LMC Supernova SN 1987A: Erratum

    Science.gov (United States)

    Nisenson, P.; Papaliolios, C.; Karovska, M.; Noyes, R.

    1988-01-01

    In the Letter "Detection of a Very Bright Source Close to the LMC Supernova SN 1987A" by P. Nisenson, C. Papaliolios, M. Karovska, and R. Noyes (1987 Ap. J. [Letters], 320, L15), two of the figure labels for Figure 1 were inadvertently transposed in the production process. A corrected version of the figure appears as Plate L4. The Journal regrets the error.

  9. The Type II supernovae 2006V and 2006au: two SN 1987A-like events

    DEFF Research Database (Denmark)

    Taddia, F.; Stritzinger, M. D.; Sollerman, J.

    2012-01-01

    1987A. Methods. Optical and near-infrared (NIR) light curves, and optical spectroscopy of SNe 2006V and 2006au are presented. These observations are compared to those of SN 1987A, and are used to estimate properties of their progenitors. Results. Both objects exhibit a slow rise to maximum and light...

  10. Gamma-Ray Imaging Spectrometer (GRIS) instrument and plans for serving SN 1987A

    International Nuclear Information System (INIS)

    Tueller, J.; Barthelmy, S.; Gehrels, N.; Teegarden, B.J.; Leventhal, M.; MacCallum, C.J.

    1988-01-01

    The Gamma-Ray Imaging Spectrometer (GRIS) is a powerful second-generation high-resolution gamma-ray spectrometer. It consists of an array of seven large (typically >200 cm 3 ) n-type Germanium detectors surrounded by a thick (15 m) NaI active shield. Its energy range is 0.02 to 10 MeV. A new detector segmentation technique will be employed to reduce the detector background. The β-decay background component, which is expected to be dominant in the 0.2--2 MeV range, will be suppressed by roughly a factor of 20. The 3σ GRIS sensitivity to a narrow Fe line at 847 keV (expected to be the most intense from a supernova) will be ∼2 x 10 -4 photons/cm 2 -s for an 8 hr observation of the LMC over Alice Springs, Australia with unsegmented detectors. The instrument in simplified form will be ready to observe SN 1987A in early 1988

  11. Detection of a very bright source close to the LMC supernova SN 1987A

    Science.gov (United States)

    Nisenson, P.; Papaliolios, C.; Karovska, M.; Noyes, R.

    1987-01-01

    High angular resolution observations of the supernova in the Large Magellanic Cloud, SN 1987A, have revealed a bright source separated from the SN by approximately 60 mas with a magnitude difference of 2.7 at 656 nm (H-alpha). Speckle imaging techniques were applied to data recorded with the CfA two-dimensional photon counting detector on the CTIO 4 m telescope on March 25 and April 2 to allow measurements in H-alpha on both nights and at 533 nm and 450 nm on the second night. The nature of this object is as yet unknown, though it is almost certainly a phenomenon related to the SN.

  12. Convective instabilities in SN 1987A

    Science.gov (United States)

    Benz, Willy; Thielemann, Friedrich-Karl

    1990-01-01

    Following Bandiera (1984), it is shown that the relevant criterion to determine the stability of a blast wave, propagating through the layers of a massive star in a supernova explosion, is the Schwarzschild (or Ledoux) criterion rather than the Rayleigh-Taylor criterion. Both criteria coincide only in the incompressible limit. Results of a linear stability analysis are presented for a one-dimensional (spherical) explosion in a realistic model for the progenitor of SN 1987A. When applying the Schwarzschild criterion, unstable regions get extended considerably. Convection is found to develop behind the shock, with a characteristic growth rate corresponding to a time scale much smaller than the shock traversal time. This ensures that efficient mixing will take place. Since the entire ejected mass is found to be convectively unstable, Ni can be transported outward, even into the hydrogen envelope, while hydrogen can be mixed deep into the helium core.

  13. Primordial lithium abundance from interstellar lithium lines towards SN 1987A

    International Nuclear Information System (INIS)

    Sahu, K.C.; Pottasch, S.R.; Sahu, M.

    1989-01-01

    The primoridal lithium abundance is known to be one of the best probes to test the standard as well as the non-standard Big Bang nucleosynthesis theories, and to measure the nucleon abundance in the early universe in the standard Big Bang (SSB) model. We have obtained high-resolution ((λ)/(δλ)congruent 100,000), high signal-to-noise (S/N approx-gt 1,500) spectra of SN 1987A around the Li:I λ6708 A region, using the ESO 1.4m CAT and the Coude Echelle Spectrograph. The non-detection of any lithium feature in our sepctra places an upper limit on the lithium abundance

  14. CHANDRA OBSERVATIONS OF SN 1987A: THE SOFT X-RAY LIGHT CURVE REVISITED

    Energy Technology Data Exchange (ETDEWEB)

    Helder, E. A.; Broos, P. S.; Burrows, D. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Dewey, D. [MIT Kavli Institute, Cambridge, MA 02139 (United States); Dwek, E. [Observational Cosmology Laboratory, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McCray, R. [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309 (United States); Park, S. [Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX 76019 (United States); Racusin, J. L. [NASA, Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States); Zhekov, S. A. [Space Research and Technology Institute, Akad. G. Bonchev str., bl.1, Sofia 1113 (Bulgaria)

    2013-02-10

    We report on the present stage of SN 1987A as observed by the Chandra X-Ray Observatory. We reanalyze published Chandra observations and add three more epochs of Chandra data to get a consistent picture of the evolution of the X-ray fluxes in several energy bands. We discuss the implications of several calibration issues for Chandra data. Using the most recent Chandra calibration files, we find that the 0.5-2.0 keV band fluxes of SN 1987A have increased by {approx}6 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2} per year since 2009. This is in contrast with our previous result that the 0.5-2.0 keV light curve showed a sudden flattening in 2009. Based on our new analysis, we conclude that the forward shock is still in full interaction with the equatorial ring.

  15. Formation of dust grains in the ejecta of SN 1987A

    International Nuclear Information System (INIS)

    Kozasa, Takashi; Hasegawa, Hiroichi; Nomoto, Kenichi

    1989-01-01

    Formation of dust grains in the ejecta of SN 1987A is investigated on the basis of a theory of homogeneous nucleation and grain growth. The formation of dust grains in the gas ejected from a heavy element-rich mantle is considered, including the effects of latent heat released during grain growth and of radiation from the photosphere. It is shown that dust grains can condense in the heavy-element-rich mantle, and that the time of formation strongly depends on the temperature structure in the ejecta. Moreover, the formation of dust grains is retarded by the strong SN radiation field and the effect of latent heat deposited during grain growth. 41 refs

  16. Can a Bright and Energetic X-Ray Pulsar Be Hiding Amid the Debris of SN 1987A?

    Science.gov (United States)

    Esposito, Paolo; Rea, Nanda; Lazzati, Davide; Matsuura, Mikako; Perna, Rosalba; Pons, José A.

    2018-04-01

    The mass of the stellar precursor of supernova (SN) 1987A and the burst of neutrinos observed at the moment of the explosion are consistent with the core-collapse formation of a neutron star. However, no compelling evidence for the presence of a compact object of any kind in SN 1987A has been found yet in any band of the electromagnetic spectrum, prompting questions on whether the neutron star survived and, if it did, on its properties. Beginning with an analysis of recent Chandra observations, here we appraise the current observational situation. We derived limits on the X-ray luminosity of a compact object with a nonthermal, Crab-pulsar-like spectrum of the order of ≈(1–5) × 1035 erg s‑1, corresponding to limits on the rotational energy loss of a possible X-ray pulsar in SN 1987A of ≈(0.5–1.5) × 1038 erg s‑1. However, a much brighter X-ray source cannot be excluded if, as is likely, it is enshrouded in a cloud of absorbing matter with a metallicity similar to that expected in the outer layers of a massive star toward the end of its life. We found that other limits obtained from various arguments and observations in other energy ranges either are unbinding or allow a similar maximum luminosity of the order of ≈1035 erg s‑1. We conclude that while a pulsar alike the one in the Crab Nebula in both luminosity and spectrum is hardly compatible with the observations, there is ample space for an “ordinary” X-ray-emitting young neutron star, born with normal initial spin period, temperature, and magnetic field, to be hiding inside the evolving remnant of SN 1987A.

  17. Airborne spectrophotometry of SN 1987A from 1.7 to 12.6 microns - Time history of the dust continuum and line emission

    Science.gov (United States)

    Wooden, Diane H.; Rank, David M.; Bregman, Jesse D.; Witteborn, Fred C.; Tielens, A. G. G. M.; Cohen, Martin; Pinto, Philip A.; Axelrod, Timothy S.

    1993-01-01

    Spectrophotometric observations of SN 1987A from the Kuiper Airborne Observatory are presented for five epochs at 60, 260, 415, 615, and 775 days after the explosion. The low-resolution (lambda/Delta lambda = 50-100) spectra of SN 1987A are combined with data from other wavelengths to model the continuum, subtract the continuum from the spectra to determine line strengths and reveal molecular bands, separate the atomic continuum radiation from the dust continuum, and derive constraints on the grain temperatures and optical depths. A scenario for the evolution of SN 1987A and that of the ejecta from which it arises is obtained on the basis of the analysis of the continuum emission.

  18. Signatures of particle acceleration at SN1987a

    Science.gov (United States)

    Gaisser, T. K.; Stanev, Todor; Harding, Alice

    1988-01-01

    Young SNRs may be bright sources of energetic photons and neutrinos generated by the collisions of particles accelerated within the remnant. Due to the large opacity of the shell at these early times, a photon signal may be suppressed; at later times, due to adiabatic losses of the magnetically-trapped particles in the expanding envelope, both neutron and neutrino signals will begin to decrease. There is therefore a window during which the secondary photon signal will be at its maximum. It is presently noted that if the observed decline of the optical light curve of SN1987a is due to Ni-56, Co-56 decay, this may place upper limits on such other sources of light as a central pulsar.

  19. Far-infrared spectrophotometry of SN 1987A - Days 265 and 267

    Science.gov (United States)

    Moseley, S. H.; Dwek, E.; Silverberg, R. F.; Glaccum, W.; Graham, J. R.; Loewenstein, R. F.

    1989-01-01

    The paper presents 16-66-micron spectra of SN 1987A taken on days 266 and 268 after core collapse. The spectrum consists of a nearly flat continuum, strong emission lines of hydrogen, and fine-structure lines of Fe II, Fe III, Co II, S I, and possibly Fe I, Ni II, and S III. From the relative strength of three lines which arise from transitions within the ground and excited states of Fe II, the temperature and a lower limit on the density of the line-emitting region are derived. From the line strengths, the abundances of Fe and S I, the end products of explosive nucleosynthesis in the supernova are estimated. An upper limit is also set to the amount of Co II remaining in the mantle. The low measured mass of Fe suggests that the ejecta are clumpy. The flat continuum is most likely free-free emission from the expanding supernova ejecta. About 35 percent of this emission arises from the ionized metals in the mantle; the rest arises from ionized hydrogen. At the time of these observations, there is no evidence for any emission from dust that may have formed in the supernova ejecta or from preexisting dust in the surrounding medium.

  20. Ti-44 Gamma-Ray Emission Lines from SN1987A Reveal an Asymmetric Explosion

    Science.gov (United States)

    Boggs, S. E.; Harrison, F. A.; Miyasaka, H.; Grefenstette, B. W.; Zoglauer, A.; Fryer, C. L.; Reynolds, S. P.; Alexander, D. M.; An, H.; Barret, D.; hide

    2015-01-01

    In core-collapse supernovae, titanium-44 (Ti-44) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.32-kilo-electron volt emission lines from decay of Ti-44 produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of 700 kilometers per second, direct evidence of large-scale asymmetry in the explosion.

  1. 44Ti gamma-ray emission lines from SN1987A reveal an asymmetric explosion

    DEFF Research Database (Denmark)

    Boggs, S. E.; Harrison, F. A.; Miyasaka, H.

    2015-01-01

    In core-collapse supernovae, titanium-44 (44Ti) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.......32–kilo–electron volt emission lines from decay of 44Ti produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of ~700 kilometers per second, direct evidence of large-scale asymmetry in the explosion....

  2. HIGH RESOLUTION 36 GHz IMAGING OF THE SUPERNOVA REMNANT OF SN 1987A

    International Nuclear Information System (INIS)

    Potter, T. M.; Staveley-Smith, L.; Zanardo, G.; Ng, C.-Y.; Gaensler, B. M.; Ball, Lewis; Kesteven, M. J.; Manchester, R. N.; Tzioumis, A. K.

    2009-01-01

    The aftermath of supernova (SN) 1987A continues to provide spectacular insights into the interaction between an SN blastwave and its circumstellar environment. We here present 36 GHz observations from the Australia Telescope Compact Array of the radio remnant of SN 1987A. These new images, taken in 2008 April and 2008 October, substantially extend the frequency range of an ongoing monitoring and imaging program conducted between 1.4 and 20 GHz. Our 36.2 GHz images have a diffraction-limited angular resolution of 0.''3-0.''4, which covers the gap between high resolution, low dynamic range VLBI images of the remnant and low resolution, high dynamic range images at frequencies between 1 and 20 GHz. The radio morphology of the remnant at 36 GHz is an elliptical ring with enhanced emission on the eastern and western sides, similar to that seen previously at lower frequencies. Model fits to the data in the Fourier domain show that the emitting region is consistent with a thick inclined torus of mean radius 0.''85, and a 2008 October flux density of 27 ± 6 mJy at 36.2 GHz. The spectral index for the remnant at this epoch, determined between 1.4 GHz and 36.2 GHz, is α = -0.83. There is tentative evidence for an unresolved central source with flatter spectral index.

  3. Particle acceleration and production of energetic photons in SN1987A

    Science.gov (United States)

    Gaisser, T. K.; Stanev, Todor; Harding, Alice

    1987-01-01

    A pulsar wind model for the acceleration of particles in SN1987A is discussed. The expected photon flux is investigated in terms of the spectrum of parent protons and electrons, the nature of the region in which they propagate after acceleration, and the magnetic field and radiation environment which determines the subsequent fate of produced photons. The model is found to produce observable signals if the spin period of the pulsar is 10 ms or less.

  4. Interpretation of neutrinos from SN1987a

    International Nuclear Information System (INIS)

    Lattimer, J.M.

    1987-01-01

    The neutrinos from SN1987a detected by Kamiokande II and IMB are analyzed. Bounds on the average (anti)neutrino energy and on the total emitted neutrino energy are derived. Comparison is made with the neutron star birth models of Burrows and Lattimer. Care is taken to include the individual detector characteristics, and various statistical analyses of the data and the detector background are performed. Some of the conclusions reached are: there is little statistical significance to the bunching in the observed timing of the neutrinos- the data are consistent with an exponential or power-law decay of the source luminosity. There is evidence that the rate of decrease of the decay decreases with time, as anticipated in their models. The long duration of the signal is also to be expected, due to the diffusion of the neutrinos from the newly formed neutron star. An upper bound on the neutrino rest mass, of order 6 eV, is derived, using a minimum of physically reasonable assumptions

  5. Non-LTE model calculations for SN 1987A and the extragalactic distance scale

    Science.gov (United States)

    Schmutz, W.; Abbott, D. C.; Russell, R. S.; Hamann, W.-R.; Wessolowski, U.

    1990-01-01

    This paper presents model atmospheres for the first week of SN 1987A, based on the luminosity and density/velocity structure from hydrodynamic models of Woosley (1988). The models account for line blanketing, expansion, sphericity, and departures from LTE in hydrogen and helium and differ from previously published efforts because they represent ab initio calculations, i.e., they contain essentially no free parameters. The formation of the UV spectrum is dominated by the effects of line blanketing. In the absorption troughs, the Balmer line profiles were fit well by these models, but the observed emissions are significantly stronger than predicted, perhaps due to clumping. The generally good agreement between the present synthetic spectra and observations provides independent support for the overall accuracy of the hydrodynamic models of Woosley. The question of the accuracy of the Baade-Wesselink method is addressed in a detailed discussion of its approximations. While the application of the standard method produces a distance within an uncertainty of 20 percent in the case of SN 1987A, systematic errors up to a factor of 2 are possible, particularly if the precursor was a red supergiant.

  6. Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles

    International Nuclear Information System (INIS)

    Payez, Alexandre; Ringwald, Andreas; Evoli, Carmelo; Mirizzi, Alessandro; Fischer, Tobias; Giannotti, Maurizio

    2014-10-01

    We revise the bound from the supernova SN1987A on the coupling of ultralight axion-like particles (ALPs) to photons. In a core-collapse supernova, ALPs would be emitted via the Primakoff process, and eventually convert into gamma rays in the magnetic field of the Milky Way. The lack of a gamma-ray signal in the GRS instrument of the SMM satellite in coincidence with the observation of the neutrinos emitted from SN1987A therefore provides a strong bound on their coupling to photons. Due to the large uncertainty associated with the current bound, we revise this argument, based on state-of-the-art physical inputs both for the supernova models and for the Milky-Way magnetic field. Furthermore, we provide major amendments, such as the consistent treatment of nucleon-degeneracy effects and of the reduction of the nuclear masses in the hot and dense nuclear medium of the supernova. With these improvements, we obtain a new upper limit on the photon-ALP coupling: g aγ -12 GeV -1 , for m a -10 eV, and we also give its dependence at larger ALP masses m a . Moreover, we discuss how much the Fermi-LAT satellite experiment could improve this bound, should a close-enough supernova explode in the near future.

  7. Optical and infrared observations of SN 1987A from Cerro Tololo Inter-American Observatory

    International Nuclear Information System (INIS)

    Phillips, M.M.

    1988-01-01

    Results from optical and infrared observations of SN 1987A obtained at Cerro Tololo Inter-American Observatory over the first seven months since core collapse are reviewed. Around 130 days after outburst, the bolometric light curve began to smoothly decline at a rate of ∼ 0.01 mag day-1, providing dramatic confirmation of the prediction that radioactivity had powered the optical display after the first month./ the peculiar color changes are kinks observed beginning on the 25th day probably signaled the initial release of trapped energy from mass 56 material. The bolometric luminosity of SN 1987A was unusually low at first, but reached a value more typical of other type II supernovae by the time that the final exponential decline had begun. Over much of the period covered by these observations, the optical and infrared spectra were characterized by strong absorption lines of Ba II and Sr II. Comparison with the spectra of other type II supernovae at similar stages of evolution supports the suggestion that s-processed elements were enriched in the hydrogen envelope of the progenitor, Sanduleak - 69 degrees 202

  8. Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Payez, Alexandre; Ringwald, Andreas [Theory group, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany); Evoli, Carmelo; Mirizzi, Alessandro [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Fischer, Tobias [Institute for Theoretical Physics, University of Wroc\\law, Pl. M. Borna 9, 50-204 Wroc\\law (Poland); Giannotti, Maurizio, E-mail: alexandre.payez@desy.de, E-mail: carmelo.evoli@desy.de, E-mail: fischer@ift.uni.wroc.pl, E-mail: mgiannotti@barry.edu, E-mail: alessandro.mirizzi@desy.de, E-mail: andreas.ringwald@desy.de [Physical Sciences, Barry University, 11300 NE 2nd Ave., Miami Shores, FL 33161 (United States)

    2015-02-01

    We revise the bound from the supernova SN1987A on the coupling of ultralight axion-like particles (ALPs) to photons. In a core-collapse supernova, ALPs would be emitted via the Primakoff process, and eventually convert into gamma rays in the magnetic field of the Milky Way. The lack of a gamma-ray signal in the GRS instrument of the SMM satellite in coincidence with the observation of the neutrinos emitted from SN1987A therefore provides a strong bound on their coupling to photons. Due to the large uncertainty associated with the current bound, we revise this argument, based on state-of-the-art physical inputs both for the supernova models and for the Milky-Way magnetic field. Furthermore, we provide major amendments, such as the consistent treatment of nucleon-degeneracy effects and of the reduction of the nuclear masses in the hot and dense nuclear medium of the supernova. With these improvements, we obtain a new upper limit on the photon-ALP coupling: g{sub aγ} ∼< 5.3 × 10{sup -12} GeV{sup -1}, for m{sub a} ∼< 4.4 × 10{sup -10} eV, and we also give its dependence at larger ALP masses m{sub a}. Moreover, we discuss how much the Fermi-LAT satellite experiment could improve this bound, should a close-enough supernova explode in the near future.

  9. Things begin to happen around Supernova 1987A

    Science.gov (United States)

    1994-01-01

    On 23 February 1994, it will be exactly seven years since the explosion of Supernova 1987A in the Large Magellanic Cloud [1] was first observed, at a distance of approx. 160,000 light-years. It was the first naked-eye supernova to be seen in almost four hundred years. Few events in modern astronomy have met with such an enthusiastic response by the scientists and this famous object has been under constant surveillance ever since. After several years of relative quiescence, things are now beginning to happen in the immediate neighbourhood of SN 1987A. Recent observations with the ESO 3.5 m New Technology Telescope (NTT) indicate that interaction between the stellar material which was ejected during the explosion and the surrounding ring-shaped nebulae has started. This signals the beginning of a more active phase during which the supernova is likely to display a number of new and interesting phenomena, never before observed. SEVEN YEARS IN THE LIFE OF A SUPERNOVA After brightening to maximum light at about magnitude 3 a few months after the explosion, the long period of steady fading which is typical for supernovae, set in by mid-1987. The matter ejected by the explosion took the form of an expanding fireball, which began to spread through the nearly empty space around the supernova with a velocity of almost 10,000 km/sec. As it cooled, the temperature and therefore the total brightness decreased and the supernova became fainter and fainter. At the present moment, the magnitude of SN 1987A is about 18.5, that is almost 2 million times fainter than it was at maximum. Various phenomena have been observed around SN 1987A during the past years. Already in early 1988, light echoes were seen as concentric, slowly expanding luminous circles; they represent the reflections of the explosion light flash in interstellar clouds inside the Large Magellanic Cloud, between the supernova and us. In 1989, high-resolution observations with the NTT showed an elliptical ``ring

  10. Measurements of the diameter of the supernova SN 1987A

    International Nuclear Information System (INIS)

    Karovska, M.; Nisenson, P.; Standley, C.; Heathcote, S.R.

    1991-01-01

    Speckle interferometric measurements of the angular diameter of SN 1987A in the Large Magellanic Cloud, obtained at 664 days after the outburst are presented. Diameters were estimated with milliarcsec precision at 657 nm and 550 nm by fitting model visibility functions to the data corresponding to different intensity distributions for the supernova disk. Measurements made assuming a uniform intensity distribution were compared to the uniform disk measurements obtained from 30 days after the explosion. Diameter measurements obtained near the center of the H-alpha line are consistent with homologous expansion of the supernova shell with a mean velocity of 2850 km/s. The linear least-squares fit to the measurements obtained at other wavelengths from 260 days after the explosion yielded a somewhat lower mean expansion velocity. 8 refs

  11. Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Payez, Alexandre; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Evoli, Carmelo; Mirizzi, Alessandro [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Fischer, Tobias [Wroclaw Univ. (Poland). Inst. for Theoretical Physics; Giannotti, Maurizio [Barry Univ., Miami Shores, FL (United States). Physical Sciences

    2014-10-15

    We revise the bound from the supernova SN1987A on the coupling of ultralight axion-like particles (ALPs) to photons. In a core-collapse supernova, ALPs would be emitted via the Primakoff process, and eventually convert into gamma rays in the magnetic field of the Milky Way. The lack of a gamma-ray signal in the GRS instrument of the SMM satellite in coincidence with the observation of the neutrinos emitted from SN1987A therefore provides a strong bound on their coupling to photons. Due to the large uncertainty associated with the current bound, we revise this argument, based on state-of-the-art physical inputs both for the supernova models and for the Milky-Way magnetic field. Furthermore, we provide major amendments, such as the consistent treatment of nucleon-degeneracy effects and of the reduction of the nuclear masses in the hot and dense nuclear medium of the supernova. With these improvements, we obtain a new upper limit on the photon-ALP coupling: g{sub aγ}a}a}. Moreover, we discuss how much the Fermi-LAT satellite experiment could improve this bound, should a close-enough supernova explode in the near future.

  12. SN Refsdal

    DEFF Research Database (Denmark)

    Kelly, P. L.; Brammer, G.; Selsing, J.

    2016-01-01

    (SNe), and we find strong evidence for a broad H-alpha P-Cygni profile in the HST grism spectrum at the redshift (z = 1.49) of the spiral host galaxy. SNe IIn, powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show...... in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, SN Refsdal has a blue B-V color and a high luminosity for the assumed range of potential magnifications. If SN Refsdal can be modeled as a scaled version of SN...

  13. Particle acceleration and production of energetic photons in SN1987A

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, T.K.; Stanev, Todor; Harding, Alice

    1987-09-24

    Young supernova remnants are likely to be bright sources of energetic photons and neutrinos through the collision of particles accelerated inside the remnant. Interactions of accelerated particles in the expanding envelope or in ambient radiation fields will also produce secondary photons and neutrinos at some level. If > 10/sup 39/ erg s/sup -1/ in protons above 10 TeV is injected into the target region, TeV photons from SN1987A could be observable with present detectors. Synchrotron X rays and ..gamma..-rays up to 10 MeV, generated by accelerated electrons, may well also be detectable. The authors discuss a pulsar wind model for acceleration of particles, and find that it would produce observable signals if the spin period of the pulsar is <10 ms.

  14. THE DESTRUCTION OF THE CIRCUMSTELLAR RING OF SN 1987A

    International Nuclear Information System (INIS)

    Fransson, Claes; Migotto, Katia; Lundqvist, Peter; Taddia, Francesco; Sollerman, Jesper; Larsson, Josefin; Pesce, Dominic; Chevalier, Roger A.; Challis, Peter; Kirshner, Robert P.; France, Kevin; Leibundgut, Bruno; Spyromilio, Jason; McCray, Richard; Jerkstrand, Anders; Mattila, Seppo; Smith, Nathan; Wheeler, J. Craig; Crotts, Arlin; Garnavich, Peter

    2015-01-01

    We present imaging and spectroscopic observations with Hubble Space Telescope and Very Large Telescope of the ring of SN 1987A from 1994 to 2014. After an almost exponential increase of the shocked emission from the hotspots up to day ∼8000 (∼2009), both this and the unshocked emission are now fading. From the radial positions of the hotspots we see an acceleration of these up to 500–1000 km s −1 , consistent with the highest spectroscopic shock velocities from the radiative shocks. In the most recent observations (2013 and 2014), we find several new hotspots outside the inner ring, excited by either X-rays from the shocks or by direct shock interaction. All of these observations indicate that the interaction with the supernova ejecta is now gradually dissolving the hotspots. We predict, based on the observed decay, that the inner ring will be destroyed by ∼2025

  15. Neutrino helicity flips via electroweak interactions and SN1987a

    International Nuclear Information System (INIS)

    Gaemers, K.J.F.; Gandhi, R.; Lattimer, J.M.

    1988-10-01

    Electroweak mechanisms via which neutrinos may flip helicity and become sterile are examined in detail. Exact and approximate expressions for a variety of flip processes relevant in astrophysics and cosmology, mediated by W,Z, and γ exchange, including their interference, are derived. It is shown that within the context of the Standard Model with massive neutrinos, for νe→νe scattering, σ Z flip /σ γ flip ∼ 6 X 10 3 , independent of particle masses and energies to a good approximation. It is also shown that using some general considerations and the fact that the observed anti ν e burst from SN1987a lasted several seconds, these weak interaction flip cross-sections can be used to derive an upper limit on μ and τ neutrino masses of ∼ 40 keV. Finally, some other consequences for astrophysics in general and supernovae in particular are briefly discussed. 29 refs.; 47 schemes

  16. Circumstellar matter and the nature of the SN1987A progenitor star

    International Nuclear Information System (INIS)

    Chevalier, R.A.; Fransson, C.

    1987-01-01

    The radio observations of the supernova SN1987A can be interpreted in terms of its interaction with circumstellar matter. The early turn-on of the radio emission implies a relatively low density circumstellar medium. The optical properties of the supernova imply that the progenitor star had a smaller radius than that of a typical type II supernova progenitor. The mass loss properties are consistent with this hypothesis. The authors predict the thermal X-ray luminosity of the supernova, and note that it is below the current upper limit. A bright infrared dust echo is not expected. Weak ultraviolet emission lines from circumstellar gas may be visible. Although the circumstellar density is low, it is possible that the progenitor star did lose a substantial fraction of its mass prior to the supernova explosion. (author)

  17. SN 1987A gamma-ray line profiles and fluxes

    International Nuclear Information System (INIS)

    Bussard, R.W.; Burrows, A.; The, L.S.

    1989-01-01

    Results for the time dependence of the line profiles and integrated fluxes for the 0.847 and 1.238 MeV gamma rays from the decay of cobalt to excited states of iron are presented for several models of the ejectum of SN 1987A. The relatively early detection of these lines has led several workers to propose that some degree of mixing has brought the cobalt closer to the electron-scattering photosphere than standard models predict. Constraints on the amount of mixing from recent observations are discussed using calculations of the energy-integrated line fluxes as a function of time since the explosion. Implications for the line profiles at various times are considered, and it is found that they show strong time dependences and are quite sensitive to the degree of mixing. The two primary effects are Doppler broadening due to the presence of radioactive material at higher velocities and a strong blueshift at early times resulting from optical depth effects. These results have important implications for gamma-ray observations, especially with high-resolution germanium instruments. Finally, the consequences of the fragmentation of the debris for the early emergence of the gamma-ray lines are considered. 32 refs

  18. The rebirth of Supernova 1987A : a study of the ejecta-ring collision

    Science.gov (United States)

    Gröningsson, Per

    Supernovae are some of the most energetic phenomena in the Universe and they have throughout history fascinated people as they appeared as new stars in the sky. Supernova (SN) 1987A exploded in the nearby satellite galaxy, the Large Magellanic Cloud (LMC), at a distance of only 168,000 light years. The proximity of SN 1987A offers a unique opportunity to study the medium surrounding the supernova in great detail. Powered by the dynamical interaction of the ejecta with the inner circumstellar ring, SN 1987A is dramatically evolving at all wavelengths on time scales less than a year. This makes SN 1987A a great ``laboratory'' for studies of shock physics. Repeated observations of the ejecta-ring collision have been carried out using the UVES echelle spectrograph at VLT. This thesis covers seven epochs of high resolution spectra taken between October 1999 and November 2007. Three different emission line components are identified from the spectra. A narrow (~10 km/s) velocity component emerges from the unshocked ring. An intermediate (~250 km/s) component arises in the shocked ring, and a broad component extending to ~15,000 km/s comes from the reverse shock. Thanks to the high spectral resolution of UVES, it has been possible to separate the shocked from the unshocked ring emission. For the unshocked gas, ionization stages from neutral up to Ne V and Fe VII were found. The line fluxes of the low-ionization lines decline during the period of the observations. However, the fluxes of the [O III] and [Ne III] lines appear to increase and this is found to be consistent with the heating of the pre-shock gas by X-rays from the shock interactions. The line emission from the ejecta-ring collision increases rapidly as more gas is swept up by the shocks. This emission comes from ions with a range of ionization stages (e.g., Fe II-XIV). The low-ionization lines show an increase in their line widths which is consistent with that these lines originate from radiative shocks. The

  19. X-ray emission due to interaction of SN1987A ejecta with its progenitor's stellar-wind matter

    International Nuclear Information System (INIS)

    Masai, Kuniaki.

    1990-06-01

    The progenitor of the supernova 1987A, Sk-69 202 probably had lost a considerable amount of mass in its stellar wind in the past evolutionary track through a red supergiant to a blue supergiant. In about 10 years, the expanding ejecta of SN1987A will catch up to collide with the wind matter ejected in the red supergiant phase. Shocks due to the collision will heat up the ejecta and the wind matter to cause an enhancement of thermal X-ray emission lasting for several decades. We predict the X-ray light curve and the spectrum as well as the epoch of the enhancement intending to encourage future X-ray observations, which will give a clue for the study of such peculiar stellar evolution with a blueward transition as Sk-69 202. (author)

  20. SN 2009E

    DEFF Research Database (Denmark)

    Pastorello...[], A.; Pumo, M.L.; Navasardyan, H.

    2012-01-01

    . In this paper we investigate the properties of SN 2009E, which exploded in a relatively nearby spiral galaxy (NGC 4141) and that is probably the faintest 1987A-like supernova discovered so far. We also attempt to characterize this subgroup of core-collapse supernovae with the help of the literature and present...... observations which started about 2 months after the supernova explosion, highlight significant differences between SN 2009E and the prototypical SN 1987A. Modelling the data of SN 2009E allows us to constrain the explosion parameters and the properties of the progenitor star, and compare the inferred estimates...... 2009E ejected about 0.04 M⊙ of 56Ni, which is the smallest 56Ni mass in our sample of 1987A-like events. Modelling the observations with a radiation hydrodynamics code, we infer for SN 2009E a kinetic plus thermal energy of about 0.6 foe, an initial radius of ~7 × 1012 cm and an ejected mass of ~19 M...

  1. The triple-ring nebula around SN 1987A: fingerprint of a binary merger.

    Science.gov (United States)

    Morris, Thomas; Podsiadlowski, Philipp

    2007-02-23

    Supernova 1987A, the first naked-eye supernova observed since Kepler's supernova in 1604, defies a number of theoretical expectations. Its anomalies have long been attributed to a merger between two massive stars that occurred some 20,000 years before the explosion, but so far there has been no conclusive proof that this merger took place. Here, we present three-dimensional hydrodynamical simulations of the mass ejection associated with such a merger and the subsequent evolution of the ejecta, and we show that this accurately reproduces the properties of the triple-ring nebula surrounding the supernova.

  2. HST Archival Imaging of the Light Echoes of SN 1987A

    Science.gov (United States)

    Lawrence, S. S.; Hayon, M.; Sugerman, B. E. K.; Crotts, A. P. S.

    2002-12-01

    We have undertaken a search for light echo signals from Supernova 1987A that have been serendipitously recorded in images taken near the 30 Doradus region of the Large Magellanic Cloud by HST. We used the MAST interface to create a database of the 1282 WF/PC, WFPC2 and STIS images taken within 15 arcminutes of the supernova, between 1992 April and 2002 June. These 1282 images are grouped into 125 distinct epochs and pointings, with each epoch containing between 1 and 42 separate exposures. Sorting this database with various programs, aided by the STScI Visual Target Tuner, we have identified 63 pairs of WFPC2 imaging epochs that are not centered on the supernova but that have a significant amount of spatial overlap between their fields of view. These image data were downloaded from the public archive, cleaned of cosmic rays, and blinked to search for light echoes at radii larger than 2 arcminutes from the supernova. Our search to date has focused on those pairs of epochs with the largest degree of overlap. Of 16 pairs of epochs scanned to date, we have detected 3 strong light echoes and one faint, tentative echo signal. We will present direct and difference images of these and any further echoes, as well as the 3-D geometric, photometric and color properties of the echoing dust structures. In addition, a set of 20 epochs of WF/PC and WFPC2 imaging centered on SN 1987A remain to be searched for echoes within 2 arcminutes of the supernova. We will discuss our plans to integrate the high spatial-resolution HST snapshots of the echoes with our extensive, well-time-sampled, ground-based imaging data. We gratefully acknowledge the support of this undergraduate research project through an HST Archival Research Grant (HST-AR-09209.01-A).

  3. The Mont Blanc neutrinos from SN 1987A: Could they have been monochromatic (8 MeV) tachyons with m2 = - 0.38 keV2?

    Science.gov (United States)

    Ehrlich, Robert

    2018-05-01

    According to conventional wisdom the 5 h early Mont Blanc burst probably was not associated with SN 1987A, but if it was genuine, some exotic physics explanation had to be responsible. Here we consider one truly exotic explanation, namely faster-than-light neutrinos having mν2 = - 0.38 keV2. It is shown that the Mont Blanc burst is consistent with the distinctive signature of that explanation i.e., an 8 MeV antineutrino line from SN 1987A. It is further shown that a model of core collapse supernovae involving dark matter particles of mass 8 MeV would in fact yield an 8 MeV antineutrino line. Moreover, that dark matter model predicts 8 MeV ν ,νbar and e+e- pairs from the galactic center, a place where one would expect large amounts of dark matter to collect. The resulting e+ would create γ - rays from the galactic center, and a fit to MeV γ - ray data yields the model's dark matter mass, as well as the calculated source temperature and angular size. These good fits give indirect experimental support for the existence of an 8 MeV antineutrino line from SN 1987A. More direct support comes from the spectrum of N ∼ 1000 events recorded by the Kamiokande-II detector on the day of SN 1987A, which appear to show an 8 MeV line atop the detector background. This νbar line, if genuine, has been well-hidden for 30 years because it occurs very close to the peak of the background. This fact might ordinarily justify extreme skepticism. In the present case, however, a more positive view is called for based on (a) the very high statistical significance of the result (30σ), (b) the use of a detector background independent of the SN 1987A data using a later K-II data set, and (c) the observation of an excess above the background spectrum whose central energy and width both agree with that of an 8 MeV νbar line broadened by 25% resolution. Most importantly, the last observation is in accord with the prior prediction of an 8 MeV νbar line based on the Mont Blanc data, and

  4. High-Velocity Ly(Alpha) Emission from SMR 1987A

    Science.gov (United States)

    Michael, Eli; McCray, Richard; Borkowski, Kazimierz J.; Pun, Chu S. J.; Sonneborn, George

    1998-01-01

    The high-velocity Ly(Alpha) emission from SN 1987A observed with the Space Telescope Imaging Spectrograph (STIS) evidently comes from a reverse shock formed where the outer envelope of SN 1987A strikes ionized gas inside the inner circumstellar ring. The observations can be explained by a simple kinematic model, in which the Ly(Alpha) emission comes from hydrogen atoms with radial velocity approximately 15,000 km s(exp -1) crossing a reverse shock in the shape of a slightly prolate ellipsoid with equatorial radius 4.8 x 10(exp 17) cm or approximately 80% of the distance to the inner surface of the inner ring. N v double Lambda 1239, 1243 emission, if present, has a net luminosity approximately less than 30% times that of the Ly(Alpha) emission. Future STIS observations should enable us to predict the time of impact with the inner ring and to determine unambiguously whether or not N v emission is present. These observations will offer a unique opportunity to probe the structure of SN 1987A's circumstellar environment and the hydrodynamics and kinetics of very fast shocks.

  5. EVOLUTION AND HYDRODYNAMICS OF THE VERY BROAD X-RAY LINE EMISSION IN SN 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, D.; Canizares, C. R. [MIT Kavli Institute, Cambridge, MA 02139 (United States); Dwarkadas, V. V. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Haberl, F.; Sturm, R., E-mail: dd@space.mit.edu, E-mail: vikram@oddjob.uchicago.edu [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse, Garching D-85748 (Germany)

    2012-06-20

    Observations of SN 1987A by the Chandra High Energy Transmission Grating (HETG) in 1999 and the XMM-Newton Reflection Grating Spectrometer (RGS) in 2003 show very broad (v-b) lines with a full width at half-maximum (FWHM) of order 10{sup 4} km s{sup -1}; at these times the blast wave (BW) was primarily interacting with the H II region around the progenitor. Since then, the X-ray emission has been increasingly dominated by narrower components as the BW encounters dense equatorial ring (ER) material. Even so, continuing v-b emission is seen in the grating spectra suggesting that the interaction with H II region material is ongoing. Based on the deep HETG 2007 and 2011 data sets, and confirmed by RGS and other HETG observations, the v-b component has a width of 9300 {+-} 2000 km s{sup -1} FWHM and contributes of order 20% of the current 0.5-2 keV flux. Guided by this result, SN 1987A's X-ray spectra are modeled as the weighted sum of the non-equilibrium-ionization emission from two simple one-dimensional hydrodynamic simulations; this '2 Multiplication-Sign 1D' model reproduces the observed radii, light curves, and spectra with a minimum of free parameters. The interaction with the H II region ({rho}{sub init} Almost-Equal-To 130 amu cm{sup -3}, {+-} 15 Degree-Sign opening angle) produces the very broad emission lines and most of the 3-10 keV flux. Our ER hydrodynamics, admittedly a crude approximation to the multi-D reality, gives ER densities of {approx}10{sup 4} amu cm{sup -3}, requires dense clumps ( Multiplication-Sign 5.5 density enhancement in {approx}30% of the volume), and predicts that the 0.5-2 keV flux will drop at a rate of {approx}17% per year once no new dense ER material is being shocked.

  6. High energy emission of supernova sn 1987a. Cosmic rays acceleration in mixed shocks

    International Nuclear Information System (INIS)

    Lehoucq, Roland

    1992-01-01

    In its first part, this research thesis reports the study of the high energy emission of the sn 1987 supernova, based on a Monte Carlo simulation of the transfer of γ photons emitted during disintegration of radioactive elements (such as "5"6Ni, "5"6Co, "5"7Co and "4"4Ti) produced during the explosion. One of the studied problems is the late evolution (beyond 1200 days) of light curvature which is very different when it is powered by the radiation of a central object or by radioactivity. The second part reports the study of acceleration of cosmic rays in two-fluid shock waves in order to understand the different asymmetries noticed in hot spots of extragalactic radio-sources. This work comprises the resolution of structure equations of a shock made of a conventional fluid and a relativistic one, in presence or absence of a magnetic field [fr

  7. Asymmetry of the envelope of supernova 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Papaliolios, C.; Karovska, M.; Koechlin, L.; Nisenson, P.; Standley, C.; Heathcote, S.

    1989-04-13

    The supernova SN1987A in the Large Magellanic Cloud has been observed by high-angular-resolution speckle interferometry since 25 March (30 days after the explosion) with the 4-m telescope at the Cerro Tololo Interamerican Observatory. Data obtained on 25 March and 2 April 1987 revealed a second bright 'companion' source separated from the supernova by 60 milliarcseconds and less than three magnitudes fainter than the supernova. Measurements of the average diameter of the supernova envelope have been made from data recorded from March 1987 to April 1988. Here we present a more detailed analysis of these data, which shows that the expanding envelope is asymmetric. (author).

  8. Asymmetry of the envelope of supernova 1987A

    International Nuclear Information System (INIS)

    Papaliolios, C.; Karovska, M.; Koechlin, L.; Nisenson, P.; Standley, C.; Heathcote, S.

    1989-01-01

    The supernova SN1987A in the Large Magellanic Cloud has been observed by high-angular-resolution speckle interferometry since 25 March (30 days after the explosion) with the 4-m telescope at the Cerro Tololo Interamerican Observatory. Data obtained on 25 March and 2 April 1987 revealed a second bright 'companion' source separated from the supernova by 60 milliarcseconds and less than three magnitudes fainter than the supernova. Measurements of the average diameter of the supernova envelope have been made from data recorded from March 1987 to April 1988. Here we present a more detailed analysis of these data, which shows that the expanding envelope is asymmetric. (author)

  9. ISM chemical abundances in two intermediate-velocity clouds in the line of sight to SN 1987A

    Science.gov (United States)

    Morgan, Siobahn; Bohm-Vitense, Erika

    1988-01-01

    The earliest IUE high-resolution spectra of SN 1987A have been studied and reveal the presence of several clouds in the line of sight to the LMC. In particular, there are two clouds with radial velocities of about 130 km/s and about 180 km/s. These clouds' velocities are between those of Galactic clouds at 0-80 km/s and those of LMC gas at about 270 km/s. Chemical-abundance determinations may help to determine the origin and location of these clouds. Curve-of-growth analysis and 21-cm observations show that they may be underabundant in heavy elements by about a factor of 2 as compared to solar abundances. No depletion indicative of grain formation can be seen.

  10. Explaining the morphology of supernova remnant (SNR) 1987A with the jittering jets explosion mechanism

    Science.gov (United States)

    Bear, Ealeal; Soker, Noam

    2018-04-01

    We find that the remnant of supernova (SN) 1987A shares some morphological features with four supernova remnants (SNRs) that have signatures of shaping by jets, and from that we strengthen the claim that jets played a crucial role in the explosion of SN 1987A. Some of the morphological features appear also in planetary nebulae (PNe) where jets are observed. The clumpy ejecta bring us to support the claim that the jittering jets explosion mechanism can account for the structure of the remnant of SN 1987A, i.e., SNR 1987A. We conduct a preliminary attempt to quantify the fluctuations in the angular momentum of the mass that is accreted on to the newly born neutron star via an accretion disk or belt. The accretion disk/belt launches the jets that explode core collapse supernovae (CCSNe). The relaxation time of the accretion disk/belt is comparable to the duration of a typical jet-launching episode in the jittering jets explosion mechanism, and hence the disk/belt has no time to relax. We suggest that this might explain two unequal opposite jets that later lead to unequal sides of the elongated structures in some SNRs of CCSNe. We reiterate our earlier call for a paradigm shift from neutrino-driven explosion to a jet-driven explosion of CCSNe.

  11. INFRARED CONTINUUM AND LINE EVOLUTION OF THE EQUATORIAL RING AROUND SN 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Richard G. [CRESST/UMBC (United States); Dwek, Eli [Observational Cosmology Lab, Code 665, NASA/GSFC, Greenbelt, MD 20771 (United States); Bouchet, Patrice [Laboratoire AIM Paris-Saclay, CEA-IRFU/SAp, CNRS, Université Paris Diderot, F-91191 Gif-sur-Yvette (France); Danziger, I. John [INAF-Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Frank, Kari A. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Gehrz, Robert D.; Woodward, Charles E. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, SE, Minneapolis, MN 55455 (United States); Park, Sangwook, E-mail: richard.g.arendt@nasa.gov [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2016-03-15

    Spitzer observations of SN 1987A have now spanned more than a decade. Since day ∼4000, mid-infrared (mid-IR) emission has been dominated by that from shock-heated dust in the equatorial ring (ER). From 6000 to 8000 days after the explosion, Spitzer observations included broadband photometry at 3.6–24 μm, and low and moderate resolution spectroscopy at 5–35 μm. Here we present later Spitzer observations, through day 10,377, which include only the broadband measurements at 3.6 and 4.5 μm. These data show that the 3.6 and 4.5 μm brightness has clearly begun to fade after day ∼8500, and no longer tracks the X-ray emission as well as it did at earlier epochs. This can be explained by the destruction of the dust in the ER on timescales shorter than the cooling time for the shocked gas. We find that the evolution of the late time IR emission is also similar to the now fading optical emission. We provide the complete record of the IR emission lines, as seen by Spitzer prior to day 8000. The past evolution of the gas as seen by the IR emission lines seems largely consistent with the optical emission, although the IR [Fe ii] and [Si ii] lines show different, peculiar velocity structures.

  12. Performing a stellar autopsy using the radio-bright remnant of SN 1996cr

    Science.gov (United States)

    Meunier, C.; Bauer, F. E.; Dwarkadas, V. V.; Koribalski, B.; Emonts, B.; Hunstead, R. W.; Campbell-Wilson, D.; Stockdale, C.; Tingay, S. J.

    2013-05-01

    We present newly reduced archival radio observations of SN 1996cr in the Circinus Galaxy from the Australia Telescope Compact Array and the Molonglo Observatory Synthesis Telescope, and attempt to model its radio light curves using recent hydrodynamical simulations of the interaction between the supernova (SN) ejecta and the circumstellar material (CSM) at X-ray wavelengths. The radio data within the first 1000 d show clear signs of free-free absorption (FFA), which decreases gradually and is minimal above 1.4 GHz after day ˜3000. Constraints on the FFA optical depth provide estimates of the CSM free electron density, which allows insight into the ionization of SN 1996cr's CSM and offers a test on the density distribution adopted by the hydrodynamical simulation. The intrinsic spectral index of the radiation shows evidence for spectral flattening, which is characterized by α = 0.852 ± 0.002 at day 3000 and a decay rate of Δα = -0.014 ± 0.001 yr-1. The striking similarity in the spectral flattening of SN 1987A, SN 1993J and SN 1996cr suggests this may be a relatively common feature of SNe/CSM shocks. We adopt this spectral index variation to model the synchrotron radio emission of the shock, and consider several scalings that relate the parameters of the hydrodynamical simulation to the magnetic field and electron distribution. The simulated light curves match the large-scale features of the observed light curves, but fail to match certain tightly constraining sections. This suggests that simple energy density scalings may not be able to account for the complexities of the true physical processes at work, or alternatively, that the parameters of the simulation require modification in order to accurately represent the surroundings of SN 1996cr.

  13. DUST PRODUCTION AND PARTICLE ACCELERATION IN SUPERNOVA 1987A REVEALED WITH ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Indebetouw, R.; Chevalier, R. [Department of Astronomy, University of Virginia, PO Box 400325, Charlottesville, VA 22904 (United States); Matsuura, M.; Barlow, M. J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Dwek, E. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Zanardo, G. [International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, Crawley, WA 6009 (Australia); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Bouchet, P. [CEA-Saclay, F-91191 Gif-sur-Yvette (France); Burrows, D. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Clayton, G. C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Fransson, C.; Lundqvist, P. [Department of Astronomy and the Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Gaensler, B. [Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Kirshner, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Lakićević, M. [Lennard-Jones Laboratories, Keele University, ST5 5BG (United Kingdom); Long, K. S.; Meixner, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Martí-Vidal, I. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Marcaide, J. [Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); McCray, R., E-mail: remy@virginia.edu [Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, UCB 391, Boulder, CO 80309 (United States); and others

    2014-02-10

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/Submillimeter Array to observe SN 1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 μm, 870 μm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 M {sub ☉}). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  14. Updated constraints on self-interacting dark matter from Supernova 1987A

    Science.gov (United States)

    Mahoney, Cameron; Leibovich, Adam K.; Zentner, Andrew R.

    2017-08-01

    We revisit SN1987A constraints on light, hidden sector gauge bosons ("dark photons") that are coupled to the standard model through kinetic mixing with the photon. These constraints are realized because excessive bremsstrahlung radiation of the dark photon can lead to rapid cooling of the SN1987A progenitor core, in contradiction to the observed neutrinos from that event. The models we consider are of interest as phenomenological models of strongly self-interacting dark matter. We clarify several possible ambiguities in the literature and identify errors in prior analyses. We find constraints on the dark photon mixing parameter that are in rough agreement with the early estimates of Dent et al. [arXiv:1201.2683.], but only because significant errors in their analyses fortuitously canceled. Our constraints are in good agreement with subsequent analyses by Rrapaj & Reddy [Phys. Rev. C 94, 045805 (2016)., 10.1103/PhysRevC.94.045805] and Hardy & Lasenby [J. High Energy Phys. 02 (2017) 33., 10.1007/JHEP02(2017)033]. We estimate the dark photon bremsstrahlung rate using one-pion exchange (OPE), while Rrapaj & Reddy use a soft radiation approximation (SRA) to exploit measured nuclear scattering cross sections. We find that the differences between mixing parameter constraints obtained through the OPE approximation or the SRA approximation are roughly a factor of ˜2 - 3 . Hardy & Laseby [J. High Energy Phys. 02 (2017) 33., 10.1007/JHEP02(2017)033] include plasma effects in their calculations finding significantly weaker constraints on dark photon mixing for dark photon masses below ˜10 MeV . We do not consider plasma effects. Lastly, we point out that the properties of the SN1987A progenitor core remain somewhat uncertain and that this uncertainty alone causes uncertainty of at least a factor of ˜2 - 3 in the excluded values of the dark photon mixing parameter. Further refinement of these estimates is unwarranted until either the interior of the SN1987A progenitor is

  15. Cytoplasmic movement profiles of mouse surrounding nucleolus and not-surrounding nucleolus antral oocytes during meiotic resumption.

    Science.gov (United States)

    Bui, Thi Thu Hien; Belli, Martina; Fassina, Lorenzo; Vigone, Giulia; Merico, Valeria; Garagna, Silvia; Zuccotti, Maurizio

    2017-05-01

    Full-grown mouse antral oocytes are classified as surrounding nucleolus (SN) or not-surrounding nucleolus (NSN), depending on the respective presence or absence of a ring of Hoechst-positive chromatin surrounding the nucleolus. In culture, both types of oocytes resume meiosis and reach the metaphase II (MII) stage, but following insemination, NSN oocytes arrest at the two-cell stage whereas SN oocytes may develop to term. By coupling time-lapse bright-field microscopy with image analysis based on particle image velocimetry, we provide the first systematic measure of the changes to the cytoplasmic movement velocity (CMV) occurring during the germinal vesicle-to-MII (GV-to-MII) transition of these two types of oocytes. Compared to SN oocytes, NSN oocytes display a delayed GV-to-MII transition, which can be mostly explained by retarded germinal vesicle break down and first polar body extrusion. SN and NSN oocytes also exhibit significantly different CMV profiles at four main time-lapse intervals, although this difference was not predictive of SN or NSN oocyte origin because of the high variability in CMV. When CMV profile was analyzed through a trained artificial neural network, however, each single SN or NSN oocyte was blindly identified with a probability of 92.2% and 88.7%, respectively. Thus, the CMV profile recorded during meiotic resumption may be exploited as a cytological signature for the non-invasive assessment of the oocyte developmental potential, and could be informative for the analysis of the GV-to-MII transition of oocytes of other species. © 2017 Wiley Periodicals, Inc.

  16. Multi-dimensional simulations of the expanding supernova remnant of SN 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Potter, T. M.; Staveley-Smith, L. [International center for Radio Astronomy Research (ICRAR) M468, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Reville, B. [Center for Plasma Physics, Queen' s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Ng, C.-Y. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Bicknell, G. V.; Sutherland, R. S. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 0200 (Australia); Wagner, A. Y., E-mail: tobympotter@gmail.com [Center for Computational Sciences, Tsukuba University, Tsukuba, Ibaraki, 305-8577 (Japan)

    2014-10-20

    The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove and McKee progenitor with an envelope mass of 10 M {sub ☉} and an energy of 1.5 × 10{sup 44} J. A termination shock in the progenitor's stellar wind at a distance of 0.''43-0.''51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0.''63 ± 0.''01 and maximum particle number density of (7.11 ± 1.78) × 10{sup 7} m{sup –3} produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.

  17. Hard x- and gamma-rays from supernova 1987A

    International Nuclear Information System (INIS)

    Kumagai, S.; Shigeyama, T.; Nomoto, K.; Nishmura, J.; Itoh, M.

    1988-01-01

    The x-ray light curve and spectrum from SN 1987A due to Compton degradation of γ-rays from the 56 Co decay are calculated and compared with the Ginga and Kvant observations. If mixing of 56 Co into outer layers has taken place, the x-rays emerge much earlier than in the case without mixing and the resulting hard x-rays are in reasonable agreement with observations

  18. Gamma-ray observations of supernovae SN1987A

    International Nuclear Information System (INIS)

    Souza, C.A.W.; Neri, J.A.C.F.; Jayanthi, U.B.

    1988-01-01

    Theoretical investigations of supernovae explosions predict a high emission of gamma rays (∼ 10 -2 photons.cm -2 .s -1 ) beginning around 300 days after explosion. A balloon-borne experiment was flown in October, 1987, to observe this emission. The payload carried 4 phoswich detectors of BGO/CsI and NaI/CsI with areas 169 cm 2 and 100 cm 2 , respectively. The detectors' sensitivity (for 10000 s at 3g/cm 3 with error bar of 3 σ) is about 10 -3 ∼ 10 -4 photons. cm -2 .s -1 at energies above 200 KeV. The detectors mounted on a stabilized platform observed the supernova for about 2 hours. The data are being analized for pulsations (≥ 0.5 ms) and gamma ray emission. Energy spectra and temporal analysis will be presented and discussed. (author) [pt

  19. HIGH-RESOLUTION RADIO OBSERVATIONS OF THE REMNANT OF SN 1987A AT HIGH FREQUENCIES

    International Nuclear Information System (INIS)

    Zanardo, Giovanna; Staveley-Smith, L.; Potter, T. M.; Ng, C.-Y.; Gaensler, B. M.; Manchester, R. N.; Tzioumis, A. K.

    2013-01-01

    We present new imaging observations of the remnant of Supernova (SN) 1987A at 44 GHz, performed in 2011 with the Australia Telescope Compact Array (ATCA). The 0.''35 × 0.''23 resolution of the diffraction-limited image is the highest achieved to date in high-dynamic range. We also present a new ATCA image at 18 GHz derived from 2011 observations, which is super-resolved to 0.''25. The flux density is 40 ± 2 mJy at 44 GHz and 81 ± 6 mJy at 18 GHz. At both frequencies, the remnant exhibits a ring-like emission with two prominent lobes, and an east-west brightness asymmetry that peaks on the eastern lobe. A central feature of fainter emission appears at 44 GHz. A comparison with previous ATCA observations at 18 and 36 GHz highlights higher expansion velocities of the remnant's eastern side. The 18-44 GHz spectral index is α = –0.80 (S ν ∝ν α ). The spectral index map suggests slightly steeper values at the brightest sites on the eastern lobe, whereas flatter values are associated with the inner regions. The remnant morphology at 44 GHz generally matches the structure seen with contemporaneous X-ray and Hα observations. Unlike the Hα emission, both the radio and X-ray emission peaks on the eastern lobe. The regions of flatter spectral index align and partially overlap with the optically visible ejecta. Simple free-free absorption models suggest that emission from a pulsar wind nebula or a compact source inside the remnant may now be detectable at high frequencies or at low frequencies if there are holes in the ionized component of the ejecta.

  20. MULTIFREQUENCY RADIO MEASUREMENTS OF SUPERNOVA 1987A OVER 22 YEARS

    International Nuclear Information System (INIS)

    Zanardo, G.; Staveley-Smith, L.; Potter, T. M.; Ball, Lewis; Kesteven, M. J.; Manchester, R. N.; Tzioumis, A. K.; Gaensler, B. M.; Ng, C.-Y.

    2010-01-01

    We present extensive observations of the radio emission from the remnant of supernova (SN) 1987A made with the Australia Telescope Compact Array (ATCA), since the first detection of the remnant in 1990. The radio emission has evolved in time providing unique information on the interaction of the SN shock with the circumstellar medium. We particularly focus on the monitoring observations at 1.4, 2.4, 4.8, and 8.6 GHz, which have been made at intervals of 4-6 weeks. The flux density data show that the remnant brightness is now increasing exponentially, while the radio spectrum is flattening. The current spectral index value of -0.68 represents an 18 ± 3% increase over the last eight years. The exponential trend in the flux is also found in the ATCA imaging observations at 9 GHz, which have been made since 1992, approximately twice a year, as well as in the 843 MHz data set from the Molonglo Observatory Synthesis Telescope from 1987 to 2007 March. Comparisons with data at different wavelengths (X-ray, Hα) are made. The rich data set that has been assembled in the last 22 years forms a basis for a better understanding of the evolution of the supernova remnant.

  1. SN 1987 A: A Unique Laboratory for Shock Physics

    Science.gov (United States)

    Sonneborn, George

    2012-01-01

    Supernova 1987 A has given us an unprecedented view of the evolution of the explosion debris and its interaction with circumstellar matter. The outer supernova debris, now expanding with velocities approx.8000 km/s, encountered the relatively dense circumstellar ring formed by presupernova mass loss in the early 1990s. The shock interaction is manifested by UV-optical "hotspots", an expanding X-ray ring, an expanding ring of knotty non-thermal radio emission, and a ring of thermal IR emission from silicate dust Recent ultraviolet observations of the emissions from the reverse shock and the ring with the HST/COS reveal new details about the shock interaction. Lyman alpha emission from the reverse shock is much stronger than H alpha and they have different emission morphologies, pointing to different emission mechanisms. The reverse shock was detected for the first time in C IV 1550. The N V to C IV brightness ratio indicates the N/C abundance ratio in the expanding debris is about 100X solar, about 3X N/C in the inner ring.

  2. A new langbeinite-type phosphate: K2AlSn(PO43

    Directory of Open Access Journals (Sweden)

    Dan Zhao

    2011-10-01

    Full Text Available Single crystals of the title compound, dipotassium aluminium tin(IV tris[phosphate(V], K2AlSn(PO43, were synthesized by a high temperature reaction in a platinum crucible. In the structure, the AlIII and SnIV atoms occupy the same site on a threefold rotation axis with occupational disorder in a 1:1 ratio. In the three-dimensional structure, Al/SnO6 octahedra and PO4 tetrahedra are interconnected via their vertices, yielding a [Al/SnP3O12]n framework. The K atoms (site symmetry 3 reside in the large cavities delimited by the [Al/SnP3O12]n framework, and are surrounded by 12 O atoms.

  3. Supernova 1987A Interpreted through the SLIP Pulsar Model

    Science.gov (United States)

    Middleditch, John

    2010-01-01

    The model of pulsar emission through superluminally induced polarization currents (SLIP) predicts that pulsations produced by such currents, induced by a rotating, magnetized body at many light cylinder radii, as would be the case for a neutron star born within any star of >1.5 solar masses, will drive pulsations close to the axis of rotation. Such highly collimated pulsations (), and later, in less collimated form, the bipolarity of SN 1987A itself. The pulsations and jet interacted with circumstellar material (CM), to produce features observed in the very early light curve which correspond to: 1) the entry of the pulsed beam into the CM; 2) the entry of the 0.95 c particles into the CM; 3) the exit of the pulsed beam from the CM (with contributions in the B and I bands -- the same as later inferred/observed for its 2.14 ms pulsations); and 4) the exit of the fastest particles from the CM. Because of the energy requirements of the jet in these early stages, the spindown required of its pulsar could exceed 1e-5 Hz/s at a rotation rate of 500 Hz. There is no reason to suggest that this mechanism is not universally applicable to all SNe with gaseous remnants remaining, and thus SN 1987A is the Rosetta Stone for 99% of SNe, gamma-ray bursts, and millisecond pulsars. This work was supported in part by the Department of Energy through the Los Alamos Directed Research Grant DR20080085.

  4. No Evidence of Circumstellar Gas Surrounding Type Ia Supernova SN 2017cbv

    Science.gov (United States)

    Ferretti, Raphael; Amanullah, Rahman; Bulla, Mattia; Goobar, Ariel; Johansson, Joel; Lundqvist, Peter

    2017-12-01

    Nearby type Ia supernovae (SNe Ia), such as SN 2017cbv, are useful events to address the question of what the elusive progenitor systems of the explosions are. Hosseinzadeh et al. suggested that the early blue excess of the light curve of SN 2017cbv could be due to the supernova ejecta interacting with a non-degenerate companion star. Some SN Ia progenitor models suggest the existence of circumstellar (CS) environments in which strong outflows create low-density cavities of different radii. Matter deposited at the edges of the cavities should be at distances at which photoionization due to early ultraviolet (UV) radiation of SNe Ia causes detectable changes to the observable Na I D and Ca II H&K absorption lines. To study possible narrow absorption lines from such material, we obtained a time series of high-resolution spectra of SN 2017cbv at phases between ‑14.8 and +83 days with respect to B-band maximum, covering the time at which photoionization is predicted to occur. Both narrow Na I D and Ca II H&K are detected in all spectra, with no measurable changes between the epochs. We use photoionization models to rule out the presence of Na I and Ca II gas clouds along the line of sight of SN 2017cbv between ∼8 × 1016–2 × 1019 cm and ∼1015–1017 cm, respectively. Assuming typical abundances, the mass of a homogeneous spherical CS gas shell with radius R must be limited to {M}{{H} {{I}}}{CSM}R/{10}17[{cm}])}2 {M}ȯ . The bounds point to progenitor models that deposit little gas in their CS environment.

  5. Polarization spectrum of supernova 1987A interpreted in terms of shape asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, D J

    1987-10-01

    Polarimetry carried out on the type II supernova 1987A on 6 and 7 March 1987 showed variation in polarization across line profiles. This polarization structure is interpreted as arising from an asymmetric, homologously expanding, scattering atmosphere surrounding an asymmetric continuum-producing photosphere. Resonant scattering of radiation by ions in the atmosphere produces the line structure in the flux spectrum and polarizes the emergent radiation. The asymmetric shape of the atmosphere causes a non-zero net polarization. Sobolev-method radiative transfer calculations with axisymmetric oblate ellipsoidal models have been carried out to fit the observed data. The models are parameterized by the ratio of the symmetry axis to the perpendicular axis, c/a. The fits to the 1987A data indicate that (c/a) is approx. 0.6-0.8.

  6. Ultraviolet spectroscopy of the blue supergiant SBW1: the remarkably weak wind of a SN 1987A analogue

    Science.gov (United States)

    Smith, Nathan; Groh, Jose H.; France, Kevin; McCray, Richard

    2017-06-01

    The Galactic blue supergiant SBW1 with its circumstellar ring nebula represents the best known analogue of the progenitor of SN 1987A. High-resolution imaging has shown Hα and infrared structures arising in an ionized flow that partly fills the ring's interior. To constrain the influence of the stellar wind on this structure, we obtained an ultraviolet (UV) spectrum of the central star of SBW1 with the Hubble Space Telescope Cosmic Origins Spectrograph. The UV spectrum shows none of the typical wind signatures, indicating a very low mass-loss rate. Radiative transfer models suggest an extremely low rate below 10-10 M⊙ yr-1, although we find that cooling time-scales probably become comparable to (or longer than) the flow time below 10-8 M⊙ yr-1. We therefore adopt this latter value as a conservative upper limit. For the central star, the model yields Teff = 21 000 ± 1000 K, log(geff) = 3.0, L ≃ 5 × 104 L⊙, and roughly Solar composition except for enhanced N abundance. SBW1's very low mass-loss rate may hinder the wind's ability to shape its nebula and to shed angular momentum. The spin-down time-scale for magnetic breaking is more than 500 times longer than the age of the ring. This, combined with the star's slow rotation rate, constrains merger scenarios to form ring nebulae. The mass-loss rate is at least 10 times lower than expected from mass-loss recipes, without any account of clumping. The physical explanation for why SBW1's wind is so weak presents an interesting mystery.

  7. THIRTY YEARS OF SN 1980K: EVIDENCE FOR LIGHT ECHOES

    Energy Technology Data Exchange (ETDEWEB)

    Sugerman, Ben E. K. [Department of Physics and Astronomy, Goucher College, 1021 Dulaney Valley Road, Baltimore, MD 21208 (United States); Andrews, Jennifer E. [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Barlow, Michael J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Clayton, Geoffrey C. [Department of Physics and Astronomy, Lousiana State University, 202 Nicholson Hall, Baton Roughe, LA 70803 (United States); Ercolano, Barbara [Excellence Cluster ' Universe' , Universitaets-Sternwarte Muenchen, Scheinerstr. 1, 81679 Muenchen (Germany); Ghavamian, Parviz [Department of Physics, Astronomy and Geosciences, Towson University, Smith Hall, Towson, MD 21252 (United States); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CM3 0HA (United Kingdom); Krause, Oliver [Max Planck Institute for Astronomy, Koenigstuhl 17, 69117 Heidelberg (Germany); Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Otsuka, Masaaki, E-mail: ben.sugerman@goucher.edu [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China)

    2012-04-20

    We report optical and mid-infrared photometry of SN 1980K between 2004 and 2010, which shows slow monotonic fading consistent with previous spectroscopic and photometric observations made 8-17 yr after outburst. The slow rate of change over two decades suggests that this evolution may result from scattered and thermal light echoes off of extended circumstellar material. We present a semi-analytic dust radiative-transfer model that uses an empirically corrected effective optical depth to provide a fast and robust alternative to full Monte Carlo radiative-transfer modeling for homogenous dust at low to intermediate optical depths. We find that unresolved echoes from a thin circumstellar shell 14-15 lt-yr from the progenitor, and containing {approx}< 0.02 M{sub Sun} of carbon-rich dust, can explain the broadband spectral and temporal evolution. The size, mass, and dust composition are in good agreement with the contact discontinuity observed in scattered echoes around SN 1987A. The origin of slowly changing high-velocity [O I] and H{alpha} lines is also considered. We propose an origin in shocked high-velocity metal-rich clumps of ejecta, rather than arising in the impact of ejecta on slowly moving circumstellar material, as is the case with hot spots in SN 1987A.

  8. Massive stars dying alone: Extremely remote environments of SN2009ip and SN2010jp

    Science.gov (United States)

    Smith, Nathan

    2014-10-01

    We propose an imaging study of the astonishingly remote environments of two recent supernovae (SNe): SN2009ip and SN2010jp. Both were unusual Type IIn explosions that crashed into dense circumstellar material (CSM) ejected by the star shortly before explosion. The favored progenitors of these SNe are very massive luminous blue variable (LBV) stars. In fact, SN2009ip presents an extraordinay case where the LBV-like progenitor was actually detected directly in archival HST data, and where we obtained spectra and photometry for numerous pre-SN eruptions. No other SN has this treasure trove of detailed information about the progenitor (not even SN1987A). SN2010jp represents a possible collapsar-powered event, since it showed evidence of a fast bipolar jet in spectra and a low 56Ni mass; this would be an analog of the black-hole forming explosions that cause gamma ray bursts, but where the relativistic jet is damped by a residual H envelope on the star. In both cases, the only viable models for these SNe involve extremely massive (initial masses of 40-100 Msun) progenitor stars. This seems at odds with their extremely remote environments in the far outskirts of their host galaxies, with no detected evidence for an underlying massive star population in ground-based data (nor in the single shallow WFPC2/F606W image of SN2009ip). Here we propose deep UV HST images to search for any mid/late O-type stars nearby, deep red images to detect any red supergiants, and an H-alpha image to search for any evidence of ongoing star formation in the vicinity. These observations will place important and demanding constraints on the initial masses and ages of these progenitors.

  9. Optical spectrophotometric atlas of Supernova 1987A in the LMC. I. The first 130 days

    International Nuclear Information System (INIS)

    Phillips, M.M.; Heathcote, S.R.; Hamuy, M.; Navarrete, M.

    1988-01-01

    Optical spectrophotometry of SN 1987A in the Large Magellanic Cloud (LMC) covering the first 5 months since outburst is presented. More than 80 spectra were obtained at Cerro Tololo over this period, mostly with the 2D-Frutti two-dimensional photon-counting detector on the 1-m telescope. The spectrophotometric calibration of the 2D-Frutti data is considered in detail. Through a comparison with broadband photometry, it is shown that the accuracy of the 2D-Frutti spectrophotometry is + or - 5 percent in absolute terms, and that the relative calibration for any single spectrum is accurate to + or - 3 percent. CCD spectrophotometry obtained on the first night of observation (Feb. 25, 1987) is also briefly discussed. Radial velocities for several prominent absorption and emission features are measured from these combined data. 13 references

  10. Anomalous temperature behavior of Sn impurities

    International Nuclear Information System (INIS)

    Haskel, D.; Shechter, H.; Stern, E.A.; Newville, M.; Yacoby, Y.

    1993-01-01

    Sn impurities in Pb and Ag hosts have been investigated by Moessbauer effect and in Pb by x-ray-absorption fine-structure (XAFS) studies. The Sn atoms are dissolved up to at least 2 at. % in Pb and up to at least 8 at. % in Ag for the temperature ranges investigated. The concentration limit for Sn-Sn interactions is 1 at. % for Pb and 2 at. % for Ag as determined experimentally by lowering the Sn concentration until no appreciable change occurs in the Moessbauer effect. XAFS measurements verify that the Sn impurities in Pb are dissolved and predominantly at substitutional sites. For both hosts the temperature dependence of the spectral intensities of isolated Sn impurities below a temperature T 0 is as expected for vibrating about a lattice site. Above T 0 the Moessbauer spectral intensity exhibits a greatly increased rate of drop-off with temperature without appreciable broadening. This drop-off is too steep to be explained by ordinary anharmonic effects and can be explained by a liquidlike rapid hopping of the Sn, localized about a lattice site. Higher-entropy-density regions of radii somewhat more than an atomic spacing surround such impurities, and can act as nucleation sites for three-dimensional melting

  11. TDPAC study of Cd-doped SnO

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, E. L., E-mail: munoz@fisica.unlp.edu.ar [Universidad Nacional de La Plata, Departamento de Fisica-IFLP (CCT-La Plata, CONICET-UNLP), Facultad de Ciencias Exactas (Argentina); Carbonari, A. W. [Instituto de Pesquisas Energeticas y Nucleares-IPEN-CNEN/SP (Brazil); Errico, L. A. [Universidad Nacional de La Plata, Departamento de Fisica-IFLP (CCT-La Plata, CONICET-UNLP), Facultad de Ciencias Exactas (Argentina); Bibiloni, A. G. [Universidad Nacional de La Plata, Departamento de Fisica, Facultad de Ciencias Exactas (Argentina); Petrilli, H. M. [Universidade de Sao Paulo, Instituto de Fisica (Brazil); Renteria, M. [Universidad Nacional de La Plata, Departamento de Fisica-IFLP (CCT-La Plata, CONICET-UNLP), Facultad de Ciencias Exactas (Argentina)

    2007-07-15

    The combination of hyperfine techniques and ab initio calculations has been shown to be a powerful tool to unravel structural and electronic characterizations of impurities in solids. A recent example has been the study of Cd-doped SnO, where ab initio calculations questioned previous TDPAC assignments of the electric-field gradient (EFG) in {sup 111}In-implanted Sn-O thin films. Here we present new TDPAC experiments at {sup 111}In-diffused polycrystalline SnO. A reversible temperature dependence of the EFG was observed in the range 295-900 K. The TDPAC results were compared with theoretical calculations performed with the full-potential linearized augmented plane wave (FP-LAPW) method, in the framework of the density functional theory. Through the comparison with the theoretical results, we infer that different electronic surroundings around Cd impurities can coexist in the SnO sample.

  12. TDPAC study of Cd-doped SnO

    International Nuclear Information System (INIS)

    Munoz, E. L.; Carbonari, A. W.; Errico, L. A.; Bibiloni, A. G.; Petrilli, H. M.; Renteria, M.

    2007-01-01

    The combination of hyperfine techniques and ab initio calculations has been shown to be a powerful tool to unravel structural and electronic characterizations of impurities in solids. A recent example has been the study of Cd-doped SnO, where ab initio calculations questioned previous TDPAC assignments of the electric-field gradient (EFG) in 111 In-implanted Sn-O thin films. Here we present new TDPAC experiments at 111 In-diffused polycrystalline SnO. A reversible temperature dependence of the EFG was observed in the range 295-900 K. The TDPAC results were compared with theoretical calculations performed with the full-potential linearized augmented plane wave (FP-LAPW) method, in the framework of the density functional theory. Through the comparison with the theoretical results, we infer that different electronic surroundings around Cd impurities can coexist in the SnO sample.

  13. Environmental surveillance at Los Alamos during 1987

    International Nuclear Information System (INIS)

    1988-05-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1987. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1987 cover: external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are insignificant and do not pose a threat to the public, Laboratory employees, or the environment. 113 refs., 33 figs., 120 tabs

  14. Environmental surveillance at Los Alamos during 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1987. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1987 cover: external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are insignificant and do not pose a threat to the public, Laboratory employees, or the environment. 113 refs., 33 figs., 120 tabs.

  15. Correlations between muons and low energy pulses at LSD of the Mont Blanc laboratory near the time of SN1987A explosion

    International Nuclear Information System (INIS)

    Dadykin, V.L.; Khalchukov, F.F.; Korchagin, P.V.; Korolkova, E.V.; Kudryavtsev, V.A.; Mal'gin, A.S.; Ryasny, V.G.; Ryazhskaya, O.G.; Yakushev, V.F.; Zatsepin, G.T.; Aglietta, M.; Badino, G.; Bologna, G.; Castagnoli, C.; Castellina, A.; Fulgione, W.; Galeotti, P.; Saavedra, O.; Trinchero, G.; Vernetto, S.; Turin Univ.

    1989-01-01

    We have analysed the data of LSD from February 10, 1987, to March 7, 1987, in order to search for autocorrelations between all pulses detected by LSD with energy higher than 5 MeV like those occurred at ∼ 3:00 UT on February 23, 1987, between the pulses detected by 3 neutrino telescopes and 2 gravitational wave antennae. We have found 9 pairs of correlated pulses (muon + low energy pulse) from 5:42 UT to 10:13 UT on February 23, 1987. The time differences of pulses in the pairs are less than 2 s, the first pulse in the pair being either muon or low energy pulse. The frequency of such random poissonian fluctuations is ∼1/(10 years). There are no correlations outside statistics between low energy, low energy pulses and muon, muon pulses detected by LSD during the whole time period

  16. Toward connecting core-collapse supernova theory with observations. I. Shock revival in a 15 M ☉ blue supergiant progenitor with SN 1987A energetics

    International Nuclear Information System (INIS)

    Handy, Timothy; Plewa, Tomasz; Odrzywołek, Andrzej

    2014-01-01

    We study the evolution of the collapsing core of a 15 M ☉ blue supergiant supernova progenitor from the core bounce until 1.5 s later. We present a sample of hydrodynamic models parameterized to match the explosion energetics of SN 1987A. We find the spatial model dimensionality to be an important contributing factor in the explosion process. Compared to two-dimensional (2D) simulations, our three-dimensional (3D) models require lower neutrino luminosities to produce equally energetic explosions. We estimate that the convective engine in our models is 4% more efficient in 3D than in 2D. We propose that the greater efficiency of the convective engine found in 3D simulations might be due to the larger surface-to-volume ratio of convective plumes, which aids in distributing energy deposited by neutrinos. We do not find evidence of the standing accretion shock instability or turbulence being a key factor in powering the explosion in our models. Instead, the analysis of the energy transport in the post-shock region reveals characteristics of penetrative convection. The explosion energy decreases dramatically once the resolution is inadequate to capture the morphology of convection on large scales. This shows that the role of dimensionality is secondary to correctly accounting for the basic physics of the explosion. We also analyze information provided by particle tracers embedded in the flow and find that the unbound material has relatively long residency times in 2D models, while in 3D a significant fraction of the explosion energy is carried by particles with relatively short residency times.

  17. REVIEWS OF TOPICAL PROBLEMS Rotational explosion mechanism for collapsing supernovae and the two-stage neutrino signal from supernova 1987A in the Large Magellanic Cloud

    Science.gov (United States)

    Imshennik, Vladimir S.

    2011-02-01

    The two-stage (double) signal produced by the outburst of the close supernova (SN) in the Large Magellanic Cloud, which started on and involved two neutrino signals during the night of 23 February 1987 UT, is theoretically interpreted in terms of a scenario of rotationally exploding collapsing SNs, to whose class the outburst undoubtedly belongs. This scenario consists of a set of hydrodynamic and kinetic models in which key results are obtained by numerically solving non-one-dimensional and nonstationary problems. Of vital importance in this context is the inclusion of rotation effects, their role being particularly significant precisely in terms of the question of the transformation of the original collapse of the presupernova iron core to the explosion of the SN shell, with an energy release on a familiar scale of 1051 erg. The collapse in itself leads to the birth of neutron stars (black holes) emitting neutrino and gravitational radiation signals of gigantic intensity, whose total energy significantly (by a factor of hundreds) exceeds the above-cited SN burst energy. The proposed rotational scenario is described briefly by artificially dividing it into three (or four) characteristic stages. This division is dictated by the physical meaning of the chain of events a rotating iron core of a sufficiently massive (more than 10M) star triggers when it collapses. An attempt is made to quantitatively describe the properties of the associated neutrino and gravitational radiations. The review highlights the interpretation of the two-stage neutrino signal from SN 1987A, a problem which, given the present status of theoretical astrophysics, cannot, in the author's view, be solved without including rotation effects.

  18. PSR1987A: the case for strange-quark stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-01-01

    The new fast pulsar observed in the remnant of SN1987A, together with other considerations, provide evidence that there are two types of collapsed stars: neutron stars, having moderate central densities and subject to the usual mass constraint, and strange-quark-matter stars. We show that (i) all known pulsar masses and frequencies, with the exception of the new one, can be accounted for by plausible neutron star models; (ii) no known neutron star model can withstand the fast rotation of the new pulsar unless the central energy density is ∼ 15 that of normal nuclei, at which densities hadrons cannot plausibly exist as constituents; and (iii) if strange-quark matter is the true ground state of the strong interactions, strange-quark stars can sustain the high rotation imputed to the new pulsar. In the absence of another plausible structure that can withstand the fast rotation, we provisionally infer that the new pulsar is such a star. (author)

  19. Local structure and defect chemistry of [(SnSe)1.15]m(TaSe2) ferecrystals – A new type of layered intergrowth compound

    International Nuclear Information System (INIS)

    Grosse, Corinna; Atkins, Ryan; Kirmse, Holm; Mogilatenko, Anna; Neumann, Wolfgang; Johnson, David C.

    2013-01-01

    Highlights: •The crystal structure of [(SnSe) 1.15 ] m (TaSe 2 ) ferecrystals was analyzed by TEM. •The layers exhibit turbostratic disorder, but we also observed a local ordering. •The structures of the SnSe and TaSe 2 layers are similar to binary SnSe and 2H-TaSe 2 . •An increasing in-plane SnSe grain size with increasing m was observed. •Defect areas with missing, substituted or additional layers were found. -- Abstract: The atomic structure of the family of ferecrystals [(SnSe) 1.15 ] m (TaSe 2 ) (m = 1, 3, and 6) was investigated by means of transmission electron microscopy. The tantalum in the TaSe 2 layers was observed to have trigonal prismatic coordination similar to that found in the 2H polytype of bulk TaSe 2 . The structure of the SnSe constituent was found to be similar to that of orthorhombic α-SnSe. In the compounds with m = 1 and m = 3, regions with a local ordering of the layers along a commensurate axis, similar to the ordering in conventional misfit layer compounds, were observed. However, on a longer range the ferecrystals were found to exhibit a turbostratically disordered structure. Stacking defects were occasionally found in the samples in which a layer is interrupted and the surrounding layers are bent around these defects, while maintaining abrupt interfaces instead of interdiffusing. Volume defects were found in one sample of [(SnSe) 1.15 ] 1 (TaSe 2 ) 1 in which a SnSe layer locally substitutes a part of a TaSe 2 layer without interrupting the surrounding layers

  20. Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978-1987

    DEFF Research Database (Denmark)

    Korsgaard, Niels J.; Nuth, Christopher; Khan, Shfaqat Abbas

    2016-01-01

    in general. We present a historical medium-resolution DEM and orthophotographs that consistently cover the entire surroundings and margins of the Greenland Ice Sheet 1978-1987. About 3,500 aerial photographs of Greenland are combined with field surveyed geodetic ground control to produce a 25 m gridded DEM...

  1. Whisker and Hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits

    International Nuclear Information System (INIS)

    Boettinger, W.J.; Johnson, C.E.; Bendersky, L.A.; Moon, K.-W.; Williams, M.E.; Stafford, G.R.

    2005-01-01

    High purity bright Sn, Sn-Cu and Sn-Pb layers, 3, 7 and 16 μm thick were electrodeposited on phosphor bronze cantilever beams in a rotating disk apparatus. Beam deflection measurements within 15 min of plating proved that all electrodeposits had in-plane compressive stress. In several days, the surfaces of the Sn-Cu deposits, which have the highest compressive stress, develop 50 μm contorted hillocks and 200 μm whiskers, pure Sn deposits develop 20 μm compact conical hillocks, and Sn-Pb deposits, which have the lowest compressive stress, remain unchanged. The differences between the initial compressive stresses for each alloy and pure Sn is due to the rapid precipitation of Cu 6 Sn 5 or Pb particles, respectively, within supersaturated Sn grains produced by electrodeposition. Over longer time, analysis of beam deflection measurements indicates that the compressive stress is augmented by the formation of Cu 6 Sn 5 on the bronze/Sn interface, while creep of the electrodeposit tends to decrease the compressive stress. Uniform creep occurs for Sn-Pb because it has an equi-axed grain structure. Localized creep in the form of hillocks and whiskers occurs for Sn and Sn-Cu because both have columnar structures. Compact hillocks form for the Sn deposits because the columnar grain boundaries are mobile. Contorted hillocks and whiskers form for the Sn-Cu deposits because the columnar grain boundary motion is impeded

  2. Properties of idealized designs of NB3SN composites

    International Nuclear Information System (INIS)

    Smathers, D.B.; Larbalestier, D.C.; Lee, P.J.; Marken, K.R.; McDonald, W.K.; O'Larey, P.M.

    1985-01-01

    A series of seven idealized bronze-Nb 3 Sn composites were manufactured by the MJR process with varying matrix to filament ratios and pure Nb and Nb 0.8 wt.% Ti cores. The central core of each composite was sealed by a diffusion barrier which results in each filament having an identical source of tin. Initial evaluations of the composites from critical current and transmission electron microscopy measurements are presented and their properties compared to standard MJR composites. The Nb 3 Sn current density does not appear to be a strong function of bronze to Nb ratio over the range 2.4 to 3.2:1. The standard MJR composites have higher critical current densities than the idealized composites. It is proposed that the major reason for the increased current density of the normal MJR conductors is the intrinsically higher quality of the filaments close to the central tin core. It is postulated that the high Sn content of the bronze surrounding these filaments leads to an intrinsically higher Nb 3 Sn filament current density

  3. A STUBBORNLY LARGE MASS OF COLD DUST IN THE EJECTA OF SUPERNOVA 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, M.; Barlow, M. J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Dwek, E. [Observational Cosmology Laboratory Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Babler, B. [Department of Astronomy, 475 North Charter Street, University of Wisconsin, Madison, WI 53706 (United States); Baes, M.; Fritz, Jacopo [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Meixner, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cernicharo, José [Departamento de Astrofísica, Centro de Astrobiología, CSIC-INTA, Ctra. de Torrejón a Ajalvir km 4, E-28850 Madrid (Spain); Clayton, Geoff C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Dunne, L. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Fransson, C.; Lundqvist, P. [The Oskar Klein Centre, Department of Astronomy, Stockholm University, Albanova, SE-10691 Stockholm (Sweden); Gear, Walter; Gomez, H. L. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Groenewegen, M. A. T. [Koninklijke Sterrenwacht van België, Ringlaan 3, 1180 Brussel (Belgium); Indebetouw, R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Ivison, R. J. [SUPA, Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Jerkstrand, A. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Lebouteiller, V. [AIM, CEA/Saclay, L' Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Lim, T. L., E-mail: mikako@star.ucl.ac.uk [RAL Space, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); and others

    2015-02-10

    We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 μm data and improved imaging quality at 100 and 160 μm compared to previous observations in 2010. Our Herschel spectra show only weak CO line emission, and provide an upper limit for the 63 μm [O I] line flux, eliminating the possibility that line contaminations distort the previously estimated dust mass. The far-infrared spectral energy distribution (SED) is well fitted by thermal emission from cold dust. The newly measured 70 μm flux constrains the dust temperature, limiting it to nearly a single temperature. The far-infrared emission can be fitted by 0.5 ± 0.1 M {sub ☉} of amorphous carbon, about a factor of two larger than the current nucleosynthetic mass prediction for carbon. The observation of SiO molecules at early and late phases suggests that silicates may also have formed and we could fit the SED with a combination of 0.3 M {sub ☉} of amorphous carbon and 0.5 M {sub ☉} of silicates, totalling 0.8 M {sub ☉} of dust. Our analysis thus supports the presence of a large dust reservoir in the ejecta of SN 1987A. The inferred dust mass suggests that supernovae can be an important source of dust in the interstellar medium, from local to high-redshift galaxies.

  4. CARBON MONOXIDE IN THE COLD DEBRIS OF SUPERNOVA 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Kamenetzky, J.; McCray, R.; Glenn, J. [Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, UCB 391, Boulder, CO 80309 (United States); Indebetouw, R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22903 (United States); Barlow, M. J.; Matsuura, M. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Blommaert, J. A. D. L.; Decin, L. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D BUS 2401, B-2001 Leuven (Belgium); Bolatto, A. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Dunne, L. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8410 (New Zealand); Fransson, C. [Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Gomez, H. L. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom); Groenewegen, M. A. T. [Royal Observatory of Belgium, Ringlaan 3, B-1180 Brussels (Belgium); Hopwood, R. [Physics Department, Imperial College London, London SW7 2AZ (United Kingdom); Kirshner, R. P. [Harvard College Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Lakicevic, M. [Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Marcaide, J. [Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Marti-Vidal, I. [Onsala Space Observatory, SE-439 92 Onsala (Sweden); Meixner, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2013-08-20

    We report spectroscopic and imaging observations of rotational transitions of cold CO and SiO in the ejecta of SN1987A, the first such emission detected in a supernova remnant. In addition to line luminosities for the CO J = 1-0, 2-1, 6-5, and 7-6 transitions, we present upper limits for all other transitions up to J = 13-12, collectively measured from the Atacama Large Millimeter Array, the Atacama Pathfinder EXperiment, and the Herschel Spectral and Photometric Imaging REceiver. Simple models show the lines are emitted from at least 0.01 M{sub Sun} of CO at a temperature >14 K, confined within at most 35% of a spherical volume expanding at {approx}2000 km s{sup -1}. Moreover, we locate the emission within 1'' of the central debris. These observations, along with a partial observation of SiO, confirm the presence of cold molecular gas within supernova remnants and provide insight into the physical conditions and chemical processes in the ejecta. Furthermore, we demonstrate the powerful new window into supernova ejecta offered by submillimeter observations.

  5. CARBON MONOXIDE IN THE COLD DEBRIS OF SUPERNOVA 1987A

    International Nuclear Information System (INIS)

    Kamenetzky, J.; McCray, R.; Glenn, J.; Indebetouw, R.; Barlow, M. J.; Matsuura, M.; Baes, M.; Blommaert, J. A. D. L.; Decin, L.; Bolatto, A.; Dunne, L.; Fransson, C.; Gomez, H. L.; Groenewegen, M. A. T.; Hopwood, R.; Kirshner, R. P.; Lakicevic, M.; Marcaide, J.; Marti-Vidal, I.; Meixner, M.

    2013-01-01

    We report spectroscopic and imaging observations of rotational transitions of cold CO and SiO in the ejecta of SN1987A, the first such emission detected in a supernova remnant. In addition to line luminosities for the CO J = 1-0, 2-1, 6-5, and 7-6 transitions, we present upper limits for all other transitions up to J = 13-12, collectively measured from the Atacama Large Millimeter Array, the Atacama Pathfinder EXperiment, and the Herschel Spectral and Photometric Imaging REceiver. Simple models show the lines are emitted from at least 0.01 M ☉ of CO at a temperature >14 K, confined within at most 35% of a spherical volume expanding at ∼2000 km s –1 . Moreover, we locate the emission within 1'' of the central debris. These observations, along with a partial observation of SiO, confirm the presence of cold molecular gas within supernova remnants and provide insight into the physical conditions and chemical processes in the ejecta. Furthermore, we demonstrate the powerful new window into supernova ejecta offered by submillimeter observations

  6. Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures

    International Nuclear Information System (INIS)

    Horváth, Barbara; Illés, Balázs; Shinohara, Tadashi

    2014-01-01

    Intermetallic growth mechanisms and rates are investigated in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. An 8–10 μm thick Sn surface finish layer was electroplated onto a Cu substrate with a 1.5–2 μm thick Ni or Ag barrier layer. In order to induce intermetallic layer growth, the samples were aged in elevated temperatures: 50 °C and 125 °C. Intermetallic layer growth was checked by focused ion beam–scanning ion microscope. The microstructures and chemical compositions of the intermetallic layers were observed with a transmission electron microscope. It has been found that Ni barrier layers can effectively block the development of Cu 6 Sn 5 intermetallics. The intermetallic growth characteristics in the Sn/Cu and Sn/Ni/Cu systems are very similar. The intermetallic layer grows towards the Sn layer and forms a discrete layer. Differences were observed only in the growth gradients and surface roughness of the intermetallic layer which may explain the different tin whiskering properties. It was observed that the intermetallic layer growth mechanisms are completely different in the Ag barrier layers compared to the Ni layers. In the case of Sn/Ag/Cu systems, the Sn and Cu diffused through the Ag layer, formed Cu 6 Sn 5 intermetallics mainly at the Sn/Ag interface and consumed the Ag barrier layer. - Highlights: • Intermetallic growth was characterised in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. • Intermetallic growth rates and roughness are similar in the Sn/Cu and Sn/Ni/Cu systems. • Sn/Ni/Cu system contains the following intermetallic layer structure Sn–Ni3Sn4–Ni3Sn2–Ni3Sn–Ni. • In the case of Sn/Ag/Cu systems the Sn and Cu diffusion consumes the Ag barrier layer. • When Cu reaches the Sn/Ag interface a large amount of Cu 6 Sn 5 forms above the Ag layer

  7. Magnetic Parameters Of A NB3SN Superconducting Magnet For A 56 HGz ECR Ion Source

    International Nuclear Information System (INIS)

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C.M.; Prestemon, S.; Sabbi, G.L.; Todd, D.S.

    2009-01-01

    Third generation Electron Cyclotron Resonance (ECR) ion sources operate at microwave frequencies between 20 and 30 GHz and employ NbTi superconducting magnets with a conductor peak field of 6-7 T. A significant gain in performance can be achieved by replacing NbTi with Nb 3 Sn, allowing solenoids and sextupole coils to reach a field of 15 T in the windings. In this paper we describe the design of a Nb 3 Sn superconducting magnet for a fourth generation ECR source operating at a microwave frequency of 56 GHz. The magnet design features a configuration with an internal sextupole magnet surrounded by three solenoids. A finite element magnetic model has been used to investigate conductor peak fields and the operational margins. Results of the numerical analysis are presented and discussed.

  8. MAGNETIC PARAMETERS OF A NB3SN SUPERCONDUCTING MAGNET FOR A 56 HGz ECR ION SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S.; Sabbi, G. L.; Todd, D. S.

    2009-05-04

    Third generation Electron Cyclotron Resonance (ECR) ion sources operate at microwave frequencies between 20 and 30 GHz and employ NbTi superconducting magnets with a conductor peak field of 6-7 T. A significant gain in performance can be achieved by replacing NbTi with Nb{sub 3}Sn, allowing solenoids and sextupole coils to reach a field of 15 T in the windings. In this paper we describe the design of a Nb{sub 3}Sn superconducting magnet for a fourth generation ECR source operating at a microwave frequency of 56 GHz. The magnet design features a configuration with an internal sextupole magnet surrounded by three solenoids. A finite element magnetic model has been used to investigate conductor peak fields and the operational margins. Results of the numerical analysis are presented and discussed.

  9. Digital Elevation Model and orthophotographs of Greenland based on aerial photographs from 1978-1987 (G150 AERODEM) (NCEI Accession 0145405)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Here, we present a medium-resolution DEM and orthophotographs that consistently cover the entire surroundings and margins of the Greenland Ice Sheet 1978-1987. About...

  10. Comparison of the electrochemical performance of mesoscopic Cu2Sb, SnSb and Sn/SnSb alloy powders

    International Nuclear Information System (INIS)

    Zhang Ge; Huang Kelong; Liu Suqin; Zhang Wei; Gong Benli

    2006-01-01

    Cu 2 Sb, SnSb and Sn/SnSb mesoscopic alloy powders were prepared by chemical reduction, respectively. The crystal structures and particle morphology of Cu 2 Sb, SnSb and Sn/SnSb were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The electrochemical performances of the Cu 2 Sb, SnSb and Sn/SnSb electrodes were investigated by galvanostatic charge and discharge cycling and electrochemical impedance spectroscopy (EIS). The results showed the first charge and discharge capacities of SnSb and Sn/SnSb were higher than Cu 2 Sb, but after 15 cycles, the charge capacity fading rates of Cu 2 Sb, Sn/SnSb and Sn/SnSb were 26.16%, 55.33% and 47.39%, respectively. Cu 2 Sb had a better cycle performance, and Sn/SnSb multiphase alloy was prior to pure SnSb due to the existence of excessive Sn in Sn/SnSb system

  11. Spectral and morphological analysis of the remnant of supernova 1987A with ALMA and ATCA

    Energy Technology Data Exchange (ETDEWEB)

    Zanardo, Giovanna; Staveley-Smith, Lister [International Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia, Crawley, WA 6009 (Australia); Indebetouw, Remy; Chevalier, Roger A. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Matsuura, Mikako; Barlow, Michael J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Gaensler, Bryan M. [Australian Research Council, Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Fransson, Claes; Lundqvist, Peter [Department of Astronomy, Oskar Klein Center, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Manchester, Richard N. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Baes, Maarten [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Kamenetzky, Julia R. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Lakićević, Maša [Institute for the Environment, Physical Sciences and Applied Mathematics, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Marcaide, Jon M. [Departamento de Astronomía, Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Martí-Vidal, Ivan [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ng, C.-Y. [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Park, Sangwook, E-mail: giovanna.zanardo@gmail.com [Department of Physics, University of Texas at Arlington, 108 Science Hall, Box 19059, Arlington, TX 76019 (United States); and others

    2014-12-01

    We present a comprehensive spectral and morphological analysis of the remnant of supernova (SN) 1987A with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The non-thermal and thermal components of the radio emission are investigated in images from 94 to 672 GHz (λ 3.2 mm to 450 μm), with the assistance of a high-resolution 44 GHz synchrotron template from the ATCA, and a dust template from ALMA observations at 672 GHz. An analysis of the emission distribution over the equatorial ring in images from 44 to 345 GHz highlights a gradual decrease of the east-to-west asymmetry ratio with frequency. We attribute this to the shorter synchrotron lifetime at high frequencies. Across the transition from radio to far infrared, both the synchrotron/dust-subtracted images and the spectral energy distribution (SED) suggest additional emission beside the main synchrotron component (S {sub ν}∝ν{sup –0.73}) and the thermal component originating from dust grains at T ∼ 22 K. This excess could be due to free-free flux or emission from grains of colder dust. However, a second flat-spectrum synchrotron component appears to better fit the SED, implying that the emission could be attributed to a pulsar wind nebula (PWN). The residual emission is mainly localized west of the SN site, as the spectral analysis yields –0.4 ≲ α ≲ –0.1 across the western regions, with α ∼ 0 around the central region. If there is a PWN in the remnant interior, these data suggest that the pulsar may be offset westward from the SN position.

  12. De verkeersonveiligheid in 1987 : een kwantitatieve beschrijving van de verkeersonveiligheid in 1987.

    NARCIS (Netherlands)

    Blokpoel, A.

    1989-01-01

    Traffic safety in 1987 is described and quantitative description and analysis are given. 1987 is compared to the period 1982- 1986. In 1987 42.655 accidents with injuries were registered, out of which 1485 fatalities, and 35, 230 hospitalizations resulted. This is a slight decrease compared to 1986.

  13. Supernova 1987a: One year later: A summary of the La Thuile symposium

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1988-04-01

    The Conference reviewed what we have learned after one year from SN 1987a. In particular, new information continues to come in daily on the evolving spectra, including x-rays and γ-rays. We now know the light curve was indeed powered by 56 Co decay. The neutrino data from IMB and Kamioka continues to be analyzed. It is fit very well by a standard collapse to a neutron star although some nagging problems with the angular distribution remain. Constraints on neutrino and other weakly interacting particle properties have been developed that rival or exceed terrestrial laboratory results. The question of the counts detected by the Mt. Blanc neutrino detector had new mysteries added at this meeting as reports of multiple coincidences with gravitational wave detectors at Maryland and Rome were presented. Future supernova rates were also discussed. It was argued that neutrino detection from a future supernova in our Galaxy might be the only way to prove that the ν/sub /tau// was the dominant matter of the Universe

  14. A Massive Shell of Supernova-formed Dust in SNR G54.1+0.3

    Energy Technology Data Exchange (ETDEWEB)

    Temim, Tea [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Dwek, Eli; Arendt, Richard G. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Borkowski, Kazimierz J.; Reynolds, Stephen P. [North Carolina State University, Raleigh, NC 27695 (United States); Slane, Patrick; Raymond, John C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gelfand, Joseph D. [New York University, Abu Dhabi (United Arab Emirates)

    2017-02-10

    While theoretical models of dust condensation predict that most refractory elements produced in core-collapse supernovae (SNe) efficiently condense into dust, a large quantity of dust has so far only been observed in SN 1987A. We present an analysis of observations from the Spitzer Space Telescope , Herschel Space Observatory , Stratospheric Observatory for Infrared Astronomy, and AKARI of the infrared shell surrounding the pulsar wind nebula in the supernova remnant G54.1+0.3. We attribute a distinctive spectral feature at 21 μ m to a magnesium silicate grain species that has been invoked in modeling the ejecta-condensed dust in Cas A, which exhibits the same spectral signature. If this species is responsible for producing the observed spectral feature and accounts for a significant fraction of the observed infrared continuum, we find that it would be the dominant constituent of the dust in G54.1+0.3, with possible secondary contributions from other compositions, such as carbon, silicate, or alumina grains. The total mass of SN-formed dust required by this model is at least 0.3 M {sub ⊙}. We discuss how these results may be affected by varying dust grain properties and self-consistent grain heating models. The spatial distribution of the dust mass and temperature in G54.1+0.3 confirms the scenario in which the SN-formed dust has not yet been processed by the SN reverse shock and is being heated by stars belonging to a cluster in which the SN progenitor exploded. The dust mass and composition suggest a progenitor mass of 16–27 M {sub ⊙} and imply a high dust condensation efficiency, similar to that found for Cas A and SN 1987A. The study provides another example of significant dust formation in a Type IIP SN explosion and sheds light on the properties of pristine SN-condensed dust.

  15. X-RAY EMISSION FROM SN 2004dj: A TALE OF TWO SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborti, Sayan; Yadav, Naveen; Ray, Alak [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Smith, Randall [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chandra, Poonam [Department of Physics, Royal Military College of Canada, Kingston, ON K7K 7B4 (Canada); Pooley, David, E-mail: schakraborti@fas.harvard.edu [Department of Physics, Sam Houston State University, Huntsville, TX (United States)

    2012-12-20

    Type IIP (Plateau) supernovae are the most commonly observed variety of core-collapse events. They have been detected in a wide range of wavelengths from radio, through optical to X-rays. The standard picture of a Type IIP supernova has the blastwave interacting with the progenitor's circumstellar matter to produce a hot region bounded by a forward and a reverse shock. This region is thought to be responsible for most of the X-ray and radio emission from these objects. Yet the origin of X-rays from these supernovae is not well understood quantitatively. The relative contributions of particle acceleration and magnetic field amplification in generating the X-ray and radio emission need to be determined. In this work, we analyze archival Chandra observations of SN 2004dj, one of the nearest supernovae since SN 1987A, along with published radio and optical information. We determine the pre-explosion mass-loss rate, blastwave velocity, electron acceleration, and magnetic field amplification efficiencies. We find that a greater fraction of the thermal energy goes into accelerating electrons than into amplifying magnetic fields. We conclude that the X-ray emission arises out of a combination of inverse Compton scattering by non-thermal electrons accelerated in the forward shock and thermal emission from supernova ejecta heated by the reverse shock.

  16. Review of speckle observations of Supernova 1987A

    International Nuclear Information System (INIS)

    Meikle, W.P.S.

    1988-01-01

    SN 1987A is sufficiently close to allow a unique examination of the morphology of a supernova, using speckle interferometry. Several groups [Center for Astrophysics (CfA); Imperial College (IC); Mount Stromlo and Siding Spring Observatories/Anglo-Australian Observatory (M/A)] have reported optical speckle observations. At Hα, both CfA and M/A have determined the angular extent of the emission, and reasonable agreement is obtained. The speckle-derived values are consistent with those obtained from line profiles. IC has also succeeded in resolving the supernova at Hα. At wavelengths other than Hα, at early epochs, angular diameters obtained by CfA are larger than those derived from photometric and spectroscopic measurements, possibly due to scattering effects. At later epochs, the diameters exhibit little variation between the wavelengths examined. CfA reports significant asymmetry in the late epoch data. Several attempts have been made to re-observe (at optical wavelengths) the companion object, but none have succeeded. The nature of this phenomenon is still controversial, but the evidence indicates that the companion was real, with emission from dust apparently being the least problematic explanation. Support for this may lie in IR speckle observations (Haute Provence/Lyon) which, on about day 115, indicated the presence of one or more resolved components at an angular displacement comparable to that of the optical companion. 39 refs., 1 fig., 1 tab

  17. Annual report 1986-1987

    International Nuclear Information System (INIS)

    1988-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) is a statutory body constituted by the ANSTO Act, 1987. The Act, which came into force on Monday, 27 April 1987, established ANSTO as the successor organisation to the Australian Atomic Energy Commission (AAEC) originally established under the Atomic Energy Act, 1953. The AAEC was abolished under the provisions of the Atomic Energy Amendment Act, 1987. This report covers the operations of the two statutory bodies for the financial year ended 30 June 1987

  18. STRESS a SN survey at ESO

    Science.gov (United States)

    Botticella, M. T.

    We performed the Southern inTermediate Redshift ESO Supernova Search (STRESS), a survey specifically designed to measure the rate of both SNe Ia and CC SNe, in order to obtain a direct comparison of the high redshift and local rates and to investigate the dependence of the rates on specific galaxy properties, most notably their colour. We found that the type Ia SN rate, at mean redshift z = 0.3, is 0.22+0.10+0.16-0.08-0.14 h270 SNu, while the CC SN rate, at z = 0.21, is 0.82+0.31+0.300.24-0.26 h270 SNu. The quoted errors are the statistical and systematic uncertainties. With respect to the local value, the CC SN rate at z = 0.2 is higher by a factor of ˜ 2, whereas the type Ia SN rate remains almost constant. We also measured the SN rates in the red and blue galaxies and found that the SN Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe. Finally we exploited the link between SFH and SN rates to predict the evolutionary behaviour of the SN rates and compare it with the path indicated by observations.

  19. SN 1987A and companion

    International Nuclear Information System (INIS)

    Papaliolios, C.; Karovska, M.; Nisenson, P.; Standley, C.

    1988-01-01

    To determine the position of the supernova relative to the Sanduleak star the authors have recorded data with a 400 nm filter which would reduce the large magnitude difference between the supernova and Sanduleak - 69 degrees 202. In the search for light echoes they have recorded supernova data again in our usual mode of operation except for the addition of neutral density filters that were needed to make the count rates manageable. They have used several different 10 nm wide spectral filters (in H alpha and in the continuum around it) to look at the supernova and at a few nearby stars which serve as unresolved references. They discuss their findings in this paper

  20. The Origin and Evolution of the Infrared Light Curve of SN2010jl

    Science.gov (United States)

    Dwek, Eli; Sarangi, Arkaprabha; Arendt, Richard; Fox, Ori; Kallman, Timothy; Kazanas, Demosthenes

    2018-01-01

    SN2010jl is a luminous core-collapse supernova (CCSN) of Type IIn that is surrounded by a dense circumstellar medium (CSM). The supernova (SN) luminosity vastly exceeds the available power from radiactive elements in the ejecta, and is powered by the interaction of the SN shock wave with the ambient medium. Upper limits on the UV and near-IR (NIR) emission from pre-explosion images of the region suggest that any progenitor star was hidden by pre-existing CSM dust. After day ~80, the SN spectrum shows the development of an IR excess above the extrapolated UVO emission arising from the shocked CSM. This IR component is attributed to thermal emission from dust.After day ~300, the light curve exhibits a rise in the NIR luminosity, concurrent with a steep decline at UVO wavelengths. Ruling out any possible contribution of SN-condensed dust to the IR light curve, we show that the early IR emission arises from the pre-existing CSM dust that survived the flash of radiation from the shock breakout. The late IR emission arises from newly-formed CSM dust that condensed in the cooling dust-free postshock gas of the advancing SN shock wave. Our analysis presents the first detailed modeling of dust formation in a cooling postshock environment, and provides important insights into the interaction of the SN shock wave with the CSM.

  1. Flux pinning characteristics of Sn-doped YBCO film by the MOD process

    International Nuclear Information System (INIS)

    Choi, S.M.; Shin, G.M.; Yoo, S.I.

    2013-01-01

    Highlights: ► The pinning effects of undoped and Sn-doped YBCO films by MOD were characterized. ► Sn-containing nanoparticles were trapped in Sn-doped YBCO films by MOD. ► Sn-containing nanoparticles were identified as the YBa 2 SnO 5.5 (YBSO) phase by TEM. ► The YBSO nanoparticles are responsible for improved flux pinning effect. ► We report the orientation relationship between YBSO nanoparticles and YBCO matrix. -- Abstract: Compared with the undoped YBa 2 Cu 3 O 7−δ (YBCO) film, 10 mol% Sn-doped YBCO film exhibited significantly enhanced critical current densities (J c ) in magnetic fields up to 5 T at 65 and 77 K for H//c, indicating that the Sn-doped YBCO film possesses more effective flux pinning centers. Both samples were grown on the SrTiO 3 (STO) (1 0 0) single crystal substrates by the metal-organic deposition (MOD) process. Larger J c (77 K, 1 T) values of Sn-doped YBCO film are observed over a wide field-orientation angle (θ) except the field-orientations close to the ab-plane of YBCO (85° c values for 85° 2 SnO 5.5 (YBSO) phase by STEM (scanning transmission electron microscopy)-EDS (energy dispersive X-ray spectroscopy) analysis. Further analyses by HR-TEM (high resolution-transmission electron microscopy) revealed that YBSO nanoparticles completely surrounded by the YBCO matrix had random orientation with YBCO while those located at the interface of YBCO/STO substrate had epitaxial relationship with YBCO

  2. Graphene/Fe2O3/SnO2 ternary nanocomposites as a high-performance anode for lithium ion batteries.

    Science.gov (United States)

    Xia, Guofeng; Li, Ning; Li, Deyu; Liu, Ruiqing; Wang, Chen; Li, Qing; Lü, Xujie; Spendelow, Jacob S; Zhang, Junliang; Wu, Gang

    2013-09-11

    We report an rGO/Fe2O3/SnO2 ternary nanocomposite synthesized via homogeneous precipitation of Fe2O3 nanoparticles onto graphene oxide (GO) followed by reduction of GO with SnCl2. The reduction mechanism of GO with SnCl2 and the effects of reduction temperature and time were examined. Accompanying the reduction of GO, particles of SnO2 were deposited on the GO surface. In the graphene nanocomposite, Fe2O3 nanoparticles with a size of ∼20 nm were uniformly dispersed surrounded by SnO2 nanoparticles, as demonstrated by transmission electron microscopy analysis. Due to the different lithium insertion/extraction potentials, the major role of SnO2 nanoparticles is to prevent aggregation of Fe2O3 during the cycling. Graphene can serve as a matrix for Li+ and electron transport and is capable of relieving the stress that would otherwise accumulate in the Fe2O3 nanoparticles during Li uptake/release. In turn, the dispersion of nanoparticles on graphene can mitigate the restacking of graphene sheets. As a result, the electrochemical performance of rGO/Fe2O3/SnO2 ternary nanocomposite as an anode in Li ion batteries is significantly improved, showing high initial discharge and charge capacities of 1179 and 746 mAhg(-1), respectively. Importantly, nearly 100% discharge-charge efficiency is maintained during the subsequent 100 cycles with a specific capacity above 700 mAhg(-1).

  3. A facile inexpensive route for SnS thin film solar cells with SnS{sub 2} buffer

    Energy Technology Data Exchange (ETDEWEB)

    Gedi, Sreedevi [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Minna Reddy, Vasudeva Reddy, E-mail: drmvasudr9@gmail.com [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Pejjai, Babu [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Jeon, Chan-Wook [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Park, Chinho, E-mail: chpark@ynu.ac.kr [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Ramakrishna Reddy, K.T., E-mail: ktrkreddy@gmail.com [Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India)

    2016-05-30

    Graphical abstract: PYS spectra of SnS/SnS{sub 2} interface and the related band diagram. - Highlights: • A low cost SnS solar cell is developed using chemical bath deposition. • We found E{sub I} & χ of SnS (5.3 eV & 4.0 eV) and SnS{sub 2} (6.9 eV & 4.1 eV) films from PYS. • Band offsets of 0.1 eV (E{sub c}) and 1.6 eV (E{sub v}) are estimated for SnS/SnS{sub 2} junction. • SnS based solar cell showed a conversion efficiency of 0.51%. - Abstract: Environment-friendly SnS based thin film solar cells with SnS{sub 2} as buffer layer were successfully fabricated from a facile inexpensive route, chemical bath deposition (CBD). Layer studies revealed that as-grown SnS and SnS{sub 2} films were polycrystalline; (1 1 1)/(0 0 1) peaks as the preferred orientation; 1.3 eV/2.8 eV as optical band gaps; and showed homogeneous microstructure with densely packed grains respectively. Ionization energy and electron affinity values were found by applying photoemission yield spectroscopy (PYS) to the CBD deposited SnS and SnS{sub 2} films for the first time. These values obtained as 5.3 eV and 4.0 eV for SnS films; 6.9 eV and 4.1 eV for SnS{sub 2} films. The band alignment of SnS/SnS{sub 2} junction showed TYPE-II heterostructure. The estimated conduction and valance band offsets were 0.1 eV and 1.6 eV respectively. The current density–voltage (J–V) measurements of the cell showed open circuit voltage (V{sub oc}) of 0.12 V, short circuit current density (J{sub sc}) of 10.87 mA cm{sup −2}, fill factor (FF) of 39% and conversion efficiency of 0.51%.

  4. The high-temperature modification of LuAgSn and high-pressure high-temperature experiments on DyAgSn, HoAgSn, and YbAgSn

    Energy Technology Data Exchange (ETDEWEB)

    Heying, B.; Rodewald, U.C.; Hermes, W.; Schappacher, F.M.; Riecken, J.F.; Poettgen, R. [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Heymann, G.; Huppertz, H. [Muenchen Univ. (Germany). Dept. fuer Chemie und Biochemie; Sebastian, C.P. [Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany)

    2008-02-15

    The high-temperature modification of LuAgSn was obtained by arc-melting an equiatomic mixture of the elements followed by quenching the melt on a water-cooled copper crucible. HT-LuAgSn crystallizes with the NdPtSb-type structure, space group P6{sub 3}mc: a = 463.5(1), c = 723.2(1) pm, wR2 = 0.0270, 151 F{sup 2}, and 11 variables. The silver and tin atoms build up two-dimensional, puckered [Ag{sub 3}Sn{sub 3}] networks (276 pm Ag-Sn) that are charge-balanced and separated by the lutetium atoms. The Ag-Sn distances between the [Ag{sub 3}Sn{sub 3}] layers of 294 pm are much longer. Single crystals of isotypic DyAgSn (a = 468.3(1), c = 734.4(1) pm, wR2 = 0.0343, 411 F{sup 2}, and 11 variables) and HoAgSn (a = 467.2(1), c = 731.7(2) pm, wR2 = 0.0318, 330 F{sup 2}, and 11 variables) were obtained from arc-melted samples. Under high-pressure (up to 12.2 GPa) and high-temperature (up to 1470 K) conditions, no transitions to a ZrNiAl-related phase have been observed for DyAgSn, HoAgSn, and YbAgSn. HT-TmAgSn shows Curie-Weiss paramagnetism with {mu}{sub eff} = 7.53(1) {mu}{sub B}/Tm atom and {theta}P = -15.0(5) K. No magnetic ordering was evident down to 3 K. HT-LuAgSn is a Pauli paramagnet. Room-temperature {sup 119}Sn Moessbauer spectra of HT-TmAgSn and HT-LuAgSn show singlet resonances with isomer shifts of 1.78(1) and 1.72(1) mm/s, respectively. (orig.)

  5. Texas A and M University, Nuclear Science Center: Twenty-fourth progress report, January 1, 1987-December 31, 1987

    International Nuclear Information System (INIS)

    Crawford, K.C.; Davis, J.W.; Krohn, J.L.; Meyer, C.M.; Petesch, J.E.; Stasny, G.S.

    1988-03-01

    Utilization of the reactor (NSCR Reactor) during 1987 increased slightly over that in 1986. The main activity is shifting from isotope tracer production to testing and exposure irradiations. Core VIII-A, operational since March 1986, was used throughout 1987

  6. Reference Data for the Density, Viscosity, and Surface Tension of Liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn Eutectic Alloys

    Science.gov (United States)

    Dobosz, Alexandra; Gancarz, Tomasz

    2018-03-01

    The data for the physicochemical properties viscosity, density, and surface tension obtained by different experimental techniques have been analyzed for liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn eutectic alloys. All experimental data sets have been categorized and described by the year of publication, the technique used to obtain the data, the purity of the samples and their compositions, the quoted uncertainty, the number of data in the data set, the form of data, and the temperature range. The proposed standard deviations of liquid eutectic Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn alloys are 0.8%, 0.1%, 0.5%, 0.2%, and 0.1% for the density, 8.7%, 4.1%, 3.6%, 5.1%, and 4.0% for viscosity, and 1.0%, 0.5%, 0.3%, N/A, and 0.4% for surface tension, respectively, at a confidence level of 95%.

  7. Non-accelerator particle physics: Progress report, February 1, 1987-January 31, 1988

    International Nuclear Information System (INIS)

    Steinberg, R.I.

    1988-01-01

    The goals of this research are the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We are currently engaged in construction of the MACRO detector, an Italian-American collaborative research instrument with a total particle acceptance of 12,000 m 2 sr, which will perform a sensitive search for magnetic monopoles using excitation-ionization methods. Other major objectives of the MACRO experiment are to search for astrophysical high energy neutrinos expected to be emitted by such objects as Vela X-1, LMC X-4 and SN-1987A and to search for low energy neutrino bursts from gravitational stellar collapse. The past year has seen major progress in our program of liquid scintillator development. We now have an advanced scintillator formulation whose figure-of-merit for use in long counters (such as the MACRO counters) is double that of the previous best scintillator. The new formulation promises to enhance substantially the physics potential of the MACRO detector. Dr. Charles Lane (Ph.D. 1987, Caltech)l has now joined our group, resulting in significant expansion of our responsibilities on the MACRO experiment. We are now leaders of the American effort to develop the off-line data analysis for MACRO

  8. Licensee contractor and vendor inspection status report: Quarterly report, October 1987-December 1987

    International Nuclear Information System (INIS)

    1988-02-01

    This periodical covers the results of inspections performed by the NRC's Vendor Inspection Branch that have been distributed to the inspected organizations during the period from October 1987 thru December 1987. Also, included in this issue are the results of certain inspections performed prior to October 1987 that were not included in previous issues of NUREG-0040

  9. Licensee contractor and vendor inspection status report: Quarterly report, July 1987-September 1987

    International Nuclear Information System (INIS)

    1987-10-01

    This periodical covers the results of inspections performed by the NRC's Vendor Inspection Branch that have been distributed to the inspected organizations during the period from July 1987 through September 1987. Also included in this issue are the results of certain inspections performed prior to July 1987 that were not included in previous issues of NUREG-0040

  10. HPLC method for determination of SN-38 content and SN-38 entrapment efficiency in a novel liposome-based formulation, LE-SN38.

    Science.gov (United States)

    Xuan, Tong; Zhang, J Allen; Ahmad, Imran

    2006-05-03

    A simple HPLC method was developed for quantification of SN-38, 7-ethyl-10-hydroxycamptothecin, in a novel liposome-based formulation (LE-SN38). The chromatographic separation was achieved on an Agilent Zorbax SB-C18 (4.6 mmx250 mm, 5 microm) analytical column using a mobile phase consisting of a mixture of NaH2PO4 (pH 3.1, 25 mM) and acetonitrile (50:50, v/v). SN-38 was detected at UV wavelength of 265 nm and quantitatively determined using an external calibration method. The limit of detection (LOD) and limit of quantitation (LOQ) were found to be 0.05 and 0.25 microg/mL, respectively. The individual spike recovery of SN-38 ranged from 100 to 101%. The percent of relative standard deviation (%R.S.D.) of intra-day and inter-day analyses were less than 1.6%. The method validation results confirmed that the method is specific, linear, accurate, precise, robust and sensitive for its intended use. The current method was successfully applied to the determination of SN-38 content and drug entrapment efficiency in liposome-based formulation, LE-SN38 during early stage formulation development.

  11. Pseudomorphic GeSiSn, SiSn and Ge layers in strained heterostructures

    Science.gov (United States)

    Timofeev, V. A.; Nikiforov, A. I.; Tuktamyshev, A. R.; Mashanov, V. I.; Loshkarev, I. D.; Bloshkin, A. A.; Gutakovskii, A. K.

    2018-04-01

    The GeSiSn, SiSn layer growth mechanisms on Si(100) were investigated and the kinetic diagrams of the morphological GeSiSn, SiSn film states in the temperature range of 150 °C-450 °C at the tin content from 0% to 35% were built. The phase diagram of the superstructural change on the surface of Sn grown on Si(100) in the annealing temperature range of 0 °C-850 °C was established. The specular beam oscillations were first obtained during the SiSn film growth from 150 °C to 300 °C at the Sn content up to 35%. The transmission electron microscopy and x-ray diffractometry data confirm the crystal perfection and the pseudomorphic GeSiSn, SiSn film state, and also the presence of smooth heterointerfaces between GeSiSn or SiSn and Si. The photoluminescence for the multilayer periodic GeSiSn/Si structures in the range of 0.6-0.8 eV was detected. The blue shift with the excitation power increase is observed suggesting the presence of a type II heterostructure. The creation of tensile strained Ge films, which are pseudomorphic to the underlying GeSn layer, is confirmed by the results of the formation and analysis of the reciprocal space map in the x-ray diffractometry. The tensile strain in the Ge films reached the value in the range of 0.86%-1.5%. The GeSn buffer layer growth in the Sn content range from 8% to 12% was studied. The band structure of heterosystems based on pseudomorphic GeSiSn, SiSn and Ge layers was calculated and the valence and conduction band subband position dependences on the Sn content were built. Based on the calculation, the Sn content range in the GeSiSn, SiSn, and GeSn layers, which corresponds to the direct bandgap GeSiSn, SiSn, and Ge material, was obtained.

  12. ROSAT and ASCA Observations of NGC 1313 and SN1978k

    Science.gov (United States)

    Petre, R.; Okada, K.; Mihara, T.; Makishima, K.; Schlegel, E.; Colbert, E.

    1994-05-01

    NGC 1313 is a nearby (d = 4.5 Mpc) spiral galaxy, whose X-ray emission is dominated by three point sources with log (Lx) > 39. One of these sources is near, but not at, the optical nucleus; a second is 8 kpc distant from the nucleus, in an outer region of the galaxy; and the third is SN1978k, the first supernova identified as such on the basis of its X-ray emission. NGC 1313 has been the subject of a series of X-ray observations, including two using the ROSAT PSPC (April-May, 1991, and November, 1993) and ASCA during PV phase (July, 1993). We discuss the results of a combined analysis of these observations, which suggest that the luminosity and spectrum of SN1978k has not varied since its discovery, and reveal the presence of a number of additional sources of X-rays, including diffuse emission from the ISM surrounding the nucleus. Possible interpretations of the emission from SN1978k and the other two luminous sources are presented.

  13. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  14. States in 118Sn from 117Sn(d,p) 118Sn at 12 MeV

    International Nuclear Information System (INIS)

    Frota-Pessoa, E.

    1983-01-01

    118 Sn energy levels up to = 5.2 MeV excitation energy are studied in the reaction 117 Sn (d,p) 118 Sn. Deuterons had a bombarding energy of 12 MeV. The protons were analized by a magnetic spectrograph. The detector was nuclear emulsion and the resolution in energy about 10 KeV. The distorted-wave analysis was used to determine l values and spectroscopic strengths. Centers of gravity and the sums of reduced spectroscopic factors are presented for the levels when it was possible to determine the S' value. 66 levels of excitation energy were found which did not appear in previous 117 Sn (d,p) reactions. 40 levels were not found previously in any reaction giving 118 Sn. The results are compared with the known ones. (Author) [pt

  15. Solid Liquid Interdiffusion Bonding of (Pb, Sn)Te Thermoelectric Modules with Cu Electrodes Using a Thin-Film Sn Interlayer

    Science.gov (United States)

    Chuang, T. H.; Lin, H. J.; Chuang, C. H.; Yeh, W. T.; Hwang, J. D.; Chu, H. S.

    2014-12-01

    A (Pb, Sn)Te thermoelectric element plated with a Ni barrier layer and a Ag reaction layer has been joined with a Cu electrode coated with Ag and Sn thin films using a solid-liquid interdiffusion bonding method. This method allows the interfacial reaction between Ag and Sn such that Ag3Sn intermetallic compounds form at low temperature and are stable at high temperature. In this study, the bonding strength was about 6.6 MPa, and the specimens fractured along the interface between the (Pb, Sn)Te thermoelectric element and the Ni barrier layer. Pre-electroplating a film of Sn with a thickness of about 1 μm on the thermoelectric element and pre-heating at 250°C for 3 min ensures the adhesion between the thermoelectric material and the Ni barrier layer. The bonding strength is thus increased to a maximal value of 12.2 MPa, and most of the fractures occur inside the thermoelectric material. During the bonding process, not only the Ag3Sn intermetallics but also Cu6Sn5 forms at the Ag3Sn/Cu interface, which transforms into Cu3Sn with increases in the bonding temperature or bonding time.

  16. Rod-like hierarchical Sn/SnOx@C nanostructures with enhanced lithium storage properties

    Science.gov (United States)

    Yang, Juan; Chen, Sanmei; Tang, Jingjing; Tian, Hangyu; Bai, Tao; Zhou, Xiangyang

    2018-03-01

    Rod-like hierarchical Sn/SnOx@C nanostructures have been designed and synthesized via calcining resorcinol-formaldehyde (RF) resin coated Sn-based metal-organic frameworks. The rod-like hierarchical Sn/SnOx@C nanostructures are made of a great number of carbon-wrapped primary Sn/SnOx nanospheres of 100-200 nm in diameter. The as-prepared hierarchical Sn/SnOx@C nanocomposite manifests a high initial reversible capacity of 1177 mAh g-1 and remains 1001 mAh g-1 after 240 cycles at a current density of 200 mA g-1. It delivers outstanding high-rate performance with a reversible capacity of 823 mAh g-1 even at a high current density of 1000 mA g-1. The enhanced electrochemical performances of the Sn/SnOx@C electrode are mainly attributed to the synergistic effect of the unique hierarchical micro/nanostructures and the protective carbon layer.

  17. Analyses of the Sn IX-Sn XII spectra in the EUV region

    International Nuclear Information System (INIS)

    Churilov, S S; Ryabtsev, A N

    2006-01-01

    The Sn IX-Sn XII spectra excited in a vacuum spark have been analysed in the 130-160 A wavelength region. The analysis was based on the energy parameter extrapolation in the isonuclear Sn VI-VIII and Sn XIII-XIV sequence. 266 spectral lines belonging to the 4d m -(4d m-1 4f+4p 5 4d m+1 ) (m=6-3) transition arrays were classified in the Sn IX-Sn XII spectra for the first time. All 18 level energies of the 4d 3 configuration and 39 level energies of the strongly interacting 4d 2 4f and 4p 5 4d 4 configurations were established in the Sn XII spectrum. The energy differences between the majority of the 4d m levels and about 40 levels of the 4d m-1 4f+4p 5 4d m+1 configurations were determined in each of the Sn IX, Sn X and Sn XI spectra (m=6-4). As a result, all intense lines were classified in the 130-140 A region relevant to the extreme ultraviolet (EUV) lithography. It was shown that the most of the intense lines in the 2% bandwidth at 135 A belong to the transitions in the Sn XI-Sn XIII spectra

  18. Oxidation of Pb-Sn and Pb-Sn-In alloys

    International Nuclear Information System (INIS)

    Sluzewski, D.A.; Chang, Y.A.; Marcotte, V.C.

    1990-01-01

    Air oxidized Pb-Sn and Pb-Sn-In single phase alloys have been studied with scanning Auger microscopy. Line scans across grain boundaries combined with argon ion sputter etching revealed grain boundary oxidation. In the Pb-Sn samples, tin is preferentially oxidized with the grain boundary regions having a much higher percentage of tin oxide than the bulk surface oxide. In the Pb-Sn-In alloys, both tin and indium are preferentially oxidized with the grain boundary regions being enriched with tin and indium oxides

  19. Development of a 117mSn preparation method

    International Nuclear Information System (INIS)

    Moraes, Vanessa; Osso Junior, Joao Alberto

    2000-01-01

    117m Sn is a radioisotope with suitable characteristics to be used in nuclear medicine as radiotherapy, when labeled with DTPA. The aim of this work is the preparation of 117m Sn from irradiation of the natural tin with proton beam at the cyclotron CV-28 of IPEN-CNEN/SP via the nuclear reaction nat Sn (p, xn) 117 Sb to 117m Sn. Due to the formation of the Sb precursor it is necessary to perform a chemical separation for Sb-Sn. The separation method used was the ion exchange, due to its utilization facilities for radioactive material. Chemical, radiochemical and radionuclidic methods were also developed for the quality control of the final product, the 117m Sn. (author)

  20. Effects of interlayer Sn-Sn lone pair interaction on the band gap of bulk and nanosheet SnO

    Science.gov (United States)

    Umezawa, Naoto; Zhou, Wei

    2015-03-01

    Effects of interlayer lone-pair interactions on the electronic structure of SnO are firstly explored by the density-functional theory. Our comprehensive study reveals that the band gap of SnO opens as increase in the interlayer Sn-Sn distance. The effect is rationalized by the character of band edges which consists of bonding and anti-bonding states from interlayer lone pair interactions. The band edges for several nanosheets and strained double-layer SnO are estimated. We conclude that the double-layer SnO is a promising material for visible-light driven photocatalyst for hydrogen evolution. This work is supported by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) program.

  1. α-Eleostearic acid-containing triglycerides for a continuous assay to determine lipase sn-1 and sn-3 regio-preference.

    Science.gov (United States)

    El Alaoui, Meddy; Soulère, Laurent; Noiriel, Alexandre; Queneau, Yves; Abousalham, Abdelkarim

    2017-08-01

    Lipases are essentially described as sn-1 and sn-3 regio-selective. Actually few methods are available to measure this lipase regio-selectivity, moreover they require chiral chromatography analysis or specific derivations which are discontinuous and time consuming. In this study we describe a new, convenient, sensitive and continuous spectrophotometric method to screen lipases regio-selectivity using synthetic triglycerides (TG) containing α-eleostearic acid (9Z, 11E, 13E-octadecatrienoic acid) either at the sn-1 position [1-α-eleostearoyl-2,3-octadecyl-sn-glycerol (sn-EOO)] or at the sn-3 position [1,2-octadecyl-3-α-eleostearoyl-sn-glycerol (sn-OOE)] and coated onto the wells of microtiter plates. A non-hydrolysable ether bond, with a non UV-absorbing alkyl chain, was introduced at the other sn positions to prevent acyl chain migration during TG synthesis or lipolysis. The synthesis of TG containing α-eleostearic acid was performed from S-glycidol in six steps to obtain sn-EOO and in five steps to sn-OOE. The α-eleostearic acid conjugated triene constitutes an intrinsic chromophore and, consequently, confers the strong UV absorption properties of this free fatty acid as well as of the TG harboring it. The lipase activity on coated sn-EOO or sn-OOE was measured by the increase in the absorbance at 272nm due to the transition of α-eleostearic acid from the adsorbed to the soluble state. Human and porcine pancreatic lipases, guinea pig pancreatic lipase related protein 2, Thermomyces lanuginosus lipase, Candida antarctica lipase A and Candida antarctica lipase B were all used to validate the assay. This continuous high-throughput screening method could determine directly without any processes after lipolysis the regio-selectivity of various lipases. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Magnetic behaviour of cerium in Ce2 Sn5 and Ce3 Sn7, surstructures of Ce Sn3

    International Nuclear Information System (INIS)

    Stunault, A.

    1988-07-01

    The compound studied, Ce 2 Sn 5 and Ce 3 Sn 7 are both orthorhombic, surstructure of cubic Ce Sn 3 . Magnetic susceptibility measurements show in both compounds an antiferromagnetic order at low temperature and magnetization shows a high anisotropy. Magnetization densities are determined by polarized neutron diffraction. The cerium site which has two Ce atoms as nearest neighbourgs carries all the magnetism in both structures. For Ce 2 Sn 5 moments are directed as the high magnetization axis and structure is modulated. Ce 3 Sn 7 presents a simple antiferromagnetic order but moment are directed as low magnetization axis. Various transitions towards a ferromagnetic order are presented. Results are interpreted by measuring the difference between energy levels of crystalline field. A model of crystalline field and isotrope exchange agrees well with Ce 3 Sn 7 , but for Ce 2 Sn 7 it is necessary to reduce the magnetic moment which is typical of the Kondo effect [fr

  3. Isomer shifts and chemical bonding in crystalline Sn(II) and Sn(IV) compounds

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1991-01-01

    First-principles self-consistent Local Density calculations of the electronic structure of clusters representing Sn(II) (SnO, SnF 2 , SnS, SnSe) and Sn(IV) (SnO 2 , SnF 4 ) crystalline compounds were performed. Values of the electron density at the Sn nucleus were obtained and related to measured values of the Moessbauer Isomer Shifts reported in the literature. The nuclear parameter of 119 Sn derived was ΔR/R=(1.58±0.14)x10 -4 . The chemical bonding in the solids was analysed and related to the electron densities obtained. (author)

  4. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure.

    Science.gov (United States)

    Paek, Seung-Min; Yoo, EunJoo; Honma, Itaru

    2009-01-01

    To fabricate nanoporous electrode materials with delaminated structure, the graphene nanosheets (GNS) in the ethylene glycol solution were reassembled in the presence of rutile SnO(2) nanoparticles. According to the TEM analysis, the graphene nanosheets are homogeneously distributed between the loosely packed SnO(2) nanoparticles in such a way that the nanoporous structure with a large amount of void spaces could be prepared. The obtained SnO(2)/GNS exhibits a reversible capacity of 810 mAh/g; furthermore, its cycling performance is drastically enhanced in comparison with that of the bare SnO(2) nanoparticle. After 30 cycles, the charge capacity of SnO(2)/GNS still remained 570 mAh/g, that is, about 70% retention of the reversible capacity, while the specific capacity of the bare SnO(2) nanoparticle on the first charge was 550 mAh/g, dropping rapidly to 60 mAh/g only after 15 cycles. The dimensional confinement of tin oxide nanoparticles by the surrounding GNS limits the volume expansion upon lithium insertion, and the developed pores between SnO(2) and GNS could be used as buffered spaces during charge/discharge, resulting in the superior cyclic performances.

  5. A highly stable (SnOx-Sn)@few layered graphene composite anode of sodium-ion batteries synthesized by oxygen plasma assisted milling

    Science.gov (United States)

    Cheng, Deliang; Liu, Jiangwen; Li, Xiang; Hu, Renzong; Zeng, Meiqing; Yang, Lichun; Zhu, Min

    2017-05-01

    The (SnOx-Sn)@few layered graphene ((SnOx-Sn)@FLG) composite has been synthesized by oxygen plasma-assisted milling. Owing to the synergistic effect of rapid plasma heating and ball mill grinding, SnOx (1 ≤ x ≤ 2) nanoparticles generated from the reaction of Sn with oxygen are tightly wrapped by FLG nanosheets which are simultaneously exfoliated from expanded graphite, forming secondary micro granules. Inside the granules, the small size of the SnOx nanoparticles enables the fast kinetics for Na+ transfer. The in-situ formed FLG and residual Sn nanoparticles improve the electrical conductivity of the composite, meanwhile alleviate the aggregation of SnOx nanoparticles and relieve the volume change during the cycling, which is beneficial for the cyclic stability for the Na+ storage. As an anode material for sodium-ion batteries, the (SnOx-Sn)@FLG composite exhibits a high reversible capacity of 448 mAh g-1 at a current density of 100 mA g-1 in the first cycle, with 82.6% capacity retention after 250 cycles. Even when the current density increases to 1000 mA g-1, this composite retains 316.5 mAh g-1 after 250 cycles. With superior Na+ storage stability, the (SnOx-Sn)@FLG composite can be a promising anode material for high performance sodium-ion batteries.

  6. Thickness-dependent surface plasmon resonance of ITO nanoparticles for ITO/In-Sn bilayer structure.

    Science.gov (United States)

    Wei, Wenzuo; Hong, Ruijin; Jing, Ming; Shao, Wen; Tao, Chunxian; Zhang, Dawei

    2018-01-05

    Tuning the localized surface plasmon resonance (LSPR) in doped semiconductor nanoparticles (NPs), which represents an important characteristic in LSPR sensor applications, still remains a challenge. Here, indium tin oxide/indium tin alloy (ITO/In-Sn) bilayer films were deposited by electron beam evaporation and the properties, such as the LSPR and surface morphology, were investigated by UV-VIS-NIR double beam spectrophotometer and atomic force microscopy (AFM), respectively. By simply engineering the thickness of ITO/In-Sn NPs without any microstructure fabrications, the LSPR wavelength of ITO NPs can be tuned by a large amount from 858 to 1758 nm. AFM images show that the strong LSPR of ITO NPs is closely related to the enhanced coupling between ITO and In-Sn NPs. Blue shifts of ITO LSPR from 1256 to 1104 nm are also observed in the as-annealed samples due to the higher free carrier concentration. Meanwhile, we also demonstrated that the ITO LSPR in ITO/In-Sn NPs structures has good sensitivity to the surrounding media and stability after 30 d exposure in air, enabling its application prospects in many biosensing devices.

  7. 70 °C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K., E-mail: toko@bk.tsukuba.ac.jp; Oya, N.; Suemasu, T. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Saitoh, N.; Yoshizawa, N. [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2015-02-23

    Polycrystalline GeSn thin films are fabricated on insulating substrates at low temperatures by using Sn-induced crystallization of amorphous Ge (a-Ge). The Sn layer stacked on the a-Ge layer (100-nm thickness each) had two roles: lowering the crystallization temperature of a-Ge and composing GeSn. Slow annealing at an extremely low temperature of 70 °C allowed for a large-grained (350 nm) GeSn layer with a lattice constant of 0.590 nm, corresponding to a Sn composition exceeding 25%. The present investigation paves the way for advanced electronic optical devices integrated on a flexible plastic substrate as well as on a Si platform.

  8. On the interpretation of rare events recorded by Kamiokande 2. and IMB detectors in association with occurrence of supernova 1987 A

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.

    1989-01-01

    A statistical analysis of angular distribution of neutrino events observed in Kamiokande 2. and IMB detectors from supernova SN 1987 A is carried out. The Neyman-Pearson test is applied to each of the events in testing the hypothesis ν-bar e p→e + n against the alternative one νe→νe. The confidence level of the hypothesis that the recorded events all represent ν-bar e p→e + n inelastic scatterings against possible alternatives is found with the use of the Kolmogorov and Mises tests to be 2% and 0.9%, respectively. The number of νe→νe events is estimated to be from 3 to 11 with probability ≥0.9. The current supernova models fail to give a satisfactory account of the angular distribution data

  9. Performance of Nb3Sn multifilamentary superconductors in solenoidal magnets

    International Nuclear Information System (INIS)

    Sampson, W.B.; Suenaga, M.; Robins, K.E.

    High current Nb 3 Sn multifilamentary conductors have been formed by heat treating cables braided from three types of composite wire. In the simplest configuration, these wires contain niobium filaments in a pure copper matrix. After braiding the conductor is coated with a layer of tin which diffuses through the copper during heat treatment to form Nb 3 S n filaments. The second configuration is made from wires containing niobium filaments in a copper-tin alloy and requires only heat treatment to form the Nb 3 Sn filaments. The third type of braid has wires which consist of groups of niobium filaments in the bronze matrix which are in turn in a copper matrix. Tantalum barriers surround each group of filaments to prevent the tin from contaminating the pure copper matrix. The cables have been wound into solenoids after heat treatment and the effect of mechanical handling was studied by monitoring the resistive voltage distribution in the coils. (U.S.)

  10. Density-functional study on the robust ferromagnetism in rare-earth element Yb-doped SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai-Cheng, E-mail: kczhang@yeah.net [College of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Li, Yong-Feng [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal ResourcesInner Mongolia University of Science and Technology, Baotou 014010 (China); School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Liu, Yong [State Key Laboratory of Metastable Materials Science and Technology and College of Science, Yanshan University, Qinhuangdao, Hebei 066004 (China); Chi, Feng [College of Engineering, Bohai University, Jinzhou 121013 (China)

    2014-06-01

    So far, little has been known about the ferromagnetism induced by p–f hybridization. We investigate the magnetic properties of Yb-doped SnO{sub 2} by first-principles calculations. We find that the doped system favors the ferromagnetic state and a room-temperature ferromagnetism can be expected in it. The origin of ferromagnetism can be attributed to the p–f hybridization between Yb impurity and its surrounding oxygen atoms. The formation energy of defect complex is calculated and the magnetic mediation of intrinsic vacancies is studied. Our results reveal that the formation energy of the defect complex with Sn vacancy is about 7.3 eV lower in energy than that with oxygen vacancy. This means Sn vacancy is much easier to form than oxygen vacancy in the presence of Yb substitution. The ferromagnetism of the doped system is greatly enhanced in the presence of Sn vacancies. - Highlights: • Room-temperature ferromagnetism can be expected in Yb-doped SnO{sub 2}. • The origin of ferromagnetism can be attributed to the p–f hybridization between Yb and O atoms. • Oxygen vacancies are much hard to form and contribute little to the ferromagnetism. • Sn vacancies are easy to form under oxygen-rich condition and stabilize the ferromagnetism effectively.

  11. Ethanol electrooxidation on Pt-Sn and Pt-Sn-W bulk alloys

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, D.M. dos; Hahn, F.; Leger, J.M.; Kokoh, K.B. [Universite de Poitiers, Poitiers Cedex (France). Centre National de la Recherche Scientifique (CNRS). Equipe Electrocatalyse; Tremiliosi-Filho, G. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Quimica

    2008-07-01

    Ethanol oxidation has been studied on Pt-Sn and Pt-Sn-W electrodes prepared in an arc-melting furnace. Different electrochemical techniques like cyclic voltammetry and chronoamperometry were used to evaluate the catalytic activity of these materials. The electro-oxidation process was also investigated by in situ infrared reflectance spectroscopy in order to determine adsorbed intermediates and reaction products. Experimental results indicated that Pt-Sn and Pt-Sn-W alloys are able to oxidize ethanol mainly to acetaldehyde and acetic acid. Adsorbed CO was also detected, demonstrating the viability of splitting the C-C bond in the ethanol molecule during the oxidation process. The adsorbed CO was further oxidized to CO{sub 2}.This reaction product was clearly detected by SNIFTIRS. Pt-Sn-W catalyst showed a better electrochemical performance than Pt-Sn that, in it turn, is better than Pt-alone. (author)

  12. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo; Anjum, Dalaver H.; Wang, Qingxiao; Abou-Hamad, Edy; Emsley, Lyndon; Dong, Hailin; Laveille, Paco; Li, Lidong; Samal, Akshaya Kumar; Basset, Jean-Marie

    2014-01-01

    Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as

  13. Fabrication of textured SnO2 transparent conductive films using self-assembled Sn nanospheres

    Science.gov (United States)

    Fukumoto, Michitaka; Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya

    2018-06-01

    We present a novel method to fabricate textured surfaces on transparent conductive SnO2 films by processing substrates through a bottom-up technique with potential for industrially scalable production. The substrate processing consists of three steps: deposition of precursor Sn films on glass substrates, formation of a self-assembled Sn nanosphere layer with reductive annealing, and conversion of Sn to SnO2 by oxidative annealing. Ta-doped SnO2 films conformally deposited on the self-assembled nanospherical SnO2 templates exhibited attractive optical and electrical properties, namely, enhanced haze values and low sheet resistances, for applications as transparent electrodes in photovoltaics.

  14. Phase diagram of SnTe-CdSe cross-section of SnTe+CdSe reversible SnSe+CdTe ternary reciprocal system

    International Nuclear Information System (INIS)

    Dubrovin, I.V.; Budennaya, L.D.; Mizetskaya, I.B.; Sharkina, Eh.V.

    1986-01-01

    Phase equilibrium diagram of SnTe-CdSe cross-section of Sn, Cd long Te, Se ternary reciprocal system is investigated using the methods of differential thermal, X-ray phase, and microstructural analyses. Maximum length of solid solutions on the base of SnTe corresponds to approximately 14 mol.% at 1050 K and approximately 3 mol.% of CdSe at 670 K. Region of solid solutions on the base of CdSe corresponds to less than 1 mol.% of SnTe at room temperature. SnTe-CdSe cross-section is not a quasibinar one. Equilibrium is shifted to the left in the SnTe+CdSe reversible SnSe+CdTe reciprocal system

  15. SN 2008D: A WOLF-RAYET EXPLOSION THROUGH A THICK WIND

    International Nuclear Information System (INIS)

    Svirski, Gilad; Nakar, Ehud

    2014-01-01

    Supernova (SN) 2008D/XRT 080109 is considered to be the only direct detection of a shock breakout from a regular SN to date. While a breakout interpretation was favored by several papers, inconsistencies remain between the observations and current SN shock breakout theory. Most notably, the duration of the luminous X-ray pulse is considerably longer than expected for a spherical breakout through the surface of a type Ibc SN progenitor, and the X-ray radiation features, mainly its flat spectrum and its luminosity evolution, are enigmatic. We apply a recently developed theoretical model for the observed radiation from a Wolf-Rayet SN exploding through a thick wind and show that it naturally explains all of the observed features of SN 2008D X-ray emission, including the energetics, the spectrum, and the detailed luminosity evolution. We find that the inferred progenitor and SN parameters are typical for an exploding Wolf-Rayet. A comparison of the wind density found at the breakout radius and the density at much larger radii, as inferred by late radio observations, suggests an enhanced mass-loss rate taking effect about 10 days prior to the SN explosion. This finding joins accumulating evidence for a possible late phase in the stellar evolution of massive stars, involving vigorous mass loss a short time before the SN explosion

  16. SN 2008D: A WOLF-RAYET EXPLOSION THROUGH A THICK WIND

    Energy Technology Data Exchange (ETDEWEB)

    Svirski, Gilad; Nakar, Ehud [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-06-10

    Supernova (SN) 2008D/XRT 080109 is considered to be the only direct detection of a shock breakout from a regular SN to date. While a breakout interpretation was favored by several papers, inconsistencies remain between the observations and current SN shock breakout theory. Most notably, the duration of the luminous X-ray pulse is considerably longer than expected for a spherical breakout through the surface of a type Ibc SN progenitor, and the X-ray radiation features, mainly its flat spectrum and its luminosity evolution, are enigmatic. We apply a recently developed theoretical model for the observed radiation from a Wolf-Rayet SN exploding through a thick wind and show that it naturally explains all of the observed features of SN 2008D X-ray emission, including the energetics, the spectrum, and the detailed luminosity evolution. We find that the inferred progenitor and SN parameters are typical for an exploding Wolf-Rayet. A comparison of the wind density found at the breakout radius and the density at much larger radii, as inferred by late radio observations, suggests an enhanced mass-loss rate taking effect about 10 days prior to the SN explosion. This finding joins accumulating evidence for a possible late phase in the stellar evolution of massive stars, involving vigorous mass loss a short time before the SN explosion.

  17. Annual report 1987-1988

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents: the annual report 1987/8 of the University Research Reactor, Risley, United Kingdom. The report contains a description of the current research programme using reactor produced isotopes and other reactor facilities. A summary of the work carried out by the Activation Analysis Service during 1987/8 is also given, along with the Reactor Teaching Programme, and the reactor operation and site safety arrangements. (U.K.)

  18. Exports of petroleum products, 1987

    International Nuclear Information System (INIS)

    1988-04-01

    A summary is presented of exports of motor gasoline, middle distillate, aviation turbine fuel, heavy fuel oil, and partially processed oil from Canada for the 1987 calendar year. A discussion of petroleum product imports is included in order to put exports in the context of the overall trade. Exports of the above petroleum products averaged 22,200 m 3 /d in 1987, up 15% from 1986 levels. Exports of middle distillates and aviation fuel had the largest gains in 1987. Export prices for light petroleum products stayed relatively close to USA spot prices. The heavy fuel oil price was below the New York spot price in the beginning of 1987 but remained close for the rest of the year. Canada's petroleum products exports were made to 5 countries while imports came from at least 13 countries. The USA remained Canada's largest trading partner in petroleum products. Exports to Japan and the Far East rose ca 60% over 1986. Product outturns for export were 9% of total Canadian refinery throughput. Exports of aviation turbine fuel from Ontario began in April 1987. The top single exporter in Canada was Irving Oil Ltd. with 2,485,000 m 3 . Irving was also the top exporter in 1986. 11 figs., 4 tabs

  19. Spectral and ion emission features of laser-produced Sn and SnO2 plasmas

    Science.gov (United States)

    Hui, Lan; Xin-Bing, Wang; Du-Luo, Zuo

    2016-03-01

    We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and SnO2 plasmas under identical experimental conditions. Planar slabs of pure metal Sn and ceramic SnO2 are irradiated with 1.06 μm, 8 ns Nd:YAG laser pulses. Fast photography employing an intensified charge coupled device (ICCD), optical emission spectroscopy (OES), and optical time of flight emission spectroscopy are used as diagnostic tools. Our results show that the Sn plasma provides a higher extreme ultraviolet (EUV) conversion efficiency (CE) than the SnO2 plasma. However, the kinetic energies of Sn ions are relatively low compared with those of SnO2. OES studies show that the Sn plasma parameters (electron temperature and density) are lower compared to those of the SnO2 plasma. Furthermore, we also give the effects of the vacuum degree and the laser pulse energy on the plasma parameters. Project supported by the National Natural Science Foundation of China (Grant No. 11304235) and the Director Fund of WNLO, China.

  20. The Fast Evolution of SN 2010bh Associated with XRF 100316D

    Science.gov (United States)

    Olivares E., F.; Greiner, J.; Schady, P.; Rau, A.; Klose, S.; Kruhler, T.; Afonso, P. M. J.; Updike, A. C.; Nardini, M.; Filgas, R.; hide

    2012-01-01

    The first observational evidence of a connection between supernovae (SNe) and gamma-ray bursts (GRBs) was found about a decade ago. Since then, only half a dozen spectroscopically confirmed associations have been discovered and XRF 1003160 associated with the type-Ic SN 20lObh is among the latest. Aims. We constrain the progenitor radius, the host-galaxy extinction, and the physical parameters of the explosion of XRF l00316D/SN 20lObh at z 0.059. We study the SN brightness and colours in the context of GRB-SNe. Methods. We began observations with the Gamma-Ray burst Optical and Near-infrared Detector (GROND) 12 hours after the GRB trigger and continued until 80 days after the burst. GROND provided excellent photometric data in six filter bands covering a wavelength range from approximately 350 to 1800 nm, significantly expanding the pre-existing data set for this event. Combining GROND and Swift data, the early broad-band spectral energy distribution (SED) is modelled with a blackbody and afterglow component attenuated by dust and gas absorption. The temperature and radius evolution of the thermal component are analysed and combined with earlier measurements available from the literature. Templates of SN 1998bw are fitted to the SN itself to directly compare the lightcurve properties. Finally, a two-component parametrized model is fitted to the quasi-bolometric light curve. which delivers physical parameters of the explosion. Results. The best-fit models to the broad-band SEDs imply moderate reddening along the line of sight through the host galaxy (A(sub v.host = 1.2 +/- 0.1 mag). Furthermore, the parameters of the blackbody component reveal a cooling envelope at an apparent initial radius of 7 x 10(exp 11) cm, which is compatible with a dense wind surrounding a Wolf-Rayet star. A multicolor comparison shows that SN 2010bh is 60 - 70% as bright as SN 1998bw. Reaching maximum brightness at 8 - 9 days after the burst in the blue bands, SN 20lObh proves to be the

  1. The Type II supernovae 2006V and 2006au

    DEFF Research Database (Denmark)

    Taddia, F.; Stritzinger, M. D.; Sollerman, J.

    2012-01-01

    curve evolution similar to that of SN 1987A. At the earliest epochs, SN 2006au also displays an initial dip which we interpret as the signature of the adiabatic cooling phase that ensues shock break-out. SNe 2006V and 2006au are both found to be bluer, hotter and brighter than SN 1987A. Spectra of SNe...

  2. Oxidation and reduction kinetics of eutectic SnPb, InSn, and AuSn: a knowledge base for fluxless solder bonding applications

    DEFF Research Database (Denmark)

    Kuhmann, Jochen Friedrich; Preuss, A.; Adolphi, B.

    1998-01-01

    : (1) SnPb; (2) InSn; (3) AuSn. The studies of the oxidation kinetics show that the growth of the native oxide, which covers the solder surfaces from the start of all soldering operations is self-limiting. The rate of oxidation on the molten, metallic solder surfaces is significantly reduced...... and reduction kinetics, are applied to flip-chip (FC) bonding experiments in vacuum with and without the injection of H2. Wetting in vacuum is excellent but the self-alignment during flip-chip soldering is restricted. The desired, perfectly self-aligned FC-bonds have been only achieved, using evaporated...

  3. Synthesis, characterization and photocatalytic performance of SnS nanofibers and SnSe nanofibers derived from the electrospinning-made SnO{sub 2} nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Li; Li, Dan; Dong, Xiangting; Ma, Qianli; Yu, Wensheng; Wang, Xinlu; Yu, Hui; Wang, Jinxian; Liu, Guixia, E-mail: dongxiangting888@163.com [Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun (China)

    2017-11-15

    SnO{sub 2} nanofibers were fabricated by calcination of the electrospun PVP/SnCl{sub 4} composite nanofibers. For the first time, SnS nanofibers and SnSe nanofibers were successfully synthesized by double crucible sulfurization and selenidation methods via inheriting the morphology of SnO{sub 2} nanofibers used as precursors, respectively. X-ray diffraction (XRD) analysis shows SnS nanofibers and SnSe nanofibers are respectively pure orthorhombic phase with space group of Pbnm and Cmcm. Scanning electron microscope (SEM) observation indicates that the diameters of SnS nanofibers and SnSe nanofibers are respectively 140.54±12.80 nm and 96.52±14.17 nm under the 95 % confidence level. The photocatalytic activities of samples were studied by using rhodamine B (Rh B) as degradation agent. When SnS or SnSe nanofibers are employed as the photocatalysts, the respective degradation rates of Rh B solution under the ultraviolet light irradiation after 200 min irradiation are 92.55 % and 92.86 %. The photocatalytic mechanism and formation process of SnS and SnSe nanofibers are also provided. More importantly, this preparation technique is of universal significance to prepare other metal chalcogenides nanofibers. (author)

  4. SKB annual report 1987

    International Nuclear Information System (INIS)

    1988-05-01

    The annual report on the activities of the Swedish Nuclear Fuel and Waste Management contains in part I an overview of SKB activities in different fields. Part II gives a description of the research and development work on nuclear waste disposal performed during 1987. Lectures and publications during 1987 as well as reports issued in the SKB technical report series are listed in part III. Part IV contains the summaries of all technical reports issued during 1987. At Forsmark the first construction phase for the final repository for radioactive waste - SFR - is now completed. The repository is situated in crystalline rock under the Baltic Sea. The first construction phase includes rock caverns for 60 000 m 3 of waste. A second phase for additional 30 000 m 3 is planned to be built and commissioned around the year 2000. (orig./DG)

  5. Supernova will continue to glow

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    On the night of 23/24 February 1987 a new supernova called SN 1987A, was discovered. Within a few hours of the announcement of the discovery, the South African Astronomical Observatory (SAAO) began a series of observations. In this article, the importance of supernovae-exploding stars, and what the SAAO has discovered so far from SN 1987A are discussed

  6. Sn-In-Ag phase equilibria and Sn-In-(Ag)/Ag interfacial reactions

    International Nuclear Information System (INIS)

    Chen Sinnwen; Lee Wanyu; Hsu Chiaming; Yang Chingfeng; Hsu Hsinyun; Wu Hsinjay

    2011-01-01

    Research highlights: → Thermodynamic models of Sn-In and Sn-In-Ag are developed using the CALPHAD approach. → Reaction layer in the Sn-In-(Ag)/Ag couples at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. → Reactions in the Sn-20 wt%In-2.8 wt%Ag/Ag couples are faster than those in the Sn-20 wt%In/Ag couples. - Abstract: Experimental verifications of the Sn-In and Sn-In-Ag phase equilibria have been conducted. The experimental measurements of phase equilibria and thermodynamic properties are used for thermodynamic modeling by the CALPHAD approach. The calculated results are in good agreement with experimental results. Interfacial reactions in the Sn-In-(Ag)/Ag couples have been examined. Both Ag 2 In and AgIn 2 phases are formed in the Sn-51.0 wt%In/Ag couples reacted at 100 and 150 deg. C, and only the Ag 2 In phase is formed when reacted at 25, 50 and 75 deg. C. Due to the different growth rates of different reaction phases, the reaction layer at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. In the Sn-20.0 wt%In/Ag couples, the ζ phase is formed at 250 deg. C and ζ/AgIn 2 phases are formed at 125 deg. C. Compared with the Sn-20 wt%In/Ag couples, faster interfacial reactions are observed in the Sn-20.0 wt%In-2.8 wt%Ag/Ag couples, and minor Ag addition to Sn-20 wt%In solder increases the growth rates of the reaction phases.

  7. Growth of highly textured SnS on mica using an SnSe buffer layer

    International Nuclear Information System (INIS)

    Wang, S.F.; Fong, W.K.; Wang, W.; Surya, C.

    2014-01-01

    We report the growth of SnS thin films on mica substrates by molecular beam epitaxy. Excellent 2D layered structure and strong (001) texture were observed with a record low rocking curve full width at half maximum of ∼ 0.101° for the SnS(004) diffraction. An interface model is used to investigate the nucleation of SnS on mica which indicates the co-existence of six pairs of lateral growth orientations and is in excellent agreement with the experimental Φ-scan measurements indicating 12 peaks separated by 30° from each other. To control the lateral growth of the SnS epilayers we investigate the utilization of a thin SnSe buffer layer deposited on the mica substrate prior to the growth of the SnS thin film. The excellent lattice match between SnSe and mica enhances the alignment of the nucleation of SnS and suppresses the minor lateral orientations along the mica[110] direction and its orthogonal axis. Detailed low-frequency noise measurement was performed to characterize the trap density in the films and our results clearly demonstrate substantial reduction in the density of the localized states in the SnS epilayer with the use of an SnSe buffer layer. - Highlights: • A record low rocking curve FWHM for deposited SnS on mica • Investigation of the nucleation of SnS on mica using the interface model • Investigation of nucleation mechanism by phi-scan measurement • Grain boundary formation from crystallites of various nucleation orientations • Suppression of nucleation orientations using an SnSe buffer layer

  8. Controlling the antibacterial activity of CuSn thin films by varying the contents of Sn

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yujin; Park, Juyun; Kim, Dong-Woo; Kim, Hakjun; Kang, Yong-Cheol, E-mail: yckang@pknu.ac.kr

    2016-12-15

    Highlights: • We deposit CuSn thin films on a Si substrate with various Cu/Sn ratio. • Antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time increased. • XPS was utilized to assign the chemical environment of CuSn thin films before and after antibacterial test. - Abstract: We investigated antibacterial activity of CuSn thin films against Gram positive Staphylococcus aureus (S. aureus). CuSn thin films with different Cu to Sn ratios were deposited on Si(100) by radio frequency (RF) magnetron sputtering method using Cu and Sn metal anodes. The film thickness was fixed at 200 nm by varying the sputtering time and RF power on the metal targets. The antibacterial test was conducted in various conditions such as different contact times and Cu to Sn ratios in the CuSn films. The antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time between the film and bacteria suspension increased execpt in the case of CuSn-83. The oxidation states of Cu and Sn and the chemical composition of CuSn thin films before and after the antibacterial test were investigated by X-ray photoelectron spectroscopy (XPS). When the contact time was fixed, the Cu species was further oxidized as the RF power on Cu target increased. The intensity of Sn 3d decreased with increasing Cu ratio. When the sample was fixed, the peak intensity of Sn 3d decreased as the contact time increased due to the permeation of Sn into the cell.

  9. A review and prospects for Nb3Sn superconductor development

    Science.gov (United States)

    Xu, Xingchen

    2017-09-01

    Nb3Sn superconductors have significant applications in constructing high-field (>10 T) magnets. This article briefly reviews development of Nb3Sn superconductor and proposes prospects for further improvement. It is shown that significant improvement of critical current density (J c) is needed for future accelerator magnets. After a brief review of the development of Nb3Sn superconductors, the factors controlling J c are summarized and correlated with their microstructure and chemistry. The non-matrix J c of Nb3Sn conductors is mainly determined by three factors: the fraction of current-carrying Nb3Sn phase in the non-matrix area, the upper critical field B c2, and the flux line pinning capacity. Then prospects to improve the three factors are discussed respectively. An analytic model was developed to show how the ratios of precursors determine the phase fractions after heat treatment, based on which it is predicted that the limit of current-carrying Nb3Sn fraction in subelements is ∼65%. Then, since B c2 is largely determined by the Nb3Sn stoichiometry, a thermodynamic/kinetic theory is presented to show what essentially determines the Sn content of Nb3Sn conductors. This theory explains the influences of Sn sources and Ti addition on stoichiometry and growth rate of Nb3Sn layers. Next, to improve flux pinning, previous efforts in this community to introduce additional pinning centers to Nb3Sn wires are reviewed, and an internal oxidation technique is described. Finally, prospects for further improvement of non-matrix J c of Nb3Sn conductors are discussed, and it is seen that the only opportunity for further significantly improving J c lies in improving flux pinning.

  10. LED Die-Bonded on the Ag/Cu Substrate by a Sn-BiZn-Sn Bonding System

    Science.gov (United States)

    Tang, Y. K.; Hsu, Y. C.; Lin, E. J.; Hu, Y. J.; Liu, C. Y.

    2016-12-01

    In this study, light emitting diode (LED) chips were die-bonded on a Ag/Cu substrate by a Sn-BixZn-Sn bonding system. A high die-bonding strength is successfully achieved by using a Sn-BixZn-Sn ternary system. At the bonding interface, there is observed a Bi-segregation phenomenon. This Bi-segregation phenomenon solves the problems of the brittle layer-type Bi at the joint interface. Our shear test results show that the bonding interface with Bi-segregation enhances the shear strength of the LED die-bonding joints. The Bi-0.3Zn and Bi-0.5Zn die-bonding cases have the best shear strength among all die-bonding systems. In addition, we investigate the atomic depth profile of the deposited Bi-xZn layer by evaporating Bi-xZn E-gun alloy sources. The initial Zn content of the deposited Bi-Zn alloy layers are much higher than the average Zn content in the deposited Bi-Zn layers.

  11. Laser soldering of Sn-Ag-Cu and Sn-Zn-Bi lead-free solder pastes

    Science.gov (United States)

    Takahashi, Junichi; Nakahara, Sumio; Hisada, Shigeyoshi; Fujita, Takeyoshi

    2004-10-01

    It has reported that a waste of an electronics substrate including lead and its compound such as 63Sn-37Pb has polluted the environment with acid rain. For that environment problem the development of lead-free solder alloys has been promoted in order to find out the substitute for Sn-Pb solders in the United States, Europe, and Japan. In a present electronics industry, typical alloys have narrowed down to Sn-Ag-Cu and Sn-Zn lead-free solder. In this study, solderability of Pb-free solder that are Sn-Ag-Cu and Sn-Zn-Bi alloy was studied on soldering using YAG (yttrium aluminum garnet) laser and diode laser. Experiments were peformed in order to determine the range of soldering parameters for obtaining an appropriate wettability based on a visual inspection. Joining strength of surface mounting chip components soldered on PCB (printed circuit board) was tested on application thickness of solder paste (0.2, 0.3, and 0.4 mm). In addition, joining strength characteristics of eutectic Sn-Pb alloy and under different power density were examined. As a result, solderability of Sn-Ag-Cu (Pb-free) solder paste are equivalent to that of coventional Sn-Pb solder paste, and are superior to that of Sn-Zn-Bi solder paste in the laser soldering method.

  12. Risoe annual report 1987

    International Nuclear Information System (INIS)

    1988-06-01

    An explanation of Risoe National Laboratory's function within the Danish research system is followed by brief accounts of research activities at Risoe during 1987. Energy resources, technology and policy are discussed, the annual accounts are presented, a guide to the National Laboratory and a list of its publications are given. Some of the research activities that took place in 1987 described in more detail are within the fields of chemistry and the environment, superconductivity, new aspects of powdery mildew, polymers and robotics. (AB)

  13. Annealing of RF-magnetron sputtered SnS{sub 2} precursors as a new route for single phase SnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, M.G., E-mail: martasousa@ua.pt [AIN, I3N and Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Cunha, A.F. da, E-mail: antonio.cunha@ua.pt [AIN, I3N and Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Fernandes, P.A., E-mail: pafernandes@ua.pt [AIN, I3N and Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Física, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto (Portugal)

    2014-04-01

    Tin sulphide thin films have been grown on soda-lime glass substrates through the annealing of RF-magnetron sputtered SnS{sub 2} precursors. Three different approaches to the annealing were compared and the resulting films thoroughly studied. One series of precursors was annealed in a tubular furnace directly exposed to a flux of sulphur vapour plus forming gas, N{sub 2} + 5%H{sub 2}, and at a constant pressure of 500 mbar. The other two series of identical precursors were annealed in the same furnace but inside a graphite box with and without elemental sulphur evaporation again in the presence of N{sub 2} + 5%H{sub 2} and at the same pressure as for the sulphur flux experiments. Different maximum annealing temperatures for each set of samples, in the range of 300–570 °C, were tested to study their effects on the properties of the final films. The resulting phases were structurally investigated by X-Ray Diffraction (XRD) and Raman spectroscopy. Annealing of SnS{sub 2} precursors in sulphur flux produced films where SnS{sub 2} was dominant for temperatures up to 480 °C. Increasing the temperature to 530 °C and 570 °C led to films where the dominant phase became Sn{sub 2}S{sub 3}. Annealing of SnS{sub 2} precursors in a graphite box with sulphur vapour at temperatures in the range between 300 °C and 480 °C the films are multi-phase, containing Sn{sub 2}S{sub 3}, SnS{sub 2} and SnS. For high annealing temperatures of 530 °C and 570 °C the films have SnS as the dominant phase. Annealing of SnS{sub 2} precursors in a graphite box without sulphur vapour at 300 °C and 360 °C the films are essentially amorphous, at 420 °C SnS{sub 2} is the dominant phase. For temperatures of 480 °C and 530 °C SnS is the dominant phase but also same residual SnS{sub 2} and Sn{sub 2}S{sub 3} phases are observed. For annealing at 570 °C, according to the XRD results the films appear to be single phase SnS. The composition was studied using energy dispersive spectroscopy being

  14. Ultraviolet emission from low resistance Cu2SnS3/SnO2 and CuInS2/Sn:In2O3 nanowires

    Directory of Open Access Journals (Sweden)

    E. Karageorgou

    2014-11-01

    Full Text Available SnO2 and Sn:In2O3 nanowires were grown on Si(001, and p-n junctions were fabricated in contact with p-type Cu2S which exhibited rectifying current–voltage characteristics. Core-shell Cu2SnS3/SnO2 and CuInS2/Sn:In2O3 nanowires were obtained by depositing copper and post-growth processing under H2S between 100 and 500 °C. These consist mainly of tetragonal rutile SnO2 and cubic bixbyite In2O3. We observe photoluminescence at 3.65 eV corresponding to band edge emission from SnO2 quantum dots in the Cu2SnS3/SnO2 nanowires due to electrostatic confinement. The Cu2SnS3/SnO2 nanowires assemblies had resistances of 100 Ω similar to CuInS2/In2O3 nanowires which exhibited photoluminescence at 3.0 eV.

  15. Theoretical study of electronic structures and spectroscopic properties of Ga 3Sn, GaSn 3, and their ions

    Science.gov (United States)

    Zhu, Xiaolei

    2007-01-01

    Ground and excited states of mixed gallium stannide tetramers (Ga 3Sn, Ga 3Sn +, Ga 3Sn -, GaSn 3, GaSn 3+, and GaSn 3-) are investigated employing the complete active space self-consistent-field (CASSCF), density function theory (DFT), and the coupled-cluster single and double substitution (including triple excitations) (CCSD(T)) methods. The ground states of Ga 3Sn, Ga 3Sn +, and Ga 3Sn - are found to be the 2A 1, 3B 1, and 1A 1 states in C2v symmetry with a planar quadrilateral geometry, respectively. The ground states of GaSn 3 and GaSn 3- is predicted to be the 2A 1 and 1A 1 states in C2v point group with a planar quadrilateral structure, respectively, while the ground state of GaSn 3+ is the 1A 1 state with ideal triangular pyramid C3v geometry. Equilibrium geometries, vibrational frequencies, binding energies, electron affinities, ionization energies, and other properties of Ga 3Sn and GaSn 3 are computed and discussed. The anion photoelectron spectra of Ga 3Sn - and GaSn 3- are also predicted. It is interesting to find that the amount of charge transfer between Ga and Sn 2 atoms in the 1A 1 state of GaSn 3+ greatly increases upon electron ionization from the 2A 1 state of GaSn 3, which may be caused by large geometry change. On the other hand, the results of the low-lying states of Ga 3Sn and GaSn 3 are compared with those of Ga 3Si and GaSi 3.

  16. Electrical and optical properties of SnEuTe and SnSrTe films

    Science.gov (United States)

    Ishida, Akihiro; Tsuchiya, Takuro; Yamada, Tomohiro; Cao, Daoshe; Takaoka, Sadao; Rahim, Mohamed; Felder, Ferdinand; Zogg, Hans

    2010-06-01

    The SnTe, Sn1-xEuxTe and Sn1-xSrxTe (x<0.06) films were prepared by hot wall epitaxy. The ternary alloy films prepared in cation rich condition had hole concentration around 1×1019 cm-3 with high mobility exceeding 2000 cm2/V s at room temperature. Optical transmission spectra were also measured in the temperature range from 100 to 400 K and compared with theoretical calculations. Optical transmission spectra of the SnTe were simulated successfully assuming bumped band edge structures. A band inversion model was proposed for the Sn1-xEuxTe and Sn1-xSrxTe systems, and the optical transmission spectra were also simulated successfully assuming the band inversion model.

  17. Report on the year 1987

    International Nuclear Information System (INIS)

    1988-01-01

    This report gives a survey of the operation of the nuclear power plant 'Dodewaard' during 1987. A summary is given of the findings of the OSAR team and of the state of affairs with regard to COVRA, inter-national developments, judicial procedures, information, radiation control, waste processing and exploitation during 1987. Finally future perspectives are outlined. (H.W.). 3 fotos; 1 tab

  18. When a major star dies

    International Nuclear Information System (INIS)

    Joubert, G.

    1988-01-01

    Astrologers are slowly learning what happens when a star dies. On the night of 23-24 February 1987, the light of an exploding star - a supernova with the name SN 1987A - reached the earth. In this article this astrological event of the century are discussed, and its importance for astrologers

  19. SN 2013fs and SN 2013fr: exploring the circumstellar-material diversity in Type II supernovae

    Science.gov (United States)

    Bullivant, Christopher; Smith, Nathan; Williams, G. Grant; Mauerhan, Jon C.; Andrews, Jennifer E.; Fong, Wen-Fai; Bilinski, Christopher; Kilpatrick, Charles D.; Milne, Peter A.; Fox, Ori D.; Cenko, S. Bradley; Filippenko, Alexei V.; Zheng, WeiKang; Kelly, Patrick L.; Clubb, Kelsey I.

    2018-05-01

    We present photometry and spectroscopy of SN 2013fs and SN 2013fr in the first ˜100 d post-explosion. Both objects showed transient, relatively narrow H α emission lines characteristic of SNe IIn, but later resembled normal SNe II-P or SNe II-L, indicative of fleeting interaction with circumstellar material (CSM). SN 2013fs was discovered within 8 h of explosion; one of the earliest SNe discovered thus far. Its light curve exhibits a plateau, with spectra revealing strong CSM interaction at early times. It is a less luminous version of the transitional SN IIn PTF11iqb, further demonstrating a continuum of CSM interaction intensity between SNe II-P and SNe IIn. It requires dense CSM within 6.5 × 1014 cm of the progenitor, from a phase of advanced pre-SN mass loss beginning shortly before explosion. Spectropolarimetry of SN 2013fs shows little continuum polarization (˜0.5 per cent, consistent with zero), but noticeable line polarization during the plateau phase. SN 2013fr morphed from an SN IIn at early times to an SN II-L. After the first epoch, its narrow lines probably arose from host-galaxy emission, but the bright, narrow H α emission at early times may be intrinsic to the SN. As for SN 2013fs, this would point to a short-lived phase of strong CSM interaction if proven to be intrinsic, suggesting a continuum between SNe IIn and SNe II-L. It is a low-velocity SN II-L like SN 2009kr, but more luminous. SN 2013fr also developed an infrared excess at later times, due to warm CSM dust that requires a more sustained phase of strong pre-SN mass loss.

  20. The function of Sn(II)-apatite as a Tc immobilizing agent

    Energy Technology Data Exchange (ETDEWEB)

    Asmussen, R. Matthew, E-mail: matthew.asmussen@pnnl.gov [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99352 (United States); Neeway, James J.; Lawter, Amanda R.; Levitskaia, Tatiana G. [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99352 (United States); Lukens, Wayne W. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 (United States); Qafoku, Nikolla P. [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99352 (United States)

    2016-11-15

    At the U.S. Department of Energy Hanford Site, Tc-99 is a component of low-activity waste (LAW) fractions of the nuclear tank waste and removal of Tc from LAW streams would greatly benefit the site remediation process. In this study, we investigated the removal of Tc(VII), as pertechnetate, from deionized water (DIW) and a LAW simulant through batch sorption testing and solid phase characterization using tin (II) apatite (Sn-A) and SnCl{sub 2}. Sn-A showed higher levels of Tc removal from both DIW and LAW simulant. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/XEDS) and X-ray absorption spectroscopy (XAS) of reacted Sn-A in DIW showed that TcO4- is reduced to Tc(IV) on the Sn-A surface. The performance of Sn-A in the LAW simulant was lowered due to a combined effect of the high alkalinity, which lead to an increased dissolution of Sn from the Sn-A, and a preference for the reduction of Cr(VI). - Highlights: • Sn(II)-Apatite shows high proficiency in removing Tc(VII) from neutral solutions. • The removal of the Tc(VII) by Sn(II)-apatite is done via reduction to Tc(IV)O{sub 2} × H{sub 2}O. • In LAW Sn(II)-apatite is less efficient in removing Tc(VII). • Interference in LAW due to a preference for the reduction of Cr(VI) and the high pH. • Sn(II)-apatite can remove Tc(VII) from LAW effectively through increasing material added.

  1. Preparation, deformation, and failure of functional Al-Sn and Al-Sn-Pb nanocrystalline alloys

    Science.gov (United States)

    Noskova, N. I.; Vil'Danova, N. F.; Filippov, Yu. I.; Churbaev, R. V.; Pereturina, I. A.; Korshunov, L. G.; Korznikov, A. V.

    2006-12-01

    Changes in the structure, hardness, mechanical properties, and friction coefficient of Al-30% Sn, Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb (wt %) alloys subjected to severe plastic deformation by equal-channel angular pressing (with a force of 40 tonne) and by shear at a pressure of 5 GPa have been studied. The transition into the nanocrystalline state was shown to occur at different degrees of plastic deformation. The hardness exhibits nonmonotonic variations, namely, first it increases and subsequently decreases. The friction coefficient of the Al-30% Sn, Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb alloys quenched from the melt was found to be 0.33; the friction coefficients of these alloys in the submicrocrystalline state (after equal-channel angular pressing) equal 0.24, 0.32, and 0.35, respectively. The effect of disintegration into nano-sized powders was found to occur in the Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb alloys after severe plastic deformation to ɛ = 6.4 and subsequent short-time holding.

  2. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts

    Directory of Open Access Journals (Sweden)

    Nur Hidayati

    2016-03-01

    Full Text Available Even though platinum is known as an active electro-catalyst for ethanol oxidation at low temperatures (< 100 oC, choosing the electrode material for ethanol electro-oxidation is a crucial issue. It is due to its property which easily poisoned by a strong adsorbed species such as CO. PtSn-based electro-catalysts have been identified as better catalysts for ethanol electro-oxidation. The third material is supposed to improved binary catalysts performance. This work presents a study of the ethanol electro-oxidation on carbon supported Pt-Sn and Pt-Sn-Ni catalysts. These catalysts were prepared by alcohol reduction. Nano-particles with diameters between 2.5-5.0 nm were obtained. The peak of (220 crystalline face centred cubic (fcc Pt phase for PtSn and PtSnNi alloys was repositioned due to the presence of Sn and/or Ni in the alloy. Furthermore, the modification of Pt with Sn and SnNi improved ethanol and CO electro-oxidation. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 1st February 2016; Accepted: 1st February 2016 How to Cite: Hidayati, N., Scott, K. (2016. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 10-20. (doi:10.9767/bcrec.11.1.394.10-20 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.394.10-20

  3. CONSTRUÇÕES BINOMINAIS DO TIPO SN1 DE SN2

    Directory of Open Access Journals (Sweden)

    Karen Sampaio Braga Alonso

    2017-04-01

    Full Text Available Este artigo tem por objetivo investigar a flutuação de sentido quantidade-qualidade licenciada pelo uso de construtos binominais do tipo SN1 de SN2, como xícara de chá, no Português do Brasil.A pesquisa é baseada na perspectiva teórica da Linguística Funcional Centrada no Uso (BYBEE, 2010; BARLOW E KEMMER, 2000; TOMASELLO, 2003, TRAUGOTT, 2008 e busca descrever as propriedades morfossintáticas, semântico-pragmáticas e cognitivas dos usos das construções que favorecem uma leitura ora qualitativa ora quantitativa, no que se refere à relação entre SN1 e SN2.

  4. SnO and SnO·CoO nanocomposite as high capacity anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Das, B., E-mail: bijoy822000@gmail.com; Reddy, M.V.; Chowdari, B.V.R, E-mail: phychowd@nus.edu.sg

    2016-02-15

    Highlights: • The preparation methods are simple, low cost and can be scaled up for large production. • SnO is cheap, non-toxic and eco-friendly. • SnO shows high reversible capacity (Theoretical reversible capacity: 875 mA h g{sup −1}). • We showed high reversible capacity and columbic efficiency for SnO and SnO based composites. • We addressed the capacity degradation by introducing secondary phase (CoO and CNT etc.) - Abstract: We prepared SnO nanoparticles (SnO–S) and SnO·CoO nanocomposites (SnO·CoO–B) as anodes for lithium ion batteries (LIBs) by chemical and ball-milling approaches, respectively. They are characterized by X-ray diffraction and TEM techniques. The Li- storage performance are evaluated by galvanostatic cycling and cyclic voltammetry. The SnO–S and SnO·CoO–B showed improved cycling performance due to their finite particle size (i.e. nano-size) and presence of secondary phase (CoO). Better cycling stability is noticed for SnO·CoO–B with the expense of their reversible capacity. Also, addition of carbon nanotubes (CNT) to SnO–S further improved the cycling performance of SnO–S. When cycled at 60 mA g{sup −1}, the first-cycle reversible capacities of 635, 590 and 460 (±10) mA h g{sup −1} are noticed for SnO–S, SnO@CNT and SnO·CoO–B, respectively. The capacity fading observed are 3.7 and 1.8 mA h g{sup −1} per cycle for SnO–S and SnO@CNT, respectively; whereas 1–1.2 mA h g{sup −1} per cycle for SnO·CoO–B. All the samples show high coulombic efficiency, 96–98% in the range of 5–50 cycles.

  5. Nb3Sn Quadrupoles Designs For The LHC Upgrades

    International Nuclear Information System (INIS)

    Felice, Helene

    2008-01-01

    In preparation for the LHC luminosity upgrades, high field and large aperture Nb 3 Sn quadrupoles are being studied. This development has to incorporate all the relevant features for an accelerator magnet like alignment and cooling channels. The LARP HQ model is a high field and large bore quadrupole that will meet these requirements. The 2-layer coils are surrounded by a structure based on key and bladder technology with supporting iron yoke and aluminum shell. This structure is aimed at pre-stress control, alignment and field quality. We present here the magnetic and mechanical design of HQ, along with recent progress on the development of the first 1-meter model.

  6. On possibility of superconductivity in SnSb: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta D. [Department of Physics, M. K. Bhavnagar University, Bhavnagar 364001 (India); Shrivastava, Deepika [Department of Physics, Barkatullah University, Bhopal 462026 (India); Jha, Prafulla K., E-mail: prafullaj@yahoo.com [Department of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara 390002 (India); Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal 462026 (India)

    2016-09-15

    Highlights: • Superconducting property of SnSb is predicted by ab-initio calculations. • Electronic properties of SnSb in RS phase shows metallic behaviour similar to SnAs. • Phonon dispersion confirms the dynamical stability of SnSb in RS phase. • Superconducting transition temperature is 3.1 K, slightly lower than that of SnAs. • Calculated thermodynamic properties are also reported. - Abstract: The electronic, phonon structure and superconducting properties of tin antimonide (SnSb) in rock-salt (RS) structure are calculated using first-principles density functional theory. The electronic band structure and density of states show metallic behavior. The phonon frequencies are positive throughout the Brillouin zone in rock-salt structure indicating its stability in that phase. Superconductivity of SnSb in RS phase is discussed in detail by calculating phonon linewidths, Eliashberg spectral function, electron-phonon coupling constant and superconducting transition temperature. SnSb is found to have a slightly lower T{sub C} (3.1 K), as compared to SnAs.

  7. Ordered CoSn-type ternary phases in Co3Sn3-xGex

    DEFF Research Database (Denmark)

    Allred, Jared M.; Jia, Shuang; Bremholm, Martin

    2012-01-01

    . By taking advantage of the chemical differences between the two crystallographically inequivalent Sn sites in the structure, we observe ordered ternary phases, nominally Co3SnGe2 and Co3Sn2Ge. The electron count and unit cell configuration remain unchanged from CoSn; these observations thus help to clarify...

  8. Sn powder as reducing agents and SnO2 precursors for the synthesis of SnO2-reduced graphene oxide hybrid nanoparticles.

    Science.gov (United States)

    Chen, Mingxi; Zhang, Congcong; Li, Lingzhi; Liu, Yu; Li, Xichuan; Xu, Xiaoyang; Xia, Fengling; Wang, Wei; Gao, Jianping

    2013-12-26

    A facile approach to prepare SnO2/rGO (reduced graphene oxide) hybrid nanoparticles by a direct redox reaction between graphene oxide (GO) and tin powder was developed. Since no acid was used, it is an environmentally friendly green method. The SnO2/rGO hybrid nanoparticles were characterized by ultraviolet-visible spectroscopy, Raman spectroscopy, thermogravimetric analysis, X-ray diffraction analysis, and X-ray photoelectron spectroscopy. The microstructure of the SnO2/rGO was observed with scanning electron microscopy and transmission electron microscopy. The tin powder efficiently reduced GO to rGO, and the Sn was transformed to SnO2 nanoparticles (∼45 nm) that were evenly distributed on the rGO sheets. The SnO2/rGO hybrid nanoparticles were then coated on an interdigital electrode to fabricate a humidity sensor, which have an especially good linear impedance response from 11% to 85% relative humidity.

  9. Syntheses, structural variants and characterization of AInM′S4 (A=alkali metals, Tl; M′ = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS4 and KInSnS4 compounds

    International Nuclear Information System (INIS)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru

    2016-01-01

    Ten AInM′S 4 (A=alkali metals, Tl; M′= Ge, Sn) compounds with diverse structure types have been synthesized and characterized by single crystal and powder X-ray diffraction and a variety of spectroscopic methods. They are wide band gap semiconductors. KInGeS 4 (1-β), RbInGeS 4 (2), CsInGeS 4 (3-β), TlInGeS 4 (4-β), RbInSnS 4 (8-β) and CsInSnS 4 (9) compounds with three-dimensional BaGa 2 S 4 structure and CsInGeS 4 (3-α) and TlInGeS 4 (4-α) compounds with a layered TlInSiS 4 structure have tetrahedral [InM′S 4 ] − frameworks. On the other hand, LiInSnS 4 (5) with spinel structure and NaInSnS 4 (6), KInSnS 4 (7), RbInSnS 4 (8-α) and TlInSnS 4 (10) compounds with layered structure have octahedral [InM′S 4 ] − frameworks. NaInSnS 4 (6) and KInSnS 4 (7) compounds undergo facile topotactic ion-exchange, at room temperature, with various mono-, di- and tri-valent cations in aqueous medium to give rise to metastable layered phases. - Graphical abstract: NaInSnS 4 and KInSnS 4 compounds undergo, in aqueous medium at room temperature, facile topotactic ion-exchange with mono, di and trivalent cations. Display Omitted - Highlights: • Ten AInM′S 4 compounds with diverse structure types were synthesized. • They are wide band gap semiconductors. • NaInSnS 4 and KInSnS 4 compounds undergo facile topotactic ion-exchange at room temperature.

  10. The 7SK snRNP associates with the little elongation complex to promote snRNA gene expression.

    Science.gov (United States)

    Egloff, Sylvain; Vitali, Patrice; Tellier, Michael; Raffel, Raoul; Murphy, Shona; Kiss, Tamás

    2017-04-03

    The 7SK small nuclear RNP (snRNP), composed of the 7SK small nuclear RNA (snRNA), MePCE, and Larp7, regulates the mRNA elongation capacity of RNA polymerase II (RNAPII) through controlling the nuclear activity of positive transcription elongation factor b (P-TEFb). Here, we demonstrate that the human 7SK snRNP also functions as a canonical transcription factor that, in collaboration with the little elongation complex (LEC) comprising ELL, Ice1, Ice2, and ZC3H8, promotes transcription of RNAPII-specific spliceosomal snRNA and small nucleolar RNA (snoRNA) genes. The 7SK snRNA specifically associates with a fraction of RNAPII hyperphosphorylated at Ser5 and Ser7, which is a hallmark of RNAPII engaged in snRNA synthesis. Chromatin immunoprecipitation (ChIP) and chromatin isolation by RNA purification (ChIRP) experiments revealed enrichments for all components of the 7SK snRNP on RNAPII-specific sn/snoRNA genes. Depletion of 7SK snRNA or Larp7 disrupts LEC integrity, inhibits RNAPII recruitment to RNAPII-specific sn/snoRNA genes, and reduces nascent snRNA and snoRNA synthesis. Thus, through controlling both mRNA elongation and sn/snoRNA synthesis, the 7SK snRNP is a key regulator of nuclear RNA production by RNAPII. © 2017 The Authors.

  11. Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability.

    Science.gov (United States)

    Xu, Wangwang; Xie, Zhiqiang; Cui, Xiaodan; Zhao, Kangning; Zhang, Lei; Dietrich, Grant; Dooley, Kerry M; Wang, Ying

    2015-10-14

    Complex hierarchical structures have received tremendous attention due to their superior properties over their constitute components. In this study, hierarchical graphene-encapsulated hollow SnO2@SnS2 nanostructures are successfully prepared by in situ sulfuration on the backbones of hollow SnO2 spheres via a simple hydrothermal method followed by a solvothermal surface modification. The as-prepared hierarchical SnO2@SnS2@rGO nanocomposite can be used as anode material in lithium ion batteries, exhibiting excellent cyclability with a capacity of 583 mAh/g after 100 electrochemical cycles at a specific current of 200 mA/g. This material shows a very low capacity fading of only 0.273% per cycle from the second to the 100th cycle, lower than the capacity degradation of bare SnO2 hollow spheres (0.830%) and single SnS2 nanosheets (0.393%). Even after being cycled at a range of specific currents varied from 100 mA/g to 2000 mA/g, hierarchical SnO2@SnS2@rGO nanocomposites maintain a reversible capacity of 664 mAh/g, which is much higher than single SnS2 nanosheets (374 mAh/g) and bare SnO2 hollow spheres (177 mAh/g). Such significantly improved electrochemical performance can be attributed to the unique hierarchical hollow structure, which not only effectively alleviates the stress resulting from the lithiation/delithiation process and maintaining structural stability during cycling but also reduces aggregation and facilitates ion transport. This work thus demonstrates the great potential of hierarchical SnO2@SnS2@rGO nanocomposites for applications as a high-performance anode material in next-generation lithium ion battery technology.

  12. Behavior of Sn atoms in GeSn thin films during thermal annealing: Ex-situ and in-situ observations

    Science.gov (United States)

    Takase, Ryohei; Ishimaru, Manabu; Uchida, Noriyuki; Maeda, Tatsuro; Sato, Kazuhisa; Lieten, Ruben R.; Locquet, Jean-Pierre

    2016-12-01

    Thermally induced crystallization processes for amorphous GeSn thin films with Sn concentrations beyond the solubility limit of the bulk crystal Ge-Sn binary system have been examined by X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, and (scanning) transmission electron microscopy. We paid special attention to the behavior of Sn before and after recrystallization. In the as-deposited specimens, Sn atoms were homogeneously distributed in an amorphous matrix. Prior to crystallization, an amorphous-to-amorphous phase transformation associated with the rearrangement of Sn atoms was observed during heat treatment; this transformation is reversible with respect to temperature. Remarkable recrystallization occurred at temperatures above 400 °C, and Sn atoms were ejected from the crystallized GeSn matrix. The segregation of Sn became more pronounced with increasing annealing temperature, and the ejected Sn existed as a liquid phase. It was found that the molten Sn remains as a supercooled liquid below the eutectic temperature of the Ge-Sn binary system during the cooling process, and finally, β-Sn precipitates were formed at ambient temperature.

  13. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.

    Science.gov (United States)

    Zhang, D C; Yang, S; Wei, M; Mao, Y F; Tan, C G; Lin, J G

    2012-09-01

    Ti-7.5Nb-4Mo-xSn (x=0-4at%) alloys were developed as the biomedical materials. The effect of the Sn content on the microstructure and superelasticity of the alloys was investigated. It is found that Sn is a strong stabilizer of the β phase, which is effective in suppressing the formation of α″ and ω phases in the alloys. Moreover, the Sn addition has a significant impact on the mechanical properties of the alloys. With the increase of Sn addition, the yield stress of the alloys increase, but their elastic modulus, the fracture strength and the ductility decrease, and the deformation mode of the alloys changes from (322) twining to α″ transformation and then to slip. The Ti-7.5Nb-4Mo-1Sn and Ti-7.5Nb-4Mo-3Sn alloys exhibit a good superelasticity with a high σ(SIM) due to the relatively high athermal ω phases containing or the solution hardening at room temperature. Under the maximum strain of 5%, Ti-7.5Nb-4Mo-3Sn (at%) alloy exhibits higher super elastic stability than that of Ti-7.5Nb-4Mo-1Sn alloy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Liquidus Projection and Thermodynamic Modeling of a Sn-Ag-Zn System

    Science.gov (United States)

    Chen, Sinn-wen; Chiu, Wan-ting; Gierlotka, Wojciech; Chang, Jui-shen; Wang, Chao-hong

    2017-12-01

    Sn-Ag-Zn alloys are promising Pb-free solders. In this study, the Sn-Ag-Zn liquidus projection was determined, and the Sn-Ag-Zn thermodynamic modeling was developed. Various Sn-Ag-Zn alloys were prepared. Their as-cast microstructures and primary solidification phases were examined. The invariant reaction temperatures of the ternary Sn-Ag-Zn system were determined. The liquidus projection of the Sn-Ag-Zn ternary system was constructed. It was found that the Sn-Ag-Zn ternary system has eight primary solidification phases: ɛ2-AgZn3, γ-Ag5Zn8, β-AgZn, ζ-Ag4Sn, (Ag), ɛ1-Ag3Sn, β-(Sn) and (Zn) phases. There are eight ternary invariant reactions, and the liquid + (Ag) = β-AgZn + ζ-Ag4Sn reaction is of the highest temperature at 935.5 K. Thermodynamic modeling of the ternary Sn-Ag-Zn system was also carried out in this study based on the thermodynamic models of the three constituent binary systems and the experimentally determined liquidus projection. The liquidus projection and the isothermal sections are calculated. The calculated and experimentally determined liquidus projections are in good agreement.

  15. A Review of SnSe: Growth and Thermoelectric Properties

    Science.gov (United States)

    Nguyen, Van Quang; Kim, Jungdae; Cho, Sunglae

    2018-04-01

    SnSe is a 2D semiconductor with an indirect energy gap of 0.86 - 1 eV; it is widely used in solar cell, optoelectronics, and electronic device applications. Recently, SnSe has been considered as a robust candidate for energy conversion applications due to its high thermoelectric performance ( ZT = 2.6 in p-type and 2.2 in n-type), which is assigned mainly to its anhamornic bonding leading to an ultralow thermal conductivity. In this review, we first discuss the crystalline and electronic structures of SnSe and the source of its p-type characteristic. Then, some typical single crystal and polycrystal growth techniques, as well as an epitaxial thin film growth technique, are outlined. The reported thermoelectric properties of SnSe grown by using each technique are also reviewed. Finally, we will describe some remaining issues concerning the use of SnSe for thermoelectric applications.

  16. SN 2009bb: A PECULIAR BROAD-LINED TYPE Ic SUPERNOVA ,

    International Nuclear Information System (INIS)

    Pignata, Giuliano; Stritzinger, Maximilian; Phillips, M. M.; Morrell, Nidia; Boldt, Luis; Campillay, Abdo; Contreras, Carlos; Gonzalez, Sergio; Krzeminski, Wojtek; Roth, Miguel; Salgado, Francisco; Soderberg, Alicia; Mazzali, Paolo; Anderson, J. P.; Folatelli, Gaston; Foerster, Francisco; Hamuy, Mario; Maza, Jose; Levesque, Emily M.; Rest, Armin

    2011-01-01

    Ultraviolet, optical, and near-infrared photometry and optical spectroscopy of the broad-lined Type Ic supernova (SN) 2009bb are presented, following the flux evolution from -10 to +285 days past B-band maximum. Thanks to the very early discovery, it is possible to place tight constraints on the SN explosion epoch. The expansion velocities measured from near maximum spectra are found to be only slightly smaller than those measured from spectra of the prototype broad-lined SN 1998bw associated with GRB 980425. Fitting an analytical model to the pseudobolometric light curve of SN 2009bb suggests that 4.1 ± 1.9 M sun of material was ejected with 0.22 ± 0.06 M sun of it being 56 Ni. The resulting kinetic energy is 1.8 ± 0.7 x 10 52 erg. This, together with an absolute peak magnitude of M B = -18.36 ± 0.44, places SN 2009bb on the energetic and luminous end of the broad-lined Type Ic (SN Ic) sequence. Detection of helium in the early time optical spectra accompanied with strong radio emission and high metallicity of its environment makes SN 2009bb a peculiar object. Similar to the case for gamma-ray bursts (GRBs), we find that the bulk explosion parameters of SN 2009bb cannot account for the copious energy coupled to relativistic ejecta, and conclude that another energy reservoir (a central engine) is required to power the radio emission. Nevertheless, the analysis of the SN 2009bb nebular spectrum suggests that the failed GRB detection is not imputable to a large angle between the line-of-sight and the GRB beamed radiation. Therefore, if a GRB was produced during the SN 2009bb explosion, it was below the threshold of the current generation of γ-ray instruments.

  17. Remote sensing and GIS-based integrated analysis of land cover change in Duzce plain and its surroundings (north western Turkey).

    Science.gov (United States)

    Ikiel, Cercis; Ustaoglu, Beyza; Dutucu, Ayse Atalay; Kilic, Derya Evrim

    2013-02-01

    The aim of this study is to research natural land cover change caused by the permanent effects of human activities in Duzce plain and its surroundings, and to determine the current status of the land cover. For this purpose, two Landsat TM images were used in the study for the years 1987 and 2010. These images are analysed by using data image processing techniques in ERDAS Imagine©10.0 and ArcGIS©10.0 software. Land cover change nomenclature is classified according to the Coordination of Information on the Environment Level 2 Classification (1--urban fabric, 2--industrial, commercial and transport units, 3--heterogeneous agricultural areas, 4--forests, and 5--inland wetlands). Furthermore, the image analysis results are confirmed by the field research. According to the results, a decrease of 33.5 % was recorded in forest areas from 24,840.7 to 16,529.0 ha; an increase of 11.2 % was recorded in heterogeneous agricultural areas from 47,702.7 to 53,051.7 ha. Natural vegetation, which is the large part of land cover in the research area, has been changing rapidly because of rapid urbanisation and agricultural activities. As a result, it is concluded that significant changes have occurred on the natural land cover between the years 1987 and 2010 in the Duzce plain and its surroundings.

  18. Rational design of Sn/SnO{sub 2}/porous carbon nanocomposites as anode materials for sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaojia [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Xifei, E-mail: xfli2011@hotmail.com [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Center for Advanced Energy Materials and Devices, Xi’an University of Technology, Xi’an 710048 (China); Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071 (China); Fan, Linlin; Yu, Zhuxin; Yan, Bo; Xiong, Dongbin; Song, Xiaosheng; Li, Shiyu [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Adair, Keegan R. [Nanomaterials and Energy Lab., Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Li, Dejun, E-mail: dejunli@mail.tjnu.edu.cn [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Sun, Xueliang, E-mail: xsun9@uwo.ca [Nanomaterials and Energy Lab., Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China)

    2017-08-01

    Highlights: • Sn/SnO{sub 2}/porous carbon nanocomposites are rationally designed via a facile strategy. • The porous carbon mitigates the volume change and poor conductivity of Sn/SnO{sub 2}. • The nanocomposites exhibit the enhanced sodium storage performance. - Abstract: Sodium-ion batteries (SIBs) have successfully attracted considerable attention for application in energy storage, and have been proposed as an alternative to lithium ion batteries (LIBs) due to the abundance of sodium resources and low price. Sn has been deemed as a promising anode material in SIBs which holds high theoretical specific capacity of 845 mAh g{sup −1}. In this work we design nanocomposite materials consisting of porous carbon (PC) with SnO{sub 2} and Sn (Sn/SnO{sub 2}/PC) via a facile reflux method. Served as an anode material for SIBs, the Sn/SnO{sub 2}/PC nanocomposite delivers the primary discharge and charge capacities of 1148.1 and 303.0 mAh g{sup −1}, respectively. Meanwhile, it can preserve the discharge capacity approximately of 265.4 mAh g{sup −1} after 50 cycles, which is much higher than those of SnO{sub 2}/PC (138.5 mAh g{sup −1}) and PC (92.2 mAh g{sup −1}). Furthermore, the Sn/SnO{sub 2}/PC nanocomposite possesses better cycling stability with 77.8% capacity retention compared to that of SnO{sub 2}/PC (61.88%) over 50 cycles. Obviously, the Sn/SnO{sub 2}/PC composite with excellent electrochemical performance shows the great possibility of application in SIBs.

  19. Assembly and Test of HD2, a 36 mm bore high field Nb3Sn Dipole Magnet

    International Nuclear Information System (INIS)

    Ferracin, P.; Bingham, B.; Caspi, S.; Cheng, D.W.; Dietderich, D.R.; Felice, H.; Godeke, A.; Hafalia, A.R.; Hannaford, C.R.; Joseph, J.; Lietzke, A.F.; Lizarazo, J.; Sabbi, G.; Trillaud, F.; Wang, X.

    2008-01-01

    We report on the fabrication, assembly, and test of the Nb 3 Sn dipole magnet HD2. The magnet, aimed at demonstrating the application of Nb 3 Sn superconductor in high field accelerator-type dipoles, features a 36 mm clear bore surrounded by block-type coils with tilted ends. The coil design is optimized to minimize geometric harmonics in the aperture and the magnetic peak field on the conductor in the coil ends. The target bore field of 15 T at 4.3 K is consistent with critical current measurements of extracted strands. The coils are horizontally pre-stressed during assembly using an external aluminum shell pre-tensioned with water-pressurized bladders. Axial pre-loading of the coil ends is accomplished through two end plates and four aluminum tension rods. The strain in coil, shell, and rods is monitored with strain gauges during assembly, cool-down and magnet excitation, and compared with 3D finite element computations. Magnet's training performance, quench locations, and ramp-rate dependence are then analyzed and discussed.

  20. The selective catalytic reduction of NO with NH3 over a novel Ce-Sn-Ti mixed oxides catalyst: Promotional effect of SnO2

    Science.gov (United States)

    Yu, Ming'e.; Li, Caiting; Zeng, Guangming; Zhou, Yang; Zhang, Xunan; Xie, Yin'e.

    2015-07-01

    A series of novel catalysts (CexSny) for the selective catalytic reduction of NO by NH3 were prepared by the inverse co-precipitation method. The aim of this novel design was to improve the NO removal efficiency of CeTi by the introduction of SnO2. It was found that the Ce-Sn-Ti catalyst was much more active than Ce-Ti and the best Ce:Sn molar ratio was 2:1. Ce2Sn1 possessed a satisfied NO removal efficiency at low temperature (160-280 °C), while over 90% NO removal efficiency maintained in the temperature range of 280-400 °C at the gas hourly space velocity (GHSV) of 50,000 h-1. Besides, Ce2Sn1 kept a stable NO removal efficiency within a wide range of GHSV and a long period of reacting time. Meanwhile, Ce2Sn1 exhibited remarkable resistance to both respectively and simultaneously H2O and SO2 poisoning due to the introduction of SnO2. The promotional effect of SnO2 was studied by N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS) and H2 temperature programmed reduction (H2-TPR) for detail information. The characterization results revealed that the excellent catalytic performance of Ce2Sn1 was associated with the higher specific surface area, larger pore volume and poorer crystallization. Besides, the introduction of SnO2 could result in not only greater conversion of Ce4+ to Ce3+ but also the increase amount of chemisorbed oxygen, which are beneficial to improve the SCR activity. More importantly, a novel peak appearing at lower temperatures through the new redox equilibrium of 2Ce4+ + Sn2+ ↔ 2Ce3+ + Sn4+ and higher total H2 consumption can be obtained by the addition of SnO2. Finally, the possible reaction mechanism of the selective catalytic reduction over Ce2Sn1 was also proposed.

  1. PROTEUS-SN User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States); Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, Changho [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-16

    PROTEUS-SN is a three-dimensional, highly scalable, high-fidelity neutron transport code developed at Argonne National Laboratory. The code is applicable to all spectrum reactor transport calculations, particularly those in which a high degree of fidelity is needed either to represent spatial detail or to resolve solution gradients. PROTEUS-SN solves the second order formulation of the transport equation using the continuous Galerkin finite element method in space, the discrete ordinates approximation in angle, and the multigroup approximation in energy. PROTEUS-SN’s parallel methodology permits the efficient decomposition of the problem by both space and angle, permitting large problems to run efficiently on hundreds of thousands of cores. PROTEUS-SN can also be used in serial or on smaller compute clusters (10’s to 100’s of cores) for smaller homogenized problems, although it is generally more computationally expensive than traditional homogenized methodology codes. PROTEUS-SN has been used to model partially homogenized systems, where regions of interest are represented explicitly and other regions are homogenized to reduce the problem size and required computational resources. PROTEUS-SN solves forward and adjoint eigenvalue problems and permits both neutron upscattering and downscattering. An adiabatic kinetics option has recently been included for performing simple time-dependent calculations in addition to standard steady state calculations. PROTEUS-SN handles void and reflective boundary conditions. Multigroup cross sections can be generated externally using the MC2-3 fast reactor multigroup cross section generation code or internally using the cross section application programming interface (API) which can treat the subgroup or resonance table libraries. PROTEUS-SN is written in Fortran 90 and also includes C preprocessor definitions. The code links against the PETSc, METIS, HDF5, and MPICH libraries. It optionally links against the MOAB library and

  2. Study of neutron-deficient Sn isotopes

    International Nuclear Information System (INIS)

    Auger, G.

    1982-05-01

    The formation of neutron deficient nuclei by heavy ion reactions is investigated. The experimental technique is presented, and the results obtained concerning Sn et In isotopes reported: first excited states of 106 Sn, high spin states in 107 Sn and 107 In; Yrast levels of 106 Sn, 107 Sn, 108 Sn; study of neutron deficient Sn and In isotopes formed by the desintegration of the compound nucleus 112 Xe. All these results are discussed [fr

  3. Electrical and microstructural properties of microwave sintered SnO{sub 2}-based varistors

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, P.S.; Oliveira, M.M.; Vasconcelos, J.S.; Rangel, J.H.G., E-mail: periclesft@ifma.edu.br, E-mail: marcelo@ifma.edu.br, E-mail: jomar@ifma.edu.br, E-mail: hiltonrangel@ifma.edu.br [IFMA-DAQ- PPGEM, S. Luis, MA (Brazil); Longo, E., E-mail: elson@iq.unesp.br [CMDMC, LIEC, Instituto de Quimica, UNESP, Araraquara, SP (Brazil); Sousa, V.C. de, E-mail: vania.sousa@ufrgs.br [DEMAT, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS (Brazil)

    2012-04-15

    An investigation was made of the microstructural and electrical properties of SnO{sub 2} -based varistors microwave sintered at 1200 deg C, applying a heating rate of 120 deg C/min and treatment times of 10, 20, 30, 40, 50 and 60 min. The system used in this study was (98.95-X)%SnO{sub 2}.1.0%CoO.0.05%Cr{sub 2}O{sub 3}.X%Ta{sub 2}O{sub 5}, where X corresponds to 0.05 and 0.065 mol%. Sintering was carried out in a domestic microwave oven (2.45 GHz) fitted for lab use. Silicon carbide was placed in a refractory vessel to form a heating chamber surrounding the sample holder. The pellets were examined by scanning electron microscopy, X-ray diffractometry, direct current measurements and impedance spectroscopy. The parameters of density, medium grain size, coefficient of nonlinearity, breakdown electrical field, leakage current, and height and width of the potential barrier were analyzed. (author)

  4. Effective conversion of irinotecan to SN-38 after intratumoral drug delivery to an intracranial murine glioma model in vivo. Laboratory investigation.

    Science.gov (United States)

    Wang, Weijun; Ghandi, Alex; Liebes, Leonard; Louie, Stan G; Hofman, Florence M; Schönthal, Axel H; Chen, Thomas C

    2011-03-01

    Irinotecan (CPT-11), a topoisomerase I inhibitor, is a cytotoxic agent with activity against malignant gliomas and other tumors. After systemic delivery, CPT-11 is converted to its active metabolite, SN-38, which displays significantly higher cytotoxic potency. However, the achievement of therapeutically effective plasma levels of CPT-11 and SN-38 is seriously complicated by variables that affect drug metabolism in the liver. Thus the capacity of CPT-11 to be converted to the active SN38 intratumorally in gliomas was addressed. For in vitro studies, 2 glioma cell lines, U87 and U251, were tested to determine the cytotoxic effects of CPT-11 and SN-38 in a dose-dependent manner. In vivo studies were performed by implanting U87 intracranially into athymic/nude mice. For a period of 2 weeks, SN-38, CPT-11, or vehicle was administered intratumorally by means of an osmotic minipump. One series of experiments measured the presence of SN-38 or CPT-11 in the tumor and surrounding brain tissues after 2 weeks' exposure to the drug. In a second series of experiments, after 2 weeks' exposure to the drug, the animals were maintained, in the absence of drug, until death. The survival curves were then calculated. The results show that the animals that had CPT-11 delivered intratumorally by the minipump expressed SN-38 in vivo. Furthermore, both CPT-11 and SN-38 accumulated at higher levels in tumor tissues compared with uninvolved brain. Intratumoral delivery of CPT-11 or SN-38 extended the average survival time of tumor-bearing animals from 22 days to 46 and 65 days, respectively. These results demonstrate that intratumorally administered CPT-11 can be effectively converted to SN-38 and this method of drug delivery is effective in extending the survival time of animals bearing malignant gliomas.

  5. Electrochemical properties of Ti-Ni-Sn materials predicted by {sup 119}Sn Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ladam, A., E-mail: alix.ladam@univ-montp2.fr; Aldon, L.; Lippens, P.-E.; Olivier-Fourcade, J.; Jumas, J.-C. [Université de Montpellier, Institut Charles Gerhardt, UMR 5253 CNRS (France); Cenac-Morthe, C. [CNES, Service DCT/TV/El (France)

    2016-12-15

    The electrochemical activity of TiNiSn, TiNi {sub 2}Sn and Ti {sub 6}Sn {sub 5} compounds considered as negative electrode materials for Li-ion batteries has been predicted from the isomer shift- Hume-Rothery electronic density correlation diagram. The ternary compounds were obtained from solid-state reactions and Ti {sub 6}Sn {sub 5} by ball milling. The {sup 119}Sn Mössbauer parameters were experimentally determined and used to evaluate the Hume-Rothery electronic density [e {sub av}]. The values of [e {sub av}] are in the region of Li-rich Li-Sn alloys for Ti {sub 6}Sn {sub 5} and outside this region for the ternary compounds, suggesting that the former compound is electrochemically active but not the two latter ones. Electrochemical tests were performed for these different materials confirming this prediction. The close values of [e {sub av}] for Ti {sub 6}Sn {sub 5} and Li-rich Li-Sn alloys indicate that the observed good capacity retention could be related to small changes in the global structures during cycling.

  6. Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics

    Science.gov (United States)

    Choi, Hyeongsu; Lee, Jeongsu; Shin, Seokyoon; Lee, Juhyun; Lee, Seungjin; Park, Hyunwoo; Kwon, Sejin; Lee, Namgue; Bang, Minwook; Lee, Seung-Beck; Jeon, Hyeongtag

    2018-05-01

    Representative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS2) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS2 thin films by phase transition of the SnS thin films. The SnS thin film was transformed into SnS2 thin film by annealing at 450 °C for 1 h in H2S atmosphere. This phase transition was confirmed by x-ray diffractometer and x-ray photoelectron spectroscopy, and we studied the cause of the phase transition. We then compared the film characteristics of these two tin sulfide thin films and their switching device characteristics. SnS and SnS2 thin films had optical bandgaps of 1.35 and 2.70 eV, and absorption coefficients of about 105 and 104 cm‑1 in the visible region, respectively. In addition, SnS and SnS2 thin films exhibited p-type and n-type semiconductor characteristics. In the images of high resolution-transmission electron microscopy, SnS and SnS2 directly showed a highly crystalline orthorhombic and hexagonal layered structure. The field effect transistors of SnS and SnS2 thin films exhibited on–off drain current ratios of 8.8 and 2.1 × 103 and mobilities of 0.21 and 0.014 cm2 V‑1 s‑1, respectively. This difference in switching device characteristics mainly depends on the carrier concentration because it contributes to off-state conductance and mobility. The major carrier concentrations of the SnS and SnS2 thin films were 6.0 × 1016 and 8.7 × 1013 cm‑3, respectively, in this experiment.

  7. Comparative study of SnS recrystallization in molten CdI{sub 2}, SnCl{sub 2}and KI

    Energy Technology Data Exchange (ETDEWEB)

    Timmo, Kristi; Kauk-Kuusik, Marit; Pilvet, Maris; Mikli, Valdek; Kaerber, Erki; Raadik, Taavi; Leinemann, Inga; Altosaar, Mare; Raudoja, Jaan [Department of Materials Science, Tallinn University of Technology, Tallinn (Estonia)

    2016-01-15

    In the present study, the recrystallization of polycrystalline SnS in different molten salts CdI{sub 2}, SnCl{sub 2} and KI as flux materials are presented. The recrystallization and growth of polycrystalline material in molten salts produces unique SnS monograin powders usable in monograin layer solar cells. XRD and Raman analysis revealed that single phase SnS powder can be obtained in KI at 740 C and in SnCl{sub 2} at 500 C. Long time heating of SnS in molten CdI{sub 2} was accompanied by chemical interaction between SnS and CdI{sub 2} that resulted in a mixture of CdS and Sn{sub 2}S{sub 3} crystals. SEM images showed that morphology of crystals can be controlled by the nature of the flux materials: needle-like Sn{sub 2}S{sub 3} together with round edged crystals of CdS in CdI{sub 2}, flat crystals of SnS with smooth surfaces in SnCl{sub 2} and well-formed SnS crystals with rounded edges in KI had been formed. The temperatures of phase transitions and/or the interactions of SnS and flux materials were determined by differential thermal analysis. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. GeSn growth kinetics in reduced pressure chemical vapor deposition from Ge2H6 and SnCl4

    Science.gov (United States)

    Aubin, J.; Hartmann, J. M.

    2018-01-01

    We have investigated the low temperature epitaxy of high Sn content GeSn alloys in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition tool from Applied Materials. Gaseous digermane (Ge2H6) and liquid tin tetrachloride (SnCl4) were used as the Ge and Sn precursors, respectively. The impact of temperature (in the 300-350 °C range), Ge2H6 and SnCl4 mass-flows on the GeSn growth kinetics at 100 Torr has been thoroughly explored. Be it at 300 °C or 325 °C, a linear GeSn growth rate increase together with a sub-linear Sn concentration increase occurred as the SnCl4 mass-flow increased, irrespective of the Ge2H6 mass flow (fixed or varying). The Sn atoms seemed to catalyze H desorption from the surface, resulting in higher GeSn growth rates for high SnCl4 mass-flows (in the 4-21 nm min-1 range). The evolution of the Sn content x with the F (SnCl4) 2 ·/F (Ge2H6) mass-flow ratio was fitted by x2/(1 - x) = n ·F (SnCl4) 2 ·/F (Ge2H6), with n = 0.25 (325 °C) and 0.60 (300 °C). We have otherwise studied the impact of temperature, in the 300-350 °C range, on the GeSn growth kinetics. The GeSn growth rate exponentially increased with the temperature, from 15 up to 32 nm min-1. The associated activation energy was low, i.e. Ea = 10 kcal mol-1. Meanwhile, the Sn content decreased linearly as the growth temperature increased, from 15% at 300 °C down to 6% at 350 °C.

  9. Unusually large chemical potential shift in a degenerate semiconductor: Angle-resolved photoemission study of SnSe and Na-doped SnSe

    Science.gov (United States)

    Maeda, M.; Yamamoto, K.; Mizokawa, T.; Saini, N. L.; Arita, M.; Namatame, H.; Taniguchi, M.; Tan, G.; Zhao, L. D.; Kanatzidis, M. G.

    2018-03-01

    We have studied the electronic structure of SnSe and Na-doped SnSe by means of angle-resolved photoemission spectroscopy. The valence-band top reaches the Fermi level by the Na doping, indicating that Na-doped SnSe can be viewed as a degenerate semiconductor. However, in the Na-doped system, the chemical potential shift with temperature is unexpectedly large and is apparently inconsistent with the degenerate semiconductor picture. The large chemical potential shift and anomalous spectral shape are key ingredients for an understanding of the novel metallic state with the large thermoelectric performance in Na-doped SnSe.

  10. Sandwich-like C@SnO2/Sn/void@C hollow spheres as improved anode materials for lithium ion batteries

    Science.gov (United States)

    Wang, Huijun; Jiang, Xinya; Chai, Yaqin; Yang, Xia; Yuan, Ruo

    2018-03-01

    As lithium ion batteries (LIBs) anode, SnO2 suffers fast capacity fading due to its large volume expansion during discharge/charge process. To overcome the problem, sandwich-like C@SnO2/Sn/void@C hollow spheres (referred as C@SnO2/Sn/void@C HSs) are prepared by in-situ polymerization and carbonization, using hollow SnO2 as self-template and dopamine as carbon source. The C@SnO2/Sn/void@C HSs possesses the merits of hollow and core/void/shell structure, so that they can accommodate the volume change under discharge/charge process, shorten the transmission distance of Li ions, own more contact area for the electrolyte. Thanks to these advantages, C@SnO2/Sn/void@C HSs display excellent electrochemical performance as anode materials for LIBs, which deliver a high capacity of 786.7 mAh g-1 at the current density of 0.5 A g-1 after 60 cycles. The simple synthesis method for C@SnO2/Sn/void@C HSs with special structure will provide a promising method for preparing other anode materials for LIBs.

  11. Tropical impacts of SST forcing: A case study for 1987 versus 1988

    Science.gov (United States)

    Druyan, Leonard M.; Hastenrath, Stefan

    1994-01-01

    The response of the NASA/Goddard Institute for Space Studies general circulation model (GCM) to large tropical sea surface temperature (SST) anomalies is investigated by evaluating model simulations of the particularly contrasting summer monsoon seasons 1987 and 1988. These years are representative of the warm and cold phases, respectively, of a recent El Nino-Southern Oscillation (ENSO) event. An ensemble averaging the results of three simulations was considered for each season, using monthly mean observed SST anomalies for June-August 1987 and 1988 as lower boundary forcing. Consistent with the European Center for Medium Weather Forecast (ECMWF)-analyzed winds, the simulations based on 1988 as compared to 1987 SST exhibit stronger upper-tropospheric irrotational circulation between the monsoon regions and the Southern Hemispheric sub-tropical anticyclones, a stronger Pacific Walker cell and a weaker subtropical westerly jet over the South Pacific. In the same vein, the modeled precipitation, indicating a more northerly position of the Pacific Inter-Tropical Convergence Zone (ITCZ) in 1988 compared with 1987, is supported by satellite observations of outgoing longwave radiation and highly reflective clouds.

  12. Mechanistic Prediction of the Effect of Microstructural Coarsening on Creep Response of SnAgCu Solder Joints

    Science.gov (United States)

    Mukherjee, S.; Chauhan, P.; Osterman, M.; Dasgupta, A.; Pecht, M.

    2016-07-01

    Mechanistic microstructural models have been developed to capture the effect of isothermal aging on time dependent viscoplastic response of Sn3.0Ag0.5Cu (SAC305) solders. SnAgCu (SAC) solders undergo continuous microstructural coarsening during both storage and service because of their high homologous temperature. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long term reliability of microelectronic packages. It is well documented that isothermal aging degrades the creep resistance of SAC solder. SAC305 alloy is aged for (24-1000) h at (25-100)°C (~0.6-0.8 × T melt). Cross-sectioning and image processing techniques were used to periodically quantify the effect of isothermal aging on phase coarsening and evolution. The parameters monitored during isothermal aging include size, area fraction, and inter-particle spacing of nanoscale Ag3Sn intermetallic compounds (IMCs) and the volume fraction of micronscale Cu6Sn5 IMCs, as well as the area fraction of pure tin dendrites. Effects of microstructural evolution on secondary creep constitutive response of SAC305 solder joints were then modeled using a mechanistic multiscale creep model. The mechanistic phenomena modeled include: (1) dispersion strengthening by coarsened nanoscale Ag3Sn IMCs in the eutectic phase; and (2) load sharing between pro-eutectic Sn dendrites and the surrounding coarsened eutectic Sn-Ag phase and microscale Cu6Sn5 IMCs. The coarse-grained polycrystalline Sn microstructure in SAC305 solder was not captured in the above model because isothermal aging does not cause any significant change in the initial grain size and orientation of SAC305 solder joints. The above mechanistic model can successfully capture the drop in creep resistance due to the influence of isothermal aging on SAC305 single crystals. Contribution of grain boundary sliding to the creep strain of

  13. 99mTc bone scanning agents preparation and chemical analysis of Tc(Sn)pyrophosphate, Tc(Sn)MDP and Tc(Sn)HMDP

    International Nuclear Information System (INIS)

    Kroesbergen, J.

    1986-01-01

    This thesis describes a comparison of the preparation, composition and properties of three bone scanning agents: 99m Tc(Sn)pyrophosphate, 99m Tc(Sn)MDP and 99m Tc(Sn)HMDP. This study has been performed for two reasons: First to investigate the preparation and composition of the radiopharmaceuticals as a function of experimental conditions. Together with previously reported results for 99m Tc(Sn)EHDP, obtained in a similar way, this enables to use well-defined preparations of the bone scanning agents. Secondly to gain an insight in the mechanism in which the agents behave 'in vivo'. Because the 'in vivo' process is too complicated to study directly, it seemed more appropriate to perform 'in vitro' investigations as simplifications of the 'in vivo' situation. 304 refs.; 26 figs.; 31 tabs

  14. Clinical Investigation Program Fiscal Year 1987.

    Science.gov (United States)

    1987-10-01

    Cervical Dysphagia : Criteria for Patient Selection. Gary P. Wratten Surg Symposium, El Paso, TX, Apr 1987 Kreder KJ: A Massive Testicular Tumor in a...Academy of Otolaryngology-Head and Neck Surgery Ann Meeting, Chicago, IL, Sep 1987 Parkinson DW, Reinker KA: Slipped Capital Femoral Epiphysis and Renal...Osteodystrophy: A Case Report with Five Years Follow-Up, 28th Ann Society of Military Orthopaedic Surgeons, Colorado Springs, CO, Nov 1986 Parkinson

  15. A novel method for massive synthesis of SnO2 nanowires

    Indian Academy of Sciences (India)

    Compositions of three reaction systems for synthesizing SnO2 nanowires by thermite reaction. Constituents (g) ... ing voltage and at a magnification of 3000. .... nanowires to obtain the distribution shown in figure 7. SnO2 ... The Sn drop sprayed ...

  16. SnSAG5 is an alternative surface antigen of Sarcocystis neurona strains that is mutually exclusive to SnSAG1.

    Science.gov (United States)

    Crowdus, Carolyn A; Marsh, Antoinette E; Saville, Willliam J; Lindsay, David S; Dubey, J P; Granstrom, David E; Howe, Daniel K

    2008-11-25

    Sarcocystis neurona is an obligate intracellular parasite that causes equine protozoal myeloencephalitis (EPM). Previous work has identified a gene family of paralogous surface antigens in S. neurona called SnSAGs. These surface proteins are immunogenic in their host animals, and are therefore candidate molecules for development of diagnostics and vaccines. However, SnSAG diversity exists in strains of S. neurona, including the absence of the major surface antigen gene SnSAG1. Instead, sequence for an alternative SnSAG has been revealed in two of the SnSAG1-deficient strains. Herein, we present data characterizing this new surface protein, which we have designated SnSAG5. The results indicated that the protein encoded by the SnSAG5 sequence is indeed a surface-associated molecule that has characteristics consistent with the other SAGs identified in S. neurona and related parasites. Importantly, Western blot analyses of a collection of S. neurona strains demonstrated that 6 of 13 parasite isolates express SnSAG5 as a dominant surface protein instead of SnSAG1. Conversely, SnSAG5 was not detected in SnSAG1-positive strains. One strain, which was isolated from the brain of a sea otter, did not express either SnSAG1 or SnSAG5. Genetic analysis with SnSAG5-specific primers confirmed the presence of the SnSAG5 gene in Western blot-positive strains, while also suggesting the presence of a novel SnSAG sequence in the SnSAG1-deficient, SnSAG5-deficient otter isolate. The findings provide further indication of S. neurona strain diversity, which has implications for diagnostic testing and development of vaccines against EPM as well as the population biology of Sarcocystis cycling in the opossum definitive host.

  17. Airborne and deposited radioactivity in Finland in 1987

    International Nuclear Information System (INIS)

    Aaltonen, H.; Saxen, R.; Ikaeheimonen, T.K.

    1990-04-01

    In the air surveillance programme concentrations of artificial radionuclides are monitored in the air close to the ground. In 1987, air dust samples were collected in Nurmijaervi, 40 km north of Helsinki and in Rovaniemi. When necessary, sampling was also launched in Helsinki. Several radionuclides originating from the accident in Chernobyl in 1987 could still be detected in air dust samples. A sharp decrease in the amounts of radioactive subtances deposited was noted at all the 18 sampling stations as against 1986. The total annual amounts of deposited 137 Cs varied at different stations in 1987 from 7.7 Bq/m 2 (Rovaniemi) to 1500 Bq/m 2 (Kauhava) and those of 90 Sr in 1986 from 4.7 Bq/m 2 (Taivalkoski) to 590 Bq/m 2 (Kuhmo) and in 1987 from 1.4 Bq/m 2 (Ivalo) to 38 Bq/m 2 (Kuhmo). The total annual amounts of 238 Pu and 239 , 240 Pu were 3.1 and 12 mBq/m 2 in Nurmijaervi and 3.4 and 14 mBq/m 2 and Lappeenranta in 1987, respectively. In 1987, resuspension of radionuclides was characteristic of the depostion situation. Due to this phenomenon, unexpectedly high contents of deposited radiocesium occurred occasionally in the samples, though the discharge caused by the Chernobyl accident lasted for only a short period in spring 1986. The proportion of 137 Cs originating from Chernobyl in 1987 varied from 3% to about 40% of the corresponding amounts in 1986 at different stations. The corresponding percentages for 90 Sr varied from 1.6% to 34%

  18. SnO2Nanowire Arrays and Electrical Properties Synthesized by Fast Heating a Mixture of SnO2and CNTs Waste Soot

    Directory of Open Access Journals (Sweden)

    Zhou Zhi-Hua

    2009-01-01

    Full Text Available Abstract SnO2nanowire arrays were synthesized by fast heating a mixture of SnO2and the carbon nanotubes waste soot by high-frequency induction heating. The resultant SnO2nanowires possess diameters from 50 to 100 nm and lengths up to tens of mircrometers. The field-effect transistors based on single SnO2nanowire exhibit that as-synthesized nanowires have better transistor performance in terms of transconductance and on/off ratio. This work demonstrates a simple technique to the growth of nanomaterials for application in future nanoelectronic devices.

  19. Fluid sensitive nanoscale switching with quantum levitation controlled by $\\alpha$-Sn/$\\beta$-Sn phase transition

    OpenAIRE

    Boström, Mathias; Dou, Maofeng; Malyi, Oleksandr I.; Parashar, Prachi; Parsons, Drew F.; Brevik, Iver; Persson, Clas

    2018-01-01

    We analyze the Lifshitz pressure between silica and tin separated by a liquid mixture of bromobenzene and chlorobenzene. We show that the phase transition from semimetallic α−Sn to metallic β−Sn can switch Lifshitz forces from repulsive to attractive. This effect is caused by the difference in dielectric functions of α−Sn and β−Sn, giving both attractive and repulsive contributions to the total Lifshitz pressure in different frequency regions controlled by the composition of the intervening l...

  20. The tin-rich copper lithium stannides: Li3Cu6Sn4 and Li2CuSn2

    International Nuclear Information System (INIS)

    Fuertauer, Siegfried; Flandorfer, Hans; Effenberger, Herta S.

    2015-01-01

    The Sn rich ternary intermetallic compounds Li 3 Cu 6 Sn 4 (CSD-427097) and Li 2 CuSn 2 (CSD-427098) were synthesized from the pure elements by induction melting and annealing at 400 C. Structural investigations were performed by powder- and single-crystal XRD. Li 3 Cu 6 Sn 4 crystallizes in space group P6/mmm; it is structurally related to but not isotypic with MgFe 6 Ge 6 (a = 5.095(2) Aa, c = 9.524(3) Aa; wR 2 = 0.059; 239 unique F 2 -values, 17 free variables). Li 3 Cu 6 Sn 4 is characterized by two sites with a mixed Cu:Sn occupation. In contrast to all other Cu-Li-Sn compounds known so far, any mixed occupation was found for Cu-Li pairs only. In addition, one Li site is only half occupied. The second Sn rich phase is Li 2 CuSn 2 (space group I4 1 /amd, a = 4.4281(15) Aa, c = 19.416(4) Aa; wR 2 = 0.033; 213 unique F 2 -values, 12 atom free variables); it is the only phase in the Cu-Li-Sn system which is noted for full ordering. Both crystal structures exhibit 3D-networks which host Li atoms in channels. They are important for understanding the lithiation mechanism in Cu-Sn electrodes for Li-ion batteries.

  1. Microstructural investigation and SnO nanodefects in spray-pyrolyzed SnO2 thin films

    DEFF Research Database (Denmark)

    Thanachayanont, Chanchana; Yordsri, Visittapong; Boothroyd, Chris

    2011-01-01

    Spray pyrolysis is one of the most cost-effective methods to prepare SnO2 films due to its ability to deposit large uniform area, low fabrication cost, simplicity and low deposition temperature. Conventionally, scanning electron microscopy (SEM) and X-Ray Diffraction (XRD) are routinely used...... diffraction (CBED). It was found that large grain-size vertically-aligned columnar SnO2 grains were formed after a few layers of small grain-size randomly oriented SnO2 grains. Moreover, CBED showed the presence of SnO nanodefects that had not been reported before and could not be detected by SEM or XRD....

  2. Limits on an optical pulsar in supernova 1987A

    International Nuclear Information System (INIS)

    Pennypacker, C.R.; Morris, D.E.; Muller, R.A.

    1989-01-01

    Since March 1987 the optical flux from supernova 1987A for periodic pulsations has been sought. As of August 1988, after 38 separate observations, no pulsar has been detected. The typical upper limit placed on the pulsed fraction optical light from the supernova is 0.0002, for pulse frequencies in the range 0.03-5000 Hz. The best limit on the pulsed fraction of supernova light is 7 x 10 to the -6th, on January 22, 1988. On August 28, 1988 the faintest limit for the magnitude of the pulsar, dimmer than 20th mag is reached. These limits are based on Fourier transforms of up to 67 million points, covering a range of spindown rates. 25 refs

  3. Li2SnO3 derived secondary Li-Sn alloy electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, D.W.; Zhang, S.Q.; Jin, Y.; Yi, T.H.; Xie, S.; Chen, C.H.

    2006-01-01

    As a possible high-capacity Li-ion battery anode material, Li 2 SnO 3 was prepared via a solid-state reaction route and a sol-gel route, separately. Its electrochemical performance was tested in coin-type cells with metallic Li as the counter electrode. The results show that the sol-gel derived Li 2 SnO 3 has uniform nano-sized particles (200-300 nm) and can deliver a better reversible capacity (380 mAh/g after 50 cycles in the voltage window of 0-1 V) than that from the solid-state reaction route. The characterizations by means of galvanostatic cycling, cyclic voltammetry and ex situ X-ray diffraction indicate that the electrochemical process of the Li 2 SnO 3 lithiation proceeds with an initial structural reduction of the composite oxide into Sn-metal and Li 2 O followed by a reversible Li-Sn alloy formation in the Li 2 O matrix. Due to the buffer role of the Li 2 O matrix, the reversibility of the secondary Li-Sn alloy electrode is largely secured

  4. Sn whiskers removed by energy photo flashing

    International Nuclear Information System (INIS)

    Jiang, N.; Yang, M.; Novak, J.; Igor, P.; Osterman, M.

    2012-01-01

    Highlights: ► Sn whiskers were sintered by intense light flashing (Photosintering). ► Photosintering can effectively eliminate Sn whiskers. ► Photosintering would not damage electronic devices. ► Photosintering is a very promising approach to improve Sn-based electronic surface termination. - Abstract: Sn whiskers have been known to be the major issue resulting in electronic circuit shorts. In this study, we present a novel energy photo flashing approach (photosintering) to shorten and eliminate Sn whiskers. It has been found that photosintering is very effective to modify and remove Sn whiskers; only a sub-millisecond duration photosintering can amazingly get rid of over 90 vol.% of Sn whiskers. Moreover, this photosintering approach has also been proved to cause no damages to electronic devices, suggesting it is a potentially promising way to improve Sn-based electronic surface termination.

  5. SN 2006bt: A PERPLEXING, TROUBLESOME, AND POSSIBLY MISLEADING TYPE Ia SUPERNOVA

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Narayan, Gautham; Challis, Peter J.; Kirshner, Robert P.; Filippenko, Alexei V.; Silverman, Jeffrey M.; Steele, Thea N.

    2010-01-01

    SN 2006bt displays characteristics unlike those of any other known Type Ia supernova (SN Ia). We present optical light curves and spectra of SN 2006bt which demonstrate the peculiar nature of this object. SN 2006bt has broad, slowly declining light curves indicative of a hot, high-luminosity SN, but lacks a prominent second maximum in the i band as do low-luminosity SNe Ia. Its spectra are similar to those of low-luminosity SNe Ia, containing features that are only present in cool SN photospheres. Light-curve fitting methods suggest that SN 2006bt is reddened by a significant amount of dust; however, it occurred in the outskirts of its early-type host galaxy and has no strong Na D absorption in any of its spectra, suggesting a negligible amount of host-galaxy dust absorption. C II is possibly detected in our pre-maximum spectra, but at a much lower velocity than other elements. The progenitor was likely very old, being a member of the halo population of a galaxy that shows no signs of recent star formation. SNe Ia have been very successfully modeled as a one-parameter family, and this is fundamental to their use as cosmological distance indicators. SN 2006bt is a challenge to that picture, yet its relatively normal light curves allowed SN 2006bt to be included in cosmological analyses. We generate mock SN Ia data sets which indicate that contamination by similar objects will both increase the scatter of a SN Ia Hubble diagram and systematically bias measurements of cosmological parameters. However, spectra and rest-frame i-band light curves should provide a definitive way to identify and eliminate such objects.

  6. Polarographic determination of Sn (II) and total Sn in PYRO and MDP radiopharmaceutical kits

    International Nuclear Information System (INIS)

    Sebastian, Maria V.A.; Lugon, Marcelo Di M.V.; Silva, Jose L. da; Fukumori, Neuza T.O.; Pereira, Nilda P.S. de; Silva, Constancia P.G. da; Matsuda, Margareth M.N.

    2007-01-01

    A sensitive, alternative method to atom absorption spectrometry, fluorimetry or potentiometry for the evaluation of tin(II) ions (0.1- 10 mg) and total tin in radiopharmaceutical kits was investigated. Differential pulse polarography was chosen. The supporting electrolyte was H 2 SO 4 3 mol L -1 and HCl 3 mol L -1 solution. The potential was swept from -250 to -800 mV vs Ag/AgCl/saturated KCl, using a dropping mercury electrode with 1 s drop time, 50 mV s -1 scan rate, -50 mV pulse amplitude, 40 ms pulse time and 10 mV step amplitude. Pure nitrogen was used to deaerate the polarographic cell solution for 5 min, before and after each sample introduction. Oxidation of Sn(II) was made in the same sample vial by adding H 2 O 2 (hydrogen peroxide) 10 mol L -1 , at 37 deg C, in order to quantify the total Sn. The calibration curve for Sn(II) and Sn(IV) was obtained in the concentration range of 0-10 ppm from a 1000 ppm standard solution. The detection limit of Sn(II) is 0.5 ppm and for Sn(IV) is 0.6 ppm. Differential pulse polarography was performed in the pyrophosphate (PYRO) and methylenediphosphonic acid (MDP) radiopharmaceutical kits, containing 2 mg and 1 mg of SnCl 2 .2H 2 O per vial, respectively. The described method for determination of stannous ion (Sn(II)), is selective, reproducible and adequate to be used in the quality control of lyophilized reagents and it shall be performed for other cold kits produced at IPEN. (author)

  7. Earth Sciences annual report, 1987

    International Nuclear Information System (INIS)

    Younker, L.W.; Donohue, M.L.; Peterson, S.J.

    1988-12-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications

  8. Syntheses, structural variants and characterization of AInM′S{sub 4} (A=alkali metals, Tl; M′ = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS{sub 4} and KInSnS{sub 4} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2016-06-15

    Ten AInM′S{sub 4} (A=alkali metals, Tl; M′= Ge, Sn) compounds with diverse structure types have been synthesized and characterized by single crystal and powder X-ray diffraction and a variety of spectroscopic methods. They are wide band gap semiconductors. KInGeS{sub 4}(1-β), RbInGeS{sub 4}(2), CsInGeS{sub 4}(3-β), TlInGeS{sub 4}(4-β), RbInSnS{sub 4}(8-β) and CsInSnS{sub 4}(9) compounds with three-dimensional BaGa{sub 2}S{sub 4} structure and CsInGeS{sub 4}(3-α) and TlInGeS{sub 4}(4-α) compounds with a layered TlInSiS{sub 4} structure have tetrahedral [InM′S{sub 4}]{sup −} frameworks. On the other hand, LiInSnS{sub 4}(5) with spinel structure and NaInSnS{sub 4}(6), KInSnS{sub 4}(7), RbInSnS{sub 4}(8-α) and TlInSnS{sub 4}(10) compounds with layered structure have octahedral [InM′S{sub 4}]{sup −} frameworks. NaInSnS{sub 4}(6) and KInSnS{sub 4}(7) compounds undergo facile topotactic ion-exchange, at room temperature, with various mono-, di- and tri-valent cations in aqueous medium to give rise to metastable layered phases. - Graphical abstract: NaInSnS{sub 4} and KInSnS{sub 4} compounds undergo, in aqueous medium at room temperature, facile topotactic ion-exchange with mono, di and trivalent cations. Display Omitted - Highlights: • Ten AInM′S{sub 4} compounds with diverse structure types were synthesized. • They are wide band gap semiconductors. • NaInSnS{sub 4} and KInSnS{sub 4} compounds undergo facile topotactic ion-exchange at room temperature.

  9. Assessment of people exposure to contamination with radioactive substances removed to the atmosphere from nuclear objects of Swierk Centre, Poland, in the period of 1987-1992

    International Nuclear Information System (INIS)

    Filipiak, B.; Nowicki, K.

    1995-01-01

    The exposure of particular persons, living in the near surroundings of Nuclear Centre - Swierk near Warsaw, Poland, to radioactive substances removed to the atmosphere during the period 1987-1992 has been assessed. The effective dose equivalent for statistically critical groups of persons has been estimated. The results have been compared with maximum permitted dose limits. 17 refs, 12 tabs

  10. Internal friction behavior of liquid Bi-Sn alloys

    International Nuclear Information System (INIS)

    Wu Aiqing; Guo Lijun; Liu Changsong; Jia Erguang; Zhu Zhengang

    2005-01-01

    Pure Bi and Sn and four Bi-Sn alloys distributed on the entire concentration range were selected for internal-friction investigation over a wide temperature range. There exist two peaks in the plots of internal friction versus temperature for liquid Sn, Bi-Sn60 and Bi-Sn90 alloys, one peak being located at about 480 - bar Cand another at about 830 - bar C. Only a single internal-friction peak at about 830 - bar C occurs in liquid Bi-Sn43 (eutectic composition). No internal-friction peak appears in liquid Bi-Sn20 alloy and pure Bi. The height of the internal-friction peaks depends on the content of Sn. The present finding suggests that Sn-rich Bi-Sn alloys may inherit the internal-friction behaviors of pure Sn, whereas Bi-rich Bi-Sn alloy seems to be like pure Bi. The position of the internal-friction peaks is frequency dependent, which resembles the internal-friction feature in structure transition in solids

  11. Internal friction behavior of liquid Bi-Sn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu Aiqing [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Guo Lijun [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Liu Changsong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Jia Erguang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Zhu Zhengang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China)]. E-mail: zgzhu@issp.ac.cn

    2005-12-01

    Pure Bi and Sn and four Bi-Sn alloys distributed on the entire concentration range were selected for internal-friction investigation over a wide temperature range. There exist two peaks in the plots of internal friction versus temperature for liquid Sn, Bi-Sn60 and Bi-Sn90 alloys, one peak being located at about 480{sup -}bar Cand another at about 830{sup -}bar C. Only a single internal-friction peak at about 830{sup -}bar C occurs in liquid Bi-Sn43 (eutectic composition). No internal-friction peak appears in liquid Bi-Sn20 alloy and pure Bi. The height of the internal-friction peaks depends on the content of Sn. The present finding suggests that Sn-rich Bi-Sn alloys may inherit the internal-friction behaviors of pure Sn, whereas Bi-rich Bi-Sn alloy seems to be like pure Bi. The position of the internal-friction peaks is frequency dependent, which resembles the internal-friction feature in structure transition in solids.

  12. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale

    Directory of Open Access Journals (Sweden)

    Jianmei Wang

    2017-09-01

    Full Text Available To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view.

  13. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale.

    Science.gov (United States)

    Wang, Jianmei; Xia, Quanzhi; Ma, Yang; Meng, Fanning; Liang, Yinan; Li, Zhixiong

    2017-09-25

    To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view.

  14. In situ 119Sn Moessbauer spectroscopy used to study lithium insertion in c-Mg2Sn

    International Nuclear Information System (INIS)

    Aldon, L.; Ionica, C. M.; Lippens, P. E.; Larcher, D.; Tarascon, J.-M.; Olivier-Fourcade, J.; Jumas, J.-C.

    2006-01-01

    The electrochemical reactions of Li with c-Mg 2 Sn have been investigated by in situ Moessbauer spectroscopy of 119 Sn and X-ray diffraction. The lithiation transforms initially c-Mg 2 Sn part into Li x Mg 2 Sn alloy (x 2 MgSn ternary alloy. In situ Moessbauer spectroscopy provides valuable information on local environment of tin and swelling behavior and cracking of the particles during discharge and charge processes.

  15. Phase Equilibria of the Ternary Sn-Pb-Co System at 250°C and Interfacial Reactions of Co with Sn-Pb Alloys

    Science.gov (United States)

    Wang, Chao-hong; Kuo, Chun-yi; Yang, Nian-cih

    2015-11-01

    The isothermal section of the ternary Sn-Pb-Co system at 250°C was experimentally determined through a series of the equilibrated Sn-Pb-Co alloys of various compositions. The equilibrium phases were identified on the basis of compositional analysis. For the Sn-Co intermetallic compounds (IMCs), CoSn3, CoSn2, CoSn and Co3Sn2, the Pb solubility was very limited. There exist five tie-triangle regions. The Co-Pb system involves one monotectic reaction, so the phase separation of liquid alloys near the Co-Pb side occurred prior to solidification. The immiscibility field was also determined. Additionally, interfacial reactions between Co and Sn-Pb alloys were conducted. The reaction phase for the Sn-48 at.%Pb and Sn-58 at.%Pb at 250°C was CoSn3 and CoSn2, respectively. Both of them were simultaneously formed in the Sn-53 at.%Pb/Co. The formed IMCs were closely associated to the phase equilibria relationship of the liquid-CoSn3-CoSn2 tie-triangle. Furthermore, with increasing temperatures, the phase formed in equilibrium with Sn-37 wt.%Pb was found to transit from CoSn3 to CoSn2 at 275°C. We propose a simple method of examining the phase transition temperature in the interfacial reactions to determine the boundaries of the liquid-CoSn3-CoSn2 tie-triangles at different temperatures.

  16. Stable and metastable equilibria in PbSe + SnI2=SnSe + PbI2

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Demidova, E.D.

    2003-01-01

    T-x-y phase diagrams of the PbSe + SnI 2 =SnSe + PbI 2 mutual system (stable states) are plotted for the first time. It is shown that melt, solid solutions on the base of components of the mutual system and phase on the base of Sn 2 SeI 4 take part in phase equilibria. Transformations in the PbSe + SnI 2 =SnSe + PbI 2 mutual system leading to crystallization of metastable polytype modifications of lead iodides and metastable ternary compound forming in PbSe-PbI 2 system are investigated for the first time [ru

  17. Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration

    Science.gov (United States)

    Wang, Wenhui; Shi, Liang; Lan, Danni; Li, Quan

    2018-02-01

    Flower-like SnS nanostructures are obtained by a simple solvothermal method for anode applications in Na-ion batteries. We show experimental evidence of progressive Sn agglomeration and crystalline Na2S enrichment at the end of de-sodiation process of the SnS electrode, both of which contribute to the capacity decay of the electrode upon repeated cycles. By replacing the commonly adopted acetylene black conductive additive with multi-wall carbon nanotubes (MWCNT), the cycle stability of the SnS electrode is largely improved, which correlates well with the observed suppression of both Sn agglomeration and Na2S enrichment at the end of de-sodiation cycle. A full cell is assembled with the SnS/MWCNT anode and the P2-Na2/3Ni1/3Mn1/2Ti1/6O2 cathode. An initial energy density of 262 Wh/kg (normalized to the total mass of cathode and anode) is demonstrated for the full cell, which retains 71% of the first discharge capacity after 40 cycles.

  18. Fluid-sensitive nanoscale switching with quantum levitation controlled by α -Sn/β -Sn phase transition

    Science.gov (United States)

    Boström, Mathias; Dou, Maofeng; Malyi, Oleksandr I.; Parashar, Prachi; Parsons, Drew F.; Brevik, Iver; Persson, Clas

    2018-03-01

    We analyze the Lifshitz pressure between silica and tin separated by a liquid mixture of bromobenzene and chlorobenzene. We show that the phase transition from semimetallic α -Sn to metallic β -Sn can switch Lifshitz forces from repulsive to attractive. This effect is caused by the difference in dielectric functions of α -Sn and β -Sn , giving both attractive and repulsive contributions to the total Lifshitz pressure in different frequency regions controlled by the composition of the intervening liquid mixture. In this way, one may be able to produce phase-transition-controlled quantum levitation in a liquid medium.

  19. Radioactivity in foodstuffs 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The dose of radioactivity to which the average Norwegian consumer was exposed through the consumption of food during the year immediately following the Chernobyl accident was 0.15 mSv. Certain individuals with special dietary habits (large proportions of freswater fish and reindeer meat), and who live in regions particularly affected by radionuclide contamination, have been exposed to higher doses (0.4 to 1.8 mSv). These doses would have been considerably higher had not dietary advise been followed. Even though health risk assessments suggested in the spring of 1987 that it was reasonable to revoke the action levels then in force, they were nevertheless maintained after political consideration of the situation. Measures implemented in 1987 have resulted in a certain reduction of the dose to which the population has been exposed, and the associated costs have also fallen considerably in relation to the situation in 1986. The present report summarizes analytical results of monitoring and surveillance activities in 1987 and describes the measures introduced with regard to the various categories of food. Measures have been introduced primarily in connection with sheep meat production and reindeer farming, even if certain measures have been necessary also with regard to goat milk and cheese manufacture

  20. Stabilization of a Nb3Sn persistent current switch

    International Nuclear Information System (INIS)

    Urata, M.; Maeda, H.; Nakayama, S.; Yoneda, E.; Oda, Y.; Kumano, T.; Aoki, N.; Tomisaki, T.; Kabashima, S.

    1993-01-01

    A 2000 A class Nb 3 Sn persistent current switch has been successfully fabricated in the Toshiba R and D Center. The Nb tube processed conductor with Cu-10 wt.% Ni matrix has been developed for the switch in the Showa Electric Wire and Cable Co. Ltd. The magnetic instability which was observed in the previous 35 Ω Nb 3 Sn persistent current switch was improved in the present switch. The problem of quench current degradation and flux jump on magnetization, emerged in the previous switch, were confirmed to be solved. In the fast ramp, however, the switch degrades from the calculated results assuming the self field ac loss. In the Nb 3 Sn reaction process, Sn in the bronze diffuses into the Nb tube, which decreases the switch resistance. It was observed by a computer aided micro analysis (CMA) that Ni in the CuNi matrix precipitated on the Nb tube, which slightly reduced the switch resistance. (orig.)

  1. Preparation of PtSnCu/C and PtSn/C electrocatalysts and activation by dealloying processes for ethanol electrooxidation; Preparacao de eletrocatalisadores PtSnCu/C e PtSn/C e ativacao por processos de dealloying para aplicacao na oxidacao eletroquuimica do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Crisafulli, Rudy

    2013-06-01

    PtSnCu/C (with different Pt:Sn:Cu atomic ratios) and PtSn/C (50:50) electrocatalysts were prepared by borohydride (BR) and alcohol-reduction (AR) processes using H{sub 2}PtCl{sub 6}.6H{sub 2}O, SnCl{sub 2}.2H{sub 2}O and CuCl{sub 2}.2H{sub 2}O as metal sources, NaBH{sub 4} and ethylene glycol as reducing agents, 2-propanol and ethylene glycol/water as solvents and carbon black as support. In a further step, these electrocatalysts were activated by chemical (CD) and electrochemical (ED) dealloying processes through acid treatment and thin porous coating technique, respectively. These materials were characterized by energy dispersive X-ray, Xray diffraction, transmission electron microscopy, line scan energy dispersive Xray and cyclic voltammetry. Electrochemical studies for ethanol electro-oxidation were performed by cyclic voltammetry, chronoamperometry and in single Direct Ethanol Fuel Cell using Membrane Electrode Assembly (MEA). The anodic effluents were analysed by gas chromatography. The X-ray diffractograms of the as-synthesized electrocatalysts showed the typical face-centered cubic structure (FCC) of platinum and its alloys. After dealloying, the X-ray diffractograms showed that the Pt FCC structure was preserved. The crystallite sizes of the assynthesized electrocatalysts were in the range of <=2 nm to 3 nm and after dealloying there were no significant variations in sizes. The energy dispersive Xray analysis of the as-synthesized electrocatalysts showed a Pt:Sn and Pt:Sn:Cu atomic ratios similar to the nominal values. After chemical and electrochemical dealloying of the electrocatalysts the ranged Pt:Sn and Pt:Sn:Cu atomic ratios showed that Cu and Sn atoms were removed. However, chemical dealloying process proved to be more efficient for removing Cu and electrochemical dealloying for removing Sn. The line scan energy dispersive X-ray analysis showed that acid and electrochemical treatments were efficient to dealloying Cu and/or Sn superficial atoms of

  2. Band Alignments, Valence Bands, and Core Levels in the Tin Sulfides SnS, SnS2, and Sn2S3: Experiment and Theory

    OpenAIRE

    Whittles, TJ; Burton, LA; Skelton, JM; Walsh, A; Veal, TD; Dhanak, VR

    2016-01-01

    Tin sulfide solar cells show relatively poor efficiencies despite attractive photovoltaic properties, and there is difficulty in identifying separate phases, which are also known to form during Cu2ZnSnS4 depositions. We present X-ray photoemission spectroscopy (XPS) and inverse photoemission spectroscopy measurements of single crystal SnS, SnS2, and Sn2S3, with electronic-structure calculations from density functional theory (DFT). Differences in the XPS spectra of the three phases, including...

  3. Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978-1987

    DEFF Research Database (Denmark)

    Korsgaard, Niels J.; Nuth, Christopher; Khan, Shfaqat Abbas

    2016-01-01

    Digital Elevation Models (DEMs) play a prominent role in glaciological studies for the mass balance of glaciers and ice sheets. By providing a time snapshot of glacier geometry, DEMs are crucial for most glacier evolution modelling studies, but are also important for cryospheric modelling...... in general. We present a historical medium-resolution DEM and orthophotographs that consistently cover the entire surroundings and margins of the Greenland Ice Sheet 1978-1987. About 3,500 aerial photographs of Greenland are combined with field surveyed geodetic ground control to produce a 25 m gridded DEM...... is better than 4 m. This dataset proved successful for topographical mapping and geodetic mass balance. Other uses include control and calibration of remotely sensed data such as imagery or InSAR velocity maps....

  4. The recruitment of the U5 snRNP to nascent transcripts requires internal loop 1 of U5 snRNA.

    Science.gov (United States)

    Kim, Rebecca; Paschedag, Joshua; Novikova, Natalya; Bellini, Michel

    2012-12-01

    In this study, we take advantage of the high spatial resolution offered by the nucleus and lampbrush chromosomes of the amphibian oocyte to investigate the mechanisms that regulate the intranuclear trafficking of the U5 snRNP and its recruitment to nascent transcripts. We monitor the fate of newly assembled fluorescent U5 snRNP in Xenopus oocytes depleted of U4 and/or U6 snRNAs and demonstrate that the U4/U6.U5 tri-snRNP is not required for the association of U5 snRNP with Cajal bodies, splicing speckles, and nascent transcripts. In addition, using a mutational analysis, we show that a non-functional U5 snRNP can associate with nascent transcripts, and we further characterize internal loop structure 1 of U5 snRNA as a critical element for licensing U5 snRNP to target both nascent transcripts and splicing speckles. Collectively, our data support the model where the recruitment of snRNPs onto pre-mRNAs is independent of spliceosome assembly and suggest that U5 snRNP may promote the association of the U4/U6.U5 tri-snRNP with nascent transcripts.

  5. Exploring SiSn as a performance enhancing semiconductor: A theoretical and experimental approach

    KAUST Repository

    Hussain, Aftab M.

    2014-12-14

    We present a novel semiconducting alloy, silicon-tin (SiSn), as channel material for complementary metal oxide semiconductor (CMOS) circuit applications. The material has been studied theoretically using first principles analysis as well as experimentally by fabricating MOSFETs. Our study suggests that the alloy offers interesting possibilities in the realm of silicon band gap tuning. We have explored diffusion of tin (Sn) into the industry\\'s most widely used substrate, silicon (100), as it is the most cost effective, scalable and CMOS compatible way of obtaining SiSn. Our theoretical model predicts a higher mobility for p-channel SiSn MOSFETs, due to a lower effective mass of the holes, which has been experimentally validated using the fabricated MOSFETs. We report an increase of 13.6% in the average field effect hole mobility for SiSn devices compared to silicon control devices.

  6. Radioactivity of people in Finland in 1987

    International Nuclear Information System (INIS)

    Rahola, T.; Suomela, M.; Illukka, E.; Pusa, S.

    1989-08-01

    The atmospheric nuclear bomb tests in the 1950s, '60s and '70s caused global radioactive fallout. After the reactor accident at Chernobyl on April 26, 1986, radioactive fallout was carried by by air streams to most parts of Europe. In 1987 radionuclides causing internal contamination were transported to man only via different foodchains and no longer via inhalation, as had happened immediately after the Chernobyl accident. To determine the level of radionuclides in the body and to estimate the internal radiation doses caused by the Chernobyl accident, whole-body counting measurements were performed. Ten different groups of people were measured during 1987. Three were local reference groups, two groups of radiation workers, one a population group representing the whole country and four groups representing those with special dietary habits. The weighted mean 137 Cs body burden in the population group was 2000 Bq at the end of 1987, the minimum body burden being 200 Bq and the maximum 10000 Bq. The measurement results showed that the maximum body burdens were reached in the summer 1987. The groups with special diets did not necessarily follow this pattern. The mean effective dose equivalents delivered in 1987 to people in Finland, estimated by using the measurement results of the population group, was 0.08 mSv, the corresponding dose equivalent in 1986 bein 0.06 mSv

  7. Studies on environmental radioactivity in Finland in 1987

    International Nuclear Information System (INIS)

    Suomela, M.; Blomqvist, L.; Rahola, T.; Rantavaara, A.

    1991-03-01

    The detailed results of the surveillance of environmental radioactivity in 1987 are given in 10 supplementary reports to this 1987 annual report which summarizes only the data needed for radiation dose estimates. In 1987, two radionuclides, 137 Cs and 134 Cs originating in the fallout from the Chernobyl accident, were important in determining external and internal radiation doses. The population-weighted mean external dose rate in October 1987 was 0.037 x 10 - 6 Svh - 1. The decline in the dose rate was slower than predicted in 1986. The mean effective dose equivalent was 0.10 mSv in 1987, one third lower than in 1986. The predicted dose commitment from external radiation was estimated at 1.7 mSv. The internal radiation doses were calculated in two different ways, via estimation of dietary intake and using whole-body counting results. The intake estimate was obtained from the nationwide survey of radiocesium concentrations in foodstuffs and consumption statistics. The mean annual intake of 137 Cs was 14 000 and that of 134 Cs 5600 Bq in 1987. About half of the intake came from agricultural products, one third from fish and the rest from wild berries, mushrooms and game. The resulting committed effective dose equivalent, 0.3 mSv, provides an upper estimate for the mean internal dose in 1987. The population group whole-body counted was selected from the whole population in 1986 using stratified sampling. As in 1986, the 137 Cs and 134 Cs body burdens reflected the deposition activity in the region in which people lived. The mean committed effective dose equivalent for the whole population based on whole-body counting was 0.13 mSv. About 0.08 mSv of this dose was delivered in 1987. The contribution of 134 Cs was less than 40 per cent

  8. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Foley, Ryan J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Chornock, Ryan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Holtzman, Jon A. [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Balam, David D. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Branch, David [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Frieman, Joshua [Kavli Institute for Cosmological Physics and Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Fynbo, Johan; Leloudas, Giorgos [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Galbany, Lluis [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Leonard, Douglas C., E-mail: cmccully@physics.rutgers.edu [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); and others

    2014-05-10

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n{sub e} ≳ 10{sup 9} cm{sup –3}. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  9. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    International Nuclear Information System (INIS)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong; Frieman, Joshua; Fynbo, Johan; Leloudas, Giorgos; Galbany, Lluis; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leonard, Douglas C.

    2014-01-01

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n e ≳ 10 9 cm –3 . Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  10. The interfacial free energy of solid Sn on the boundary interface with liquid Cd-Sn eutectic solution

    International Nuclear Information System (INIS)

    Saatci, B; Cimen, S; Pamuk, H; Guenduez, M

    2007-01-01

    Equilibrated grain boundary groove shapes for solid Sn in equilibrium with Cd-Sn liquid were directly observed after annealing a sample at the eutectic temperature for about 8 days. The thermal conductivities of the solid phase, K S , and the liquid phase, K L , for the groove shapes were measured. From the observed groove shapes, the Gibbs-Thomson coefficients were obtained with a numerical method, using the measured G, K S and K L values. The solid-liquid interfacial energy of solid Sn in equilibrium with Cd-Sn liquid was determined from the Gibbs-Thomson equation. The grain boundary energy for solid Sn was also calculated from the observed groove shapes

  11. Nonlocal Cooper pair splitting in a pSn-junction

    NARCIS (Netherlands)

    Veldhorst, M.; Brinkman, Alexander

    2010-01-01

    Perfect Cooper pair splitting is proposed, based on crossed Andreev reflection (CAR) in a p-type semiconductor-superconductor-n-type semiconductor (pSn) junction. The ideal splitting is caused by the energy filtering that is enforced by the band structure of the electrodes. The pSn junction is

  12. In Situ High-Resolution Transmission Electron Microscopy (TEM) Observation of Sn Nanoparticles on SnO2 Nanotubes Under Lithiation.

    Science.gov (United States)

    Cheong, Jun Young; Chang, Joon Ha; Kim, Sung Joo; Kim, Chanhoon; Seo, Hyeon Kook; Shin, Jae Won; Yuk, Jong Min; Lee, Jeong Yong; Kim, Il-Doo

    2017-12-01

    We trace Sn nanoparticles (NPs) produced from SnO2 nanotubes (NTs) during lithiation initialized by high energy e-beam irradiation. The growth dynamics of Sn NPs is visualized in liquid electrolytes by graphene liquid cell transmission electron microscopy. The observation reveals that Sn NPs grow on the surface of SnO2 NTs via coalescence and the final shape of agglomerated NPs is governed by surface energy of the Sn NPs and the interfacial energy between Sn NPs and SnO2 NTs. Our result will likely benefit more rational material design of the ideal interface for facile ion insertion.

  13. Zn{sub 2}SnO{sub 4}-SnO{sub 2} heterojunction nanocomposites for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li Bihui; Luo Lijuan; Xiao Ting; Hu Xiaoyan [Institute of Nano-science and Technology, Central China Normal University, Wuhan, 430079 (China); Lu Lu; Wang, Jianbo [Department of Physics, Wuhan University, Wuhan 430072 (China); Tang Yiwen, E-mail: ywtang@phy.ccnu.edu.cn [Institute of Nano-science and Technology, Central China Normal University, Wuhan, 430079 (China)

    2011-02-03

    Graphical abstract: Display Omitted Research highlights: > The ZTO-SnO{sub 2} based DSSC shows superior photovoltaic performance than single phase ZTO or Pm-ZTO-SnO{sub 2} (physical mixture of ZTO and SnO{sub 2} nanoparticles having the same ZTO/SnO{sub 2} composition) based DSSC. > The obvious improvement in the photovoltaic performance is mainly ascribed to the efficient injected electrons transfer between the two materials via heterojunctions and consequent suppress the recombination. - Abstract: Zn{sub 2}SnO{sub 4}-SnO{sub 2} heterojunction nanocomposites (ZTO-SnO{sub 2}) with high mass amount of ZTO were synthesized by a two-step technique. The route involves firstly the synthesis of monodispersed ZnSn(OH){sub 6} nanocubes with a 50-60 nm edge length as precursors by simple coprecipitation of Na{sub 2}SnO{sub 3}.3H{sub 2}O and ZnCl{sub 2} aqueous solution, assisted by ultrasonic treatment and then followed by calcination of the precursors at 800 deg. C under N{sub 2} atmosphere. The as-synthesized nanoparticles were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Heterojunction between ZTO and SnO{sub 2} nanoparticle was confirmed by the electron energy loss spectroscopy (EELS) elemental mapping and high-resolution TEM (HRTEM). The photovoltaic performance of the ZTO-SnO{sub 2} based DSSC was examined by measuring the J-V curves both in dark and under illumination. The results show that the ZTO-SnO{sub 2} based DSSC exhibits superior photovoltaic performance as compared to the single phase ZTO based DSSCs. Under illumination of AM 1.5 simulated sunlight (100 mW/cm{sup 2}), the open circuit voltage of the cell based on ZTO-SnO{sub 2} is 706 mV, the short-current density is 2.85 mA/cm{sup 2}, and the efficiency is 1.29% which is increased by 43% from 0.90% to 1.29% compared with pure ZTO. The formation of the heterojunctions between ZTO and SnO{sub 2} nanoparticles is believed to reduce

  14. Microstructural evolution and tensile properties of Sn-Ag-Cu mixed with Sn-Pb solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fengjiang [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States); O' Keefe, Matthew [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)], E-mail: mjokeefe@mst.edu; Brinkmeyer, Brandon [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)

    2009-05-27

    The effect of incorporating eutectic Sn-Pb solder with Sn-3.0Ag-0.5Cu (SAC) Pb-free solder on the microstructure and tensile properties of the mixed alloys was investigated. Alloys containing 100, 75, 50, 25, 20, 15, 10, 5 and 0 wt% SAC, with the balance being Sn-37Pb eutectic solder alloy, were prepared and characterized. Optical and scanning electron microscopy were used to analyze the microstructures while 'mini-tensile' test specimens were fabricated and tested to determine mechanical properties at the mm length scale, more closely matching that of the solder joints. Microstructural analysis indicated that a Pb-rich phase formed and was uniformly distributed at the boundary between the Sn-rich grains or between the Sn-rich and the intermetallic compounds in the solder. Tensile results showed that mixing of the alloys resulted in an increase in both the yield and the ultimate tensile strength compared to the original solders, with the 50% SAC-50% Sn-Pb mixture having the highest measured strength. Initial investigations indicate the formation and distribution of a Pb-rich phase in the mixed solder alloys as the source of the strengthening mechanism.

  15. Lithium insertion mechanism in SnS2

    International Nuclear Information System (INIS)

    Lefebvre-Devos, I.; Olivier-Fourcade, J.; Jumas, J.C.; Lavela, P.

    2000-01-01

    We study lithium insertion in SnS 2 by means of 119 Sn Moessbauer spectroscopy, x-ray absorption spectroscopy at Sn L I,III , and S K edges, and theoretical electronic structures (calculated in the density-functional theory framework). An insertion mechanism is derived according to the Li amount. It shows the influence of the SnS 2 -layered structure on the Sn reduction, particularly the possibility of an intermediate oxidation state between Sn IV and Sn II , which is not observed during Li insertion in three-dimensional sulfides

  16. Spectroscopy of the doubly magic nucleus 100Sn and its decay

    International Nuclear Information System (INIS)

    Hinke, Christoph B.

    2010-01-01

    The nucleus 100 Sn has been the aim of a number of experimental approaches. It is of great interest for various reasons. It is presumably the heaviest particle-stable N=Z nucleus and at the same time doubly magic. Its beta decay is of particular importance because it is expected to be the purest Gamow-Teller decay in the nuclear chart and thus allows to study the question of the missing Gamow-Teller strength/the Gamow-Teller quenching due to core polarisation effects. From the beta-coincident decay spectroscopy of the daughter nucleus 100 In information about the proton-neutron interaction in this region of the nuclear chart can be obtained. Simultaneously with the implantation of the nucleus in the detector setup after production the search for delayed gamma radiation from a predicted isomeric state in 100 Sn could yield first insight into the structure of excited states in this exotic nucleus. This work presents investigation results concerning the spectroscopy of the doubly magic nucleus 100 Sn and its decay. The experiment was performed in March 2008 at the accelerator facilities of the GSI Helmholtz Zentrum Darmstadt. The neutron deficient nucleus was produced in a projectile fragmentation reaction of a 124 Xe primary beam impinging on a Beryllium target with an energy of 1 GeV x A. After a separation from other fragmentation products and a unique identification 100 Sn was stopped in an implantation detector consisting of highly segmented silicon strip detectors for decay spectroscopy. Beside the determination of the half life it was possible to detect the total energy of the emitted particle radiation in the implantation detector as well as the emitted gamma radiation with a surrounding array of Germanium detectors. With a number of approximately 70 successfully observed decays of 100 Sn a half life of T 1/2 =1.16±0.20s was obtained. The beta endpoint energy of the single channel decay yielded a value of E β 0 =3.29±0.20 MeV. The resultant Gamow

  17. Identification of β-SiC surrounded by relatable surrounding diamond ...

    Indian Academy of Sciences (India)

    β-SiC is identified in the presence of a relatable surrounding diamond medium using subtle, but discernible Raman ... Change in the nature of the surrounding material structure and its .... intensity implies very low graphite content in thin film. In.

  18. Properties of second phase (BaSnO3, Sn) added-YBCO thick films

    International Nuclear Information System (INIS)

    Ban, E.; Matsuoka, Y.

    1997-01-01

    The improvement of the critical current density J c of YBCO thick films has been attempted by adding BaSnO 3 powder and ultrafine Sn particles, whose diameter is about 2 μm and 7 x 10 -2 μm, respectively. It was found that the addition of a small amount of these particles was effective for the enhancement of J c of thick films prepared by a liquid-phase processing method. The 1 wt.% BaSnO 3 films fired at T s =1040-1060 C and the 3 wt.% Sn films (T s =1030-1060 C) showed J c values (77 K, 0 T) of about 2.1-2.4 x 10 3 Acm -2 and 3.1-3.5 x 10 3 Acm -2 , respectively, as compared to 2.0 x 10 3 Acm -2 for the undoped films. (orig.)

  19. HST-COS Observations on Hydrogen, Helium, Carbon, and Nitrogen Emission from the SN 1987A Reverse Shock

    Science.gov (United States)

    France, Kevin; McCray, Richard; Penton, Steven V.; Kirshner, Robert P.; Challis, Peter; Laming, J. Martin; Bouchet, Patrice; Chevalier, Roger; Garnavich, Peter M.; Fransson, Claes; hide

    2011-01-01

    We present the most sensitive ultraviolet observations of Supernova 1987 A to date. Imaging spectroscopy from the Hubble Space Telescope-Cosmic Origins Spectrograph shows many narrow (Delta v approximates 300 km/s) emission lines from the circumstellar ring, broad Delta v approximates 10-20 x 10(exp 3) km/s) emission lines from the reverse shock, and ultraviolet continuum emission. The high signal-to-noise ratio (>40 per resolution element) broad Ly-alpha emission is excited by soft X-ray and EUV heating of mostly neutral gas in the circumstellar ring and outer supernova debris. The ultraviolet continuum at lambda > 1350 A can be explained by H-I two-photon (2s(exp 2)S(sub 1/2)-l(exp 2)S(sub 1/2)) emission from the same region. We confirm our earlier, tentative detection of N V lambda 1240 emission from the reverse shock and present the first detections of broad He II lambda1640, C IV lambda 1550, and N IV ] lambda1486 emission lines from the reverse shock. The helium abundance in the high-velocity material is He/H = 0.14 +/- 0.06. The N V /H alpha line ratio requires partial ion-electron equilibration (T(sub e)/T(sub p) approximately equal to 0.14-0.35). We find that the N/C abundance ratio in the gas crossing the reverse shock is significantly higher than that in the circumstellar ring, a result that may be attributed to chemical stratification in the outer envelope of the supernova progenitor. The N/C abundance may have been stratified prior to the ring expUlsion, or this result may indicate continued CNO processing in the progenitor subsequent to the expUlsion of the circumstellar ring.

  20. Synthesis of Pt{sub 75}Sn{sub 25}/SnO{sub 2}/CNT nanoscaled electrode: Low onset potential of ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Tabet-Aoul, Amel [Institut National de la Recherche Scientifique (INRS)-Énergie, Matériaux et Télécommunications (EMT), 1650 Boulevard Lionel Boulet, Varennes, Québec, Canada J3X 1S2 (Canada); Mohamedi, Mohamed, E-mail: mohamedi@emt.inrs.ca [Institut National de la Recherche Scientifique (INRS)-Énergie, Matériaux et Télécommunications (EMT), 1650 Boulevard Lionel Boulet, Varennes, Québec, Canada J3X 1S2 (Canada)

    2013-03-15

    Highlights: ► A pulsed laser synthesis is used for the deposition of Pt, SnO{sub 2} and PtSn alloy thin films onto carbon nanotubes. ► These nanoscaled materials were characterized by FESEM, TEM, XRD and XPS. ► Enhanced electrocatalytic properties toward ethanol oxidation. -- Abstract: With the objective of lowering the potential oxidation of ethanol at PtSn nanocatalyst, we present the synthesis of free-standing catalyst layer comprising a current collector/carbon nanotubes (catalyst support)/SnO{sub 2}/Pt{sub 75}Sn{sub 25} (catalyst) nanostructured layers, each layer constructed upon the one below it. The CNTs are grown by chemical vapor deposition (CVD), whereas SnO{sub 2} and Pt{sub 75}Sn{sub 25} are synthesized by pulsed laser deposition and cross-beam laser deposition, respectively. FESEM revealed that Pt{sub 75}Sn{sub 25} nanoparticles assemble into cauliflower-like arrangement. TEM and HR-TEM showed that the Pt{sub 75}Sn{sub 25} layer thickness is of ca. 25 nm with a particle mean diameter of 4.3 nm. It was found that addition of SnO{sub 2} to Pt{sub 75}Sn{sub 25} promotes significantly the oxidation of ethanol at Pt{sub 75}Sn{sub 25} nanoparticles relative to a carbon nanotubes support. Indeed, the electrooxidation of ethanol at CNTs/SnO{sub 2}/Pt{sub 75}Sn{sub 25} electrode starts at about 100 mV negative with respect to that at CNT/Pt{sub 75}Sn{sub 25}. This decreased overpotential required to oxidize ethanol is very significant and has profound implications to developing high performing anodes for direct ethanol fuel cells technology.

  1. Synthesis, Characterization, and Photocatalytic Activity of Zn-Doped SnO2/Zn2SnO4 Coupled Nanocomposites

    Directory of Open Access Journals (Sweden)

    Tiekun Jia

    2014-01-01

    Full Text Available Zn-doped SnO2/Zn2SnO4 nanocomposites were prepared via a two-step hydrothermal synthesis method. The as-prepared samples were characterized by X-ray diffraction (XRD, field-emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, UV-vis diffuse reflection spectroscopy, and adsorption-desorption isotherms. The results of FESEM and TEM showed that the as-prepared Zn-doped SnO2/Zn2SnO4 nanocomposites are composed of numerous nanoparticles with the size ranging from 20 nm to 50 nm. The specific surface area of the as-prepared Zn-doped SnO2/Zn2SnO4 nanocomposites is estimated to be 71.53 m2/g by the Brunauer-Emmett-Teller (BET method. The photocatalytic activity was evaluated by the degradation of methylene blue (MB, and the resulting showed that Zn-doped SnO2/Zn2SnO4 nanocomposites exhibited excellent photocatalytic activity due to their higher specific surface area and surface charge carrier transfer.

  2. Annual report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    In this annual report of the Dutch Interfacultary Reactor Institute, summary and detailed reports are presented of current research during 1987 of the departments radiochemistry, radiation chemistry, radiation physics and reactor physics. (H.W.). 61 refs.; 13 figs.; 14 tabs

  3. XRD and 119Sn Moessbauer spectroscopy characterization of SnSe obtained from a simple chemical route

    International Nuclear Information System (INIS)

    Bernardes-Silva, Ana Claudia; Mesquita, A.F.; Moura de Neto, E.; Porto, A.O.; Ardisson, J.D.; Lima, G.M. de; Lameiras, F.S.

    2005-01-01

    Crystalline tin selenide semiconductor was synthesized by a chemical route. Selenium powder reacted with potassium boronhydride, giving a soluble selenium species potassium seleniumhydride. The reaction of potassium seleniumhydride with tin chloride produced crystalline tin selenide, which was characterized by X-ray diffraction, 119 Sn Moessbauer spectroscopy and scanning electronic microscopy. The material was thermally treated, in nitrogen flow, at 300 and 600 deg. C for 2 h and the particle size evolution was studied by X-ray diffraction. The X-ray diffraction and 119 Sn Moessbauer results showed that a mixture of tin oxides and orthorhombic tin selenide was obtained

  4. Cytoplasmic assembly of snRNP particles from stored proteins and newly transcribed snRNA's in L929 mouse fibroblasts

    International Nuclear Information System (INIS)

    Sauterer, R.A.; Feeney, R.J.; Zieve, G.W.

    1988-01-01

    Newly synthesized snRNAs appear transiently in the cytoplasm where they assemble into ribonucleoprotein particles, the snRNP particles, before returning permanently to the interphase nucleus. In this report, bona fide cytoplasmic fractions, prepared by cell enucleation, are used for a quantitative analysis of snRNP assembly in growing mouse fibroblasts. The half-lives and abundances of the snRNP precursors in the cytoplasm and the rates of snRNP assembly are calculated in L929 cells. With the exception of U6, the major snRNAs are stable RNA species; U1 is almost totally stable while U2 has a half-life of about two cell cycles. In contrast, the majority of newly synthesized U6 decays with a half-life of about 15 h. The relative abundances of the newly synthesized snRNA species U1, U2, U3, U4 and U6 in the cytoplasm are determined by Northern hybridization using cloned probes and are approximately 2% of their nuclear abundance. The half-lives of the two major snRNA precursors in the cytoplasm (U1 and U2) are approximately 20 min as determined by labeling to steady state. The relative abundance of the snRNP B protein in the cytoplasm is determined by Western blotting with the Sm class of autoantibodies and is approximately 25% of the nuclear abundance. Kinetic studies, using the Sm antiserum to immunoprecipitate the methionine-labeled snRNP proteins, suggest that the B protein has a half-life of 90 to 120 min in the cytoplasm. These data are discussed and suggest that there is a large pool of more stable snRNP proteins in the cytoplasm available for assembly with the less abundant but more rapidly turning-over snRNAs

  5. SN 2017dio: A Type-Ic Supernova Exploding in a Hydrogen-rich Circumstellar Medium

    Science.gov (United States)

    Kuncarayakti, Hanindyo; Maeda, Keiichi; Ashall, Christopher J.; Prentice, Simon J.; Mattila, Seppo; Kankare, Erkki; Fransson, Claes; Lundqvist, Peter; Pastorello, Andrea; Leloudas, Giorgos; Anderson, Joseph P.; Benetti, Stefano; Bersten, Melina C.; Cappellaro, Enrico; Cartier, Régis; Denneau, Larry; Della Valle, Massimo; Elias-Rosa, Nancy; Folatelli, Gastón; Fraser, Morgan; Galbany, Lluís; Gall, Christa; Gal-Yam, Avishay; Gutiérrez, Claudia P.; Hamanowicz, Aleksandra; Heinze, Ari; Inserra, Cosimo; Kangas, Tuomas; Mazzali, Paolo; Melandri, Andrea; Pignata, Giuliano; Rest, Armin; Reynolds, Thomas; Roy, Rupak; Smartt, Stephen J.; Smith, Ken W.; Sollerman, Jesper; Somero, Auni; Stalder, Brian; Stritzinger, Maximilian; Taddia, Francesco; Tomasella, Lina; Tonry, John; Weiland, Henry; Young, David R.

    2018-02-01

    SN 2017dio shows both spectral characteristics of a type-Ic supernova (SN) and signs of a hydrogen-rich circumstellar medium (CSM). Prominent, narrow emission lines of H and He are superposed on the continuum. Subsequent evolution revealed that the SN ejecta are interacting with the CSM. The initial SN Ic identification was confirmed by removing the CSM interaction component from the spectrum and comparing with known SNe Ic and, reversely, adding a CSM interaction component to the spectra of known SNe Ic and comparing them to SN 2017dio. Excellent agreement was obtained with both procedures, reinforcing the SN Ic classification. The light curve constrains the pre-interaction SN Ic peak absolute magnitude to be around {M}g=-17.6 mag. No evidence of significant extinction is found, ruling out a brighter luminosity required by an SN Ia classification. These pieces of evidence support the view that SN 2017dio is an SN Ic, and therefore the first firm case of an SN Ic with signatures of hydrogen-rich CSM in the early spectrum. The CSM is unlikely to have been shaped by steady-state stellar winds. The mass loss of the progenitor star must have been intense, \\dot{M}∼ 0.02{({ε }{{H}α }/0.01)}-1 ({v}{wind}/500 km s‑1) ({v}{shock}/10,000 km s‑1)‑3 M ⊙ yr‑1, peaking at a few decades before the SN. Such a high mass-loss rate might have been experienced by the progenitor through eruptions or binary stripping. Based on observations made with the NOT, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This work is based (in part) on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of PESSTO, (the Public ESO Spectroscopic Survey for Transient Objects Survey) ESO program 188.D-3003, 191.D-0935, 197.D-1075. Based on observations made with the Liverpool Telescope operated on the

  6. Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh

    Science.gov (United States)

    Jerkstrand, A.; Ergon, M.; Smartt, S. J.; Fransson, C.; Sollerman, J.; Taubenberger, S.; Bersten, M.; Spyromilio, J.

    2015-01-01

    We investigate line formation processes in Type IIb supernovae (SNe) from 100 to 500 days post-explosion using spectral synthesis calculations. The modelling identifies the nuclear burning layers and physical mechanisms that produce the major emission lines, and the diagnostic potential of these. We compare the model calculations with data on the three best observed Type IIb SNe to-date - SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively on the main-sequence mass of the star and modelling of the [O I] λλ6300, 6364 lines constrains the progenitors of these three SNe to the MZAMS = 12-16 M⊙ range (ejected oxygen masses 0.3-0.9 M⊙), with SN 2011dh towards the lower end and SN 1993J towards the upper end of the range. The high ejecta masses from MZAMS ≳ 17 M⊙ progenitors give rise to brighter nebular phase emission lines than observed. Nucleosynthesis analysis thus supports a scenario of low-to-moderate mass progenitors for Type IIb SNe, and by implication an origin in binary systems. We demonstrate how oxygen and magnesium recombination lines may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh, a magnesium mass of 0.02-0.14 M⊙ is derived, which gives a Mg/O production ratio consistent with the solar value. Nitrogen left in the He envelope from CNO burning gives strong [N II] λλ6548, 6583 emission lines that dominate over Hα emission in our models. The hydrogen envelopes of Type IIb SNe are too small and dilute to produce any noticeable Hα emission or absorption after ~150 days, and nebular phase emission seen around 6550 Å is in many cases likely caused by [N II] λλ6548, 6583. Finally, the influence of radiative transport on the emergent line profiles is investigated. Significant line blocking in the metal core remains for several hundred days, which affects the emergent spectrum. These radiative transfer effects lead to early-time blueshifts of the emission line peaks, which gradually

  7. Preparation of PtSnCu/C and PtSn/C electrocatalysts and activation by dealloying processes for ethanol electrooxidation

    International Nuclear Information System (INIS)

    Crisafulli, Rudy

    2013-01-01

    PtSnCu/C (with different Pt:Sn:Cu atomic ratios) and PtSn/C (50:50) electrocatalysts were prepared by borohydride (BR) and alcohol-reduction (AR) processes using H 2 PtCl 6 .6H 2 O, SnCl 2 .2H 2 O and CuCl 2 .2H 2 O as metal sources, NaBH 4 and ethylene glycol as reducing agents, 2-propanol and ethylene glycol/water as solvents and carbon black as support. In a further step, these electrocatalysts were activated by chemical (CD) and electrochemical (ED) dealloying processes through acid treatment and thin porous coating technique, respectively. These materials were characterized by energy dispersive X-ray, Xray diffraction, transmission electron microscopy, line scan energy dispersive Xray and cyclic voltammetry. Electrochemical studies for ethanol electro-oxidation were performed by cyclic voltammetry, chronoamperometry and in single Direct Ethanol Fuel Cell using Membrane Electrode Assembly (MEA). The anodic effluents were analysed by gas chromatography. The X-ray diffractograms of the as-synthesized electrocatalysts showed the typical face-centered cubic structure (FCC) of platinum and its alloys. After dealloying, the X-ray diffractograms showed that the Pt FCC structure was preserved. The crystallite sizes of the assynthesized electrocatalysts were in the range of PtSnCu/C (50:40:10) AR/ED > PtSnCu/C (50:10:40) BR/CD. PtSn/C (50:50) BR/CD, PtSnCu/C (50:10:40) BR/CD, PtSnCu/C (50:40:10) AR/CD electrocatalysts and Pt/C BASF, PtSn/C (75:25) BASF commercial electrocatalysts were tested in single Direct Ethanol Fuel Cell. The results showed the following performance for ethanol electro-oxidation: PtSn/C (50:50) BR/CD > PtSnCu/C (50:40:10) AR/CD > PtSnCu/C > PtSn/C (75:25) BASF > PtSnCu/C (50:10:40) BR/CD > Pt/C BASF. (author)

  8. Improvements in the critical current densities of Nb3Sn by solid solution additions of Sn in Nb

    International Nuclear Information System (INIS)

    Luhman, T.; Suenaga, M.

    1975-01-01

    The effectiveness of solid solution additions of Sn to Nb in improving the superconducting properties of diffusion processed Nb 3 Sn conductors was examined. It was found that an increase in the superconducting critical current density, Jc, as function of layer thickness (d) may be obtained for thick Nb 3 Sn layers by solid solution additions of Sn in Nb. A large increase in J/sub c/ (d) is also achieved by increasing the Sn content in the bronze matrix material. In addition to uses of this material in magnet fabrications a potential application of these improved J/sub c/(d) values may lie in the use of Nb 3 Sn in power transmission lines. Here, a high superconducting critical current density is necessary throughout the material to carry the increased current during fault conditions. The magnetic field dependence of J/sub c/ is a function of alloy content but the alloying changes studied here do not increase the high field critical current capability of Nb 3 Sn. (auth)

  9. Effect of Pt:Sn atomic ratio on the preparation of PtSn/C electrocatalysts using electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F.; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V., E-mail: dfsilva@ipen.b, E-mail: espinace@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    PtSn/C electrocatalysts were prepared with Pt:Sn atomic ratios of 3:1, 1:1 and 1:3 in water/2-propanol using electron beam irradiation. The obtained materials were characterized by EDX, XRD and cyclic voltammetry. The ethanol electro-oxidation was studied by chronoamperometry. The XRD diffractograms of the PtSn/C electrocatalysts showed typical face-centered cubic (fcc) structure of platinum and the presence of a SnO{sub 2} phase (cassiterite). The mean crystallite sizes of Pt fcc phase was in the range of 3.0-3.5 nm. The PtSn/C electrocatalysts were active for ethanol electro-oxidation at room temperature and the material prepared with Pt:Sn atomic ratio of 1:1 showed the best activity. (author)

  10. Effect of Pt:Sn atomic ratio on the preparation of PtSn/C electrocatalysts using electron beam irradiation

    International Nuclear Information System (INIS)

    Silva, Dionisio F.; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V.

    2009-01-01

    PtSn/C electrocatalysts were prepared with Pt:Sn atomic ratios of 3:1, 1:1 and 1:3 in water/2-propanol using electron beam irradiation. The obtained materials were characterized by EDX, XRD and cyclic voltammetry. The ethanol electro-oxidation was studied by chronoamperometry. The XRD diffractograms of the PtSn/C electrocatalysts showed typical face-centered cubic (fcc) structure of platinum and the presence of a SnO 2 phase (cassiterite). The mean crystallite sizes of Pt fcc phase was in the range of 3.0-3.5 nm. The PtSn/C electrocatalysts were active for ethanol electro-oxidation at room temperature and the material prepared with Pt:Sn atomic ratio of 1:1 showed the best activity. (author)

  11. Production of superconducting Nb3Sn wire using Nb or Nb(Ti) and Sn(Ga) solid solution powders

    International Nuclear Information System (INIS)

    Thieme, C.L.H.; Foner, S.

    1991-01-01

    This paper reports on superconducting Nb 3 Sn wire produced by the powder metallurgy method using Nb or Nb-2.9 at% Ti powder in combination with Sn-x at% Ga powders (x = 3, 4.2, 6.2 and 9.0). Ga additions to the Sn caused considerable solid solution hardening which improved its workability. It made the Nb-Sn(Ga) powder combinations convenient for swaging and extensive wire drawing. Anneals at 950 degrees C produced wires with an overall J c of 10 4 A/cm 2 at 21.9 T for wires with both Ti in the Nb and 6.2 at% Ga in the Sn. Comparison of this wire with the best Nb(Ti)-Cu-internal Sn(Ti) shows a higher J c per A15 areas, especially in fields of 22T and above

  12. Annual report 1987 Materials Department

    International Nuclear Information System (INIS)

    1989-01-01

    Review of the activities performed by the Materials Department of the National Atomica Energy Commission of the Argentine Republic during the year 1987. The Department provides services and assistance in all matters related to metallography and special techniques, corrosion and materials' transport, transport phenomena, casting and solidification, damage by radiation, thermomechanical treatments, mechanical properties, fatigue and fracture, multinational project of research and development in materials, VII course on metallurgy and technology of materials. Likewise, information on the Materials Department's staff, its publications, projects and agreements, seminars, courses and conferences during 1987 is included [es

  13. Electronic and magnetic properties of rare earth-Sn3 compounds for 119Sn Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sanchez, J.P.; Friedt, J.M.; Shenoy, G.K.; Percheron, A.; Achard, J.C.

    1975-01-01

    The electronic and magnetic properties of RESn 3 compounds (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Yb) have been investigated using the 23.8keV Moessbauer resonance of 119 Sn. The isomer shifts and quadrupole interactions are nearly the same in all compounds. The transferred magnetic fields and their orientation with respect to the principal electric field gradient axis at various Sn sites in the magnetically ordered state of RESn 3 (RE=Pr, Nd, Sm, Eu, Gd) have been utilized to get information about the magnetic structure. An evaluation of the transferred fields in PrSn 3 and NdSn 3 shows that the spin density at the Sn nucleus is nearly the same in both compounds [fr

  14. Production of Sn/SnO2/MWCNT composites by plasma oxidation after thermal evaporation from pure Sn targets onto buckypapers.

    Science.gov (United States)

    Alaf, M; Gultekin, D; Akbulut, H

    2012-12-01

    In this study, tin/tinoxide/multi oxide/multi walled carbon nano tube (Sn/SnO2/MWCNT) composites were produced by thermal evaporation and then subsequent plasma oxidation. Buckypapers having controlled porosity were prepared by vacuum filtration from functionalized MWCNTs. Pure metallic tin was thermally evaporated on the buckypapers in argon atmosphere with different thicknesses. It was determined that the evaporated pure tin nano crystals were mechanically penetrated into pores of buckypaper to form a nanocomposite. The tin/MWCNT composites were subjected to plasma oxidation process at oxygen/argon gas mixture. Three different plasma oxidation times (30, 45 and 60 minutes) were used to investigate oxidation and physical and microstructural properties. The effect of coating thickness and oxidation time was investigated to understand the effect of process parameters on the Sn and SnO2 phases after plasma oxidation. Quantitative phase analysis was performed in order to determine the relative phase amounts. The structural properties were studied by field-emission gun scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).

  15. CEF-scheme of a semimetal Ce3Sn7

    International Nuclear Information System (INIS)

    Okuda, Yusuke; Yamamoto, Takeshi; Honda, Daisuke; Shishido, Hiroaki; Galatanu, Andrei; Haga, Yoshinori; Matsuda, Tatsuma D.; Takeuchi, Tetsuya; Kindo, Koichi; Sugiyama, Kiyohiro; Settai, Rikio; O-bar nuki, Yoshichika

    2005-01-01

    We measured the magnetic susceptibility and magnetization of an antiferromagnet Ce 3 Sn 7 with the orthorhombic crystal structure. The experimental data are found to be well explained on the basis of the crystalline electric field (CEF) 4f-scheme under the assumption that two Ce atoms in the 2(a) site possess a magnetic moment of 0.36μ B /Ce and one Ce atom in the 4(i) site possesses no magnetic moment as in a valence fluctuating compound CeSn 3 , which was previously proposed by Bonnet et al. Furthermore, we carried out the de Haas-van Alphen experiment. The detected Fermi surfaces are many in number but are extremely small in volume, indicating that Ce 3 Sn 7 is a semimetal

  16. Synthesis and fundamental properties of stable Ph(3)SnSiH(3) and Ph(3)SnGeH(3) hydrides: model compounds for the design of Si-Ge-Sn photonic alloys.

    Science.gov (United States)

    Tice, Jesse B; Chizmeshya, Andrew V G; Groy, Thomas L; Kouvetakis, John

    2009-07-06

    The compounds Ph(3)SnSiH(3) and Ph(3)SnGeH(3) (Ph = C(6)H(5)) have been synthesized as colorless solids containing Sn-MH(3) (M = Si, Ge) moieties that are stable in air despite the presence of multiple and highly reactive Si-H and Ge-H bonds. These molecules are of interest since they represent potential model compounds for the design of new classes of IR semiconductors in the Si-Ge-Sn system. Their unexpected stability and high solubility also makes them a safe, convenient, and potentially useful delivery source of -SiH(3) and -GeH(3) ligands in molecular synthesis. The structure and composition of both compounds has been determined by chemical analysis and a range of spectroscopic methods including multinuclear NMR. Single crystal X-ray structures were determined and indicated that both compounds condense in a Z = 2 triclinic (P1) space group with lattice parameters (a = 9.7754(4) A, b = 9.8008(4) A, c = 10.4093(5) A, alpha = 73.35(10)(o), beta = 65.39(10)(o), gamma = 73.18(10)(o)) for Ph(3)SnSiH(3) and (a = 9.7927(2) A, b = 9.8005(2) A, c = 10.4224(2) A, alpha = 74.01(3)(o), beta = 65.48(3)(o), gamma = 73.43(3)(o)) for Ph(3)SnGeH(3). First principles density functional theory simulations are used to corroborate the molecular structures of Ph(3)SnSiH(3) and Ph(3)SnGeH(3), gain valuable insight into the relative stability of the two compounds, and provide correlations between the Si-Sn and Ge-Sn bonds in the molecules and those in tetrahedral Si-Ge-Sn solids.

  17. Spectroscopic ellipsometry characterization of ZnO:Sn thin films with various Sn composition deposited by remote-plasma reactive sputtering

    Science.gov (United States)

    Janicek, Petr; Niang, Kham M.; Mistrik, Jan; Palka, Karel; Flewitt, Andrew J.

    2017-11-01

    ZnO:Sn thin films were deposited onto thermally oxidized silicon substrates using a remote plasma reactive sputtering. Their optical constants (refractive index n and extinction coefficient k) were determined from ellipsometric data recorded over a wide spectral range (0.05-6 eV). Parametrization of ZnO:Sn complex dielectric permittivity consists of a parameterized semiconductor oscillator function describing the short wavelength absorption edge, a Drude oscillator describing free carrier absorption in near-infrared part of spectra and a Lorentz oscillator describing the long wavelength absorption edge and intra-band absorption in the ultra-violet part of the spectra. Using a Mott-Davis model, the increase in local disorder with increasing Sn doping is quantified from the short wavelength absorption edge onset. Using the Wemple-DiDomenico single oscillator model for the transparent part of the optical constants spectra, an increase in the centroid distance of the valence and conduction bands with increasing Sn doping is shown and only slight increase in intensity of the inter-band optical transition due to Sn doping occurs. The Drude model applied in the near-infrared part of the spectra revealed the free carrier concentration and mobility of ZnO:Sn. Results show that the range of transparency of prepared ZnO:Sn layers is not dramatically affected by Sn doping whereas electrical conductivity could be controlled by Sn doping. Refractive index in the transparent part is comparable with amorphous Indium Gallium Zinc Oxide allowing utilization of prepared ZnO:Sn layers as an indium-free alternative.

  18. X-rays from supernova 1987A

    International Nuclear Information System (INIS)

    Xu, Y.; Sutherland, P.; Mccray, R.; Ross, R.R.

    1988-01-01

    Detailed calculations of the development of the X-ray spectrum of 1987A are presented using more realistic models for the supernova composition and density structure provided by Woosley. It is shown how the emergence of the X-ray spectrum depends on the parameters of the model and the nature of its central energy source. It is shown that the soft X-ray spectrum should be dominated by a 6.4 keV Fe K(alpha) emission line that could be observed by a sensitive X-ray telescope. 28 references

  19. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors

    International Nuclear Information System (INIS)

    Schurr, R.; Hoelzing, A.; Jost, S.; Hock, R.; Voss, T.; Schulze, J.; Kirbs, A.; Ennaoui, A.; Lux-Steiner, M.; Weber, A.; Koetschau, I.; Schock, H.-W.

    2009-01-01

    The best CZTS solar cell so far was produced by co-sputtering continued with vapour phase sulfurization method. Efficiencies of up to 5.74% were reached by Katagiri et al. The one step electrochemical deposition of copper, zinc, tin and subsequent sulfurization is an alternative fabrication technique for the production of Cu 2 ZnSnS 4 based thin film solar cells. A kesterite based solar cell (size 0.5 cm 2 ) with a conversion efficiency of 3.4% (AM1.5) was produced by vapour phase sulfurization of co-electroplated Cu-Zn-Sn films. We report on results of in-situ X-ray diffraction (XRD) experiments during crystallisation of kesterite thin films from electrochemically co-deposited metal films. The kesterite crystallisation is completed by the solid state reaction of Cu 2 SnS 3 and ZnS. The measurements show two different reaction paths depending on the metal ratios in the as deposited films. In copper-rich metal films Cu 3 Sn and CuZn were found after electrodeposition. In copper-poor or near stoichiometric precursors additional Cu 6 Sn 5 and Sn phases were detected. The formation mechanism of Cu 2 SnS 3 involves the binary sulphides Cu 2-x S and SnS 2 in the absence of the binary precursor phase Cu 6 Sn 5 . The presence of Cu 6 Sn 5 leads to a preferred formation of Cu 2 SnS 3 via the reaction educts Cu 2-x S and SnS 2 in the presence of a SnS 2 (Cu 4 SnS 6 ) melt. The melt phase may be advantageous in crystallising the kesterite, leading to enhanced grain growth in the presence of a liquid phase

  20. 0(gs)+ -->2(1)+ transition strengths in 106Sn and 108Sn.

    Science.gov (United States)

    Ekström, A; Cederkäll, J; Fahlander, C; Hjorth-Jensen, M; Ames, F; Butler, P A; Davinson, T; Eberth, J; Fincke, F; Görgen, A; Górska, M; Habs, D; Hurst, A M; Huyse, M; Ivanov, O; Iwanicki, J; Kester, O; Köster, U; Marsh, B A; Mierzejewski, J; Reiter, P; Scheit, H; Schwalm, D; Siem, S; Sletten, G; Stefanescu, I; Tveten, G M; Van de Walle, J; Van Duppen, P; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Zielińska, M

    2008-07-04

    The reduced transition probabilities, B(E2; 0(gs)+ -->2(1)+), have been measured in the radioactive isotopes (108,106)Sn using subbarrier Coulomb excitation at the REX-ISOLDE facility at CERN. Deexcitation gamma rays were detected by the highly segmented MINIBALL Ge-detector array. The results, B(E2;0(gs)+ -->2(1)+)=0.222(19)e2b2 for 108Sn and B(E2; 0(gs)+-->2(1)+)=0.195(39)e2b2 for 106Sn were determined relative to a stable 58Ni target. The resulting B(E2) values are approximately 30% larger than shell-model predictions and deviate from the generalized seniority model. This experimental result may point towards a weakening of the N=Z=50 shell closure.

  1. DO22-(Cu,Ni)3Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    International Nuclear Information System (INIS)

    Liu Lilin; Huang, Haiyou; Fu Ran; Liu Deming; Zhang Tongyi

    2009-01-01

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO 22 -(Cu,Ni) 3 Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO 22 -(Cu,Ni) 3 Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO 22 -(Cu,Ni) 3 Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO 22 -(Cu,Ni) 3 Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO 22 IMC and fcc Cu crystals in comparison with that between the equilibrium DO 3 IMC and fcc Cu crystals.

  2. Kinetics of plasma oxidation of germanium-tin (GeSn)

    Science.gov (United States)

    Wang, Wei; Lei, Dian; Dong, Yuan; Zhang, Zheng; Pan, Jisheng; Gong, Xiao; Tok, Eng-Soon; Yeo, Yee-Chia

    2017-12-01

    The kinetics of plasma oxidation of GeSn at low temperature is investigated. The oxidation process is described by a power-law model where the oxidation rate decreases rapidly from the initial oxidation rate with increasing time. The oxidation rate of GeSn is higher than that of pure Ge, which can be explained by the higher chemical reaction rate at the GeSn-oxide/GeSn interface. In addition, the Sn atoms at the interface region exchange positions with the underlying Ge atoms during oxidation, leading to a SnO2-rich oxide near the interface. The bandgap of GeSn oxide is extracted to be 5.1 ± 0.2 eV by XPS, and the valence band offset at the GeSn-oxide/GeSn heterojunction is found to be 3.7 ± 0.2 eV. Controlled annealing experiments demonstrate that the GeSn oxide is stable with respect to annealing temperatures up to 400 °C. However, after annealing at 450 °C, the GeO2 is converted to GeO, and desorbs from the GeSn-oxide/GeSn, leaving behind Sn oxide.

  3. Fatigue and thermal fatigue of Pb-Sn solder joints

    International Nuclear Information System (INIS)

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55 0 C and 125 0 C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb

  4. SN 2006oz

    DEFF Research Database (Denmark)

    Leloudas, Georgios; Chatzopoulos, E.; Dilday, B.

    2012-01-01

    to contribute to a better understanding of these objects by studying SN 2006oz, a newly-recognized member of this class. Methods. We present multi-color light curves of SN 2006oz from the SDSS-II SN Survey that cover its rise time, as well as an optical spectrum that shows that the explosion occurred at z ~ 0.......376. We fitted black-body functions to estimate the temperature and radius evolution of the photosphere and used the parametrized code SYNOW to model the spectrum. We constructed a bolometric light curve and compared it with explosion models. In addition, we conducted a deep search for the host galaxy...... to a recombination wave in a circumstellar medium (CSM) and discuss whether this is a common property of all similar explosions. The subsequent rise can be equally well described by input from a magnetar or by ejecta-CSM interaction, but the models are not well constrained owing to the lack of post...

  5. Particle physics experiments 1987

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1988-01-01

    This report describes work carried out in 1987 on experiments approved by the Particle Physics Experiments Selection Panel (United Kingdom). The contents consist of unedited contributions from each experiment. (author)

  6. Identify and Quantify the Mechanistic Sources of Sensor Performance Variation Between Individual Sensors SN1 and SN2

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baldwin, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cinson, Anthony D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Anthony M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mathews, Royce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mullen, Crystal A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pardini, Allan F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Posakony, Gerald J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prowant, Matthew S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hartman, Trenton S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Matthew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-08-06

    This Technical Letter Report satisfies the M3AR-14PN2301022 milestone, and is focused on identifying and quantifying the mechanistic sources of sensor performance variation between individual 22-element, linear phased-array sensor prototypes, SN1 and SN2. This effort constitutes an iterative evolution that supports the longer term goal of producing and demonstrating a pre-manufacturing prototype ultrasonic probe that possesses the fundamental performance characteristics necessary to enable the development of a high-temperature sodium-cooled fast reactor inspection system. The scope of the work for this portion of the PNNL effort conducted in FY14 includes performing a comparative evaluation and assessment of the performance characteristics of the SN1 and SN2 22 element PA-UT probes manufactured at PNNL. Key transducer performance parameters, such as sound field dimensions, resolution capabilities, frequency response, and bandwidth are used as a metric for the comparative evaluation and assessment of the SN1 and SN2 engineering test units.

  7. Electronic structure and isomer shifts of Sn halides

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1988-01-01

    The all-electron first-principles Discrete Variational method was employed to study the electronic structure of SnF 4 , SnCl 4 , SnBr 4 and SnI 4 . Values of the electronic density at the Sn nucleus were derived and related to 119 Sn Isomer Shifts to obtain the nuclear constant Δ 2 >. Differences in values of ρ(o) area discussed in terms of the chemical bonding between Sn and halogen atoms. (author) [pt

  8. 195Pt and 119Sn Knight shifts of U3Pt3Sn4

    International Nuclear Information System (INIS)

    Kojima, K.; Takabatake, T.; Harada, A.; Hihara, T.

    1995-01-01

    The 195 Pt and 119 Sn Knight shifts in U 3 Pt 3 Sn 4 have been measured in the temperature range 4.2-298K. They exhibit Curie-Weiss like behaviors above about 50K and remain constant below about 10K. This suggests that the deviation of χ(T) from the modified Curie-Weiss law is an intrinsic property of U 3 Pt 3 Sn 4 . ((orig.))

  9. A15 Nb-Sn tunnel junction fabrication and properties

    International Nuclear Information System (INIS)

    Rudman, D.A.; Hellman, F.; Hammond, R.H.; Beasley, M.R.

    1984-01-01

    We have investigated the deposition conditions necessary to produce optimized films of A15 Nb-Sn (19--26 at. % Sn) by electron-beam codeposition. Reliable high-quality superconducting tunnel junctions can be made on this material by using an oxidized-amorphous silicon overlayer as the tunneling barrier and lead as the counter-electrode. These junctions have been used both as a tool for materials diagnosis and as a probe of the superconducting properties (critical temperature and gap) of the films. Careful control of the substrate temperature during the growth of the films has proved critical to obtain homogeneous samples. When the substrate temperature is properly stabilized, stoichiometric Nb 3 Sn is found to be relatively insensitive to the deposition temperature and conditions. In contrast, the properties of the off-stoichiometry (Sn-poor) material depend strongly on the deposition temperature. For this Sn-poor material the ratio 2Δ/kT/sub c/ at a given composition increases with increasing deposition temperature. This change appears to be due to an increase in the gap at the surface of the material (as measured by tunneling) relative to the critical temperature of the bulk. All the tunnel junctions exhibit some persistent nonidealities in their current-voltage characteristics that are qualitatively insensitive to composition or deposition conditions. In particular, the junctions show excess conduction below the sum of the energy gaps (with onset at the counter-electrode gap) and a broadened current rise at the sum gap. The detailed origins of these problems are not yet understood

  10. Quality control for a group of pyrophosphate-Sn kits

    International Nuclear Information System (INIS)

    Isaac, M.; Gamboa, R.; Hernandez, I.; Leyva, R.; Turino, D.

    1994-01-01

    The quality control for a group of Pyrophosphate-Sn kits for labeling with 99 m Tc is carry out at the Isotope Center. A general discussion takes place about the instrumental techniques for the determination of the kit constituent such as ligands, Sn(II), water, etc, as well as the control table for the evaluation of the warranty time. (author). 5 refs, 4 figs

  11. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Energy Technology Data Exchange (ETDEWEB)

    Hart, John; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James [Department of Electrical Engineering, University of Delaware, 140 Evans Hall, Newark, Delaware 19716 (United States); Adam, Thomas [College of Nanoscale Science and Engineering, SUNY, Albany, New York 12203 (United States); Kim, Yihwan; Huang, Yi-Chiau [Applied Materials, Sunnyvale, California 94085 (United States); Reznicek, Alexander [IBM Research at Albany Nanotech, Albany, New York 12203 (United States)

    2016-03-07

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl{sub 4} precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  12. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    International Nuclear Information System (INIS)

    Hart, John; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James; Adam, Thomas; Kim, Yihwan; Huang, Yi-Chiau; Reznicek, Alexander

    2016-01-01

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl 4 precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  13. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Science.gov (United States)

    Hart, John; Adam, Thomas; Kim, Yihwan; Huang, Yi-Chiau; Reznicek, Alexander; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James

    2016-03-01

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl4 precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  14. Brookhaven highlights, 1986-1987

    International Nuclear Information System (INIS)

    Rowe, M.S.

    1988-01-01

    The highlights of research conducted between October 1985 and September 1987 at Brookhaven National Laboratory are reviewed in this publication. Also covered are the administrative and financial status of the laboratory and a brief mention of meetings held and honors received. (FI)

  15. α-Sn and β-Sn precipitates in annealed epitaxial Si0.95Sn0.05

    DEFF Research Database (Denmark)

    Fyhn, M.F.; Chevallier, J.; Larsen, A.N.

    1999-01-01

    -Sn and beta-Sn crystallites. The presence of alpha-Sn at temperatures far above the bulk alpha beta transition temperature is explained by interface and pressure effects; the latter is likely to be due to the difference in thermal expansion of the precipitates and the matrix.......-temperature molecular-beam epitaxy on Si (001) and relaxed Si1-xGex substrates. Two different phases of solid Sn were identified in the annealed layers: the semiconductor phase, alpha-Sn, and the metallic phase beta-Sn The precipitates were found to consist of either only beta-Sn or to contain crystallites of both...... solid Sn phases. The orientations, the sizes and the relative number densities of the alpha-Sn and beta-Sn crystallites were investigated. in situ heating and cooling experiments were performed in the transmission electron microscope to study the melting and solidification characteristics of the alpha...

  16. P-type SnO thin films and SnO/ZnO heterostructures for all-oxide electronic and optoelectronic device applications

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Kachirayil J. [Nanostructured Materials Research Laboratory, Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Department of Physics, Govt. Victoria College, University of Calicut, Palakkad 678 001 (India); Venkata Subbaiah, Y.P. [Nanostructured Materials Research Laboratory, Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Department of Physics, Yogi Vemana University, Kadapa, Andhra Pradesh 516003 (India); Tian, Kun [Nanostructured Materials Research Laboratory, Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Tiwari, Ashutosh, E-mail: tiwari@eng.utah.edu [Nanostructured Materials Research Laboratory, Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112 (United States)

    2016-04-30

    Tin monoxide (SnO) is considered as one of the most important p-type oxides available to date. Thin films of SnO have been reported to possess both an indirect bandgap (~ 0.7 eV) and a direct bandgap (~ 2.8 eV) with quite high hole mobility (~ 7 cm{sup 2}/Vs) values. Moreover, the hole density in these films can be tuned from 10{sup 15}–10{sup 19} cm{sup −3} just by controlling the thin film deposition parameters. Because of the above attributes, SnO thin films offer great potential for fabricating modern electronic and optoelectronic devices. In this article, we are reviewing the most recent developments in this field and also presenting some of our own results on SnO thin films grown by pulsed laser deposition technique. We have also proposed a p–n heterostructure comprising of p-type SnO and n-type ZnO which can pave way for realizing next-generation, all-oxide transparent electronic devices. - Highlights: • We reviewed recent developments on p-type SnO thin film research. • Discussed the optical and electrical properties of SnO thin films • Bipolar conduction in SnO is discussed. • Optoelectronic properties of SnO–ZnO composite system are discussed. • Proposed SnO–ZnO heterojunction band structure.

  17. A new class of materials with promising thermoelectric properties: MNiSn (M=Ti, Zr, Hf)

    Energy Technology Data Exchange (ETDEWEB)

    Hohl, H; Ramirez, A P; Kaefer, W; Fess, K; Thurner, Ch; Kloc, Ch; Bucher, E

    1997-07-01

    TiNiSn, ZrNiSn and HfNiSn are members of a large group of intermetallic compounds which crystallize in the cubic MgAgAs-type structure. Polycrystalline samples of these compounds have been prepared and investigated for their thermoelectric properties. With thermopowers of about {minus}200 {micro}V/K and resistivities of a few m{Omega}cm, power factors S{sup 2}/{rho} as high as 38 {micro}W/K{sup 2}cm were obtained at 700 K. These remarkably high power factors are, however, accompanied by a thermal conductivity, solid solutions Zr{sub 1{minus}x}Hf{sub x}NiSn, Zr{sub 1{minus}x}Ti{sub x}NiSn, and Hf{prime}{sub 1{minus}x}Ti{sub x}NiSn were formed. The figure of merit of Zr{sub 0.5}Hf{sub 0.5}NiSn at 700 K (ZT = 0.41) exceeds the end members ZrNiSn (ZT = 0.26) and HfNiSn (ZT = 0.22).

  18. Effect of Sn Composition in Ge1- x Sn x Layers Grown by Using Rapid Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Kil, Yeon-Ho; Kang, Sukill; Jeong, Tae Soo; Shim, Kyu-Hwan; Kim, Dae-Jung; Choi, Yong-Dae; Kim, Mi Joung; Kim, Taek Sung

    2018-05-01

    The Ge1- x Sn x layers were grown by using rapid thermal chemical-vapor deposition (RTCVD) on boron-doped p-type Si (100) substrates with Sn compositions up to x = 0.83%. In order to obtain effect of the Sn composition on the structural and the optical characteristics, we utilized highresolution X-ray diffraction (HR-XRD), etch pit density (EPD), atomic force microscopy (AFM), Raman spectroscopy, and photocurrent (PC) spectra. The Sn compositions in the Ge1- x Sn x layers were found to be of x = 0.00%, 0.51%, 0.65%, and 0.83%. The root-mean-square (RMS) of the surface roughness of the Ge1- x Sn x layer increased from 2.02 nm to 3.40 nm as the Sn composition was increased from 0.51% to 0.83%, and EPD was on the order of 108 cm-2. The Raman spectra consist of only one strong peak near 300 cm-1, which is assigned to the Ge-Ge LO peaks and the Raman peaks shift to the wave number with increasing Sn composition. Photocurrent spectra show near energy band gap peaks and their peak energies decrease with increasing Sn composition due to band-gap bowing in the Ge1- x Sn x layer. An increase in the band gap bowing parameter was observed with increasing Sn composition.

  19. A model for phase evolution and volume expansion in tube type Nb3Sn conductors

    Science.gov (United States)

    Xu, X.; Sumption, M. D.; Collings, E. W.

    2013-12-01

    In this work, an analytic model for phase formation and volume expansion during heat treatment in tube type Nb3Sn strands is presented. Tube type Nb3Sn conductors consist of Nb or Nb-Ta alloy tube with a simple Cu/Sn binary metal insert to form the basic subelement (filament). A number of these elements, each with an outer Cu jacket, are restacked to form a multifilamentary strand. The present tube type conductors, with 4.2 K, 12 T non-Cu critical current density (Jc) in the 2000-2500 A mm-2 range and effective subelement diameters (deff) in the 12-36 μm range, are of interest for a number of applications. During the reaction of typical tube type strands, the Sn-Cu becomes molten and reacts with the Nb tube first to form NbSn2, then Nb6Sn5. At later times in the reaction sequence, all of the NbSn2 and Nb6Sn5 is converted to Nb3Sn. Some of the Nb3Sn is formed by a Nb-Sn reaction and has a fine grain (FG) structure, while some is converted from Nb6Sn5, which results in a coarse grain (CG) region. The fractions of FG and CG A15 are important in determining the final conductor properties. In this work we develop an analytic model to predict the radial extents of the various phases, and in particular the final FG and CG fractions based on the starting Nb, Cu, and Sn amounts in the subelements. The model is then compared to experimental results and seen to give reasonable agreement. By virtue of this model we outline an approach to minimize the CG regions in tube type and PIT strands and maximize the final FG area fractions. Furthermore, the volume change during the various reaction stages was also studied. It is proposed that the Sn content in the Cu-Sn alloy has a crucial influence on the radial expansion.

  20. Comparison between OPD-scan results and contrast sensitivity of three intraocular lenses: spheric AcrySof SN60AT, aspheric AcrySof SN60WF and multifocal AcrySof Restor lens Estudo comparativo da análise de frente de onda e sensibilidade ao contraste entre as lentes intra-oculares multifocal AcrySof Restor SN60D3, monofocal AcrySof SN60WF asférica e a monofocal SN60AT esférica

    Directory of Open Access Journals (Sweden)

    Celso Takashi Nakano

    2009-08-01

    Full Text Available Purpose: Compare the OPD-scan results and the contrast sensitivity in patients who had implantation of the AcrySof SN60D3 multifocal IOL, the AcrySof SA60AT spheric monofocal IOL and the AcrySof SN60AT aspheric monofocal IOL. Methods: Thirty-two eyes received the multifocal IOL, 32 eyes received the spheric monofocal IOL and 32 eyes received the aspheric monofocal IOL. They were closely paired in age, sex, pre-operative wavefront analysis and contrast sensitivity. All patients was tested with the OPD-scan aberrometer, ETDRS chart at 100% and 9% contrasts and contrast sensitivity. Results: Statistically significant differences were detected more total aberration in SN60AT group (KW = 9.42; p=0.009 when compared to SN60D3 group (p=0.016 and SN60WF group (p=0.0047. The SN60AT group (KW = 16.20; p=0.0003 showed with high spherical aberration values compared to the SN60WF (p=0.00046 and SN60D3 (p=0.0014 group. No significant differences were found between groups in far-distance VA measured using ETDRS at 100% and 9% contrast. The SN60D3 group compared to SN60AT group (p=0.016 had low contrast sensitivity (log units with statistical difference in 6.0 cpd (KW = 7.84; p=0.0199, but no statistical difference between SN60WF and SN60AT group (p=0.91 and SN60WF and SN60D3 group (p=0.051. The SN60D3 group had low contrast sensitivity performed under mesopic conditions (KW = 10.79; p=0,0045 in 6cpd spatial frequency compared to the SN60AT group (p=0.011 and to the SN60WF group (p=0.007 with statistical significant differences. Conclusion: In all analyzed parameters of OPD-scan aberrometry the aspheric and the multifocal IOLs provided less total and spherical aberrations than spheric IOLs. All IOLs provided an excellent high and low contrasts vision, the multifocal IOL was as good as the spheric and aspheric monofocal IOLs.Objetivo: Comparar a sensibilidade ao contraste e análise de "wavefront" com OPD-scan em pacientes submetidos a cirurgia de facoemulsifica

  1. The crystal structure of (Nb$_{0.75}$Cu$_{0.25}$)Sn$_{2}$ in the Cu-Nb-Sn system

    CERN Document Server

    Martin, Stefan; Nolze, Gert; Leineweber, Andreas; Leaux, Floriane; Scheuerlein, Christian

    2017-01-01

    During the processing of superconducting Nb$_{3}$Sn wire, several intermediate intermetallic phases including a previously encountered Cu-Nb-Sn phase show up. The yet unknown crystal structure of this phase is now identified by a combination of different experimental techniques and database search to be of the hexagonal NiMg2 type with a proposed composition of about (Nb0.75Cu0.25)Sn2. The structure determination started from an evaluation of the lattice parameters from EBSD Kikuchi patterns from quenched material suggesting hexagonal or orthorhombic symmetry. A database search then led to the hexagonal NiMg2 type structure, the presence of which was confirmed by a Rietveld analysis on the basis of high energy synchrotron X-ray powder diffraction data. Assuming a partial substitution of Nb in orthorhombic NbSn2 by Cu, the change of the valence electron concentration provokes a structural transformation from the CuMg2 type for NbSn2 to the NiMg2 type for (Nb0.75Cu0.25)Sn2. In the previous literature the (Nb0.7...

  2. CSIR Annual report 1987

    CSIR Research Space (South Africa)

    CSIR

    1987-01-01

    Full Text Available This report provides highlights on the activities and achievements of CSIR in the year 1987. An outline of the CSIR structure and financial statements are also presented in the report....

  3. National Energy Balance-1987

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The National Energy Balance - 1987 showns energy fluxes of several primary and secondary energy sources, since the production to final consumption in the main economic sectors, since 1971 to 1986. (E.G.) [pt

  4. Physical properties of some Sn-based melts

    Directory of Open Access Journals (Sweden)

    Ilinykh N.

    2011-05-01

    Full Text Available The physical properties (viscosity, density, electroresistivity and magnetic susceptibility of pure tin, copper, silver, some binary (Sn - Ag, Sn - Cu, Sn - Bi, Sn - Zn and ternary (Sn-Ag-Cu, Sn-BiAg, Sn-Bi-Zn alloys with near eutectic compositions are investigated in wide temperature ranges. The irreversible decrease of viscosity in pure tin melt is discovered at 820 °С during heating. The similar anomaly with the following hysteresis of dynamic viscosity was fixed for binary and ternary alloys but at higher temperatures – 900 °С and 950 °С respectively. For all the systems it was shown that the alloys with eutectic compositions differ significantly in their electric and magnetic properties from hypo- and hypereutectic ones. Qualitative and quantitative metallographic analysis for Sn-3.8wt.%Ag-0.7wt.%Cu samples, heated low and above characteristic temperatures, showed the influence of melt overheating on crystallization kinetics.

  5. A rapid hydrothermal synthesis of rutile SnO2 nanowires

    International Nuclear Information System (INIS)

    Lupan, O.; Chow, L.; Chai, G.; Schulte, A.; Park, S.; Heinrich, H.

    2009-01-01

    Tin oxide (SnO 2 ) nanowires with rutile structure have been synthesized by a facile hydrothermal method at 98 deg. C. The morphologies and structural properties of the as-grown nanowires/nanoneedles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction, X-ray diffraction and Raman spectroscopy. The SEM images reveal tetragonal nanowires of about 10-100 μm in length and 50-100 nm in radius. The Raman scattering peaks indicate a typical rutile phase of the SnO 2 . The effects of molar ratio of SnCl 4 to NH 4 OH on the growth mechanism are discussed

  6. Spliceosomal small nuclear RNAs of Tetrahymena thermophila and some possible snRNA-snRNA base-pairing interactions

    DEFF Research Database (Denmark)

    Orum, H; Nielsen, Henrik; Engberg, J

    1991-01-01

    We have identified and characterized the full set of spliceosomal small nuclear RNAs (snRNAs; U1, U2, U4, U5 and U6) from the ciliated protozoan Tetrahymena thermophila. With the exception of U4 snRNA, the sizes of the T. thermophila snRNAs are closely similar to their metazoan homologues. The T....... thermophila snRNAs all have unique 5' ends, which start with an adenine residue. In contrast, with the exception of U6, their 3' ends show some size heterogeneity. The primary sequences of the T. thermophila snRNAs contain the sequence motifs shown, or proposed, to be of functional importance in other...

  7. Changes of electronic structure of SnTe due to high concentration of Sn vacancies

    International Nuclear Information System (INIS)

    Masek, J.; Nuzhnyj, D.N.

    1997-01-01

    Non-stoichiometric Sn 1-y Te is a strongly degenerated n-type semiconductor. This is important for understanding unusual features of magnetic behaviour of Sn 1-x Gd x Te where the relative positions of the Fermi energy and the atomic d-level of Gd govern the exchange coupling.The influence of the Sn vacancies on the band structure cannot be neglect if their concentration reaches a few atomic percent. We address this problem by using a tight-binding coherent potential approach and show that although the character of the bands remains unchanged, they are modified so that ε d can come out above the heavy-hole band. (author)

  8. Report on the material committee meetings in fiscal 1987; 1987 nendo zairyo iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    The material committee has held two meetings in this fiscal year. The first committee meeting (September 25, 1987) was held for the major agenda of (1) the development of a centrifugal slurry pump for liquefaction plants, and as the research and development in fiscal 1987, the in-plant tests on new materials and the development a let-down valve, which were reported and deliberated. The major agenda of the second committee meeting (February 24, 1988) were, as the summarized achievements in fiscal 1987, (2) development of a technology to manufacture hydrogen by utilizing coal, (3) in-plant tests on new materials, and (4) development of a let-down valve, which were reported and deliberated. In Item (1), wear in the shaft seal of the centrifugal slurry pump was discussed regarding its cause from the result of a contraction flow test. In Item (2), it was verified that picrochloromite and chromia are integrated as an electromelting aggregate for the atmospheric stability of refractories used in a gasification furnace, and that the test conditions for the refractories call for the refractories to be tested under severe conditions. In Item (3), how to proceed the tests in the future was verified on such items as corrosion patterns, tested materials, coal types, and the degree of corrosion. In Item (4), kinds and temperatures were verified on slurries used in the water-slurry wear test and the fretting corrosion test. (NEDO)

  9. High field-effect mobility at the (Sr,Ba)SnO{sub 3}/BaSnO{sub 3} interface

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Kohei, E-mail: kfujiwara@imr.tohoku.ac.jp; Nishihara, Kazuki; Shiogai, Junichi; Tsukazaki, Atsushi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2016-08-15

    A perovskite oxide, BaSnO{sub 3}, has been classified as one of transparent conducting materials with high electron mobility, and its application for field-effect transistors has been the focus of recent research. Here we report transistor operation in BaSnO{sub 3}-based heterostructures with atomically smooth surfaces, fabricated on SrTiO{sub 3} substrates by the (Sr,Ba)SnO{sub 3} buffer technique. Indeed, modulation of band profiles at the channel interfaces with the insertion of wide bandgap (Sr,Ba)SnO{sub 3} as a barrier layer results in a significant improvement of field-effect mobility, implying effective carrier doping at the regulated heterointerface. These results provide an important step towards realization of high-performance BaSnO{sub 3}-based field-effect transistors.

  10. All Small Nuclear RNAs (snRNAs) of the [U4/U6.U5] Tri-snRNP Localize to Nucleoli; Identification of the Nucleolar Localization Element of U6 snRNA

    Science.gov (United States)

    Gerbi, Susan A.; Lange, Thilo Sascha

    2002-01-01

    Previously, we showed that spliceosomal U6 small nuclear RNA (snRNA) transiently passes through the nucleolus. Herein, we report that all individual snRNAs of the [U4/U6.U5] tri-snRNP localize to nucleoli, demonstrated by fluorescence microscopy of nucleolar preparations after injection of fluorescein-labeled snRNA into Xenopus oocyte nuclei. Nucleolar localization of U6 is independent from [U4/U6] snRNP formation since sites of direct interaction of U6 snRNA with U4 snRNA are not nucleolar localization elements. Among all regions in U6, the only one required for nucleolar localization is its 3′ end, which associates with the La protein and subsequently during maturation of U6 is bound by Lsm proteins. This 3′-nucleolar localization element of U6 is both essential and sufficient for nucleolar localization and also required for localization to Cajal bodies. Conversion of the 3′ hydroxyl of U6 snRNA to a 3′ phosphate prevents association with the La protein but does not affect U6 localization to nucleoli or Cajal bodies. PMID:12221120

  11. Lavaca Bay 1985-1987

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Samples were collected from October 15, 1985 through June 12, 1987 in emergent marsh and non-vegetated habitats throughout the Lavaca Bay system to characterize...

  12. Controlling Cu–Sn mixing so as to enable higher critical current densities in RRP® Nb3Sn wires

    Science.gov (United States)

    Sanabria, Charlie; Field, Michael; Lee, Peter J.; Miao, Hanping; Parrell, Jeff; Larbalestier, David C.

    2018-06-01

    Dipole magnets for the proposed Future Circular Collider (FCC) demand specifications significantly beyond the limits of all existing Nb3Sn wires, in particular a critical current density (J c) of more than 1500 A mm‑2 at 16 T and 4.2 K with an effective filament diameter (D eff) of less than 20 μm. The restacked-rod-process (RRP®) is the technology closest to meeting these demands, with a J c (16 T) of up to 1400 A mm‑2, residual resistivity ratio > 100, for a sub-element size D s of 58 μm (which in RRP® wires is essentially the same as D eff). An important present limitation of RRP® is that reducing the sub-element size degrades J c to as low as 900 A mm‑2 at 16 T for D s = 35 μm. To gain an understanding of the sources of this J c degradation, we have made a detailed study of the phase evolution during the Cu–Sn ‘mixing’ stages of the wire heat treatment that occur prior to Nb3Sn formation. Using extensive microstructural quantification, we have identified the critical role that the Sn–Nb–Cu ternary phase (Nausite) can play. The Nausite forms as a well-defined ring between the Sn source and the Cu/Nb filament pack, and acts as an osmotic membrane in the 300 °C–400 °C range—greatly inhibiting Sn diffusion into the Cu/Nb filament pack while supporting a strong Cu counter-diffusion from the filament pack into the Sn core. This converts the Sn core into a mixture of the low melting point (408 °C) η phase (Cu6Sn5) and the more desirable ε phase (Cu3Sn), which decomposes at 676 °C. After the mixing stages, when heated above 408 °C towards the Nb3Sn reaction, any residual η liquefies to form additional irregular Nausite on the inside of the membrane. All Nausite decomposes into NbSn2 on further heating, and ultimately transforms into coarse-grain (and often disconnected) Nb3Sn which has little contribution to current transport. Understanding this critical Nausite reaction pathway has allowed us to simplify the mixing heat treatment to

  13. Supernova SN1961v - an explosion of a very massive star

    International Nuclear Information System (INIS)

    Utrobin, V.P.

    1983-01-01

    An investigation of the outburst of the unique supernova SN1961v in the galaxy NGC 1058 is carried out. An analysis of hydrodynamical models of supernoVa outbursts and a comparison with a considerable body of observational data on SN1961v clearly show that the SN1961v phenomenon is an explosion of a very massive star-with the mass of 2000 M and radiUs of about 100 R that results in expelling the envelope with the kinetic energy of 1.8x10 52 erg. The light curve of SN1961v furnishes direct evidence for a heterogeneity of the presupernova interior. The chemical composition produced during the evolution of the very massive star and in the final eXplosion must have a number of the essential features. In particular, hydrogen has to be underabundant relative to the solar content and distributed in the specific manner through the star. At late stages from February 1963 to February 1967, the light curve of SN1961v may be accoUnted for as interaction of the expelled envelope with the stellar wind of presupernova

  14. Old friends in a new light: 'SnSb' revisited

    International Nuclear Information System (INIS)

    Noren, Lasse; Withers, Ray L.; Schmid, Siegbert; Brink, Frank J.; Ting, Valeska

    2006-01-01

    The binary pnictide 'SnSb' has been re-investigated using a combination of X-ray, synchrotron and electron diffraction as well as electron microprobe analysis. Its structure was found to be incommensurately modulated with an underlying rhombohedral parent structure of space group symmetry R3-bar m (No. 166), unit cell parameters a h =b h =4.3251(4)A, c h =5.3376(6)A in the hexagonal setting. The incommensurate primary modulation wave vector q h =1.3109(9)c h * and the superspace group symmetry is R3-bar m (0, 0, ∼1.311) (No. 166.1). The refinement of the incommensurate structure indicates that the satellite reflections arise from displacive shifts of presumably essentially pure Sn and Sb layers along the hexagonal c-axis, with increasing distance between the Sn-layers and decreasing distance between the Sb layers

  15. Progress report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The document informs about the activities made by the Institute of Nuclear Affairs (Colombia) during 1987 for each one of the technical areas: Agriculture, Industrial Applications and Metallurgy, Biochemistry and Radiopharmacy, Process Development, Electronics, Solar Energy, Gamma Facility, Nuclear Physics, Hydrology, Raw Materials, Chemistry, Health Physics, Reactor, and Library and Publications

  16. Highly sensitive formaldehyde resistive sensor based on a single Er-doped SnO_2 nanobelt

    International Nuclear Information System (INIS)

    Li, Shuanghui; Liu, Yingkai; Wu, Yuemei; Chen, Weiwu; Qin, Zhaojun; Gong, Nailiang; Yu, Dapeng

    2016-01-01

    SnO_2 nanobelts (SnO_2 NBs) and Er"3"+-doped SnO_2 nanobelts (Er–SnO_2 NBs) were synthesized by thermal evaporation. The obtained samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersion spectrometer (EDS), and X-ray photoelectron spectrometer (XPS). It is found that Er–SnO_2 NBs have a good morphology with smooth surface and their thickness are about 30 nm, widths between 200 nm and 600 nm, and lengths 30–80 mm. The nanobelts with good morphology were taken to develop sensors based on a single Er–SnO_2 NB/SnO_2 NB for studying sensitive properties. The results reveal that the response of a single Er–SnO_2 nanobelt device is 9 to the formaldehyde gas with a shorter response (recovery time) of 17 (25) s.

  17. 40 CFR 52.1987 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.1987 Section 52.1987 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Oregon Department of Environmental Quality rules for the prevention of significant deterioration of air quality (provisions of OAR chapter 340, Divisions 200, 202...

  18. Interfacial reaction of Ni{sub 3}Sn{sub 4} intermetallic compound in Ni/SnAg solder/Ni system under thermomigration

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi-Shan; Yang, Chia-Jung; Ouyang, Fan-Yi, E-mail: fyouyang@ess.nthu.edu.tw

    2016-07-25

    The growth of Ni{sub 3}Sn{sub 4} intermetallic compound (IMC) between liquid–solid interface in micro-scale Ni/SnAg/Ni system was investigated under a temperature gradient of 160 °C/cm at 260 °C on a hot plate. In contrast to a symmetrical growth of Ni{sub 3}Sn{sub 4} on both interfaces under isothermally annealed at 260 °C, the interfacial Ni{sub 3}Sn{sub 4} IMC exhibited asymmetric growth under a temperature gradient; the growth of Ni{sub 3}Sn{sub 4} at cold interface was faster than that at hot side because of temperature gradient induced mass migration of Ni atoms from the hot end toward the cold end. It was found that two-stage growth behavior of Ni{sub 3}Sn{sub 4} IMC under a temperature gradient. A growth model was established and growth kinetic analysis suggested that the chemical potential gradient controlled the growth of Ni{sub 3}Sn{sub 4} at stage I (0–120 min) whereas the dynamic equilibrium between chemical potential gradient and temperature gradient forces was attained at the hot end at stage II (120–210 min). When dynamic equilibrium was achieved at 260 °C, the critical length-temperature gradient product at the hot end was experimentally estimated to be 489.18 μm × °C/cm and the moving velocity of Ni{sub 3}Sn{sub 4} interface due to Ni consumption was calculated to be 0.134 μm/h. The molar heat of transport (Q*) of Ni atoms in molten SnAg solder was calculated to be +0.76 kJ/mol. - Highlights: • Interfacial reaction in Ni/SnAg solder/Ni system under thermal gradient. • Growth rate of Ni{sub 3}Sn{sub 4} at cold end is faster than that at hot end. • Critical length-temperature gradient product at hot end is 489.2 μm°C/cm at 260 °C. • Velocity of Ni{sub 3}Sn{sub 4} moving interface is 0.134 μm/h during dynamic equilibrium. • Molar heat of transport (Q*) of Ni in molten SnAg was +0.76 kJ/mol.

  19. Preparation of PtSnSb/C electrocatalizers for the electro-oxidation of the ethanol; Preparacao de eletrocatalizadores PtSnSb/C para a eletrooxidacao do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Tusi, M.M.; Ayoub, J.M.S.; Costa, T.C.; Spinace, E.V.; Neto, A.O., E-mail: aolivei@ipen.b, E-mail: espinace@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    PtSn/C (Pt:Sn atomic ratio of 50:50) and PtSnSb/C (Pt:Sn:Sb atomic ratio of 50:45:05, 50:40:10 and 50:10:40) electrocatalysts were prepared (20 wt% metal loading) by an alcohol-reduction process using ethylene glycol as reducing agent, H{sub 2}PtCl{sub 6}.6H{sub 2}O, SnCl{sub 2}.H{sub 2}O and Sb(OOCCH{sub 3}){sub 3} and carbon Vulcan XC72 as support. The obtained materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and chronoamperometry. The PtSnSb/C (50:45:05) prepared by an alcohol-reduction process showed the best performance for ethanol electro-oxidation compared to the others catalysts. (author)

  20. Peculiarities of component interaction in {Gd, Er}-V-Sn Ternary systems at 870 K and crystal structure of RV6Sn6 stannides

    International Nuclear Information System (INIS)

    Romaka, L.; Stadnyk, Yu.; Romaka, V.V.; Demchenko, P.; Stadnyshyn, M.; Konyk, M.

    2011-01-01

    Highlights: → {Gd, Er}-V-Sn ternary systems at 870 K are characterized by formation of stannides with general compositions RV 6 Sn 6 . → Isostructural RV 6 Sn 6 compounds were also found with Y, Dy, Ho, Tm, and Lu. → The crystal structure of RV 6 Sn 6 compounds was determined by powder diffraction method. → Structural analysis showed that RV 6 Sn 6 compounds (R = Gd, Dy-Tm, Lu) are disordered; YV 6 Sn 6 is characterized by structure ordering. - Abstract: The phase equilibria in the Gd-V-Sn and Er-V-Sn ternary systems were studied at 870 K by means of X-ray and metallographic analyses in the whole concentration range. Both Gd-V-Sn and Er-V-Sn systems are characterized by formation of one ternary compound at investigated temperature, with stoichiometry RV 6 Sn 6 (SmMn 6 Sn 6 -type, space group P6/mmm, a = 0.55322(3) nm, c = 0.91949(7) nm for Gd, a = 0.55191(2) nm, c = 0.91869(8) nm for Er). Solubility of the third component in the binary compounds was not observed. Compounds with the SmMn 6 Sn 6 -type were also found with Dy, Ho, Tm, and Lu, while YV 6 Sn 6 compound crystallizes in HfFe 6 Ge 6 structure type. All investigated compounds are the first ternary stannides with rare earth elements and vanadium.

  1. Dominant effect of high anisotropy in β-Sn grain on electromigration-induced failure mechanism in Sn-3.0Ag-0.5Cu interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Huang, M.L., E-mail: huang@dlut.edu.cn; Zhao, J.F.; Zhang, Z.J.; Zhao, N.

    2016-09-05

    The effect of high diffusivity anisotropy in β-Sn grain on electromigration behavior of micro-bumps was clearly demonstrated using Sn-3.0Ag-0.5Cu solder interconnects with only two β-Sn grains. The orientation of β-Sn grain (θ is defined as the angle between the c-axis of β-Sn grain and the electron flow direction) is becoming the most crucial factor to dominate the different electromigration-induced failure modes: 1) the excessive dissolution of the cathode Cu, blocking at the grain boundary and massive precipitation of columnar Cu{sub 6}Sn{sub 5} intermetallic compounds (IMCs) in the small angle θ β-Sn grain occur when electrons flow from a small angle θ β-Sn grain to a large one; 2) void formation and propagation occur at the cathode IMC/solder interface and no Cu{sub 6}Sn{sub 5} IMCs precipitate within the large angle θ β-Sn grain when electrons flow in the opposite direction. The EM-induced failure mechanism of the two β-Sn grain solder interconnects is well explained in viewpoint of atomic diffusion flux in β-Sn. - Highlights: • High anisotropy in β-Sn dominates different electromigration-induced failure mode. • Excessive dissolution of cathode Cu occurs if electrons flow in forward direction. • Voids initiate and propagate at cathode if electrons flow in reverse direction. • Failure modes are well explained in viewpoint of atomic diffusion flux in β-Sn.

  2. Controlling the Sn-C bonds content in SnO2@CNTs composite to form in situ pulverized structure for enhanced electrochemical kinetics.

    Science.gov (United States)

    Cheng, Yayi; Huang, Jianfeng; Qi, Hui; Cao, Liyun; Luo, Xiaomin; Li, Jiayin; Xu, Zhanwei; Yang, Jun

    2017-12-07

    The Sn-C bonding content between the SnO 2 and CNTs interface was controlled by the hydrothermal method and subsequent heat treatment. Electrochemical analysis found that the SnO 2 @CNTs with high Sn-C bonding content exhibited much higher capacity contribution from alloying and conversion reaction compared with the low content of Sn-C bonding even after 200 cycles. The high Sn-C bonding content enabled the SnO 2 nanoparticles to stabilize on the CNTs surface, realizing an in situ pulverization process of SnO 2 . The in situ pulverized structure was beneficial to maintain the close electrochemical contact of the working electrode during the long-term cycling and provide ultrafast transfer paths for lithium ions and electrons, which promoted the alloying and conversion reaction kinetics greatly. Therefore, the SnO 2 @CNTs composite with high Sn-C bonding content displayed highly reversible alloying and conversion reaction. It is believed that the composite could be used as a reference for design chemically bonded metal oxide/carbon composite anode materials in lithium-ion batteries.

  3. Radiation Limits for Nb3Sn Superconductors for ITER Magnets: A literature review

    International Nuclear Information System (INIS)

    Simon, N.J.

    1995-01-01

    The data base on radiation damage to Nb 3 Sn superconductors is compiled from the literature and assessed in this report. Nb 3 Sn superconductors are currently under procurement for use in ITER magnet prototypes. In contrast to the data base on insulation materials proposed for use in ITER magnets, the data base on the radiation damage of Nb 3 Sn is much more complete. Key results have often been confirmed by several groups at different institutions. The investigation of variables that influence radiation damage has also been much more complete for Nb 3 Sn than for insulators. Furthermore, in situ testing of superconducting parameters is much easier than in situ mechanical testing of insulators, and in situ testing has invariably been performed after cryogenic irradiation of Nb 3 Sn. However, in recent years, Nb 3 Sn testing has also suffered from the lack of 4-K irradiation facilities. Just as new processing methods to obtain more economical Nb 3 Sn conductor products in large quantity were being developed, cryogenic irradiation sources were being phased out. Therefore, this brief introductory section presents some basic information on the properties and structure of Nb 3 Sn superconducting composites and the distinctions between different fabrication processes. This provides a background to assess the adequacy of the current cryogenic data base on radiation damage, Also, since synergistic effects of strain and irradiation have recently been investigated, a brief discussion of the effects of strain on Nb 3 Sn properties is included in this introduction

  4. CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions

    KAUST Repository

    Michalak, William D.

    2014-04-01

    The barrier to CO oxidation on Pt catalysts is the strongly bound adsorbed CO, which inhibits O2 adsorption and hinders CO2 formation. Using reaction studies and in situ X-ray spectroscopy with colloidally prepared, monodisperse ∼2 nm Pt and PtSn nanoparticle catalysts, we show that the addition of Sn to Pt provides distinctly different reaction sites and a more efficient reaction mechanism for CO oxidation compared to pure Pt catalysts. To probe the influence of Sn, we intentionally poisoned the Pt component of the nanoparticle catalysts using a CO-rich atmosphere. With a reaction environment comprised of 100 Torr CO and 40 Torr O2 and a temperature range between 200 and 300 C, Pt and PtSn catalysts exhibited activation barriers for CO2 formation of 133 kJ/mol and 35 kJ/mol, respectively. While pure Sn is readily oxidized and is not active for CO oxidation, the addition of Sn to Pt provides an active site for O2 adsorption that is important when Pt is covered with CO. Sn oxide was identified as the active Sn species under reaction conditions by in situ ambient pressure X-ray photoelectron spectroscopy measurements. While chemical signatures of Pt and Sn indicated intermixed metallic components under reducing conditions, Pt and Sn were found to reversibly separate into isolated domains of Pt and oxidic Sn on the nanoparticle surface under reaction conditions of 100 mTorr CO and 40 mTorr O2 between temperatures of 200-275 C. Under these conditions, PtSn catalysts exhibited apparent reaction orders in O2 for CO 2 production that were 0.5 and lower with increasing partial pressures. These reaction orders contrast the first-order dependence in O 2 known for pure Pt. The differences in activation barriers, non-first-order dependence in O2, and the presence of a partially oxidized Sn indicate that the enhanced activity is due to a reaction mechanism that occurs at a Pt/Sn oxide interface present at the nanoparticle surface. © 2014 Published by Elsevier Inc.

  5. Zr-Sn-Nb alloys. Preliminary studies

    International Nuclear Information System (INIS)

    Danon, C.A.; Arias, D.E.

    1993-01-01

    Studies of the Zr-Sn-Nb diagram have been started, focussing on the Zr-rich corner, near the composition of Zirlo commercial alloy, Zr-1Sn-1Nb, and with Fe and O contents usual in nuclear grade materials. Three alloys were melted, namely Zr-4Sn-2.4Nb (A), Zr-1Sn-3Nb (B) and Zr-2.1Sn-1Nb (C). α/β transformation temperatures were measured through the variation of electrical resistivity(p) vs temperature (T). Values of 560 deg C, 670 deg C and 750 deg C were measured for the α→α+β reaction and 980 deg C, 910 deg C and 1000 deg C for the α+β→β reaction, for the A, B and C alloys, respectively in that order. Some samples were submitted to heat treatments (62 and 216 hours at 825 deg C, 120 hours at 875 deg C). Optical and scanning electronic microscopy of those samples confirmed our resistivity results. (Author)

  6. Electronic structure and electric fields gradients of crystalline Sn(II) and Sn(IV) compounds

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1991-01-01

    The electronic structures of clusters representing crystalline compounds of Sn(II) and Sn(IV) were investigated, employing the first-principles Discrete Variational method and Local Density theory. Densities of states and related parameters were obtained and compared with experimental measurements and with results from band structure calculations. Effects of cluster size and of cluster truncated bonds are discussed. Electric field gradients at the Sn nucleus were calculated; results are analysed in terms of charge distribution and chemical bonding in the crystals. (author)

  7. Electrodeposition of nanostructured Sn-Zn coatings

    Science.gov (United States)

    Salhi, Y.; Cherrouf, S.; Cherkaoui, M.; Abdelouahdi, K.

    2016-03-01

    The electrodeposition of Sn-Zn coating at ambient temperature was investigated. The bath consists of metal salts SnCl2·2H2O and ZnSO4·7H2O and sodium citrate (NaC6H5Na3O7·2H2O) as complexing agent. To prevent precipitation, the pH is fixed at 5. Reducing tin and zinc through Sncit2- and ZnHcit- complex respectively is confirmed by the presence of two cathodic peaks on the voltammogram. The kinetic of tin (II) reduction process is limited by the SnCit2- dissociation. The SEM and TEM observations have showed that the coating consists of a uniform Sn-Zn layer composed of fine grains on which tin aggregates grow up. XRD revealed peaks corresponding to the hexagonal Zn phase and the tetragonal β-Sn phase.

  8. Quaternary selenostannates Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} and AGaSnSe{sub 4} (A=K, Rb, and Cs) through rapid cooling of melts. Kinetics versus thermodynamics in the polymorphism of AGaSnSe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, S -J; Iyer, R G; Kanatzidis, M G

    2004-10-01

    The quaternary alkali-metal gallium selenostannates, Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} and AGaSnSe{sub 4} (A=K, Rb, and Cs), were synthesized by reacting alkali-metal selenide, Ga, Sn, and Se with a flame melting-rapid cooling method. Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} crystallizes in the non-centrosymmetric space group C2 with cell constants a=13.308(3) A, b=7.594(2) A, c=13.842(3) A, {beta}=118.730(4) deg., V=1226.7(5) A{sup 3}. {alpha}-KGaSnSe{sub 4} crystallizes in the tetragonal space group I4/mcm with a=8.186(5) A and c=6.403(5) A, V=429.1(5) A{sup 3}. {beta}-KGaSnSe{sub 4} crystallizes in the space group P2{sub 1}/c with cell constants a=7.490(2) A, b=12.578(3) A, c=18.306(5) A, {beta}=98.653(5) deg., V=1705.0(8) A{sup 3}. The unit cell of isostructural RbGaSnSe{sub 4} is a=7.567(2) A, b=12.656(3) A, c=18.277(4) A, {beta}=95.924(4) deg., V=1741.1(7) A{sup 3}. CsGaSnSe{sub 4} crystallizes in the orthorhombic space group Pmcn with a=7.679(2) A, b=12.655(3) A, c=18.278(5) A, V=1776.1(8) A{sup 3}. The structure of Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} consists of a polar three-dimensional network of trimeric (Sn,Ga){sub 3}Se{sub 9} units with Na atoms located in tunnels. The AGaSnSe{sub 4} possess layered structures. The compounds show nearly the same Raman spectral features, except for Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6}. Optical band gaps, determined from UV-Vis spectroscopy, range from 1.50 eV in Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} to 1.97 eV in CsGaSnSe{sub 4}. Cooling of the melts of KGaSnSe{sub 4} and RbGaSnSe{sub 4} produces only kinetically stable products. The thermodynamically stable product is accessible under extended annealing, which leads to the so-called {gamma}-form (BaGa{sub 2}S{sub 4}-type) of these compounds.

  9. Theoretical calculation of performance enhancement in lattice-matched SiGeSn/GeSn p-channel tunneling field-effect transistor with type-II staggered tunneling junction

    Science.gov (United States)

    Wang, Hongjuan; Han, Genquan; Wang, Yibo; Peng, Yue; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hu, Shengdong; Hao, Yue

    2016-04-01

    In this work, a lattice-matched SiGeSn/GeSn heterostructure p-channel tunneling field-effect transistor (hetero-PTFET) with a type-II staggered tunneling junction (TJ) is investigated theoretically. Lattice matching and type-II band alignment at the Γ-point is obtained at the SiGeSn/GeSn interface by tuning Sn and Si compositions. A steeper subthreshold swing (SS) and a higher on state current (I ON) are demonstrated in SiGeSn/GeSn hetero-PTFET than in GeSn homo-PTFET. Si0.31Ge0.49Sn0.20/Ge0.88Sn0.12 hetero-PTFET achieves a 2.3-fold higher I ON than Ge0.88Sn0.12 homo-PTFET at V DD of 0.3 V. Hetero-PTFET achieves a more abrupt hole profile and a higher carrier density near TJ than the homo-PTFET, which contributes to the significantly enhanced band-to-band tunneling (BTBT) rate and tunneling current in hetero-PTFET.

  10. Electrochemical energy storage behavior of Sn/SnO2 double phase nanocomposite anodes produced on the multiwalled carbon nanotube buckypapers for lithium-ion batteries

    Science.gov (United States)

    Alaf, Mirac; Akbulut, Hatem

    2014-02-01

    Recent development of electrode materials for Li-ion batteries is driven mainly by hybrid nanocomposite structures consisting of Li storage compounds and CNTs. In this study, tin/tinoxide (Sn/SnO2) films and tin/tinoxide/multi walled carbon nanotube (Sn/SnO2/MWCNT) nanocomposites are produced by a two steps process; thermal evaporation and subsequent plasma oxidation as anode materials for Li-ion batteries. The physical, structural, and electrochemical behaviors of the nanocomposite electrodes containing MWCNTs are discussed. The ratio between metallic tin (Sn) and tinoxide (SnO2) is controlled with plasma oxidation time and effects of the ratio are investigated on the structural and electrochemical properties. The greatly enhanced electrochemical performance is mainly due to the morphological stability and reduced diffusion resistance, which are induced by MWCNT core and deposited Sn/SnO2 double phase shell. The outstanding long-term cycling stability is a result of the two layers Sn and SnO2 phases on MWCNTs. The nanoscale Sn/SnO2/MWCNT network provides good electrical conductivity, and the creation of open spaces that buffer a large volume change during the Li-alloying/de-alloying reaction.

  11. Enhanced hydrogen storage capacity of Ni/Sn-coated MWCNT nanocomposites

    Science.gov (United States)

    Varshoy, Shokufeh; Khoshnevisan, Bahram; Behpour, Mohsen

    2018-02-01

    The hydrogen storage capacity of Ni-Sn, Ni-Sn/multi-walled carbon nanotube (MWCNT) and Ni/Sn-coated MWCNT electrodes was investigated by using a chronopotentiometry method. The Sn layer was electrochemically deposited inside pores of nanoscale Ni foam. The MWCNTs were put on the Ni-Sn foam with nanoscale porosities using an electrophoretic deposition method and coated with Sn nanoparticles by an electroplating process. X-ray diffraction and energy dispersive spectroscopy results indicated that the Sn layer and MWCNTs are successfully deposited on the surface of Ni substrate. On the other hand, a field-emission scanning electron microscopy technique revealed the morphology of resulting Ni foam, Ni-Sn and Ni-Sn/MWCNT electrodes. In order to measure the hydrogen adsorption performed in a three electrode cell, the Ni-Sn, Ni-Sn/MWCNT and Ni/Sn-coated MWCNT electrodes were used as working electrodes whereas Pt and Ag/AgCl electrodes were employed as counter and reference electrodes, respectively. Our results on the discharge capacity in different electrodes represent that the Ni/Sn-coated MWCNT has a maximum discharge capacity of ˜30 000 mAh g-1 for 20 cycles compared to that of Ni-Sn/MWCNT electrodes for 15 cycles (˜9500 mAh g-1). By increasing the number of cycles in a constant current, the corresponding capacity increases, thereby reaching a constant amount for 20 cycles.

  12. Phase Equilibria of Sn-Co-Cu Ternary System

    Science.gov (United States)

    Chen, Yu-Kai; Hsu, Chia-Ming; Chen, Sinn-Wen; Chen, Chih-Ming; Huang, Yu-Chih

    2012-10-01

    Sn-Co-Cu ternary alloys are promising lead-free solders, and isothermal sections of Sn-Co-Cu phase equilibria are fundamentally important for the alloys' development and applications. Sn-Co-Cu ternary alloys were prepared and equilibrated at 523 K, 1073 K, and 1273 K (250 °C, 800 °C, and 1000 °C), and the equilibrium phases were experimentally determined. In addition to the terminal solid solutions and binary intermetallic compounds, a new ternary compound, Sn3Co2Cu8, was found. The solubilities of Cu in the α-CoSn3 and CoSn2 phases at 523 K (250 °C) are 4.2 and 1.6 at. pct, respectively, while the Cu solubility in the α-Co3Sn2 phase is as high as 20.0 at. pct. The Cu solubility increases with temperature and is around 30.0 at. pct in the β-Co3Sn2 at 1073 K (800 °C). The Co solubility in the η-Cu6Sn5 phase is also significant and is 15.5 at. pct at 523 K (250 °C).

  13. Obrigheim nuclear power station. Annual report 1987

    International Nuclear Information System (INIS)

    Koerner, C.

    1988-01-01

    The Obrigheim nuclear power station was operated at full load during the year 1987; 7.351 operating hours procuded electrical energy of 2.607 GWh. This is the fifth best annual result during Obrigheim's operating period. Since commissioning in October 1968, 139.310 hours of operation have generated 46.681 GWh (gross) and from test operation in March 1969 until the end of 1987, 138.530 hours of operation have generated 46.569 GWh. This is an availability of power of 81.6% in this period and a time availability of 83.9%. In 1987, the plant was shut down for 1.222 hours for the 18th refueling including testing, inspection and repair work. Apart from refueling, the plant had a good time availability and therefore contributed 5% to the safe, economical and environmentally acceptable electricity supply of the Land Baden-Wuerttemberg. The power station is of great significance to the region, both in terms of power supply and the economy. (orig./HP) [de

  14. Lead-free soldering: Investigation of the Cu-Sn-Sb system along the Sn:Sb = 1:1 isopleth

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Y. [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Department of Chemistry and Industrial Chemistry, University of Genoa, INSTM UdR Genoa, Via Dodecaneso 31, I-16146 Genoa (Italy); Borzone, G., E-mail: borzone@chimica.unige.it [Department of Chemistry and Industrial Chemistry, University of Genoa, INSTM UdR Genoa, Via Dodecaneso 31, I-16146 Genoa (Italy); Zanicchi, G.; Delsante, S. [Department of Chemistry and Industrial Chemistry, University of Genoa, INSTM UdR Genoa, Via Dodecaneso 31, I-16146 Genoa (Italy)

    2011-02-03

    Research highlights: > In the electronics industry, the solder alloys commonly used for assembly belong to the Sn-Pb system. Fulfilment of the EU RoHS (reduction of hazardous substances) requires the development of new lead-free alloys for applications in electronics, with the same or possibly better characteristics than the traditional Sn-Pb alloys. > This research concerns the investigation of the constitutional properties of the Cu-Sn-Sb system which is considered as lead-free replacement for high-temperature applications. - Abstract: The Cu-Sn-Sb system has been experimentally investigated by a combination of optical microscopy, differential scanning calorimetry (DSC) and electron probe microanalysis (EPMA). DSC was used to identify a total number of five invariant ternary reactions and the Sn:Sb = 1:1 isopleth section up to 65 at.% Cu was constructed by combining the DSC data with the EPMA analyses of annealed alloys and literature information. The composition limits of the binary phases were detected.

  15. Photoelectrochemical properties of orthorhombic and metastable phase SnS nanocrystals synthesized by a facile colloidal method

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Po-Chia [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Huang, Jow-Lay [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan, ROC (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan, ROC (China); Wang, Sheng-Chang; Shaikh, Muhammad Omar [Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan, ROC (China); Lin, Chia-Yu [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2015-12-01

    SnS of orthorhombic (OR) and metastable (SnS) phases were synthesized by using a simple and facile colloidal method. The tin precursor was synthesized using tin oxide (SnO) and oleic acid (OA), while the sulfur precursor was prepared using sulfur powder (S) and oleyamine (OLA). The sulfur precursor was injected into the tin precursor and the prepared SnS nanocrystals were precipitated at a final reaction temperature of 180 °C. The results show that hexamethyldisilazane (HMDS) can be successfully used as a surfactant to synthesize monodisperse 20 nm metastable SnS nanoparticles, while OR phase SnS nanosheets were obtained without HMDS. The direct bandgap observed for the metastable SnS phase is higher (1.66 eV) as compared to the OR phase (1.46 eV). The large blueshift in the direct bandgap of metastable SnS is caused by the difference in crystal structure. The blueshift in the direct band gap value for OR-SnS could be explained by quantum confinement in two dimensions in the very thin nanosheets. SnS thin films used as a photo anode in a photoelectrochemical (PEC) cell were prepared by spin coating on the fluorine-doped tin oxide (FTO) substrates. The photocurrent density of the SnS (metastable SnS)/FTO and SnS (OR)/FTO are 191.8 μA/cm{sup 2} and 57.61 μA/cm{sup 2} at an applied voltage of − 1 V at 150 W, respectively. These narrow band gap and low cost nanocrystals can be used for applications in future optoelectronic devices. - Highlights: • A facile method to synthesize two different phases of SnS having different morphological and optical properties. • The phases and morphologies of SnS nanocrystal can be controlled by adding capping surfactant hexamethyldisilazane (HMDS). • As we know, this is the first metastable SnS photoanode for application in a photoelectrochemical cell.

  16. Experimental Method for Plotting S-N Curve with a Small Number of Specimens

    Directory of Open Access Journals (Sweden)

    Strzelecki Przemysław

    2016-12-01

    Full Text Available The study presents two approaches to plotting an S-N curve based on the experimental results. The first approach is commonly used by researchers and presented in detail in many studies and standard documents. The model uses a linear regression whose parameters are estimated by using the least squares method. A staircase method is used for an unlimited fatigue life criterion. The second model combines the S-N curve defined as a straight line and the record of random occurrence of the fatigue limit. A maximum likelihood method is used to estimate the S-N curve parameters. Fatigue data for C45+C steel obtained in the torsional bending test were used to compare the estimated S-N curves. For pseudo-random numbers generated by using the Mersenne Twister algorithm, the estimated S-N curve for 10 experimental results plotted by using the second model, estimates the fatigue life in the scatter band of the factor 3. The result gives good approximation, especially regarding the time required to plot the S-N curve.

  17. The crystallisation of Cu{sub 2}ZnSnS{sub 4} thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors

    Energy Technology Data Exchange (ETDEWEB)

    Schurr, R. [Chair for Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany)], E-mail: schurr@krist.uni-erlangen.de; Hoelzing, A.; Jost, S.; Hock, R. [Chair for Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany); Voss, T.; Schulze, J.; Kirbs, A. [Atotech Deutschland GmbH, Erasmusstrasse 20, D-10553 Berlin (Germany); Ennaoui, A.; Lux-Steiner, M. [Heterogeneous Material Systems SE II, Hahn-Meitner-Institut, Glienickerstr.100, D-14109 Berlin (Germany); Weber, A.; Koetschau, I.; Schock, H.-W. [Technology SE III, Hahn-Meitner-Institut, Glienickerstr.100, D-14109 Berlin (Germany)

    2009-02-02

    The best CZTS solar cell so far was produced by co-sputtering continued with vapour phase sulfurization method. Efficiencies of up to 5.74% were reached by Katagiri et al. The one step electrochemical deposition of copper, zinc, tin and subsequent sulfurization is an alternative fabrication technique for the production of Cu{sub 2}ZnSnS{sub 4} based thin film solar cells. A kesterite based solar cell (size 0.5 cm{sup 2}) with a conversion efficiency of 3.4% (AM1.5) was produced by vapour phase sulfurization of co-electroplated Cu-Zn-Sn films. We report on results of in-situ X-ray diffraction (XRD) experiments during crystallisation of kesterite thin films from electrochemically co-deposited metal films. The kesterite crystallisation is completed by the solid state reaction of Cu{sub 2}SnS{sub 3} and ZnS. The measurements show two different reaction paths depending on the metal ratios in the as deposited films. In copper-rich metal films Cu{sub 3}Sn and CuZn were found after electrodeposition. In copper-poor or near stoichiometric precursors additional Cu{sub 6}Sn{sub 5} and Sn phases were detected. The formation mechanism of Cu{sub 2}SnS{sub 3} involves the binary sulphides Cu{sub 2-x}S and SnS{sub 2} in the absence of the binary precursor phase Cu{sub 6}Sn{sub 5}. The presence of Cu{sub 6}Sn{sub 5} leads to a preferred formation of Cu{sub 2}SnS{sub 3} via the reaction educts Cu{sub 2-x}S and SnS{sub 2} in the presence of a SnS{sub 2}(Cu{sub 4}SnS{sub 6}) melt. The melt phase may be advantageous in crystallising the kesterite, leading to enhanced grain growth in the presence of a liquid phase.

  18. Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt:Sn ratio

    International Nuclear Information System (INIS)

    Jiang, L.; Colmenares, L.; Jusys, Z.; Sun, G.Q.; Behm, R.J.

    2007-01-01

    Novel carbon supported Pt/SnO x /C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, CO ad stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnO x /C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnO x /C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 deg. C. On all Pt/SnO x /C catalysts, acetic acid and acetaldehyde represent dominant products, CO 2 formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol -1 ), but are lower than on Pt/C (32 kJ mol -1 ). The somewhat better performance of the Pt/SnO x /C catalysts compared to alloyed PtSn x /C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies

  19. Polymer-SnO2 composite membranes

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal; Skou, Eivind Morten

    . This work utilizes the latter approach and makes use of particles of tin dioxide (SnO2). Polymer-SnO2 composite membranes were successfully prepared using an ion-exchange method. SnO2 was incorporated into membranes by ion-exchange in solutions of SnCl2 ∙ 2 H2O in methanol, followed by oxidation to SnO2...... in air. The content of SnO2 proved controllable by adjusting the concentration of the ion-exchange solution. The prepared nanocomposite membranes were characterized by powder XRD, 119Sn MAS NMR, electrochemical impedance spectroscopy, water uptake and tensile stress-strain measurements. For Nafion 117...

  20. SN 2015as: a low-luminosity Type IIb supernova without an early light-curve peak

    Science.gov (United States)

    Gangopadhyay, Anjasha; Misra, Kuntal; Pastorello, A.; Sahu, D. K.; Tomasella, L.; Tartaglia, L.; Singh, Mridweeka; Dastidar, Raya; Srivastav, S.; Ochner, P.; Brown, Peter J.; Anupama, G. C.; Benetti, S.; Cappellaro, E.; Kumar, Brajesh; Kumar, Brijesh; Pandey, S. B.

    2018-05-01

    We present results of the photometric (from 3 to 509 d post-explosion) and spectroscopic (up to 230 d post-explosion) monitoring campaign of the He-rich Type IIb supernova (SN) 2015as. The (B - V) colour evolution of SN 2015as closely resemble those of SN 2008ax, suggesting that SN 2015as belongs to the SN IIb subgroup that does not show the early, short-duration photometric peak. The light curve of SN 2015as reaches the B-band maximum about 22 d after the explosion, at an absolute magnitude of -16.82 ± 0.18 mag. At ˜75 d after the explosion, its spectrum transitions from that of a SN II to a SN Ib. P Cygni features due to He I lines appear at around 30 d after explosion, indicating that the progenitor of SN 2015as was partially stripped. For SN 2015as, we estimate a 56Ni mass of ˜0.08 M⊙ and ejecta mass of 1.1-2.2 M⊙, which are similar to the values inferred for SN 2008ax. The quasi-bolometric analytical light-curve modelling suggests that the progenitor of SN 2015as has a modest mass (˜0.1 M⊙), a nearly compact (˜0.05 × 1013 cm) H envelope on top of a dense, compact (˜2 × 1011 cm) and a more massive (˜1.2 M⊙) He core. The analysis of the nebular phase spectra indicates that ˜0.44 M⊙ of O is ejected in the explosion. The intensity ratio of the [Ca II]/[O I] nebular lines favours either a main-sequence progenitor mass of ˜15 M⊙ or a Wolf-Rayet star of 20 M⊙.

  1. Effect of Nb on the Growth Behavior of Co3Sn2 Phase in Undercooled Co-Sn Melts

    Science.gov (United States)

    Kang, Jilong; Xu, Wanqiang; Wei, Xiuxun; Ferry, Michael; Li, Jinfu

    2016-12-01

    The growth behavior of the primary β-Co3Sn2 phase in (Co67Sn33)100- x Nb x ( x = 0, 0.5, 0.8, 1.0) hypereutectic alloys at different melt undercoolings was investigated systematically. The growth pattern of the β-Co3Sn2 phase at low undercooling changes with the Nb content from fractal seaweed ( x = 0, 0.5) into dendrite ( x = 0.8) and then returns to fractal seaweed ( x = 1.0) as a response to the changes in interface energy anisotropy and interface kinetic anisotropy. As undercooling increases, the dendritic growth of the β-Co3Sn2 phase in (Co67Sn33)99.2Nb0.8 alloy gives way to fractal seaweed growth at an undercooling of 32 K (-241 °C). At larger undercooling, the fractal seaweed growth is further replaced by compact seaweed growth, which occurred in the other three alloys investigated. The growth velocity of the β-Co3Sn2 phase slightly increases at low and intermediate undercooling but clearly decreases at larger undercooling due to the Nb addition. The growth velocity sharply increases as the growth pattern of the Co3Sn2 phase transits from fractal seaweed into compact seaweed.

  2. Waste Tax 1987-1996

    DEFF Research Database (Denmark)

    Andersen, M. S.; Dengsøe, N.; Brendstrup, S.

    The report gives an ex-post evaluation of the Danish waste tax from 1987 to 1996. The evaluation shows that the waste tax has had a significant impact on the reductions in taxable waste. The tax has been decisive for the reduction in construction and demolition waste, while for the heavier...

  3. Beta-decay studies near 100Sn

    International Nuclear Information System (INIS)

    Rykaczewski, Krzysztof Piotr; Karny, M.; Batist, L.; Banu, A.; Becker, F.; Blazhev, A.; Burkard, K.; Bruchle, W.; Doring, J.; Faestermann, T.; Gorska, M.; Grawe, H.; Janas, Z.; Jungclaus, A.; Kavatsyuk, M.; Kavatsyuk, O.; Kirchner, R.; La Commara, M.; Mandal, S.; Mazzocchi, C.; Miernik, K.; Mukha, I.; Muralithar, S.; Plettner, C.; Plochocki, A.; Roeckl, E.; Romoli, M.; Schadel, M.; Schmidt, K.; Schwengner, R.; Zylicz, J.

    2005-01-01

    The β-decay of 102 Sn was studied by using high-resolution germanium detectors as well as a Total Absorption Spectrometer (TAS). A decay scheme has been constructed based on the γ-γ coincidence data. The total experimental Gamow-Teller strength B GT exp of 102 Sn was deduced from the TAS data to be 4.2(9). A search for β-delayed γ-rays of 100 Sn decay remained unsuccessful. However, a Gamow-Teller hindrance factor h = 2.2(3), and a cross-section of about 3nb for the production of 100 Sn in fusion-evaporation reaction between 58 Ni beam and 50 Cr target have been estimated from the data on heavier tin isotopes. The estimated hindrance factor is similar to the values derived for lower shell nuclei

  4. 1987 wet deposition temporal and spatial patterns in North America

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.C.; Olsen, A.R.

    1990-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1987 and spatial patterns for 1987. The report investigates the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Data are from the Acid Deposition System (ADS) for the statistical reporting of North American deposition data which includes the National Atmospheric Deposition Program/National Trends Network (NADP/NTN), the MAP3S precipitation chemistry network, the Utility Acid Precipitation Study Program (UAPSP), the Canadian Precipitation Monitoring Network (CAPMoN), and the daily and 4-weekly Acidic Precipitation in Ontario Study (APIOS-D and APIOS-C). Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1987 annual, winter, and summer periods. The temporal pattern analyses use a subset of 39 sites over a 9-year (1979--1987) period and an expanded subset of 140 sites with greater spatial coverage over a 6-year (1982--1987) period. 68 refs., 15 figs., 15 tabs.

  5. Laser spectroscopy of neutron deficient Sn isotopes

    CERN Multimedia

    We propose to study the ground state properties of neutron-deficient Sn isotopes towards the doubly-magic nucleus $^{100}$Sn. Nuclear spins, changes in the rms charge radii and electromagnetic moments of $^{101-121}$Sn will be measured by laser spectroscopy using the CRIS experimental beam line. These ground-state properties will help to clarify the evolution of nuclear structure properties approaching the $\\textit{N = Z =}$ 50 shell closures. The Sn isotopic chain is currently the frontier for the application of state-of-the-art ab-initio calculations. Our knowledge of the nuclear structure of the Sn isotopes will set a benchmark for the advances of many-body methods, and will provide an important test for modern descriptions of the nuclear force.

  6. Progress report 1987-1988. Reactor Chemistry Department

    International Nuclear Information System (INIS)

    1988-01-01

    Review of the activities performed by the Reactor Chemistry Department of the National Atomic Energy Commission of Argentina during 1987-1988. This department provides services and assistance in all matters related to water chemistry and nuclear reactors chemistry, in all their phases: design, construction, commissioning and decommissioning. The appendix includes information on the Reactor Chemistry Department staff, its publications, services, seminars, courses and conferences performed during 1987-1988. (Author) [es

  7. Liquidus Projection and Isothermal Section of the Sb-Se-Sn System

    Science.gov (United States)

    Chang, Jui-shen; Chen, Sinn-wen

    2017-12-01

    Sb-Se-Sn ternary alloys are promising chalcogenide materials. The liquidus projection and 673.2 K (400 °C) isothermal section of the Sb-Se-Sn ternary system are determined. Numerous Sb-Se-Sn alloys are prepared, and their primary solidification phases are examined. In addition to the three terminal phases, (Sb), (Se) and (Sn), there are Sb2Sn3, SbSn, SnSe, SnSe2, Sb2Se3, Sn2Sb9Se9, and SnSb2Se4 phases. In addition, there are two miscibility gaps along the Sb-Se and Se-Sn and sides. There are ten invariant reactions in the Sb-Se-Sn ternary system, and seven of them are experimentally determined in this study. The lowest reaction temperature of determined invariant reaction is L + SbSn = (Sn) + SnSe at 515.4 K ± 5 K (242.2 °C ± 5 °C). There are nine tie-triangles, which are Liquid + SbSn + SnSe, SbSn + SnSe + (Sb), SnSe + (Sb) + Sn2Sb9Se9, (Sb) + Sb2Se3 + Sn2Sb9Se9, SnSe + Sn2Sb9Se9 + SnSb2Se4, Sb2Se3 + Sn2Sb9Se9 + SnSb2Se4, SnSe + SnSe2 + SnSb2Se4, SnSe2 + SnSb2Se4 + Sb2Se3, and SnSe2 + Sb2Se3 + Liquid in the 673.2 K (400 °C) isothermal section of the Sb-Se-Sn ternary system.

  8. Effect of Cooling Rate on the Longitudinal Modulus of Cu3Sn Phase of Ag-Sn-Cu Amalgam Alloy (Part II

    Directory of Open Access Journals (Sweden)

    R. H. Rusli

    2015-10-01

    Full Text Available Effects of cooling rate (at the time of solidification on the elastic constants of Cu3Sn phase of Ag-Sn-Cu dental amalgam alloy were studied. In this study, three types of alloys were made, with the composition Cu-38-37 wt% Sn by means of casting, where each alloy was subjected to different cooling rate, such as cooling on the air (AC, air blown (AB, and quenched in the water (WQ. X-ray diffraction, metallography, and Scanning Electron Microscopy with Energy Dispersive Spectroscopy studies of three alloys indicated the existence of Cu3Sn phase. Determination of the modulus of elasticity of Cu3Sn (ε phase was carried out by the measurement of longitudinal and transversal waves velocity using ultrasonic technique. The result shows that Cu3Sn (ε phase on AC gives higher modulus of elasticity values than those of Cu3Sn (ε on AB and WQ. The high modulus of elasticity value will produce a strong Ag-Sn-Cu dental amalagam alloy.

  9. The state of physics - 1987

    International Nuclear Information System (INIS)

    Bromley, D.A.

    1989-01-01

    The first part of a translation of the lecture read in 1987 by the resigning president of the IUPAP. The lecture presented an outline of the outstanding achievements of physics in 1985-1987. The first part deals with the non-existence of hidden parameters in quantum mechanics, with progress in elementary particle physics, and with achievements in nuclear and atomic physics. Among others, a group of ''superachievements'' is pointed out: the discovery of superconductivity at relatively high temperatures, the establishment of the theory of supersymmetry and of superstrings on the way to Grand Unification, the plans for the Superconducting Supercollider Accelerator. Further topics discussed are: the time inversion invariance, proton decay, double beta decay, symmetry in nuclei, collisions of ultrarelativistic heavy ions, positrons from heavy nuclei collisions, high precision measurements in atomic physics, and compressed states. (A.K.). 45 figs

  10. Highly Active, Carbon-supported, PdSn Nano-core, Partially ...

    African Journals Online (AJOL)

    Carbon-supported, Pt partially covered, PdSn alloy nanoparticles (Pt-PdSn/C) were synthesized via a metathetical reaction of PdSn alloy nanoparticles, and a platinum precursor. The electrochemical activity was evaluated by methanol oxidation. The Pt-PdSn/C catalysts were characterized by transmission electron ...

  11. Noncollinear antiferromagnetic Mn3Sn films

    Science.gov (United States)

    Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.

    2018-05-01

    Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.

  12. Diffusion couple studies of the Ni-Bi-Sn system

    Directory of Open Access Journals (Sweden)

    Vassilev G.

    2012-01-01

    Full Text Available Investigations of Ni-Bi-Sn system were performed in order to inquire the phase diagram and to assess some diffusion kinetic parameters. For this purpose diffusion couples consisting of solid nickel (preliminary electroplated with tin and liquid Bi-Sn phase were annealed at 370 °C. Three compositions (0.8, 0.6 and 0.4 mole fractions Sn of the Bi-Sn melts were chosen. Annealing times from 24 to 216 h were applied. The phase and chemical compositions of the contact zone were determined by means of electron scanning microscope. It was confirmed that the diffusion layers consist mainly of Ni3Sn4 but other intermetallic phases grow as well. For the first time metastable Ni-Sn phases as NiSn and NiSn8 (NiSn9 were observed in metallurgical alloys (i.e. not in electroplated samples. The existence of a ternary compound previously reported in the literature was confirmed. More than one ternary Ni-Bi-Sn compounds might possibly be admitted. A growth coefficient of (2.29 ± 0.02 x 10-15 m2 s-1 was obtained. It was found that the apparent activation energy for diffusion layers growth (18 ± 8 kJ mol-1 is inferior to that one assessed at growth from solid state Bi-Sn mixtures (88 ± 12 kJ mol-1.

  13. Thermodynamic assessment of the Sn-Co lead-free solder system

    Science.gov (United States)

    Liu, Libin; Andersson, Cristina; Liu, Johan

    2004-09-01

    The Sn-Co-Cu eutectic alloy can be a less expensive alternative for the Sn-Ag-Cu alloy. In order to find the eutectic solder composition of the Sn-Co-Cu system, the Sn-Co binary system has been thoroughly assessed with the calculation of phase diagram (CALPHAD) method. The liquid phase, the FCC and HCP Co-rich solid solution, and the BCT Sn-rich solid solution have been described by the Redlich-Kister model. The Hillert-Jarl-Inden model has been used to describe the magnetic contributions to Gibbs energy in FCC and HCP. The CoSn2, CoSn, Co3Sn2_β, and Co3Sn2_α phases have been treated as stoichiometric phases. A series of thermodynamic parameters have been obtained. The calculated phase diagram and thermodynamic properties are in good agreement with the experimental data. The obtained thermodynamic data was used to extrapolate the ternary Sn-Co-Cu phase diagram. The composition of the Sn-rich eutectic point of the Sn-Co-Cu system was found to be 224°C, 0.4% Co, and 0.7% Cu.

  14. The curious case of SN 2011dn: A very peculiar type Ia supernova?

    Science.gov (United States)

    Rachubo, Alisa

    Type Ia supernovae (SNe Ia) are excellent cosmological distance indicators due to the uniformity in their light curves, which led to the major discovery of the accelerated expansion of the universe. However, SNe Ia are not so uniform as one may expect, as there are many peculiar SNe Ia that exhibit differences in their photometric and spectroscopic behavior from normal SNe Ia. One of the goals of supernova cosmology today is to produce a cleaner sample of SNe Ia without these peculiar SNe Ia. Here we consider SN 2011dn, a peculiar SN Ia candidate. In 2011, Salvo, et al. carried out a preliminary analysis of a subset of the data prescribed here, and identified spectral and photometric peculiarities in this object's evolution that warranted further analysis. Here, we present a complete re-reduction and reanalysis of B, V,R, and I photometry of SN 2011dn obtained at Mount Laguna Observatory, spanning from 7 days before maximum light in B to 88 days past maximum light. In addition, we also consider total flux spectra from 9 days before maximum light to 4 days after maximum light, along with ultraviolet (UV) photometry obtained with the Swift telescope. From SN 2011dn's optical spectra, we find that SN 2011dn most closely resembles a SN 1991T-like type Ia supernova ('91T-like SN Ia). Such SNe Ia are typically more luminous than normal SNe Ia, and possess broader (i.e., they decline less rapidly than normal from maximum light) light curves. Their Deltam15(B) (drop in B magnitude 15 days after maximum light) are typically significantly less than the canonical value of 1.1, and can be as low as 0.8. In the earlier preliminary analysis, Salvo et al. measured a surprisingly high Deltam15(B) value for SN 2011dn, of ˜ 1.1. Since SN 2011dn was embedded in UGC 11501 (its host galaxy), however, it is possible that some of the light from the host galaxy was included in the photometric aperture, resulting in inaccurate photometric measurements. Here, in order to better isolate the

  15. Urenco 1987

    International Nuclear Information System (INIS)

    1987-01-01

    Urenco is a group of companies and production enterprises in the Federal Republic of Germany, the Netherlands and the United Kingdom. It was established in 1971 to develop and exploit on a commercial basis the enrichment of uranium by the gas centrifuge process. Its plants are at Almelo in the Netherlands, Capenhurst in the UK and Gronau in Germany. This report covers the year of operation to July 1987. The marketing (including the contracts made), production, plant details, tests and trials with recycled uranium, the technology of the process administration are all summarized. A financial statement of the year's operations is presented. (UK)

  16. Local atomic structure inheritance in Ag50Sn50 melt

    International Nuclear Information System (INIS)

    Bai, Yanwen; Bian, Xiufang; Qin, Jingyu; Hu, Lina; Yang, Jianfei; Zhang, Kai; Zhao, Xiaolin; Yang, Chuncheng; Zhang, Shuo; Huang, Yuying

    2014-01-01

    Local structure inheritance signatures were observed during the alloying process of the Ag 50 Sn 50 melt, using high-temperature X-ray diffraction and ab initio molecular dynamics simulations. The coordination number N m around Ag atom is similar in the alloy and in pure Ag melts (N m  ∼ 10), while, during the alloying process, the local structure around Sn atoms rearranges. Sn-Sn covalent bonds were substituted by Ag-Sn chemical bonds, and the total coordination number around Sn increases by about 70% as compared with those in the pure Sn melt. Changes in the electronic structure of the alloy have been studied by Ag and Sn K-edge X-ray absorption spectroscopy, as well as by calculations of the partial density of states. We propose that a leading mechanism for local structure inheritance in Ag 50 Sn 50 is due to s-p dehybridization of Sn and to the interplay between Sn-s and Ag-d electrons

  17. Moessbauer and X-ray Diffraction Investigations of Sn-containing Binary and Ternary Electrodeposited Alloys from a Gluconate Bath

    International Nuclear Information System (INIS)

    Kuzmann, E.; Stichleutner, S.; Homonnay, Z.; Vertes, A.; Doyle, O.; Chisholm, C.U.; El-Sharif, M.

    2005-01-01

    Constant current technique was applied to electrodeposit tin-containing coatings such as tin-cobalt (Sn-Co), tin-iron (Sn-Fe) and a novel tin-cobalt-iron (Sn-Co-Fe) from a gluconate bath. The effect of plating parameters (current density, deposition time at an electrolyte temperature of 60 deg. C and pH=7.0) on phase composition, crystal structure and magnetic anisotropy of alloy deposits has been investigated mainly by 57Fe CEMS, 119Sn CEMS and transmission Moessbauer Spectroscopy as well as XRD. 57Fe and 119Sn CEM spectra and XRD reflect that the dominant phases of the deposits are orthorhombic Co3Sn2, tetragonal FeSn2 or amorphous Fe-Sn and amorphous Sn-Co-Fe in Sn-Co, Sn-Fe and Sn-Co-Fe coatings, respectively. Furthermore, the relative area of the 2nd and 5th lines of the sextets representing the magnetic iron containing phases decreases continuously with increasing current density in all Fe-containing deposits. At the same time, no essential change in the magnetic anisotropy can be found with the plating time. 119Sn spectra reveal the presence of small amount of β-Sn besides the main phases in Sn-Fe and in the Sn-Co coatings. Magnetically split 119Sn spectra reflecting transferred hyperfine field were observed in the case of Co-Sn-Fe coatings

  18. Moessbauer and X-ray Diffraction Investigations of Sn-containing Binary and Ternary Electrodeposited Alloys from a Gluconate Bath

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, E; Stichleutner, S; Homonnay, Z; Vertes, A [Department of Nulear Chemistry, Hungarian Academy of Sciences, Eoetvoes University, Budapest (Hungary); Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Eoetvoes University, Budapest (Hungary); Doyle, O; Chisholm, C U; El-Sharif, M [Glasgow Caledonian University, Glasgow, Scotland (United Kingdom)

    2005-04-26

    Constant current technique was applied to electrodeposit tin-containing coatings such as tin-cobalt (Sn-Co), tin-iron (Sn-Fe) and a novel tin-cobalt-iron (Sn-Co-Fe) from a gluconate bath. The effect of plating parameters (current density, deposition time at an electrolyte temperature of 60 deg. C and pH=7.0) on phase composition, crystal structure and magnetic anisotropy of alloy deposits has been investigated mainly by 57Fe CEMS, 119Sn CEMS and transmission Moessbauer Spectroscopy as well as XRD. 57Fe and 119Sn CEM spectra and XRD reflect that the dominant phases of the deposits are orthorhombic Co3Sn2, tetragonal FeSn2 or amorphous Fe-Sn and amorphous Sn-Co-Fe in Sn-Co, Sn-Fe and Sn-Co-Fe coatings, respectively. Furthermore, the relative area of the 2nd and 5th lines of the sextets representing the magnetic iron containing phases decreases continuously with increasing current density in all Fe-containing deposits. At the same time, no essential change in the magnetic anisotropy can be found with the plating time. 119Sn spectra reveal the presence of small amount of {beta}-Sn besides the main phases in Sn-Fe and in the Sn-Co coatings. Magnetically split 119Sn spectra reflecting transferred hyperfine field were observed in the case of Co-Sn-Fe coatings.

  19. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb3Sn superconducting wires

    International Nuclear Information System (INIS)

    Zhang, Chaowu

    2007-07-01

    Superconductors Nb 3 Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb 3 Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  20. Spectroscopy of the doubly magic nucleus {sup 100}Sn and its decay

    Energy Technology Data Exchange (ETDEWEB)

    Hinke, Christoph B.

    2010-07-23

    The nucleus {sup 100}Sn has been the aim of a number of experimental approaches. It is of great interest for various reasons. It is presumably the heaviest particle-stable N=Z nucleus and at the same time doubly magic. Its beta decay is of particular importance because it is expected to be the purest Gamow-Teller decay in the nuclear chart and thus allows to study the question of the missing Gamow-Teller strength/the Gamow-Teller quenching due to core polarisation effects. From the beta-coincident decay spectroscopy of the daughter nucleus {sup 100}In information about the proton-neutron interaction in this region of the nuclear chart can be obtained. Simultaneously with the implantation of the nucleus in the detector setup after production the search for delayed gamma radiation from a predicted isomeric state in {sup 100}Sn could yield first insight into the structure of excited states in this exotic nucleus. This work presents investigation results concerning the spectroscopy of the doubly magic nucleus {sup 100}Sn and its decay. The experiment was performed in March 2008 at the accelerator facilities of the GSI Helmholtz Zentrum Darmstadt. The neutron deficient nucleus was produced in a projectile fragmentation reaction of a {sup 124}Xe primary beam impinging on a Beryllium target with an energy of 1 GeV x A. After a separation from other fragmentation products and a unique identification {sup 100}Sn was stopped in an implantation detector consisting of highly segmented silicon strip detectors for decay spectroscopy. Beside the determination of the half life it was possible to detect the total energy of the emitted particle radiation in the implantation detector as well as the emitted gamma radiation with a surrounding array of Germanium detectors. With a number of approximately 70 successfully observed decays of {sup 100}Sn a half life of T{sub 1/2}=1.16{+-}0.20s was obtained. The beta endpoint energy of the single channel decay yielded a value of E{sub {beta

  1. Crystal structure of R.E. NiSn and R.E. PdSn equiatomic compounds

    International Nuclear Information System (INIS)

    Dwight, A.E.

    1983-03-01

    Call constants and volume per formula weight are tabulated for RE NiSn (RE = La to Lu, Y) and RE PdSn (RE = Nd to Ho). The unit cell constants are also plotted versus ionic radius of the RE; trends are noted

  2. Cas A and the Crab were not stellar binaries at death

    Science.gov (United States)

    Kochanek, C. S.

    2018-01-01

    The majority of massive stars are in binaries, which implies that many core collapse supernovae should be binaries at the time of the explosion. Here we show that the three most recent, local (visual) SNe (the Crab, Cas A and SN 1987A) were not stellar binaries at death, with limits on the initial mass ratios of q = M2/M1 ≲ 0.1. No quantitative limits have previously been set for Cas A and the Crab, while for SN 1987A we merely updated existing limits in view of new estimates of the dust content. The lack of stellar companions to these three ccSNe implies a 90 per cent confidence upper limit on the q ≳ 0.1 binary fraction at death of fb runaway stars.

  3. Determination of a new structure type in the Sc–Fe–Ge–Sn system

    International Nuclear Information System (INIS)

    Brgoch, Jakoah; Ran, Sheng; Thimmaiah, Srinivasa; Canfield, Paul C.; Miller, Gordon J.

    2013-01-01

    Highlights: ► A new structure type with the composition Sc 4 Fe 5 Ge 6.10(3) Sn 1.47(2) . ► Crystallizes in the space group Immm (No. 71, oI144). ► Sample obtained using a reactive Sn flux. ► Electronic structure calculations indicate polar intermetallic bonding network. - Abstract: A new structure type has been discovered in the system Sc–Fe–Ge–Sn by employing Sn as a flux medium. According to single crystal X-ray diffraction, the new structure has a composition of Sc 4 Fe 5 Ge 6.10(3) Sn 1.47(2) and crystallizes in the space group Immm (No. 71, oI144) with lattice parameters of a = 5.230(1) Å, b = 13.467(3) Å, and c = 30.003(6) Å. The structure is composed of square anti-prismatic clusters that are condensed into zig-zag chains along the [0 1 0] direction. These chains are further condensed through a split Sn/Ge position, forming a three-dimensional network. Magnetization measurements indicate an antiferromagnetic phase transition near 240 K. Electronic structure calculations identified the most favorable bonding network in this new system. Using crystal orbital Hamilton population (COHP) curves and their integrated values (ICOHP), a polar intermetallic bonding network involving Sc–Ge as well as Fe–Sn and Fe–Ge contacts can be assigned to this new structure type.

  4. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Science.gov (United States)

    Yang, Lin; Ding, He; Zhang, Xin; Qiao, Li

    2016-12-01

    A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  5. The Transition of a Type IIL Supernova into a Supernova Remnant: Late-time Observations of SN 2013by

    Energy Technology Data Exchange (ETDEWEB)

    Black, C. S.; Fesen, R. A. [6127 Wilder Lab, Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Milisavljevic, D.; Patnaude, D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Margutti, R. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Parker, S. [Parkdale Observatory, 225 Warren Road, RDl Oxford, Canterbury 7495 (New Zealand)

    2017-10-10

    We present early-time Swift and Chandra X-ray data along with late-time optical and near-infrared observations of SN 2013by, a Type IIL supernova (SN) that occurred in the nearby spiral galaxy ESO 138−G10 ( D ∼ 14.8 Mpc). Optical and NIR photometry and spectroscopy follow the late-time evolution of the SN from days +89 to +457 post maximum brightness. The optical spectra and X-ray light curves are consistent with the picture of an SN having prolonged interaction with circumstellar material (CSM) that accelerates the transition from SN to supernova remnant (SNR). Specifically, we find SN 2013by’s H α profile exhibits significant broadening (∼10,000 km s{sup −1}) on day +457, the likely consequence of high-velocity, H-rich material being excited by a reverse shock. A relatively flat X-ray light curve is observed that cannot be modeled using Inverse Compton scattering processes alone, but requires an additional energy source most likely originating from the SN-CSM interaction. In addition, we see the first overtone of CO emission near 2.3 μ m on day +152, signaling the formation of molecules and dust in the SN ejecta and is the first time CO has been detected in a Type IIL SN. We compare SN 2013by with Type IIP SNe, whose spectra show the rarely observed SN-to-SNR transition in varying degrees and conclude that Type IIL SNe may enter the remnant phase at earlier epochs than their Type IIP counterparts.

  6. Biomass thermochemical conversion program: 1987 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1988-01-01

    The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

  7. Nitrogen-Doped Carbon-Encapsulated SnO2@Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Yunyong; Zhang, Haiyan; Chen, Yiming; Shi, Zhicong; Cao, Xiaoguo; Guo, Zaiping; Shen, Pei Kang

    2016-01-13

    A peculiar nanostructure consisting of nitrogen-doped, carbon-encapsulated (N-C) SnO2@Sn nanoparticles grafted on three-dimensional (3D) graphene-like networks (designated as N-C@SnO2@Sn/3D-GNs) has been fabricated via a low-cost and scalable method, namely an in situ hydrolysis of Sn salts and immobilization of SnO2 nanoparticles on the surface of 3D-GNs, followed by an in situ polymerization of dopamine on the surface of the SnO2/3D-GNs, and finally a carbonization. In the composites, three-layer core-shell N-C@SnO2@Sn nanoparticles were uniformly grafted onto the surfaces of 3D-GNs, which promotes highly efficient insertion/extraction of Li(+). In addition, the outermost N-C layer with graphene-like structure of the N-C@SnO2@Sn nanoparticles can effectively buffer the large volume changes, enhance electronic conductivity, and prevent SnO2/Sn aggregation and pulverization during discharge/charge. The middle SnO2 layer can be changed into active Sn and nano-Li2O during discharge, as described by SnO2 + Li(+) → Sn + Li2O, whereas the thus-formed nano-Li2O can provide a facile environment for the alloying process and facilitate good cycling behavior, so as to further improve the cycling performance of the composite. The inner Sn layer with large theoretical capacity can guarantee high lithium storage in the composite. The 3D-GNs, with high electrical conductivity (1.50 × 10(3) S m(-1)), large surface area (1143 m(2) g(-1)), and high mechanical flexibility, tightly pin the core-shell structure of the N-C@SnO2@Sn nanoparticles and thus lead to remarkably enhanced electrical conductivity and structural integrity of the overall electrode. Consequently, this novel hybrid anode exhibits highly stable capacity of up to 901 mAh g(-1), with ∼89.3% capacity retention after 200 cycles at 0.1 A g(-1) and superior high rate performance, as well as a long lifetime of 500 cycles with 84.0% retention at 1.0 A g(-1). Importantly, this unique hybrid design is expected to be

  8. A detailed study on Sn4+ doped ZnO for enhanced photocatalytic degradation

    Science.gov (United States)

    Beura, Rosalin; Pachaiappan, R.; Thangadurai, P.

    2018-03-01

    The samples of Sn4+ doped (1, 5, 10, 15, 20 & 30%) ZnO nanostructures were synthesized by a low temperature hydrothermal method. Structural analysis by XRD and Raman spectroscopy showed the hexagonal wurtzite phase of ZnO and the formation of a secondary phase Zn2SnO4 beyond 10% doping of Sn4+. Microstructural analysis by TEM also confirmed the wurtzite ZnO with rod as well as particle like structure. Presence of various functional groups (sbnd OH, sbnd CH, Znsbnd O) were confirmed by FTIR. Optical properties were studied by UV-vis absorption, photoluminescence emission spectroscopies and lifetime measurement. Band gap of the undoped and Sn4+ doped ZnO were analyzed by Tauc plot and it was observed that the band gap of the materials had slightly decreased from 3.2 to 3.16 eV and again increased to 3.23 eV with respect to the increase in the doping concentration from 1 to 30%. A significant change was also noticed in the photoluminescence emission properties of ZnO i.e. increase in the intensity of NBE emission and decrease in DLE, on subject to Sn4+ doping. Average PL lifetime had increased from 29.45 ns for ZnO to 30.62 ns upon 1% Sn ion doping in ZnO. Electrical properties studied by solid state impedance spectroscopy showed that the conductivity had increased by one order of magnitude (from 7.48×10-8 to 2.21×10-7 S/cm) on Sn4+ doping. Photocatalytic experiments were performed on methyl orange (MO) as a model industrial dye under UV light irradiation for different irradiation times. The optimum Sn4+ content in order to achieve highest photocatalytic activity was found to be 1% Sn 4+ doping. The enhancement was achieved due to a decrease in the band gap favoring the generation of electron-hole pairs and the enhanced PL life time that delays the recombination of these charge carrier formation. The third reason was that the increased electrical conductivity that indicated the faster charge transfer in this material to enhance the photocatalytic activity. The Sn

  9. Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review

    Directory of Open Access Journals (Sweden)

    Liu Mei Lee

    2013-01-01

    Full Text Available This paper reviews the function and importance of Sn-Ag-Cu solder alloys in electronics industry and the interfacial reaction of Sn-Ag-Cu/Cu solder joint at various solder forms and solder reflow conditions. The Sn-Ag-Cu solder alloys are examined in bulk and in thin film. It then examines the effect of soldering conditions to the formation of intermetallic compounds such as Cu substrate selection, structural phases, morphology evolution, the growth kinetics, temperature and time is also discussed. Sn-Ag-Cu lead-free solder alloys are the most promising candidate for the replacement of Sn-Pb solders in modern microelectronic technology. Sn-Ag-Cu solders could possibly be considered and adapted in miniaturization technologies. Therefore, this paper should be of great interest to a large selection of electronics interconnect materials, reliability, processes, and assembly community.

  10. DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lilin [School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Huang, Haiyou [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China); Fu Ran; Liu Deming [ASM Assembly Automation Ltd. (Hong Kong); Zhang Tongyi, E-mail: mezhangt@ust.h [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China)

    2009-11-03

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO{sub 22}-(Cu,Ni){sub 3}Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO{sub 22} IMC and fcc Cu crystals in comparison with that between the equilibrium DO{sub 3} IMC and fcc Cu crystals.

  11. SN 2012au: A GOLDEN LINK BETWEEN SUPERLUMINOUS SUPERNOVAE AND THEIR LOWER-LUMINOSITY COUNTERPARTS

    International Nuclear Information System (INIS)

    Milisavljevic, Dan; Soderberg, Alicia M.; Margutti, Raffaella; Drout, Maria R.; Marion, G. Howie; Sanders, Nathan E.; Lunnan, Ragnhild; Chornock, Ryan; Berger, Edo; Foley, Ryan J.; Challis, Pete; Kirshner, Robert P.; Dittmann, Jason; Bieryla, Allyson; Kamble, Atish; Chakraborti, Sayan; Hsiao, Eric Y.; Fesen, Robert A.; Parrent, Jerod T.; Levesque, Emily M.

    2013-01-01

    We present optical and near-infrared observations of SN 2012au, a slow-evolving supernova (SN) with properties that suggest a link between subsets of energetic and H-poor SNe and superluminous SNe. SN 2012au exhibited conspicuous Type-Ib-like He I lines and other absorption features at velocities reaching ≈2 × 10 4 km s –1 in its early spectra, and a broad light curve that peaked at M B = –18.1 mag. Models of these data indicate a large explosion kinetic energy of ∼10 52 erg and 56 Ni mass ejection of M Ni ≈ 0.3 M ☉ on par with SN 1998bw. SN 2012au's spectra almost one year after explosion show a blend of persistent Fe II P-Cyg absorptions and nebular emissions originating from two distinct velocity regions. These late-time emissions include strong [Fe II], [Ca II], [O I], Mg I], and Na I lines at velocities ∼> 4500 km s –1 , as well as O I and Mg I lines at noticeably smaller velocities ∼ –1 . Many of the late-time properties of SN 2012au are similar to the slow-evolving hypernovae SN 1997dq and SN 1997ef, and the superluminous SN 2007bi. Our observations suggest that a single explosion mechanism may unify all of these events that span –21 ∼ B ∼< –17 mag. The aspherical and possibly jetted explosion was most likely initiated by the core collapse of a massive progenitor star and created substantial high-density, low-velocity Ni-rich material.

  12. SiSn diodes: Theoretical analysis and experimental verification

    KAUST Repository

    Hussain, Aftab M.; Wehbe, Nimer; Hussain, Muhammad Mustafa

    2015-01-01

    We report a theoretical analysis and experimental verification of change in band gap of silicon lattice due to the incorporation of tin (Sn). We formed SiSn ultra-thin film on the top surface of a 4 in. silicon wafer using thermal diffusion of Sn

  13. 51Cr diffusion in Zr-Sn alloys

    International Nuclear Information System (INIS)

    Nicolai, L.I.; Migoni, R.L.; Hojvat de Tendler, Ruth

    1982-01-01

    The 51 Cr volume diffusion in Zr-Sn alloys is measured in polycrystals with big grains by the thin-film method. The Sn content in the alloys ranges from 0.39% at to 6.66 % at. In the beta-phase the analysed temperature range is 982 deg C-1240 deg C. The Sn dehances the 51 Cr diffusion in beta-Zr, the effect being small but well defined. Assuming the formation of Sn-Cr dimers, the linear dehancement coefficient b and the parameters for the variation of b with temperature were calculated. The parameters Q and D o were calculated for the more diluted alloys and, upon application of the Zener theory for D o , a negative contribution to the activation entropy is found. Three experiments at different temperatures were performed in the alpha-phase. 51 Cr diffuses very fast in alpha-Zr-Sn. No definite correlation is found between the 51 Cr diffusivity and the increasing Sn concentration, probably due to the anisotropy of the alfa-phase. (M.E.L.) [es

  14. Nano-grain SnO{sub 2} electrodes for high conversion efficiency SnO{sub 2}-DSSC

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Hoon; Shin, Yu-Ju [Department of Chemistry, the Catholic University of Korea, Bucheon, Gyeonggi-do 422-743 (Korea, Republic of); Park, Nam-Gyu [School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2011-01-15

    The nano-grain ZnO/SnO{sub 2} composite electrode was prepared by adding 5 w% of the 200-250 nm ZnO particles to the 5 nm SnO{sub 2} colloid in the presence of hydroxypropylcellulose (M.W.=80,000). The nano-grain SnO{sub 2} electrode was obtained by removing the ZnO particles from the composite electrode using acetic acid. The FE-SEM micrographs revealed that both electrodes consisted of interconnected nano-grains that were ca. 800 nm in size, and the large pores between the grains furnished the wide electrolyte diffusion channels within the electrodes. The photovoltaic properties of the nano-grain electrodes were investigated by measuring the I-V behaviors, the IPCE spectra and the ac-impedance spectra. The nano-grain electrodes exhibited remarkably improved conversion efficiencies of 3.96% for the composite and 2.98% for the SnO{sub 2} electrode compared to the value of 1.66% for the usual nano-particle SnO{sub 2} electrode. The improvement conversion efficiencies were mainly attributed to the formation of nano-grains, which facilitated the electron diffusion within the grains. The improved electrolyte diffusion as well as the light-scattering effects enhanced the photovoltaic performance of the SnO{sub 2} electrode. (author)

  15. Superconductivity of a Sn film controlled by an array of Co nanowires

    Science.gov (United States)

    Wei, Z.; Ye, Z.; Rathnayaka, K. D. D.; Lyuksyutov, I. F.; Wu, W.; Naugle, D. G.

    2012-09-01

    Superconducting properties of a hybrid structure composed of ferromagnetic Co nanowire arrays and a superconducting Sn film have been investigated. Ordered Co nanowires arrays with 60 nm, 150 nm and 200 nm diameter were electroplated into the pores of self organized Anodic Aluminum Oxide (AAO) membranes. Hysteretic dependence of the Sn film superconducting properties on applied magnetic field and critical current enhancement at moderate fields has been observed. This behavior strongly depends on the ratio of the Sn film thickness to the Co nanowire diameter.

  16. Superconductivity of a Sn film controlled by an array of Co nanowires

    International Nuclear Information System (INIS)

    Wei, Z.; Ye, Z.; Rathnayaka, K.D.D.; Lyuksyutov, I.F.; Wu, W.; Naugle, D.G.

    2012-01-01

    Superconducting properties of a hybrid structure composed of ferromagnetic Co nanowire arrays and a superconducting Sn film have been investigated. Ordered Co nanowires arrays with 60 nm, 150 nm and 200 nm diameter were electroplated into the pores of self organized Anodic Aluminum Oxide (AAO) membranes. Hysteretic dependence of the Sn film superconducting properties on applied magnetic field and critical current enhancement at moderate fields has been observed. This behavior strongly depends on the ratio of the Sn film thickness to the Co nanowire diameter.

  17. Phase formation in Mg-Sn-Si and Mg-Sn-Si-Ca alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A.; Groebner, J. [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany); Schmid-Fetzer, R., E-mail: schmid-fetzer@tu-clausthal.de [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany)

    2011-02-17

    Research highlights: > The solidification paths of ternary and quaternary alloys are analyzed in detail, using the tool of thermodynamic calculations. > The precipitation sequence of phases and their amounts compare well with the microstructure of alloys. > The most efficient comparison to the experimental thermal analysis data is done by calculation of the enthalpy variation with temperature. > The viability of a procedure for the selection of multicomponent key samples is demonstrated for the development of the Mg-Ca-Si-Sn phase diagram. - Abstract: Experimental work is done and combined with the Calphad method to generate a consistent thermodynamic description of the Mg-Ca-Si-Sn quaternary system, validated for Mg-rich alloys. The viability of a procedure for the selection of multicomponent key samples is demonstrated for this multicomponent system. Dedicated thermal analysis with DTA/DSC on sealed samples is performed and the microstructure of slowly solidified alloys is analyzed using SEM/EDX. The thermodynamic description and phase diagram of the ternary Mg-Si-Sn system, developed in detail also in this work, deviates significantly from a previous literature proposal. The phase formation in ternary and quaternary alloys is analyzed using the tool of thermodynamic equilibrium and Scheil calculations for the solidification paths and compared with present experimental data. The significant ternary/quaternary solid solubilities of pertinent intermetallic phases are quantitatively introduced in the quaternary Mg-Ca-Si-Sn phase diagram and validated by experimental data.

  18. First Principles Investigation of the Mechanical, Thermodynamic and Electronic Properties of FeSn{sub 5} and CoSn{sub 5} Intermetallic Phases under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenming; Liu, Jing; Wang, Hong [China Building Materials Academy, Beijing (China); Zhang, Zhenwei [Linyi Academy of Technology Cooperation and Application, Linyi (China); Zhang, Liang [NeoTrident Technology Ltd., Shanghai (China); Bu, Yuxiang [Shandong University, Jinan (China)

    2017-02-15

    For guidance for developing Fe/Co-Sn-based anode materials for lithium-ion batteries, the mechanical, thermodynamic and electronic properties of FeSn{sub 5} and CoSn{sub 5} intermetallic phases under pressures ranging from 0 to 30 GPa have been investigated systematically using first-principles total-energy calculations within the framework of the generalized gradient approximation. The pressure was found to have significant effects on the mechanical, thermodynamic and electronic properties of these compounds. In the selected pressure range, CoSn{sub 5} has a more negative formation enthalpy than FeSn{sub 5}. Based on the calculated elastic constants, the bulk modulus, shear modulus, and Young's modulus were determined via the Viogt-Reuss-Hill averaging scheme. The variations of specific heats at constant volume for FeSn{sub 5} and CoSn{sub 5} in a wide pressure (0 - 30 GPa) and temperature (0 - 1000 K) range are also predicted from phonon density of states calculation. The calculated results suggested that both FeSn{sub 5} and CoSn{sub 5} are mechanically stable at pressure from 0 to 30 GPa. FeSn{sub 5} is dynamically stable at pressure up to, 30 GPa, at least, however, CoSn{sub 5} is dynamically stable no higher than 15 GPa.

  19. Preparation of a porous Sn@C nanocomposite as a high-performance anode material for lithium-ion batteries

    Science.gov (United States)

    Zhang, Yanjun; Jiang, Li; Wang, Chunru

    2015-07-01

    A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries.A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries. Electronic supplementary information (ESI) available: Detailed experimental procedure and additional characterization, including a Raman spectrum, TGA curve, N2 adsorption-desorption isotherm, TEM images and SEM images. See DOI: 10.1039/c5nr03093e

  20. Semiconducting ZnSnN{sub 2} thin films for Si/ZnSnN{sub 2} p-n junctions

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Ruifeng [Hebei Engineering Laboratory of Photoelectronic Functional Crystals, Hebei University of Technology (HEBUT), Tianjin 300401 (China); Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, and Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo 315201 (China); Cao, Hongtao; Liang, Lingyan, E-mail: lly@nimte.ac.cn, E-mail: swz@hebut.edu.cn; Xie, Yufang; Zhuge, Fei; Zhang, Hongliang; Gao, Junhua; Javaid, Kashif [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, and Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo 315201 (China); Liu, Caichi; Sun, Weizhong, E-mail: lly@nimte.ac.cn, E-mail: swz@hebut.edu.cn [Hebei Engineering Laboratory of Photoelectronic Functional Crystals, Hebei University of Technology (HEBUT), Tianjin 300401 (China)

    2016-04-04

    ZnSnN{sub 2} is regarded as a promising photovoltaic absorber candidate due to earth-abundance, non-toxicity, and high absorption coefficient. However, it is still a great challenge to synthesize ZnSnN{sub 2} films with a low electron concentration, in order to promote the applications of ZnSnN{sub 2} as the core active layer in optoelectronic devices. In this work, polycrystalline and high resistance ZnSnN{sub 2} films were fabricated by magnetron sputtering technique, then semiconducting films were achieved after post-annealing, and finally Si/ZnSnN{sub 2} p-n junctions were constructed. The electron concentration and Hall mobility were enhanced from 2.77 × 10{sup 17} to 6.78 × 10{sup 17 }cm{sup −3} and from 0.37 to 2.07 cm{sup 2} V{sup −1} s{sup −1}, corresponding to the annealing temperature from 200 to 350 °C. After annealing at 300 °C, the p-n junction exhibited the optimum rectifying characteristics, with a forward-to-reverse ratio over 10{sup 3}. The achievement of this ZnSnN{sub 2}-based p-n junction makes an opening step forward to realize the practical application of the ZnSnN{sub 2} material. In addition, the nonideal behaviors of the p-n junctions under both positive and negative voltages are discussed, in hope of suggesting some ideas to further improve the rectifying characteristics.

  1. Nucleosynthesis and hydrodynamic instabilities in core collapse supernovae

    International Nuclear Information System (INIS)

    Kifonidis, K.

    2001-01-01

    Hydrodynamic instabilities are of crucial importance for the explosion of massive stars as core collapse supernovae, for the synthesis of the heavy elements, and for their injection into the interstellar medium. The processes hereby involved are studied by means of two-dimensional hydrodynamic simulations which follow all phases from shock revival to shock breakout through the photosphere of a massive star. The computed distributions of radioactive elements are compared to observational data of SN 1987 A and other supernovae. While we find good agreement of our models with observations of Type Ib supernovae, the high velocities of iron group elements observed in SN 1987 A cannot be reproduced. Possible reasons for this discrepancy are discussed. Hydrodynamic instabilities are of crucial importance for the explosion of massive stars as core collapse supernovae, for the synthesis of the heavy elements, and for their injection into the interstellar medium. The processes hereby involved are studied by means of two-dimensional hydrodynamic simulations which follow all phases from shock revival to shock breakout through the photosphere of a massive star. The computed distributions of radioactive elements are compared to observational data of SN 1987 A and other supernovae. While we find good agreement of our models with observations of Type Ib supernovae, the high velocities of iron group elements observed in SN 1987 A cannot be reproduced. Possible reasons for this discrepancy are discussed

  2. BiBTeX styl pro ČSN ISO 690 a ČSN ISO 690-2

    OpenAIRE

    Pyšný, Radek

    2009-01-01

    Tato práce popisuje průběh vytváření bibliografického stylu pro nástroj BibTeX, pomocí něhož lze v LaTeXu sázet bibliografické citace v souladu s normou ČSN ISO 690. V úvodu práce je proveden rozbor ČSN ISO 690. Následuje popis spolupráce mezi systémem LaTeX a nástrojem BibTeX. Podstatná část práce je věnována popisu struktury souborů, které BibTeX potřebuje pro svou funkci, tj. bibliografická databáze a bibliografický styl. Závěr této práce je věnovaný popisu vlastností vytvořeného bibliogra...

  3. Study of Sn100-xMnx amorphous system by 119Sn Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Drago, V.

    1986-01-01

    Thin films of Sn 100-x Mn x amorphous alloys with large range of concentrations were procedure by vapor condensation technique on substrates at temperatures near to liquid helium. The magnetic and paramagnetic hyperfine spectra, and the ordering temperatures were measured by 119 Sn Moessbauer effect. The electrical resistivity was used for characterizing the amorphous state. All the measurements were done 'in situ'. A magnetic phase diagram is proposed. (M.C.K.) [pt

  4. Structural properties and hyperfine characterization of Sn-substituted goethites

    Energy Technology Data Exchange (ETDEWEB)

    Larralde, A.L. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Ramos, C.P. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Arcondo, B. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850 (C1063ACV), Bs. As. (Argentina); Tufo, A.E. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Saragovi, C. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Sileo, E.E., E-mail: sileo@qi.fcen.uba.ar [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Pure and tin-doped goethites were synthesized from Sn(II) solutions at ambient pressure and 70 Degree-Sign C. Black-Right-Pointing-Pointer The Rietveld refinement of PXRD data indicated that Sn partially substituted the Fe(III) ions. Black-Right-Pointing-Pointer The substitution provoked unit cell expansion, and a distortion of the coordination polyhedron. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV). Black-Right-Pointing-Pointer {sup 57}Fe Moessbauer spectroscopy showed a lower magnetic coupling as tin concentration increased. - Abstract: Tin-doped goethites obtained by a simple method at ambient pressure and 70 Degree-Sign C were characterized by inductively coupled plasma atomic emission spectrometry, scanning electron microscopy, Rietveld refinement of powder X-ray diffraction data, and {sup 57}Fe and {sup 119}Sn Moessbauer spectroscopy. The particles size and the length to width ratios decreased with tin-doping. Sn partially substituted the Fe(III) ions provoking unit cell expansion and increasing the crystallinity of the particles with enlarged domains that grow in the perpendicular and parallel directions to the anisotropic broadening (1 1 1) axis. Intermetallic E, E Prime and DC distances also change although the variations are not monotonous, indicating different variations in the coordination polyhedron. In general, the Sn-substituted samples present larger intermetallic distances than pure goethite, and the greatest change is shown in the E Prime distance which coincides with the c-parameter. {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV) in the samples. On the other hand, Fe(II) presence was not detected by {sup 57}Fe Moessbauer spectroscopy, suggesting the existence of vacancies in the Sn-doped samples. A lower magnetic coupling is also evidenced from the average magnetic hyperfine field values obtained as tin

  5. Vasculature surrounding a nodule: A novel lung cancer biomarker.

    Science.gov (United States)

    Wang, Xiaohua; Leader, Joseph K; Wang, Renwei; Wilson, David; Herman, James; Yuan, Jian-Min; Pu, Jiantao

    2017-12-01

    To investigate whether the vessels surrounding a nodule depicted on non-contrast, low-dose computed tomography (LDCT) can discriminate benign and malignant screen detected nodules. We collected a dataset consisting of LDCT scans acquired on 100 subjects from the Pittsburgh Lung Screening study (PLuSS). Fifty subjects were diagnosed with lung cancer and 50 subjects had suspicious nodules later proven benign. For the lung cancer cases, the location of the malignant nodule in the LDCT scans was known; while for the benign cases, the largest nodule in the LDCT scan was used in the analysis. A computer algorithm was developed to identify surrounding vessels and quantify the number and volume of vessels that were connected or near the nodule. A nonparametric receiver operating characteristic (ROC) analysis was performed based on a single nodule per subject to assess the discriminability of the surrounding vessels to provide a lung cancer diagnosis. Odds ratio (OR) were computed to determine the probability of a nodule being lung cancer based on the vessel features. The areas under the ROC curves (AUCs) for vessel count and vessel volume were 0.722 (95% CI=0.616-0.811, plung cancer group 9.7 (±9.6) compared to the non-lung cancer group 4.0 (±4.3) CONCLUSION: Our preliminary results showed that malignant nodules are often surrounded by more vessels compared to benign nodules, suggesting that the surrounding vessel characteristics could serve as lung cancer biomarker for indeterminate nodules detected during LDCT lung cancer screening using only the information collected during the initial visit. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Determination of a new structure type in the Sc-Fe-Ge-Sn system

    Energy Technology Data Exchange (ETDEWEB)

    Brgoch, Jakoah [Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Ran, Sheng [Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Thimmaiah, Srinivasa [Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Canfield, Paul C. [Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Miller, Gordon J., E-mail: gmiller@iastate.edu [Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States)

    2013-01-05

    Highlights: Black-Right-Pointing-Pointer A new structure type with the composition Sc{sub 4}Fe{sub 5}Ge{sub 6.10(3)}Sn{sub 1.47(2)}. Black-Right-Pointing-Pointer Crystallizes in the space group Immm (No. 71, oI144). Black-Right-Pointing-Pointer Sample obtained using a reactive Sn flux. Black-Right-Pointing-Pointer Electronic structure calculations indicate polar intermetallic bonding network. - Abstract: A new structure type has been discovered in the system Sc-Fe-Ge-Sn by employing Sn as a flux medium. According to single crystal X-ray diffraction, the new structure has a composition of Sc{sub 4}Fe{sub 5}Ge{sub 6.10(3)}Sn{sub 1.47(2)} and crystallizes in the space group Immm (No. 71, oI144) with lattice parameters of a = 5.230(1) A, b = 13.467(3) A, and c = 30.003(6) A. The structure is composed of square anti-prismatic clusters that are condensed into zig-zag chains along the [0 1 0] direction. These chains are further condensed through a split Sn/Ge position, forming a three-dimensional network. Magnetization measurements indicate an antiferromagnetic phase transition near 240 K. Electronic structure calculations identified the most favorable bonding network in this new system. Using crystal orbital Hamilton population (COHP) curves and their integrated values (ICOHP), a polar intermetallic bonding network involving Sc-Ge as well as Fe-Sn and Fe-Ge contacts can be assigned to this new structure type.

  7. Adsorption and oxidation of acetaldehyde on carbon supported Pt, PtSn and PtSn-based trimetallic catalysts by in situ Fourier transform infrared spectroscopy

    Science.gov (United States)

    Beyhan, Seden; Léger, Jean-Michel; Kadırgan, Figen

    2013-11-01

    The adsorption and oxidation of acetaldehyde on carbon supported Pt, Pt90Sn10 and Pt80Sn10M10 (M = Ni, Co, Rh, Pd) catalysts have been investigated by using in situ Fourier transform infrared (FTIR) spectroscopy. The result revealed that Pt90Sn10/C catalyst is not very efficient for the conversion of acetaldehyde to CO2 due to the weak adsorption of acetaldehyde in the presence of Sn. However, the addition of a third metal to Pt--Sn facilitates the C-C bond cleavage of acetaldehyde. It seems that acetaldehyde is adsorbed dissociatively on the surface of Pt80Sn10Ni10/C, Pt80Sn10Co10/C, Pt80Sn10Rh10/C catalysts, producing CH3 and CHO adsorbate species, which can be further oxidized to CO2. However, the pathway forming CO2 for Pt80Sn10Pd10/C catalyst mainly originates from the oxidation of CH3CO species. Thus, the presence of third metal in the PtSn catalyst has a strong impact upon the acetaldehyde adsorption behaviour and its reaction products.

  8. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2016-12-01

    Full Text Available A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  9. Nanocrystalline Cobalt-doped SnO2 Thin Film: A Sensitive Cigarette Smoke Sensor

    Directory of Open Access Journals (Sweden)

    Patil Shriram B.

    2011-11-01

    Full Text Available This article discusses a sensitive cigarette smoke sensor based on Cobalt doped Tin oxide (Co-SnO2 thin films deposited on glass substrate by a conventional Spray Pyrolysis technique. The Co-SnO2 thin films have been characterized by X-ray Diffraction (XRD, Scanning Electron Microscopy (SEM and Energy Dispersive X-ray Spectroscopy (EDAX. The XRD spectrum shows polycrystalline nature of the film with a mixed phase comprising of SnO2 and Co3O4. The SEM image depicts uniform granular morphology covering total substrate surface. The compositional analysis derived using EDAX confirmed presence of Co in addition to Sn and O in the film. Cigarette smoke sensing characteristics of the Co-SnO2 thin film have been studied under atmospheric condition at different temperatures and smoke concentration levels. The sensing parameters such as sensitivity, response time and recovery time are observed to be temperature dependent, exhibiting better results at 330 oC.

  10. Structural, magnetic and transport properties of Mn3.1Sn0.9 and Mn3.1Sn0.9N compounds

    International Nuclear Information System (INIS)

    Feng, W.J.; Li, D.; Ren, W.J.; Li, Y.B.; Li, W.F.; Li, J.; Zhang, Y.Q.; Zhang, Z.D.

    2007-01-01

    The cubic anti-perovskite Mn 3.1 Sn 0.9 N compound is prepared via nitrogenation of the hexagonal Mn 3.1 Sn 0.9 compound. A magnetic phase diagram of Mn 3.1 Sn 0.9 compound is constructed by analysis of data of its magnetic properties. For Mn 3.1 Sn 0.9 N compound, parasitic ferromagnetism exists in the temperature range of 5-370 K, besides a spin-reorientation at about 280 K. Mn 3.1 Sn 0.9 compound exhibits a metallic conducting behavior, while Mn 3.1 Sn 0.9 N displays a metal-nonmetal transition due to the electron localization caused by the static disorder. The differences of the physical properties between the both compounds, are discussed, in terms of the correlation of the hexagonal DO 19 and the cubic anti-perovskite structures, the reduction of the distances between Mn atoms, and the spin-pairing or charge transfer effect due to the electron donation by N 2p to Mn 3d states after introduction of N atoms into the interstitial sites of Mn 3.1 Sn 0.9 compound

  11. Report on the separation and refining technology sub-committee meetings in fiscal 1987; 1987 nendo bunri seisei gijutsu bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    The separation and refining technology sub-committee has held two meetings in this fiscal year. The first sub-committee meeting (October 9, 1987) was held for the major agenda of the research and development of the basic studies; as the summary of the achievements in fiscal 1986, the up-grading by fractions and of the total fraction collectively, up-grading of kerosene and light oil fractions, up-grading of medium to heavy fractions; and as the study plans for fiscal 1987, the up-grading of coal liquefied oil, a technology to separate hetero compounds, development of their applications, and the reports and deliberations thereon. The major agenda of the second sub-committee meeting (February 10, 1988) were the interim report on the achievements in research of up-grading the coal liquefied oil in fiscal 1987, the interim reports on research achievements in the technology to separate hetero compounds and development of its applications, and the reports and deliberations thereon. The conventional up-grading sub-committee was dissolved in fiscal 1987 to form a new organization, whereas the 'separation and refining sub-committee' was founded newly. With respect to the up-grading matters, reports were given on the achievements thereon as a result of using a micro reaction device and a bench reaction device as in the past, and on the achievements in the application development. In addition, on the hetero related matters, directionality of the survey and the result therefrom were reported. (NEDO)

  12. AGS experiments: 1985, 1986, 1987

    International Nuclear Information System (INIS)

    Depken, J.C.

    1987-01-01

    This report contains: Experimental areas layout, table of beam parameters and fluxes, experiment schedule ''as run,'' experiment long range schedule, a listing of experiments by number, two-page summaries of each experiment, also ordered by number, and publications of AGS experiments, 1982-1987

  13. Tin (Sn) for enhancing performance in silicon CMOS

    KAUST Repository

    Hussain, Aftab M.; Fahad, Hossain M.; Singh, Nirpendra; Sevilla, Galo T.; Schwingenschlö gl, Udo; Hussain, Muhammad Mustafa

    2013-01-01

    We study a group IV element: tin (Sn) by integrating it into silicon lattice, to enhance the performance of silicon CMOS. We have evaluated the electrical properties of the SiSn lattice by performing simulations using First-principle studies, followed by experimental device fabrication and characterization. We fabricated high-κ/metal gate based Metal-Oxide-Semiconductor capacitors (MOSCAPs) using SiSn as channel material to study the impact of Sn integration into silicon. © 2013 IEEE.

  14. Tin (Sn) for enhancing performance in silicon CMOS

    KAUST Repository

    Hussain, Aftab M.

    2013-10-01

    We study a group IV element: tin (Sn) by integrating it into silicon lattice, to enhance the performance of silicon CMOS. We have evaluated the electrical properties of the SiSn lattice by performing simulations using First-principle studies, followed by experimental device fabrication and characterization. We fabricated high-κ/metal gate based Metal-Oxide-Semiconductor capacitors (MOSCAPs) using SiSn as channel material to study the impact of Sn integration into silicon. © 2013 IEEE.

  15. SN 2012au: A GOLDEN LINK BETWEEN SUPERLUMINOUS SUPERNOVAE AND THEIR LOWER-LUMINOSITY COUNTERPARTS

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, Dan; Soderberg, Alicia M.; Margutti, Raffaella; Drout, Maria R.; Marion, G. Howie; Sanders, Nathan E.; Lunnan, Ragnhild; Chornock, Ryan; Berger, Edo; Foley, Ryan J.; Challis, Pete; Kirshner, Robert P.; Dittmann, Jason; Bieryla, Allyson; Kamble, Atish; Chakraborti, Sayan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Fesen, Robert A.; Parrent, Jerod T. [6127 Wilder Lab, Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Levesque, Emily M., E-mail: dmilisav@cfa.harvard.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); and others

    2013-06-20

    We present optical and near-infrared observations of SN 2012au, a slow-evolving supernova (SN) with properties that suggest a link between subsets of energetic and H-poor SNe and superluminous SNe. SN 2012au exhibited conspicuous Type-Ib-like He I lines and other absorption features at velocities reaching Almost-Equal-To 2 Multiplication-Sign 10{sup 4} km s{sup -1} in its early spectra, and a broad light curve that peaked at M{sub B} = -18.1 mag. Models of these data indicate a large explosion kinetic energy of {approx}10{sup 52} erg and {sup 56}Ni mass ejection of M{sub Ni} Almost-Equal-To 0.3 M{sub Sun} on par with SN 1998bw. SN 2012au's spectra almost one year after explosion show a blend of persistent Fe II P-Cyg absorptions and nebular emissions originating from two distinct velocity regions. These late-time emissions include strong [Fe II], [Ca II], [O I], Mg I], and Na I lines at velocities {approx}> 4500 km s{sup -1}, as well as O I and Mg I lines at noticeably smaller velocities {approx}< 2000 km s{sup -1}. Many of the late-time properties of SN 2012au are similar to the slow-evolving hypernovae SN 1997dq and SN 1997ef, and the superluminous SN 2007bi. Our observations suggest that a single explosion mechanism may unify all of these events that span -21 {approx}< M{sub B} {approx}< -17 mag. The aspherical and possibly jetted explosion was most likely initiated by the core collapse of a massive progenitor star and created substantial high-density, low-velocity Ni-rich material.

  16. The tin-rich copper lithium stannides: Li{sub 3}Cu{sub 6}Sn{sub 4} and Li{sub 2}CuSn{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Fuertauer, Siegfried; Flandorfer, Hans [Vienna Univ. (Austria). Inst. of Inorganic Chemistry (Materials Chemisrty); Effenberger, Herta S. [Vienna Univ. (Austria). Inst. of Mineralogy and Crystallography

    2015-05-01

    The Sn rich ternary intermetallic compounds Li{sub 3}Cu{sub 6}Sn{sub 4} (CSD-427097) and Li{sub 2}CuSn{sub 2} (CSD-427098) were synthesized from the pure elements by induction melting and annealing at 400 C. Structural investigations were performed by powder- and single-crystal XRD. Li{sub 3}Cu{sub 6}Sn{sub 4} crystallizes in space group P6/mmm; it is structurally related to but not isotypic with MgFe{sub 6}Ge{sub 6} (a = 5.095(2) Aa, c = 9.524(3) Aa; wR{sub 2} = 0.059; 239 unique F{sup 2}-values, 17 free variables). Li{sub 3}Cu{sub 6}Sn{sub 4} is characterized by two sites with a mixed Cu:Sn occupation. In contrast to all other Cu-Li-Sn compounds known so far, any mixed occupation was found for Cu-Li pairs only. In addition, one Li site is only half occupied. The second Sn rich phase is Li{sub 2}CuSn{sub 2} (space group I4{sub 1}/amd, a = 4.4281(15) Aa, c = 19.416(4) Aa; wR{sub 2} = 0.033; 213 unique F{sup 2}-values, 12 atom free variables); it is the only phase in the Cu-Li-Sn system which is noted for full ordering. Both crystal structures exhibit 3D-networks which host Li atoms in channels. They are important for understanding the lithiation mechanism in Cu-Sn electrodes for Li-ion batteries.

  17. {sup 119}Sn NMR investigations on superconducting Ca{sub 3}Ir{sub 4}Sn{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Rajib; Brueckner, Felix; Guenther, Marco; Klauss, Hans-Henning [IFP, TU Dresden (Germany); Petrovic, Cedomir; Wang, Kefeng [CMPMS, BNL, Upton, NY (United States); Luetkens, Hubertus; Biswas, Pabitra; Morenzoni, Elvezio; Amato, Alex [PSI, Villigen (Switzerland)

    2014-07-01

    Ca{sub 3}Ir{sub 4}Sn{sub 13} was found to exhibit superconducting transition with T{sub c} ∼ 7 K. It received considerable attention due to the possible coexistence of superconductivity and ferromagnetic spin fluctuation as well as the three-dimensional charge density wave (CDW) from the superlattice transition. While thermal, transport, and thermodynamic characterization of Ca{sub 3}Ir{sub 4}Sn{sub 13} single crystals suggest that it is a weakly correlated nodeless superconductor, recent μSR investigation reveals that the electron-phonon pairing interaction is in the strong-coupling limit. Here we present {sup 119}Sn NMR investigations on Ca{sub 3}Ir{sub 4}Sn{sub 13} polycrystalline samples and discuss the symmetry of the superconducting order parameter together with the normal state properties. Our preliminary results of spin-lattice relaxation rate (1/T{sub 1}) indicate that this is a BCS superconductor with weak-coupling limit.

  18. Voids, nanochannels and formation of nanotubes with mobile Sn fillings in Sn doped ZnO nanorods

    International Nuclear Information System (INIS)

    Ortega, Y; Dieker, Ch; Jaeger, W; Piqueras, J; Fernandez, P

    2010-01-01

    ZnO nanorods containing different hollow structures have been grown by a thermal evaporation-deposition method with a mixture of ZnS and SnO 2 powders as precursor. Transmission electron microscopy shows rods with rows of voids as well as rods with empty channels along the growth axis. The presence of Sn nanoprecipitates associated with the empty regions indicates, in addition, that these are generated by diffusion processes during growth, probably due to an inhomogeneous distribution of Sn. The mechanism of forming voids and precipitates appears to be based on diffusion processes similar to the Kirkendall effect, which can lead to void formation at interfaces of bulk materials or in core-shell nanostructures. In some cases the nanorods are ZnO tubes partially filled with Sn that has been found to melt and expand by heating the nanotubes under the microscope electron beam. Such metal-semiconductor nanostructures have potential applications as thermal nanosensors or as electrical nanocomponents.

  19. Doping effects on the structural, magnetic, and hyperfine properties of Gd-doped SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Coelho-Júnior, H.; Aquino, J. C. R.; Aragón, F. H. [Universidade de Brasília, Núcleo de Física Aplicada, Instituto de Física (Brazil); Hidalgo, P. [Universidade de Brasília, Faculdade Gama-FGA, Setor Central Gama (Brazil); Cohen, R.; Nagamine, L. C. C. M. [Universidade de São Paulo, Instituto de Física (Brazil); Coaquira, J. A. H., E-mail: coaquira@unb.br; Silva, S. W. da [Universidade de Brasília, Núcleo de Física Aplicada, Instituto de Física (Brazil); Brito, H. F. [Universidade de São Paulo, Instituto de Química (Brazil)

    2014-12-15

    In this work we present the study of the structural, magnetic, and hyperfine properties of Gd-doped SnO{sub 2} nanoparticles synthesized by a polymer precursor method. The X-ray diffraction data analysis shows the formation of the rutile-type structure in all samples with Gd content from 1.0 to 10.0 mol%. The mean crystallite size is ∼11 nm for the 1.0 mol% Gd-doped samples and it shows a decreasing tendency as the Gd content is increased. The analysis of magnetic measurements indicates the coexistence of ferromagnetic and paramagnetic phases for the 1.0 mol% Gd-doped sample; however, above that content, only a paramagnetic phase is observed. The ferromagnetic phase observed in the 1.0 mol% Gd-doped sample has been assigned to the presence of bound magnetic polarons which overlap to create a spin-split impurity band. Room-temperature {sup 119}Sn Mössbauer measurements reveal the occurrence of strong electric quadrupole interactions. It has been determined that the absence of magnetic interactions even for 1.0 mol% Gd-doped sample has been related to the weak magnetic field associated to the exchange interaction between magnetic ions and the donor impurity band. The broad distribution of electric quadrupole interactions are attributed to the several non-equivalent surroundings of Sn{sup 4+} ions provoked by the entrance of Gd{sup 3+} ions and to the likely presence of Sn{sup 2+} ions. The isomer shift seems to be nearly independent of the Gd content for samples with Gd content below 7.5 mol%.

  20. Tim50a, a nuclear isoform of the mitochondrial Tim50, interacts with proteins involved in snRNP biogenesis

    Directory of Open Access Journals (Sweden)

    Robinson Melvin L

    2005-07-01

    Full Text Available Abstract Background The Cajal body (CB is a nuclear suborganelle involved in the biogenesis of small nuclear ribonucleoproteins (snRNPs, which are vital for pre-mRNA splicing. Newly imported Sm-class snRNPs traffic through CBs, where the snRNA component of the snRNP is modified, and then target to other nuclear domains such as speckles and perichromatin fibrils. It is not known how nascent snRNPs localize to the CB and are released from this structure after modification. The marker protein for CBs, coilin, may play a role in snRNP biogenesis given that it can interact with snRNPs and SMN, the protein mutated in Spinal Muscular Atrophy. Loss of coilin function in mice leads to significant viability and fertility problems and altered CB formation. Results In this report, we identify a minor isoform of the mitochondrial Tim50, Tim50a, as a coilin interacting protein. The Tim50a transcript can be detected in some cancer cell lines and normal brain tissue. The Tim50a protein differs only from Tim50 in that it contains an additional 103 aa N-terminal to the translation start of Tim50. Importantly, a putative nuclear localization signal is found within these 103 residues. In contrast to Tim50, which localizes to the cytoplasm and mitochondria, Tim50a is strictly nuclear and is enriched in speckles with snRNPs. In addition to coilin, Tim50a interacts with snRNPs and SMN. Competition binding experiments demonstrate that coilin competes with Sm proteins of snRNPs and SMN for binding sites on Tim50a. Conclusion Tim50a may play a role in snRNP biogenesis given its cellular localization and protein interaction characteristics. We hypothesize that Tim50a takes part in the release of snRNPs and SMN from the CB.

  1. 3D Flower-Like Hierarchitectures Constructed by SnS/SnS2 Heterostructure Nanosheets for High-Performance Anode Material in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Zhiguo Wu

    2015-01-01

    Full Text Available Sn chalcogenides, including SnS, Sn2S3, and SnS2, have been extensively studied as anode materials for lithium batteries. In order to obtain one kind of high capacity, long cycle life lithium batteries anode materials, three-dimensional (3D flower-like hierarchitectures constructed by SnS/SnS2 heterostructure nanosheets with thickness of ~20 nm have been synthesized via a simple one-pot solvothermal method. The obtained samples exhibit excellent electrochemical performance as anode for Li-ion batteries (LIBs, which deliver a first discharge capacity of 1277 mAhg−1 and remain a reversible capacity up to 500 mAhg−1 after 50 cycles at a current of 100 mAg−1.

  2. Effects of annealing on evaporated SnS thin films

    International Nuclear Information System (INIS)

    Samsudi Sakrani; Bakar Ismail

    1994-01-01

    The effects of annealing of evaporated tin sulphide thin films (SnS) are described. The films were initially deposited onto glass substrate, followed by annealing in an encapsulated carbon block under the running argon gas at 310 degree Celsius. Short time annealing of the films results in a slight change of the compositions to a mix SnS/SnS sub 2 compound, and the tendency of increasing SnS sub 2 formation was observed on the films annealed for longer periods up to 20 hours. X-ray results showed the transformation of SnS peaks (040) and (080) to predominantly SnS sub 2 peaks - (001), (100), (101), and (110). The associated absorption coefficients measured on the films were found to be greater than 10 sup 5 cm sup -1, with indication of higher photon energy leading to the formation of SnS sub 2 compound

  3. Effects of annealing on evaporated SnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sakrani, Samsudi; Ismail, Bakar [Universiti Teknologi Malaysia, Skudai, Johor Bahru (Malaysia). Dept. of Physics

    1994-12-31

    The effects of annealing of evaporated tin sulphide thin films (SnS) are described. The films were initially deposited onto glass substrate, followed by annealing in an encapsulated carbon block under the running argon gas at 310 degree Celsius. Short time annealing of the films results in a slight change of the compositions to a mix SnS/SnS sub 2 compound, and the tendency of increasing SnS sub 2 formation was observed on the films annealed for longer periods up to 20 hours. X-ray results showed the transformation of SnS peaks (040) and (080) to predominantly SnS sub 2 peaks - (001), (100), (101), and (110). The associated absorption coefficients measured on the films were found to be greater than 10 sup 5 cm sup -1, with indication of higher photon energy leading to the formation of SnS sub 2 compound.

  4. Revolution at Sea Starts Here. A 1987 History of the Naval Surface Warfare Center

    Science.gov (United States)

    1988-03-01

    and 1987-iocused internal efforts toward achieving an appropriate balance in the development of new capabilities for providing the systems the Navy...NSWC’s technical programs to maintain a work balance of 60 percent for systems development, 20 percent for exploratory development, and 20 percent for in...of initiatives in 1987 to keep pace with the growing pains at DahIgren and to enhance the quality of worklife there. For example, the dramatic

  5. GeSn-on-insulator substrate formed by direct wafer bonding

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Dian; Wang, Wei; Gong, Xiao, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org; Yeo, Yee-Chia, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Lee, Kwang Hong; Wang, Bing [Low Energy Electronic Systems (LEES), Singapore MIT Alliance for Research and Technology (SMART), 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602 (Singapore); Bao, Shuyu [Low Energy Electronic Systems (LEES), Singapore MIT Alliance for Research and Technology (SMART), 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602 (Singapore); School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tan, Chuan Seng [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2016-07-11

    GeSn-on-insulator (GeSnOI) on Silicon (Si) substrate was realized using direct wafer bonding technique. This process involves the growth of Ge{sub 1-x}Sn{sub x} layer on a first Si (001) substrate (donor wafer) followed by the deposition of SiO{sub 2} on Ge{sub 1-x}Sn{sub x}, the bonding of the donor wafer to a second Si (001) substrate (handle wafer), and removal of the Si donor wafer. The GeSnOI material quality is investigated using high-resolution transmission electron microscopy, high-resolution X-ray diffraction (HRXRD), atomic-force microscopy, Raman spectroscopy, and spectroscopic ellipsometry. The Ge{sub 1-x}Sn{sub x} layer on GeSnOI substrate has a surface roughness of 1.90 nm, which is higher than that of the original Ge{sub 1-x}Sn{sub x} epilayer before transfer (surface roughness is 0.528 nm). The compressive strain of the Ge{sub 1-x}Sn{sub x} film in the GeSnOI is as low as 0.10% as confirmed using HRXRD and Raman spectroscopy.

  6. Single-Particle States in $^{133}$Sn

    CERN Multimedia

    Huck, A

    2002-01-01

    % IS338 \\\\ \\\\ It is suggested to investigate the $\\beta^- $-decay of $^{133}$In and $^{134}$In in order to determine the single-particle states in $^{133}$Sn, which are so far unknown and needed for the shell-model description of the region close to $^{132}$Sn. Large hyper-pure Ge-detectors will be used for the $\\gamma$-ray spectroscopy. In the experiments with $^{134}$In, delayed neutrons in coincidence with $\\gamma$-rays from excited states in $^{133}$Sn provide the opportunity for a very selective detection of the states in question.

  7. Insight into the Effect of Sn on CO and Formic Acid Oxidation at PtSn Catalysts

    DEFF Research Database (Denmark)

    Stevanović, S.; Tripković, D.; Tripkovic, Vladimir

    2014-01-01

    The role of Sn on the catalytic activity for CO and formic acid oxidation is studied by comparing the activities of differently treated PtSn/C and Pt/C catalysts. The catalysts are prepared by a microwave-assisted polyol synthesis method. As revealed by scanning tunneling and transmission electron...

  8. The Incredibly Long-Lived SN 2005ip

    Science.gov (United States)

    Fox, Ori

    2016-10-01

    Type IIn supernovae (SNe IIn) are defined by their relatively narrow spectral line features associated with a dense circumstellar medium (CSM) formed by the progenitor star. The nature of the progenitor and mass loss remains relatively unknown. Shock interaction with the dense CSM can often result in significant UV emission for several years post-explosion, thereby probing the CSM characteristics, progenitor mass loss history and, ultimately, the progenitor itself. The Type IIn SN 2005ip proves to be one of the most interesting and well-studied targets within this subclass. Compared to all other supernovae, SN 2005ip is the most luminous for its age. Now more than 11 years post-explosion, the SN has released >10^51 erg throughout its lifetime as the forward shock continues to collide with a dense CSM. Here we propose HST/STIS-MAMA UV observations of SN 2005ip to investigate the massive CSM. When accounting for the shock travel time, these observations will probe material lost from the progenitor more than 1000 years prior to the explosion. We already have a single HST/STIS spectrum of SN 2005ip from 2014, which was obtained while the shock was still within a higher mass regime. With just 5 orbits, a second spectrum will allow us to directly trace the evolution of the CSM and produce new constraints on the pre-SN mass-loss history. Coinciding with Cycle 24's UV Initiative, this program offers new insight regarding both the progenitor and explosion characteristics of the SN IIn subclass.

  9. `Pd20Sn13' revisited: crystal structure of Pd6.69Sn4.31

    Directory of Open Access Journals (Sweden)

    Wilhelm Klein

    2015-07-01

    Full Text Available The crystal structure of the title compound was previously reported with composition `Pd20Sn13' [Sarah et al. (1981. Z. Metallkd, 72, 517–520]. For the original structure model, as determined from powder X-ray data, atomic coordinates from the isostructural compound Ni13Ga3Ge6 were transferred. The present structure determination, resulting in a composition Pd6.69Sn4.31, is based on single crystal X-ray data and includes anisotropic displacement parameters for all atoms as well as standard uncertainties for the atomic coordinates, leading to higher precision and accuracy for the structure model. Single crystals of the title compound were obtained via a solid-state reaction route, starting from the elements. The crystal structure can be derived from the AlB2 type of structure after removing one eighth of the atoms at the boron positions and shifting adjacent atoms in the same layer in the direction of the voids. One atomic site is partially occupied by both elements with a Pd:Sn ratio of 0.38 (3:0.62 (3. One Sn and three Pd atoms are located on special positions with site symmetry 2. (Wyckoff letter 3a and 3b.

  10. Coulomb excitation of {sup 107}Sn

    Energy Technology Data Exchange (ETDEWEB)

    DiJulio, D.D.; Cederkall, J.; Fahlander, C. [Lund University, Physics Department, 118, Lund (Sweden); Ekstroem, A. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Hjorth-Jensen, M. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Michigan State University, National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, East Lansing, MI (United States); Albers, M.; Blazhev, A.; Fransen, C.; Geibel, K.; Hess, H.; Reiter, P.; Seidlitz, M.; Taprogge, J.; Warr, N. [University of Cologne, Institute of Nuclear Physics, Cologne (Germany); Bildstein, V.; Gernhaeuser, R.; Wimmer, K. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Darby, I.; Witte, H. de [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Davinson, T. [University of Edinburgh, Department of Physics and Astronomy, Edinburgh (United Kingdom); Diriken, J. [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Studiecentrum voor Kernenergie/Centre d' Etude de l' energie Nucleaire (SCK CEN), Mol (Belgium); Goergen, A.; Siem, S.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Iwanicki, J. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Lutter, R. [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Garching (Germany); Scheck, M. [University of Liverpool, Oliver Lodge Laboratory, Liverpool (United Kingdom); Walle, J.V. de [PH Department, Geneva 23 (Switzerland); Voulot, D.; Wenander, F. [AB Department, Geneva 23 (Switzerland)

    2012-07-15

    The radioactive isotope {sup 107}Sn was studied using Coulomb excitation at the REX-ISOLDE facility at CERN. This is the lightest odd-Sn nucleus examined using this technique. The reduced transition probability of the lowest-lying 3/2{sup +} state was measured and is compared to shell-model predictions based on several sets of single-neutron energies relative to {sup 100}Sn. Similar to the transition probabilities for the 2{sup +} states in the neutron-deficient even-even Sn nuclei, the measured value is underestimated by shell-model calculations. Part of the strength may be recovered by considering the ordering of the d{sub 5/2} and g{sub 7/2} single-neutron states. (orig.)

  11. ASAS-SN Discovery of a Possible Galactic Nova ASASSN-18ix

    Science.gov (United States)

    Stanek, K. Z.; Kochanek, C. S.; Shields, J. V.; Thompson, T. A.; Chomiuk, L.; Strader, J.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Dong, Subo; Stritzinger, M.

    2018-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from multiple ASAS-SN telescopes, we detect a new bright transient source, possibly a classical nova, but it might also be a young, large amplitude outburst of a cataclysmic variable Object RA (J2000) DEC (J2000) Gal l (deg) Gal b (deg) Disc.

  12. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb{sub 3}Sn superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaowu

    2007-07-15

    Superconductors Nb{sub 3}Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb{sub 3}Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  13. A new dental powder from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons

    International Nuclear Information System (INIS)

    Do-Minh, N.; Le-Thi, C.; Nguyen-Anh, S.

    2003-01-01

    A new non-gamma-two dental powder has been developed from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons. The amalgam made from this powder exhibits excellent properties for dental filling. The nanocrystalline microstructure was found for the first time in as-spun and heat treated Ag(27-28)Sn(9-32) Cu alloy ribbons, using X-ray diffraction, scanning electron microscopy and energy-dispersive spectroscopy. As-spun ribbons exhibited a multi-phase microstructure with preferred existence of β (Ag 4 Sn) phase formed during rapid solidification (RS) due to supersaturating of copper (Cu) atoms and homogenous nanostructure with subgrain size of about (40-50) nm, which seems to be developed during RS process and can be caused by eutectic reaction of the Ag 3 Sn/Ag 4 Sn-Cu 3 Sn system. In heat treated ribbons the clustering of Cu atoms was always favored and stable in an ageing temperature and time interval determined by Cu content. The heat treatment led to essential changes of subgrain morphology, resulted in the appearance of large-angle boundaries with fine Cu 3 Sn precipitates and forming typical recrystallization twins. Such a microstructure variation in melt-spun ribbons could eventually yield enhanced technological, clinical and physical properties of the dental products, controlled by the ADA Specification N deg 1 and reported before. Thus, using the rapid solidification technique a new non-gamma-two dental material of high quality, nanocrystalline ribbon powder, can be produced. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  14. Clinical evaluation of sup(99m)Tc-(Sn)-PI (sup(99m)Tc-(Sn)-pyridoxylidene isoleucine) in the various hepatobiliary disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, S; Iio, M; Yamada, H; Murata, H; Chiba, K [Tokyo Metropolitan Geriatric Medical Center (Japan)

    1978-12-01

    The purpose of this study is to evaluate the hepatobiliary scanning using sup(99m)Tc-(Sn)-PI in clinical diagnosis of various hepatobiliary disorders. Nineteen patients were scanned with sup(99m)Tc-(Sn)-PI. The results were as follows: 1) The stability of sup(99m)Tc-(Sn)-PI examined by paper chromatography using saline as a solvent showed satisfied result at scanning time. sup(99m)Tc-(Sn)-PI in the blood was assumed to be bound to serum proteins immediately after injection. sup(99m)Tc-(Sn)-PI in the urine was assumed to keep the form of sup(99m)Tc-(Sn)-PI. 2) The appearance times of kidney, liver, bile duct, gallbladder, and intestine in the normal case were 5, 5, 10 and 15 minutes respectively after injection. The peak times of hepatogram in the normal case, drug induced hepatitis and obstructive jaundice were 12, 15 and 18 minutes respectively after injection. The images obtained by sup(99m)Tc-(Sn)-PI was superior to the images obtained by /sup 131/I-BSP. 3) The blood clearance and urinary excretion rate of sup(99m)Tc-(Sn)-PI also provided us clinical usefulness. 4) The scanning of Dubin-Johnson syndrome of sup(99m)Tc-(Sn)-PI showed almost normal hepatobiliary image similar to the sequential scan by /sup 131/I-RB as was reported previously by authors. In conclusion, the hepatobiliary scan using sup(99m)Tc-(Sn)-PI provided clear hepatobiliary images. Other parameters such as blood clearance, urinary excretion rate and diameter of choledochus were also favorable. By combining it with sup(99m)Tc-HIDA a differential diagnosis of congenital jaundice is also expected.

  15. Clinical evaluation of sup(99m)Tc-(Sn)-PI [sup(99m)Tc-(Sn)-pyridoxylidene isoleucine] in the various hepatobiliary disorders

    International Nuclear Information System (INIS)

    Kawaguchi, Schinichiro; Iio, Masahiro; Yamada, Hideo; Murata, Hajime; Chiba, Kazuo

    1978-01-01

    The purpose of this study is to evaluate the hepatobiliary scanning using sup(99m)Tc-(Sn)-PI in clinical diagnosis of various hepatobiliary disorders. Nineteen patients were scanned with sup(99m)Tc-(Sn)-PI. The results were as follows: 1) The stability of sup(99m)Tc-(Sn)-PI examined by paper chromatography using saline as a solvent showed satisfied result at scanning time. sup(99m)Tc-(Sn)-PI in the blood was assumed to be bound to serum proteins immediately after injection. sup(99m)Tc-(Sn)-PI in the urine was assumed to keep the form of sup(99m)Tc-(Sn)-PI. 2) The appearance times of kidney, liver, bile duct, gallbladder, and intestine in the normal case were 5, 5, 10 and 15 minutes respectively after injection. The peak times of hepatogram in the normal case, drug induced hepatitis and obstructive jaundice were 12, 15 and 18 minutes respectively after injection. The images obtained by sup(99m)Tc-(Sn)-PI was superior to the images obtained by 131 I-BSP. 3) The blood clearance and urinary excretion rate of sup(99m)Tc-(Sn)-PI also provided us clinical usefulness. 4) The scanning of Dubin-Johnson syndrome of sup(99m)Tc-(Sn)-PI showed almost normal hepatobiliary image similar to the sequential scan by 131 I-RB as was reported previously by authors. In conclusion, the hepatobiliary scan using sup(99m)Tc-(Sn)-PI provided clear hepatobiliary images. Other parameters such as blood clearance, urinary excretion rate and diameter of choledochus were also favorable. By combining it with sup(99m)Tc-HIDA a differential diagnosis of congenital jaundice is also expected. (author)

  16. Mössbauer and X-ray Diffraction Investigations of Sn-containing Binary and Ternary Electrodeposited Alloys from a Gluconate Bath

    Science.gov (United States)

    Kuzmann, E.; Stichleutner, S.; Doyle, O.; Chisholm, C. U.; El-Sharif, M.; Homonnay, Z.; Vértes, A.

    2005-04-01

    Constant current technique was applied to electrodeposit tin-containing coatings such as tin-cobalt (Sn-Co), tin-iron (Sn-Fe) and a novel tin-cobalt-iron (Sn-Co-Fe) from a gluconate bath. The effect of plating parameters (current density, deposition time at an electrolyte temperature of 60°C and pH=7.0) on phase composition, crystal structure and magnetic anisotropy of alloy deposits has been investigated mainly by 57Fe CEMS, 119Sn CEMS and transmission Mössbauer Spectroscopy as well as XRD. 57Fe and 119Sn CEM spectra and XRD reflect that the dominant phases of the deposits are orthorhombic Co3Sn2, tetragonal FeSn2 or amorphous Fe-Sn and amorphous Sn-Co-Fe in Sn-Co, Sn-Fe and Sn-Co-Fe coatings, respectively. Furthermore, the relative area of the 2nd and 5th lines of the sextets representing the magnetic iron containing phases decreases continuously with increasing current density in all Fe-containing deposits. At the same time, no essential change in the magnetic anisotropy can be found with the plating time. 119Sn spectra reveal the presence of small amount of β-Sn besides the main phases in Sn-Fe and in the Sn-Co coatings. Magnetically split 119Sn spectra reflecting transferred hyperfine field were observed in the case of Co-Sn-Fe coatings.

  17. Enhancing performances of a resistivity-type hydrogen sensor based on Pd/SnO2/RGO nanocomposites.

    Science.gov (United States)

    Peng, Yitian; Zheng, Lulu; Zou, Kun; Li, Cong

    2017-05-26

    Palladium/tin oxide/reduced graphene oxide (Pd/SnO 2 /RGO) nanocomposites with Pd and SnO 2 crystalline nanoparticles of high density and uniformity coated on RGO have been synthesized by a two-step reduction process. A novel hydrogen (H 2 ) sensor based on Pd/SnO 2 /RGO nanocomposites was fabricated by placing Pd/SnO 2 /RGO nanocomposites onto a pair of gold electrodes. The Pd/SnO 2 /RGO nanocomposite-based sensor exhibited higher responses than Pd/RGO to H 2 because the introduction of SnO 2 nanoparticles enhances H 2 adsorption and forms a P-N junction with RGO. The sensor shows a high response of 55% to 10 000 ppm H 2 , and a low detection limit, fast response, good selectivity and repeatability due to a combination effect of the Pd and SnO 2 nanoparticles. The studies provide a novel strategy for great potential applications of graphene-based gas sensors.

  18. Electromigration in 3D-IC scale Cu/Sn/Cu solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Cheng-En, E-mail: ceho1975@hotmail.com; Lee, Pei-Tzu; Chen, Chih-Nan; Yang, Cheng-Hsien

    2016-08-15

    The electromigration effect on the three-dimensional integrated circuits (3D-IC) scale solder joints with a Cu/Sn(25–50 μm)/Cu configuration was investigated using a field-emission scanning electron microscope (FE–SEM) combined with electron backscatter diffraction (EBSD) analysis system. Electron current stressing for a few days caused the pronounced accumulation of Cu{sub 6}Sn{sub 5} in specific Sn grain boundaries (GBs). The EBSD analysis indicated that both the β-Sn crystallographic orientation and GB orientation play dominant roles in this accumulation. The dependencies of the Cu{sub 6}Sn{sub 5} accumulation on the two above factors (i.e., Sn grain orientation and GB orientation) can be well rationalized via a proposed mathematic model based on the Huntington and Grone's electromigration theory with the Cu anisotropic diffusion data in a β-Sn lattice. - Highlights: • Anisotropic Cu electromigration in the 3D-IC scale microelectronic solder joints. • Pronounced accumulation of Cu{sub 6}Sn{sub 5} intermetallic in specific Sn grain boundaries. • A linear dependence of Cu{sub 6}Sn{sub 5} accumulation over the current stressing time. • β-Sn and grain boundary orientations are the dominant factors in Cu{sub 6}Sn{sub 5} accumulation.

  19. A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes.

    Science.gov (United States)

    Zaborowska, Justyna; Taylor, Alice; Roeder, Robert G; Murphy, Shona

    2012-01-01

    Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression.

  20. Unexpected, spontaneous and selective formation of colloidal Pt 3Sn nanoparticles using organometallic Pt and Sn complexes

    KAUST Repository

    Boualleg, Malika; Baudouin, David; Basset, Jean-Marie; Bayard, Franç ois; Candy, Jean Pierre; Jumas, Jean Claude; Veyre, Laurent; Thieuleux, Chloé

    2010-01-01

    The facile and selective synthesis of small crystalline Pt3Sn alloy nanoparticles was performed at room temperature under H2, using a colloidal approach without the use of extra-stabilizing ligands. The Pt 3Sn alloy was found to be obtained

  1. Crystal Structure, Optical, and Electrical Properties of SnSe and SnS Semiconductor Thin Films Prepared by Vacuum Evaporation Techniques for Solar Cell Applications

    Science.gov (United States)

    Ariswan; Sutrisno, H.; Prasetyawati, R.

    2017-05-01

    Thin films of SnSe and SnS semiconductors had been prepared by vacuum evaporation techniques. All prepared samples were characterized on their structure, optical, and electrical properties in order to know their application in technology. The crystal structure of SnSe and SnS was determined by X-Ray Diffraction (XRD) instrument. The morphology and chemical composition were obtained by Scanning Electron Microscopy (SEM) coupled with Energy Dispersive of X-Ray Analysis (EDAX). The optical property such as band gap was determined by DR-UV-Vis (Diffuse Reflectance-Ultra Violet-Visible) spectroscopy, while the electrical properties were determined by measuring the conductivity by four probes method. The characterization results indicated that both SnSe and SnS thin films were polycrystalline. SnSe crystallized in an orthorhombic crystal system with the lattice parameters of a = 11.47 Å, b = 4.152 Å and c = 4.439 Å, while SnS had an orthorhombic crystal system with lattice parameters of a = 4.317 Å, b = 11.647 Å and c = 3.981 Å. Band gaps (Eg) of SnSe and SnS were 1.63 eV and 1.35 eV, respectively. Chemical compositions of both thin films were non-stoichiometric. Molar ratio of Sn : S was close to ideal which was 1 : 0.96, while molar ratio of Sn : S was 1 : 0.84. The surface morphology described the arrangement of the grains on the surface of the thin film with sizes ranging from 0.2 to 0.5 microns. Color similarity on the surface of the SEM images proved a homogenous thin layer.

  2. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    Science.gov (United States)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  3. Phase Equilibria of the Sn-Ni-Si Ternary System and Interfacial Reactions in Sn-(Cu)/Ni-Si Couples

    Science.gov (United States)

    Fang, Gu; Chen, Chih-chi

    2015-07-01

    Interfacial reactions in Sn/Ni-4.5 wt.%Si and Sn-Cu/Ni-4.5 wt.%Si couples at 250°C, and Sn-Ni-Si ternary phase equilibria at 250°C were investigated in this study. Ni-Si alloys, which are nonmagnetic, can be regarded as a diffusion barrier layer material in flip chip packaging. Solder/Ni-4.5 wt.%Si interfacial reactions are crucial to the reliability of soldered joints. Phase equilibria information is essential for development of solder/Ni-Si materials. No ternary compound is present in the Sn-Ni-Si ternary system at 250°C. Extended solubility of Si in the phases Ni3Sn2 and Ni3Sn is 3.8 and 6.1 at.%, respectively. As more Si dissolves in these phases their lattice constants decrease. No noticeable ternary solubility is observed for the other intermetallics. Interfacial reactions in solder/Ni-4.5 wt.%Si are similar to those for solder/Ni. Si does not alter the reaction phases. No Si solubility in the reaction phases was detected, although rates of growth of the reaction phases were reduced. Because the alloy Ni-4.5 wt.%Si reacts more slowly with solders than pure Ni, the Ni-4.5 wt.%Si alloy could be a potential new diffusion barrier layer material for flip chip packaging.

  4. Exploration work function and optical properties of monolayer SnSe allotropes

    Science.gov (United States)

    Cui, Zhen; Wang, Xia; Ding, Yingchun; Li, Meiqin

    2018-02-01

    The work function and optical properties are investigated with density functional theory for three monolayer SnSe allotropes. The calculated results indicate that the α-SnSe, δ-SnSe, ε-SnSe are semiconductor with the band gaps of 0.90, 1.25, and 1.50 eV, respectively. Meanwhile, the work function of δ-SnSe is lower than α-SnSe and ε-SnSe, which indicates that the δ-SnSe can be prepared of photoemission and field emission nanodevices. More importantly, the α-SnSe, δ-SnSe, ε-SnSe with the large static dielectric constants are 4.22, 5.48, and 3.61, which demonstrate that the three monolayer SnSe allotropes can be fabricated the capacitor. In addition, the static refractive index of δ-SnSe is larger than α-SnSe and ε-SnSe. The different optical properties with three monolayer SnSe allotropes reveal that the allotropes can regulate the properties of the materials. Moreover, our researched results show that the three monolayer SnSe allotropes are sufficient for fabrication of optoelectronic nanodevices.

  5. Single-Crystal Growth of Cl-Doped n-Type SnS Using SnCl2 Self-Flux.

    Science.gov (United States)

    Iguchi, Yuki; Inoue, Kazutoshi; Sugiyama, Taiki; Yanagi, Hiroshi

    2018-06-05

    SnS is a promising photovoltaic semiconductor owing to its suitable band gap energy and high optical absorption coefficient for highly efficient thin film solar cells. The most significant carnage is demonstration of n-type SnS. In this study, Cl-doped n-type single crystals were grown using SnCl 2 self-flux method. The obtained crystal was lamellar, with length and width of a few millimeters and thickness ranging between 28 and 39 μm. X-ray diffraction measurements revealed the single crystals had an orthorhombic unit cell. Since the ionic radii of S 2- and Cl - are similar, Cl doping did not result in substantial change in lattice parameter. All the elements were homogeneously distributed on a cleaved surface; the Sn/(S + Cl) ratio was 1.00. The crystal was an n-type degenerate semiconductor with a carrier concentration of ∼3 × 10 17 cm -3 . Hall mobility at 300 K was 252 cm 2 V -1 s -1 and reached 363 cm 2 V -1 s -1 at 142 K.

  6. The complex structure of liquid Cu{sub 6}Sn{sub 5} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qin Jingyu; Gu Tingkun; Bian Xiufang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Southern Campus, Jinan 250061 (China); Liu Hui [Shandong High Performance Computing Center, Shandong University, Southern Campus, Jinan 250061 (China)

    2009-04-15

    By applying ab initio molecular dynamics simulation to liquid Cu{sub 6}Sn{sub 5} alloy, the hetero-coordination tendency is discovered by Bathia-Thornton partial correlation functions and a chemical short-range parameter. However the local structural environment of Sn in l-Cu{sub 6}Sn{sub 5} alloy resembles that of liquid Sn by Voronoi analysis. A new feature, i.e. a subpeak in between the first and second peaks, is discovered by the present method which implies that topologically disordered {beta}-Sn-type structural units may exist in l-Cu{sub 6}Sn{sub 5} alloy. The local density states of electrons show that both Cu-Sn and Sn-Sn bonding exist in l-Cu{sub 6}Sn{sub 5} alloy. This work suggests that chemical short-range order between unlike atoms and self-coordination between Sn atoms coexists in l-Cu{sub 6}Sn{sub 5} alloy.

  7. Perbandingan Stock Market Crash 1987 : Dan Stock Market Crash 1997

    OpenAIRE

    Indridewi Atmadjaja, Yovita Vivianty

    1999-01-01

    Stock market crash refers to the condition, which is marked with the large dropping of stock Market price index. Historically, stock market crash has happened three times, namely in 1929, 1987 and 1997. This paper will discuss the causes of 1987's and 1997's stock market Crash and the similarities and the differences between 1987's and 1997's stock market crash. The structure of the paper is as follows. The paper starts with the introduction. The second Section briefly explains the causes of ...

  8. NEA Activities in 1987

    International Nuclear Information System (INIS)

    1988-01-01

    This report presents the main features of the Agency work during 1987. It deals with trends in nuclear power. Nuclear development and the fuel cycle; nuclear safety and licensing; radiation protection; radioactive waste management; legal affairs; nuclear science; joint undertakings and other NEA joint projects; information programmes; organization and administration

  9. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light.

    Science.gov (United States)

    Shown, Indrajit; Samireddi, Satyanarayana; Chang, Yu-Chung; Putikam, Raghunath; Chang, Po-Han; Sabbah, Amr; Fu, Fang-Yu; Chen, Wei-Fu; Wu, Chih-I; Yu, Tsyr-Yan; Chung, Po-Wen; Lin, M C; Chen, Li-Chyong; Chen, Kuei-Hsien

    2018-01-12

    Photocatalytic formation of hydrocarbons using solar energy via artificial photosynthesis is a highly desirable renewable-energy source for replacing conventional fossil fuels. Using an L-cysteine-based hydrothermal process, here we synthesize a carbon-doped SnS 2 (SnS 2 -C) metal dichalcogenide nanostructure, which exhibits a highly active and selective photocatalytic conversion of CO 2 to hydrocarbons under visible-light. The interstitial carbon doping induced microstrain in the SnS 2 lattice, resulting in different photophysical properties as compared with undoped SnS 2 . This SnS 2 -C photocatalyst significantly enhances the CO 2 reduction activity under visible light, attaining a photochemical quantum efficiency of above 0.7%. The SnS 2 -C photocatalyst represents an important contribution towards high quantum efficiency artificial photosynthesis based on gas phase photocatalytic CO 2 reduction under visible light, where the in situ carbon-doped SnS 2 nanostructure improves the stability and the light harvesting and charge separation efficiency, and significantly enhances the photocatalytic activity.

  10. [Hyp-Au-Sn9(Hyp)3-Au-Sn9(Hyp)3-Au-Hyp]-: the longest intermetalloid chain compound of tin.

    Science.gov (United States)

    Binder, Mareike; Schrenk, Claudio; Block, Theresa; Pöttgen, Rainer; Schnepf, Andreas

    2017-10-12

    The reaction of the metalloid tin cluster [Sn 10 (Hyp) 4 ] 2- with (Ph 3 P)Au-SHyp (Hyp = Si(SiMe 3 ) 3 ) gave an intermetalloid cluster [Au 3 Sn 18 (Hyp) 8 ] - 1, which is the longest intermetalloid chain compound of tin to date. 1 shows a structural resemblance to binary AuSn phases, which is expected for intermetalloid clusters.

  11. A Review of the United Kingdom Fast Reactor Programme, March 1987

    International Nuclear Information System (INIS)

    Bramman, J.I.; Wheeler, R.C.

    1987-01-01

    Nuclear power produced about 20% of the electricity supply in the United Kingdom in 1986, mostly from gas-cooled reactors, i.e. the 10 AGRs currently in operation and the 26 older MAGNOX reactors. Plans to increase the nuclear component of generating capacity by building the first PWR in the UK, Sizewell 'B', were strongly endorsed in the report by Sir Frank Layfield published on 26 January 1987. This resulted from the Public Inquiry into building Sizewell 'B', which was held between 11 January 1983 and 7 March 1985, the longest Public Inquiry ever held in the UK. The government gave the go-ahead for the building of Sizewell 'B' on 12 March 1987

  12. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2{theta} =40 deg, 47 deg, 67 deg and 82 deg, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2-3 nm. For Pt Sn/C and PtSnRh/C two additional peaks were observed at 2 = 34 deg and 52 deg that were identified as a SnO{sub 2} phase. Pt Sn/C (50:50) and PtSnRh/C (50:40:10) electro catalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature Pt Ru/C, Pt Sn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  13. Multifilamentary Cu-Nb3Sn superconductor wires

    International Nuclear Information System (INIS)

    Rodrigues, D.; Pinatti, D.G.

    1990-01-01

    This paper reports on one of the main technological problems concerning Nb 3 Sn superconducting wires production which is the optimization of heat treatments for the formation of the A-15 intermetallic compound. At the present work, Nb 3 Sn superconducting wire is produced by solid-liquid diffusion method which increases considerably the critical current values of the superconductor. Through this method, niobium, copper and Sn 7% wt Cu alloy are kept in the pure state. Thus, the method dispenses intermediate heat treatments of recrystallization during the manufacturing process of the wire. After the wire was ready, optimization work of heat treatments was accomplished aiming to obtain its best superconducting characteristics, Measurement of critical temperature, critical current versus magnetic field, normal and at room temperature resistivity were performed, as well as scanning electron microscopy for determination of Nb 3 Sn layers and transmission electron microscopy measurements of redetermining the grain sizes in Nb 3 Sn formed in each treatment. It was obtained critical current densities of 1.8 x 10 6 A/cm 2 in the Nb 3 Sn layer, at 10 Teslas and 4.2 K. The samples were analyzed by employing the superconducting collective flux pinning theories and a satisfactory agreement between the experimental and theoretical data was attained. The production process and the small size of the filaments used made a successful optimization of the wire possible

  14. BARC annual report 1987

    International Nuclear Information System (INIS)

    1988-11-01

    The report summarises the Research and Development (R and D) activities of the Bhabha Atomic Research Centre, Bombay, during 1987. These R and D activities are described in the chapters entitled: Physical Sciences, Chemical S ciences, Materials and Materials Sciences, Radioisotopes, Reactors, Fuel Cycle, Radiological Safety and Protection, Electronics and Instrumentation, Engineering Services, and Life Sciences. Activities in the fields of remote handling and robotics, technology transfer, and auxiliary activities like technical information, human resources and development etc. are dealt in the chapter entitled General. At the end of each chapter, a list of publications by the scientists in the corresp onding subject field is given. Some of the major highlights of the work during 1987 are: (1) DHRUVA reactor became fully operational at its rated capacity making neutrons available for isotope production and studies in neutron scattering and condensed matter, (2) R and D activities were extended to study h igh temperature superconductivity in both fundamental and applied aspects and (3) a laboratory for production of 32 P-biomolecules was set up at the Centre for Cellular and Molecular Biology at Hyderabad. (M.G.B.)

  15. The crystallographic growth directions of Sn whiskers

    International Nuclear Information System (INIS)

    Stein, J.; Welzel, U.; Leineweber, A.; Huegel, W.; Mittemeijer, E.J.

    2015-01-01

    The growth directions of 55 Sn whiskers, i.e. the crystallographic orientation parallel to the whisker-growth axes, were determined using (i) a focused ion beam microscope for the determination of the physical growth angles of the whiskers with respect to a specimen (reference) coordinate system and (ii) an electron backscatter detector in a scanning electron microscope for the determination of the crystallographic orientation of the whiskers. The Sn whiskers were found to grow preferentially along low-index directions of the β-Sn crystal structure. The experimental findings of this study (and most of the results presented in the literature as well) were explained by applying, in a modified way, the Hartman–Perdok concept of periodic bond chains, i.e. chains of strong bonds running uninterruptedly through the structure, to the Sn whisker-growth phenomenon

  16. Environmental impact statement 1987. Umweltgutachten 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In its third statement after 1974 and 1978 the Council of Environmental Experts describes the state of the environment and points out misdevelopments and ways of avoiding them. The subject's complexity defies the environmental impact statement's completeness. Other than the two preceding ones the 1987 statement focuses but on selected fields and aspects. In view of the fact that the environmental policy of the late eighties and of the nineties to come requires a general, transsectoral and balanced concept the statement puts much care into a comprehensive discussion of the basic traits of a general environmental policy. The characteristics worked out are applicable to any environmental sector and include man's consciousness of the environment and his behaviour towards it, active pollution abatement, economic aspects, and the structure of pollution sources in the Federal Republic of Germany. While the sectors of pollution control include ground and air pollution abatement the selected fields comprise environment and health, energy, transportation, regional planning, and recreation and tourism. (orig./HSCH).

  17. Prediction of activities of all components in the lead-free solder systems Bi-In-Sn and Bi-In-Sn-Zn

    International Nuclear Information System (INIS)

    Tao Dongping

    2008-01-01

    The activities of components of the ternary lead-free solder systems Al-Sn-Zn at 973 K, Zn-Cu-Sn at 1023 K and Bi-In-Sn at 1000 and 1050 K have been predicted by a novel molecular interaction volume model-MIVM and the results are in good agreement with experimental data. Then the activities of all components of the Bi-In-Sn at 550 K and the Bi-In-Sn-Zn quaternary system at 700 K have been further predicted and the results are reasonable and reliable. This shows that the model may be a superior alternative for describing interfacial chemical reactions between lead-free solder alloys and common base materials and for the calculation of their phase diagrams because MIVM has certain physical meaning from the viewpoint of statistical thermodynamics and requires only two infinite dilute activity coefficients for each sub-binary system

  18. Numerical analysis of In_xGa_1_−_xN/SnS and Al_xGa_1_−_xN/SnS heterojunction solar cells

    International Nuclear Information System (INIS)

    Lin, Shuo; Li, Xirong; Pan, Huaqing; Chen, Huanting; Li, Xiuyan; Li, Yan; Zhou, Jinrong

    2016-01-01

    Highlights: • In_xGa_1_−_xN/SnS and Al_xGa_1_−_xN/SnS solar cells are studied by numerical analysis. • Performances of In_xGa_1_−_xN/SnS solar cells enhanced with decreasing In content. • The electron barrier leads to the degraded efficiency of Al_xGa_1_−_xN/SnS solar cells. • GaN/SnS solar cell exhibits the highest efficiency 26.34%. - Abstract: In this work the photovoltaic properties of In_xGa_1_−_xN/SnS and Al_xGa_1_−_xN/SnS heterojunction solar cells are studied by numerical analysis. The photovoltaic performances of In_xGa_1_−_xN/SnS solar cells are enhanced with the decreasing In content and the GaN/SnS solar cell exhibits the highest efficiency. The efficiencies of GaN/SnS solar cell improve with the increased SnS thickness and the reduced GaN thickness. For the Al_xGa_1_−_xN/SnS solar cells, there is electron barrier in the Al_xGa_1_−_xN/SnS interface. The electron barrier becomes larger with increasing Al content and lead to the degraded efficiency of Al_xGa_1_−_xN/SnS solar cells. The simulation contributes to designing and fabricating SnS solar cells.

  19. SN 2011A: A Low-luminosity Interacting Transient with a Double Plateau and Strong Sodium Absorption

    Science.gov (United States)

    de Jaeger, T.; Anderson, J. P.; Pignata, G.; Hamuy, M.; Kankare, E.; Stritzinger, M. D.; Benetti, S.; Bufano, F.; Elias-Rosa, N.; Folatelli, G.; Förster, F.; González-Gaitán, S.; Gutiérrez, C. P.; Inserra, C.; Kotak, R.; Lira, P.; Morrell, N.; Taddia, F.; Tomasella, L.

    2015-07-01

    We present optical photometry and spectroscopy of the optical transient SN 2011A. Our data span 140 days after discovery including {BVRI} u\\prime g\\prime r\\prime i\\prime z\\prime photometry and 11 epochs of optical spectroscopy. Originally classified as a type IIn supernova (SN IIn) due to the presence of narrow Hα emission, this object shows exceptional characteristics. First, the light curve shows a double plateau, a property only observed before in the impostor SN 1997bs. Second, SN 2011A has a very low luminosity ({M}V=-15.72), placing it between normal luminous SNe IIn and SN impostors. Third, SN 2011A shows low velocity and high equivalent width absorption close to the sodium doublet, which increases with time and is most likely of circumstellar origin. This evolution is also accompanied by a change in line profile; when the absorption becomes stronger, a P Cygni profile appears. We discuss SN 2011A in the context of interacting SNe IIn and SN impostors, which appears to confirm the uniqueness of this transient. While we favor an impostor origin for SN 2011A, we highlight the difficulty in differentiating between terminal and non-terminal interacting transients. This paper includes data obtained with the 6.5 m Magellan Telescopes and du Pont telescope; the Gemini-North Telescope, Mauna Kea, USA (Gemini Program GN-2010B-Q67, PI: Stritzinger); the PROMPT telescopes at Cerro Tololo Inter-American Observatory in Chile; with the Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council; based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias; the NTT from ESO Science Archive

  20. Tunable Schottky diodes fabricated from crossed electrospun SnO{sub 2}/PEDOT-PSSA nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Carrasquillo, Katherine V. [Department of Physics and Electronics, University of Puerto Rico-Humacao, Humacao, PR 00792 (Puerto Rico); Pinto, Nicholas J., E-mail: nicholas.pinto@upr.edu [Department of Physics and Electronics, University of Puerto Rico-Humacao, Humacao, PR 00792 (Puerto Rico)

    2012-06-25

    Graphical abstract: Crossed SnO{sub 2}/PEDOT-PSSA nanoribbon Schottky diodes. Highlight: Black-Right-Pointing-Pointer An inexpensive electrospinning technique is used to fabricate crossed nanoribbons of n-doped tin oxide and p-PEDOT. Black-Right-Pointing-Pointer Each intersection is a localized Schottky diode that is completely exposed to the environment after electrodes deposition. Black-Right-Pointing-Pointer This makes it useful as a gas and light sensor. Black-Right-Pointing-Pointer In addition, the ability to tune the diode parameters via a back gate truly makes this device multifunctional. Black-Right-Pointing-Pointer A half wave rectifier has been demonstrated with this device under UV illumination. - Abstract: Schottky diodes have been fabricated on doped Si/SiO{sub 2} substrates in air, by simply crossing individual electrospun tin oxide (SnO{sub 2}) and poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT-PSSA) nanoribbons. The conductivity of PEDOT-PSSA was {approx}6 S/cm with no observable field effect, while SnO{sub 2} exhibited n-doped field effect behavior with a charge mobility of {approx}3.1 cm{sup 2}/V-s. The diodes operate in air or in vacuum, under ambient illumination or in the dark, with low turn-on voltages and device parameters that are tunable via a back gate bias or a UV light source. Their unique design involves a highly localized active region that is completely exposed to the surrounding environment, making them potentially attractive for use as sensors. The standard thermionic emission model of a Schottky junction was applied to analyze the forward bias diode characteristics and was successfully tested as a half wave rectifier.

  1. Phase analysis of superconducting Nb-Sn materials by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sitek, J.; Tomasich, M.; Cirak, J.; Prejsa, M.; Kruzliak, J.

    1978-01-01

    Moessbauer spectroscopy is used for the optimalization of superconducting Nb-Sn samples preparation in the form of foils. Pure phases of Nb 3 Sn, Nb 6 Sn 5 , and NbSn 2 are determined. Two series of samples are studied at 750 and 900 0 C tinning temperature respectively, and at 750, 860, 900, and 960 0 C heating temperatures. In the samples the phases Nb 3 Sn, Nb 6 Sn 5 , NbSn 2 , and the solid solution Nb-Sn phase are observed. The results from the phase analysis lead to the assumption that the percentage amount of the phases is preferentially dependent on the tinning temperature. (author)

  2. Constraints on the progenitor system and the environs of SN 2014J from deep radio observations

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Torres, M. A.; Alberdi, A. [Instituto de Astrofísica de Andalucía, Glorieta de las Astronomía, s/n, E-18008 Granada (Spain); Lundqvist, P.; Björnsson, C. I.; Fransson, C. [Department of Astronomy, AlbaNova University Center, Stockholm University, SE-10691 Stockholm (Sweden); Beswick, R. J.; Muxlow, T. W. B.; Argo, M. K. [Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Paragi, Z. [Joint Institute for VLBI in Europe, Postbus 2, 7990 AA Dwingeloo (Netherlands); Ryder, S. [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Marcaide, J. M.; Ros, E.; Guirado, J. C. [Departamento de Astronomía i Astrofísica, Universidad de Valencia, E-46100 Burjassot, Valencia (Spain); Martí-Vidal, I. [Onsala Space Observatory, Chalmers University of Technology, SE-43992 Onsala (Sweden)

    2014-09-01

    We report deep EVN and eMERLIN observations of the Type Ia SN 2014J in the nearby galaxy M82. Our observations represent, together with JVLA observations of SNe 2011fe and 2014J, the most sensitive radio studies of Type Ia SNe ever. By combining data and a proper modeling of the radio emission, we constrain the mass-loss rate from the progenitor system of SN 2014J to M-dot ≲7.0×10{sup −10} M{sub ⊙} yr{sup −1} (for a wind speed of 100 km s{sup –1}). If the medium around the supernova is uniform, then n {sub ISM} ≲ 1.3 cm{sup –3}, which is the most stringent limit for the (uniform) density around a Type Ia SN. Our deep upper limits favor a double-degenerate (DD) scenario—involving two WD stars—for the progenitor system of SN 2014J, as such systems have less circumstellar gas than our upper limits. By contrast, most single-degenerate (SD) scenarios, i.e., the wide family of progenitor systems where a red giant, main-sequence, or sub-giant star donates mass to an exploding WD, are ruled out by our observations. (While completing our work, we noticed that a paper by Margutti et al. was submitted to The Astrophysical Journal. From a non-detection of X-ray emission from SN 2014J, the authors obtain limits of M-dot ≲1.2×10{sup −9} M {sub ☉} yr{sup –1} (for a wind speed of 100 km s{sup –1}) and n {sub ISM} ≲ 3.5 cm{sup –3}, for the ρ∝r {sup –2} wind and constant density cases, respectively. As these limits are less constraining than ours, the findings by Margutti et al. do not alter our conclusions. The X-ray results are, however, important to rule out free-free and synchrotron self-absorption as a reason for the radio non-detections.) Our estimates on the limits on the gas density surrounding SN2011fe, using the flux density limits from Chomiuk et al., agree well with their results. Although we discuss the possibilities of an SD scenario passing observational tests, as well as uncertainties in the modeling of the radio emission, the

  3. Properties of Sn-doped TiO2 nanotubes fabricated by anodization of co-sputtered Ti–Sn thin films

    International Nuclear Information System (INIS)

    Kyeremateng, Nana Amponsah; Hornebecq, Virginie; Knauth, Philippe; Djenizian, Thierry

    2012-01-01

    Self-organized Sn-doped TiO 2 nanotubes (nts) were fabricated for the first time, by anodization of co-sputtered Ti and Sn thin films. This nanostructured material was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, UV–vis spectroscopy and transmission electron microscopy. Due to their remarkable properties, Sn-doped TiO 2 nts can find potential applications in Li-ion microbatteries, photovoltaics, and catalysis. Particularly, the electrochemical performance as an anode material for Li-ion microbatteries was evaluated in Li test cells. With current density of 70 μA cm −2 (1 C) and cut-off potential of 1 V, Sn-doped TiO 2 nts showed improved performance compared to simple TiO 2 nts, and differential capacity plots revealed that the material undergoes full electrochemical reaction as a Rutile-type TiO 2 .

  4. SiSn diodes: Theoretical analysis and experimental verification

    KAUST Repository

    Hussain, Aftab M.

    2015-08-24

    We report a theoretical analysis and experimental verification of change in band gap of silicon lattice due to the incorporation of tin (Sn). We formed SiSn ultra-thin film on the top surface of a 4 in. silicon wafer using thermal diffusion of Sn. We report a reduction of 0.1 V in the average built-in potential, and a reduction of 0.2 V in the average reverse bias breakdown voltage, as measured across the substrate. These reductions indicate that the band gap of the silicon lattice has been reduced due to the incorporation of Sn, as expected from the theoretical analysis. We report the experimentally calculated band gap of SiSn to be 1.11 ± 0.09 eV. This low-cost, CMOS compatible, and scalable process offers a unique opportunity to tune the band gap of silicon for specific applications.

  5. Photon Factory activity report, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The Photon Factory made great strides in 1987. The low emittance operation of the PF ring was achieved in March, and resulted favorably in the increase of brilliance from 2 to 20 times for all the beam lines with high beam stability. At the same time, the installation of inserted devices was under way for all available straight sections of the ring. A 54-pole wiggler-undulator has been commissioned at BL-16. The devices to be inserted in the near future are a multipole wiggler for BL-13, an undulator for BL-19, and an undulator for circular polarized radiation at BL-28. The construction of beam lines continued, and four new beam lines, BL-6, BL-9, BL-16 and BL-17, are now in operation, BL-13 and BL-19 are under construction, and BL-3, BL-5, BL-18, BL-20 and BL-28 are in the design stage. Since its inauguration with four beam lines in 1982, the Photon Factory has grown rapidly, and approaches the goal of operating the PF ring with positrons in full use of its 24 beam ports and the straight sections for inserted devices. The total operation time was limited to 3,000 hours by the budget for fiscal year 1987, and about 80 % of the operation hours were devoted to the experiments of users. The nearly perfect operation of the 400 m long linac has continued in 1987, and has supplied both electrons and positrons to the TRISTAN collision experiment. The light source of a 2.5 GeV electron storage ring was normally operated. (Kako, I.)

  6. A novel snowflake-like SnO2 hierarchical architecture with superior gas sensing properties

    Science.gov (United States)

    Li, Yanqiong

    2018-02-01

    Snowflake-like SnO2 hierarchical architecture has been synthesized via a facile hydrothermal method and followed by calcination. The SnO2 hierarchical structures are assembled with thin nanoflakes blocks, which look like snowflake shape. A possible mechanism for the formation of the SnO2 hierarchical structures is speculated. Moreover, gas sensing tests show that the sensor based on snowflake-like SnO2 architectures exhibited excellent gas sensing properties. The enhancement may be attributed to its unique structures, in which the porous feature on the snowflake surface could further increase the active surface area of the materials and provide facile pathways for the target gas.

  7. Environmental radioactivity Ispra 1987

    International Nuclear Information System (INIS)

    Dominici, G.

    1988-01-01

    In this report there are briefly described the measurements of environmental radioactivity performed during 1987 by the site survey group of the Radioprotection Division at the Joint Research Centre Ispra Establishment. Data are given on the concentrations of Sr-90, Cs-137, and other radionuclides in precipitation, air, waters, herbage, milk and radioactive effluents. The environmental contamination is mainly a consequence of the nuclear accident of Chernobyl

  8. Coal. [1987 and 1989

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    Despite increases in recently negotiated coal prices in US dollar terms, unit export returns for Australian coal are expected to rise only marginally in 1988-89 due to the anticipated appreciation of the Australian dollar. Australian coal production is expected to recover in 1988-89, after falling in 1987-88. A table summarising coal statistics in 1985-87 is presented. 2 figs., 1 tab.

  9. A Nb3Sn high field dipole

    International Nuclear Information System (INIS)

    McClusky, R.; Robins, K.E.; Sampson, W.B.

    1990-01-01

    A dipole magnet approximately 1 meter long with an 8 cm bore has been fabricated from cable made from Nb 3 Sn multifilamentary strands. The coil consists of four layers of conductor wound in pairs to eliminate internal joints. Each set of layers is separately constrained with Kevlar-epoxy bands and the complete assembly clamped in a split laminated iron yoke. The inner coil pairs were wound before heat treating while the outer coils were formed from pre-reacted cable using conventional insulation. A NbTi version of the magnet was fabricated using SSC version of the magnet was fabricated using SSC conductor to test the construction techniques. This magnet reached a maximum central field of 7.6 Tesla, at 4.4K which is very close to the limit estimated from conductor measurements. The Nb 3 Sn magnet, however, only reached a maximum field at 8.1T considerably short of the field expected from measurements on the inner cable. 7 refs., 5 figs

  10. A look at Supernova 1987A

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1987-10-01

    Supernova 1987A is reviewed with emphasis on the neutrino observations. It is shown that the results fit well with the expectations for neutrino temperatures (T ∼ 4ε 0 4.5 MeV) and total energy emitted (2ε 0 4 x 10 53 ergs). It is argued that the detection tends to favor collapse models that yield emission for 10 second timescales with a 1ε 0 2 second early accretion phase followed by Kelvin-Helmholtz cooling as opposed to prompt shocks with the immediate onset of cooling. It is also argued that the probable detection of one or more electron scattering event favors a superthermal tail at high energies. Neutrino mass limits and flavor limits are comparable to laboratory experiments. An estimate for future collapse rates in our galaxy of 1/7 year is made based on nucleosynthesis yields. The supernova also has eliminated many axion and majoron models. 69 refs., 3 figs., 27 tabs

  11. A facile one-pot method to Au–SnO2-graphene ternary hybrid

    International Nuclear Information System (INIS)

    Xu, Diou; Li, Xiaotian; Zhang, Dawei

    2014-01-01

    In this article, we propose a facile one-pot route for synthesizing Au–SnO 2 -graphene ternary hybrid. In the system, SnCl 2 not only as the precursor of SnO 2 , but also is employed as reducing agent for the effective reduction of both GO and HAuCl 4 to graphene and Au nanoparticles, respectively. The obtained Au–SnO 2 -graphene hybrid materials are characterized by atomic force microscopy, transmission electron microscopy, X-ray diffraction, Raman spectrum, X-ray photo-electron spectroscopy, and thermal gravimetric analysis. It is found that the content of Au nanoparticles decorated on the surface of graphene can be simply adjusted by changing the amount of HAuCl 4 used in the synthesis process

  12. Mechanical properties of high-current multifilamentary Nb3Sn conductors

    International Nuclear Information System (INIS)

    Scanlan, R.M.; Hoard, R.W.; Cornish, D.N.; Zbasnik, J.P.

    1980-01-01

    Nb 3 Sn is a strain-sensitive superconductor which exhibits large changes in properties for strains of less than 1 percent. The critical current density at 12 T undergoes a reversible degradation of a factor of two for compressive strains of about 1 percent and undergoes an irreversible degradation for tensile strains on the Nb 3 Sn greater than 0.2 percent. Consequently, the successful application of Nb 3 Sn in large high-field magnets requires a complete understanding of the mechanical properties of the conductor. One conductor which is being used for many applications consists of filaments of Nb 3 Sn in a bronze matrix, and much progress has been made in understanding the mechanical behavior of this composite. The Nb 3 Sn filaments are placed in compression due to the differential thermal contraction between Nb 3 Sn and bronze which occurs when the composite is cooled from the Nb 3 Sn formation temperature (typically 700 0 C) to the 4.2 0 K operating temperature. The general behavior of the critical current when this conductor is subjected to a tensile stress is an increase to a maximum when the compressive strain on the Nb 3 Sn is relieved, followed by a decrease as the Nb 3 Sn filemants are placed in tension. The degree of precompression is controlled largely by the ratio of bronze to Nb 3 Sn in the conductor

  13. Void formation and its impact on Cu−Sn intermetallic compound formation

    International Nuclear Information System (INIS)

    Ross, Glenn; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2016-01-01

    Void formation in the Cu−Sn system has been identified as a major reliability issue with small volume electronic interconnects. Voids form during the interdiffusion of electrochemically deposited Cu and Sn, with varying magnitude and density. Electroplating parameters include the electrolytic chemistry composition and the electroplating current density, all of which appear to effect the voiding characteristics of the Cu−Sn system. In addition, interfacial voiding affects the growth kinetics of the Cu_3Sn and Cu_6Sn_5 intermetallic compounds of the Cu−Sn system. The aim here is to present voiding data as a function of electroplating chemistry and current density over a duration (up to 72 h) of isothermal annealing at 423 K (150 °C). Voiding data includes the average interfacial void size and average void density. Voids sizes grew proportionally as a function of thermal annealing time, whereas the void density grew initially very quickly but tended to saturate at a fixed density. A morphological evolution analysis called the physicochemical approach is utilised to understand the processes that occur when a voided Cu/Cu_3Sn interface causes changes to the IMC phase growth. The method is used to simulate the intermetallic thickness growths' response to interfacial voiding. The Cu/Cu_3Sn interface acts as a Cu diffusion barrier disrupting the diffusion of Cu. This resulted in a reduction in the Cu_3Sn thickness and an accelerated growth rate of Cu_6Sn_5. - Highlights: • Average void size is proportional linearly to thermal annealing time. • Average void density grows initially very rapidly followed by saturation. • Voids located close to the Cu/Cu_3Sn interface affect IMC growth rates. • Voids act as a diffusion barrier inhibiting Cu diffusion towards Sn. • Voids located at the interface cause Cu_3Sn to be consumed by Cu_6Sn_5.

  14. Phase transitions in thin films of Sn-Sb-Se system

    International Nuclear Information System (INIS)

    Samsudi Sakrani; Abdalla Belal Adam; Yussof Wahab

    1998-01-01

    The preparation and formation of covalent ternary Sn-Sb-Se system were investigated. A solid state reaction technique was employed whereby the evaporated multilayers of Sn/Se/Sb/Sn reacted chemically at a fixed temperature of 240 o C and were allowed to a room temperature slow-cooling. X-ray diffraction analysis showed that phase changes occurred in the system, with indication of amorphization for the predicted Sn 9 .3Sb 8 .1Se 4 4.9 and Sn 1 3.2Sb 4 3.4Se 4 3.4 compositions. These enabled the preliminary topological phase transitions of Sn-Sb-Se system according to the Gibb's triangle in which the areas of crystalline-amorphous were located. (Author)

  15. Directional Solidification and Liquidus Projection of the Sn-Co-Cu System

    Science.gov (United States)

    Chen, Sinn-Wen; Chang, Jui-Shen; Pan, Kevin; Hsu, Chia-Ming; Hsu, Che-Wei

    2013-04-01

    This study investigates the Sn-Co-Cu ternary system, which is of interest to the electronics industry. Ternary Sn-Co-Cu alloys were prepared, their as-solidified microstructures were examined, and their primary solidification phases were determined. The primary solidification phases observed were Cu, Co, Co3Sn2, CoSn, CoSn2, Cu6Sn5, Co3Sn2, γ, and β phases. Although there are ternary compounds reported in this ternary system, no ternary compound was found as the primary solidification phase. The directional solidification technique was applied when difficulties were encountered using the conventional quenching method to distinguish the primary solidification phases, such as Cu6Sn5, Cu3Sn, and γ phases. Of all the primary solidification phases, the Co3Sn2 and Co phases have the largest compositional regimes in which alloys display them as the primary solidification phases. There are four class II reactions and four class III reactions. The reactions with the highest and lowest reaction temperatures are both class III reactions, and are L + CoSn2 + Cu6Sn5 = CoSn3 at 621.5 K (348.3 °C) and L + Co3Sn2 + CoSn = Cu6Sn5 at 1157.8 K (884.6 °C), respectively.

  16. Parts per billion-level detection of benzene using SnO2/graphene nanocomposite composed of sub-6 nm SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Meng Fanli; Li Huihua; Kong Lingtao; Liu Jinyun; Jin Zhen; Li Wei; Jia Yong; Liu Jinhuai; Huang Xingjiu

    2012-01-01

    Graphical abstract: SnO 2 /graphene nanocomposite composed of 4–5 nm SnO 2 nanoparticles was synthesized by one-step wet chemical method and the form mechanism of the nanocomposite is clearly interpreted. The detection limit of the nanocomposite was as low as 5 ppb to toxic benzene. Highlights: ► We synthesized SnO 2 /graphene nanocomposite using a simple one-step wet chemical method. ► The nanocomposite composed of 4–5 nm SnO 2 nanoparticles. ► Toxic benzene was detected by such kind of nanocomposite. ► The detection limit to toxic benzene was as low as 5 ppb. - Abstract: In the present work, the SnO 2 /graphene nanocomposite composed of 4–5 nm SnO 2 nanoparticles was synthesized using a simple wet chemical method for ppb-level detection of benzene. The formation mechanism of the nanocomposite was investigated systematically by means of simultaneous thermogravimetry analysis, X-ray diffraction, and X-ray photoelectron spectroscopy cooperated with transmission electron microscopy observations. The SnO 2 /graphene nanocomposite showed a very attractive improved sensitivity to toxic volatile organic compounds, especially to benzene, compared to a traditional SnO 2 . The responses of the nanocomposite to benzene were a little higher than those to ethanol and the detection limit reached 5 ppb to benzene which is, to our best knowledge, far lower than those reported previously.

  17. Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts for ethanol electro-oxidation in alkaline medium

    CSIR Research Space (South Africa)

    Modibedi, RM

    2011-04-01

    Full Text Available Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts were prepared by the chemical reduction method, using sodium borohydride and ethylene glycol mixture as the reducing agent. The catalytic activity towards ethanol electro-oxidation in alkaline medium...

  18. Stanford Synchrotron Radiation Laboratory activity report for 1987

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, S.; Cantwell, K. [eds.

    1988-12-31

    During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

  19. Ethanol electrooxidation on novel carbon supported Pt/SnO{sub x}/C catalysts with varied Pt:Sn ratio

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian (China); Colmenares, L.; Jusys, Z. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Sun, G.Q. [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian (China)], E-mail: gqsun@dicp.ac.cn; Behm, R.J. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)], E-mail: juergen.behm@uni-ulm.de

    2007-12-01

    Novel carbon supported Pt/SnO{sub x}/C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, CO{sub ad} stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnO{sub x}/C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnO{sub x}/C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 deg. C. On all Pt/SnO{sub x}/C catalysts, acetic acid and acetaldehyde represent dominant products, CO{sub 2} formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol{sup -1}), but are lower than on Pt/C (32 kJ mol{sup -1}). The somewhat better performance of the Pt/SnO{sub x}/C catalysts compared to alloyed PtSn{sub x}/C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies.

  20. Quaternary chalcogenides La{sub 3}Sn{sub 0.5}InS{sub 7} and La{sub 3}Sn{sub 0.5}InSe{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Abishek K.; Lee, Emma J.; Bernard, Guy M.; Michaelis, Vladimir K.; Mar, Arthur [Department of Chemistry, University of Alberta, Edmonton, AB (Canada); Yin, Wenlong [Department of Chemistry, University of Alberta, Edmonton, AB (Canada); Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang (China)

    2017-12-13

    The quaternary chalcogenides La{sub 3}Sn{sub 0.5}InS{sub 7} and La{sub 3}Sn{sub 0.5}InSe{sub 7} were prepared by reactions of the elements at 1050 C and 950 C, respectively. They adopt noncentrosymmetric structures [hexagonal, space group P6{sub 3}, Z = 2; a = 10.2993(11) Aa, c = 6.0921(6) Aa for La{sub 3}Sn{sub 0.5}InS{sub 7}; a = 10.6533(7) Aa, c = 6.4245(4) Aa for La{sub 3}Sn{sub 0.5}InSe{sub 7}] in which the half-occupancy of Sn atoms within octahedral sites classifies them as belonging to the La{sub 3}Mn{sub 0.5}SiS{sub 7}-type branch of the large family of quaternary rare-earth chalcogenides RE{sub 3}M{sub 1-x}M{sup '}Ch{sub 7}. The site distribution in La{sub 3}Sn{sub 0.5}InCh{sub 7}, with higher-valent Sn atoms occupying octahedral instead of tetrahedral sites, is reversed from the typical situation observed in other RE{sub 3}M{sub 1-x}M{sup '}Ch{sub 7} compounds. The ordered distribution of Sn atoms in octahedral sites and In atoms in tetrahedral sites was evaluated by bond valence sum analyses. Moreover, {sup 119}Sn solid-state nuclear magnetic resonance (NMR) spectroscopy confirms the occupation of Sn{sup 4+} species exclusively within octahedral sites. An optical bandgap of 1.45 eV was found for La{sub 3}Sn{sub 0.5}InS{sub 7}. Band structure calculations on an ordered superstructure model of La{sub 3}Sn{sub 0.5}InS{sub 7} reveal that avoidance of strongly Sn-S antibonding levels is an important driving force for the Sn deficiency. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Nitrous oxide as a dynamical tracer in the 1987 Airborne Antarctic Ozone Experiment

    Science.gov (United States)

    Loewenstein, M.; Podolske, J. R.; Chan, K. R.; Strahan, S. E.

    1989-01-01

    In situ N2O measurements were made using an airborne tunable laser absorption spectrometer (ATLAS) on 12 flights into the Antarctic vortex, as well as on five transit flights outside the vortex region in August and September 1987, as part of the Airborne Antartic Ozone Experiment. Vertical profiles of N2O were obtained within the vortex on most of these flights and were obtained outside the vortex on several occasions. Flights into the vortex region show N2O decreasing southward between 53 and 72 S latitude on constant potential temperature surfaces in the lower stratosphere. The data lead to two important conclusions about the vortex region: (1) the lower stratosphere in August/September 1987 was occupied by 'old' air, which had subsided several kilometers during polar winter; (2) the N2O profile in the vortex was in an approximately steady state in August/September 1987, which indicates that the spring upwelling, suggested by several theories, did not occur.

  2. Superconductivity, carrier concentration, and the ionic model of Sn/sub 4/P/sub 3/ and Sn/sub 4/As/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Van Maaren, M H

    1969-06-01

    Superconductivity is reported for Sn/sub 4/P/sub 2.65/ at T/sub c/ 1.2/sup 0/K. Hall constant and reflectivity measurements indicate a mixed type of conduction for Sn/sub 4/P/sub 2.65/ and Sn/sub 3.80/ As/sub 3/. The ionic model of Geller and Hull is not applicable.

  3. 119Sn MAS NMR Study of Probe Molecules Interaction with Sn-BEA: The Origin of Penta- and Hexacoordinated Tin Formation

    DEFF Research Database (Denmark)

    Yakimov, Alexander V.; G. Kolyagin, Yury; Tolborg, Søren

    2016-01-01

    and weak Lewis acidity, respectively. The adsorption of acetonitrile and methanol resulted in observation of pentacoordinated tin species, due to the formation of 1:1 adsorption complexes over both Sn-sites. Water adsorption led first to formation of pentacoordinated tin species, which were further...... by the formation of pentacoordinated Sn species in the case of weak sites and hexacoordinated Sn over sites with strong Lewis acidity, pointing to the possibility of dissociative adsorption of secondary alcohols over strong Sn-sites....

  4. Development of a Cu-Sn based brazing system with a low brazing and a high remelting temperature

    Science.gov (United States)

    Schmieding, M.; Holländer, U.; Möhwald, K.

    2017-03-01

    Objective of the project presented is the development of a joining process for hot working steel components at low brazing temperatures leading to a bond with a much higher remelting temperature. This basically is achieved by the use of a Cu-Sn melt spinning foil combined with a pure Cu foil. During brazing, the Sn content of the foil is decreased by diffusion of Sn into the additional Cu resulting in a homogenious joint with a increased remelting temperature of the filler metal. Within this project specimens were brazed and diffusion annealed in a vacuum furnace at 850 °C varying the processing times (0 - 10 h). The samples prepared were studied metallographically and diffusion profiles of Sn were recorded using EDX line scans. The results are discussed in view of further investigations and envisaged applications.

  5. Some physico-chemical properties of liquid Ag-Sn-Zn

    International Nuclear Information System (INIS)

    Terzieff, P.

    2010-01-01

    The mean square concentration fluctuations in the long wavelength limit, the surface tension, the segregation behavior and the viscosity of the liquid system Ag-Sn-Zn are calculated in a semi-empirical manner based on experimental thermodynamic data. The increased intensity of fluctuations in the concentration of Sn extending over an wide range of composition is the dominant feature of the system. In a likewise manner, the tendency of segregation into the surface layer is observed to be most noticeable for Sn-atoms. As a consequence, even at massive additions of Ag or Zn up to 60 at% the surface tension is expected not to exceed the value of pure Sn by more than 15%. The viscosities are indicated to increase markedly but in a non-linear manner with the content of Ag. The excess viscosity is found to be negative throughout the system being more pronounced on the Ag-Sn side than on the Ag-Zn or the Sn-Zn side of the system.

  6. Advanced energy projects: FY 1987 research summaries

    International Nuclear Information System (INIS)

    1987-09-01

    This report contains brief summaries of all projects active in the Division of Advanced Energy Projects during Fiscal Year 1987 (October 1, 1986-September 30, 1987). The intent of this compilation is to provide a convenient means for quickly acquainting an interested reader with the program in Advanced Energy Projects. More detailed information on research activities in a particular project may be obtained by contacting directly the principal investigator. Some projects will have reached the end of their contract periods by the time this book appears, and will, therefore, no longer be active. Those cases in which work was completed in FY '87 are indicated by the footnote: Project completed. The annual funding level of each project is shown

  7. Influence of Sn content on PtSn/C catalysts for electrooxidation of C{sub 1}-C{sub 3} alcohols: Synthesis, characterization, and electrocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hong; Choi, Sung Mook; Nam, Sang Hoon; Seo, Min Ho; Kim, Won Bae [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea); Choi, Sun Hee [Pohang Accelerator Laboratory, San-31 Hyoja-dong, Pohang, Kyungbuk 790-984 (Korea)

    2008-07-16

    A series of carbon-supported bimetallic PtSn catalysts for the electrooxidation of C{sub 1}-C{sub 3} alcohols (i.e., methanol (C{sub 1}), ethanol (C{sub 2}), and 1-propanol (C{sub 3})) were prepared with different Pt:Sn atomic ratios using borohydride reduction method combined with freeze-drying procedure at room temperature. The catalysts were investigated by employing various physicochemical analyses: X-ray diffraction (XRD), transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS) to investigate the structural modification, and X-ray photoelectron spectroscopy (XPS) and X-ray absorption-near-edge spectroscopy (XANES) to characterize the change in electronic features. The variation of Sn content by forming PtSn alloys causes significant structural and electronic modifications of Pt crystallites, resulting in increases of lattice parameter and decreases of the Pt 5d band vacancies with Sn content. Cyclic voltammetry (CV) measurements showed that the addition of Sn into the Pt catalyst promotes the electro-catalytic activities for the electrooxidations of C{sub 1}, C{sub 2}, and C{sub 3} alcohols, in which the maximum activities appeared at different Sn contents for the C{sub 1}-C{sub 3} alcohols. In particular, a shift in optimum Pt:Sn composition was observed in that the Sn content required to reach the maximum peak current density was increased with the increasing number of carbon atoms in the C{sub 1}-C{sub 3} alcohols. Both the geometric and electronic effects with variation of Sn content are in close relationship in the bimetallic PtSn catalysts, consequently affecting the electrocatalytic activities by showing volcano-type behaviors over the electrooxidation of the individual alcohol. (author)

  8. Gamma spectroscopy of multiple nucleon transfer reactions in Sn

    International Nuclear Information System (INIS)

    Grabowski, Z.W.; Mayer, R.H.; Fornal, B.; Nisius, D.T.; Bearden, I.G.; Daly, P.J.; Broda, R.; Carpenter, M.P.; Janssens, R.V.F.; Khoo, T.L.; Lauritsen, T.

    1992-01-01

    The decay of (πh 11/2 ) n yrast isomers was studied in a series of proton-rich N = 82 isotones culminating in determination of B(E2) values in 153 Lu and 154 Hf. In the N = 82 isotones however, it seems unlikely that the measurements could be extended beyond 154 Hf (n = 8). The opportunity to investigate the (h 11/2 ) n ) isomers across the whole h 11/2 subshell exists, at least in principle, in Sn isotopes where the counterpart νh 11/2 subshell is being filled with neutrons starting at 116 Sn. Before our measurements were initiated, the (νh 11/2 ) n 10 + isomers were known to exist in 116, 118, 120 Sn, where the νh 11/2 subshell begins to fill, and in 128,130 Sn at the other end. Important information, however, was missing about the 10 + isomers in 122,124,126 Sn where the long lifetimes are expected. The υ = 3 (h 11/2 ) isomers in odd tin isomers for A ≥ 119 were also not identified. A serious experimental difficulty in populating high spin states in heavier Sn isotopes is that they are not accessible by fusion-evaporation reactions. We decided to search for these missing tin isotopes among the products of heavy ion reactions on 122,124 Sn targets. Using this approach we were able to identify the isomeric decays and measure the lifetimes of the (νh 11/2 n ) υ = 2 isomeric states in 122,124 Sn. In odd tin isotopes we identified new I = 19/2 + yrast isomers in 119,121,123 Sn and measured their lifetimes. In addition (νh 11/2 ) n υ = 3, I = 27/2 - isomers in 119,121 Sn were observed for the first time

  9. Growth and photovoltaic performance of SnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Deepa, K.G., E-mail: deepachaithanya@gmail.com [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore (India); Nagaraju, J. [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore (India)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Orthorhombic SnS quantum dots are synthesized by chemical method. Black-Right-Pointing-Pointer HOMO-LUMO level alignments confirmed the electron transport from SnS to TiO{sub 2}. Black-Right-Pointing-Pointer Cell characteristics are analyzed with different size quantum dots. Black-Right-Pointing-Pointer FF increased drastically from 15 to 51% on adding a buffer layer to the structure. Black-Right-Pointing-Pointer The SnS QDSSC showed highest V{sub oc} of 504 mV and 2.3 mA/cm{sup 2}. - Abstract: Tin sulphide (SnS) quantum dots of size ranging from 2.4 to 14.4 nm are prepared by chemical precipitation method in aqueous media. Growth of the SnS particles is monitored by controlling the deposition time. Both XRD and SAED patterns confirm that the particles possess orthorhombic structure. The uncapped SnS particles showed secondary phases like Sn{sub 2}S{sub 3} and SnS{sub 2} which is visible in the SAED pattern. From the electrochemical characterization, HOMO-LUMO levels of both TiO{sub 2} and SnS are determined and the band alignment is found to be favorable for electron transfer from SnS to TiO{sub 2}. Moreover, the HOMO-LUMO levels varied for different particle sizes. Solar cell is fabricated by sensitizing porous TiO{sub 2} thin film with SnS QDs. Cell structure is characterized with and without buffer layer between FTO and TiO{sub 2}. Without the buffer layer, cell showed an open circuit voltage (V{sub oc}) of 504 mV and short circuit current density (J{sub sc}) of 2.3 mA/cm{sup 2} under AM1.5 condition. The low fill factor of this structure (15%) is seen to be increased drastically to 51%, on the incorporation of the buffer layer. The cell characteristics are analyzed using two different size quantum dots.

  10. First-principles study of ZnSnAs2-based dilute magnetic semiconductors

    Science.gov (United States)

    Kizaki, Hidetoshi; Morikawa, Yoshitada

    2018-02-01

    The electronic structure and magnetic properties of chalcopyrite Zn(Sn,TM)As2 and (Zn,TM)SnAs2 have been investigated by the Korringa-Kohn-Rostoker method combined with the coherent potential approximation within the local spin density approximation, where TM denotes a 3d transition metal element. We find that the half-metallic and high-spin ferromagnetic state can be obtained in Zn(Sn,V)As2, Zn(Sn,Cr)As2, Zn(Sn,Mn)As2, (Zn,V)SnAs2, and (Zn,Cr)SnAs2. The calculated result of Zn(Sn,Mn)As2 is in good agreement with the experimentally observed room-temperature ferromagnetism if we can control selective Mn doping at Sn sites. In addition, (Zn,V)SnAs2 and (Zn,Cr)SnAs2 are predicted to exhibit high-Curie-temperature ferromagnetism.

  11. Effect of various SnO2 pH on ZnO/SnO2-composite film via immersion technique

    Science.gov (United States)

    Malek, M. F.; Mohamed, R.; Mamat, M. H.; Ismail, A. S.; Yusoff, M. M.; Rusop, M.

    2018-05-01

    ZnO/SnO2-composite film has been synthesized via immersion technique with various pH of SnO2. The pH of SnO2 were varied between 4.5 and 6.5. The optical measurements of the samples were carried out using Varian Cary 5000 UV-Vis spectrophotometer within the range from 350 nm to 800 nm at room temperature in air with a data interval of 1 nm. On the other hand, the optical photoluminescence properties were measured by a photoluminescence spectrometer (PL, model: Horiba Jobin Yvon - 79 DU420A-OE-325) using a He-Cd laser as the excitation source at 325 nm. These highly oriented ZnO/SnO2-composite film are potential for the creation of functional materials, such as the sensors, solar cells and etc.

  12. Ionic liquid-assisted sonochemical synthesis of SnS nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    García-Gómez, Nora A.; Parra-Arcieniega, Salomé M. de la; Garza-Tovar, Lorena L.; Torres-González, Luis C.; Sánchez, Eduardo M., E-mail: eduardo.sanchezcv@uanl.edu.mx

    2014-03-05

    Highlight: • Obtention of SnS nanostructures using novel ionic liquid assisted sonochemical method. • Influence of the (BMImBF{sub 4}) ionic liquid in SnS morphology. • Inhibitory effect in SnS crystallinity by structuring agents in ionic environments. -- Abstract: SnS nanoparticles have been successfully synthesized by the ionic liquid-assisted sonochemical method (ILASM). The starting reagents were anhydrous SnCl{sub 2}, thioacetamide, dissolved in ethanol and ionic liquid (IL)1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF{sub 4}) mixtures. Our experiments showed that IL plays an important role in the morphology of SnS. A 1:1 ethanol:IL mixture was found to yield the more interesting features. The lower concentration of Sn (II) in solution favored the presence of nanoplatelets. An increase in ultrasonic time favored crystalline degree and size as well. Also, the effect of additives as 3-mercaptopropionic acid, diethanolamine, ethylene glycol, and trioctyl phosphine oxide is reported. X-ray diffraction (XRD) and ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis-DRS) were used to characterize the obtained products.

  13. Fabrication and component testing results for a Nb3Sn dipole magnet

    International Nuclear Information System (INIS)

    Dell'Orco, D.; Scanlan, R.M.; Taylor, C.E.; Lietzke, A.; Caspi, S.; van Oort, J.M.; McInturff, A.D.

    1994-10-01

    At present, the maximum field achieved in accelerator R ampersand D dipoles is slightly over 10T, with NbTi conductor at 1.8 K. Although Nb 3 Sn has the potential to achieve much higher fields, none of the previous dipoles constructed from Nb 3 Sn have broken the 10T barrier. We report here on the construction of a dipole with high current density Nb 3 Sn with a predicted short sample limit of 13T. A wind and react technique, followed by epoxy impregnation of the fiberglass insulated coils, was used. The problems identified with the use of Nb 3 SD in earlier dipole magnets were investigated in a series of supplemental tests. This includes measurement of the degradation of J c with transverse strain, cabling degradation, joint resistance measurements, and epoxy strength tests. In addition, coff assembly techniques were developed to ensure that adequate prestress could be applied without damaging the reacted Nb 3 Sn cable. We report here the results of these tests and the construction status of this 50 mm bore dipole

  14. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 40{sup 0}, 47{sup 0}, 67{sup 0} and 82{sup 0}, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 34{sup 0} and 52{sup 0} that were identified as a SnO{sub 2} phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  15. Spectroelectrochemical Study of Carbon Monoxide and Ethanol Oxidation on Pt/C, PtSn(3:1/C and PtSn(1:1/C Catalysts

    Directory of Open Access Journals (Sweden)

    Rubén Rizo

    2016-09-01

    Full Text Available PtSn-based catalysts are one of the most active materials toward that contribute ethanol oxidation reaction (EOR. In order to gain a better understanding of the Sn influence on the carbon monoxide (principal catalyst poison and ethanol oxidation reactions in acidic media, a systematic spectroelectrochemical study was carried out. With this end, carbon-supported PtSnx (x = 0, 1/3 and 1 materials were synthesized and employed as anodic catalysts for both reactions. In situ Fourier transform infrared spectroscopy (FTIRS and differential electrochemical mass spectrometry (DEMS indicate that Sn diminishes the amount of bridge bonded CO (COB and greatly improves the CO tolerance of Pt-based catalysts. Regarding the effect of Sn loading on the EOR, it enhances the catalytic activity and decreases the onset potential. FTIRS and DEMS analysis indicate that the C-C bond scission occurs at low overpotentials and at the same potential values regardless of the Sn loading, although the amount of C-C bond breaking decreases with the rise of Sn in the catalytic material. Therefore, the elevated catalytic activity toward the EOR at PtSn-based electrodes is mainly associated with the improved CO tolerance and the incomplete oxidation of ethanol to form acetic acid and acetaldehyde species, causing the formation of a higher amount of both C2 products with the rise of Sn loading.

  16. Synthesis and characterization of different morphological SnS nanomaterials

    International Nuclear Information System (INIS)

    Chaki, Sunil H; Chaudhary, Mahesh D; Deshpande, M P

    2014-01-01

    SnS in three nano forms possessing different morphologies such as particles, whiskers and ribbons were synthesised by chemical route. The morphology variation was brought about in the chemical route synthesis by varying a synthesis parameter such as temperature and influencing the synthesis by use of surfactant. The elemental composition determination by energy dispersive analysis of x-rays (EDAX) showed that all three synthesized SnS nanomaterials were tin deficient. The x-ray diffraction (XRD) study of the three SnS nanomaterials showed that all of them possess orthorhombic structure. The Raman spectra of the three SnS nanomaterials showed that all three samples possess three common distinguishable peaks. In them two peaks lying at 98 ± 1 cm −1 and 224 ± 4 cm −1 are the characteristic A g mode of SnS. The third peak lying at 302 ± 1 cm −1 is associated with secondary Sn 2 S 3 phase. The transmission electron microscopy (TEM) confirmed the respective morphologies. The optical analysis showed that they possess direct as well as indirect optical bandgap. The electrical transport properties study on the pellets prepared from the different nanomaterials of SnS showed them to be semiconducting and p-type in nature. The current–voltage (I–V) plots of the silver (Ag)/SnS nanomaterials pellets for dark and incandescent illumination showed that all configurations showed good ohmic behaviour except Ag/SnS nanoribbons pellet configuration under illumination. All the obtained results are discussed in detail. (paper)

  17. Decay properties of nuclei in the neighbourhood of {sup 100}Sn; Zerfallseigenschaften von Nukliden in der Umgebung von {sup 100}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Katrin

    2011-01-24

    This thesis concentrates on nuclear properties of very neutron deficient nuclei near the proton dripline in the neighbourhood of doubly-magic {sup 100}Sn. In an experiment performed in March 2008 at the GSI in Darmstadt, the exotic nuclei were produced in a projectile fragmentation reaction using a {sup 124}Xe primary beam with an energy of 100 AMeV impinging on a 4000 Beryllium target, separated and identified in the FRS and eventually stopped for decay spectroscopy in a complex implantation detector developed at the institute E12. The Germanium array RISING was employed for the measurement of prompt and delayed gamma radiation. Production cross sections and half lives were determined along the proton dripline. The isotopes {sup 99}Sn, {sup 97}In and {sup 95}Cd were identified for the first time. additional nuclei studied in this thesis are {sup 103}Sn, {sup 96}Cd as well as the two tin isotopes {sup 101}Sn and {sup 102}Sn. (orig.)

  18. A synchronous surround increases the motion strength gain of motion.

    Science.gov (United States)

    Linares, Daniel; Nishida, Shin'ya

    2013-11-12

    Coherent motion detection is greatly enhanced by the synchronous presentation of a static surround (Linares, Motoyoshi, & Nishida, 2012). To further understand this contextual enhancement, here we measured the sensitivity to discriminate motion strength for several pedestal strengths with and without a surround. We found that the surround improved discrimination of low and medium motion strengths, but did not improve or even impaired discrimination of high motion strengths. We used motion strength discriminability to estimate the perceptual response function assuming additive noise and found that the surround increased the motion strength gain, rather than the response gain. Given that eye and body movements continuously introduce transients in the retinal image, it is possible that this strength gain occurs in natural vision.

  19. Void formation and its impact on Cu−Sn intermetallic compound formation

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Glenn, E-mail: Glenn.Ross@aalto.fi; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2016-08-25

    Void formation in the Cu−Sn system has been identified as a major reliability issue with small volume electronic interconnects. Voids form during the interdiffusion of electrochemically deposited Cu and Sn, with varying magnitude and density. Electroplating parameters include the electrolytic chemistry composition and the electroplating current density, all of which appear to effect the voiding characteristics of the Cu−Sn system. In addition, interfacial voiding affects the growth kinetics of the Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} intermetallic compounds of the Cu−Sn system. The aim here is to present voiding data as a function of electroplating chemistry and current density over a duration (up to 72 h) of isothermal annealing at 423 K (150 °C). Voiding data includes the average interfacial void size and average void density. Voids sizes grew proportionally as a function of thermal annealing time, whereas the void density grew initially very quickly but tended to saturate at a fixed density. A morphological evolution analysis called the physicochemical approach is utilised to understand the processes that occur when a voided Cu/Cu{sub 3}Sn interface causes changes to the IMC phase growth. The method is used to simulate the intermetallic thickness growths' response to interfacial voiding. The Cu/Cu{sub 3}Sn interface acts as a Cu diffusion barrier disrupting the diffusion of Cu. This resulted in a reduction in the Cu{sub 3}Sn thickness and an accelerated growth rate of Cu{sub 6}Sn{sub 5}. - Highlights: • Average void size is proportional linearly to thermal annealing time. • Average void density grows initially very rapidly followed by saturation. • Voids located close to the Cu/Cu{sub 3}Sn interface affect IMC growth rates. • Voids act as a diffusion barrier inhibiting Cu diffusion towards Sn. • Voids located at the interface cause Cu{sub 3}Sn to be consumed by Cu{sub 6}Sn{sub 5}.

  20. Sup(110)Sn/110In - a new generator system for positron emission tomography

    International Nuclear Information System (INIS)

    Lundqvist, H.; Einarsson, L.; Malmborg, P.; Scott-Robson, S.

    1991-01-01

    A generator system, 110 Sn/ 110 In, is suggested for use in the labelling of leukocytes with this short-lived (t 1/2 = 1.15 h) positron emitting (62%) isotope of indium. The half-life gives the labelled leukocytes time to be adequately distributed but is short enough to allow repeated studies within a few hours. The mother radionuclide 110 Sn (t 1/2 = 4.15 h) is produced by the reaction nat In(p, xn) 110 Sn which has a maximum cross-section of 110 mb at approx. 70 MeV and a practical yield of 400 MBq/μAh. (author)

  1. 1987 Annual Tropical Cyclone Report

    Science.gov (United States)

    1987-01-01

    as calculated for all tro ical cyclones in each year, is shown in fTa le 5-2A. Table 5-2B includes along-track and cross-track errors for 1987. A...so that the ATCM can maintain the tropical storm circulation during the forecast. Also, sensitivity experiments are being conducted to fmd the best

  2. Nanocrystalline SnO2 by liquid pyrolysis

    Directory of Open Access Journals (Sweden)

    Morante, J. R.

    2000-08-01

    Full Text Available Liquid pyrolysis is presented as a new production method of SnO2 nanocrystalline powders suitable for gas sensor devices. The method is based on a pyrolytic reaction of high tensioned stressed drops of an organic solution of SnCl4•5(H2O. The main advantages of the method are its capability to produce SnO2 nanopowders with high stability, its accurate control over the grain size and other structural characteristics, its high level of repeatability and its low industrialization implementation cost. The characterization of samples of SnO2 nanoparticles obtained by liquid pyrolysis in the range between 200ºC and 900ºC processing temperature is carried out by X-ray diffraction, transmission electron microscopy, Raman and X-ray photoelectron spectroscopy. Results are analyzed and discussed so as to validate the advantages of the liquid pyrolysis method.La pirólisis líquida se presenta como un nuevo método para producir SnO2 nanocristalino en polvo ideal para sensores de gas. El método se basa en una reacción pirolítica de gotas altamente tensionadas procedentes de una solución orgánica de SnCl4•5(H2O. Las principales ventajas del método son la capacidad para producir nanopartículas de SnO2 con una gran estabilidad, el preciso control sobre el tamaño de grano y sobre otras características estructurales, el alto nivel de repetibilidad y el bajo coste en su implementación industrial.La caracterización de las muestras de las nanopartículas de SnO2 obtenidas por pirólisis líquida en un rango de temperatura de procesado que va de 200ºC a 900ºC se ha realizado mediante difracción de rayos X, microscopía electrónica de transmisión, espectroscopía Raman y espectroscopía fotoelectrónica de rayos X. Los resultados se han analizado y discutido. Éstos validan las ventajas del método de la pirólisis líquida.

  3. Ferroelectricity of Sn-doped SrTiO3 perovskites with tin at both A and B sites

    Science.gov (United States)

    Suzuki, Shoichiro; Honda, Atsushi; Iwaji, Naoki; Higai, Shin'ichi; Ando, Akira; Takagi, Hiroshi; Kasatani, Hirofumi; Deguchi, Kiyoshi

    2012-08-01

    We successfully obtained Sn-doped SrTiO3 (SSTO) perovskites, and clarified their ferroelectricity and structural properties by using first-principles theoretical calculations. The ferroelectricity of SSTO was confirmed by the appearance of a dielectric permittivity maximum and a clear hysteresis loop of the relationship between the external electric field and the electric flux density below 180 K. X-ray diffraction and Raman spectra revealed the structural phase transition of SSTO at approximately 200 K. We directly observed by spherical aberration corrected scanning transmission electron microscopy with energy-dispersive x-ray spectroscopy that Sn ions are doped into both Sr and Ti sites (SnA and SnB), and that SnA is located at an off-centered position. We also performed theoretical analyses of SSTO and related perovskites, and found that SnA is preferentially located in an off-centered position and that SnA and the O6 octahedron, which includes SnB in its center, oscillate along the antiphase direction in the soft mode. Thus, we propose that the ferroelectricity of SSTO originates from the antiphase off-centering, which induces ferroelectric nanoregions in paraelectric SrTiO3.

  4. Origin of low thermal conductivity in SnSe

    Science.gov (United States)

    Xiao, Yu; Chang, Cheng; Pei, Yanling; Wu, Di; Peng, Kunling; Zhou, Xiaoyuan; Gong, Shengkai; He, Jiaqing; Zhang, Yongsheng; Zeng, Zhi; Zhao, Li-Dong

    2016-09-01

    We provide direct evidence to understand the origin of low thermal conductivity of SnSe using elastic measurements. Compared to state-of-the-art lead chalcogenides Pb Q (Q =Te , Se, S), SnSe exhibits low values of sound velocity (˜1420 m /s ) , Young's modulus (E ˜27.7 GPa ) , and shear modulus (G ˜9.6 GPa ) , which are ascribed to the extremely weak Sn-Se atomic interactions (or bonds between layers); meanwhile, the deduced average Grüneisen parameter γ of SnSe is as large as ˜3.13, originating from the strong anharmonicity of the bonding arrangement. The calculated phonon mean free path (l ˜ 0.84 nm) at 300 K is comparable to the lattice parameters of SnSe, indicating little room is left for further reduction of the thermal conductivity through introducing nanoscale microstructures and microscale grain boundaries. The low elastic properties indicate that the weak chemical bonding stiffness of SnSe generally causes phonon modes softening which eventually slows down phonon propagation. This work provides insightful data to understand the low lattice thermal conductivity of SnSe.

  5. Project W-314 specific test and evaluation plan for SN-635 transfer line (241-AY-01A to 241-AY-02A) and SN-633 transfer line tie in

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    This Specific Test and Evaluation Plan (STEP) defines the test and evaluation activities encompassing the installation of the SN-635 transfer line for the W-314 Project. The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made by the addition of the SN-635 transfer line and the tie in of SN-633 to the AY-02A pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP)

  6. Premaximum observations of the type Ia SN 1990N

    International Nuclear Information System (INIS)

    Leibundgut, B.; Kirshner, R.P.; Filippenko, A.V.; Shields, J.C.; Foltz, C.B.; Phillips, M.M.; Sonneborn, G.

    1991-01-01

    Spectroscopic and photometric observations of SN 1990N were obtained at ultraviolet and optical wavelengths, beginning 14 days before maximum light. The early observations reveal important differences from spectra of SN Ia's around maximum light. Photometry and spectroscopy obtained after maximum show that SN 1990N is a typical SN Ia and that most of the observed differences are due to the early epoch of the observations. The most significant characteristics are (1) the high velocities of Ca and Si up to 22,000 km/s; (2) the presence of Co and Fe 2 weeks before maximum; and (3) the more rapid increase in the UV flux compared to the optical. The most popular models for white dwarf deflagration that have provided the standard interpretation for SN Ia's at maximum light do not reproduce the high velocities of Ca II and Si II lines observed in SN 1990N. 37 refs

  7. Cluster-derived Ir-Sn/SiO2 catalysts for the catalytic dehydrogenation of propane: A spectroscopic study

    KAUST Repository

    Gallo, Alessandro; Psaro, Rinaldo; Guidotti, Matteo; Dal Santo, Vladimiro; Pergola, Roberto Della; Masih, Dilshad; Izumi, Yasuo

    2013-01-01

    Ir-Sn bimetallic silica-based materials have been prepared via deposition of the molecular organometallic clusters (NEt4)2[Ir 4(CO)10(SnCl3)2] and NEt 4[Ir6(CO)15(SnCl3)] or via deposition of Sn organometallic precursor Sn(n-C4H9) 4 onto pre

  8. Australian Nuclear Science and Technology Organization (Transitional Provisions) Act 1987 - No 4 of 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This Act implements certain transitional provisions consequent to the enactment of the ANSTO Act 1987. The legislation provides for the continuation of the body corporate from its present form as the Australian Atomic Energy Commission to the new body corporate, the Australian Nuclear Science and Technology Organization. (NEA) [fr

  9. Effects of Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} intermetallic layers on cross-interaction between Pd and Ni in solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yong-Ho [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Chung, Bo-Mook [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Department of Research and Development, KPM TECH, Ansan 425-090 (Korea, Republic of); Choi, Young-Sik [Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Choi, Jaeho [Department of Advanced Metal and Materials Engineering, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Huh, Joo-Youl, E-mail: jyhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-12-05

    Highlights: •Ni{sub 3}Sn{sub 4} acts as a source of Ni atoms, leading to a strong cross-interaction with Pd. •(Cu,Ni){sub 6}Sn{sub 5} is an effective Ni diffusion barrier, inhibiting Pd resettlement. •Dissolution kinetics of (Pd,Ni)Sn{sub 4} was interpreted based on the Sn–Ni–Pd isotherm. •Cu addition to solder alleviates the (Pd,Ni)Sn{sub 4}-related risk of reliability deterioration. -- Abstract: We examined the effects of layers of intermetallic compound (IMC) Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} formed at the solder/Ni interface, on the cross-interactions between Pd and Ni during solid-state aging and reflow soldering. Two types of diffusion couples, Pd/Sn/Ni and Pd/Sn–Cu/Ni, were aged at 150 °C to study the solid-state interactions. In contrast to the Pd/Sn/Ni couples in which a Ni{sub 3}Sn{sub 4} layer formed at the Ni interface, the Pd/Sn–Cu/Ni couple where a (Cu,Ni){sub 6}Sn{sub 5} layer formed at the Ni interface exhibited no significant interaction between Pd and Ni. The (Cu,Ni){sub 6}Sn{sub 5} layer acted as an effective barrier against Ni diffusion and thus inhibited the resettlement of (Pd,Ni)Sn{sub 4} onto the Ni interface. For the interaction during reflow, Sn–3.5Ag and Sn–3.0Ag–0.5Cu solder balls were isothermally reflowed on an electroless Ni(P)/electroless Pd/immersion Au (ENEPIG) surface finish at 250 °C, and the dissolution kinetics of the (Pd,Ni)Sn{sub 4} particles converted from the 0.2-μm-thick Pd-finish layer were examined. The spalled (Pd,Ni)Sn{sub 4} particles very quickly dissolved into the molten solder when the IMC layer formed on the Ni substrate was (Cu,Ni){sub 6}Sn{sub 5} rather than Ni{sub 3}Sn{sub 4}. The dependence of the dissolution kinetics of the spalled (Pd,Ni)Sn{sub 4} particles on the IMC layers was rationalized on the basis of a Sn–Ni–Pd isotherm at 250 °C. The present study suggests that the formation of a dense (Cu,Ni){sub 6}Sn{sub 5} layer at the solder/Ni interface can effectively

  10. SN 2014J at M82 - I. A middle-class Type Ia supernova by all spectroscopic metrics

    Science.gov (United States)

    Galbany, L.; Moreno-Raya, M. E.; Ruiz-Lapuente, P.; González Hernández, J. I.; Méndez, J.; Vallely, P.; Baron, E.; Domínguez, I.; Hamuy, M.; López-Sánchez, A. R.; Mollá, M.; Catalán, S.; Cooke, E. A.; Fariña, C.; Génova-Santos, R.; Karjalainen, R.; Lietzen, H.; McCormac, J.; Riddick, F. C.; Rubiño-Martín, J. A.; Skillen, I.; Tudor, V.; Vaduvescu, O.

    2016-03-01

    We present the intensive spectroscopic follow up of the Type Ia supernova (SN Ia) 2014J in the starburst galaxy M82. Twenty-seven optical spectra have been acquired from 2014 January 22 to September 1 with the Isaac Newton and William Herschel Telescopes. After correcting the observations for the recession velocity of M82 and for Milky Way and host galaxy extinction, we measured expansion velocities from spectral line blueshifts and pseudo-equivalent width of the strongest features in the spectra, which gives an idea on how elements are distributed within the ejecta. We position SN 2014J in the Benetti, Branch et al. and Wang et al. diagrams. These diagrams are based on properties of the Si II features and provide dynamical and chemical information about the SN ejecta. The nearby SN 2011fe, which showed little evidence for reddening in its host galaxy, is shown as a reference for comparisons. SN 2014J is a border-line object between the Core-normal and Broad-line groups, which corresponds to an intermediate position between low-velocity gradient and high-velocity gradient objects. SN 2014J follows the R(Si II)-Δm15 correlation, which confirms its classification as a relatively normal SN Ia. Our description of the SN Ia in terms of the evolution of the pseudo-equivalent width of various ions as well as the position in the various diagrams put this specific SN Ia into the overall sample of SN Ia.

  11. A facile hydrothermal strategy for synthesis of SnO2 nanorods-graphene nanocomposites for high performance photocatalysis.

    Science.gov (United States)

    Chen, Lu-Ya; Zhang, Wei-De; Xu, Bin; Yu, Yu-Xiang

    2012-09-01

    In this study, we report a facilely hydrothermal process for synthesizing SnO2 nanorods-graphene (SnO2 nanorods-GR) composite using graphite oxide and SnCl4 as raw materials. The SnO2 nanorods-GR composite was characterized by X-ray diffraction, electron microscopy, Xray photoelectron spectroscopy, and thermogravimetric analysis. Compared to commercial TiO2 nanoparticles P25 and neat SnO2 nanorods, the SnO2 nanorods-GR composite exhibits higher photocatalytic activity under UV light irradiation. The mechanism of its high photocatalytic activity is mainly ascribed to the synergy effect between SnO2 and graphene, in which graphene acts as an adsorbent and electron acceptor due to its large structure of pi-pi conjugation from sp2 hybrid carbon atoms. The results demonstrated in this study provide a promising way to enhance the photocatalytic activity by compounding semiconductive nanocrystals with graphene.

  12. U.S. Army Nurse Membership, Accession and Loss Profiles (1987). Volume 1, Reserves

    Science.gov (United States)

    1988-12-01

    34male" dominated professions. Studies by Astin et al. (1987) and Green (1987) reveal that the national economy influences student career choices. That...Nursin Ecs, 5(6), 1987, 267-279. Bureau of Labor Statistics. Industry Wace survey: Nursing and Personal Care Facilities. Ss-t~d= 1985. (Bull. 2275

  13. The Seismic Category I Structures Program results for FY 1987

    International Nuclear Information System (INIS)

    Farrar, C.R.; Bennett, J.G.; Dunwoody, W.E.; Baker, W.E.

    1990-10-01

    The accomplishments of the Seismic Category I Structures Program for FY 1987 are summarized. These accomplishments include the quasi-static load cycle testing of large shear wall elements, an extensive analysis of previous data to determine if equivalent linear analytical models can predict the response of damaged shear wall structures, and code committee activities. In addition, previous testing and results that led to the FY 1987 program plan are discussed and all previous data relating to shear wall stiffness are summarized. Because separate reports have already summarized the experimental and analytical work in FY 1987, this report will briefly highlight this work and the appropriate reports will be references for a more detailed discussion. 12 refs., 23 figs., 18 tabs

  14. Investigation of superior electro-optical properties of SnO{sub 2}/SiO{sub 2} nanocomposite over its individual counterpart SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Naveen Kumar, P.; Sahaya Selva Mary, J.; Chandrakala, V.; Jothi Jeyarani, W.; Merline Shyla, J., E-mail: jmshyla@gmail.com

    2017-06-01

    A comparative investigation of SnO{sub 2}/SiO{sub 2} nanocomposite with SnO{sub 2} nanoparticles has been conducted in the present study with the intent of learning the probable enhancement of the properties of the nanocomposite over those of the bare nanoparticles which has not been widely reported before. SnO{sub 2} nanoparticles and SnO{sub 2}/SiO{sub 2} nanocomposite have been synthesized via the facile and versatile sol-gel method. The samples were characterized with X-Ray Diffraction (XRD), High Resolution Scanning Electron Microscopy (HRSEM), Brunauer Emmett Teller (BET) studies, Fourier Transform Infra-Red spectroscopy (FT-IR), UV–Visible (UV–Vis) spectroscopy and Field-dependent photo conductivity technique for the evaluation of their crystallite size, structure & morphology, surface, chemical, optical and electrical properties respectively. Scherrer’s equation was used to determine the crystallite size of the as-synthesized samples from the XRD data. The particle size of SnO{sub 2}/SiO{sub 2} nanocomposite as observed through HRSEM was found to be reduced when compared with the bare SnO{sub 2} nanoparticles suggesting a possible increase in the optical band gap of the former which has been further confirmed in the optical studies. The surface area of SnO{sub 2}/SiO{sub 2} nanocomposite revealed a remarkable enrichment by approximately 5 folds in comparison with that of SnO{sub 2} nanoparticles which suggests an enhancement in its corresponding optical and electrical properties. The SnO{sub 2}/SiO{sub 2} nanocomposite recorded appreciated values of field-dependent photo and dark currents with several folds of augmentation thereby qualifying as an efficient photoconducting material. Attributed with an improved surface area and increased photoconducting nature, the SnO{sub 2}/SiO{sub 2} nanocomposite could be presented as an excellent photoanode material for nanomaterials based Dye Sensitized Solar Cells (DSSCs). - Highlights: • SnO{sub 2}/SiO{sub 2

  15. A survey of archaeological samples dated in 1987

    International Nuclear Information System (INIS)

    Mejdahl, V.

    1988-10-01

    A survey is given of archaeological samples dated in 1987 at the Nordic Laboratory for Thermoluminescence Dating. A total of 74 samples were dated. The results were corrected for short-term fading of feldspars as measured for samples stored at room temperature for four weeks or at 100 deg. C for two weeks. The beta dose from potassium and rubidium in feldspar, and the alpha dose from uranium and thorium in quartz and feldspar were included, assuming alpha efficiency factors of 0.1 for quartz and 0.2 for feldspar. (author) 20 tabs., 29 refs

  16. The Low Temperature Epitaxy of Strained GeSn Layers Using RTCVD System

    Science.gov (United States)

    Kil, Yeon-Ho; Yuk, Sim-Hoon; Jang, Han-Soo; Lee, Sang-Geul; Choi, Chel-Jong; Shim, Kyu-Hwan

    2018-03-01

    We have investigated the low temperature (LT) growth of GeSn-Ge-Si structures using rapid thermal chemical vapor deposition system utilizing Ge2H6 and SnCl4 as the reactive precursors. Due to inappropriate phenomena, such as, Ge etch and Sn segregation, it was hard to achieve high quality GeSn epitaxy at the temperature > 350 °C. On the contrary, we found that the SnCl4 promoted the reaction of Ge2H6 precursors in a certain process condition of LT, 240-360 °C. In return, we could perform the growth of GeSn epi layer with 7.7% of Sn and its remaining compressive strain of 71.7%. The surface propagated defects were increased with increasing the Sn content in the GeSn layer confirmed by TEM analysis. And we could calculate the activation energies at lower GeSn growth temperature regime using by Ge2H6 and SnCl4 precursors about 0.43 eV.

  17. Summaries of Research 1987

    Science.gov (United States)

    1987-01-01

    STRUCTURE OF THE GENE ENCODING THE CIRCUMSPOROZOITE PROTEIN OF PLASWODIUm YOELIJ. A RODENT MCDFL FOP EIAMINING ANTIMALARIAL SPOBOZOITE VACCINES. JOURNAL OF...BICLOGICAL CHEMISTRY 1987 MAR 5;262(7):2937-40 INFECTIOUS DISEASES 3M162770A870.AF.312-1 (DA301614) REPORT NO.E ANTIGENS, SURFACE PLAS!CDIU? AD A188...SURFACE CLONING, MOLECULAR PLASMCDIUM dERGHEI AD A185 330 NI!PI 87-C036 ROTd ?L CHUANG DM MULTIPLE EECHANIS!15 CF SEROTONERGIC SIGNAL TRANSDUCTION. LIFE

  18. Intercalation of organic molecules into SnS2 single crystals

    International Nuclear Information System (INIS)

    Toh, M.L.; Tan, K.J.; Wei, F.X.; Zhang, K.K.; Jiang, H.; Kloc, C.

    2013-01-01

    SnS 2 is a layered semiconductor with a van der Waals gap separating the covalently bonded layers. In this study, post-synthesis intercalation of donor organic amine molecules, such as ethylenediamine (en), into tin disulfide and secondary intercalation of p-phenylenediamine (PPD) and 1, 5-naphthalenediamine (NDA) into SnS 2e n have been verified with X-ray diffraction. PPD and NDA did not intercalate directly even during prolonged annealing but replaced en readily if en was already present in the van der Waals gap. The c-lattice dilation is proportional to the intercalant size. Unit cell lattices of intercalated products were determined from the positions of the X-ray diffraction peaks. Optical images taken during the intercalation showed that intercalation progressed from the periphery towards the interior of the crystal. TEM diffraction patterns in the [0 0 1] direction of SnS 2 after intercalation revealed defects and stacking mismatches among the SnS 2 layers caused by the intercalation. UV–Vis absorption studies showed a red shift in the band edge of the SnS 2 material after intercalation. The band edge was 2.2 eV for pristine SnS 2 ; after intercalation with en or PPD, the absorbance spectra band edges shifted to approximately 0.7 eV or 0.5 eV, respectively. - Graphical Abstract: SnS 2 single crystals were intercalated with organic amine molecules such as ethylenediamine, phenylenediamine and naphthalenediamine. Absorption studies showed red shift of band edge after intercalation, which was consistent with optical observations. X-ray diffraction indicated lattice dilation in the c-lattice of SnS 2 after intercalation. Highlights: ► Organic molecules intercalated inhomogenously between covalently bonded SnS 2 layers. ► Ethylenediamine (en) intercalate directly into SnS 2 . ► Phenylenediamine (PPD) and naphthalenediamine (NDA) can be intercalated into SnS 2 secondary. ► In a secondary intercalation the bonds between layers are weakened by direct

  19. Infrared aircraft measurements of stratospheric composition over Antarctica during September 1987

    International Nuclear Information System (INIS)

    Toon, G.C.; Farmer, C.B.; Lowes, L.L.; Schaper, P.W.; Blavier, J.F.; Norton, R.H.

    1989-01-01

    The Jet Propulsion Laboratory Mark IV interferometer recorded high-resolution, infrared solar spectra from the NASA DC-8 aircraft during flights over Antarctica in September 1987. The atmospheric absorption features in these spectra have been analyzed to determine the burdens of O 3 , NO, NO 2 , HNO 3 , ClNO 3 , HCl, HF, CO 2 , CH 4 , N 2 O, HCN, CO, H 2 O, CFCl 3 , and CF 2 Cl 2 . The results show a collar of high HNO 3 and ClNO 3 surrounding a core in which the burdens of these and of HCl and NO 2 are very low. Clear increases in the burdens of HF and HNO 3 were observed during the course of September in the Vortex core. HCl and NO 2 exhibited smaller, less significant increases. The burdens of the tropospheric source gases, N 2 O, CH 4 , HCN, CFCl 3 , CF 2 Cl 2 , CO, and H 2 O, were observed to be much smaller over Antarctica than at mid-latitudes. This, together with the fact that HF over Antarctica was more than double its mid-latitude value, suggests that downwelling had occurred

  20. International Centre for Theoretical Physics. Scientific activities in 1987

    International Nuclear Information System (INIS)

    1988-12-01

    A review of the scientific activities of the ICTP Trieste in 1987, including workshops, research and training for research is presented. The scientific program consists of eight main fields: fundamental physics, condensed matter, atomic and molecular physics, mathematics, physics and energy, physics and environment, applied physics and high technology, physics and development. In addition to a brief description of each workshop, symposium, college, meeting and activity or project sponsored by ICTP, a list of preprints and internal reports issued in 1987 is included. Tabs