WorldWideScience

Sample records for surrounding polymer matrix

  1. High temperature polymer matrix composites

    Science.gov (United States)

    Serafini, Tito T. (Editor)

    1987-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) Characterization; (4) environmental effects; and (5) applications.

  2. Microwave Processed Multifunctional Polymer Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified polymer matrix composites (PMCs) as a critical need for launch and in-space vehicles, but the significant costs of such materials limits their...

  3. Polymer Matrix Composite Material Oxygen Compatibility

    Science.gov (United States)

    Owens, Tom

    2001-01-01

    Carbon fiber/polymer matrix composite materials look promising as a material to construct liquid oxygen (LOX) tanks. Based on mechanical impact tests the risk will be greater than aluminum, however, the risk can probably be managed to an acceptable level. Proper tank design and operation can minimize risk. A risk assessment (hazard analysis) will be used to determine the overall acceptability for using polymer matrix composite materials.

  4. [Modern polymers in matrix tablets technology].

    Science.gov (United States)

    Zimmer, Łukasz; Kasperek, Regina; Poleszak, Ewa

    2014-01-01

    Matrix tablets are the most popular method of oral drug administration, and polymeric materials have been used broadly in matrix formulations to modify and modulate drug release rate. The main goal of the system is to extend drug release profiles to maintain a constant in vivo plasma drug concentration and a consistent pharmacological effect. Polymeric matrix tablets offer a great potential as oral controlled drug delivery systems. Cellulose derivatives, like hydroxypropyl methylcellulose (HPMC) are often used as matrix formers. However, also other types of polymers can be used for this purpose including: Kollidon SR, acrylic acid polymers such as Eudragits and Carbopols. Nevertheless, polymers of natural origin like: carragens, chitosan and alginates widely used in the food and cosmetics industry are now coming to the fore of pharmaceutical research and are used in matrix tablets technology. Modern polymers allow to obtain matrix tablets by 3D printing, which enables to develop new formulation types. In this paper, the polymers used in matrix tablets technology and examples of their applications were described.

  5. Polymer Matrix Composites for Propulsion Systems

    Science.gov (United States)

    Nettles, Alan T.

    2003-01-01

    The Access-to-Space study identified the requirement for lightweight structures to achieve orbit with a single-stage vehicle. Thus a task was undertaken to examine the use of polymer matrix composites for propulsion components. It was determined that the effort of this task would be to extend previous efforts with polymer matrix composite feedlines and demonstrate the feasibility of manufacturing large diameter feedlines with a complex shape and integral flanges, (i.e. all one piece with a 90 deg bend), and assess their performance under a cryogenic atmosphere.

  6. Linear and nonlinear optical processing of polymer matrix nanocomposites

    Science.gov (United States)

    DeJournett, Travis J.; Han, Karen; Olasov, Lauren R.; Zeng, Fan W.; Lee, Brennan; Spicer, James B.

    2015-08-01

    This work focuses on the scalable synthesis and processing of nanostructures in polymer matrix nanocomposites (PMNCs) for applications that require photochemical functionality of these nanostructures. An in situ vapor deposition process using various metal and metal oxide precursors has been used to create a range of nanocomposites that display photochromic and photocatalytic behaviors. Under specific processing conditions, these composites consist of discrete nanoparticles distributed uniformly throughout the bulk of an optically transparent polymer matrix. Incorporating other chemical species as supplementary deposition agents in the synthesis process can modify these particles and produce complicated nanostructures with enhanced properties. In particular, work has been carried out to structure nanoparticles using laser irradiation. Starting with metallic or metal oxide nanoparticles in the polymer matrix, localized chemical vapor deposition in the near-particle environment has been carried out using laser irradiation to decompose chemical precursors leading to the formation of secondary structures surrounding the seed nanoparticles. Control of the spatial and temporal characteristics of the excitation source allows for synthesis of nanocomposites with a high degree of control over the location, composition and size of nanoparticles in the matrix and presents the opportunity to produce patterned materials with spatially varying properties.

  7. Oriented nanofibers embedded in a polymer matrix

    Science.gov (United States)

    Barrera, Enrique V. (Inventor); Rodriguez-Macias, Fernando J. (Inventor); Lozano, Karen (Inventor); Chibante, Luis Paulo Felipe (Inventor); Stewart, David Harris (Inventor)

    2011-01-01

    A method of forming a composite of embedded nanofibers in a polymer matrix is disclosed. The method includes incorporating nanofibers in a plastic matrix forming agglomerates, and uniformly distributing the nanofibers by exposing the agglomerates to hydrodynamic stresses. The hydrodynamic said stresses force the agglomerates to break apart. In combination or additionally elongational flow is used to achieve small diameters and alignment. A nanofiber reinforced polymer composite system is disclosed. The system includes a plurality of nanofibers that are embedded in polymer matrices in micron size fibers. A method for producing nanotube continuous fibers is disclosed. Nanofibers are fibrils with diameters of 100 nm, multiwall nanotubes, single wall nanotubes and their various functionalized and derivatized forms. The method includes mixing a nanofiber in a polymer; and inducing an orientation of the nanofibers that enables the nanofibers to be used to enhance mechanical, thermal and electrical properties. Orientation is induced by high shear mixing and elongational flow, singly or in combination. The polymer may be removed from said nanofibers, leaving micron size fibers of aligned nanofibers.

  8. Drilling of polymer-matrix composites

    CERN Document Server

    Krishnaraj, Vijayan; Davim, J Paulo

    2013-01-01

    Polymeric composites are recognised as good candidates for structural components due to their inherent properties. However, they present several kinds of damages while creating holes for assembly. Delamination is considered the most serious damage since it reduces service life of the component. Thrust and delamination can be controlled by proper drill point geometry. Drilling at high speed is also a current requirement of the aerospace industry. This book focus on drilling of polymer matrix composites for aerospace and defence applications. The book presents introduction to machining of polymer composites and discusses drilling as a processing of composites.

  9. Fatigue damage mechanisms in polymer matrix composites

    OpenAIRE

    1997-01-01

    Polymer matrix composites are finding increased use in structural applications, in particular for aerospace and automotive purposes. Mechanical fatigue is the most common type of failure of structures in service. The relative importance of fatigue has yet to be reflected in design where static conditions still prevail. The fatigue behavior of composite materials is conventionally characterized by a Wöhler or S-N curve. For every new material with a new lay-up, altered constituents or differen...

  10. Polymer matrix nanocomposites for automotive structural components

    Science.gov (United States)

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-01

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  11. Polymer matrix nanocomposites for automotive structural components.

    Science.gov (United States)

    Naskar, Amit K; Keum, Jong K; Boeman, Raymond G

    2016-12-06

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  12. Emerging Trends in Polymer Matrix Composites .

    Directory of Open Access Journals (Sweden)

    Vikas M. Nadkarni

    1993-10-01

    Full Text Available The performance characteristics of PMC products are determined by the microstructure developed during the processing of composite materials. The structure development in processing is the result of integration of process parameters and inherent material characteristics. The properties of PMCs can thus be manipulated through both changes in the materials composition and process conditions. The present article illustrates the scientific approach followed in engineering of matrix materials and optimization of the processing conditions with specific reference to case studies on toughening of thermosetting resins and structure development in injection molding of thermoplastic composites. A novel approach is demonstrated for toughening of unsaturated polyester resins that involves the use of reactive liquid polymers chemically bonded to the matrix. The use of processing science is demonstrated by the significant effect of the mold temperature on the crystallinity and properties of molded poly (phenylene sulfide, a high performance engineering thermoplastic. An interactive approach is proposed for specific product and applications development.

  13. Challenges of the Modeling Methods for Investigating the Interaction between the CNT and the Surrounding Polymer

    Directory of Open Access Journals (Sweden)

    Roham Rafiee

    2013-01-01

    Full Text Available The interaction between the carbon nanotubes (CNT and the polymer is a key factor for determining the mechanical, thermal, and electrical properties of the CNT/polymer nanocomposite. However, it is difficult to measure experimentally the interfacial bonding properties between the CNT and the surrounding polymer. Therefore, computational modeling is used to predict the interaction properties. Different scale models, from atomistic to continuum, are critically reviewed addressing the advantages, the disadvantages, and the future challenges. Various methods of improvement for measuring the interaction properties are described. Finally, it is concluded that the semicontinuum modeling may be the best candidate for modeling the interaction between the CNT and the polymer.

  14. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  15. Hygrothermal modeling and testing of polymers and polymer matrix composites

    Science.gov (United States)

    Xu, Weiqun

    2000-10-01

    The dissertation, consisting of four papers, presents the results of the research investigation on environmental effects on polymers and polymer matrix composites. Hygrothermal models were developed that would allow characterization of non-Fickian diffusion coefficients from moisture weight gain data. Hygrothermal testing was also conducted to provide the necessary data for characterizing of model coefficients and model verification. In part 1, a methodology is proposed that would allow characterization of non-Fickian diffusion coefficients from moisture weight gain data for a polymer adhesive below its Tg. Subsequently, these diffusion coefficients are used for predicting moisture concentration profiles through the thickness of a polymer. In part 2, a modeling methodology based on irreversible thermodynamics applied within the framework of composite macro-mechanics is presented, that would allow characterization of non-Fickian diffusion coefficients from moisture weight gain data for laminated composites with distributed uniaxial damage. Comparisons with test data for a 5-harness satin textile composite with uniaxial micro-cracks are provided for model verifications. In part 3, the same modeling methodology based on irreversible thermodynamics is extended to the case of a bi-axially damaged laminate. The model allows characterization of nonFickian diffusion coefficients as well as moisture saturation level from moisture weight gain data for laminates with pre-existing damage. Comparisons with test data for a bi-axially damaged Graphite/Epoxy woven composite are provided for model verifications. Finally, in part 4, hygrothermal tests conducted on AS4/PR500 5HS textile composite laminates are summarized. The objectives of the hygrothermal tests are to determine the diffusivity and maximum moisture content of the laminate.

  16. Polymer Matrix Composite Lines and Ducts

    Science.gov (United States)

    Nettles, A. T.

    2001-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, a task was undertaken to assess the feasibility of making cryogenic feedlines with integral flanges from polymer matrix composite materials. An additional level of complexity was added by having the feedlines be elbow shaped. Four materials, each with a unique manufacturing method, were chosen for this program. Feedlines were to be made by hand layup (HLU) with standard autoclave cure, HLU with electron beam cure, solvent-assisted resin transfer molding (SARTM), and thermoplastic tape laying (TTL). A test matrix of fill and drain cycles with both liquid nitrogen and liquid helium, along with a heat up to 250 F, was planned for each of the feedlines. A pressurization to failure was performed on any feedlines that passed the cryogenic cycling testing. A damage tolerance subtask was also undertaken in this study. The effects of foreign object impact to the materials used was assessed by cross-sectional examination and by permeability after impact testing. At the end of the program, the manufacture of the electron beam-cured feedlines never came to fruition. All of the TTL feedlines leaked heavily before any cryogenic testing, all of the SARTM feedlines leaked heavily after one cryogenic cycle. Thus, only the HLU with autoclave cure feedlines underwent the complete test matrix. They passed the cyclic testing and were pressurized to failure.

  17. Shock wave profiles in polymer matrix composite

    Science.gov (United States)

    Boteler, J. Michael; Rajendran, A. M.; Grove, David

    2000-04-01

    The promise of lightweight armor which is also structurally robust is of particular importance to the Army for future combat vehicles. Fiber reinforced organic matrix composites such as Polymer Matrix Composite (PMC) are being considered for this purpose due to their lower density and promising dynamic response. The work discussed here extends the prior work of Boteler who studied the delamination strength of PMC and Dandekar and Beaulieu who investigated the compressive and tensile strengths of PMC. In a series of shock wave experiments, the wave profile was examined as a function of propagation distance in PMC. Uniaxial strain was achieved by symmetric plate impact in the ARL 102 mm bore single-stage light gas gun. Embedded polyvinylidene flouride (PVDF) stress-rate gauges provided a stress history at three unique locations in the PMC and particle velocity history was recorded with VISAR. All stress data was compared to a Lagrangian hydrocode (EPIC) employing a model to describe the viscoelastic response of the composite material in one-dimension. The experimental stress histories displayed attenuation and loading properties in good agreement with model predictions. However, the unloading was observed to be markedly different than the hydrocode simulations. These results are discussed.

  18. Creep of plain weave polymer matrix composites

    Science.gov (United States)

    Gupta, Abhishek

    Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the

  19. Characterization of Hybrid CNT Polymer Matrix Composites

    Science.gov (United States)

    Grimsley, Brian W.; Cano, Roberto J.; Kinney, Megan C.; Pressley, James; Sauti, Godfrey; Czabaj, Michael W.; Kim, Jae-Woo; Siochi, Emilie J.

    2015-01-01

    Carbon nanotubes (CNTs) have been studied extensively since their discovery and demonstrated at the nanoscale superior mechanical, electrical and thermal properties in comparison to micro and macro scale properties of conventional engineering materials. This combination of properties suggests their potential to enhance multi-functionality of composites in regions of primary structures on aerospace vehicles where lightweight materials with improved thermal and electrical conductivity are desirable. In this study, hybrid multifunctional polymer matrix composites were fabricated by interleaving layers of CNT sheets into Hexcel® IM7/8552 prepreg, a well-characterized toughened epoxy carbon fiber reinforced polymer (CFRP) composite. The resin content of these interleaved CNT sheets, as well as ply stacking location were varied to determine the effects on the electrical, thermal, and mechanical performance of the composites. The direct-current electrical conductivity of the hybrid CNT composites was characterized by in-line and Montgomery four-probe methods. For [0](sub 20) laminates containing a single layer of CNT sheet between each ply of IM7/8552, in-plane electrical conductivity of the hybrid laminate increased significantly, while in-plane thermal conductivity increased only slightly in comparison to the control IM7/8552 laminates. Photo-microscopy and short beam shear (SBS) strength tests were used to characterize the consolidation quality of the fabricated laminates. Hybrid panels fabricated without any pretreatment of the CNT sheets resulted in a SBS strength reduction of 70 percent. Aligning the tubes and pre-infusing the CNT sheets with resin significantly improved the SBS strength of the hybrid composite To determine the cause of this performance reduction, Mode I and Mode II fracture toughness of the CNT sheet to CFRP interface was characterized by double cantilever beam (DCB) and end notch flexure (ENF) testing, respectively. Results are compared to the

  20. Applications of Polymer Matrix Syntactic Foams

    Science.gov (United States)

    Gupta, Nikhil; Zeltmann, Steven E.; Shunmugasamy, Vasanth Chakravarthy; Pinisetty, Dinesh

    2013-11-01

    A collection of applications of polymer matrix syntactic foams is presented in this article. Syntactic foams are lightweight porous composites that found their early applications in marine structures due to their naturally buoyant behavior and low moisture absorption. Their light weight has been beneficial in weight sensitive aerospace structures. Syntactic foams have pushed the performance boundaries for composites and have enabled the development of vehicles for traveling to the deepest parts of the ocean and to other planets. The high volume fraction of porosity in syntactic foams also enabled their applications in thermal insulation of pipelines in oil and gas industry. The possibility of tailoring the mechanical and thermal properties of syntactic foams through a combination of material selection, hollow particle volume fraction, and hollow particle wall thickness has helped in rapidly growing these applications. The low coefficient of thermal expansion and dimensional stability at high temperatures are now leading their use in electronic packaging, composite tooling, and thermoforming plug assists. Methods have been developed to tailor the mechanical and thermal properties of syntactic foams independent of each other over a wide range, which is a significant advantage over other traditional particulate and fibrous composites.

  1. Structure and function of the interphotoreceptor matrix surrounding retinal photoreceptor cells.

    Science.gov (United States)

    Ishikawa, Makoto; Sawada, Yu; Yoshitomi, Takeshi

    2015-04-01

    The interphotoreceptor matrix (IPM) is a highly organized structure with interconnected domains surrounding cone and rod photoreceptor cells and extends throughout the subretinal space. Based on known roles of the extracellular matrix in other tissues, the IPM is thought to have several prominent functions including serving as a receptor for growth factors, regulating retinoid transport, participating in cytoskeletal organization in surrounding cells, and regulation of oxygen and nutrient transport. In addition, a number of studies suggest that the IPM also may play a significant role in the etiology of retinal degenerative disorders. In this review, we describe the present knowledge concerning the structure and function of the IPM under physiological and pathological conditions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Electromagnetic shielding of polymer-matrix composites with metallic nanoparticles

    National Research Council Canada - National Science Library

    Jalali, M; Dauterstedt, S; Michaud, A; Wuthrich, R

    2011-01-01

    To improve electromagnetic (EM) shielding and especially absorption of carbon fibre reinforced polymer-matrix composites for aircraft applications in high frequencies, the inclusion of metallic nanoparticles of iron, cobalt, nickel...

  3. Ultra-Low-Density (ULD) Polymer Matrix Composites (PMCs) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR proposal seeks to demonstrate a new class of ultra-low-density (ULD) polymer matrix composites of high specific modulus and specific strength...

  4. Strain Rate Dependent Modeling of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Stouffer, Donald C.

    1999-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Strain rate dependent inelastic constitutive equations have been developed to model the polymer matrix, and have been incorporated into a micromechanics approach to analyze polymer matrix composites. The Hashin failure criterion has been implemented within the micromechanics results to predict ply failure strengths. The deformation model has been implemented within LS-DYNA, a commercially available transient dynamic finite element code. The deformation response and ply failure stresses for the representative polymer matrix composite AS4/PEEK have been predicted for a variety of fiber orientations and strain rates. The predicted results compare favorably to experimentally obtained values.

  5. Polymer composites based on gypsum matrix

    Energy Technology Data Exchange (ETDEWEB)

    Mucha, Maria; Mróz, Patrycja; Kocemba, Aleksandra [Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 215 street, 90–924 Łódź (Poland)

    2016-05-18

    The role of polymers as retarder additives is to prolong the workability connected with setting time of gypsum. Various cellulose derivatives, soluble in water in concentration up to 1,5% by weight were applied taking different water/binder ratio. The hydration process of calcium sulfate hemihydrate (gypsum binder) into dihydrate (gypsum plaster) was observed by setting and calorimetric techniques. Scanning electron microscopy confirmed that the gypsum microstructure was varied when polymers are used. The mechanical properties of gypsum plasters were studied by bending strength test and they are correlated with sample microstructure.

  6. Rate Dependent Deformation and Strength Analysis of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Stouffer, Donald C.

    1999-01-01

    A research program is being undertaken to develop rate dependent deformation and failure models for the analysis of polymer matrix composite materials. In previous work in this program, strain-rate dependent inelastic constitutive equations used to analyze polymers have been implemented into a mechanics of materials based composite micromechanics method. In the current work, modifications to the micromechanics model have been implemented to improve the calculation of the effective inelastic strain. Additionally, modifications to the polymer constitutive model are discussed in which pressure dependence is incorporated into the equations in order to improve the calculation of constituent and composite shear stresses. The Hashin failure criterion is implemented into the analysis method to allow for the calculation of ply level failure stresses. The deformation response and failure stresses for two representative uniaxial polymer matrix composites, IM7/977-2 and AS4-PEEK, are predicted for varying strain rates and fiber orientations. The predicted results compare favorably to experimentally obtained values.

  7. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 1; Matrix Constitutive Equations

    Science.gov (United States)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.

  8. INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 1

    Science.gov (United States)

    2003-01-01

    INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 16 (FOAM CORE) / CARBON REINFORCED CYANOESTER (CERAMIC MATRIX COMPOSITE - CMC) HOT STRUCTURE, PANEL 884-1: SAMPLE 1

  9. Matrix-assisted pulsed laser evaporation of chemoselective polymers

    Science.gov (United States)

    Palla-Papavlu, Alexandra; Dinca, Valentina; Dinescu, Maria; di Pietrantonio, Fabio; Cannatà, Domenico; Benetti, Massimiliano; Verona, Enrico

    2011-11-01

    In this work, matrix-assisted pulsed laser evaporation was applied to achieve gentle deposition of polymer thin films onto surface acoustic wave resonators. Polyepichlorhydrin, polyisobutylene and polyethylenimine were deposited both onto rigid substrates e.g. Si wafers as well as surface acoustic wave devices using a Nd-YAG laser (266 nm, 355 nm, 10 Hz repetition rate). Morphological investigations (atomic force microscopy and optical microscopy) reveal continuous deposited polymer thin films, and in the case of polyethylenimine a very low surface roughness of 1.2 nm (measured on a 40×40 μm2 area). It was found that only for a narrow range of laser fluences (i.e. 0.1-0.3 J/cm2 in the case of polyisobutylene) the chemical structure of the deposited polymer thin layers resembles to the native polymer. In addition, in the case of polyisobutylene it was shown that the irradiation at 355-nm wavelength produces deviations in the chemical structure of the deposited polymer, as compared to its bulk structure. Following the morphological and structural characterization, only a set of well established conditions was used for polymer deposition on the sensor structures. The surface acoustic wave resonators have been tested using the Network Analyzer before and after polymer deposition. The polymer coated surface acoustic wave resonator responses have been measured upon exposure to various concentrations of dimethylmethylphosphonate analyte. All sensors coated with different polymer layers (polyethylenimine, polyisobutylene, and polyepichlorhydrin) show a clear response to the dimethylmethylphosphonate vapor. The strongest signal is obtained for polyisobutylene, followed by polyethylenimine and polyepichlorhydrin. The results obtained indicate that matrix-assisted pulsed laser evaporation is potentially useful for the fabrication of polymer thin films to be used in applications including microsensor industry.

  10. Mechanical and morphological properties of basalt filled polymer matrix composites

    OpenAIRE

    2009-01-01

    Purpose: The aim of this work is to study the effect of basalt on physical, mechanical and morphological of the injection molded LDPE.Design/methodology/approach: In this study, the effect of basalt was investigated as a filler material in polymer matrix composite (PMC) and low density polyethylene (LDPE) was chosen as a matrix material.Findings: A variety of mechanical tests were performed on the resultant composites which has appropriate compositions. Tensile, flexu...

  11. The secretory granule matrix: a fast-acting smart polymer.

    Science.gov (United States)

    Nanavati, C; Fernandez, J M

    1993-02-12

    The secretory granule matrix is a miniature biopolymer that consists of a charged polymer network that traps peptides and transmitters when it condenses and releases them on exocytotic decondensation. Models of exocytotic fusion have treated this matrix as a short circuit and have neglected its electrical contributions. This matrix responded to negative voltages by swelling, which was accompanied by a large increase in conductance, and to positive voltages by condensing. Thus, the matrix resembled a diode. The swollen matrix exerted large pressures on the order of 12 bar. The responses took place within milliseconds of the application of the electric field. These findings suggest that matrix decondensation, and therefore product release, is controlled by potential gradients.

  12. Nanophosphor composite scintillators comprising a polymer matrix

    Science.gov (United States)

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  13. Synthesis and characterization of polymer matrix nanocomposites and their components

    Science.gov (United States)

    Burnside, Shelly Dawn

    Herein we present synthesis schemes and characterization results for polymer matrix nanocomposite reinforced with organically modified layered silicates. These host materials with ultrafine dimensions are promising candidates for polymer and have been previously shown to yield substantial property enhancements at low silicate loadings due to their extreme geometry. Siloxane nanocomposites with a variety of nanostructures were formed. Thermal stability, solvent uptake and moduli of the nanocomposites were explores. Exfoliated nanocomposites displayed enhanced properties when compared to unreinforced siloxanes, and at lower volume fraction filler than in conventional composites. Large amounts of bound polymer, polymer affected by the silicate, were found in exfoliated nanocomposites as a result of the extreme geometry of the layered silicate. This bound polymer was related to the dramatic property enhancements in the nanocomposites. The behavior of these nanocomposites is compared to behavior expected from traditional models developed for conventional composites and model elastomeric networks. A lightly brominated polymer has been intercalated into a single crystal of organically exchanged vermiculite. The intercalation was followed using x-ray diffraction by monitoring the gallery height of the vermiculite host. Rutherford Backscattering Spectroscopy, used to confirm polymer intercalation, showed a constant bromine content in the direction normal to the layers. Atomic Force Microscopy images of a cleaved polymer-intercalated crystal showed raised hemispheres on an otherwise flat background. The hemispheres consist of single chains or aggregates of 3-40 polymer chains resulting from relaxations following cleaving. Three component or Hansen solubility parameters (delta) of organically modified layered silicates, the reinforcing agent in polymer matrix nanocomposites presented herein, have been determined. Two experimental techniques, temporal turbidimetry and

  14. Capillarity-induced mechanical behaviors of a polymer microtube surrounded by a droplet

    Directory of Open Access Journals (Sweden)

    Yue Mei

    2014-12-01

    Full Text Available The capillary force of a liquid drop has a great impact on the mechanical behaviors of a polymer microtube. To further explore this capillary effect, we examine the buckling condition and finite deformation of a hollow microfiber surrounded by a droplet. The Eulerian rod model and thin-walled shell model are both adopted to predict the critical value of the capillary force acting on the microfiber. According to the Mooney-Rivlin model, we calculate the true axial stress of the microtube under the combined action of surface tension and Laplace pressure. The numerical results show that the value of the true axial stress is closely related to the Young’s contact angle, droplet volume and characteristic sizes of the microtube. Our findings address that proper control over surface wettability may improve the performance optimization of micro-devices, and these analyses may produce ideas in the areas of nanofabrication, electrospinning and tissue engineering.

  15. Polymer Matrix Effects on the Photochromic Interconversion of Perfluorodiarylethenes

    Science.gov (United States)

    2016-12-05

    AMOL layer when cast in a PMMA film doped with the photchromic compound on top of a photoresist layer.2 The absorption spectra of this compound allowed...chosen polymer matrix. The films were spin coated onto 1” quartz discs and were baked at 120 °C for 60 sec to remove residual solvent. The coloration...2o were combined with a given polymer in an appropriate solvent and at a solids content such that, when spin coated as a thin film (ca. 200 nm), the

  16. Multifunctional Nanotube Polymer Nanocomposites for Aerospace Applications: Adhesion between SWCNT and Polymer Matrix

    Science.gov (United States)

    Park, Cheol; Wise, Kristopher E.; Kang, Jin Ho; Kim, Jae-Woo; Sauti, Godfrey; Lowther, Sharon E.; Lillehei, Peter T.; Smith, Michael W.; Siochi, Emilie J.; Harrison, Joycelyn S.; Jordan, Kevin

    2008-01-01

    Multifunctional structural materials can enable a novel design space for advanced aerospace structures. A promising route to multifunctionality is the use of nanotubes possessing the desired combination of properties to enhance the characteristics of structural polymers. Recent nanotube-polymer nanocomposite studies have revealed that these materials have the potential to provide structural integrity as well as sensing and/or actuation capabilities. Judicious selection or modification of the polymer matrix to promote donor acceptor and/or dispersion interactions can improve adhesion at the interface between the nanotubes and the polymer matrix significantly. The effect of nanotube incorporation on the modulus and toughness of the polymer matrix will be presented. Very small loadings of single wall nanotubes in a polyimide matrix yield an effective sensor material that responds to strain, stress, pressure, and temperature. These materials also exhibit significant actuation in response to applied electric fields. The objective of this work is to demonstrate that physical properties of multifunctional material systems can be tailored for specific applications by controlling nanotube treatment (different types of nanotubes), concentration, and degree of alignment.

  17. Standard Guide for Testing Polymer Matrix Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide summarizes the application of ASTM standard test methods (and other supporting standards) to continuous-fiber reinforced polymer matrix composite materials. The most commonly used or most applicable ASTM standards are included, emphasizing use of standards of Committee D30 on Composite Materials. 1.2 This guide does not cover all possible standards that could apply to polymer matrix composites and restricts discussion to the documented scope. Commonly used but non-standard industry extensions of test method scopes, such as application of static test methods to fatigue testing, are not discussed. A more complete summary of general composite testing standards, including non-ASTM test methods, is included in the Composite Materials Handbook (MIL-HDBK-17). Additional specific recommendations for testing textile (fabric, braided) composites are contained in Guide D6856. 1.3 This guide does not specify a system of measurement; the systems specified within each of the referenced standards shall appl...

  18. High Strain Rate Behavior of Polymer Matrix Composites Analyzed

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.

    2001-01-01

    Procedures for modeling the high-speed impact of composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. To characterize and validate material models that could be used in the design of impactresistant engine cases, researchers must obtain material data over a wide variety of strain rates. An experimental program has been carried out through a university grant with the Ohio State University to obtain deformation data for a representative polymer matrix composite for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used to characterize and validate a constitutive model that was developed at the NASA Glenn Research Center.

  19. Radiation-protective polymer-matrix nanostructured composites

    Energy Technology Data Exchange (ETDEWEB)

    Kaloshkin, S.D.; Tcherdyntsev, V.V. [College of Advanced Materials and Nanotechnologies, National University of Science and Technology ' MISiS' , Leninsky Prospect, 4 Moscow (Russian Federation); Gorshenkov, M.V., E-mail: mvg@misis.ru [College of Advanced Materials and Nanotechnologies, National University of Science and Technology ' MISiS' , Leninsky Prospect, 4 Moscow (Russian Federation); Gulbin, V.N. [College of Advanced Materials and Nanotechnologies, National University of Science and Technology ' MISiS' , Leninsky Prospect, 4 Moscow (Russian Federation); Kuznetsov, S.A. [Russian State Technological University ' MATI' , Orshanskaya 3, Moscow (Russian Federation)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Radiation-protective composites were fabricated by solid state intermixing and thermal pressing. Black-Right-Pointing-Pointer The composites based on UHMWPE contain B{sub 4}S and W nanopowders as fillers. Black-Right-Pointing-Pointer The mechanical and {gamma}-radiation protective properties of the polymer-matrix nanocomposites were determined experimentally. Black-Right-Pointing-Pointer For composites containing 12% B{sub 4}C and 12% W the mechanical properties were studied prior to and after the irradiation with fast neutrons. - Abstract: UHMWPE-based nanostructured composites containing B{sub 4}C and W nanopowders were fabricated and studied. The mechanical and {gamma}-radiation protective properties of the polymer-matrix nanocomposites were determined experimentally. For selected composites the mechanical properties were studied prior to and after the irradiation.

  20. Thermal-vacuum response of polymer matrix composites in space

    Science.gov (United States)

    Tennyson, R. C.; Matthews, R.

    1993-01-01

    This report describes a thermal-vacuum outgassing model and test protocol for predicting outgassing times and dimensional changes for polymer matrix composites. Experimental results derived from 'control' samples are used to provide the basis for analytical predictions to compare with the outgassing response of Long Duration Exposure Facility (LDEF) flight samples. Coefficient of thermal expansion (CTE) data are also presented. In addition, an example is given illustrating the dimensional change of a 'zero' CTE laminate due to moisture outgassing.

  1. Plastic timber with wheat straw and polymer matrix

    OpenAIRE

    García-Velázquez, Ángel; Amado-Moreno, María Guadalupe; Campbell-Ramírez, Héctor Enrique; Brito-Páez, Reyna Arcelia; Toscano-Palomar, Lydia

    2013-01-01

    The objective of the research was to develop plastic timber with wheat straw and polymer matrix. In the Mexicali Valley in Baja California, Mexico, the agricultural activities and the maquiladora industry are the main source of income in the region.  However, agricultural activities generate wastes that contribute heavily to pollution of Mexicali and its valley. The burning of agricultural waste is a traditional practice in the Valley, and is done in order to prepare the soil for the next cro...

  2. Electron Beam Curing of Polymer Matrix Composites - CRADA Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Janke, C. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Dave [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Norris, Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1997-05-01

    The major cost driver in manufacturing polymer matrix composite (PMC) parts and structures, and one of the elements having the greatest effect on their quality and performance, is the standard thermal cure process. Thermal curing of PMCs requires long cure times and high energy consumption, creates residual thermal stresses in the part, produces volatile toxic by-products, and requires expensive tooling that is tolerant of the high cure temperatures.

  3. Polydispersity for Tuning the Potential of Mean Force between Polymer Grafted Nanoparticles in a Polymer Matrix

    Science.gov (United States)

    Martin, Tyler B.; Dodd, Paul M.; Jayaraman, Arthi

    2013-01-01

    We present an integrated theory and simulation study of polydisperse polymer grafted nanoparticles in a polymer matrix to demonstrate the effect of polydispersity in graft length on the potential of mean force between the grafted nanoparticles. In dense polymer solutions, increasing polydispersity in graft length reduces the strength of repulsion at contact and weakens the attractive well at intermediate interparticle distances, completely eliminating the latter at high polydispersity index. The reduction in contact repulsion is attributable to polydispersity relieving monomer crowding near the particle surface, especially at high grafting densities. The elimination of the midrange attractive well is attributable to the longer grafts in the polydisperse graft length distribution that introduce longer range steric repulsion and alter the wetting of the grafted layer by matrix chains. Dispersion of the grafted particles is stabilized by increased penetration or wetting of the polydisperse grafted layer by the matrix chains. This work demonstrates that at high grafting densities, polydispersity in graft length can be used to stabilize dispersions of grafted nanoparticles in a polymer matrix at conditions where monodisperse grafts would cause aggregation.

  4. Thermosetting Polymer-Matrix Composites for Strucutral Repair Applications

    Energy Technology Data Exchange (ETDEWEB)

    Goertzen, William Kirby [Iowa State Univ., Ames, IA (United States)

    2007-12-01

    Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporate of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.

  5. Strain Rate Dependent Deformation of a Polymer Matrix Composite with Different Microstructures Subjected to Off-Axis Loading

    Directory of Open Access Journals (Sweden)

    Xiaojun Zhu

    2014-01-01

    Full Text Available This paper aims to investigate the comprehensive influence of three microstructure parameters (fiber cross-section shape, fiber volume fraction, and fiber off-axis orientation and strain rate on the macroscopic property of a polymer matrix composite. During the analysis, AS4 fibers are considered as elastic solids, while the surrounding PEEK resin matrix exhibiting rate sensitivities are described using the modified Ramaswamy-Stouffer viscoplastic state variable model. The micromechanical method based on generalized model of cells has been used to analyze the representative volume element of composites. An acceptable agreement is observed between the model predictions and experimental results found in the literature. The research results show that the stress-strain curves are sensitive to the strain rate and the microstructure parameters play an important role in the behavior of polymer matrix.

  6. Progressive delamination in polymer matrix composite laminates: A new approach

    Science.gov (United States)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive delamination in polymer matrix composite laminates. The damage stages are quantified based on physics via composite mechanics while the degradation of the laminate behavior is quantified via the finite element method. The approach accounts for all types of composite behavior, laminate configuration, load conditions, and delamination processes starting from damage initiation, to unstable propagation, and to laminate fracture. Results of laminate fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach.

  7. Thermal-vacuum effects on polymer matrix composite materials

    Science.gov (United States)

    Tennyson, R. C.; Mabson, G. E.

    1991-01-01

    Results are presented on the thermal-vacuum response of a variety of fiber reinforced polymers matrix composites that comprised the UTIAS experiment on the LDEF satellite. Theoretical temperature-time predictions for this experiment are in excellent agreement with test data. Results also show quite clearly the effect of outgassing in the dimensional changes of these materials and the corresponding coefficients of thermal expansion. Finally, comparison with ground-based simulation tests are presented as well. Use of these data for design purposes are also given.

  8. Laminate Analyses, Micromechanical Creep Response, and Fatigue Behavior of Polymer Matrix Composite Materials.

    Science.gov (United States)

    1982-12-01

    FATIGUE BEHAVIOR of POLYMER MATRIX COMPOSITE MATERIALS , 4 " .’* .. . . ". ... .. ... . . ~December 1982 41 .. FINAL REPORT .Army Research Office I I...DEPARTMENT REPORT UWME-DR-201-108-1 LAMINATE ANALYSES, MICROMECHANICAL CREEP RESPONSE, AND FATIGUE BEHAVIOR OF POLYMER MATRIX COMPOSITE MATERIALS...Behavior of Polymer Matrix Composite 16 Sept. 1979 - 30 Nov. 1982 Materials 6 PERFORMING ORG. REPORT NUMBER UWME-DR-201-108-1 7. AUTHOR(.) S. CONTRACT

  9. LDEF results for polymer matrix composite experiment AO 180

    Science.gov (United States)

    Tennyson, R. C.

    1992-01-01

    This report represents a summary of the results obtained to-date on a polymer matrix composite experiment (AO 180) located at station D-12, about 82 deg off the 'ram' direction. Different material systems comprised of graphite, boron, and aramid (Kevlar) fiber reinforcements were studied. Although previous results were presented on in-situ thermal-vacuum cycling effects, particularly dimensional changes associated with outgassing, additional comparative data will be shown from ground-based tests on control and flight samples. The system employed was fully automated for thermal-vacuum cycling using a laser interferometer for monitoring displacements. Erosion of all three classes of materials due to atomic oxygen (AO) will also be discussed, including angle of incidence effects. Data from this experiment will be compared to published results for similar materials in other LDEF experiments. Composite materials' erosion yields will be presented on an AO design nomogram useful for estimating total material loss for given exposure conditions in low Earth orbit (LEO). Optical properties of these materials will also be compared with control samples. A survey of the damage caused by micrometeoroids/debris impacts will be addressed as they relate to polymer matrix composites. Correlations between hole size and damage pattern will be given. Reference to a new nomogram for estimating the number distribution of micrometeoroid/debris impacts for a given space structure as a function of time in LEO will be addressed based on LDEF data.

  10. CNT-based Reinforcing Polymer Matrix Composites for Lightweight Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon Polymer Matrix Composites (PMCs) are attractive structural materials for NASA applications due to their high strength to weight ratio, mechanical properties...

  11. Dispersion/Aggregation of polymer grafted nanorods in a polymer matrix studied by Dissipative Particle Dynamics

    Science.gov (United States)

    Maia, Joao; Khani, Shaghayegh

    2015-03-01

    Nanorods are incorporated into polymer matrices for fabricating composite materials with enhanced physical and mechanical properties.The final macroscopic properties of the composites are directly related to the dispersion and organization of the nanoparticles in the matrix. For instance, a significant improvement in the mechanical properties of the nanorod-polymer composites is observed upon formation of a percolating network. One way of controlling the assembly of nanorods in the polymer medium is adjusting the chemical interactions which is done through grafting polymer chains on the surface of the rods. The recent developments in the computational techniques have paved the road for further understanding of the controlled dispersion and aggregation of nanorods in polymer matrices. In this study, Dissipative Particle Dynamics (DPD) is employed in order to investigate the effect of enthalpic and entopic variables on the phase behavior of the abovementioned nanocomposites. In DPD, the interaction parameter between the components of the systems can be mapped onto the Flory-Huggins χ-parameter via well-known Groot-Warren expression. This works studies the effect of the enthalpic and entropic variables on phase transitions. The main goal is to provide a phase diagram than can be used to guide the experiments in designing new materials.

  12. Carbon dioxide (CO2) absorption behavior of mixed matrix polymer composites containing a flexible coordination polymer.

    Science.gov (United States)

    Culp, Jeffrey T; Sui, Lang; Goodman, Angela; Luebke, David

    2013-03-01

    Mixed matrix membranes (MMMs) comprised of metal organic frameworks (MOFs) dispersed in organic polymers are popular materials under study for potential applications in gas separations. However, research on MMMs containing structurally dynamic sorbents known as flexible MOFs has only very recently appeared in the literature. The thermodynamic requirements of the structure transition between the low porosity and high porosity phases of flexible MOFs may provide a mechanism for high adsorption selectivity in these materials. A fundamental question in MMMs containing flexible MOFs is how the constraint of the polymer matrix on the intrinsic expansion of the flexible MOF particles that occurs during gas adsorption might affect the thermodynamics of this structural phase transition and influence the gas adsorption properties of the embedded MOF. To investigate the fundamental nature of this flexible MOF-polymer interface, thin films of ~20 um thickness were prepared using the flexible linear chain coordination polymer catena-bis(dibenzoylmethanato)-(4,4'bipyridyl)nickel(II) "Ni(Bpy)(DBM)(2)" embedded as 35 wt% dispersions in Matrimid®, polystyrene, and polysulfone. The adsorption of CO(2) in the polymers and embedded particles was studied using in situ ATR-FTIR spectroscopy and variable temperature volumetric CO(2) adsorption/desorption isotherms. Interestingly, no effect of the polymer matrix on the gas adsorption behavior of the embedded Ni(Bpy)(DBM)(2) particles was observed. The composite samples all showed the same threshold pressures for CO(2) absorption and desorption hysteresis associated with the structural phase change in the polymer embedded Ni(Bpy)(DBM)(2) particles as was observed in the pristine polycrystalline sample. The current results contrast those recently reported for a MMM containing the flexible MOF "NH(2)-MIL-53" where a significant increase in the threshold pressure for CO(2) adsorption associated with the structural phase change of the MOF was

  13. Relationship between activation volume and polymer matrix effects on photochromic performance: bridging molecular parameter to macroscale effect.

    Science.gov (United States)

    Shima, Kentaro; Mutoh, Katsuya; Kobayashi, Yoichi; Abe, Jiro

    2015-02-19

    Photochromic compounds have attracted attention as ophthalmic lenses because of their reversible color modulation upon irradiation with light. However, the efficiency of the photochromism is strongly affected by their surrounding because of the structural changes concomitant with the photochromism, which causes the decrease in the photochromic performance in the polymer matrix. Therefore, the clarification of the degree of the structural changes is necessary to apply to the ophthalmic lenses. Bridged imidazole dimers are one of the fast photoswitch molecules possessing high photochromic quantum yield and durability. Although the enhancement of the photochromic properties of bridged imidazole dimers has been vigorously studied, the quantitative information about the structural changes has not been revealed in detail. In this study, we investigated the pressure effects on the photochromic properties of bridged imidazole dimers. The activation volume for the thermal back-reaction of the photogenerated biradical species becomes an effective measure to predict the degree of the structural change during the photochromic reaction. We revealed that the smaller activation volume is suitable for keeping the efficient photochromic reaction in the polymer matrix because the photochromic reaction is not affected by the surroundings. These fundamental insights into the molecular dynamics provide valuable information to develop fast photochromic compounds that are suitable for the use in the polymer matrix and pressure sensitive photochromic materials.

  14. The association of Matrix Gla protein isomers with calcification in capsules surrounding silicone breast implants

    OpenAIRE

    Larry W. Hunter; Lieske, John C.; Tran, Nho V.; Miller, Virginia M.

    2011-01-01

    Implanted silicone medical prostheses induce a dynamic sequence of histologic events in adjacent tissue resulting in the formation of a fibrotic peri-prosthetic capsule. In some cases, capsular calcification occurs, requiring surgical intervention. In this study we investigated capsules from silicone gel-filled breast prostheses to test the hypothesis that this calcification might be regulated by the small vitamin K-dependent protein, matrix Gla protein (MGP), a potent inhibitor of arterial c...

  15. Permeability characterization of polymer matrix composites by RTM/VARTM

    Science.gov (United States)

    Naik, N. K.; Sirisha, M.; Inani, A.

    2014-02-01

    Cost effective manufacturing of high performance polymer matrix composite structures is an important consideration for the growth of its use. Resin transfer moulding (RTM) and vacuum assisted resin transfer moulding (VARTM) are the efficient processes for the cost effective manufacturing. These processes involve transfer of resin from the tank into the reinforcing preform loaded into a closed mould. Resin flow within the preform and reinforcement wetting can be characterized using the permeability properties. Different reinforcement and resin properties and process parameters affecting the permeability are discussed based on state of art literature review covering experimental studies. General theory for the determination of permeability is presented. Based on the literature review, permeability values for different reinforcement architecture, resin and processing conditions are presented. Further, possible sources of error during experimental determination of permeability and issues involved with reproducibility are discussed.

  16. Measuring time-dependent diffusion in polymer matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Pilli, Siva Prasad; Smith, Lloyd V.; Shutthanandan, V.

    2014-11-01

    Moisture plays a significant role in influencing the mechanical behavior and long-term durability of polymer matrix composites (PMC’s). The common methods used to determine the moisture diffusion coefficients of PMCs are based on the solution of Fickian diffusion in the one-dimensional domain. Fick’s Law assumes that equilibrium between the material surface and the external vapor is established instantaneously. A time dependent boundary condition has been shown to improve correlation with some bulk diffusion measurements, but has not been validated experimentally. The surface moisture content in a Toray 800S/3900-2B toughened quasi-isotropic laminate system, [0/±60]s, was analyzed experimentally using Nuclear Reaction Analysis (NRA). It was found that the surface moisture content showed a rapid increase to an intermediate concentration C0, followed by a slow linear increase to the saturation level.

  17. Buckling Analysis of Unidirectional PolymerMatrix Composite Plates

    Directory of Open Access Journals (Sweden)

    Jawad Kadhim Uleiwi

    2006-01-01

    Full Text Available This study deals with the estimation of critical load of unidirectional polymer matrix composite plates by using experimental and finite element techniques at different fiber angles and fiber volume fraction of the composite plate.Buckling analysis illustrated that the critical load decreases in nonlinear relationship with the increase of the fiber angle and that it increases with the increase of the fiber volume fraction.The results show that the maximum value of the critical load is (629.54 N/m at (? = 0? and (Vf = 40 % for the finite element method, while the minimum value of the critical load is (49 N/m at (? = 90? and (Vf = 10 % for the experimental results. The results also indicated that the maximum difference between the finite element analysis and experimental work is about (11 % at ( ? = 0? and (Vf = 40 %

  18. Probabilistic Evaluation of Bolted Joints in Polymer Matrix Composites

    Science.gov (United States)

    Chamis, C. C.; Minnetyan, L.

    1997-01-01

    Computational methods are described to probabilistically simulate fracture in bolted composite structures. Progressive fracture is simulated via an innovative approach independent of stress intensity factors and fracture toughness. The effect on structure damage of design variable uncertainties is quantified. The Fast Probability Integrator is used to assess the scatter in the composite structure response before and after damage. Sensitivity of the response to design variables is evaluated. The methods are demonstrated for bolted joint polymer matrix composite panels under end loads. The effects of fabrication process are included in the simulation of damage in the bolted panel. The results show that the most effective way to reduce the end displacement at fracture is to control the load and ply thickness.

  19. Inorganic Polymer Matrix Composite Strength Related to Interface Condition

    Directory of Open Access Journals (Sweden)

    John Bridge

    2009-12-01

    Full Text Available Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon coated fibers are compared using room temperature 3-point bend testing. Carbon coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.

  20. Flexural analysis of palm fiber reinforced hybrid polymer matrix composite

    Science.gov (United States)

    Venkatachalam, G.; Gautham Shankar, A.; Raghav, Dasarath; Santhosh Kiran, R.; Mahesh, Bhargav; Kumar, Krishna

    2015-07-01

    Uncertainty in availability of fossil fuels in the future and global warming increased the need for more environment friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite.

  1. Progressive fracture of polymer matrix composite structures: A new approach

    Science.gov (United States)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive fracture of polymer matrix composite structures. The damage stages are quantified based on physics via composite mechanics while the degradation of the structural behavior is quantified via the finite element method. The approach account for all types of composite behavior, structures, load conditions, and fracture processes starting from damage initiation, to unstable propagation and to global structural collapse. Results of structural fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach. Parameters and guidelines are identified which can be used as criteria for structural fracture, inspection intervals, and retirement for cause. Generalization to structures made of monolithic metallic materials are outlined and lessons learned in undertaking the development of new approaches, in general, are summarized.

  2. Creep Test of Polymer-matrix 3-D Braided Composites

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The long-term creep behavior of polymer-matrix 3-D braided composites was studied by using the tensile creep test method, and the effect of braiding structure, braiding angle and fiber volume fraction were discussed. The creep curve appears as expected, and can be defimed two phases,namely, the primary phase and the secondary phase. For each sample, strain increases with time rapidly, and then the strain rate decreases and appears to approach a constant rate of change (steady-state creep). The experiment results show that the creep resistant properties are improved while the braiding angle decreases or the fiber volume fraction increases, and that the five-directional braiding structure offers better creep resistant properties than the fourdirectional braiding structure.

  3. Visualization of subsurface nanoparticles in a polymer matrix using resonance tracking atomic force acoustic microscopy and contact resonance spectroscopy

    Science.gov (United States)

    Kimura, Kuniko; Kobayashi, Kei; Yao, Atsushi; Yamada, Hirofumi

    2016-10-01

    A visualization technique of subsurface features with a nanometer-scale spatial resolution is strongly demanded. Some research groups have demonstrated the visualization of subsurface features using various techniques based on atomic force microscopy. However, the imaging mechanisms have not yet been fully understood. In this study, we demonstrated the visualization of subsurface Au nanoparticles buried in a polymer matrix 900 nm from the surface using two techniques; i.e., resonance tracking atomic force acoustic microscopy and contact resonance spectroscopy. It was clarified that the subsurface features were visualized by the two techniques as the area with a higher contact resonance frequency and a higher Q-factor than those in the surrounding area, which suggests that the visualization is realized by the variation of the contact stiffness and damping of the polymer matrix due to the existence of the buried nanoparticles.

  4. Nano-Textured Fiber Coatings for Energy Absorbing Polymer Matrix Composite Materials

    Science.gov (United States)

    2004-12-01

    NANO-TEXTURED FIBER COATINGS FOR ENERGY ABSORBING POLYMER MATRIX COMPOSITE MATERIALS R. E. Jensen and S. H. McKnight Army Research Laboratory...Textured Fiber Coatings For Energy Absorbing Polymer Matrix Composite Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  5. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures

    Science.gov (United States)

    Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.

    2016-01-01

    Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.

  6. The association of matrix Gla protein isomers with calcification in capsules surrounding silicone breast implants.

    Science.gov (United States)

    Hunter, Larry W; Lieske, John C; Tran, Nho V; Miller, Virginia M

    2011-11-01

    Implanted silicone medical prostheses induce a dynamic sequence of histologic events in adjacent tissue resulting in the formation of a fibrotic peri-prosthetic capsule. In some cases, capsular calcification occurs, requiring surgical intervention. In this study we investigated capsules from silicone gel-filled breast prostheses to test the hypothesis that this calcification might be regulated by the small vitamin K-dependent protein, matrix Gla protein (MGP), a potent inhibitor of arterial calcification, or by Fetuin-A, a hepatocyte-derived glycoprotein also implicated as a regulator of pathologic calcification. Immunolocalization studies of explanted capsular tissue, using conformation-specific antibodies, identified the mineralization-protective γ-carboxylated MGP isomer (cMGP) within cells of uncalcified capsules, whereas the non-functional undercarboxylated isomer (uMGP) was typically absent. Both were upregulated in calcific capsules and co-localized with mineral plaque and adjacent fibers. Synovial-like metaplasia was present in one uncalcified capsule in which MGP species were differentially localized within the pseudosynovium. Fetuin-A was localized to cells within uncalcified capsules and to mineral deposits within calcific capsules. The osteoinductive cytokine bone morphogenic protein-2 localized to collagen fibers in uncalcified capsules. These findings demonstrate that MGP, in its vitamin K-activated conformer, may represent a pharmacological target to sustain the health of the peri-prosthetic tissue which encapsulates silicone breast implants as well as other implanted silicone medical devices.

  7. Polymer matrix composites research: A survey of federally sponsored programs

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report identifies research conducted by agencies of the federal government other than the Department of Energy (DOE) in the area of advanced polymer matrix composites (PMCs). DOE commissioned the report to avoid duplicating other agencies' efforts in planning its own research program for PMCs. PMC materials consist of high-strength, short or continuous fibers fused together by an organic matrix. Compared to traditional structural metals, PMCs provide greater strength and stiffness, reduced weight and increased heat resistance. The key contributors to PMC research identified by the survey are the Department of Defense (DOD), the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the Department of Transportation (DOT). The survey identified a total of 778 projects. More than half of the total projects identified emphasize materials research with a goal toward developing materials with improved performance. Although an almost equal number of identified materials projects focus on thermosets and thermoplastics receive more attention because of their increased impact resistance and their easy formability and re-formability. Slightly more than one third of projects identified target structures research. Only 15 percent of the projects identified focus on manufacturing techniques, despite the need for efficient, economical methods manufacturing products constructed of PMCs--techniques required for PMCs to gain widespread acceptance. Three issues to be addressed concerning PMCs research are economy of use, improvements in processing, and education and training. Five target technologies have been identified that could benefit greatly from increased use of PMCs: aircraft fuselages, automobile frames, high-speed machinery, electronic packaging, and construction.

  8. Detection of Localized Heat Damage in a Polymer Matrix Composite by Thermo-Elastic Method (Preprint)

    Science.gov (United States)

    2007-02-01

    AFRL-ML-WP-TP-2007-437 DETECTION OF LOCALIZED HEAT DAMAGE IN A POLYMER MATRIX COMPOSITE BY THERMO-ELASTIC METHOD (PREPRINT) John Welter...GRANT NUMBER 4. TITLE AND SUBTITLE DETECTION OF LOCALIZED HEAT DAMAGE IN A POLYMER MATRIX COMPOSITE BY THERMO-ELASTIC METHOD (PREPRINT) 5c...Include Area Code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 1 DETECTION OF LOCALIZED HEAT DAMAGE IN A POLYMER MATRIX COMPOSITE BY

  9. Reliability-analysis on damage of unidirectional composites matrix polymers

    Directory of Open Access Journals (Sweden)

    Khiat M. A.

    2014-04-01

    Full Text Available This work presents an analytical model to predict the strength of the unidirectional carbon epoxy composite using micromechanical techniques. This model supposes that a group of broken fibres surrounded by a number of intact fibres with hexagonal arrangement. The mathematical developments used are presented to justify the distribution form of the stresses around broken fibre and adjacent intact fibres. To follow the evolution of the damage in regions of debonding and local plasticity; we proceeded to a progressive increase in the fiber volume fraction and tensile external load. This, procedure enable us to evaluate the extension of the region locally plasticized, the ineffective region, the stress concentration and the longitudinal displacement of broken and intact fibres, in function of broken fibres number and specimen length. As fiber breaks are intrinsically random, the variability of input data allows us to describe the probabilistic model by using the Monte-Carlo method. The sensitivities of the mechanical response are evaluated regarding the uncertainties in design variables such as Young’s modulus of fibers and matrix, fiber reference strength, shear yield stress, fiber volume fraction and shear parameter defining the shear stress in the inelastic region.

  10. Citric Acid Capped Iron Oxide Nanoparticles as an Effective MALDI Matrix for Polymers

    Science.gov (United States)

    Liang, Qiaoli; Sherwood, Jennifer; Macher, Thomas; Wilson, Joseph M.; Bao, Yuping; Cassady, Carolyn J.

    2016-12-01

    A new matrix-assisted laser desorption ionization (MALDI) mass spectrometry matrix is proposed for molecular mass determination of polymers. This matrix contains an iron oxide nanoparticle (NP) core with citric acid (CA) molecules covalently bound to the surface. With the assistance of additives, the particulate nature of NPs allows the matrix to mix uniformly with polar or nonpolar polymer layers and promotes ionization, which may simplify matrix selection and sample preparation procedures. Several distinctively different polymer classes (polyethyleneglycol (PEG), polywax/polyethylene, perfluoropolyether, and polydimethylsiloxane) are effectively detected by the water or methanol dispersed NPCA matrix with NaCl, NaOH, LiOH, or AgNO3 as additives. Furtheremore, successful quantitative measurements of PEG1000 using polypropylene glycol 1000 as an internal standard are demonstrated.

  11. Microscale elastic properties of interphases in polymer matrix composites: correlating spatial mapping with cure history

    OpenAIRE

    Kieffer, John,; Aldridge, Michael; Sebeck, Katherine

    2014-01-01

    Polymer matrix composites with textile reinforcement are used in a wide range of aerospace and industrial applications. Continuum mechanical predictions of the composite behaviors have been inaccurate and resorted to empirical corrections, because of the lack of polymer materials property information. The length scales involved make experimental measurement of the elastic properties of the matrix within fiber tows and proximity to individual fibers difficult. However, micro-Brillouin and Rama...

  12. E-beam-Cure Fabrication of Polymer Fiber/Matrix Composites for Multifunctional Radiation Shielding

    Science.gov (United States)

    Wilson, John W.; Jensen, Brian J.; Thibeault, Sheila A.; Hou, Tan-Hung; Saether, Erik; Glaessgen, Edward H.; Humes, Donald H.; Chang, Chie K.; Badavi, Francis F.; Kiefer, Rrichard L.; Adams, Dan O.

    2004-01-01

    Aliphatic polymers were identified as optimum radiation polymeric shielding materials for building multifunctional structural elements. Conceptual damage-tolerant configurations of polyolefins have been proposed but many issues on the manufacture remain. In the present paper, we will investigate fabrication technologies with e-beam curing for inclusion of high-strength aliphatic polymer fibers into a highly cross-linked polyolefin matrix. A second stage of development is the fabrication methods for applying face sheets to aliphatic polymer closed-cell foams.

  13. Effect of fillers on parameters of dry and swollen polymer matrix networks

    Directory of Open Access Journals (Sweden)

    Stojčeva-Radovanović Blaga

    2002-01-01

    Full Text Available The effect of nano- and micro- particle size of SiO2 on dry and swollen parameter network of the polymer matrix blends of acrylontrile-butadiene (NBR and chlorosulphonated polyethylene (CSM such as: volume and mass degree of swelling Rv and Rw; volume fraction of NBR-CSM polymer matrix in swollen gel V2 elasticity modulus G; interaction parameter between NBR-CSM polymer matrix and solvent λ and crossiinking density ν, was tested. The influence of nano-and micro- particle size of SiO2 on physical and mechanical properties, as well as effectiveness volume ratio of filiers in NBR-CSM polymer matrix at 300% elongation was tested using Einstein-Quth-Gold equation. The Kraus equation for swelling test of NBR-CSM polymer matrix containing nano- and micro- particle size of SiO2. Test results have shown that a greater interaction of nano-particie size of SiO2 with NBR-CSM polymer matrix, and possible chemical bonding, than the one of micro-silica was a consequence of a greater contact area. This results in better physical and mechanical properties.

  14. Structural and functional polymer-matrix composites for electromagnetic applications

    Science.gov (United States)

    Wu, Junhua

    This dissertation addresses the science and technology of functional and structural polymer-matrix composite materials for electromagnetic applications, which include electromagnetic interference (EMI) shielding and low observability (Stealth). The structural composites are continuous carbon fiber epoxy-matrix composites, which are widely used for airframes. The functional composites are composites with discontinuous fillers and in both bulk and coating forms. Through composite structure variation, attractive electromagnetic properties have been achieved. With no degradation of the tensile strength or modulus, the shielding effectiveness of the structural composites has been improved by enhancing multiple reflections through light activation of the carbon fiber. The multiple reflections loss of the electromagnetic wave increases from 1.1 to 10.2 dB at 1.0 GHz due to the activation. Such a large effect of multiple reflections has not been previously reported in any material. The observability of these composites has been lowered by decreasing the electrical conductivity (and hence decreasing the reflection loss) through carbon fiber coating. The incorporation of mumetal, a magnetic alloy particulate filler (28-40 mum size), in a latex paint has been found to be effective for enhancing the shielding only if the electrical resistivity of the resulting composite coating is below 10 O.cm, as rendered by a conductive particulate filler, such as nickel flake (14-20 mum size). This effectiveness (39 dB at 1.0 GHz) is attributed to the absorption of the electromagnetic wave by the mumetal and the nickel flake, with the high conductivity rendered by the presence of the nickel flake resulting in a relatively high reflection loss of 15.5 dB. Without the nickel flake, the mumetal gives only 3 dB of shielding and 1.5 dB of reflection loss at 1.0 GHz. Nickel powder (0.3-0.5 mum size) has been found to be an effective filler for improving the shielding of polyethersulfone (PES

  15. A Micro Raman Investigation of Viscoelasticity in Short Fibre Reinforced Polymer Matrix Composites

    DEFF Research Database (Denmark)

    Schjødt-Thomsen, Jan

    The purpose of the present Ph.D. project is to investigate the load transfer mechanisms between the fibre and matrix and the stress/strain fields in and around single fibres in short fibre reinforced viscoelastic polymer matrix composites subjected to various loading histories. The materials...

  16. Early damage detection in epoxy matrix using cyclobutane-based polymers

    Science.gov (United States)

    Zou, Jin; Liu, Yingtao; Shan, Bohan; Chattopadhyay, Aditi; Dai, Lenore L.

    2014-09-01

    Identification of early damage in polymer composites is of great importance. We have incorporated cyclobutane-containing cross-linked polymers into an epoxy matrix, studied the effect on thermal and mechanical properties, and, more importantly, demonstrated early damage detection through mechanically induced fluorescence generation. Two cinnamate derivatives, 1,1,1-tris(cinnamoyloxymethyl) ethane (TCE) and poly(vinyl cinnamate) (PVCi), were photoirradiated to produce cyclobutane-containing polymer. The effects on the thermal and mechanical properties with the addition of cyclobutane-containing polymer into epoxy matrix were investigated. The emergence of cracks was detected by fluorescence at a strain level just beyond the yield point of the polymer blends, and the fluorescence intensified with accumulation of strain. Overall, the results show that damage can be detected through fluorescence generation along crack propagation.

  17. Ultrasonic Assessment of Impact-Induced Damage and Microcracking in Polymer Matrix Composites

    Science.gov (United States)

    Gyekanyesi, John (Technical Monitor); Liaw, Benjamin; Villars, Esther; Delmont, Frantz

    2003-01-01

    The main objective of this NASA Faculty Awards for Research (FAR) project is to conduct ultrasonic assessment of impact-induced damage and microcracking in fiber-metal laminated (FML) composites at various temperatures. It is believed that the proposed study of impact damage assessment on FML composites will benefit several NASA's missions and current interests, such as ballistic impact testing of composite fan containment and high strain rate deformation modeling of polymer matrix composites. Impact-induced damage mechanisms in GLARE and ARALL fiber-metal laminates subject to instrumented drop-weight impacts at various temperatures were studied. GLARE and ARALL are hybrid composites made of alternating layers of aluminum and glass- (for GLARE) and aramid- (for ARALL) fiber reinforced epoxy. Damage in pure aluminum panels impacted by foreign objects was mainly characterized by large plastic deformation surrounding a deep penetration dent. On the other hand, plastic deformation in fiber-metal laminates was often not as severe although the penetration dent was still produced. The more stiff fiber-reinforced epoxy layers provided better bending rigidity; thus, enhancing impact damage tolerance. Severe cracking, however, occurred due to the use of these more brittle fiber-reinforced epoxy layers. Fracture patterns, e.g., crack length and delamination size, were greatly affected by the lay-up configuration rather than by the number of layers, which implies that thickness effect was not significant for the panels tested in this study. Immersion ultrasound techniques were then used to assess damages generated by instrumented drop-weight impacts onto these fiber-metal laminate panels as well as 2024-T3 aluminum/cast acrylic sandwich plates adhered by epoxy. Depending on several parameters, such as impact velocity, mass, temperature, laminate configuration, sandwich construction, etc., various types of impact damage were observed, including plastic deformation, radiating

  18. Polymer Matrix Composite Materials for Lightning Strike Mitigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this phase I SBIR program, a team led by Advanced Ceramics Research Inc. (ACR) propose a novel, low-cost manufacturing process for multi-functional polymer...

  19. Mixed matrix membranes with strengthened MOFs/polymer interfacial interaction and improved membrane performance.

    Science.gov (United States)

    Lin, Rijia; Ge, Lei; Hou, Lei; Strounina, Ekaterina; Rudolph, Victor; Zhu, Zhonghua

    2014-04-23

    MOFs-based mixed matrix membranes (MMMs) have attracted extensive attention in recent years due to their potential high separation performance, the low cost, and good mechanical properties. However, it is still very challenging to achieve defect-free interface between micrometer-sized MOFs and a polymer matrix. In this study, [Cd2L(H2O)]2·5H2O (Cd-6F) synthesized using 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) as an organic ligand was introduced into the 6FDA-ODA polyimide matrix to achieve novel MOF MMMs. A specific interfacial interaction between MOF crystals and polymer chains was innovatively targeted and achieved through in situ polymerization procedure. The enhanced adhesion between MOF particles and polymer phase was observed, and the improved interfacial interaction between Cd-6F and the 6FDA-ODA polyimide matrix was confirmed by detailed characterizations including FTIR and NMR. In the meantime, the gas permeance and selectivity of the MMMs are strongly dependent on their morphology. The MMM derived from in situ polymerization presents excellent interfaces between micrometer-sized MOF crystals and the polymer matrix, resulting in increased permeability and selectivity. The strategy shown here can be further utilized to select the MOF/polymer pair, eliminate interfacial voids, and improve membrane separation performance of MOFs-based MMMs.

  20. Visualizing phase transition behavior of dilute stimuli responsive polymer solutions via Mueller matrix polarimetry.

    Science.gov (United States)

    Narayanan, Amal; Chandel, Shubham; Ghosh, Nirmalya; De, Priyadarsi

    2015-09-15

    Probing volume phase transition behavior of superdiluted polymer solutions both micro- and macroscopically still persists as an outstanding challenge. In this regard, we have explored 4 × 4 spectral Mueller matrix measurement and its inverse analysis for excavating the microarchitectural facts about stimuli responsiveness of "smart" polymers. Phase separation behavior of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and pH responsive poly(N,N-(dimethylamino)ethyl methacrylate) (PDMAEMA) and their copolymers were analyzed in terms of Mueller matrix derived polarization parameters, namely, depolarization (Δ), diattenuation (d), and linear retardance (δ). The Δ, d, and δ parameters provided useful information on both macro- and microstructural alterations during the phase separation. Additionally, the two step action ((i) breakage of polymer-water hydrogen bonding and (ii) polymer-polymer aggregation) at the molecular microenvironment during the cloud point generation was successfully probed via these parameters. It is demonstrated that, in comparison to the present techniques available for assessing the hydrophobic-hydrophilic switch over of simple stimuli-responsive polymers, Mueller matrix polarimetry offers an important advantage requiring a few hundred times dilute polymer solution (0.01 mg/mL, 1.1-1.4 μM) at a low-volume format.

  1. Active matrix metalloprotease-9 is associated with the collagen capsule surrounding the Madurella mycetomatis grain in mycetoma.

    Directory of Open Access Journals (Sweden)

    Kirsten Geneugelijk

    2014-03-01

    Full Text Available Madurella mycetomatis is the main causative organism of eumycetoma, a persistent, progressive granulomatous infection. After subcutaneous inoculation M. mycetomatis organizes itself in grains inside a granuloma with excessive collagen accumulation surrounding it. This could be contributing to treatment failure towards currently used antifungal agents. Due to their pivotal role in tissue remodelling, matrix metalloproteinases-2 (MMP-2 and 9 (MMP-9 or tissue inhibitor of metalloproteinases (TIMP might be involved in this process. Local MMP-2 and MMP-9 expression was assessed by immunohistochemistry while absolute serum levels of these enzymes were determined in mycetoma patients and healthy controls by performing ELISAs. The presence of active MMP was determined by gelatin zymography. We found that both MMP-2 and MMP-9 are expressed in the mycetoma lesion, but the absolute MMP-2, -9, and TIMP-1 serum levels did not significantly differ between patients and controls. However, active MMP-9 was found in sera of 36% of M. mycetomatis infected subjects, whereas this active form was absent in sera of controls (P<0.0001. MMP-2, MMP-9, and TIMP-1 polymorphisms in mycetoma patients and healthy controls were determined through PCR-RFLP or sequencing. A higher T allele frequency in TIMP-1 (+372 SNP was observed in male M. mycetomatis mycetoma patients compared to controls. The presence of active MMP-9 in mycetoma patients suggest that MMP-9 is activated or synthesized by inflammatory cells upon M. mycetomatis infection. Inhibiting MMP-9 activity with doxycycline could prevent collagen accumulation in mycetoma, which in its turn might make the fungus more accessible to antifungal agents.

  2. Active matrix metalloprotease-9 is associated with the collagen capsule surrounding the Madurella mycetomatis grain in mycetoma.

    Science.gov (United States)

    Geneugelijk, Kirsten; Kloezen, Wendy; Fahal, Ahmed H; van de Sande, Wendy W J

    2014-03-01

    Madurella mycetomatis is the main causative organism of eumycetoma, a persistent, progressive granulomatous infection. After subcutaneous inoculation M. mycetomatis organizes itself in grains inside a granuloma with excessive collagen accumulation surrounding it. This could be contributing to treatment failure towards currently used antifungal agents. Due to their pivotal role in tissue remodelling, matrix metalloproteinases-2 (MMP-2) and 9 (MMP-9) or tissue inhibitor of metalloproteinases (TIMP) might be involved in this process. Local MMP-2 and MMP-9 expression was assessed by immunohistochemistry while absolute serum levels of these enzymes were determined in mycetoma patients and healthy controls by performing ELISAs. The presence of active MMP was determined by gelatin zymography. We found that both MMP-2 and MMP-9 are expressed in the mycetoma lesion, but the absolute MMP-2, -9, and TIMP-1 serum levels did not significantly differ between patients and controls. However, active MMP-9 was found in sera of 36% of M. mycetomatis infected subjects, whereas this active form was absent in sera of controls (P<0.0001). MMP-2, MMP-9, and TIMP-1 polymorphisms in mycetoma patients and healthy controls were determined through PCR-RFLP or sequencing. A higher T allele frequency in TIMP-1 (+372) SNP was observed in male M. mycetomatis mycetoma patients compared to controls. The presence of active MMP-9 in mycetoma patients suggest that MMP-9 is activated or synthesized by inflammatory cells upon M. mycetomatis infection. Inhibiting MMP-9 activity with doxycycline could prevent collagen accumulation in mycetoma, which in its turn might make the fungus more accessible to antifungal agents.

  3. Influence of Different Polymer Types on the Overall Release Mechanism in Hydrophilic Matrix Tablets

    Directory of Open Access Journals (Sweden)

    Bengt Wittgren

    2009-07-01

    Full Text Available The effect of three different types of polymer chain structures on the polymer release from hydrophilic matrix tablets was investigated by comparing a synthetic semi-crystalline linear polymer (PEO, a branched amorphous polysaccharide (dextran and an amorphous substituted cellulose derivative (HPMC. The polymer release rates for tablets containing mixtures of high and low molecular weight grades in different ratios were determined by using a modified USP II method and a SEC-RI chromatography system. The results showed that independent of polymer type: (i plots of the release versus time had similar shapes, (ii the release of long and short polymer chains was equal and no fractionation occurred during the release and (iii the release rate could be related to the average intrinsic viscosity of the polymer mixtures. This confirms the hypothesis that the release rate can be related to a constant viscosity on the surface of the hydrophilic matrix tablet and that it is valid for all the investigated polymers.

  4. LS-DYNA Implementation of Polymer Matrix Composite Model Under High Strain Rate Impact

    Science.gov (United States)

    Zheng, Xia-Hua; Goldberg, Robert K.; Binienda, Wieslaw K.; Roberts, Gary D.

    2003-01-01

    A recently developed constitutive model is implemented into LS-DYNA as a user defined material model (UMAT) to characterize the nonlinear strain rate dependent behavior of polymers. By utilizing this model within a micromechanics technique based on a laminate analogy, an algorithm to analyze the strain rate dependent, nonlinear deformation of a fiber reinforced polymer matrix composite is then developed as a UMAT to simulate the response of these composites under high strain rate impact. The models are designed for shell elements in order to ensure computational efficiency. Experimental and numerical stress-strain curves are compared for two representative polymers and a representative polymer matrix composite, with the analytical model predicting the experimental response reasonably well.

  5. Percolation phenomena in diffusion-controlled polymer matrix systems

    Institute of Scientific and Technical Information of China (English)

    徐铜文; 何炳林

    1997-01-01

    The controlled release of two kinds of drugs,5-fluorouracil (5-FU) and hydrocortisonum (Hydro.) loaded in poly(ethylene-vinylalcohol) (EVAL) was dealt with,of which 5-FU/EVAL and Hydro /EVAL matrix systems are composed.The results were analyzed using the pseudo-steady-diffusion models coupled with the fundamental concepts of percolation theory.The percolation thresholds for the two systems were calculated,which could indicate the contributions of pore diffusion and matrix diffusion.

  6. Inkjet printed polymer light-emitting devices fabricated by thermal embedding of semiconducting polymer nanospheres in an inert matrix

    Science.gov (United States)

    Fisslthaler, Evelin; Sax, Stefan; Scherf, Ullrich; Mauthner, Gernot; Moderegger, Erik; Landfester, Katharina; List, Emil J. W.

    2008-05-01

    An aqueous dispersion of semiconducting polymer nanospheres was used to fabricate polymer light-emitting devices by inkjet printing in an easy-to-apply process with a minimum feature size of 20μm. To form the devices, the electroluminescent material was printed on a nonemitting polystyrene matrix layer and embedded by thermal annealing. The process allows the printing of light-emitting thin-film devices without extensive optimization of film homogeneity and thickness of the active layer. Optical micrographs of printed device arrays, electroluminescence emission spectra, and I /V characteristics of printed ITO/PEDOT:PSS/PS/SPN/Al devices are presented.

  7. Analytical Modeling of the High Strain Rate Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    The results presented here are part of an ongoing research program to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric matrix materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical 5 plasticity theory definitions of effective stress and effective plastic strain are modified by applying variations of the Drucker-Prager yield criterion. To verify the revised formulation, the shear and tensile deformation of a representative toughened epoxy is analyzed across a wide range of strain rates (from quasi-static to high strain rates) and the results are compared to experimentally obtained values. For the analyzed polymers, both the tensile and shear stress-strain curves computed using the analytical model correlate well with values obtained through experimental tests. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. In the micromechanics, the unit cell is divided up into a number of independently analyzed slices, and laminate theory is then applied to obtain the effective deformation of the unit cell. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite (composed using the representative polymer analyzed for the correlation of the polymer constitutive equations) for several fiber orientation angles across a variety of strain rates. The computed values compare favorably to experimentally obtained results.

  8. Effect of polymers on in-vitro performance of eplerenone sustained release matrix tablets

    Directory of Open Access Journals (Sweden)

    Sunil Reddy

    2012-01-01

    Full Text Available Objectives: The intention of the present study was to design and assess oral sustained drug delivery systems for Eplerenone, using Cellulose and natural polymers as release modifiers in the form of matrix tablets. Material and methods: Matrix tablets containing cellulose polymers like HPMC K4M, HPMC K15M, NaCMC and natural polymers like Guar Gum, Xanthan Gum, and Karaya Gum were prepared by wet granulation technique using PVP K60 as a tablet binder. Results: The optimized formulation (F1 contains 1: 0.70 ratio (D: HPMC K4M and (F4 contains 1:1 ratio (D: Guar gum respectively. The in-vitro release kinetic studies of prepared matrix tablets with both the polymers were studied. The kinetic treatment illustrate that the optimized formulation (F1 and F4 followed zero order kinetics with release exponent (n 0.87. Drug content in the tablets and amount of drug released were estimated by reported HPLC method. The FT-IR and DSC studies did not show any interaction of drug with the excipients used in the formulation. Conclusion: The results clearly indicated that Eplerenone could be successfully prepared using an appropriate ratio of cellulose polymers like HPMC K4M, and natural gums like Guar gum in the form of matrix tablets

  9. A review on the cords & plies reinforcement of elastomeric polymer matrix

    Science.gov (United States)

    Mahmood, S. S.; Husin, H.; Mat-Shayuti, M. S.; Hassan, Z.

    2016-06-01

    Steel, polyester, nylon and rayon are the main materials of cords & plies that have been reinforced in the natural rubber to produce quality tyres but there is few research reported on cord and plies reinforcement in silicone rubber. Taking the innovation of tyres as inspiration, this review's first objective is to compile the comprehensive studies about the cords & plies reinforcement in elastomeric polymer matrix. The second objective is to gather information about silicone rubber that has a high potential as a matrix phase for cords and plies reinforcement. All the tests and findings are gathered and compiled in sections namely processing preparation, curing, physical and mechanical properties, and adhesion between cords-polymer.

  10. Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix

    Science.gov (United States)

    Vora, Kevin; Kang, SeungYeon; Shukla, Shobha; Mazur, Eric

    2012-02-01

    We present a simple, one-step technique for direct-writing of a structured nanocomposite material with disconnected silver nanostructures in a polymer matrix. A nonlinear optical interaction between femtosecond laser pulses and a composite material creates silver structures that are embedded inside a polymer with submicrometer resolution (300 nm). We create complex patterns of silver nanostructures in three dimensions. The key to the process is the chemical composition of the sample that provides both a support matrix and controlled growth. The technique presented in this letter may offer a cost-effective approach for the fabrication of bulk optical devices with engineered dispersion.

  11. Laser-induced ion emission during polymer deposition from a flash-frozen water ice matrix

    DEFF Research Database (Denmark)

    Rodrigo, K.; Toftmann, Bo; Schou, Jørgen;

    2004-01-01

    Flash-frozen water solutions of 1% weight PEG (polyethylene glycol) at -50 degreesC were used as targets at a laser wavelength of 355 nm for polymer deposition with Matrix-Assisted Pulsed Laser Evaporation (MAPLE). For medium laser fluences the transfer of PEG material to the substrate was accomp......Flash-frozen water solutions of 1% weight PEG (polyethylene glycol) at -50 degreesC were used as targets at a laser wavelength of 355 nm for polymer deposition with Matrix-Assisted Pulsed Laser Evaporation (MAPLE). For medium laser fluences the transfer of PEG material to the substrate...... Elsevier B.V. All rights reserved....

  12. E-Beam Processing of Polymer Matrix Composites for Multifunctional Radiation Shielding

    Science.gov (United States)

    Hou, Tan-Hung; Wilson, John W.; Jensen, Brian J.; Thibeault, Sheila A.; Chang, Chie K.; Kiefer, Richard L.

    2005-01-01

    Aliphatic polymers were identified as optimum radiation shielding polymeric materials for building multifunctional structural elements for in-space habitats. Conceptual damage tolerant configurations of polyolefins have been proposed, but many manufacturing issues relied on methods and materials which have sub-optimal radiation shielding characteristics (for example, epoxy matrix and adhesives). In the present approach, we shall investigate e-beam processing technologies for inclusion of high-strength aliphatic polymer reinforcement structures into a highly cross-linked polyolefin matrix. This paper reports the baseline thermo-mechanical properties of low density polyethylene and highly crystallized polyethylene.

  13. Metallic nanostructures in a polymer matrix and substrate fabrication and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, Siddhartha; Holm, Arliena; Ostroverkhova, Oksana; Atre, Sundar [Oregon State University, Oregon Nanoscience and Microtechnologies Institute, Corvallis, OR (United States)

    2011-06-15

    Metal nanostructures are of considerable interest in the field of plasmonics and metamaterials and could have a wider impact if they are successfully embedded in a stable, inert and flexible polymer matrix. Fabrication of such structures is challenging for a variety of reasons including thermal stability, material compatibility with processing steps and general handling of material. In this work we have demonstrated the fabrication of metal nanostructures and embedded them in a polymer. Furthermore, these structures were fabricated on a flexible polymer membrane and detached from a carrier substrate. Characterization of these structures was performed with SEM, TEM and EDS. (orig.)

  14. Symposium Review: Metal and Polymer Matrix Composites at MS&T 2013

    Science.gov (United States)

    Gupta, Nikhil; Paramsothy, Muralidharan

    2014-06-01

    This article reflects on the presentations made during the Metal and Polymer Matrix Composites symposium at Materials Science and Technology 2013 (MS&T'13) held in Montreal (Quebec, Canada) from October 27 to 31. The symposium had three sessions on metal matrix composites and one session on polymer matrix composites containing a total of 23 presentations. While the abstracts and full-text papers are available through databases, the discussion that took place during the symposium is often not captured in writing and gets immediately lost. We have tried to recap some of the discussion in this article and hope that it will supplement the information present in the proceedings. The strong themes in the symposium were porous composites, aluminum matrix composites, and nanocomposites. The development of processing methods was also of interest to the speakers and attendees.

  15. Entanglements of End Grafted Polymer Brushes in a Polymeric Matrix

    Science.gov (United States)

    Grest, Gary S.; Hoy, Robert S.

    2007-03-01

    The entanglement of a polymer brush immersed in a melt of mobile polymer chains is studied by molecular dynamics simulations. A primitive path analysis (PPA) is carried out to identify the brush/brush, brush/melt and melt/melt entanglements as a function of distance from the substrate. The PPA characterizes the microscopic state of conformations of the polymer chain and is ideally suited to identify chain/chain entanglements. We use a new thin-chain PPA technique to eliminate spurious non-entangled inter chain contacts arising from excluded volume. As the grafting density of the brush increases we find that the entanglements of the brush with the melt decrease as the system crosses over from the wet to dry brush regime. Results are compared to brush/brush entanglements in an implicit solvent of varying solvent quality. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  16. Thermal diffusivity and mechanical properties of polymer matrix composites

    Science.gov (United States)

    Weidenfeller, Bernd; Anhalt, Mathias; Kirchberg, Stefan

    2012-11-01

    Polypropylene-iron-silicon (FeSi) composites with spherical particles and filler content from 0 vol. % to 70 vol. % are prepared by kneading and injection molding. Modulus, crystallinity, and thermal diffusivity of samples are characterized with dynamic mechanical analyzer, differential scanning calorimeter, and laser flash method. Modulus as well as thermal diffusivity of the composites increase with filler fraction while crystallinity is not significantly affected. Measurement values of thermal diffusivity are close to the lower bound of the theoretical Hashin-Shtrikman model. A model interconnectivity shows a poor conductive network of particles. From measurement values of thermal diffusivity, the mean free path length of phonons in the amorphous and crystalline structure of the polymer and in the FeSi particles is estimated to be 0.155 nm, 0.450 nm, and 0.120 nm, respectively. Additionally, the free mean path length of the temperature conduction connected with the electrons in the FeSi particles together with the mean free path in the particle-polymer interface was estimated. The free mean path is approximately 5.5 nm and decreases to 2.5 nm with increasing filler fraction, which is a result of the increasing area of polymer-particle interfaces. A linear dependence of thermal diffusivity with the square root of the modulus independent on the measurement temperature in the range from 300 K to 415 K was found.

  17. Polymer-matrix Composites for High-temperature Applications

    Directory of Open Access Journals (Sweden)

    P.D. Mangalgiri

    2005-04-01

    Full Text Available Over the last decade, applications of fibre-reinforced composites using polymer matrices have seen tremendous growth. In spite of the complexity of their behaviour and the unconventionalnature of fabrication and other aspects, the usage of such composites, even for primary loadbearing structures in military fighters and transport aircraft, and satellites and space vehicles has been beneficially realised. Most of such usage constituted structural applications (such as in airframe where service temperatures are not expected to he beyond 120 'C. Attention is now focussed on expanding the usage of such composites to other areas where temperatures could be higher-in the range 200400 "C. The intended applications are structural and non-structural parts on or around the aero-engines and airframe components for supersonic or hypersonic aircraft. The development of polymer matrices-such as bismaleimides, polyimides, cyanates, and liquid crystalline polymers and others-has brought such applications within the realm of practicability. The associated problems have been in terms of suitable processing technologies and in balancing the requirements of the performance with those of the processing. This paper describes briefly such developments and reviews the potential application scenario.

  18. Time-dependent failure criteria for lifetime prediction of polymer matrix composite structures

    OpenAIRE

    Guedes, RM

    2010-01-01

    The use of fibre-reinforced polymers in civil construction applications originated structures with a high specific stiffness and strength. Although these structures usually present a high mechanical performance, their strength and stiffness may decay significantly over time. This is mainly due to the viscoelastic nature of the matrix, damage accumulation and propagation within the matrix and fibre breaking. One serious consequence, as a result of static fatigue (creep failure), is a premature...

  19. Polymer-Derived In- Situ Metal Matrix Composites Created by Direct Injection of a Liquid Polymer into Molten Magnesium

    Science.gov (United States)

    Sudarshan; Terauds, Kalvis; Anilchandra, A. R.; Raj, Rishi

    2014-02-01

    We show that a liquid organic precursor can be injected directly into molten magnesium to produce nanoscale ceramic dispersions within the melt. The castings made in this way possess good resistance to tensile deformation at 673 K (400 °C), confirming the non-coarsening nature of these dispersions. Direct liquid injection into molten metals is a significant step toward inserting different chemistries of liquid precursors to generate a variety of polymer-derived metal matrix composites.

  20. Metal- and Polymer-Matrix Composites: Functional Lightweight Materials for High-Performance Structures

    Science.gov (United States)

    Gupta, Nikhil; Paramsothy, Muralidharan

    2014-06-01

    The special topic "Metal- and Polymer-Matrix Composites" is intended to capture the state of the art in the research and practice of functional composites. The current set of articles related to metal-matrix composites includes reviews on functionalities such as self-healing, self-lubricating, and self-cleaning capabilities; research results on a variety of aluminum-matrix composites; and investigations on advanced composites manufacturing methods. In addition, the processing and properties of carbon nanotube-reinforced polymer-matrix composites and adhesive bonding of laminated composites are discussed. The literature on functional metal-matrix composites is relatively scarce compared to functional polymer-matrix composites. The demand for lightweight composites in the transportation sector is fueling the rapid development in this field, which is captured in the current set of articles. The possibility of simultaneously tailoring several desired properties is attractive but very challenging, and it requires significant advancements in the science and technology of composite materials. The progress captured in the current set of articles shows promise for developing materials that seem capable of moving this field from laboratory-scale prototypes to actual industrial applications.

  1. Active Matrix Metalloprotease-9 Is Associated with the Collagen Capsule Surrounding the Madurella mycetomatis Grain in Mycetoma

    NARCIS (Netherlands)

    K. Geneugelijk (Kirsten); W. Kloezen (Wendy); A.H. Fahal (Ahmed); W.W.J. van de Sande (Wendy)

    2014-01-01

    textabstractMadurella mycetomatis is the main causative organism of eumycetoma, a persistent, progressive granulomatous infection. After subcutaneous inoculation M. mycetomatis organizes itself in grains inside a granuloma with excessive collagen accumulation surrounding it. This could be contributi

  2. Active Matrix Metalloprotease-9 Is Associated with the Collagen Capsule Surrounding the Madurella mycetomatis Grain in Mycetoma

    NARCIS (Netherlands)

    K. Geneugelijk (Kirsten); W. Kloezen (Wendy); A.H. Fahal (Ahmed); W.W.J. van de Sande (Wendy)

    2014-01-01

    textabstractMadurella mycetomatis is the main causative organism of eumycetoma, a persistent, progressive granulomatous infection. After subcutaneous inoculation M. mycetomatis organizes itself in grains inside a granuloma with excessive collagen accumulation surrounding it. This could be contributi

  3. The effect of hydrophilic and hydrophobic polymers on release profiles of diclofenac sodium from matrix tablets

    Directory of Open Access Journals (Sweden)

    Md Imamul Islam

    2013-01-01

    Conclusion: The present study demonstrated that Diclofenac could be successfully prepared using an appropriate amount of Methocel K15 MCR® and CA in the form of matrix tablets with similar dissolution profile of patent product Voltaren SR® . The type of polymers used was found to induce a profound effect on release rate and mechanism.

  4. Determination of Material Parameters for Microbuckling Analysis of Fiber Reinforced Polymer Matrix Composites

    Directory of Open Access Journals (Sweden)

    Romanowicz M.

    2015-05-01

    Full Text Available This research focuses on studying the effect of the constitutive law adopted for a matrix material on the compressive response of a unidirectional fiber reinforced polymer matrix composite. To investigate this effect, a periodic unit cell model of a unidirectional composite with an initial fiber waviness and inelastic behavior of the matrix was used. The sensitivity of the compressive strength to the hydrostatic pressure, the flow rule and the fiber misalignment angle were presented. The model was verified against an analytical solution and experimental data. Results of this study indicate that a micromechanical model with correctly identified material parameters provides a useful alternative to theoretical models and experimentation.

  5. Determination of Material Parameters for Microbuckling Analysis of Fiber Reinforced Polymer Matrix Composites

    Science.gov (United States)

    Romanowicz, M.

    2015-05-01

    This research focuses on studying the effect of the constitutive law adopted for a matrix material on the compressive response of a unidirectional fiber reinforced polymer matrix composite. To investigate this effect, a periodic unit cell model of a unidirectional composite with an initial fiber waviness and inelastic behavior of the matrix was used. The sensitivity of the compressive strength to the hydrostatic pressure, the flow rule and the fiber misalignment angle were presented. The model was verified against an analytical solution and experimental data. Results of this study indicate that a micromechanical model with correctly identified material parameters provides a useful alternative to theoretical models and experimentation.

  6. Near-Infrared emission from PbS Quantum Dots in polymer matrix

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    PbS quantum dots were prepared in the aqueous medium from readily available precursors. The shape of the particles is approximately spherical, and the average particle size observed from HRTEM image was 7-8 nm. We applied PbS quantum dots and PMMA polymer to fabricate PbS quantum dots-PMMA composites, and investigate the photoluminescence PbS quantum dots in PMMA matrix with different mass ratio. PbS quantum dots in PMMA matrix have broad emission between 900 nm and 1 500 nm and photoluminescence peak at 1 179 nm. Additionally, the photoluminescence intensity increases with increasing the dopant concentration. PbS quantum dots-PMMA polymer composites can be potentially used for polymer optical fiber and electroluminescence (EL) in optical communication.

  7. Evaluation of tensile strength of hybrid fiber (jute/gongura) reinforced hybrid polymer matrix composites

    Science.gov (United States)

    Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath

    2015-07-01

    The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.

  8. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 2; Composite Micromechanical Model

    Science.gov (United States)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this second paper of a two part report, a three-dimensional composite micromechanical model is described which allows for the analysis of the rate dependent, nonlinear deformation response of a polymer matrix composite. Strain rate dependent inelastic constitutive equations utilized to model the deformation response of a polymer are implemented within the micromechanics method. The deformation response of two representative laminated carbon fiber reinforced composite materials with varying fiber orientation has been predicted using the described technique. The predicted results compare favorably to both experimental values and the response predicted by the Generalized Method of Cells, a well-established micromechanics analysis method.

  9. In vivo evaluation of matrix metalloproteinase responsive silk-elastinlike protein polymers for cancer gene therapy.

    Science.gov (United States)

    Price, Robert; Poursaid, Azadeh; Cappello, Joseph; Ghandehari, Hamidreza

    2015-09-10

    Silk-elastinlike protein polymers (SELPs) have been effectively used as controlled release matrices for the delivery of viruses for cancer gene therapy in preclinical models. However, the degradability of these polymers needs to be tuned for improved localized intratumoral gene delivery. Using recombinant techniques, systematic modifications in distinct regions of the polymer backbone, namely, within the elastin blocks, silk blocks, and adjacent to silk and elastin blocks, have been made to impart sensitivity to specific matrix metalloproteinases (MMPs) known to be overexpressed in the tumor environment. In this report we investigated the structure-function relationship of MMP-responsive SELPs for viral mediated gene therapy of head and neck cancer. These polymers showed significant degradation in vitro in the presence of MMPs. Their degradation rate was a function of the location of the MMP-responsive sequence in the polymer backbone when in hydrogel form. Treatment efficacy of the adenoviral vectors released from the MMP responsive SELP analogs in a xenograft mouse model of head and neck squamous cell carcinoma (HNSCC) was shown to be polymer structure dependent. These results demonstrate the tunable nature of MMP-responsive SELPs for localized matrix-mediated gene delivery.

  10. Photovoltaic properties of conjugated polymer/methanofullerene composites embedded in a polystyrene matrix

    Science.gov (United States)

    Brabec, C. J.; Padinger, F.; Sariciftci, N. S.; Hummelen, J. C.

    1999-05-01

    Bulk donor-acceptor heterojunctions between conjugated polymers and fullerene derivatives have been utilized successfully for photovoltaic devices showing monochromatic energy conversion efficiencies above 1%. The photovoltaic response of these devices is based on the ultrafast, photoinduced electron transfer from the conjugated polymer to the fullerene [N. S. Sariciftci and A. J. Heeger, Handbook of Organic Conductive Molecules and Polymers, (Wiley, New York, 1997), pp. 413-455]. In this work we present efficiency data of solar cells based on a soluble derivative of p-phenylene vinylene (PPV), poly [2-methoxy, 5-(3',7'-dimethyl-octyloxy)]-p-phenylene vinylene (MDMO-PPV), and a highly soluble methanofullerene, [6,6]-phenyl C61-butyric acid methyl ester (PCBM), embedded into a conventional polymer, polystyrene (PS). By the blending of the optimized donor-acceptor components into the conventional polymer matrix, the percolation threshold for photovoltaic response of the three component systems is found to be determined by percolation of the methanofullerene in the polymer matrix. We present current/voltage data of PS-MDMO-PPV-PCBM devices with various PS concentrations as well as photoinduced absorption studies in the infrared [(PIA) Fourier transform infrared] and light induced electron spin resonance studies on the electron transfer in these composites. At low light intensities, the monochromatic power conversion efficiency ηe and the photon carrier collection efficiency ηc of the PS free device are calculated with 1.5% and 18%, respectively.

  11. Effects of Adiabatic Heating on the High Strain Rate Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.

    2017-01-01

    Polymer matrix composites (PMCs) are increasingly being used in aerospace structures that are expected to experience complex dynamic loading conditions throughout their lifetime. As such, a detailed understanding of the high strain rate behavior of the constituents, particularly the strain rate, temperature, and pressure dependent polymer matrix, is paramount. In this paper, preliminary efforts in modeling experimentally observed temperature rises due to plastic deformation in PMCs subjected to dynamic loading are presented. To this end, an existing isothermal viscoplastic polymer constitutive formulation is extended to model adiabatic conditions by incorporating temperature dependent elastic properties and modifying the components of the inelastic strain rate tensor to explicitly depend on temperature. It is demonstrated that the modified polymer constitutive model is capable of capturing strain rate and temperature dependent yield as well as thermal softening associated with the conversion of plastic work to heat at high rates of strain. The modified constitutive model is then embedded within a strength of materials based micromechanics framework to investigate the manifestation of matrix thermal softening, due to the conversion of plastic work to heat, on the high strain rate response of a T700Epon 862 (T700E862) unidirectional composite. Adiabatic model predictions for high strain rate composite longitudinal tensile, transverse tensile, and in-plane shear loading are presented. Results show a substantial deviation from isothermal conditions; significant thermal softening is observed for matrix dominated deformation modes (transverse tension and in-plane shear), highlighting the importance of accounting for the conversion of plastic work to heat in the polymer matrix in the high strain rate analysis of PMC structures.

  12. Studies on natural fiber reinforced polymer matrix composites

    Science.gov (United States)

    Patel, R. H.; Kapatel, P. M.; Machchhar, A. D.; Kapatel, Y. A.

    2016-05-01

    Natural fiber reinforced composites show increasing importance in day to days applications because of their low cost, lightweight, easy availability, non-toxicity, biodegradability and environment friendly nature. But these fibers are hydrophilic in nature. Thus they have very low reactivity and poor compatibility with polymers. To overcome these limitations chemical modifications of the fibers have been carried out. Therefore, in the present work jute fibers have chemically modified by treating with sodium hydroxide (NaOH) solutions. These treated jute fibers have been used to fabricate jute fiber reinforced epoxy composites. Mechanical properties like tensile strength, flexural strength and impact strength have been found out. Alkali treated composites show better properties compare to untreated composites.

  13. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    Science.gov (United States)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  14. Probabilistic simulation of long term behavior in polymer matrix composites

    Science.gov (United States)

    Shah, A. R.; Singhal, S. N.; Murthy, P. L. N.; Chamis, C. C.

    1995-04-01

    A methodology to compute cumulative probability distribution functions (CDF) of fatigue life for different ratios, r of applied stress to the laminate strength based on first ply failure criteria has been developed and demonstrated. Degradation effects due to long term environmental exposure and mechanical cyclic loads are considered in the simulation process. A unified time-stress dependent multi-factor interaction equation model developed at NASA Lewis Research Center has been used to account for the degradation/aging of material properties due to cyclic loads. Fast probability integration method is used to perform probabilistic simulation of uncertainties. Sensitivity of fatigue life reliability to uncertainties in the primitive random variables are computed and their significance in the reliability based design for maximum life is discussed. The results show that the graphite/epoxy (0/+45/90) deg laminate with ply thickness 0.125 in. has 500,000 cycles life for applied stress to laminate strength ratio of 0.6 and a reliability of 0.999. Also, the fatigue life reliability has been found to be most sensitive to the ply thickness and matrix tensile strength. Tighter quality controls must therefore be enforced on ply thickness and matrix strength in order to achieve high reliability of the structure.

  15. EFFECT OF RICE HUSKS AS FILLER IN POLYMER MATRIX COMPOSITES

    Directory of Open Access Journals (Sweden)

    K. Hardinnawirda

    2012-06-01

    Full Text Available In this study, rice husk-filled polyester composites were produced with rice husks (RH as the filler and unsaturated polyester resin (UPR as the matrix. Several percentages of filler loadings were used (10, 15, 20 and 25 wt % in order to gain insights into the effect of filler content on the mechanical properties and water intake of the composites. The tensile strength of the RH-filled UPR composites was found to decrease as the filler loading increased; however, as it reached 25 wt %, the strength showed a moderate increase. The Young’s modulus showed a remarkable increase for 15 wt % of RH but decreased as the RH percentage increased further to 25 wt %. A water absorption test was conducted and the results showed that the composites absorb more water as the percentage weight of RH increased, which is attributed to the ability of the RH filler to absorb water.

  16. Standard test method for translaminar fracture toughness of laminated and pultruded polymer matrix composite materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method covers the determination of translaminar fracture toughness, KTL, for laminated and pultruded polymer matrix composite materials of various ply orientations using test results from monotonically loaded notched specimens. 1.2 This test method is applicable to room temperature laboratory air environments. 1.3 Composite materials that can be tested by this test method are not limited by thickness or by type of polymer matrix or fiber, provided that the specimen sizes and the test results meet the requirements of this test method. This test method was developed primarily from test results of various carbon fiber – epoxy matrix laminates and from additional results of glass fiber – epoxy matrix, glass fiber-polyester matrix pultrusions and carbon fiber – bismaleimide matrix laminates (1-4, 6, 7). 1.4 A range of eccentrically loaded, single-edge-notch tension, ESE(T), specimen sizes with proportional planar dimensions is provided, but planar size may be variable and adjusted, with asso...

  17. Development of novel graphene and carbon nanotubes based multifunctional polymer matrix composites

    Science.gov (United States)

    Leung, S. N.; Khan, M. O.; Naguib, H. E.

    2014-05-01

    This paper investigates strategies to alter the nano-and-microstructures of carbon-based filler-reinforced polymer matrix composites (PMCs). The matrix materials being studied in this work include polyphenylene sulfide (PPS) and liquid crystal polymer (LCP). A set of experiments were performed to investigate various strategies (i) to fabricate a morphological structure within the polymer matrix; (ii) to develop a thermally and electrically conductive network of nano-scaled fillers; and (iii) to produce a thermally conductive but electrically insulative network of hybrid fillers of nano-and-micro scales. The PMCs' structure-to-property relationships, including electrical and thermal properties, were revealed. In particular, the composites' effective thermal conductivities could be increased by as much as 10-folded over the neat polymers. By structuring the embedded electrically conductive pathways in the PMCs, their electrical conductivities could be tailored to levels that ranged from those of electrical insulators to those of semi-conductors. These multifunctional carbon-based filler-reinforced PMCs are envisioned to be potential solutions of various engineering problems. For example, light-weight thermally conductive PMCs with tailored electrical conductivities can serve as a new family of materials for electronic packaging or heat management applications.

  18. Study on dosimetry characteristics of polymer-CNT nanocomposites: Effect of polymer matrix

    Science.gov (United States)

    Malekie, Shahryar; Ziaie, Farhood; Esmaeli, Abdolreza

    2016-04-01

    In this research work, the current density of polymer-carbon nanotube nanocomposite in different weight percentages of nanotubes, over the radiation absorbed dose under a fixed DC voltage for different polymer matrices such as high density polyethylene, polycarbonate, polyethylene terephthalate, polymethyl methacrylate, and polystyrene was investigated via finite element method. The predicted electrical percolation threshold values in different composites were validated by experimental results published by other scientists. The absorbed dose value was considered as multiplying of heat capacity and temperature rise of the composite, regarding the calorimetric approach. Results show that the polymer type having different characteristics of relative permittivity and heat capacity could affect the sensitivity and working dose range of the composite as a dosimeter.

  19. Evaluation of two matrix materials intended for fiber-reinforced polymers.

    Science.gov (United States)

    Segerström, Susanna; Meriç, Gökçe; Knarvang, Torbjørn; Ruyter, I Eystein

    2005-10-01

    Two matrix resins for fiber composites that remain in a fluid state during storage and handling before polymerization were evaluated. The resin mixtures, based on methyl methacrylate (MMA), were produced with two different cross-linking agent systems: 1,4-butanediol dimethacrylate and ethylene glycol dimethacrylate or diethylene glycol dimethacrylate. Water sorption, water solubility, water uptake and residual MMA monomer were determined. Thermomechanical analysis was used to determine linear dimensional changes as a function of temperature. Flexural strength and modulus as well as fracture work and the maximum stress intensity factor were determined. The results revealed similar values for both matrix polymers regarding water sorption, water solubility, water uptake, residual MMA monomer (0.5 wt% (+/- 0.03)) and coefficient of linear thermal expansion. Flexural strength for polymer B was 68.7 MPa (+/- 9.8) compared to 56.0 MPa (+/- 13.3) for polymer A when tested dry and 64 MPa (+/- 6.1) compared to (54 MPa (+/- 3.3) when water-saturated. Fracture toughness tests showed higher maximum stress intensity factor values for polymer B (0.75 +/- 0.17) MPa x m1/2 than for polymer A (0.55 +/- 0.12) MPa x m1/2. The resin binders showed an appropriate consistency while remaining in a fluid state during storage and manipulation.

  20. Nonlinearity and Strain-Rate Dependence in the Deformation Response of Polymer Matrix Composites Modeled

    Science.gov (United States)

    Goldberg, Robert K.

    2000-01-01

    There has been no accurate procedure for modeling the high-speed impact of composite materials, but such an analytical capability will be required in designing reliable lightweight engine-containment systems. The majority of the models in use assume a linear elastic material response that does not vary with strain rate. However, for containment systems, polymer matrix composites incorporating ductile polymers are likely to be used. For such a material, the deformation response is likely to be nonlinear and to vary with strain rate. An analytical model has been developed at the NASA Glenn Research Center at Lewis Field that incorporates both of these features. A set of constitutive equations that was originally developed to analyze the viscoplastic deformation of metals (Ramaswamy-Stouffer equations) was modified to simulate the nonlinear, rate-dependent deformation of polymers. Specifically, the effects of hydrostatic stresses on the inelastic response, which can be significant in polymers, were accounted for by a modification of the definition of the effective stress. The constitutive equations were then incorporated into a composite micromechanics model based on the mechanics of materials theory. This theory predicts the deformation response of a composite material from the properties and behavior of the individual constituents. In this manner, the nonlinear, rate-dependent deformation response of a polymer matrix composite can be predicted.

  1. Nanoparticle and gelation stabilized functional composites of an ionic salt in a hydrophobic polymer matrix.

    Science.gov (United States)

    Kanyas, Selin; Aydın, Derya; Kizilel, Riza; Demirel, A Levent; Kizilel, Seda

    2014-01-01

    Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS) polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA) measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite.

  2. Nanoparticle and gelation stabilized functional composites of an ionic salt in a hydrophobic polymer matrix.

    Directory of Open Access Journals (Sweden)

    Selin Kanyas

    Full Text Available Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite.

  3. Fluid-fluid demixing curves for colloid-polymer mixtures in a random colloidal matrix

    Science.gov (United States)

    Annunziata, Mario Alberto; Pelissetto, Andrea

    2011-12-01

    We study fluid-fluid phase separation in a colloid-polymer mixture adsorbed in a colloidal porous matrix close to the θ point. For this purpose we consider the Asakura-Oosawa model in the presence of a quenched matrix of colloidal hard spheres. We study the dependence of the demixing curve on the parameters that characterize the quenched matrix, fixing the polymer-to-colloid size ratio to 0.8. We find that, to a large extent, demixing curves depend only on a single parameter f, which represents the volume fraction which is unavailable to the colloids. We perform Monte Carlo simulations for volume fractions f equal to 40% and 70%, finding that the binodal curves in the polymer and colloid packing-fraction plane have a small dependence on disorder. The critical point instead changes significantly: for instance, the colloid packing fraction at criticality increases with increasing f. Finally, we observe for some values of the parameters capillary condensation of the colloids: a bulk colloid-poor phase is in chemical equilibrium with a colloid-rich phase in the matrix.

  4. Designing Functionalized Nanoparticles for Controlled Assembly in Polymer Matrix: Self consistent PRISM Theory and Monte Carlo simulation Study

    Science.gov (United States)

    Jayaraman, Arthi; Nair, Nitish

    2011-03-01

    Significant interest has grown around the ability to create hybrid materials with controlled spatial arrangement of nanoparticles mediated by a polymer matrix. By functionalizing or grafting polymers on to nanoparticle surfaces and systematically tuning the composition, chemistry, molecular weight and grafting density of the grafted polymers one can tailor the inter-particle interactions and control the assembly/dispersion of the particles in the polymer matrix. In our recent work using self-consistent Polymer Reference Interaction Site Model (PRISM) theory- Monte Carlo simulations we have shown that tailoring the monomer sequences in the grafted copolymers provides a novel route to tuning the effective inter-particle interactions between the functionalized nanoparticles in a polymer matrix. In this talk I will present how monomer sequence and molecular weights (with and without polydispersity) of the grafted polymers, compatibility of the graft and matrix polymers, and nanoparticle size affect the chain conformations of the grafted polymers and the potential of mean force between the grafted nanoparticles in the matrix.

  5. Chemically Modified Chitosan Beads as Molecularly Imprinted Polymer Matrix for Adsorptive Separation of Proteins

    Institute of Scientific and Technical Information of China (English)

    Tian Ying GUO; Yong Qing XIA; Guang Jie HAO; Bang Hua ZHANG

    2004-01-01

    In a phosphate buffer, a hemoglobin (Hb)-imprinted polymer complex was prepared using maleic anhydride (MAH) modified chitosan beads as matrix, acrylamide (AM) as functional monomer, N,N-methylenebisacrylamide (MBA) as cross-linker and potassiumpersulfate (KPS)/sodium hydrogen sulfite (NaHSO3) as initiators. Langmuir analysis showed that an equal class of adsorption was formed in the molecular imprinting polymer (MIP), and the MIP has high adsorption capacity and selectivity for the imprinted molecule. The MIP can be reused and the recovery was approximately 100% at low concentration.

  6. Development of the conductive polymer matrix composite with low concentration of the conductive filler

    Energy Technology Data Exchange (ETDEWEB)

    Hao Xiangyang [School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: haoxy@tsinghua.edu.cn; Gai Guosheng; Yang Yufen [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhang Yihe [School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083 (China); Nan Cewen [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2008-05-15

    Composite particles with ultra-high molecular polyethylene (UHMWPE) core and carbon black (CB) or carbon nanotube (CNT) shell were produced by particle composite system, then molded into conductive polymer composites. Morphology of these composite particles was investigated by scanning electron microscopy (SEM). Matrix particles are coated with CB or CNTs very well. And CNTs are not being cut short. The results of electrical behavior study show that these polymer composites have low percolation threshold. Conductive networks of CB and CNT were seen by optical microscopy. Related mechanism is discussed.

  7. One-step preparation of antimicrobial silver nanoparticles in polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz; Kalachyova, Y. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic); Solovyev, A. [Institute of Chemical Process Fundamentals of the ASCR (Czech Republic); Vytykacova, S. [Institute of Chemical Technology, Department of Glass and Ceramics (Czech Republic); Svanda, J.; Siegel, J. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic); Ulbrich, P. [Institute of Chemical Technology, Department of Biochemistry and Microbiology (Czech Republic); Svorcik, V. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic)

    2015-03-15

    Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV–Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications.

  8. Formulation And Characterization Of 5- Flourouracil Matrix Tablets Using Natural Polymers For Colon Specific Drug Delivery

    Directory of Open Access Journals (Sweden)

    Yaswanth Allamneni

    2012-03-01

    Full Text Available Purpose: The objective of the present investigation is to develop colon targeted drug delivery system by using combination of natural polymers as a carriers for 5-Flourouracil (5-FU. Site‐specific delivery of 5‐FU to the colon overcomes the side effects associated with the parenteral delivery of the drug, which include gastrointestinal toxicity, hematological and neural disorders and cardiac manifestations. Methods: Matrix tablets containing various proportions of Pectin and Xanthan gum were prepared by direct compression technique. Multilayer tablets were formulated using pectin as release controlling layers, on either side of 5- Flourouracil matrix tablets. The matrix tablets were evaluated by different In Process Quality Control tests, content uniformity and in vitro drug release study. Comparison of pectin multilayer tablets collected at the end of test performed in the presence or absence of pectinolytic enzymes made it possible to visibly appreciate theeffect of enzymatic activity on the the aspect of the residual matrix. Results and Conclusion: The FTIR spectra’s study revealed that there were no interaction between polymers and drug. The tablets passed all the pharmacopoeial tests. The matrix tablets containing various proportions of Pectin and xanthan gum failed to control drug release in the physiological environment of the stomach and small intestine. On the other hand, multilayer formulations were able to protect the tablet cores from premature drug release. The multilayer tabletsin the presence of pectinolytic enzymes, undergoes a faster erosion process which resulted in marked increase inthe drug release rate.

  9. Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various fibers

    Science.gov (United States)

    Bowles, Kenneth J.

    1990-01-01

    An experimental study was conducted to measure the thermo-oxidative stability of PMR-15 polymer matrix composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers that were studied included graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber-sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.

  10. Multiscale characterization of chemical–mechanical interactions between polymer fibers and cementitious matrix

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Cruz, Daniel; Hargis, Craig W.; Bae, Sungchul; Itty, Pierre A.; Meral, Cagla; Dominowski, Jolee; Radler, Michael J.; Kilcoyne, David A.; Monteiro, Paulo J. M.

    2014-04-01

    Together with a series of mechanical tests, the interactions and potential bonding between polymeric fibers and cementitious materials were studied using scanning transmission X-ray microscopy (STXM) and microtomography (lCT). Experimental results showed that these techniques have great potential to characterize the polymer fiber-hydrated cement-paste matrix interface, as well as differentiating the chemistry of the two components of a bi-polymer (hybrid) fiber the polypropylene core and the ethylene acrylic acid copolymer sheath. Similarly, chemical interactions between the hybrid fiber and the cement hydration products were observed, indicating the chemical bonding between the sheath and the hardened cement paste matrix. Microtomography allowed visualization of the performance of the samples, and the distribution and orientation of the two types of fiber in mortar. Beam flexure tests confirmed improved tensile strength of mixes containing hybrid fibers, and expansion bar tests showed similar reductions in expansion for the polypropylene and hybrid fiber mortar bars.

  11. In-process assembly of micro metal inserts in a polymer matrix

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard

    2006-01-01

    New functionalities and smaller dimensions of micro products can be achieved by means of a higher degree of integration of both materials and components. Smart micro assembly techniques (such as on-the-machine assembly) together with hybrid structures (as metal inserts in polymer matrix......) are suitable solutions to manufacture new micro products with several integrated functionalities, reduced number of components and assembly phases, as well as the possibility to be replicated in a high number of specimens. Innovative manufacturing systems, as well as new design rules and testing methodologies......, have to be established in order to be able to develop new and more integrated micro products. In this paper a method for testing the bonding between micro thickened metal inserts and the polymer matrix they are moulded in is presented. A specific demonstrator has been manufactured by means of a hot...

  12. Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy

    Science.gov (United States)

    Yao, Atsushi; Kobayashi, Kei; Nosaka, Shunta; Kimura, Kuniko; Yamada, Hirofumi

    2017-01-01

    Several researchers have recently demonstrated visualization of subsurface features with a nanometer-scale resolution using various imaging schemes based on atomic force microscopy. Since all these subsurface imaging techniques require excitation of the oscillation of the cantilever and/or sample surface, it has been difficult to identify a key imaging mechanism. Here we demonstrate visualization of Au nanoparticles buried 300 nm into a polymer matrix by measurement of the thermal noise spectrum of a microcantilever with a tip in contact to the polymer surface. We show that the subsurface Au nanoparticles are detected as the variation in the contact stiffness and damping reflecting the viscoelastic properties of the polymer surface. The variation in the contact stiffness well agrees with the effective stiffness of a simple one-dimensional model, which is consistent with the fact that the maximum depth range of the technique is far beyond the extent of the contact stress field. PMID:28210001

  13. New polymer gel dosimeters consisting of less toxic monomers with radiation-crosslinked gel matrix

    Science.gov (United States)

    Hiroki, A.; Yamashita, S.; Sato, Y.; Nagasawa, N.; Taguchi, M.

    2013-06-01

    New polymer gel dosimeters consisting of less toxic methacrylate-type monomers such as 2-hydroxymethyl methacrylate (HEMA) and polyethylene glycol 400 dimethacrylate (9G) with hydroxypropyl cellulose (HPC) gel were prepared. The HPC gels were obtained by using a radiation-induced crosslinking technique to be applied in a matrix instead of a gelatin, which is conventionally used in earlier dosimeters, for the polymer gel dosimeters. The prepared polymer gel dosimeters showed cloudiness by exposing to 60Co γ-ray, in which the cloudiness increased with the dose up to 10 Gy. At the same dose, the increase in the cloudiness appeared with increasing concentration of 9G. As a result of the absorbance measurement, it was found that the dose response depended on the composition ratio between HEMA and 9G.

  14. Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy

    Science.gov (United States)

    Yao, Atsushi; Kobayashi, Kei; Nosaka, Shunta; Kimura, Kuniko; Yamada, Hirofumi

    2017-02-01

    Several researchers have recently demonstrated visualization of subsurface features with a nanometer-scale resolution using various imaging schemes based on atomic force microscopy. Since all these subsurface imaging techniques require excitation of the oscillation of the cantilever and/or sample surface, it has been difficult to identify a key imaging mechanism. Here we demonstrate visualization of Au nanoparticles buried 300 nm into a polymer matrix by measurement of the thermal noise spectrum of a microcantilever with a tip in contact to the polymer surface. We show that the subsurface Au nanoparticles are detected as the variation in the contact stiffness and damping reflecting the viscoelastic properties of the polymer surface. The variation in the contact stiffness well agrees with the effective stiffness of a simple one-dimensional model, which is consistent with the fact that the maximum depth range of the technique is far beyond the extent of the contact stress field.

  15. Improved properties of magnetic particles by combination of different polymer materials as particle matrix

    Energy Technology Data Exchange (ETDEWEB)

    Gruettner, Cordula E-mail: info@micromod.de; Rudershausen, Sandra; Teller, Joachim

    2001-07-01

    The properties of individual types of magnetic particles were improved by combining different polymer matrix materials. The hybrids of magnetic polysaccharide-polystyrene, silica-polystyrene, silica-polysaccharide, polysaccharide-poly(alkylcyanoacrylate) and polysaccharide-poly(lactic acid) particles are discussed and characterized by electrokinetic measurements and studies of their protein binding capacity. The improved properties of these magnetic particles lead to novel applications in diagnostics, molecular biology and biomedicine.

  16. Nanoparticle and Gelation Stabilized Functional Composites of an Ionic Salt in a Hydrophobic Polymer Matrix

    OpenAIRE

    Selin Kanyas; Derya Aydın; Riza Kizilel; A Levent Demirel; Seda Kizilel

    2014-01-01

    Nanoparticle and Gelation Stabilized Functional Composites of an Ionic Salt in a Hydrophobic Polymer Matrix Selin Kanyas1, Derya Aydın2, Riza Kizilel3, A. Levent Demirel1,4, Seda Kizilel1,2* 1 Material Science and Engineering, Koc University, Sariyer, Istanbul, Turkey, 2 Department of Chemical and Biological Engineering, Koc University, Sariyer, Istanbul, Turkey, 3 Koc University-TUPRAS Energy Center (KUTEM), Koc University, Sariyer, Istanbul, Turkey, 4 Department of Chemistry,...

  17. The reflection of the texture of swollen polymer matrix on the release of incorporated substance

    OpenAIRE

    Zvonar, Alenka; Kristl, Julijana; VREČER, FRANC; BAUMGARTNER, SAŠA; Dolenc, Andrej; Pavli, Matej; Kosel, Franc

    2015-01-01

    Our aim was to investigate the texture of hydrated biopolymer matrices that are now being considered in the design of pharmaceutical controlled-release dosage forms, in order to determine their influence on the release of an active compound. Prolonged release of pentoxifylline, a highly soluble drug, is needed for once-daily administration to achieve its therapeutic effect. Forthis purpose, pentoxifylline was incorporated in a polymer matrix made of acombination of xanthan and locust bean gum...

  18. Mixed Pyridine-phenol Boron Complex Encapsulated in Polymer/Silica Hybrid Sol-gel Matrix

    Institute of Scientific and Technical Information of China (English)

    DONG Wei; TANG Jun; WANG Yue

    2008-01-01

    A novel pyridine-phenol boron complex[(dppy)BF]was encapsulated into polymer/silica composite matrix by sol-gel process.UV-Vis absorption spectra show that this process can control the aggregation structure of complex(dppy)BF.The results of photoluminescence of(dppy)BF in sol-gel composite film indicate that both fluorescence intensity and photostability are markedly increased using this method compared with other methods,which increases the practical significance of such composite film.

  19. Distinct difference in ionic transport behavior in polymer electrolytes depending on the matrix polymers and incorporated salts.

    Science.gov (United States)

    Seki, Shiro; Susan, Md Abu Bin Hasan; Kaneko, Taketo; Tokuda, Hiroyuki; Noda, Akihiro; Watanabe, Masayoshi

    2005-03-10

    Two different electrolyte salts, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and a room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMITFSI), were incorporated into network polymers to obtain ion-conductive polymer electrolytes. Network polymers of poly(ethylene oxide-co-propylene oxide) (P(EO/PO)) and poly(methyl methacrylate) (PMMA) were chosen as matrixes for LiTFSI and EMITFSI, respectively. Both of the polymer electrolytes were single-phase materials and were completely amorphous. Ionic conductivity of the polymer electrolytes was measured over a wide temperature range, with the lowest temperatures close to or below the glass transition temperatures (Tg). The Arrhenius plots of the conductivity for both of the systems exhibited positively curved profiles and could be well fit to the Vogel-Tamman-Fulcher (VTF) equation. The conductivity of the PMMA/EMITFSI electrolytes was higher at most by 3 orders of magnitude than that of the LiTFSI/P(EO/ PO) electrolytes at ambient temperature. When the ideal glass transition temperature, T0 (one of the VTF fitting parameters), was compared with the Tg, a difference in the ionic conduction was apparent in these systems. In the P(EO/PO)/LiTFSI electrolytes, the T0 and Tg increased in parallel with salt concentration and the T0 was lower than the Tg by ca. 50 degrees C. On the contrary, the difference between the T0 and the Tg increased with increasing content of PMMA in the PMMA/EMITFSI electrolytes, with the observed difference in the concentration range studied reaching up to ca. 100 degrees C. The conductivity at the Tg, sigma(Tg), for the LiTFSI/P(EO/PO) electrolytes was on the order of 10(-14-)10(-13) S cm(-1) and increased with increasing salt concentration, whereas that for the PMMA/EMITFSI polymer electrolytes reached 10(-7) S cm(-1) when the concentration of PMMA was high. The ion transport mechanism was discussed in terms of the concepts of coupling

  20. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    Science.gov (United States)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  1. Microencapsulation of phosphogypsum into a sulfur polymer matrix: Physico-chemical and radiological characterization

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Felix A., E-mail: flopez@cenim.csic.es [Centro Nacional de Investigaciones Metalurgicas (CENIM), CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Gazquez, Manuel [Departamento de Fisica Aplicada, Universidad de Huelva, Campus de El Carmen, 21071 Huelva (Spain); Alguacil, Francisco Jose [Centro Nacional de Investigaciones Metalurgicas (CENIM), CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Bolivar, Juan Pedro [Departamento de Fisica Aplicada, Universidad de Huelva, Campus de El Carmen, 21071 Huelva (Spain); Garcia-Diaz, Irene [Centro Nacional de Investigaciones Metalurgicas (CENIM), CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Lopez-Coto, Israel [Departamento de Fisica Aplicada, Universidad de Huelva, Campus de El Carmen, 21071 Huelva (Spain)

    2011-08-15

    Highlights: {yields} Microencapsulation of phosphogypsum residues into a sulfur polymer matrix. {yields} Inertization of a waste material. {yields} Radiological characterization of the as built new material (phosphogypsum plus sulfur polymer matrix). - Abstract: The aim of this work is to prepare a new type of phosphogypsum-sulfur polymer cements (PG-SPC) to be utilised in the manufacture of building materials. Physico-chemical and radiological characterization was performed in phosphogypsum and phosphogypsum-sulfur polymer concretes and modeling of exhalation rates has been also carried out. An optimized mixture of the materials was obtained, the solidified material with optimal mixture (sulfur/phosphogypsum = 1:0.9, phosphogypsum dosage = 10-40 wt.%) results in highest strength (54-62 MPa) and low total porosity (2.8-6.8%). The activity concentration index (I) in the PG-SPC is lower than the reference value in the most international regulations and; therefore, these cements can be used without radiological restrictions in the manufacture of building materials. Under normal conditions of ventilation, the contribution to the expected radon indoor concentration in a standard room is below the international recommendations, so the building materials studied in this work can be applied to houses built up under normal ventilation conditions. Additionally, and taking into account that the PG is enriched in several natural radionuclides as {sup 226}Ra, the leaching experiments have demonstrated that environmental impact of the using of SPCs cements with PG is negligible.

  2. Sulfur polymer cement as a low-level waste glass matrix encapsulant

    Energy Technology Data Exchange (ETDEWEB)

    Sliva, P.; Peng, Y.B.; Peeler, D.K. [and others

    1996-01-01

    Sulfur polymer cement (SPC) is being considered as a matrix encapsulant for the Hanford low-level (activity) waste glass. SPC is an elemental sulfur polymer-stabilized thermoplastic that is fluid at 120 {degrees}C to 140{degrees}C. The candidate process would encapsulate the waste glass by mixing the glass cullet with the SPC and casting it into the container. As the primary barrier to groundwater and a key factor in controlling the local environment of the disposal system after it has been compromised, SPC plays a key role in the waste form`s long-term performance assessment. Work in fiscal year 1995 targeted several technical areas of matrix encapsulation involving SPC. A literature review was performed to evaluate potential matrix-encapsulant materials. The dissolution and corrosion behavior of SPC under static conditions was determined as a function of temperature, pH, and sample surface area/solution volume. Preliminary dynamic flow-through testing was performed. SPC formulation and properties were investigated, including controlled crystallization, phase formation, modifying polymer effects on crystallization, and SPC processibility. The interface between SPC and simulated LLW glass was examined. Interfacial chemistry and stability, the effect of water on the glass/SPC interface, and the effect of molten sulfur on the glass surface chemistry were established. Preliminary scoping experiments, involving SPC`s Tc gettering capabilities were performed. Compressive strengths of SPC and SPC/glass composites, both before and after lifetime radiation dose exposure, were determined.

  3. Impact of the concentration in polymer on the dynamic behavior of Polymer Stabilized Ferroelectric Liquid Crystal using Snap-shot Mueller Matrix Polarimetry.

    Science.gov (United States)

    Babilotte, Philippe; Silva, Vinicius N H; Dubreuil, Matthieu; Rivet, Sylvain; Dupont, Laurent; Le Jeune, Bernard

    2013-05-01

    Experimental results are presented related to the dynamic behaviour of Polymer Stabilized Ferro-electric Liquid Crystal (PSFLC) samples under external applied electric field, using Snap-shot Mueller Matrix Polarimetry (SMMP) and Mueller Matrix (MM) formalism. Different polarimetric coefficients are simultaneously extracted from each channeled spectrum measured with this full-optical SMMP technique. The impact of the concentration of polymer present into the liquid crystal cell on this dynamic behaviour is studied, permitting a direct and quick characterisation of the material. The results obtained for PSFLC are compared with those already measured for pure Surface Stabilized Ferro-electric Liquid Crystal (SSFLC) samples, which correspond to a 0% concentration in polymer.

  4. Analysis of the Influence of the Fiber Type in Polymer Matrix/Fiber Bond Using Natural Organic Polymer Stabilizer

    Directory of Open Access Journals (Sweden)

    Carlos Rivera-Gómez

    2014-03-01

    Full Text Available This research study compares the effect of polypropylene and wool fibers on the mechanical properties of natural polymer based stabilized soils. Biocomposites are becoming increasingly prevalent and this growth is expected to continue within a number of sectors including building materials. The aim of this study was to investigate the influence of different fiber reinforced natural polymer stabilized soils with regards to mechanical properties and fiber adhesion characteristics. The polymer includes alginate, which is used in a wide range of applications but has not been commonly used within engineering and construction applications. In recent years, natural fibers have started to be used as an ecological friendly alternative for soil reinforcement within a variety of construction applications. Test results in this study have compared the effects of adding natural and synthetic fibers to clay soils and discussed the importance of an optimum soil specification. A correlation between the micro structural analysis using scanning electron microscope (SEM, fiber typology, fiber–matrix bonds and the mechanical properties of the stabilized soils is also discussed.

  5. Electrical relaxation dynamics in TiO2 – polymer matrix composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available Polymer matrix-TiO2 composites were prepared in three different filler concentrations. The electrical relaxation dynamics as well as the electrical conductivity of all samples were examined by means of Broadband Dielectric Spectroscopy (BDS over a wide frequency and temperature range. The recorded relaxation response includes contributions from both the polymer matrix and the reinforcing phase. Two relaxation modes (β and γ are observed in the low temperature region, which are attributed to the re-orientation of polar side groups of the matrix and rearrangement of small parts of the polymeric chain respectively. The α-relaxation and the Maxwell-Wagner-Sillars effect (MWS, attributed to the glassrubber transition of the polymeric matrix and to interfacial polarization phenomena respectively, are observed in the high temperature region. These two mechanisms are superimposed, thus a computer simulation procedure was followed in order to distinguish them. MWS effect becomes more pronounced with increasing concentration of the filler following an Arrhenius behaviour. The relaxation frequencies corresponding to α-mode follow the Vogel-Tamann-Fulcher (VTF equation. An additional relaxation mode is recorded at relatively high temperatures and high frequencies. Its occurrence and dynamics are related to the presence and the concentration of the filler. Finally, the Direct Current (DC conductivity follows the VTF equation.

  6. Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications

    Science.gov (United States)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.

    1986-01-01

    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  7. Full eigenvalues of the Markov matrix for scale-free polymer networks.

    Science.gov (United States)

    Zhang, Zhongzhi; Guo, Xiaoye; Lin, Yuan

    2014-08-01

    Much important information about the structural and dynamical properties of complex systems can be extracted from the eigenvalues and eigenvectors of a Markov matrix associated with random walks performed on these systems, and spectral methods have become an indispensable tool in the complex system analysis. In this paper, we study the Markov matrix of a class of scale-free polymer networks. We present an exact analytical expression for all the eigenvalues and determine explicitly their multiplicities. We then use the obtained eigenvalues to derive an explicit formula for the random target access time for random walks on the studied networks. Furthermore, based on the link between the eigenvalues of the Markov matrix and the number of spanning trees, we confirm the validity of the obtained eigenvalues and their corresponding degeneracies.

  8. Effect of Matrix Viscosity on Rheological and Microwave Properties of Polymer Nanocomposites with Multiwall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Kotsilkova R.

    2014-06-01

    Full Text Available Nanocomposites of multiwalled carbon nanotubes (MWCNTs in epoxy resin and polypropylene (PP are studied. The effect of matrix viscosity on the degree of dispersion of nanotubes is determined by rheological methods. Rheology and microwave properties are correlated to estimate the optimal limits of nanofiller content required for improving the performance of nanocomposites. Rheological percolation threshold is determined for both types nanocomposites, ϕp=0.27% for the epoxy/MWCNT and; ϕp=1.5% for the PP/MWCNT, as found critical for achieving a network structure of interacting nanotubes in the matrix polymer. Good electromagnetic shielding efficiency was obtained for nanocomposites at nanotube contents above the rheological percolation. Low viscosity matrix facilitates contacts between MWCNTs, resulting in appearance of electromagnetic shielding at very low percolation threshold.

  9. Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites

    Science.gov (United States)

    Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.

    1996-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  10. Performance of dielectric nanocomposites: matrix-free, hairy nanoparticle assemblies and amorphous polymer-nanoparticle blends.

    Science.gov (United States)

    Grabowski, Christopher A; Koerner, Hilmar; Meth, Jeffrey S; Dang, Alei; Hui, Chin Ming; Matyjaszewski, Krzysztof; Bockstaller, Michael R; Durstock, Michael F; Vaia, Richard A

    2014-12-10

    Demands to increase the stored energy density of electrostatic capacitors have spurred the development of materials with enhanced dielectric breakdown, improved permittivity, and reduced dielectric loss. Polymer nanocomposites (PNCs), consisting of a blend of amorphous polymer and dielectric nanofillers, have been studied intensely to satisfy these goals; however, nanoparticle aggregates, field localization due to dielectric mismatch between particle and matrix, and the poorly understood role of interface compatibilization have challenged progress. To expand the understanding of the inter-relation between these factors and, thus, enable rational optimization of low and high contrast PNC dielectrics, we compare the dielectric performance of matrix-free hairy nanoparticle assemblies (aHNPs) to blended PNCs in the regime of low dielectric contrast to establish how morphology and interface impact energy storage and breakdown across different polymer matrices (polystyrene, PS, and poly(methyl methacrylate), PMMA) and nanoparticle loadings (0-50% (v/v) silica). The findings indicate that the route (aHNP versus blending) to well-dispersed morphology has, at most, a minor impact on breakdown strength trends with nanoparticle volume fraction; the only exception being at intermediate loadings of silica in PMMA (15% (v/v)). Conversely, aHNPs show substantial improvements in reducing dielectric loss and maintaining charge/discharge efficiency. For example, low-frequency dielectric loss (1 Hz-1 kHz) of PS and PMMA aHNP films was essentially unchanged up to a silica content of 50% (v/v), whereas traditional blends showed a monotonically increasing loss with silica loading. Similar benefits are seen via high-field polarization loop measurements where energy storage for ∼15% (v/v) silica loaded PMMA and PS aHNPs were 50% and 200% greater than respective comparable PNC blends. Overall, these findings on low dielectric contrast PNCs clearly point to the performance benefits of

  11. Controlled release of 5-fluorouracil or mitomycin-c from polymer matrix: Preparation by radiation polymerization and in vivo evaluation of the anticancer drug/polymer composites

    Science.gov (United States)

    Li, Ximing; Shen, Weiming; Liu, Chengjie; Nishimoto, Sei-Ichi; Kagiya, Tsutomu

    Polymer tablets containing anticancer drugs such as 5-fluorouracil (5-FU) and mitomycin-C (MMC) have been prepared to evaluate the drug-release characteristics in vitro and the effect on local control of mouse solid tumors in vivo. Radiation-induced polymerization of hydrophilic monomers (2-hydroxyethyl methacrylate and related monomers) at low temperature (-80°C) was performed to immobilize 5-FU or MMC in the polymer matrix. The drug was dispersed as microcrystallines within the polymer matrix. The rate of drug release in vitro in buffer solution (pH7.0, 37°C) increased with increase in hydrophilicity of polymer matrix. Appropriate amount of crosslinks within the polymer matrix, as formed by ethylene glycol dimethacrylate (2G) added in the polymerization system, was effective to control the rate of drug release. The drug release became faster upon the addition of increasing amount of water in the radiation-induced polymerization. The tablet consisting of drug/polymer was buried surgically near solid tumors of striate muscle sarcoma (S180) transplanted to Kunming mice and the therapeutic effect of slow releasing drugs was evaluated in vivo by reference to intraperitoneal (i.p.) injection of the corresponding drugs. The slow releasing drugs led to high chemotherapeutic gain for local control of solid tumors with remarkable reduction of toxic side effect of the drugs.

  12. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    Science.gov (United States)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  13. Release of engineered nanomaterials from polymer nanocomposites: the effect of matrix degradation.

    Science.gov (United States)

    Duncan, Timothy V

    2015-01-14

    Polymer nanocomposites-polymer-based materials that incorporate filler elements possessing at least one dimension in the nanometer range-are increasingly being developed for commercial applications ranging from building infrastructure to food packaging to biomedical devices and implants. Despite a wide range of intended applications, it is also important to understand the potential for exposure to these nanofillers, which could be released during routine use or abuse of these materials so that it can be determined whether they pose a risk to human health or the environment. This article is the second of a pair that review what is known about the release of engineered nanomaterials (ENMs) from polymer nanocomposites. Two roughly separate ENM release paradigms are considered in this series: the release of ENMs via passive diffusion, desorption, and dissolution into external liquid media and the release of ENMs assisted by matrix degradation. The present article is focused primarily on the second paradigm and includes a thorough, critical review of the associated body of peer-reviewed literature on ENM release by matrix degradation mechanisms, including photodegradation, thermal decomposition, mechanical wear, and hydrolysis. These release mechanisms may be especially relevant to nanocomposites that are likely to be subjected to weathering, including construction and infrastructural materials, sporting equipment, and materials that might potentially end up in landfills. This review pays particular attention to studies that shed light on specific release mechanisms and synergistic mechanistic relationships. The review concludes with a short section on knowledge gaps and future research needs.

  14. Drug Release Kinetics from Polymer Matrix through Fractal Approximation of Motion

    Directory of Open Access Journals (Sweden)

    S. Băcăiţă

    2012-01-01

    Full Text Available The present paper analyzes the process of drug release from polymer matrix. This process has been considered as fractal polymer process. Since complexity of physical processes is replaced by fractality, the paper studies the process through fractal approach. In drug dynamics, fractal “diffusion” equation can be obtained through fractal approximation of motion. All experimental release curves have been best demonstrated by Weibull relation (which was, in its turn, also demonstrated. Weibull parameters are related to the fractal dimension of drug release kinetics from a polymer matrix. Such a dimension can characterize and measure the complexity of the system. In the above-mentioned context, some experimental results of our researchers are presented and analyzed by comparing them with Peppas relation, a basic law in the description of drug release kinetics. Consequently, experimental data for Weibull relation are better correlated with certain resulting factors. At the same time, some conclusions regarding the phenomena involved in the process are considered as being based on the approach.

  15. The Use of Natural Polymers in Tissue Engineering: A Focus on Electrospun Extracellular Matrix Analogues

    Directory of Open Access Journals (Sweden)

    Gary L. Bowlin

    2010-11-01

    Full Text Available Natural polymers such as collagens, elastin, and fibrinogen make up much of the body’s native extracellular matrix (ECM. This ECM provides structure and mechanical integrity to tissues, as well as communicating with the cellular components it supports to help facilitate and regulate daily cellular processes and wound healing. An ideal tissue engineering scaffold would not only replicate the structure of this ECM, but would also replicate the many functions that the ECM performs. In the past decade, the process of electrospinning has proven effective in creating non-woven ECM analogue scaffolds of micro to nanoscale diameter fibers from an array of synthetic and natural polymers. The ability of this fabrication technique to utilize the aforementioned natural polymers to create tissue engineering scaffolds has yielded promising results, both in vitro and in vivo, due in part to the enhanced bioactivity afforded by materials normally found within the human body. This review will present the process of electrospinning and describe the use of natural polymers in the creation of bioactive ECM analogues in tissue engineering.

  16. Low-temperature synthesis of silicon carbide inert matrix fuel through a polymer precursor route

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chunghao [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Tulenko, James S. [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Baney, Ronald H., E-mail: rbane@mse.ufl.edu [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2011-02-28

    A low temperature process of mixing different sizes of silicon carbide (SiC) particles with a polymer precursor was utilized to synthesize SiC pellets for potential use as inert matrix fuels (IMF) for light water reactors. The lower temperature process is required to prevent the reactions between SiC and the dispersed PuO{sub 2} fuel material. The effect of the polymer content and the cold pressing pressure on the packing of SiC particles was investigated. The effect of mixing coarse and fine SiC particles on the density and the pore size distribution was also investigated. It was found that the density and pore size distribution can be tailored by controlling the SiC size compositions, polymer content and pressing pressure at room temperature. A possible mechanism has been proposed to explain the forming of the pores with respect to the geometric arrangement between SiC particles and the polymer precursor. SEM images showed that ceria (cerium oxide) which is a PuO{sub 2} surrogate in this study, was well distributed in the pellet.

  17. Low-temperature synthesis of silicon carbide inert matrix fuel through a polymer precursor route

    Science.gov (United States)

    Shih, Chunghao; Tulenko, James S.; Baney, Ronald H.

    2011-02-01

    A low temperature process of mixing different sizes of silicon carbide (SiC) particles with a polymer precursor was utilized to synthesize SiC pellets for potential use as inert matrix fuels (IMF) for light water reactors. The lower temperature process is required to prevent the reactions between SiC and the dispersed PuO 2 fuel material. The effect of the polymer content and the cold pressing pressure on the packing of SiC particles was investigated. The effect of mixing coarse and fine SiC particles on the density and the pore size distribution was also investigated. It was found that the density and pore size distribution can be tailored by controlling the SiC size compositions, polymer content and pressing pressure at room temperature. A possible mechanism has been proposed to explain the forming of the pores with respect to the geometric arrangement between SiC particles and the polymer precursor. SEM images showed that ceria (cerium oxide) which is a PuO 2 surrogate in this study, was well distributed in the pellet.

  18. Self-assembly in a polymer matrix and its impact on phase separation.

    Science.gov (United States)

    Dudowicz, Jacek; Douglas, Jack F; Freed, Karl F

    2009-03-26

    Molecular self-assembly often occurs in the presence of long chain polymers, and we develop a theory to describe the competition between self-assembly and phase separation that generally occurs in these complex fluid mixtures. The theory includes a description of the particularly interesting situation where the associating "monomeric" species form high molecular mass polymeric structures and where the assembly process transforms the phase boundary from a form typical of a polymer solution to one that more resembles a polymer blend. We consider both self-assembly upon cooling and upon heating, but the van der Waals interactions are chosen so that phase separation occurs only upon cooling in the absence of association. Systems that associate upon heating prove to be particularly rich, and closed loop and ordinary (upper solution critical) phase boundaries are found to coexist over a wide range of interaction parameter values. Each critical temperature in the limit of a large polymerization index for the matrix polymers approaches its respective theta temperature. The calculations elucidate basic physical principles governing the phase behavior of these complex mixtures.

  19. An Osteoconductive Antibiotic Bone Eluting Putty with a Custom Polymer Matrix

    Directory of Open Access Journals (Sweden)

    John Curley

    2016-06-01

    Full Text Available With the rising tide of antibiotic resistant bacteria, extending the longevity of the current antibiotic arsenal is becoming a necessity. Developing local, controlled release antibiotic strategies, particularly for difficult to penetrate tissues such as bone, may prove to be a better alternative. Previous efforts to develop an osteoconductive local antibiotic release device for bone were created as solid molded composites; however, intimate contact with host bone was found to be critical to support host bone regrowth; thus, an osteocondconductive antibiotic releasing bone void filling putty was developed. Furthermore, a controlled releasing polymer matrix was refined using pendant-functionalized diols to provide tailorable pharmacokinetics. In vitro pharmacokinetic and bioactivity profiles were compared for a putty formulation with an analogous composition as its molded counterpart as well as four new pendant-functionalized polymers. A best-fit analysis of polymer composition in either small cylindrical disks or larger spheres revealed that the new pendant-functionalized polymers appear to release vancomycin via both diffusion and erosion regardless of the geometry of the putty. In silico simulations, a valuable technique for diffusion mediated controlled release models, will be used to confirm and optimize this property.

  20. Resonant Infrared Matrix Assisted Pulsed Laser Deposition of Polymers: Improving the Morphology of As-Deposited Films

    Science.gov (United States)

    Bubb, Daniel; Papantonakis, Michael; Collins, Brian; Brookes, Elijah; Wood, Joshua; Gurudas, Ullas

    2008-03-01

    Resonant infrared matrix assisted pulsed laser deposition has been used to deposit thin films of PMMA, a widely used industrial polymer. This technique is similar to conventional pulsed laser deposition, except that the polymer to be deposited is dissolved in a solvent and the solution is frozen before ablation in a vacuum chamber. The laser wavelength is absorbed by a vibrational band in the frozen matrix. The polymer lands on the substrate to form a film, while the solvent is pumped away. Our preliminary results show that the surface roughness of the as-deposited films depends strongly on the differential solubility radius, as defined by Hansen solubility parameters of the solvent and the solubility radius of the polymer. Our results will be compared with computational and experimental studies of the same polymer using a KrF (248 nm) laser. The ejection mechanism will be discussed as well as the implications of these results for the deposition of smooth high quality films.

  1. Nanostructural Characteristics and Interfacial Properties of Polymer Fibers in Cement Matrix.

    Science.gov (United States)

    Shalchy, Faezeh; Rahbar, Nima

    2015-08-12

    Concrete is the most used material in the world. It is also one of the most versatile yet complex materials that humans have used for construction. However, an important weakness of concrete (cement-based composites) is its low tensile properties. Therefore, over the past 30 years many studies were focused on improving its tensile properties using a variety of physical and chemical methods. One of the most successful attempts is to use polymer fibers in the structure of concrete to obtain a composite with high tensile strength and ductility. The advantages of polymer fiber as reinforcing material in concrete, both with regard to reducing environmental pollution and the positive effects on a country's economy, are beyond dispute. However, a thorough understanding of the mechanical behavior of fiber-reinforced concrete requires a knowledge of fiber/matrix interfaces at the nanoscale. In this study, a combination of atomistic simulations and experimental techniques has been used to study the nanostructure of fiber/matrix interfaces. A new model for calcium-silicate-hydrate (C-S-H)/fiber interfaces is also proposed on the basis of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses. Finally, the adhesion energy between the C-S-H gel and three different polymeric fibers (poly(vinyl alcohol), nylon-6, and polypropylene) were numerically studied at the atomistic level because adhesion plays a key role in the design of ductile fiber-reinforced composites. The mechanisms of adhesion as a function of the nanostructure of fiber/matrix interfaces are further studied and discussed. It is observed that the functional group in the structure of polymer macromolecule affects the adhesion energy primarily by changing the C/S ratio of the C-S-H at the interface and by absorbing additional positive ions in the C-S-H structure.

  2. Ultrasonic Assessment of Impact-Induced Damage and Microcracking in Polymer Matrix Composites

    Science.gov (United States)

    Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)

    2000-01-01

    The main objective of this NASA FAR project is to conduct ultrasonic assessment of impact-induced damage and microcracking in polymer matrix composites at various temperatures. It is believed that the proposed study of impact damage assessment on polymer matrix composites will benefit several NASA's missions and current interests, such as ballistic impact testing of composite fan containment and high strain rate deformation modeling of polymer matrix composites. Currently, impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.

  3. The effect of space environment exposure on the properties of polymer matrix composite materials (A0180)

    Science.gov (United States)

    Tennyson, R. C.; Hansen, J. S.

    1984-01-01

    The objective of this experiment is to determine the effect of various lengths of exposure to a space environment on the mechanical properties of selected commercial polymer matrix composite materials. Fiber materials will include graphite, boron, S-glass, and PRD-49. The mechanical properties to be investigated are orthotropic elastic constants, strength parameters (satisfying the tensor polynomial relation), coefficients of thermal expansion, impact resistance, crack propagation, and fracture toughness. In addition, the effect of laminate thickness on property changes will also be investigated.

  4. Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix

    Science.gov (United States)

    Nogi, Masaya; Handa, Keishin; Nakagaito, Antonio Norio; Yano, Hiroyuki

    2005-12-01

    Transparent polymers were reinforced by bacterial cellulose (BC) nanofibers, which are 10×50nm ribbon-shaped fibers. They exhibited high luminous transmittance at a fiber content as high as 60 wt %, and low sensitivity to a variety of refractive indices of matrix resins. Due to the nanofiber size effect, high transparency was obtained against a wider distribution of refractive index of resins from 1.492 to 1.636 at 20 °C. The optical transparency was also surprisingly insensitive to temperature increases up to 80 °C. As such, BC nanofibers appear to be viable candidates for optically transparent reinforcement.

  5. Influence of Carbon & Glass Fiber Reinforcements on Flexural Strength of Epoxy Matrix Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    T.D. Jagannatha

    2015-04-01

    Full Text Available Hybrid composite materials are more attracted by the engineers because of their properties like stiffness and high specific strength which leads to the potential application in the area of aerospace, marine and automobile sectors. In the present investigation, the flexural strength and flexural modulus of carbon and glass fibers reinforced epoxy hybrid composites were studied. The vacuum bagging technique was adopted for the fabrication of polymer hybrid composite materials. The hardness, flexural strength and flexural modulus of the hybrid composites were determined as per ASTM standards. The hardness, flexural strength and flexural modulus were improved as the fiber reinforcement contents increased in the epoxy matrix material.

  6. MS&T'13 Symposium Preview: Metal and Polymer Matrix Composites

    Science.gov (United States)

    Gupta, Nikhil; Paramsothy, Muralidharan

    2013-08-01

    The Metal and Polymer Matrix Composites symposium at Materials Science & Technology 2013 (MS&T'13) conference is planned to provide a platform to researchers working on various aspects of composite materials and capture the state of the art in this area. The dialogue among leading researchers is expected to provide insight into the future of this field and identify the future directions in terms of research, development, and applications of composite materials. In the 2 day program, the symposium includes 34 presentations, including 10 invited presentations. The contributions have come from 16 different countries including USA, Mexico, Switzerland, India, Egypt, and Singapore.

  7. Method and apparatus for evaluating structural weakness in polymer matrix composites

    Science.gov (United States)

    Wachter, E.A.; Fisher, W.G.

    1996-01-09

    A method and apparatus for evaluating structural weaknesses in polymer matrix composites is described. An object to be studied is illuminated with laser radiation and fluorescence emanating therefrom is collected and filtered. The fluorescence is then imaged and the image is studied to determine fluorescence intensity over the surface of the object being studied and the wavelength of maximum fluorescent intensity. Such images provide a map of the structural integrity of the part being studied and weaknesses, particularly weaknesses created by exposure of the object to heat, are readily visible in the image. 6 figs.

  8. Photoluminescence properties of cadmium-selenide quantum dots embedded in a liquid-crystal polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tselikov, G. I., E-mail: gleb@vega.phys.msu.ru; Timoshenko, V. Yu. [Moscow State University, Faculty of Physics (Russian Federation); Plenge, J.; Ruehl, E. [Free University of Berlin, Institute of Chemistry and Biochemistry (Germany); Shatalova, A. M.; Shandryuk, G. A.; Merekalov, A. S.; Tal' roze, R. V. [Russian Academy of Sciences, Topchiev Institute of Petrochemical Synthesis (Russian Federation)

    2013-05-15

    The photoluminescence properties of cadmium-selenide (CdSe) quantum dots with an average size of {approx}3 nm, embedded in a liquid-crystal polymer matrix are studied. It was found that an increase in the quantum-dot concentration results in modification of the intrinsic (exciton) photoluminescence spectrum in the range 500-600 nm and a nonmonotonic change in its intensity. Time-resolved measurements show the biexponential decay of the photoluminescence intensity with various ratios of fast and slow components depending on the quantum-dot concentration. In this case, the characteristic lifetimes of exciton photoluminescence are 5-10 and 35-50 ns for the fast and slow components, respectively, which is much shorter than the times for colloidal CdSe quantum dots of the same size. The observed features of the photoluminescence spectra and kinetics are explained by the effects of light reabsorption, energy transfer from quantum dots to the liquid-crystal polymer matrix, and the effect of the electronic states at the CdSe/(liquid crystal) interface.

  9. An Analysis of Nondestructive Evaluation Techniques for Polymer Matrix Composite Sandwich Materials

    Science.gov (United States)

    Cosgriff, Laura M.; Roberts, Gary D.; Binienda, Wieslaw K.; Zheng, Diahua; Averbeck, Timothy; Roth, Donald J.; Jeanneau, Philippe

    2006-01-01

    Structural sandwich materials composed of triaxially braided polymer matrix composite material face sheets sandwiching a foam core are being utilized for applications including aerospace components and recreational equipment. Since full scale components are being made from these sandwich materials, it is necessary to develop proper inspection practices for their manufacture and in-field use. Specifically, nondestructive evaluation (NDE) techniques need to be investigated for analysis of components made from these materials. Hockey blades made from sandwich materials and a flat sandwich sample were examined with multiple NDE techniques including thermographic, radiographic, and shearographic methods to investigate damage induced in the blades and flat panel components. Hockey blades used during actual play and a flat polymer matrix composite sandwich sample with damage inserted into the foam core were investigated with each technique. NDE images from the samples were presented and discussed. Structural elements within each blade were observed with radiographic imaging. Damaged regions and some structural elements of the hockey blades were identified with thermographic imaging. Structural elements, damaged regions, and other material variations were detected in the hockey blades with shearography. Each technique s advantages and disadvantages were considered in making recommendations for inspection of components made from these types of materials.

  10. Role of the Co-based microwires/polymer matrix interface on giant magneto impedance response

    Energy Technology Data Exchange (ETDEWEB)

    Estévez, Diana; Li, Jiawei; Liu, Gang; Man, Qikui, E-mail: Manqk@nimte.ac.cn; Chang, Chuntao; Wang, Xinmin; Li, Run-Wei

    2015-09-15

    Highlights: • Co-based microwires-epoxy interface was modified with silane and GMI was evaluated. • XPS confirmed the adhesion of silane onto the wires by Si–O–Si and Fe–O–Si bonds. • GMI curves for treated samples exhibited two-peak behavior and higher GMI ratio. • GMI variation was explained by the change of the surface magnetic anisotropy. • GMI could potentially be used as a surface scanning technique. - Abstract: The interface of Co-based microwires-epoxy composites was modified by applying silane treatment on the surface of the wires and their magneto impedance (MI) response was evaluated. The aim of the surface treatment was to modify the residual stresses that coexist at the microwires/polymer matrix interface and hence the magnetic anisotropy. X-ray Photoelectron Spectroscopy confirmed the covalent attachment of silane molecule onto the wires surface by the presence of Si–O–Si and Fe–O–Si. The MI curve changed from single peak for untreated samples to double peak behavior for treated samples with a significant improvement of MI ratio. Additionally, the magnitude of the anisotropy field increased with the frequency, which may imply a strongly non-uniform stress distribution towards the surface. The MI variation was explained by the change of the surface magnetic anisotropy owing to the modification of the microwires/polymer matrix interface.

  11. Fabrication and characterization of novel polymer-matrix nanocomposites and their constituents

    Science.gov (United States)

    Ding, Rui

    Two main issues for the wide application of polymer-matrix nanocomposites need to be addressed: cost-effective processing of high-performance nanomaterials, and fundamental understanding of the nanofiller-polymer interaction related to property changes of nanocomposites. To fabricate inexpensive and robust carbon nanofibers (CNFs) by the electrospinning technique, an organosolv lignin for replacing polyacrylonitrile (PAN) precursor was investigated in this work. Modification of lignin to its butyl ester alters the electrospinnability and the thermal mobility of the lignin/PAN blend precursor fibers, which further affect the thermostabilization and carbonization processes of CNFs. The micromorphology, carbon structure, and mechanical properties of resultant CNFs were evaluated in detail. Lignin butyration reveals a new approach to controlling inter-fiber bonding of CNFs which efficiently increases the tensile strength and modulus of nonwoven mats. A commercial vapor-grown CNF reinforcing of room-temperature-vulcanized (RTV) polysiloxane foam has potential impact on the residual tin catalyst in composites and consequently the aging and the long-term performance of the materials. Elemental spectra and mapping were employed to analyze the distribution and the composition of tin catalyst residues in the CNF/polysiloxane composites. Thermal analysis revealed a significant increase of thermal stability for CNF-filled composites. Further, the glass transition properties of polysiloxane are not evidently influenced by the physical interaction between CNF filler and polysiloxane matrix. Nanocomposites consisting of anthracene, a model polycyclic aromatic hydrocarbon (PAH) compound, and a thermosetting epoxy was matrix was studied to interpret the reinforcing effect on the glass transition temperature ( Tg) by different routes: physical dispersion and/or covalent modification. The molecular dynamics of the relaxation processes were analyzed by broadband dielectric

  12. Do the cations in clay and the polymer matrix affect quantum dot fluorescent properties?

    Science.gov (United States)

    Wei, Wenjun; Liu, Cui; Liu, Jiyan; Liu, Xueqing; Zou, Linling; Cai, Shaojun; Shi, Hong; Cao, Yuan-Cheng

    2016-06-01

    This paper studied the effects of cations and polymer matrix on the fluorescent properties of quantum dots (QDs). The results indicated that temperature has a greater impact on fluorescence intensity than clay cations (mainly K(+) and Na(+) ). Combined fluorescence lifetime and steady-state spectrometer tests showed that QD lifetimes all decreased when the cation concentration was increased, but the quantum yields were steady at various cation concentrations of 0, 0.05, 0.5 and 1 M. Poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA) and diepoxy resin were used to study the effects of polymers on QD lifetime and quantum yield. The results showed that the lifetime for QDs 550 nm in PEO and PVA was 17.33 and 17.12 ns, respectively; for the epoxy resin, the lifetime was 0.74 ns, a sharp decrease from 24.47 ns. The quantum yield for QDs 550 nm changed from 34.22% to 7.45% and 7.81% in PEO and PVA, respectively; for the epoxy resin the quantum yield was 2.25%. QDs 580 nm and 620 nm showed the same results as QDs 550 nm. This study provides useful information on the design, synthesis and application of QDs-polymer luminescent materials. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Castor oil polymer induces bone formation with high matrix metalloproteinase-2 expression.

    Science.gov (United States)

    Saran, Wallace Rocha; Chierice, Gilberto Orivaldo; da Silva, Raquel Assed Bezerra; de Queiroz, Alexandra Mussolino; Paula-Silva, Francisco Wanderley Garcia; da Silva, Léa Assed Bezerra

    2014-02-01

    The aim of this study was to evaluate the modulation of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) expression in newly formed bone tissue at the interface between implants derived from castor oil (Ricinus communis) polymer and the tibia medullary canal. Forty-four rabbits were assigned to either Group 1 (n = 12; control) or Group 2 (n = 30), which had the tibial medullary canals reamed bilaterally and filled with polymer. CT scans showed no space between the material surface and the bone at the implant/bone marrow interface, and the density of the tissues at this interface was similar to the density measured of other regions of the bone. At 90 days postimplantation, the interface with the polymer presented a thick layer of newly formed bone tissue rich in osteocytes. This tissue exhibited ongoing maturation at 120 and 150 days postimplantation. Overall, bone remodeling process was accompanied by positive modulation of MMP-2 and low MMP-9 expression. Differently, in control group, the internal surface close to the medullary canal was lined by osteoblasts, followed by a bone tissue zone with few lacunae filled with osteocytes. Maturation of the tissue of the medullary internal surface occurred in the inner region, with the bone being nonlamellar.

  14. Carbon fiber polymer-matrix structural composites tailored for multifunctionality by filler incorporation

    Science.gov (United States)

    Han, Seungjin

    This dissertation provides multifunctional carbon fiber polymer-matrix structural composites for vibration damping, thermal conduction and thermoelectricity. Specifically, (i) it has strengthened and stiffened carbon fiber polymer-matrix structural composites by the incorporation of halloysite nanotubes, carbon nanotubes and silicon carbide whiskers, (ii) it has improved mechanical energy dissipation using carbon fiber polymer-matrix structural composites with filler incorporation, (iii) it has increased the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation, and (iv) it has enhanced the thermoelectric behavior of carbon fiber polymer-matrix structural composites. Low-cost natural halloysite nanotubes (0.1 microm diameter) were effective for strengthening and stiffening continuous fiber polymer-matrix composites, as shown for crossply carbon fiber (5 microm diameter, ˜59 vol.%) epoxy-matrix composites under flexure, giving 17% increase in strength, 11% increase in modulus and 21% decrease in ductility. They were less effective than expensive multiwalled carbon nanotubes (0.02 microm diameter), which gave 25% increase in strength, 11% increase in modulus and 14% decrease in ductility. However, they were more effective than expensive silicon carbide whiskers (1 microm diameter), which gave 15% increase in strength, 9% increase in modulus and 20% decrease in ductility. Each filler, at ˜2 vol.%, was incorporated in the composite at every interlaminar interface by fiber prepreg surface modification. The flexural strength increase due to halloysite nanotubes incorporation related to the interlaminar shear strength increase. The measured values of the composite modulus agreed roughly with the calculated values based on the Rule of Mixtures. Continuous carbon fiber composites with enhanced vibration damping under flexure are provided by incorporation of fillers between the laminae

  15. Humidity versus photo-stability of metal halide perovskite films in a polymer matrix.

    Science.gov (United States)

    Manshor, Nurul Ain; Wali, Qamar; Wong, Ka Kan; Muzakir, Saifful Kamaluddin; Fakharuddin, Azhar; Schmidt-Mende, Lukas; Jose, Rajan

    2016-08-21

    Despite the high efficiency of over 21% reported for emerging thin film perovskite solar cells, one of the key issues prior to their commercial deployment is to attain their long term stability under ambient and outdoor conditions. The instability in perovskite is widely conceived to be humidity induced due to the water solubility of its initial precursors, which leads to decomposition of the perovskite crystal structure; however, we note that humidity alone is not the major degradation factor and it is rather the photon dose in combination with humidity exposure that triggers the instability. In our experiment, which is designed to decouple the effect of humidity and light on perovskite degradation, we investigate the shelf-lifetime of CH3NH3PbI3 films in the dark and under illumination under high humidity conditions (Rel. H. > 70%). We note minor degradation in perovskite films stored in a humid dark environment whereas upon exposure to light, the films undergo drastic degradation, primarily owing to the reactive TiO2/perovskite interface and also the surface defects of TiO2. To enhance its air-stability, we incorporate CH3NH3PbI3 perovskite in a polymer (poly-vinylpyrrolidone, PVP) matrix which retained its optical and structural characteristics in the dark for ∼2000 h and ∼800 h in room light soaking, significantly higher than a pristine perovskite film, which degraded completely in 600 h in the dark and in less than 100 h when exposed to light. We attribute the superior stability of PVP incorporated perovskite films to the improved structural stability of CH3NH3PbI3 and also to the improved TiO2/perovskite interface upon incorporating a polymer matrix. Charge injection from the polymer embedded perovskite films has also been confirmed by fabricating solar cells using them, thereby providing a promising future research pathway for stable and efficient perovskite solar cells.

  16. Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures

    Science.gov (United States)

    Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh; Mather, Patrick; Rodriguez, Erika

    2013-01-01

    Reinforcing critical areas in carbon polymer matrix composites (PMCs), also known as fiber reinforced composites (FRCs), is advantageous for structural durability. Since carbon nanotubes (CNTs) have extremely high tensile strength, they can be used as a functional additive to enhance the mechanical properties of FRCs. However, CNTs are not readily dispersible in the polymer matrix, which leads to lower than theoretically predicted improvement in mechanical, thermal, and electrical properties of CNT composites. The inability to align CNTs in a polymer matrix is also a known issue. The feasibility of incorporating aligned CNTs into an FRC was demonstrated using a novel, yet commercially viable nanofiber approach, termed NRMs (nanofiber-reinforcing mats). The NRM concept of reinforcement allows for a convenient and safe means of incorporating CNTs into FRC structural components specifically where they are needed during the fabrication process. NRMs, fabricated through a novel and scalable process, were incorporated into FRC test panels using layup and vacuum bagging techniques, where alternating layers of the NRM and carbon prepreg were used to form the reinforced FRC structure. Control FRC test panel coupons were also fabricated in the same manner, but comprised of only carbon prepreg. The FRC coupons were machined to size and tested for flexural, tensile, and compression properties. This effort demonstrated that FRC structures can be fabricated using the NRM concept, with an increased average load at break during flexural testing versus that of the control. The NASA applications for the developed technologies are for lightweight structures for in-space and launch vehicles. In addition, the developed technologies would find use in NASA aerospace applications such as rockets, aircraft, aircraft/spacecraft propulsion systems, and supporting facilities. The reinforcing aspect of the technology will allow for more efficient joining of fiber composite parts, thus offering

  17. Surface functionalization of metal organic frameworks for mixed matrix membranes

    Energy Technology Data Exchange (ETDEWEB)

    Albenze, Erik; Lartey, Michael; Li, Tao; Luebke, David R.; Nulwala, Hunaid B.; Rosi, Nathaniel L.; Venna, Surendar R.

    2017-03-21

    Mixed Matrix Membrane (MMM) are composite membranes for gas separation and comprising a quantity of inorganic filler particles, in particular metal organic framework (MOF), dispersed throughout a polymer matrix comprising one or more polymers. This disclosure is directed to MOF functionalized through addition of a pendant functional group to the MOF, in order to improve interaction with a surrounding polymer matrix in a MMM. The improved interaction aids in avoiding defects in the MMM due to incompatible interfaces between the polymer matrix and the MOF particle, in turn increasing the mechanical and gas separation properties of the MMM. The disclosure is also directed to a MMM incorporating the surface functionalized MOF.

  18. Influence of the polymer matrix on the efficiency of hybrid solar cells based on silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ben Dkhil, S., E-mail: sadok.bendekhil@gmail.com [Laboratoire Physique des Materiaux: Structures et Proprietes Groupe Physique des Composants et Dispositifs Nanometriques, 7021 Jarzouna, Bizerte (Tunisia); Ingenierie des Materiaux Polymeres: IMP, UMR CNRS 5223, Universite Claude Bernard Lyon 1, 15 boulevard Latarjet, 69622 Villeurbanne (France); Bourguiga, R. [Laboratoire Physique des Materiaux: Structures et Proprietes Groupe Physique des Composants et Dispositifs Nanometriques, 7021 Jarzouna, Bizerte (Tunisia); Davenas, J. [Ingenierie des Materiaux Polymeres: IMP, UMR CNRS 5223, Universite Claude Bernard Lyon 1, 15 boulevard Latarjet, 69622 Villeurbanne (France); Cornu, D. [Institut Europeen des Membranes, UMR CNRS 5635, Ecole Nationale superieure de Chimie, Universite de Montpellier, 1919 route de Mende, 34000 Montpellier (France)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Hybrid solar cells based on silicon nanowires have been fabricated. Black-Right-Pointing-Pointer The relation between the morphology of the composite thin films and the charge transfer between the polymer matrices and SiNWs has been examined. Black-Right-Pointing-Pointer We have investigated the effect of the polymer matrix on the photovoltaic characteristics. - Abstract: Poly (N-vinylcarbazole) (PVK):SiNWs and poly (2-methoxy, 5-(2-ethyl-hexyloxy)-p-phenyl vinylene) (MEH-PPV):SiNWs bulk-heterojunctions (BHJ) have been elaborated from blends of SiNWs and the polymer in solution from a common solvent. Optical properties of these nanocomposites have been investigated by UV-vis absorption and photoluminescence (PL) spectral measurements. We have studied the charge transfer between SiNWs and the two polymers using the photoluminescence quenching of PVK and MEH-PPV which is a convenient signature of the reduced radiative recombination of the generated charge pairs upon exciton dissociation. We found that PVK and SiNWs constitutes the better donor-acceptor system. In order to understand the difference between PVK:SiNWs or MEH-PPV:SiNWs behaviours, photoluminescence responses were correlated with the topography (SEM) of the thin films. The photovoltaic effect of ITO/PEDOT:PSS/SiNWs:PVK/Al and ITO/PEDOT:PSS/SiNWs:MEH-PPV/Al structures was studied by current-voltage (I-V) measurements in dark and under illumination and interpreted on the basis of the charge transfer differences resulting from the morphologies.

  19. Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Livi, Francesco; Hagemann, Ole

    2015-01-01

    The results presented demonstrate how the screening of 104 light-absorbing low band gap polymers for suitability in roll coated polymer solar cells can be accomplished through rational synthesis according to a matrix where 8 donor and 13 acceptor units are organized in rows and columns. Synthesis...... of all the polymers corresponding to all combinations of donor and acceptor units is followed by characterization of all the materials with respect to molecular weight, electrochemical energy levels, band gaps, photochemical stability, carrier mobility, and photovoltaic parameters. The photovoltaic...... silver comb back electrode structure. The matrix organization enables fast identification of active layer materials according to a weighted merit factor that includes more than simply the power conversion efficiency and is used as a method to identify the lead candidates. Based on several characteristics...

  20. Effect of Nanoparticle Dispersion on Polymer Matrix and their Fiber Nanocomposites

    Science.gov (United States)

    Uddin, Mohammed F.; Sun, Chin-Teh

    Dispersion of nanoparticles and its effect on mechanical properties were investigated by fabricating nanocomposites via conventional sonication, sol-gel, and modified sonication method. Silica nanoparticles dispersed in epoxy and MEK produced via sol-gel method were procured as Nanopox F 400 and MEK-ST-MS, respectively, to produce silica/epoxy nanocomposite whereas the conventional son-ication method was followed to produce alumina/epoxy and carbon nanofibers (CNF)/epoxy nanocomposites. The conventional sonication method was modified by combining it with sol-gel method to improve the dispersion quality as well as to increase the particle loading. The as-prepared nanocomposites were morphologically and mechanically characterized to investigate the effect of dispersion of nanoparticles on polymer matrix nanocomposites. The nanocomposites fabricated via sol-gel method revealed the most improved and consistent properties among all nanocomposites which showed almost proportional properties improvement with particle loading in contrast to conventional nanocomposites. Subsequently, the modified matrix (silica/epoxy) was used to make fiber reinforced nanocomposites via the VARTM process. The effect of improved matrix properties was reflected in the properties of fiber composites which showed significant improvements in compressive strength, tensile strength and modulus, fracture toughness and impact resistance.

  1. A novel approach for FE-SEM imaging of wood-matrix polymer interface in a biocomposite.

    Science.gov (United States)

    Singh, Adya P; Anderson, Ross; Park, Byung-Dae; Nuryawan, Arif

    2013-01-01

    Understanding the interface between polymer and biomass in composite products is important for developing high performance products, as the quality of adhesion at the interface determines composite properties. For example, with greater stiffness compared to polymer matrix, such as that of high density polyethylene, the wood component enhances stiffness of wood-polymer composites, provided there is good adhesion between composite components. However, in composites made from wood flour (wood particles) and synthetic resins it is often difficult to clearly resolve particle-matrix interfaces in the conventionally employed microscopy method that involves SEM examination of fractured faces of composites. We developed a novel approach, where composites made from high density polyethylene and wood flour were examined and imaged with a FE-SEM (field emission scanning electron microscope) in transverse sections cut through the composites. Improved definition of the interface was achieved using this approach, which enabled a more thorough comparison to be made of the features of the interface between wood particles and the matrix in composites with and without a coupling agent, as it was possible to clearly resolve the interfaces for particles of all sizes, from large particles consisting of many cells down to tiny cell wall fragments, particularly in composites that did not incorporate the coupling agent used to enhance particle adhesion with the matrix polymer. The method developed would be suitable particularly for high definition SEM imaging of a wide range of composites made combining wood and agricultural residues with synthetic polymers.

  2. Ultra-thin Solid-State Li-Ion Electrolyte Membrane Facilitated by a Self-Healing Polymer Matrix.

    Science.gov (United States)

    Whiteley, Justin M; Taynton, Philip; Zhang, Wei; Lee, Se-Hee

    2015-11-18

    Thin solid membranes are formed by a new strategy, whereby an in situ derived self-healing polymer matrix that penetrates the void space of an inorganic solid is created. The concept is applied as a separator in an all-solid-state battery with an FeS2 -based cathode and achieves tremendous performance for over 200 cycles. Processing in dry conditions represents a paradigm shift for incorporating high active-material mass loadings into mixed-matrix membranes.

  3. Decreased expression of the plasminogen activator inhibitor type 1 is involved in degradation of extracellular matrix surrounding cervical cancer stem cells.

    Science.gov (United States)

    Sato, Masakazu; Kawana, Kei; Adachi, Katsuyuki; Fujimoto, Asaha; Yoshida, Mitsuyo; Nakamura, Hiroe; Nishida, Haruka; Inoue, Tomoko; Taguchi, Ayumi; Takahashi, Juri; Kojima, Satoko; Yamashita, Aki; Tomio, Kensuke; Nagamatsu, Takeshi; Wada-Hiraike, Osamu; Oda, Katsutoshi; Osuga, Yutaka; Fujii, Tomoyuki

    2016-02-01

    The plasminogen activator (PA) system consists of plasminogen activator inhibitor type 1 (PAI-1), urokinase-type plasminogen activator and its receptor (uPA and uPAR). PAI-1 inhibits the activation of uPA (which converts plasminogen to plasmin), and is involved in cancer invasion and metastasis, by remodeling the extracellular matrix (ECM) through regulating plasmin. Cancer stem cells (CSCs) are a small subset of cells within tumors, and are thought to be involved in tumor recurrence and metastasis. Considering these facts, we investigated the relationship between PAI-1 and cervical CSCs. We used ALDH1 as a marker of cervical CSCs. First, we demonstrated that culturing ALDH1-high cells and ALDH-low cells on collagen IV-coted plates increased their expression of active PAI-1 (ELISA), and these increases were suggested to be at mRNA expression levels (RT-qPCR). Secondly, we demonstrated PAI-1 was indeed involved in the ECM maintenance. With gelatin zymography assays, we found that ALDH1-high cells and ALDH-low cells expressed pro-matrix metalloproteinase-2 (pro-MMP-2) irrespective of their coatings. With gelatinase/collagenase assay kit, we confirmed that collagenase activity was increased when ALDH1-low cells were exposed to TM5275, a small molecule inhibitor of PAI-1. Putting the data together, we hypothesized that cancer cells adhered to basal membrane secrete abundant PAI-1, on the other hand, cancer cells (especially CSCs rather than non-CSCs) distant from basal membrane secrete less PAI-1, which makes the ECM surrounding CSCs more susceptible to degradation. Our study could be an explanation of conflicting reports, where some researchers found negative impacts of PAI-1 expression on clinical outcomes and others not, by considering the concept of CSCs.

  4. Probing the microenvironment of an oligo-(p-phenylene vinylene) derivative encapsulated in polymer-impregnated sol-gel silica matrix

    Institute of Scientific and Technical Information of China (English)

    TANG Jun; DU Chuang; YU Xiaoqiang; ZHANG Guo; WANG Ce

    2004-01-01

    Polymer-impregnated silica sol-gel composite materials are hosts for organics in advanced optics application. An oligo-phenylene vinylene derivative 4,4'-(1,4-phenylene dithenylene)-bis-(N-methyl pyridinium iodide)(OPVD) was introduced to poly(hydroxyethyl methacrylate)(PHEMA)-impregnated silica composite film by the sol-gel process. By comparing the X-ray diffraction, UV-visible spectra, steady-state and time-resolved fluorescence spectra of OPVD in three solid matrices (PHEMA/silica composite film, pure PHEMA film, and pure silica film), the similar results of PHEMA/silica composite film and pure PHEMA film demonstrate that the OPVD is primarily surrounded by a PHEMA-like environment in the composite matrix. The model of such structure is presented, which is useful for further understanding and optimizing of properties of doped sol-gel materials.

  5. EFFECT OF REINFORCEMENT ALIGNMENT ON THE PROPERTIES OF POLYMER MATRIX COMPOSITE

    Directory of Open Access Journals (Sweden)

    M. R. Aeyzarq Muhammad Hadzreel

    2013-06-01

    Full Text Available EFFECT OF REINFORCEMENT ALIGNMENT ON THE PROPERTIES OF POLYMER MATRIX COMPOSITE M. R. Aeyzarq Muhammad Hadzreel1,a and I. Siti Rabiatull Aisha1,b 1Faculty of Mechanical Engineering, University Malaysia Pahang, 26600 Pekan, Pahang MalaysiaEmail: aaeyzarq89@gmail.com, brabiatull@ump.edu.myABSTRACTNumerous applications have been proposed and demonstrated for aligned-fiber composites. However, none had stated a correct procedure for aligning the fibers to optimize the properties of the polymer matrix composite (PMC, such as its strength and water absorption properties. Therefore, the aim of this study is to determine the best alignment of reinforcement material in order to optimize the properties of PMC. Woven roving fiberglass was used as the fiber and unsaturated polyester resin as its matrix material. A hand lay-up process was used to fabricate the laminated composite. The specimens were divided into four major categories with different alignments and thicknesses of fiber and matrix, which were five-layer bidirectional, five-layer multidirectional, seven-layer bidirectional, and seven-layer multidirectional. Tensile tests showed that bidirectional alignment offered better mechanical properties compared with the multidirectional alignment. The five-layer bidirectional arrangement has a higher tensile strength compared with five-layer multidirectional arrangement. The seven-layer bidirectional arrangement has higher tensile strength compared with the seven-layer multidirectional arrangement. The modulus of elasticity of the bidirectional alignment was higher than that of the multidirectional alignment. Bidirectional alignment was better because the external tensile load was distributed equally on all the fibers and transmitted along the axes of the fibers. Whereas in the case of multidirectional alignment, the fiber axes were non-parallel to the load axis, resulting in off-axis pulling on the fibers and increased stress concentration, which caused

  6. Transfer matrix approach to the statistical mechanics of single polymer molecules

    Science.gov (United States)

    Livadaru, Lucian

    In this work, we demonstrate, implement and critically assess the capabilities and the limitations of the Transfer Matrix (TM) method to the statistical mechanics of single polymer molecules within their classical models. We first show how the TM can be employed with the help of computers, to provide highly accurate results for the configurational statistics of polymers in theta-conditions. We proceed gradually from simple to complex polymer models, analyzing their statistical properties as we vary the model parameters. In the order of their complexity, the polymer models approached in this work are: (i) the freely jointed chain (FJC); (ii) the freely rotating chain (FRC); (iii) the rotational isomeric state (RIS) model with and without energy parameters; (iv) the continuous rotational potential model (for n-alkanes); (v) an interacting chain model (ICM) with virtual bonds for poly(ethylene glycol)(PEG). The Statistical Mechanics of polymer chains is carried out in both the Helmholtz and Gibbs ensembles, depending on the quantities of interest. In the Helmholtz ensemble the polymer's Green function is generally a function of both the spatial coordinates and orientations of chain bonds. In the Gibbs ensemble its arguments are the bond orientations with respect to an applied external force. This renders the latter ensemble more feasible for an accurate study of the mechanical properties of the mentioned models. We adapt the TM method to study statistical and thermodynamical properties of various models, including: chain end distribution functions, characteristic ratios, mean square radius of gyration, Kuhn length, static structure factor, pair correlation function, force-extension curves, Helmholtz and Gibbs free energies. For all cases, the TM calculations yielded accurate results for all these quantities. Wherever possible, we compared our findings to other results, theoretical or experimental in literature. A great deal of effort was focused on precise

  7. Preparation of Carbon Nanotubes by the Catalysis of Polymer Metal Complex on Porous Al203 Matrix

    Institute of Scientific and Technical Information of China (English)

    SHI YanLi; ZHANG XiaoGang; LI HuLin

    2001-01-01

    @@ At present, synthesis of carbon nanotubes (CNTs) is normally conducted on a vapor-to-solid interface at ca. 500-3500℃ via various vapor phase methods, such as are discharge, laser ablation, catalytic pyrolysis and chemical vapor deposition, etc.1-2 Recently, channel materials (such as channels of alumina and of AlPO4-5 zeolite) 3 have been utilized as solid-state templates to grow CNTs inside the channel. Here we described a novel method to prepare the carbon nanotubes based on the decomposition of C2H2 gas on the Co-Ni catalyst anchored by polymer complex on the porous A12O3 matrix. The degree of graphitization of synthesized CNTs and catalysts are of great interest.

  8. Preparation of Carbon Nanotubes by the Catalysis of Polymer Metal Complex on Porous Al203 Matrix

    Institute of Scientific and Technical Information of China (English)

    SHI; YanLi

    2001-01-01

    At present, synthesis of carbon nanotubes (CNTs) is normally conducted on a vapor-to-solid interface at ca. 500-3500℃ via various vapor phase methods, such as are discharge, laser ablation, catalytic pyrolysis and chemical vapor deposition, etc.1-2 Recently, channel materials (such as channels of alumina and of AlPO4-5 zeolite) 3 have been utilized as solid-state templates to grow CNTs inside the channel. Here we described a novel method to prepare the carbon nanotubes based on the decomposition of C2H2 gas on the Co-Ni catalyst anchored by polymer complex on the porous A12O3 matrix. The degree of graphitization of synthesized CNTs and catalysts are of great interest.  ……

  9. An NDE Approach for Characterizing Quality Problems in Polymer Matrix Composites

    Science.gov (United States)

    Roth, Don J.; Baaklini, George Y.; Sutter, James K.; Bodis, James R.; Leonhardt, Todd A.; Crane, Elizabeth A.

    1994-01-01

    Polymer matrix composite (PMC) materials are periodically identified appearing optically uniform but containing a higher than normal level of global nonuniformity as indicated from preliminary ultrasonic scanning. One such panel was thoroughly examined by nondestructive (NDE) and destructive methods to quantitatively characterize the nonuniformity. The NDE analysis of the panel was complicated by the fact that the panel was not uniformly thick. Mapping of ultrasonic velocity across a region of the panel in conjunction with an error analysis was necessary to (1) characterize properly the porosity gradient that was discovered during destructive analyses and (2) account for the thickness variation effects. Based on this study, a plan for future NDE characterization of PMC's is presented to the PMC community.

  10. Non-destructive testing of barely visible impact damage in polymer matrix composites

    Institute of Scientific and Technical Information of China (English)

    ZHANG Z Y; M. O. W. Richardson

    2004-01-01

    Barely visible impact damage (BVID) is developed when polymer matrix composites are subjected to impact loading. The damage has an adverse effect on structural integrity, and potentially leads to catastrophic failure.Thus it is important to employ a variety of advanced non-destructive testing (NDT) techniques in parallel to unambiguously determine the integrity of composite systems. This study deals with damage evaluation using visual inspection, ultrasonic C-scan, electronic speckle pattern interferometry (ESPI), electronic shearography (ES) and optical deformation and strain measurement system (ODSMS). Internal damage was introduced using an instrumented falling weight impact test (IFWIT) machine by controlling the combination of striker mass and releasing height. It was found that different NDT techniques were successfully employed to identify and visualise the impact induced internal damage. Experimental results generated from these techniques show a good agreement in damage identification and determination. The features, capabilities and limitations associated with these techniques were briefly discussed.

  11. An Easily Operating Polymer 1×4 Optical Waveguide Switch Matrix Based on Vertical Couplers

    Institute of Scientific and Technical Information of China (English)

    Kaixin Chen; Pak L Chu; Hau Ping Chan; Kin S. Chiang

    2007-01-01

    A three-dimensional (3D) polymer thermo-optic (TO) 1×4 waveguide switch matrix based on vertical couplers is demonstrated. It consists of four basic 3D switch units and because of its 3D structure, its construction is compact, only 9mm in length; moreover, the control logic of the entire switch is very simple, the light signal can be easily switched to any output port by operating only a single switch unit. The finished devices exhibit a switching extinction ratio greater than 21 dB for all of four output ports and the crosstalk between two adjacent output ports is lower than n for all switching units is about 50 mW.

  12. Dynamics of electric field induced particle alignment in nonpolar polymer matrix

    Science.gov (United States)

    Tai, Xiangyang; Wu, Guozhang; Yui, Hiroshi; Asai, Shigeo; Sumita, Masao

    2003-11-01

    The dynamics of electric field induced particle alignment in nonpolar polymer matrix to build one-dimensional conductive materials was investigated. The influence of electric field on particle alignment was real-time traced by dynamic percolation measurement using carbon black (CB) filled polyethylene as a model system. The activation energy of the continuous CB path formation was calculated and found to be unchanged with CB alignment. The critical percolation concentration at thermodynamic equilibrium state φc* was deduced to characterize the anisotropism of network structure, by which the thermodynamic prerequisite electric field E* for the transition from three-dimensional isotropic network to one-dimensional chain could be easily found out.

  13. The time-dependent magneto-visco-elastic behavior of a magnetostrictive fiber actuated viscoelastic polymer matrix composite.

    Science.gov (United States)

    Hogea, Cosmina S; Armstrong, William D

    2002-11-01

    The paper develops a one-dimensional magneto-elastic model of a magnetostrictive fiber actuated polymer matrix composite material which accounts for a strong viscoelastic response in the polymer matrix. The viscoelastic behavior of the composite polymer matrix is modeled with a three parallel Maxwell element viscoelastic model, the magnetoelastic behavior of the composite fibers is modeled with an anhysteric directional potential based domain occupation theory. Example calculations are performed to identify and explain the dynamical behavior of the composite. These calculations assume that a constant stress and the oscillating magnetic field are applied in the fiber longitudinal direction. The inclusion of matrix viscosity results in an apparent hysteresis loop in the magnetization and magnetostriction curves even though the model does not include magnetoelastic hysteresis in the fibers. The apparent hysteresis is a consequence of the interaction of the time varying fiber stress caused by matrix viscosity with a multidomain state in the fiber. The small increase in fiber longitudinal compressive stress due to matrix viscosity under increasing field inhibits the occupation of domains with magnetization orientations near the fiber longitudinal [112] direction. As a consequence, the summed longitudinal magnetization and magnetostriction is reduced as compared to the decreasing field limb.

  14. Fundamental Studies of Low Velocity Impact Resistance of Graphite Fiber Reinforced Polymer Matrix Composites. Ph.D. Thesis

    Science.gov (United States)

    Bowles, K. J.

    1985-01-01

    A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T sub g and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. It was found that when the instrumented dropweight impact tester is used as a means for assessing resin toughness, the resin toughness is enhanced by the ability of the clamped specimen to deflect enough to produce sufficient membrane action to support a significant amount of the load. The results of this study indicate that crossplied composite impact resistance is very much dependent on the matrix mechanical properties.

  15. Durability of polymer matrix composites for infrastructure: The role of the interphase

    Science.gov (United States)

    Verghese, Kandathil Nikhil Eapen

    1999-12-01

    As fiber reinforced polymer matrix composites find greater use in markets such as civil infrastructure and ground transportation, the expectations placed on these materials are ever increasing. The overall cost and reliability have become the drivers of these high performance materials and have led to the disappearance of resins such as bismaleimides (BMI). cyanate esters and other high performance polyimides and epoxys. In their place polymers, such polyester and vinylester have arisen. The reinforcing fiber scenario has also undergone changes from the high quality and performance assured IM7 and AS4 to cheaper and hybrid systems consisting of both glass and low cost carbon. Manufacturing processes have had their share of changes too with processes such as pultrusion and other mass production techniques replacing hand lay-up and resin transfer molding. All of this has however come with little or no concession on material performance. The motivation of the present research has therefore been to try to improve the properties of these low cost composites by better understanding the constituent materials (fiber and matrix) and the region that lies in-between them namely the interphase. In order to achieve this. working with controls is necessary and the present discourse therefore deals with the AS4 fiber system from Hexcel Corporation and the vinyl ester resin, Derakane 441-400 from The Dow Chemical Company. The following eight chapters sum up the work done thus far on composites made with sized fibers and the above mentioned resin and fiber systems. They are in the form of publications that have either been accepted. submitted or going to be submitted to various peer reviewed journals. The sizings used have been poly(vinylpyrrolidone) PVP and Polyhydroxyether (Phenoxy) thermoplastic polymers and G' an industrial sizing material supplied by Hexcel. A number of issues have been addressed ranging from viscoelastic relaxation to enviro-mechanical durability. Chapter 1

  16. Approach for achieving flame retardancy while retaining physical properties in a compatible polymer matrix

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor)

    2011-01-01

    The invention provides polymer blends containing polyhydroxyamide and one or more flammable polymers. The polymer blends are flame retardant and have improved durability and heat stability compared to the flammable polymer portion of the blends. Articles containing the polymer blends are also provided.

  17. Optimizing Polymer Infusion Process for Thin Ply Textile Composites with Novel Matrix System

    Directory of Open Access Journals (Sweden)

    Somen K. Bhudolia

    2017-03-01

    Full Text Available For mass production of structural composites, use of different textile patterns, custom preforming, room temperature cure high performance polymers and simplistic manufacturing approaches are desired. Woven fabrics are widely used for infusion processes owing to their high permeability but their localised mechanical performance is affected due to inherent associated crimps. The current investigation deals with manufacturing low-weight textile carbon non-crimp fabrics (NCFs composites with a room temperature cure epoxy and a novel liquid Methyl methacrylate (MMA thermoplastic matrix, Elium®. Vacuum assisted resin infusion (VARI process is chosen as a cost effective manufacturing technique. Process parameters optimisation is required for thin NCFs due to intrinsic resistance it offers to the polymer flow. Cycles of repetitive manufacturing studies were carried out to optimise the NCF-thermoset (TS and NCF with novel reactive thermoplastic (TP resin. It was noticed that the controlled and optimised usage of flow mesh, vacuum level and flow speed during the resin infusion plays a significant part in deciding the final quality of the fabricated composites. The material selections, the challenges met during the manufacturing and the methods to overcome these are deliberated in this paper. An optimal three stage vacuum technique developed to manufacture the TP and TS composites with high fibre volume and lower void content is established and presented.

  18. Effect the Grain Size on the Polymer Matrix Composites Reinforced by Reenia Particles

    Directory of Open Access Journals (Sweden)

    Kdhim khaion kahlol

    2013-01-01

    Full Text Available Synthetic polymers such as polyurethane are used widely in the field of biomedical applications such as implants or part of implant systems.This paper focuses on the preparation of base polymer matrix composite materials by (Hand Lay-Up method, and studying the effect of selected grain size (32, 53, 63, 75, and 90 µm of (Reenia particles on some properties of the prepared composite.Mechanical tests were used to evaluate the prepared system (Tensile, Compression, Impact, and Hardness tests, and a physical test of (Water absorption %, and all tests were accomplished at room temperature.Where results showed tensile test (maximum tensile strength and modulus of elasticity high at small grain size while the percentage of elongation decreased with increasing size. As the compressive strength increased with small grain size. And also the values of hardness and fracture energy affected by particle size where the hardness and fracture energy increased at small particles size of compared to larger particles size. While the percentage of water absorption increased at large particle size.In general the results showed clear improvement in properties and maximum values which get it of tensile strength, Modulus of elasticity, elongation percentage, compression strength, fracture energy, hardness and water absorption were as follows ((34.8 MPa, (10%, (268 N/mm2, ( 54.2 MPa,( o.408 J, (78.9 Shor (D, (0.2668 % at using (32µm except water absorption was at (90µm .

  19. Tribology of Polymer Matrix Composites (PMCs) Fabricated by Additive Manufacturing (AM)

    Science.gov (United States)

    Gupta, S.; Dunnigan, R.; Salem, A.; Kuentz, L.; Halbig, M. C.; Singh, M.

    2016-01-01

    The integral process of depositing thin layers of material, one after another, until the designed component is created is collectively referred to as Additive Manufacturing (AM). Fused deposition process (FDP) is a type of AM where feedstock is extruded into filaments which then are deposited by 3D printing, and the solidification occurs during cooling of the melt. Currently, complex structures are being fabricated by commercial and open source desktop 3D printers. Recently, metal powder containing composite filaments based on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) have emerged, which could be utilized for multifunctional applications. For further deployment in the field, especially for aerospace and ground-based applications, it is critical to understand the tribological behavior of 3D printed materials. In this presentation, we will report the tribological behavior of different polymer matrix composites fabricated by fused deposition process. These results will be compared with the base polymer systems. During this study, the tribological behavior of all the samples will be evaluated with tab-on-disc method and compared for different metallic powder reinforcements.

  20. Optimizing Polymer Infusion Process for Thin Ply Textile Composites with Novel Matrix System

    Science.gov (United States)

    Bhudolia, Somen K.; Perrotey, Pavel; Joshi, Sunil C.

    2017-01-01

    For mass production of structural composites, use of different textile patterns, custom preforming, room temperature cure high performance polymers and simplistic manufacturing approaches are desired. Woven fabrics are widely used for infusion processes owing to their high permeability but their localised mechanical performance is affected due to inherent associated crimps. The current investigation deals with manufacturing low-weight textile carbon non-crimp fabrics (NCFs) composites with a room temperature cure epoxy and a novel liquid Methyl methacrylate (MMA) thermoplastic matrix, Elium®. Vacuum assisted resin infusion (VARI) process is chosen as a cost effective manufacturing technique. Process parameters optimisation is required for thin NCFs due to intrinsic resistance it offers to the polymer flow. Cycles of repetitive manufacturing studies were carried out to optimise the NCF-thermoset (TS) and NCF with novel reactive thermoplastic (TP) resin. It was noticed that the controlled and optimised usage of flow mesh, vacuum level and flow speed during the resin infusion plays a significant part in deciding the final quality of the fabricated composites. The material selections, the challenges met during the manufacturing and the methods to overcome these are deliberated in this paper. An optimal three stage vacuum technique developed to manufacture the TP and TS composites with high fibre volume and lower void content is established and presented. PMID:28772654

  1. Matrix supported tailored polymer for solid phase extraction of fluoride from variety of aqueous streams

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Neha; Kumar, Sanjukta A.; Wagh, D.N. [Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Das, Sadananda; Pandey, Ashok K. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kumar, Sangita D., E-mail: sangdk@barc.gov.in [Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Reddy, A.V.R. [Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2012-01-30

    Highlights: Black-Right-Pointing-Pointer Th complexed with poly (bis[2-(methacryloyloxy)-ethyl]phosphate) as tailored polymer membranes. Black-Right-Pointing-Pointer Membranes offered high capacity and selectivity for fluoride in aqueous media. Black-Right-Pointing-Pointer Quantitative uptake (80 {+-} 5%) of fluoride. Black-Right-Pointing-Pointer Fast sorption kinetics. Black-Right-Pointing-Pointer Reusability of polymer membranes. - Abstract: Fluoride related health hazards (fluorosis) are a major environmental problem in many regions of the world. It affects teeth; skeleton and its accumulation over a long period can lead to changes in the DNA structure. It is thus absolutely essential to bring down the fluoride levels to acceptable limits. Here, we present a new inorganic-organic hybrid polymer sorbent having tailored fixed-sites for fluoride sorption. The matrix supported poly (bis[2-(methacryloyloxy)-ethyl]phosphate) was prepared by photo-initiator induced graft-polymerization in fibrous and microporous (sheet) host poly(propylene) substrates. These substrates were conditioned for selective fluoride sorption by forming thorium complex with phosphate groups on bis[2-methacryloyloxy)-ethyl] phosphate (MEP). These tailored sorbents were studied for their selectivity towards fluoride in aqueous media having different chemical conditions. The fibrous sorbent was found to take up fluoride with a faster rate (15 min for Almost-Equal-To 76% sorption) than the sheet sorbent. But, the fluoride loading capacity of sheet sorbent (4320 mg kg{sup -1}), was higher than fibrous and any other sorbent reported in the literature so far. The sorbent developed in the present work was found to be reusable after desorption of fluoride using NaOH solution. It was tested for solid phase extraction of fluoride from natural water samples.

  2. Effect of elasticity on stress distribution in CAD/CAM dental crowns: Glass ceramic vs. polymer-matrix composite.

    Science.gov (United States)

    Duan, Yuanyuan; Griggs, Jason A

    2015-06-01

    Further investigations are required to evaluate the mechanical behaviour of newly developed polymer-matrix composite (PMC) blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications. The purpose of this study was to investigate the effect of elasticity on the stress distribution in dental crowns made of glass-ceramic and PMC materials using finite element (FE) analysis. Elastic constants of two materials were determined by ultrasonic pulse velocity using an acoustic thickness gauge. Three-dimensional solid models of a full-coverage dental crown on a first mandibular molar were generated based on X-ray micro-CT scanning images. A variety of load case-material property combinations were simulated and conducted using FE analysis. The first principal stress distribution in the crown and luting agent was plotted and analyzed. The glass-ceramic crown had stress concentrations on the occlusal surface surrounding the area of loading and the cemented surface underneath the area of loading, while the PMC crown had only stress concentration on the occlusal surface. The PMC crown had lower maximum stress than the glass-ceramic crown in all load cases, but this difference was not substantial when the loading had a lateral component. Eccentric loading did not substantially increase the maximum stress in the prosthesis. Both materials are resistant to fracture with physiological occlusal load. The PMC crown had lower maximum stress than the glass-ceramic crown, but the effect of a lateral loading component was more pronounced for a PMC crown than for a glass-ceramic crown. Knowledge of the stress distribution in dental crowns with low modulus of elasticity will aid clinicians in planning treatments that include such restorations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Tritium containing polymers having a polymer backbone substantially void of tritium

    Science.gov (United States)

    Jensen, George A.; Nelson, David A.; Molton, Peter M.

    1992-01-01

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium.

  4. Evaluation of Influence of Various Polymers on Dissolution and Phase Behavior of Carbamazepine-Succinic Acid Cocrystal in Matrix Tablets

    Directory of Open Access Journals (Sweden)

    Majeed Ullah

    2015-01-01

    Full Text Available The aim of current study was to explore the influence of three commonly used polymers, that is, cellulosics and noncellulosics, for example, Methocel K4M, Kollidon VA/64, and Soluplus, on the phase disproportionation and drug release profile of carbamazepine-succinic acid (CBZ-SUC cocrystal at varying drug to polymer ratios (1 : 1 to 1 : 0.25 in matrix tablets. The polymorphic phase disproportionation during in-depth dissolution studies of CBZ-SUC cocrystals and its crystalline properties were scrutinized by X-ray powder diffractrometry and Raman spectroscopy. The percent drug release from HPMC formulations (CSH showed inverse relation with the concentration of polymer; that is, drug release increased with decrease in polymer concentration. On contrary, direct relation was observed between percent drug release and polymer concentrations of Kollidon VA 64/Soluplus (CSK, CSS. At similar polymer concentration, drug release from pure carbamazepine was slightly lower with HPMC formulations than that of cocrystal; however, opposite trend in release rate was observed with Kollidon VA/64 and Soluplus. The significant increase in dissolution rate of cocrystal occurred with Kollidon VA/64 and Soluplus at higher polymer concentration. Moreover, no phase change took place in Methocel and Kollidon formulations. No tablet residue was left for Soluplus formulation so the impact of polymer on cocrystal integrity cannot be predicted.

  5. Combinatorial Matrix Assisted Pulsed Laser Evaporation of a biodegradable polymer and fibronectin for protein immobilization and controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Sima, F., E-mail: felix.sima@inflpr.ro [Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Măgurele (Romania); Axente, E.; Iordache, I.; Luculescu, C. [Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Măgurele (Romania); Gallet, O. [ERRMECE, Cergy-Pontoise University, Cergy-Pontoise (France); Anselme, K. [IS2M, CNRS UMR7361, Haute-Alsace University, Mulhouse (France); Mihailescu, I.N. [Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Măgurele (Romania)

    2014-07-01

    Defined protein quantities were embedded in situ in a biodegradable polymer coating during simultaneous laser vaporization of two targets. Fibronectin (FN) and poly-DL-lactide (PDLLA) were transferred and immobilized concomitantly by Combinatorial Matrix Assisted Pulsed Laser Evaporation onto solid substrates. The film surface with gradient of composition was characterized by optical, scanning electron microscopy and profilometry. Micrometric FN packages were visualized in the polymeric matrix by confocal microscopy. The composition of FN was investigated by FTIR and μFTIR analyses in a polymeric matrix with different thickness.

  6. Effect of laminate thickness on moisture diffusion of polymer matrix composites in artificial seawater ageing

    Science.gov (United States)

    Pal, Ratna; Narasimha Murthy, H. N.; Sreejith, M.; Vishnu Mahesh, K. R.; Krishna, M.; Sharma, S. C.

    2012-09-01

    The influence of laminate thickness of polymer matrix composites on moisture diffusion in seawater immersion, as well as the resulting mechanical property degradation for composites of glass/isopolyester (G/IPE), carbon/isopolyester (C/IPE), glass/vinylester (G/VE) and carbon/vinylester (C/VE), was investigated in this paper. Laminates 3 and 10mm in thickness, fabricated using the wet hand lay-up technique, were characterized for moisture absorption in artificial seawater medium, and their flexural strength and interlaminar shear strength (ILSS) degradations were studied. Moisture diffusion was observed to be anamolous to the Fick's law for both 3 and 10mm thick samples in the later stage of diffusion. Moisture permeability of 10mmthick samples was two to three order greater than that of 3mm thick ones, while the time to moisture saturation remained unchanged. With the increase of laminate thickness, moisture saturation increased by 1.4% for C/VE and 7% for G/IPE. The residual flexural strength and ILSS were greater in case of 10mm thick specimens after 200 days of exposure. SEM examination of the fractured specimens showed greater levels of fibre/matrix debonding in 10mm thick specimens.

  7. Femtosecond Laser Irradiation of Plasmonic Nanoparticles in Polymer Matrix: Implications for Photothermal and Photochemical Material Alteration

    Directory of Open Access Journals (Sweden)

    Anton A. Smirnov

    2014-11-01

    Full Text Available We analyze the opportunities provided by the plasmonic nanoparticles inserted into the bulk of a transparent medium to modify the material by laser light irradiation. This study is provoked by the advent of photo-induced nano-composites consisting of a typical polymer matrix and metal nanoparticles located in the light-irradiated domains of the initially homogeneous material. The subsequent irradiation of these domains by femtosecond laser pulses promotes a further alteration of the material properties. We separately consider two different mechanisms of material alteration. First, we analyze a photochemical reaction initiated by the two-photon absorption of light near the plasmonic nanoparticle within the matrix. We show that the spatial distribution of the products of such a reaction changes the symmetry of the material, resulting in the appearance of anisotropy in the initially isotropic material or even in the loss of the center of symmetry. Second, we analyze the efficiency of a thermally-activated chemical reaction at the surface of a plasmonic particle and the distribution of the product of such a reaction just near the metal nanoparticle irradiated by an ultrashort laser pulse.

  8. Matrix-assisted laser desorption/ionization mass spectrometric analysis of aliphatic biodegradable photoluminescent polymers using new ionic liquid matrices.

    Science.gov (United States)

    Serrano, Carlos A; Zhang, Yi; Yang, Jian; Schug, Kevin A

    2011-05-15

    In this study, two novel ionic liquid matrices (ILMs), N,N-diisopropylethylammonium 3-oxocoumarate and N,N-diisopropylethylammonium dihydroxymonooxoacetophenoate, were tested for the structural elucidation of recently developed aliphatic biodegradable polymers by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The polymers, formed by a condensation reaction of three components, citric acid, octane diol, and an amino acid, are fluorescent, but the exact mechanism behind their luminescent properties has not been fully elucidated. In the original studies, which introduced the polymer class (J. Yang et al., Proc. Natl. Acad. Sci. USA 2009, 106, 10086-10091), a hyper-conjugated cyclic structure was proposed as the source for the photoluminescent behavior. With the use of the two new ILMs, we present evidence that supports the presence of the proposed cyclization product. In addition, the new ILMs, when compared with a previously established ILM, N,N-diisopropylethylammonium α-cyano-3-hydroxycinnimate, provided similar signal intensities and maintained similar spectral profiles. This research also established that the new ILMs provided good spot-to-spot reproducibility and high ionization efficiency compared with corresponding crystalline matrix preparations. Many polymer features revealed through the use of the ILMs could not be observed with crystalline matrices. Ultimately, the new ILMs highlighted the composition of the synthetic polymers, as well as the loss of water that was expected for the formation of the proposed cyclic structure on the polymer backbone.

  9. A Bridging Cell Multiscale Methodology to Model the Structural Behaviour of Polymer Matrix Composites

    Science.gov (United States)

    Iacobellis, Vincent

    Composite and nanocomposite materials exhibit behaviour which is inherently multiscale, extending from the atomistic to continuum levels. In composites, damage growth tends to occur at the nano and microstructural scale by means of crack growth and fibre-matrix debonding. Concurrent multiscale modeling provides a means of efficiently solving such localized phenomena, however its use in this application has been limited due to a number of existing issues in the multiscale field. These include the seamless transfer of information between continuum and atomistic domains, the small timesteps required for dynamic simulation, and limited research into concurrent multiscale modeling of amorphous polymeric materials. The objective of this thesis is thus twofold: to formulate a generalized approach to solving a coupled atomistic-to-continuum system that addresses these issues and to extend the application space of concurrent multiscale modeling to damage modeling in composite microstructures. To achieve these objectives, a finite element based multiscale technique termed the Bridging Cell Method (BCM), has been formulated with a focus on crystalline material systems. Case studies are then presented that show the effectiveness of the developed technique with respect to full atomistic simulations. The BCM is also demonstrated for applications of stress around a nanovoid, nanoindentation, and crack growth due to monotonic and cyclic loading. Next, the BCM is extended to modeling amorphous polymeric material systems where an adaptive solver and a two-step iterative solution algorithm are introduced. Finally, the amorphous and crystalline BCM is applied to modeling a polymer-graphite interface. This interface model is used to obtain cohesive zone parameters which are used in a cohesive zone model of fibre-matrix interfacial cracking in a composite microstructure. This allows for an investigation of the temperature dependent damage mechanics from the nano to microscale within

  10. On crack initiation in notched, cross-plied polymer matrix composites

    Science.gov (United States)

    Yang, Q. D.; Schesser, D.; Niess, M.; Wright, P.; Mavrogordato, M. N.; Sinclair, I.; Spearing, S. M.; Cox, B. N.

    2015-05-01

    The physics of crack initiation in a polymer matrix composite are investigated by varying the modeling choices made in simulations and comparing the resulting predictions with high-resolution in situ images of cracks. Experimental data were acquired using synchrotron-radiation computed tomography (SRCT) at a resolution on the order of 1 μm, which provides detailed measurement of the location, shape, and size of small cracks, as well as the crack opening and shear displacements. These data prove sufficient to discriminate among competing physical descriptions of crack initiation. Simulations are executed with a high-fidelity formulation, the augmented finite element method (A-FEM), which permits consideration of coupled damage mechanisms, including both discrete cracks and fine-scale continuum damage. The discrete cracks are assumed to be nonlinear fracture events, governed by reasonably general mixed-mode cohesive laws. Crack initiation is described in terms of strength parameters within the cohesive laws, so that the cohesive law provides a unified model for crack initiation and growth. Whereas the cracks investigated are typically 1 mm or less in length, the fine-scale continuum damage refers to irreversible matrix deformation occurring over gauge lengths extending down to the fiber diameter (0.007 mm). We find that the location and far-field stress for crack initiation are predicted accurately only if the variations of local stress within plies and in the presence of stress concentrators (notches, etc.) are explicitly computed and used in initiation criteria; stress redistribution due to matrix nonlinearity that occurs prior to crack initiation is accounted for; and a mixed-mode criterion is used for crack initiation. If these factors are not all considered, which is the case for commonly used failure criteria, predictions of the location and far-field stress for initiation are not accurate.

  11. Development of meniscus substitutes using a mixture of biocompatible polymers and extra cellular matrix components by electrospinning.

    Science.gov (United States)

    López-Calzada, G; Hernandez-Martínez, A R; Cruz-Soto, M; Ramírez-Cardona, M; Rangel, D; Molina, G A; Luna-Barcenas, G; Estevez, M

    2016-04-01

    Despite the significant advances in the meniscus tissue engineering field, it is difficult to recreate the complex structure and organization of the collagenous matrix of the meniscus. In this work, we developed a meniscus prototype to be used as substitute or scaffold for the regeneration of the meniscal matrix, recreating the differential morphology of the meniscus by electrospinning. Synthetic biocompatible polymers were combined with the extracellular matrix component, collagen and used to replicate the meniscus. We studied the correlation between mechanical and structural properties of the polymer blend as a function of collagen concentration. Fibers were collected on a surface of a rapidly rotating precast mold, to accurately replicate each sectional morphology of the meniscus; different electro-tissues were produced. Detailed XRD analyses exhibited structural changes developed by electrospinning. We achieved to integrate all these electro-tissues to form a complete synthetic meniscus. Vascularization tests were performed to assess the potential use of our novel polymeric blend for promising meniscus regeneration.

  12. Effects of Emulsion-Based Resonant Infrared Matrix Assisted Pulsed Laser Evaporation (RIR-MAPLE) on the Molecular Weight of Polymers

    OpenAIRE

    Jeremy Lenhardt; Ryan D. McCormick; Adrienne D. Stiff-Roberts

    2012-01-01

    The molecular weight of a polymer determines key optoelectronic device characteristics, such as internal morphology and charge transport. Therefore, it is important to ensure that polymer deposition techniques do not significantly alter the native polymer molecular weight. This work addresses polymers deposited by resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE). By using a novel emulsion-based target technique, the deposition of smooth, contiguous films with no evidence...

  13. Low velocity impact response and damage evolution in unreinforced resin systems and self-repairing polymer matrix composites

    Science.gov (United States)

    Motuku, Molefi

    The low velocity impact response and damage evolution in unreinforced polymer matrices, conventional polymer matrix composites, and self-repairing polymer matrix composites was investigated. The impact response study of unreinforced matrices and conventional laminates was undertaken because the failure initiation energies, threshold energy levels, failure characteristics and damage evolution in both the matrix material (unreinforced resin plaques) and the composite are intrinsic to proper design of a self-repairing composite. The self-repairing concept was investigated due to its attractive potential to alleviate damage problems in polymer matrix composites. Self-repairing composites, which fall under the category of passive smart polymer composites, have the potential to self repair both micro- and macro-damage resulting from impacts as well as non-impact loading. The self-repairing mechanism is achieved through the incorporation of hollow fibers in addition to the normal solid reinforcing fibers. The hollow fibers store the damage-repairing solution or chemicals that are released into the matrix or damaged zone upon fiber failure to repair and/or arrest damage progression. The room temperature low velocity impact response and damage evolution in DERAKANE 411-350 and 411-C50 vinyl ester unreinforced resin systems was investigated as a function of impact energy level, sample thickness, matrix material and catalyst system. The low velocity impact response of conventional and self-repairing glass reinforced polymer composites was investigated by addressing the fabrication and some of the parameters that influence their response to low velocity impact loading. Specific issues addressed by this study include developing a process to fabricate self-repairing laminates, processing quality; selection of storage material for the repairing solution; release and transportation of repairing solution; the effect of the number, type and spatial distribution of the repairing

  14. Long distance energy transfer in a polymer matrix doped with a perylene dye.

    Science.gov (United States)

    Fennel, Franziska; Lochbrunner, Stefan

    2011-02-28

    Exciton migration over long distances is a key issue for various applications in organic electronics. We investigate a disordered material system which has the potential for long exciton diffusion lengths in combination with a high versatility. The perylene bisimide dye Perylene Red is incorporated in a polymer matrix with a high concentration. The dye molecules represent active sites with a narrow energy distribution for the electronically excited states. Excitons can be efficiently exchanged between them by Förster resonance energy transfer (FRET). The narrow energy distribution reduces drastically the trapping probability of the excitons compared to polymers and allows for long transfer distances. To characterize the mobility of the excitons and their diffusion length the dye Oxazine 1 is added as an acceptor in low concentration and the transfer probability to the acceptor is determined by measuring the reduction of Perylene Red fluorescence. The quenched quantum yield is measured for dye concentrations varying from 0.05 M to 0.15 M for Perylene Red and from 0.3 mM to 3 mM for Oxazine 1. The experimental results are compared to a model which assumes that excitons can diffuse through the material by FRET between Perylene Red sites and are trapped at an acceptor with a final hetero FRET step. We find a quite good match between theory and experiment though the observed diffusion constant is about two times smaller than the calculated one. The exciton diffusion length extracted from the data is 30 nm for a Perylene Red concentration of 0.1 M and demonstrates that long distance energy transfer is possible in this disordered material system.

  15. Investigation on the pH-independent photoluminescence emission from carbon dots impregnated on polymer matrix.

    Science.gov (United States)

    Saheeda, Pichan; Sabira, Kaviladath; Dhaneesha, Mohandas; Jayaleksmi, Sankaran

    2017-07-17

    Highly luminescent, polymer nanocomposite films based on poly(vinyl alcohol) (PVA), and monodispersed carbon dots (C-dots) derived from multiwalled carbon nanotubes (MWCNTs), as coatings on substrates as well as free standing ones are obtained via solution-based techniques. The synthesized films exhibit pH-independent photoluminescence (PL) emission, which is an advantageous property compared with the pH-dependent photoluminescence intensity variations, generally observed for the C-dots dispersed in aqueous solution. The synthesized C-dots and the nanocomposite films are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), ultraviolet (UV) - visible spectroscopy and photoluminescence spectroscopy (PL) techniques. The TEM image provides clear evidence for the formation of C-dots of almost uniform shape and average size of about 8 nm, homogeneously dispersed in aqueous medium. The strong anchoring of C-dots within the polymer matrix can be confirmed from the XRD results. The FTIR spectral studies conclusively establish the presence of oxygen functional groups on the surfaces of the C-dots. The photoluminescence (PL) emission spectra of the nanocomposite films are broad, covering most part of the visible region. The PL spectra do not show any luminescence intensity variations, when the pH of the medium is changed from 1 to 11. The pH-independent luminescence, shown by these films offers ample scope for using them as coatings for designing diagnostic and imaging tools in bio medical applications. The non-toxic nature of these nanocomposite films has been established on the basis of cytotoxicity studies. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Hierarchical self-assembly of nanoparticles in polymer matrix and the nature of the interparticle interaction

    Science.gov (United States)

    Lin, Yu-Chiao; Chen, Chun-Yu; Chen, Hsin-Lung; Hashimoto, Takeji; Chen, Show-An; Li, Yen-Cheng

    2015-06-01

    Using small angle X-ray scattering (SAXS), we elucidated the spatial organization of palladium (Pd) nanoparticles (NPs) in the polymer matrix of poly(2-vinylpyridine) (P2VP) and the nature of inter-nanoparticle interactions, where the NPs were synthesized in the presence of P2VP by the reduction of palladium acetylacetonate (Pd(acac)2). The experimental SAXS profiles were analysed on the basis of a hierarchical structure model considering the following two types of interparticle potential: (i) hard-core repulsion only (i.e., the hard-sphere interaction) and (ii) hard-core repulsion together with an attractive potential well (i.e., the sticky hard-sphere interaction). The corresponding theoretical scattering functions, which were used for analysing the experimental SAXS profiles, were obtained within the context of the Percus-Yevick closure and the Ornstein-Zernike equation in the fundamental liquid theory. The analyses revealed that existence of the attractive potential well is indispensable to account for the experimental SAXS profiles. Moreover, the morphology of the hybrids was found to be characterized by a hierarchical structure with three levels, where about six primary NPs with the diameter of ca. 1.8 nm (level one) formed local clusters (level two), and these clusters aggregated to build up a large-scale mass-fractal structure (level three) with the fractal dimension of ca. 2.3. The scattering function developed here is of general use for quantitatively characterizing the morphological structures of polymer/NP hybrids and, in particular, for exploring the interaction potential of the NPs on the basis of the fundamental liquid theory.

  17. Hydroxypropylcellulose controlled release tablet matrix prepared by wet granulation: effect of powder properties and polymer composition

    Directory of Open Access Journals (Sweden)

    Antonio Zenon Antunes Teixeira

    2009-02-01

    Full Text Available The aim of this study was to attain 100% drug release of caffeine after 24 h from hydroxypropylcellulose (HPC tablet matrices and to investigate the effect of co-excipient. Physical properties of the powders were evaluated and suggested for a wet granulation process. The tablet containing caffeine was formulated by different weight ratios of hydrophilic polymers. The results of polymer evaluation confirmed that the increase of HPC level with the same drug content significantly decreased the rate of drug release. The presence of co-polymer excipients carboxymethylcellulose (CMC and polyvinylpyrrolidone (PVP in the tablet matrix was also investigated. The release rate was also controlled by low levels of CMC (O objetivo deste estudo é desenvolver a liberação 100% da droga cafeína em 24 horas em comprimidos matrizes e investigar o uso de hidroxipropilcelulose (HPC mais os efeitos de co-excipiente. As propriedades físicas dos pós foram avaliadas assim como seu uso no processo de granulação úmida. O comprimido contendo a cafeína foi formulado por diferentes relações de peso dos polímeros hidrofílicos. Os resultados da avaliação do polímero confirmaram que o aumento do nível de HPC com o mesmo índice da droga diminuiu significativamente a taxa de liberação da droga. A presença do co-polímero excipiente carboximetilcelulose (CMC e do polivinilpirrolidona (PVP na matriz do comprimido foi também investigado. A taxa de liberação foi controlada principalmente por baixos níveis de CMC (< 10% enquanto PVP não mostrou efeito diferente considerável. A melhor taxa de liberação de cafeína 100% em 24 horas foi obtida quando 10% da lactose monoidrato foi adicionado na formulação.

  18. Fatigue of a 3D Orthogonal Non-crimp Woven Polymer Matrix Composite at Elevated Temperature

    Science.gov (United States)

    Wilkinson, M. P.; Ruggles-Wrenn, M. B.

    2017-02-01

    Tension-tension fatigue behavior of two polymer matrix composites (PMCs) was studied at elevated temperature. The two PMCs consist of the NRPE polyimide matrix reinforced with carbon fibers, but have different fiber architectures: the 3D PMC is a singly-ply non-crimp 3D orthogonal weave composite and the 2D PMC, a laminated composite reinforced with 15 plies of an eight harness satin weave (8HSW) fabric. In order to assess the performance and suitability of the two composites for use in aerospace components designed to contain high-temperature environments, mechanical tests were performed under temperature conditions simulating the actual operating conditions. In all elevated temperature tests performed in this work, one side of the test specimen was at 329 °C while the other side was open to ambient laboratory air. The tensile stress-strain behavior of the two composites was investigated and the tensile properties measured for both on-axis (0/90) and off-axis (±45) fiber orientations. Elevated temperature had little effect on the on-axis tensile properties of the two composites. The off-axis tensile strength of both PMCs decreased slightly at elevated temperature. Tension-tension fatigue tests were conducted at elevated temperature at a frequency of 1.0 Hz with a ratio of minimum stress to maximum stress of R = 0.05. Fatigue run-out was defined as 2 × 105 cycles. Both strain accumulation and modulus evolution during cycling were analyzed for each fatigue test. The laminated 2D PMC exhibited better fatigue resistance than the 3D composite. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Post-test examination under optical microscope revealed severe delamination in the laminated 2D PMC. The non-crimp 3D orthogonal weave composite offered improved delamination resistance.

  19. Polarizable continuum model study on the solvent effect of polymer matrix in poly(ethylene oxide)-based solid electrolyte.

    Science.gov (United States)

    Eilmes, Andrzej; Kubisiak, Piotr

    2008-09-18

    The Polarizable Continuum Model has been used to study the effect of polymer matrix on Li (+) and Mg (2+) complexation in poly(ethylene oxide)-based solid electrolyte. Structures of complexes, stabilization energies, and vibrational frequencies are compared with corresponding vacuum values. The solvent effect of the polymer decreases with increasing cation coordination number. Optimized complex geometries do not differ significantly compared to vacuum calculations. Calculated shifts in vibrational frequencies depend on the complex structure; for hexacoordinated ion most frequencies are slightly red-shifted. The most important effect is the decrease of differences between relative stabilities of different structures in the solvent.

  20. Preparation of organic/inorganic composite membranes using two types of polymer matrix via a sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung-Hee [School of Chemical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea); Polymer Electrolyte Fuel Cell Research Center, Hydrogen and Fuel Cell Department, Korea Institute of Energy Research (KIER), 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea); Park, Jin-Soo; Yim, Sung-Dae; Park, Seok-Hee; Kim, Chang-Soo [Polymer Electrolyte Fuel Cell Research Center, Hydrogen and Fuel Cell Department, Korea Institute of Energy Research (KIER), 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea); Lee, Young-Moo [School of Chemical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea)

    2008-07-01

    Organic/inorganic composite membranes were prepared using two different polymers. BPO{sub 4} particles were introduced into polymers via an in situ sol-gel process. Pre-/post-sulfonated polymers were used to prepare composite membranes as matrix. Pre-sulfonated poly(aryl ether ketone) (SPAEK-6F) copolymer was synthesized via nucleophilic aromatic substitution. Degree of sulfonation was adjusted by the percentage of sulfonated monomer. Post-sulfonated poly(ether ether ketone) (SPEEK) was prepared using concentrated sulfuric acid as sulfonation agent. The membranes were characterized in terms of the ion-exchange capacity (IEC), proton conductivity, water uptake, AFM, SEM and their thermal properties. The SPAEK-6F plain membranes showed higher proton conductivity than that of the SPEEK plain membranes at similar water uptake or IEC due to their structural difference. SEM images of the composite membranes showed that the BPO{sub 4} particles were homogenously dispersed in the polymer matrices and BPO{sub 4} particle size was greatly influenced by polymer matrix. The SPAEK-6F/BPO{sub 4} composite membranes had much smaller BPO{sub 4} particle size than the SPEEK/BPO{sub 4} composite membranes due to well dispersion of BPO{sub 4} sol-like particulates in SPAEK-6F polymer solutions forming more hydrophobic/hydrophilic nanophase than SPEEK polymer solutions. The latter containing a few micrometer-scale BPO{sub 4} particles showed higher proton conductivity than the former containing hundreds nanometer-scale BPO{sub 4} particles at similar water uptake due to the increase in freezable water and effect of particle size. (author)

  1. Preparation of organic/inorganic composite membranes using two types of polymer matrix via a sol-gel process

    Science.gov (United States)

    Park, Seung-Hee; Park, Jin-Soo; Yim, Sung-Dae; Park, Seok-Hee; Lee, Young-Moo; Kim, Chang-Soo

    Organic/inorganic composite membranes were prepared using two different polymers. BPO 4 particles were introduced into polymers via an in situ sol-gel process. Pre-/post-sulfonated polymers were used to prepare composite membranes as matrix. Pre-sulfonated poly(aryl ether ketone) (SPAEK-6F) copolymer was synthesized via nucleophilic aromatic substitution. Degree of sulfonation was adjusted by the percentage of sulfonated monomer. Post-sulfonated poly(ether ether ketone) (SPEEK) was prepared using concentrated sulfuric acid as sulfonation agent. The membranes were characterized in terms of the ion-exchange capacity (IEC), proton conductivity, water uptake, AFM, SEM and their thermal properties. The SPAEK-6F plain membranes showed higher proton conductivity than that of the SPEEK plain membranes at similar water uptake or IEC due to their structural difference. SEM images of the composite membranes showed that the BPO 4 particles were homogenously dispersed in the polymer matrices and BPO 4 particle size was greatly influenced by polymer matrix. The SPAEK-6F/BPO 4 composite membranes had much smaller BPO 4 particle size than the SPEEK/BPO 4 composite membranes due to well dispersion of BPO 4 sol-like particulates in SPAEK-6F polymer solutions forming more hydrophobic/hydrophilic nanophase than SPEEK polymer solutions. The latter containing a few micrometer-scale BPO 4 particles showed higher proton conductivity than the former containing hundreds nanometer-scale BPO 4 particles at similar water uptake due to the increase in freezable water and effect of particle size.

  2. Mechanics of aligned carbon nanotube polymer matrix nanocomposites simulated via stochastic three-dimensional morphology

    Science.gov (United States)

    Stein, Itai Y.; Wardle, Brian L.

    2016-01-01

    The promise of enhanced and tailored properties motivates the study of one-dimensional nanomaterials, especially aligned carbon nanotubes (A-CNTs), for the reinforcement of polymeric materials. While CNTs have remarkable theoretical properties, previous work on aligned CNT polymer matrix nanocomposites (A-PNCs) reported mechanical properties that are orders of magnitude lower than those predicted by rule of mixtures. This large difference primarily originates from the morphology of the CNTs, because the CNTs that comprise the A-PNCs have significant local curvature commonly referred to as waviness. Here we present a simulation framework capable of analyzing 105 wavy CNTs with realistic three-dimensional morphologies to quantify the impact of waviness on the effective elastic modulus contribution of wavy CNTs. The simulation results show that due to the low shear modulus of the reinforcing CNT ‘fibers’, and large (\\gt 50%) compliance contribution of the shear deformation mode, waviness reduces the effective stiffness contribution of the A-CNTs by two to three orders of magnitude. Also, the mechanical property predictions resulting from the simulation framework outperform those previously reported using finite element analysis since representative descriptions of the morphology are required to accurately predict properties of the A-PNCs. Further work to quantify the morphology of A-PNCs in three-dimensions, simulate their full non-isotropic constitutive relations, and predict their failure mechanisms is planned.

  3. High Thermal Conductivity Polymer Matrix Composites (PMC) for Advanced Space Radiators

    Science.gov (United States)

    Shin, E. Eugene; Bowman, Cheryl; Beach, Duane

    2007-01-01

    High temperature polymer matrix composites (PMC) reinforced with high thermal conductivity (approx. 1000 W/mK) pitch-based carbon fibers are evaluated for a facesheet/fin structure of large space radiator systems. Significant weight reductions along with improved thermal performance, structural integrity and space durability toward its metallic counterparts were envisioned. Candidate commercial resin systems including Cyanate Esters, BMIs, and polyimide were selected based on thermal capabilities and processability. PMC laminates were designed to match the thermal expansion coefficient of various metal heat pipes or tubes. Large, but thin composite panels were successfully fabricated after optimizing cure conditions. Space durability of PMC with potential degradation mechanisms was assessed by simulated thermal aging tests in high vacuum, 1-3 x 10(exp -6) torr, at three temperatures, 227 C, 277 C, and 316 C for up to one year. Nanocomposites with vapor-grown carbon nano-fibers and exfoliated graphite flakes were attempted to improve thermal conductivity (TC) and microcracking resistance. Good quality nanocomposites were fabricated and evaluated for TC and durability including radiation resistance. TC was measured in both in-plan and thru-the-thickness directions, and the effects of microcracks on TC are also being evaluated. This paper will discuss the systematic experimental approaches, various performance-durability evaluations, and current subcomponent design and fabrication/manufacturing efforts.

  4. Characterization of multi-layered impact damage in polymer matrix composites using lateral thermography

    Science.gov (United States)

    Whitlow, Travis; Sathish, Shamachary

    2017-02-01

    Polymer matrix composites (PMCs) are increasingly being integrated into aircraft structures. However, these components are susceptible to impact related delamination, which, on aircrafts, can occur due to a number of reasons during aircraft use and maintenance. Quantifying impact damage is an important aspect for life-management of aircraft and requires in-depth knowledge of the damage zone on a ply-by-ply level. Traditionally, immersion ultrasound has provided relative high resolution images of impact damage. Ultrasonic time-of-flight data can be used to determine the front surface delamination depth and an approximation of the delaminated area. However, such inspections require the material to be immersed in water and can be time consuming. The objective of this work is to develop a quick and robust methodology to non-destructively characterize multi-layered impact damage using lateral thermography. Initial results suggest lateral heat flow is sensitive to the depth of impact damage. The anticipated outcome of this project is to estimate the extent of through-thickness impact damage. Initial results are shown and future efforts are discussed.

  5. Analysis of strain and stress in ceramic, polymer and metal matrix composites by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Colomban, P. [LADIR, Nanophases and Heterogeneous Solids Group, UMR 7075 CNRS and Universite Pierre et Marie Curie, 2 rue Henry-Dunant, 94320 Thiais (France)

    2002-08-01

    Raman scattering is a unique tool providing information on the structure and short-range order of matter. Stress-induced Raman shifts can be used to determine the stress/strain in films, fibres, particulate composites and, more generally, in any phase a few microns or more in scale. Quantitative results follow from a wavenumber calibration as a function of tensile strains or pressures applied to reference fibres or crystals. Furthermore, if the material is coloured, (near) resonant Raman scattering occurs, which enhances the scattered light intensity and simplifies the spectra - especially for harmonics - but drastically reduces the analysed volume (in-depth penetration {proportional_to}10-100 nm). This paper discusses the effective and potential advantages/drawbacks of Raman micro-spectrometry technique. The procedures to improve the sensitivity, the legibility and the reliability will be addressed. Examples will be chosen among (aramid, C, SiC) fibre- reinforced ceramic (CMCs), polymer (PMCs) or metal matrix (MMCs) composites. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  6. CONTROLLED RELEASE FORMULATION DEVELOPMENT AND EVALUATION OF FELODIPINE MATRIX TABLETS BY USING HYDROPHOBIC POLYMERS

    Directory of Open Access Journals (Sweden)

    S. Kiran Kumar*, T. Ramarao, D.B.R.N. Bikshapathi and K.N. Jayaveera

    2013-01-01

    Full Text Available Felodipine is a long-acting 1, 4-dihydropyridine calcium channel blocker, used to control hypertension by selective action on peripheral resistance. The conventional felodipine tablet gives a rather high peak and comparatively low trough levels, due to rapid absorption and distribution. More sustained plasma concentrations might thus produce a more even effect on blood pressure. The main aim of the study was to improve dissolution rate of the dosage form in a controlled manner over extended period of 24 hrs. Matrix tablets were prepared by direct compression method,using hydrophobic polymers like Glyceryl monostearate and Carnauba wax. The prepared formulations were evaluated for hardness, thickness, weight variation, friability and in-vitro dissolution studies. Among all the formulations F8 was selected as optimized formulation based on the evaluation parameters and in-vitro release profile of 100% drug release for 24 hrs. The FTIR and DSC results of optimized formulation showed no drug-excipient interaction. For optimized formulation(F8, the drug release mechanism was explored and explained by zero-order (r2=0.984, first-order (r2=0.947, Higuchi (r2=0.967 and Korsmayer-peppas (r2=0.982 & n=0.855 equations, which explained the drug release follows zero-order and is fit for Higuchi equation & mechanism was anomalous diffusion i.e diffusion and erosion.

  7. Exploring a novel multifunctional agent to improve the dispersion of short aramid fiber in polymer matrix

    Directory of Open Access Journals (Sweden)

    K. Naskar

    2012-04-01

    Full Text Available Composites based on resorcinol formaldehyde latex (RFL coated aramid short fiber and a polyolefin based thermoplastic elastomer, namely ethylene octene copolymer (EOC were prepared by melt mixing technique. The effects of both fiber loading and its length on the mechanical and thermal characteristics of the composite under natural and sheared conditions were investigated. Both the low strain modulus and Young’s modulus were increased as a function of fiber loading and length. However, thermal stability of the composite was found to enhance with increase in fiber loading and was independent of fiber length. Due to poor interfacial interaction between the fiber and the matrix and the formation of fiber aggregation especially with 6 mm fiber at high loading, the elongation and toughness of the composite were found to decrease drastically. In order to solve this problem, a maleic anhydride adducted polybutadiene (MA-g-PB was applied on the aramid fiber. The improvements in tensile strength, elongation at break, toughness to stiffness balance and a good quality of fiber dispersion especially with 6 mm short fiber were achieved. These results indicate the potential use of maleic anhydride adducted PB as a multifunctional interface modifying coupling agent for the aramid short fiber reinforced polymers to enhance the mechanical properties as well as fiber dispersion. FTIR analyses of the treated fiber and SEM analyses of the tensile fractured surfaces of the composite strongly support and explain these results.

  8. Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits.

    Science.gov (United States)

    Chen, Changming; Niu, Xiaoyan; Han, Chao; Shi, Zuosen; Wang, Xinbin; Sun, Xiaoqiang; Wang, Fei; Cui, Zhanchen; Zhang, Daming

    2014-08-25

    A transparent reconfigurable optical interleaver module composed of cascaded AWGs-based wavelength-channel-selector/interleaver monolithically integrated with multimode interference (MMI) variable optical attenuators (VOAs) and Mach-Zehnder interferometer (MZI) switch arrays was designed and fabricated using polymer photonic lightwave circuits. Highly fluorinated photopolymer and grafting modified organic-inorganic hybrid material were synthesized as the waveguide core and caldding, respectively. Thermo-optic (TO) tunable wavelength transfer matrix (WTM) function of the module can be achieved for optical routing network. The one-chip transmission loss is ~ 6 dB and crosstalk is less than ~25 dB for transverse-magnetic (TM) mode. The crosstalk and extinction ratio of the MMI VOAs were measured as -15.2 dB and 17.5 dB with driving current 8 mA, respectively. The modulation depth of the TO switches is obtained as ~18.2 dB with 2.2 V bias. Proposed novel interleaver module could be well suited for DWDM optical communication systems.

  9. A Limited Comparison of the Thermal Durability of Polyimide Candidate Matrix Polymers with PMR-15

    Science.gov (United States)

    Bowles, Kenneth J.; Papadopoulos, Demetrios S.; Scheiman, Daniel A.; Inghram, Linda L.; McCorkle, Linda S.; Klans, Ojars V.

    2003-01-01

    Studies were conducted with six different candidate high-temperature neat matrix resin specimens of varied geometric shapes to investigate the mechanisms involved in the thermal degradation of polyimides like PMR-15. The metrics for assessing the quality of these candidates were chosen to be glass transition temperature (T(sub g)), thermo-oxidative stability, dynamic mechanical properties, microstructural changes, and dimensional stability. The processing and mechanical properties were not investigated in the study reported herein. The dimensional changes and surface layer growth were measured and recorded. The data were in agreement with earlier published data. An initial weight increase reaction was observed to be dominating at the lower temperatures. However, at the more elevated temperatures, the weight loss reactions were prevalent and probably masked the weight gain reaction. These data confirmed the findings of the existence of an initial weight gain reaction previously reported. Surface- and core-dependent weight losses were shown to control the polymer degradation at the higher temperatures.

  10. A Damage Resistance Comparison Between Candidate Polymer Matrix Composite Feedline Materials

    Science.gov (United States)

    Nettles, A. T

    2000-01-01

    As part of NASAs focused technology programs for future reusable launch vehicles, a task is underway to study the feasibility of using the polymer matrix composite feedlines instead of metal ones on propulsion systems. This is desirable to reduce weight and manufacturing costs. The task consists of comparing several prototype composite feedlines made by various methods. These methods are electron-beam curing, standard hand lay-up and autoclave cure, solvent assisted resin transfer molding, and thermoplastic tape laying. One of the critical technology drivers for composite components is resistance to foreign objects damage. This paper presents results of an experimental study of the damage resistance of the candidate materials that the prototype feedlines are manufactured from. The materials examined all have a 5-harness weave of IM7 as the fiber constituent (except for the thermoplastic, which is unidirectional tape laid up in a bidirectional configuration). The resin tested were 977-6, PR 520, SE-SA-1, RS-E3 (e-beam curable), Cycom 823 and PEEK. The results showed that the 977-6 and PEEK were the most damage resistant in all tested cases.

  11. Equivalent Linearization of Polymer Matrix Composite Infill Wall Subjected to Seismic Ground Motions

    Directory of Open Access Journals (Sweden)

    BuSeog Ju

    2013-10-01

    Full Text Available Polymer Matrix Composite (PMC material was introduced as a new conceptual infill construction for seismic retrofitting. A proposed PMC-infilled system was composed of two basic structural components: inner PMC-infilled sandwich and outer FRP damping panels designed toconstrain the energy-dissipating layers. These two components along with the steel frame were intended for providing the desired stiffness and damping following different drift values. The observed behavior of the proposed PMC-infilled system was evaluated experimentally based on the stiffness, the mode of failure and the energy dissipation outputs. In this study, a piece-wise linear dynamic analysis for a proposed PMC-infilled frame was performed according to the previous research, for the assessment of their effectiveness and the responses under the simulated earthquake loading. Upon comparing the results of undamped (without PMC panel and damped (with PMC panel structures, numerical results showed that structural damping with passive interface damping layer could significantly enhance the seismic response. Furthermore, the numerical simulation response showed that the response of theequivalent linearized model produces more conservative results, in comparison to the response of piece-wise linear model.

  12. Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape

    Science.gov (United States)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    1999-01-01

    Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.

  13. Proposed test program and data base for LDEF polymer matrix composites

    Science.gov (United States)

    Tennyson, R. C.; George, Pete; Steckel, Gary L.; Zimcik, D. G.

    1992-01-01

    A survey of the polymer matrix composite materials that were flown on Long Duration Exposure Facility (LDEF) is presented with particular attention to the effect of circumferential location (alpha) on the measured degradation and property changes. Specifically, it is known that atomic oxygen fluence (AO), VUV radiation dose, and number of impacts by micrometeoroids/debris vary with alpha. Thus, it is possible to assess material degradation and property damage changes with alpha for those materials that are common to three or more locations. Once the alpha-dependence functions were defined, other material samples will provide data that can readily be used to predict damage and property changes as a function of alpha as well. What data can be realistically obtained from these materials, how this data can be obtained, and the scientific/design value of the data to the user community is summarized. Finally, a proposed test plan is presented with recommended characterization methodologies that should be employed by all investigators to ensure consistency in the data base that will result from this exercise.

  14. Electrical response and functionality of polymer matrix-titanium carbide composites

    Directory of Open Access Journals (Sweden)

    2010-04-01

    Full Text Available The dielectric response and conductivity of polymer matrix-titanium carbide composites was examined by means of Broadband Dielectric Spectroscopy in the frequency range of 10–1–107 Hz and over the temperature range of 40–150°C, varying the filler content. Dielectric data were analyzed via the electric modulus formalism. Recorded relaxations were attributed to interfacial polarization, glass to rubber transition and local motions of polar side groups. Alternating current conductivity varies up to seven orders of magnitude with both frequency and temperature. Direct current conductivity increases with temperature, although the rate of its alteration does not remain constant in the examined temperature range. In the low temperature region (up to 60°C increases at a higher rate, while right afterwards approaches rather constant values. Finally, in the high temperature range (above 90°C conductivity raises again but at a lower rate. This behaviour adds functionality to the composites’ performance and could be exploited in developing self-current regulators.

  15. The methods of evaluation of mechanical properties of polymer matrix composites

    Directory of Open Access Journals (Sweden)

    S. Mazurkiewicz

    2010-07-01

    Full Text Available There is a relationship between the value of energy dissipation and characteristics of hysteresis loop during the first loading of cycles and mechanical features of composites. The ability to understand these relationship let us evaluate mechanical properties of composites during exploitation and can be helpful while searching for optimal parameters of processing. The investigation of basic mechanical properties of polyamide (PA with 10, 20, 30, 40 and 50% glass fiber, polyacetal (POM with 15, 25 and 35% glass fiber and 10, 15, 25% of mineral filler and polypropylen (PP with the same contents of mineral filler was executed. The investigation during the first cycles of mechanical loading was made for three levels of load. Estimation of changes of dissipated energy and modulus of elasticity in function of number of cycles was done. Differences between the values of dissipated energy in the first following mechanical cycles inform us about the type of adhesion between the fillers and the polymer and about the change in the internal stresses in composites. The first loading cycles eliminate the extremely stressed areas in the volume of the material mainly through craking of adhesion connections between the reinforcement and the matrix. The value of dissipation energy in the first loading cycles can show the level of processing excellence and quality of the composite.

  16. Kinetic Modelling of Drug Release from Pentoxifylline Matrix Tablets based on Hydrophilic, Lipophilic and Inert Polymers

    Directory of Open Access Journals (Sweden)

    Mircia Eleonora

    2015-12-01

    Full Text Available Pentoxifylline is a xanthine derivative used in the treatment of peripheral vascular disease, which because of its pharmacokinetic and pharmacologic profile is an ideal candidate for the development of extended release formulations. The aim of this study is to present a kinetic analysis of the pentoxifylline release from different extended release tablets formulations, using mechanistic and empirical kinetic models. A number of 28 formulations were prepared and analysed; the analysed formulations differed in the nature of the matrix forming polymers (hydrophilic, lipophilic, inert and in their concentrations. Measurements were conducted in comparison with the reference product Trental 400 mg (Aventis Pharma. The conditions for the dissolution study were according to official regulations of USP 36: apparatus no. 2, dissolution medium water, volume of dissolution medium is 1,000 mL, rotation speed is 50 rpm, spectrophotometric assay at 274 nm. Six mathematical models, five mechanistic (0 orders, 1st-order release, Higuchi, Hopfenberg, Hixson-Crowell and one empirical (Peppas, were fitted to pentoxifylline dissolution profile from each pharmaceutical formulation. The representative model describing the kinetics of pentoxifylline release was the 1st-order release, and its characteristic parameters were calculated and analysed.

  17. Ishikawajima-Harima Engineering Review, Vol. 33, No. 6, November 1993. Special issue: Applications development of polymer matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    ;Contents: Technical Problems and Future Possibility of Polymer Matrix Composites as Structural Materials; Polymer Matrix Composites at IHI, Present and Future; Development and Application of Graphite Epoxy Strut to Space Vehicle Structures; Development of CFRP Pressurant Tank for Satellite Propulsion System; Development of FRP Parts in Civil Aero-Engine; CFRP Cross Bar Developed for Large Transfer Press Used for Car Bodies; Development of CFRP Diaphragm for Hydaulic Speaker; Sports Fishing Vessel Made of Fiber Reinforced Plastic Using Fire Retardant Resins; Scrap FRP Pulverizing and Recycling Technology; Development of High Power Electron Beam Gun with LaB6 Cathode; Development of SDC Honeycomb Vacuum Vessel; Application of Welding Robot System to Ship Hull Assembly; Manufacturing Process of 70 MWe Class IHI-PFBC Boiler.

  18. The incorporation of extracellular matrix proteins in protein polymer hydrogels to improve encapsulated beta-cell function.

    Science.gov (United States)

    Beenken-Rothkopf, Liese N; Karfeld-Sulzer, Lindsay S; Davis, Nicolynn E; Forster, Ryan; Barron, Annelise E; Fontaine, Magali J

    2013-01-01

    Biomaterial encapsulation of islets has been proposed to improve the long-term success of islet transplantation by recreating a suitable microenvironment and enhancing cell-matrix interactions that affect cellular function. Protein polymer hydrogels previously showed promise as a biocompatible scaffold by maintaining high cell viability. Here, enzymatically-crosslinked protein polymers were used to investigate the effects of varying scaffold properties and of introducing ECM proteins on the viability and function of encapsulated MIN6 β-cells. Chemical and mechanical properties of the hydrogel were modified by altering the protein concentrations while collagen IV, fibronectin, and laminin were incorporated to reestablish cell-matrix interactions lost during cell isolation. Rheology indicated all hydrogels formed quickly, resulting in robust, elastic hydrogels with Young's moduli similar to soft tissue. All hydrogels tested supported both high MIN6 β-cell viability and function and have the potential to serve as an encapsulation platform for islet cell delivery in vivo.

  19. Cytocompatibility of novel extracellular matrix protein analogs of biodegradable polyester polymers derived from α-hydroxy amino acids.

    Science.gov (United States)

    Lecht, Shimon; Cohen-Arazi, Naomi; Cohen, Gadi; Ettinger, Keren; Momic, Tatjana; Kolitz, Michal; Naamneh, Majdi; Katzhendler, Jehoshua; Domb, Abraham J; Lazarovici, Philip; Lelkes, Peter I

    2014-01-01

    One of the challenges in regenerative medicine is the development of novel biodegradable materials to build scaffolds that will support multiple cell types for tissue engineering. Here we describe the preparation, characterization, and cytocompatibility of homo- and hetero-polyesters of α-hydroxy amino acid derivatives with or without lactic acid conjugation. The polymers were prepared by a direct condensation method and characterized using gel permeation chromatography, (1)H-nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, optical activity, and solubility. The surface charge of the polymers was evaluated using zeta potential measurements. The polymers were coated onto glass cover slips followed by characterization using nano-surface profiler, thin film reflectometry, and atomic force microscopy (AFM). Their interaction with endothelial and neuronal cells was assessed using adhesion, proliferation, and differentiation assays. Of the characterized polymers, Poly-HOVal-LA, but not Poly-(D)HOPhe, significantly augmented nerve growth factor (NGF)-induced neuronal differentiation of the PC12 pheochromcytoma cells. In contrast, Poly-HOLeu increased by 20% the adhesion of endothelial cells, but did not affect PC12 cell differentiation. NGF-induced Erk1/2 phosphorylation in PC12 cells grown on the different polymers was similar to the effect observed for cells cultured on collagen type I. While no significant association could be established between charge and the differentiative/proliferative properties of the polymers, AFM analysis indicated augmentation of NGF-induced neuronal differentiation on smooth polymer surfaces. We conclude that overall selective cytocompatibility and bioactivity might render α-hydroxy amino acid polymers useful as extracellular matrix-mimicking materials for tissue engineering.

  20. Efficient separation of conjugated polymers using a water soluble glycoprotein matrix: from fluorescence materials to light emitting devices.

    Science.gov (United States)

    Hendler, Netta; Wildeman, Jurjen; Mentovich, Elad D; Schnitzler, Tobias; Belgorodsky, Bogdan; Prusty, Deepak K; Rimmerman, Dolev; Herrmann, Andreas; Richter, Shachar

    2014-03-01

    Optically active bio-composite blends of conjugated polymers or oligomers are fabricated by complexing them with bovine submaxilliary mucin (BSM) protein. The BSM matrix is exploited to host hydrophobic extended conjugated π-systems and to prevent undesirable aggregation and render such materials water soluble. This method allows tuning the emission color of solutions and films from the basic colors to the technologically challenging white emission. Furthermore, electrically driven light emitting biological devices are prepared and operated.

  1. Evaluation of a molecularly imprinted polymer for determination of steroids in goat milk by matrix solid phase dispersion.

    Science.gov (United States)

    Gañán, Judith; Morante-Zarcero, Sonia; Gallego-Picó, Alejandrina; Garcinuño, Rosa María; Fernández-Hernando, Pilar; Sierra, Isabel

    2014-08-01

    A molecularly imprinted polymer-matrix solid-phase dispersion methodology for simultaneous determination of five steroids in goat milk samples was proposed. Factors affecting the extraction recovery such as sample/dispersant ratio and washing and elution solvents were investigated. The molecularly imprinted polymer used as dispersant in the matrix solid-phase dispersion procedure showed high affinity to steroids, and the obtained extracts were sufficiently cleaned to be directly analyzed. Analytical separation was performed by micellar electrokinetic chromatography using a capillary electrophoresis system equipped with a diode array detector. A background electrolyte composed of borate buffer (25mM, pH 9.3), sodium dodecyl sulfate (10mM) and acetonitrile (20%) was used. The developed MIP-MSPD methodology was applied for direct determination of testosterone (T), estrone (E1), 17β-estradiol (17β-E2), 17α-ethinylestradiol (EE2) and progesterone (P) in different goat milk samples. Mean recoveries obtained ranged from 81% to 110%, with relative standard deviations (RSD)≤12%. The molecularly imprinted polymer-matrix solid-phase dispersion method is fast, selective, cost-effective and environment-friendly compared with other pretreatment methods used for extraction of steroids in milk.

  2. Effect of monomer composition of polymer matrix on flexural properties of glass fibre-reinforced orthodontic archwire.

    Science.gov (United States)

    Ohtonen, J; Vallittu, P K; Lassila, L V J

    2013-02-01

    To compare force levels obtained from glass fibre-reinforced composite (FRC) archwires. Specifically, FRC wires were compared with polymer matrices having different dimethacrylate monomer compositions. FRC material (E-glass provided by Stick Tech Ltd, Turku, Finland) with continuous unidirectional glass fibres and four different types of dimethacrylate monomer compositions for the resin matrix were tested. Cross-sectionally round FRC archwires fitting into the 0.3 mm slot of a bracket were divided into 16 groups with six specimens in each group. Glass fibres were impregnated by the manufacturer, and they were initially light-cured by hand light-curing unit or additionally post-cured in light-curing oven. The FRC archwire specimens were tested at 37°C according to a three-point bending test in dry and wet conditions using a span length of 10 mm and a crosshead speed of 1.0 mm/minute. The wires were loaded until final failure. The data were statistically analysed using analysis of variance (ANOVA). The dry FRC archwire specimens revealed higher load values than water stored ones, regardless of the polymer matrix. A majority of the FRC archwires showed higher load values after being post-cured. ANOVA revealed that the polymer matrix, curing method, and water storage had a significant effect (P composition, curing method, and water storage affected the flexural properties and thus, force level and working range which could be obtained from the FRC archwire.

  3. Synergistic Effects of Physical Aging and Damage on Long-Term Behavior of Polymer Matrix Composites

    Science.gov (United States)

    Brinson, L. Cate

    1999-01-01

    The research consisted of two major parts, first modeling and simulation of the combined effects of aging and damage on polymer composites and secondly an experimental phase examining composite response at elevated temperatures, again activating both aging and damage. For the simulation, a damage model for polymeric composite laminates operating at elevated temperatures was developed. Viscoelastic behavior of the material is accounted for via the correspondence principle and a variational approach is adopted to compute the temporal stresses within the laminate. Also, the effect of physical aging on ply level stress and on overall laminate behavior is included. An important feature of the model is that damage evolution predictions for viscoelastic laminates can be made. This allows us to track the mechanical response of the laminate up to large load levels though within the confines of linear viscoelastic constitutive behavior. An experimental investigation of microcracking and physical aging effects in polymer matrix composites was also pursued. The goal of the study was to assess the impact of aging on damage accumulation, in ten-ns of microcracking, and the impact of damage on aging and viscoelastic behavior. The testing was performed both at room and elevated temperatures on [+/- 45/903](sub s) and [02/903](sub s) laminates, both containing a set of 90 deg plies centrally located to facilitate investigation of microcracking. Edge replication and X-ray-radiography were utilized to quantify damage. Sequenced creep tests were performed to characterize viscoelastic and aging parameters. Results indicate that while the aging times studied have limited ]Influence on damage evolution, elevated temperature and viscoelastic effects have a profound effect on the damage mode seen. Some results are counterintuitive, including the lower strain to failure for elevated temperature tests and the catastrophic failure mode observed for the [+/- 45/9O3](sub s), specimens. The

  4. Carbon fiber polymer-matrix structural composites for electrical-resistance-based sensing

    Science.gov (United States)

    Wang, Daojun

    This dissertation has advanced the science and technology of electrical-resistance-based sensing of strain/stress and damage using continuous carbon fiber epoxy-matrix composites, which are widely used for aircraft structures. In particular, it has extended the technology of self-sensing of carbon fiber polymer-matrix composites from uniaxial longitudinal loading and flexural loading to uniaxial through-thickness loading and has extended the technology from structural composite self-sensing to the use of the composite (specifically a one-lamina composite) as an attached sensor. Through-thickness compression is encountered in the joining of composite components by fastening. Uniaxial through-thickness compression results in strain-induced reversible decreases in the through-thickness and longitudinal volume resistivities, due to increase in the fiber-fiber contact in the through-thickness direction, and minor-damage-induced irreversible changes in these resistivities. The Poisson effect plays a minor role. The effects in the longitudinal resistivity are small compared to those in the through-thickness direction, but longitudinal resistance measurement is more amenable to practical implementation in structures than through-thickness resistance measurement. The irreversible effects are associated with an increase in the through-thickness resistivity and a decrease in the longitudinal resistivity. The through-thickness gage factor is up to 5.1 and decreases with increasing compressive strain above 0.2%. The reversible fractional change in through-thickness resistivity per through-thickness strain is up to 4.0 and decreases with increasing compressive strain. The irreversible fractional change in through-thickness resistivity per unit through-thickness strain is around -1.1 and is independent of the strain. The sensing is feasible by measuring the resistance away from the stressed region, though the effectiveness is less than that at the stressed region. A one

  5. Selective gene transfer to endometrial cancer cells by a polymer against matrix metalloproteinase 2 (MMP-2).

    Science.gov (United States)

    Han, Joo Youn; Choi, Dong Soon; Kim, Changhoon; Joo, Hyun; Min, Churl K

    2008-04-01

    A novel cancer-cell-specific gene delivery vector with high transfection efficiency was designed and tested with an in vitro coculture consisting of the human endometrial adenocarcinoma cell line, HEC-1A cells, and normal endometrial stromal cells. For the cancer-cell targeting, polyethylenimine (PEI), a cationic polymer that can be easily combined with anionic DNA to form a particulate complex, polyplex, being capable of transferring a gene into a variety of cells, was covalently conjugated with antibodies against matrix metalloproteinase 2 (MMP-2), a typical surface-marker protein on cancer cells known for its close correlation with angiogenesis and invasion in many types of cancer, using the heterofunctional cross-linker, n-succinimidyl 3-(2-pyridyldithio)-propionamide. Biophysical properties and transfection efficiencies of anti-MMP-2-conjugated PEI were analyzed by means of dynamic light scattering, laser Doppler anemometry, and flow cytometry. Our results reveal that (1) the PEI-anti-MMP-2 antibody conjugate maintains physical parameters, including sizes and surface charges, which appear to be favorable for gene transfer and (2) when the pEGFP-N3 plasmid complexes of the PEI-anti-MMP-2 antibody conjugate are applied to the coculture consisting of HEC-1A cells and human stromal cells, a high level of green fluorescent protein expression occurs in HEC-1A cells over stromal cells, suggesting a specific gene transfer targeting cancer cells. Therefore, targeting invading cancer cells with the PEI-anti-MMP-2 antibody conjugate could be promising in endometrial cancer treatment, and this gene delivery system deserves further optimization in the context of targeted therapeutic gene delivery.

  6. Measurements of Erosion Wear Volume Loss on Bare and Coated Polymer Matrix Composites

    Science.gov (United States)

    Miyoshi, Kazuhisa; Sutter, James K.; Mondry, Richard J.; Bowman, Cheryl; Ma, Kong; Horan, Richard A.; Naik, Subhash K.; Cupp, Randall J.

    2003-01-01

    An investigation was conducted to examine the erosion behavior of uncoated and coated polymer matrix composite (PMC) specimens subjected to solid particle impingement using air jets. The PMCs were carbon-Kevlar (DuPont, Wilmington, DE) fiber-epoxy resin composites with a temperature capability up to 393 K (248 F). Tungsten carbide-cobalt (WC-Co) was the primary topcoat constituent. Bondcoats were applied to the PMC substrates to improve coating adhesion; then, erosion testing was performed at the University of Cincinnati. All erosion tests were conducted with Arizona road-dust (ARD), impinging at angles of 20 and 90 on both uncoated and two-layer coated PMCs at a velocity of 229 m/s and at a temperature of 366 K (200 F). ARD contains primarily 10-m aluminum oxide powders. Vertically scanning interference microscopy (noncontact, optical profilometry) was used to evaluate surface characteristics, such as erosion wear volume loss and depth, surface topography, and surface roughness. The results indicate that noncontact, optical interferometry can be used to make an accurate determination of the erosion wear volume loss of PMCs with multilayered structures while preserving the specimens. The two-layered (WC-Co topcoat and metal bondcoat) coatings on PMCs remarkably reduced the erosion volume loss by a factor of approximately 10. The tenfold increase in erosion resistance will contribute to longer PMC component lives, lower air friction, reduced related breakdowns, decreased maintenance costs, and increased PMC reliability. The decrease in the surface roughness of the coated vanes will lead to lower air friction and will subsequently reduce energy consumption. Eventually, the coatings could lead to overall economic savings.

  7. Polymer-nanocomposite brush-like architectures as an all-solid electrolyte matrix.

    Science.gov (United States)

    Gowneni, Soujanya; Ramanjaneyulu, Kota; Basak, Pratyay

    2014-11-25

    Herein, we report on polymer-nanocomposites with brush-like architectures and evaluate their feasibility as an all-solid electrolyte matrix supporting Li(+)-ion conduction. Showcased as a first example in the domain of electrolyte research, the study probes several key factors, such as (i) core morphology, (ii) surface modifiers/functionality, (iii) grafting length, and (iv) density of the brushes, and determines their role on the overall electrochemical properties of these nanostructured organic-inorganic hybrids. Nanostructured titania was synthesized via wet-chemical approaches using either controlled hydrolysis or hydrothermal methods. Exercising suitable control on reaction parameters led to well-defined morphologies/phases, such as nanoparticles, nanospindles, nanourchins, nanorods or nanotubes, in either anatase, rutile or mixed forms. Covalent anchoring on titania nanostructures was achieved using dopamine, gallic acid and glycerol as small organic moieties. A one-pot process of priming the available surface functional groups postmodification with isocyanate chemistry was followed by grafting polyethylene glycol monomethyl ethers of desired chain lengths. Finally, complexation with lithium salt yielded electrolyte compositions where the ethylene oxide (EO) fractions aid in ion-solvation with ease. The synthesized materials were characterized in detail employing XRD, TEM, DRS-UV, FTIR, micro-Raman, TG-DTA and DSC at each stage to confirm the products and ascertain the physicochemical properties. Comprehensive evaluation using temperature-step electrochemical impedance spectroscopy (EIS) of these brush-like nanocomposites provided crucial leads toward establishing a plausible physical model for the system and understanding the mechanism of ion transport in these all-solid matrices. The preliminary results on ionic conductivity (σ) obtained for some of the compositions are estimated to be within the range of ∼10(-4) to 10(-5) S cm(-1) in the temperature

  8. Encapsulation of Mentha Oil in Chitosan Polymer Matrix Alleviates Skin Irritation.

    Science.gov (United States)

    Mishra, Nidhi; Rai, Vineet Kumar; Yadav, Kuldeep Singh; Sinha, Priyam; Kanaujia, Archana; Chanda, Debabrata; Jakhmola, Apurva; Saikia, Dharmendra; Yadav, Narayan Prasad

    2016-04-01

    Mentha spicata L. var. viridis oil (MVO) is a potent antifungal agent, but its application in the topical treatment is limited due to its irritancy and volatility. It was aimed to develop more efficient, chitosan-incrusted MVO microspheres with reduced volatility and lesser irritancy and to dispense it in the form of ointment. Simple coacervation technique was employed to microencapsulate MVO in chitosan matrix. Morphological properties and polymer cross-linking were characterized by scanning electron microscopy and differential scanning calorimetry, respectively. Optimization was carried out on the basis of entrapment efficiency (EE) using response surface methodology. Well-designed microspheres having smooth surface and spherical shape were observed. EE (81.20%) of optimum batch (R21) was found at 1.62% w/v of cross-linker, 5.4:5 of MVO to chitosan ratio and at 1000 rpm. R21 showed 69.38 ± 1.29% in vitro MVO release in 12 h and 96.92% retention of MVO in microspheres even after 8 week. Ointments of PEG 4000 and PEG 400 comprising MVO (F1) and R21 (F2) were developed separately. F2 showed comparatively broader zone of growth inhibition (13.33 ± 1.76-18.67 ± 0.88 mm) and less irritancy (PII 0.5833, irritation barely perceptible) than that of F1. F2 was able to avoid the direct contact of mild irritant MVO with the skin and to reduce its rapid volatility. Controlled release of MVO helped in lengthening the duration of availability of MVO in agar media and hence improved its therapeutic efficacy. In conclusion, a stable and non-irritant formulation with improved therapeutic potential was developed.

  9. Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol.

    Science.gov (United States)

    Alshehri, Saad M; Almuqati, Turki; Almuqati, Naif; Al-Farraj, Eida; Alhokbany, Norah; Ahamad, Tansir

    2016-10-20

    A novel catalyst for the reduction of 4-nitrophenol (4-NP) was prepared using carboxyl group-functionalized multiwalled carbon nanotubes (MWCNTs), polymer matrix, and silver nanoparticles (AgNPs). The AgNPs were prepared by the reduction of silver nitrate by trisodium citrate in the MWCNTs-polymer nanocomposite; the size of the synthesized AgNPs was found to be 3nm (average diameter). The synthesized nanocomposites were characterized using several analytical techniques. Ag@MWCNTs-polymer composite in the presence of sodium borohydride (NaBH4) in aqueous solution is an effective catalyst for the reduction of 4-NP. The apparent kinetics of reduction has a pseudo-first-order kinetics, and the rate constant and catalytic activity parameter were found to be respectively 7.88×10(-3)s(-1)and 11.64s(-1)g(-1). The MWCNTs-polymer nanocomposite renders stability to AgNPs against the environment and the reaction medium, which means that the Ag@MWCNTs-polymer composite can be re-used for many catalytic cycles.

  10. Polymer matrix composite materials reinforced by Tb0.3Dy0.7Fe1.9 magnetostrictive particles

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2009-11-01

    Full Text Available The goal of this work was to describe manufacturing process of polymer matrix composite materials reinforced by Tb0.3Dy0.7Fe1.9 particles and to observe changes of physical properties (magnetic properties and magnetostriction of samples with randomly oriented magnetostrictive particles in epoxy matrix and with aligning these particles in the matrix during fabrication process.Design/methodology/approach: Polymer matrix composite materials reinforced by the Tb0.3Dy0.7Fe1.9 magnetostrictive particles fabricating method was developed during the investigations, making it possible to obtain materials with good physical properties. The influence of the concentration of the Td0.3Dy0.7Fe1.9 particles on magnetic and magnetostrictive properties was estimated. Metallographic examination of powder’s morphology as well as EDS and XRD analysis and observations the structure of composite materials were made.Findings: The influence of magnetic particle alignment is observed in the magnetic and magnetostriction responses. The magnetostrictive response improves when the magnetic particles are oriented in magnetic fields and reaches approximately 184 ppm for oriented composite materials with 25% volume fraction of Td0.3Dy0.7Fe1.9 particles.Practical implications: For potential applications in technological devices, such as sensors and actuators, it is desirable to form composite systems by combining magnetostrictive phases with matrix, in order to have giant magnetostrictive effect and, at the same time, to reduce disadvantages of monolithic material.Originality/value: The originality of this work is based on manufacturing process, especially of applying magnetic alignment for ordering Td0.3Dy0.7Fe1.9 particles during polymerization of epoxy matrix.

  11. Using Selected Chemical and Physical Factors to Cross-link a BioCo Polymer Binder - Mineral Matrix System

    Directory of Open Access Journals (Sweden)

    B. Grabowska

    2013-04-01

    Full Text Available This publication describes research on the course of the process of cross-linking new BioCo polymer binders - in the form of water-based polymer compositions of poly(acrylic acid or poly(sodium acrylate/modified polysaccharide - using selected physical and chemical factors. It has been shown that the type of cross-linking factor used influences the strength parameters of the moulding sand. The crosslinking factors selected during basic research make it possible to obtain sand strengths similar to those of samples of sands bonded with commercial binders. Microwave radiation turned out to be the most effective cross-linking factor in a binder-matrix system. It was proven that adsorption in the microwave radiation field leads to the formation of polymer lattices with hydrogen bonds which play a major role in maintaining the formed cross-linked structures in the binder-matrix system. As a result, the process improves the strength parameters of the sand, whereas the hardening process in a microwave field significantly shortens the setting time.

  12. Determination of carbon fiber adhesion to thermoplastic polymers using the single fiber/matrix tensile test

    Science.gov (United States)

    Bascom, W. D.; Cordner, L. W.; Hinkley, J. L.; Johnston, N. J.

    1986-01-01

    The single fiber adhesion shear test has been adapted to testing the adhesion between carbon fiber and thermoplastic polymers. Tests of three thermoplastics, polycarbonate, polyphenylene oxide and polyetherimide indicate the shear adhesion strength is significantly less than of an epoxy polymer to the same carbon fiber.

  13. Associative Flow Rule Used to Include Hydrostatic Stress Effects in Analysis of Strain-Rate-Dependent Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.

    2004-01-01

    designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. The nonlinearity and the strain-rate dependence of the composite response are due primarily to the matrix constituent. Therefore, in developing material models to be used in the design of impact-resistant composite engine cases, the deformation of the polymer matrix must be correctly analyzed. However, unlike in metals, the nonlinear response of polymers depends on the hydrostatic stresses, which must be accounted for within an analytical model. By applying micromechanics techniques along with given fiber properties, one can also determine the effects of the hydrostatic stresses in the polymer on the overall composite deformation response. First efforts to account for the hydrostatic stress effects in the composite deformation applied purely empirical methods that relied on composite-level data. In later efforts, to allow polymer properties to be characterized solely on the basis of polymer data, researchers at the NASA Glenn Research Center developed equations to model the polymers that were based on a non-associative flow rule, and efforts to use these equations to simulate the deformation of representative polymer materials were reasonably successful. However, these equations were found to have difficulty in correctly analyzing the multiaxial stress states found in the polymer matrix constituent of a composite material. To correct these difficulties, and to allow for the accurate simulation of the nonlinear strain-rate-dependent deformation analysis of polymer matrix composites, in the efforts reported here Glenn researchers reformulated the polymer constitutive equations from basic principles using the concept of an associative flow rule. These revised equations were characterized and validated in an

  14. Inside the structure of a nanocomposite electrolyte membrane: how hybrid particles get along with the polymer matrix.

    Science.gov (United States)

    Maréchal, M; Niepceron, F; Gebel, G; Mendil-Jakani, H; Galiano, H

    2015-02-21

    Hybrid materials remain the target for a fruitful range of investigations, especially for energy devices. A number of hybrid electrolyte membranes consisting of inorganic and organic phases were then synthesized. Mechanical, solvent uptake and ionic transport properties were studied with the key point being the characteristic length scale of the interaction between the phases. A group of nanocomposite membranes made of polystyrenesulfonic acid-grafted silica particles embedded in a Poly(Vinylidene Fluoride-co-HexaFluoroPropene) (PVdF-HFP) matrix was studied by combining neutron and X-ray scatterings on the nanometer to angstrom scale. This approach allows for the variation in the morphology and structure as a function of particle loading to be described. These studies showed that the particles aggregate with increasing particle loading and these aggregates swell, creating a physical interaction with the polymer matrix. Particle loadings lower than 30 wt% induce a slight strain between both of the subphases, namely the polymer matrix and the particles. This strain is decreased with particle loading between 20 and 30 wt% conjointly with the beginning of proton conduction. Then the percolation of the aggregates is the beginning of a significant increase of the conduction without any strain. This new insight can give information on the variation in other important intrinsic properties.

  15. Use of hydrophilic and hydrophobic polymers for the development of controlled release tizanidine matrix tablets

    Directory of Open Access Journals (Sweden)

    Tariq Ali

    2014-12-01

    Full Text Available The aim of the present study was to develop tizanidine controlled release matrix. Formulations were designed using central composite method with the help of design expert version 7.0 software. Avicel pH 101 in the range of 14-50% was used as a filler, while HPMC K4M and K100M in the range of 25-55%, Ethylcellulose 10 ST and 10FP in the range of 15 - 45% and Kollidon SR in the range of 25-60% were used as controlled release agents in designing different formulations. Various physical parameters including powder flow for blends and weight variation, thickness, hardness, friability, disintegration time and in-vitro release were tested for tablets. Assay of tablets were also performed as specified in USP 35 NF 32. Physical parameters of both powder blend and compressed tablets such as compressibility index, angle of repose, weight variation, thickness, hardness, friability, disintegration time and assay were evaluated and found to be satisfactory for formulations K4M2, K4M3, K4M9, K100M2, K100M3, K100M9, E10FP2, E10FP9, KSR2, KSR3 & KSR9. In vitro dissolution study was conducted in 900 ml of 0.1N HCl, phosphate buffer pH 4.5 and 6.8 medium using USP Apparatus II. In vitro release profiles indicated that formulations prepared with Ethocel 10 standard were unable to control the release of drug while formulations K4M2, K100M9, E10FP2 & KSR2 having polymer content ranging from 40-55% showed a controlled drug release pattern in the above mentioned medium. Zero-order drug release kinetics was observed for formulations K4M2, K100M9, E10FP2 & KSR2. Similarity test (f2 results for K4M2, E10FP2 & KSR2 were found to be comparable with reference formulation K100M9. Response Surface plots were also prepared for evaluating the effect of independent variable on the responses. Stability study was performed as per ICH guidelines and the calculated shelf life was 24-30 months for formulation K4M2, K100M9 and E10FP2.

  16. The Impact of Methods of Forming on the Mechanical Properties of Fiber-reinforced Polymer-matrix Composite Materials

    Directory of Open Access Journals (Sweden)

    Piernik Krzysztof

    2015-11-01

    Full Text Available The aim of this paper was to analyze how different techniques of production of fibrous composite materials affect the quality and strength properties of composite laminates. In this study, we use experimental data concerning a composite fabricated with the by hand lay-up and vacuum bagging method. The composites have a polyester matrix (Firestop 8175-w-1 reinforced with mate-glass fiber fabric [0/90/0/90] E glass fiber, respectively. The process parameters and criteria were determined before the samples were cut, namely the amount and soaking time of the composite with the polymer resin.

  17. Applications of silver nanoparticles stabilized and/or immobilized by polymer matrixes

    Science.gov (United States)

    Tylkowski, Bartosz; Trojanowska, Anna; Nowak, Martyna; Marciniak, Lukasz; Jastrzab, Renata

    2017-07-01

    Nanomaterials frequently possess unique and noticeably changed physical, chemical and biological properties compared to their macro scaled corresponding item. Utilization of nanoparticles habitually requires the construction of integrated chemical systems. Most popular of these are polymer-supported nanoparticles. In this review, we provide the reader with the last developments and breakthrough technologies concerning silver nanoparticles (AgNPs), one of the most comprehensively studied nanomaterials, considering the polymer types and processes used for the nanocomposite membranes preparation.

  18. Nanoparticle Self-Assembly in a Polymer Matrix and Its Impact on Phase Separation

    Science.gov (United States)

    Douglas, Jack

    2011-03-01

    The ubiquitous clustering of nanoparticles (NPs) in solutions and polymer melts depends sensitively on the strength and directionality of the effective NP-NP interactions, as well as on the molecular geometry and interactions of the dispersing fluid. Surface functionalization apparently can also lead to emergent anisotropic interactions that can influence NP dispersion. Since NP clustering can strongly influence the properties of polymer nanocomposites and NP solutions, we investigate the reversible self-assembly of model NPs into clusters under equilibrium conditions through a combination of simulation and analytic methods. First, we performed molecular dynamics simulations of polyhedral NPs in a coarse-grained dense bead--spring polymer melt and find a transition from a dispersed to clustered NP state, consistent with the thermodynamic models of equilibrium particle association such as equilibrium polymerization. We also describe the competition between self-assembly and phase separation in an analytic lattice model of a mixture of polymers and NPs. We then focus on the particularly interesting situation where the associating ``monomeric'' NP species form high molecular mass dynamic polymeric clusters and where the assembly process then transforms the phase boundary from a form typical of a polymer solution to one that more resembles a polymer blend with increasing association near the critical point for phase separation. The model calculations elucidate basic physical principles governing the coupling of self-assembly and phase behavior in these complex mixtures.

  19. High pressure gas separation performance of mixed-matrix polymer membranes containing mesoporous FE(BTC)

    NARCIS (Netherlands)

    Shahid, S.; Nijmeijer, Dorothea C.

    2014-01-01

    Mixed-matrix membranes (MMMs), filled with inorganic particles, provide a means to improve the gas separation performance of polymeric membranes. In this work, MMMs containing the mesoporous metal organic framework (MOF) Fe(BTC) in a Matrimid®-PI matrix were characterized in terms of their carbon di

  20. Towards Acid-Tolerated Ethanol Dehydration: Chitosan-Based Mixed Matrix Membranes Containing Cyano-Bridged Coordination Polymer Nanoparticles.

    Science.gov (United States)

    Wu, C-W; Kang, Chao-Hsiang; Lin, Yi-Feng; Tung, Kuo-Lun; Deng, Yu-Heng; Ahamad, Tansir; Alshehri, Saad M; Suzuki, Norihiro; Yamauchi, Yusuke

    2016-04-01

    Prussian blue (PB) nanoparticles, one of many cyano-bridged coordination polymers, are successfully incorporated into chitosan (CS) polymer to prepare PB/CS mixed matrix membranes (MMMs). The PB nanoparticles are uniformly distributed in the MMMs without the collapse of the original PB structure. As-prepared PB/CS MMMs are used for ethanol dehydration at 25 °C in the pervaporation process. The effect of loading PB in CS matrix on pervaporation performance is carefully investigated. The PB/CS membrane with 30 wt% PB loading shows the best performance with a permeate flux of 614 g. m-2 . h-1 and a separation factor of 1472. The pervaporation using our PB/CS membranes exhibits outstanding performance in comparison with the previously reported CS-based membranes and MMMs. Furthermore, the addition of PB allows PB/CS MMMs to be tolerant of acidic environment. The present work demonstrates good pervaporation performance of PB/CS MMMs for the separation of an ethanol/water (90:10 in wt%) solution. Our new system provides an opportunity for dehydration of bioethanol in the future.

  1. Implementation of Improved Transverse Shear Calculations and Higher Order Laminate Theory Into Strain Rate Dependent Analyses of Polymer Matrix Composites

    Science.gov (United States)

    Zhu, Lin-Fa; Kim, Soo; Chattopadhyay, Aditi; Goldberg, Robert K.

    2004-01-01

    A numerical procedure has been developed to investigate the nonlinear and strain rate dependent deformation response of polymer matrix composite laminated plates under high strain rate impact loadings. A recently developed strength of materials based micromechanics model, incorporating a set of nonlinear, strain rate dependent constitutive equations for the polymer matrix, is extended to account for the transverse shear effects during impact. Four different assumptions of transverse shear deformation are investigated in order to improve the developed strain rate dependent micromechanics model. The validities of these assumptions are investigated using numerical and theoretical approaches. A method to determine through the thickness strain and transverse Poisson's ratio of the composite is developed. The revised micromechanics model is then implemented into a higher order laminated plate theory which is modified to include the effects of inelastic strains. Parametric studies are conducted to investigate the mechanical response of composite plates under high strain rate loadings. Results show the transverse shear stresses cannot be neglected in the impact problem. A significant level of strain rate dependency and material nonlinearity is found in the deformation response of representative composite specimens.

  2. AN ELASTIC STRESS ANALYSIS FOR A POLYMER MATRIX COMPOSITE CANTILEVER BEAM SUBJECTED TO A SINGLE TRANSVERSE FORCE

    Directory of Open Access Journals (Sweden)

    Ayla TEKİN

    2004-03-01

    Full Text Available In this study, elasto-plastic stress analysis is carried out in a polymer matrix composite cantilever beam of arbitrary fiber orientation subjected to a single transverse force applied to the free end by using the anisotropic elasticity theory. The residual stress component of ?x and yield points are determined for 0°, 30°, 45°, 60° and 90° fiber orientation angles. The yielding begins for 0° and 90° fiber orientation angles at the upper and lower surfaces of the beam at the same distances from the free end. It is seen that the yielding begins for 30°, 45° and 60° fiber orientation angles at the upper surface of the beam. The intensity of the residual stress component of ?x is maximum at the upper and lower surfaces of the beam. In this study, the residual stress component of ?x obtained for the polymer matrix composite thermoplastic cantilever beam reinforced by reinforced unidirectional fibers is compared with that of the thermoplastic cantilever beam reinforced by woven Cr-Ni steel fibers.

  3. Designing Solvent Exchange-Induced In Situ Forming Gel from Aqueous Insoluble Polymers as Matrix Base for Periodontitis Treatment.

    Science.gov (United States)

    Srichan, Tharatree; Phaechamud, Thawatchai

    2017-01-01

    An in situ forming gel is a dosage form which is promised for site-specific therapy such as periodontal pocket of periodontitis treatment. Ethylcellulose, bleached shellac, and Eudragit RS were applied in this study as a polymeric matrix for in situ forming gel employing N-methyl pyrrolidone (NMP) as solvent. Solutions comprising ethylcellulose, bleached shellac, and Eudragit RS in NMP were evaluated for viscosity, rheology, and rate of water penetration. Ease of administration by injection was determined as the force required to expel polymeric solutions through a needle using texture analyzer. In vitro gel formation and in vitro gel degradation were conducted after injection into phosphate buffer solution pH 6.8. Ethylcellulose, bleached shellac, and Eudragit RS could form the in situ gel, in vitro. Gel viscosity and pH value depended on percentage amount of the polymer, whereas the water diffusion at early period likely relied on types of polymer. Furthermore, the solutions containing higher polymer concentration exhibited the lower degree of degradation. All the preparations were acceptable as injectable dosage forms because the applied force was lower than 50 N. All of them inhibited Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans, and Porphyrommonas gingivalis growth owing to antimicrobial activity of NMP which exhibited a potential use for periodontitis treatment. Moreover, the developed systems presented as the solvent exchange induced in situ forming gel and showed capability to be incorporated with the suitable antimicrobial active compounds for periodontitis treatment which should be further studied.

  4. Evaluation of the influence of the polymer-filler interaction on compounds based on epoxidized elastomeric matrix and precipitated silica

    Directory of Open Access Journals (Sweden)

    Tatiana L. A. C. Rocha

    2006-06-01

    Full Text Available The introduction of epoxy groups into the main chain of elastomers has emerged as a promising alternative, considering the monitoring of polymer-filler interaction leading to changes in the properties of vulcanizates. The epoxidation reaction (in situ was chosen to modify elastomers, such as polybutadiene (BR and copolymer of styrene-butadiene-rubber (SBR, because it is a simple, easily controlled reaction, even considering the small epoxidation degree. The modification degree of the polymeric chain was studied with FT-IR and ¹H-NMR. The shift of the Tg to high temperatures with the increase of the epoxy group in the polymer chain was monitored through differential scanning calorimetry (DSC. An analysis of the dynamic modulus of the material in relation to its dependence on the amplitude and temperature was carried out. The interaction between epoxidized elastomeric matrix and silica as filler was extremely improved, even in the presence of very low content of epoxy groups into the polymer chain.

  5. Patterned structures of in situ size controlled CdS nanocrystals in a polymer matrix under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fragouli, D; Pompa, P P; Caputo, G; Cingolani, R; Athanassiou, A [NNL-National Nanotechnology Laboratory, INFM, CNR, Via Arnesano, 73100 Lecce (Italy); Resta, V; Laera, A M; Tapfer, L [ENEA, Centro Ricerche Brindisi, SS7 Appia Km 706, I-72100 Brindisi (Italy)], E-mail: despina.fragouli@unile.it

    2009-04-15

    A method of in situ formation of patterns of size controlled CdS nanocrystals in a polymer matrix by pulsed UV irradiation is presented. The films consist of Cd thiolate precursors with different carbon chain lengths embedded in TOPAS polymer matrices. Under UV irradiation the precursors are photolyzed, driving to the formation of CdS nanocrystals in the quantum size regime, with size and concentration defined by the number of incident UV pulses, while the host polymer remains macroscopically/microscopically unaffected. The emission of the formed nanocomposite materials strongly depends on the dimensions of the CdS nanocrystals, thus, their growth at the different phases of the irradiation is monitored using spatially resolved photoluminescence by means of a confocal microscope. X-ray diffraction measurements verified the existence of the CdS nanocrystals, and defined their crystal structure for all the studied cases. The results are reinforced by transmission electron microscopy. It is proved that the selection of the precursor determines the efficiency of the procedure, and the quality of the formed nanocrystals. Moreover it is demonstrated that there is the possibility of laser induced formation of well-defined patterns of CdS nanocrystals, opening up new perspectives in the development of nanodevices.

  6. Poly vinyl acetate and ammonio methacrylate copolymer as unconventional polymer blends increase the mechanical robustness of HPMC matrix tablets.

    Science.gov (United States)

    Ali, R; Dashevsky, A; Bodmeier, R

    2017-01-10

    The objective was to investigate poly vinyl acetate (Kollicoat(®) SR 30 D) and ammonio methacrylate copolymer (Eudragit(®) RL 30 D) blends as coatings to increase the mechanical robustness of hydroxypropyl methylcellulose (HPMC) matrix tablets. Poly vinyl acetate (Kollicoat(®) SR 30 D - KSR) was selected for its flexibility and ammonio methacrylate copolymer (Eudragit(®) RL 30 D - ERL) because of its high permeability. Films based on KSR:ERL blends were prepared by casting or spraying aqueous dispersions of these polymers and were characterized by water uptake, dry mass loss and mechanical properties. KSR:ERL blends were investigated as coating materials to improve the robustness, mechanical strength and drug release from the HPMC matrix tablets containing propranolol HCl, caffeine and carbamazepine as model drugs. Both HPMC and the polymer coating affected the propranolol release. The release and the mechanical properties could be easily adjusted by varying the polymer blend ratio. The flexibility increased with increasing KSR content. At an 8% w/w coating level, a force of 3.2N was required to rupture the coating of the swollen tablet after 16h in the release medium; the coated tablets were thus robust to withstand gastrointestinal forces. The coating level (6%-10%, w/w) and dissolution agitation rate (50rpm to 150rpm) had no effect on the drug release. The water-insoluble carbamazepine was not released from the coated tablets as HPMC erosion, which is necessary for the release of a poorly water-soluble drug was hindered by the coating. The release of the water-soluble propranolol increased with increasing drug content and decreased with increasing HPMC content.

  7. Study the Effect of Different Reinforcements on the Damping Properties of the Polymer Matrix Composite

    Directory of Open Access Journals (Sweden)

    Mustafa Ziyara Shamukh

    2016-09-01

    Full Text Available In this research, damping properties for composite materials were evaluated using logarithmic decrement method to study the effect of reinforcements on the damping ratio of the epoxy matrix. Three stages of composites were prepared in this research. The first stage included preparing binary blends of epoxy (EP and different weight percentages of polysulfide rubber (PSR (0%, 2.5%, 5%, 7.5% and 10%. It was found that the weight percentage 5% of polysulfide was the best percentage, which gives the best mechanical properties for the blend matrix. The advantage of this blend matrix is that; it mediates between the brittle properties of epoxy and the flexible properties of a blend matrix with the highest percentage of PSR. The second stage included reinforcing the best blend matrix of epoxy-polysulfide (the blend matrix with the best percentage of polysulfide resulted from the previous stage, by different volume percentages of short fibers (Carbon& Glass separately and randomly. The volume percentages of fibers were (2.5%, 5%, 7.5%, and 10%. The third stage included reinforcing the blend composites with highest percentages of carbon and glass fiber, by different weight percentages of nano-particles (Red mud& Fly ash separately. The weight percentages of particles were (0.5%, 1%, 1.5%, and 2%. The experimental results showed that blending polysulfide rubber with epoxy increased the damping ratio. As for reinforcement materials, they decreased the damping ratio, where glass fiber composites have significantly higher damping ratio than other composites.

  8. Polymer-metal organic frameworks (MOFs) mixed matrix membranes for gas separation applications

    NARCIS (Netherlands)

    Shahid, Salman

    2015-01-01

    The performance of polymeric membranes is often limited by a trade-off between membrane permeability and selectivity, the so-called Robeson upper bound. Additionally, in high pressure CO2 capture applications, excessive swelling of the polymer membrane often leads to plasticization resulting in decr

  9. Polymer-metal organic frameworks (MOFs) mixed matrix membranes for gas separation applications

    NARCIS (Netherlands)

    Shahid, S.

    2015-01-01

    The performance of polymeric membranes is often limited by a trade-off between membrane permeability and selectivity, the so-called Robeson upper bound. Additionally, in high pressure CO2 capture applications, excessive swelling of the polymer membrane often leads to plasticization resulting in

  10. Polymer-metal organic frameworks (MOFs) mixed matrix membranes for gas separation applications

    NARCIS (Netherlands)

    Shahid, S.

    2015-01-01

    The performance of polymeric membranes is often limited by a trade-off between membrane permeability and selectivity, the so-called Robeson upper bound. Additionally, in high pressure CO2 capture applications, excessive swelling of the polymer membrane often leads to plasticization resulting in decr

  11. Ultralow Friction with Hydrophilic Polymer Brushes in Water as Segregated from Silicone Matrix

    DEFF Research Database (Denmark)

    Røn, Troels; Javakhishvili, Irakli; Hvilsted, Søren

    2015-01-01

    Lubrication is essential to minimize damage to underlying material and ensure low energy dissipation in biological and man-made mechanical sys- tems. Surface grafting of hydrophilic polymer brushes is a powerful means to render materials that are slippery in aqueous environments. However, present...

  12. Strain Rate Dependent Deformation and Strength Modeling of a Polymer Matrix Composite Utilizing a Micromechanics Approach. Degree awarded by Cincinnati Univ.

    Science.gov (United States)

    Goldberg, Robert K.

    1999-01-01

    Potential gas turbine applications will expose polymer matrix composites to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under extreme conditions. Specifically, analytical methods designed for these applications must have the capability of properly capturing the strain rate sensitivities and nonlinearities that are present in the material response. The Ramaswamy-Stouffer constitutive equations, originally developed to analyze the viscoplastic deformation of metals, have been modified to simulate the nonlinear deformation response of ductile, crystalline polymers. The constitutive model is characterized and correlated for two representative ductile polymers. Fiberite 977-2 and PEEK, and the computed results correlate well with experimental values. The polymer constitutive equations are implemented in a mechanics of materials based composite micromechanics model to predict the nonlinear, rate dependent deformation response of a composite ply. Uniform stress and uniform strain assumptions are applied to compute the effective stresses of a composite unit cell from the applied strains. The micromechanics equations are successfully verified for two polymer matrix composites. IM7/977-2 and AS4/PEEK. The ultimate strength of a composite ply is predicted with the Hashin failure criteria that were implemented in the composite micromechanics model. The failure stresses of the two composite material systems are accurately predicted for a variety of fiber orientations and strain rates. The composite deformation model is implemented in LS-DYNA, a commercially available transient dynamic explicit finite element code. The matrix constitutive equations are converted into an incremental form, and the model is implemented into LS-DYNA through the use of a user defined material subroutine. The deformation response of a bulk polymer and a polymer matrix composite are predicted by finite element analyses. The results

  13. Development of scalable methods for the utilization of multi-walled carbon nanotubes in polymer and metal matrix composites

    Science.gov (United States)

    Vennerberg, Danny Curtis

    Multi-walled carbon nanotubes (MWCNTs) have received considerable attention as reinforcement for composites due to their high tensile strength, stiffness, electrical conductivity and thermal conductivity as well as their low coefficient of thermal expansion. However, despite the availability of huge quantities of low-cost, commercially synthesized nanotubes, the utilization of MWCNTs in engineering composites is extremely limited due to difficulties in achieving uniform dispersion and strong interfacial bonding with the matrix. A proven method of enhancing the nanotube-polymer interface and degree of MWCNT dispersion involves functionalizing the MWCNTs through oxidation with strong acids. While effective at laboratory scales, this technique is not well-suited for large-scale operations due to long processing times, poor yield, safety hazards, and environmental concerns. This work aims to find scalable solutions to several of the challenges associated with the fabrication of MWCNT-reinforced composites. For polymer matrix composite applications, a rapid, dry, and cost-effective method of oxidizing MWCNTs with O3 in a fluidized bed was developed as an alternative to acid oxidation. Oxidized MWCNTs were further functionalized with silane coupling agents using water and supercritical carbon dioxide as solvents in order to endow the MWCNTs with matrix-specific functionalities. The effect of silanization on the cure kinetics, rheological behavior, and thermo-mechanical properties of model epoxy nanocomposites were investigated. Small additions of functionalized MWCNTs were found to increase the glass transition temperature, strength, and toughness of the epoxy. In order to achieve composite properties approaching those of individual nanotubes, new approaches are needed to allow for high loadings of MWCNTs. One strategy involves making macroscopic mats of nanotubes called buckypaper (BP) and subsequently infiltrating the mats with resin in processes familiar to

  14. Effects of demineralized bone matrix and a 'Ricinus communis' polymer on bone regeneration: a histological study in rabbit calvaria.

    Science.gov (United States)

    Laureano Filho, José R; Andrade, Emanuel S S; Albergaria-Barbosa, José R; Camargo, Igor B; Garcia, Robson R

    2009-09-01

    The aim of the present study was to histologically analyze the effects of bovine and human demineralized bone matrix and a Ricinus communis polymer on the bone regeneration process. Two surgical bone defects were created in rabbit calvaria, one on the right and the other on the left side of the parietal suture. Eighteen rabbits were divided into three groups. In Group I, the experimental defect was treated with bovine demineralized bone matrix, Group II with human demineralized bone matrix, and in Group III, the experimental cavity was treated with polyurethane resin derived from Ricinus communis oil. The control defects were filled with the animals' own blood. The animals were sacrificed after 7 and 15 weeks. Histological analysis revealed that in all groups (control and experimental), bone regeneration increased with time. The least time required for bone regeneration was noted in the control group, with a substantial decrease in the thickness of the defect. All materials proved to be biologically compatible, but polyurethane resorbed more slowly and demonstrated considerably better results than the demineralized bone matrices.

  15. Implementation of an Associative Flow Rule Including Hydrostatic Stress Effects Into the High Strain Rate Deformation Analysis of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    A previously developed analytical formulation has been modified in order to more accurately account for the effects of hydrostatic stresses on the nonlinear, strain rate dependent deformation of polymer matrix composites. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical J2 plasticity theory definitions of effective stress and effective inelastic strain, along with the equations used to compute the components of the inelastic strain rate tensor, are appropriately modified. To verify the revised formulation, the shear and tensile deformation of two representative polymers are computed across a wide range of strain rates. Results computed using the developed constitutive equations correlate well with experimental data. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite for several fiber orientation angles across a variety of strain rates. The computed values compare well to experimentally obtained results.

  16. Processing and properties of ceramic matrix-polymer composites for dental applications

    Science.gov (United States)

    Huang, Hsuan Yao

    The basic composite structure of natural hard tissue was used to guide the design and processing of dental restorative materials. The design incorporates the methodology of using inorganic minerals as the main structural phase reinforced with a more ductile but tougher organic phase. Ceramic-polymer composites were prepared by slip casting a porous ceramic structure, heating and chemical treating the porous preform, infiltrating with monomer and then curing. The three factors that determined the mechanical properties of alumina-polymer composites were the type of polymer used, the method of silane treatments, and the type of bond between particles in the porous preforms. Without the use of silane coupling agents, the composites were measured to have a lower strength. The composite with a more "flexible" porous alumina network had a greater ability to plastically dissipate the energy of propagating cracks. However, the aggressive nature of the alumina particles on opposing enamel requires that these alumina-polymer composites have a wear compatible coating for practical application. A route to dense bioactive apatite wollastonite glass ceramics (AWGC)-polymer composites was developed. The problems associated with glass dissolution into the aqueous medium for slip casting were overcome with the use of silane. The role of heating rate and development of ceramic compact microstructure on composite properties was explored. In general, if isothermal heating was not applied, decreasing heating rate increased glass crystallinity and particle-particle fusion, but decreased pore volume. Also composite strength and fracture toughness decreased while modulus and hardness increased with decreasing heating rate. If isothermal heating was applied, glass crystallinity, pore content, and composite mechanical properties showed relatively little change regardless of the initial heating rate. The potential of AWGC-polymer composites for dental and implant applications was explored

  17. Subnanometer-Diameter Wires Isolated in a Polymer Matrix by Fast Polymerization

    Science.gov (United States)

    Golden; DiSalvo; Frechet; Silcox; Thomas; Elman

    1996-08-09

    The preparation and analysis of inorganic-organic polymer nanocomposites consisting of inorganic nanowires and multiwire "cables" in a random-coil organic polymer host is reported. Dissolution of inorganic (LiMo3Se3)n wires in a strongly coordinating monomer, vinylene carbonate, and the use of a rapid polymerization in the presence of a cross-linking agent produce nanocomposites without phase separation. Polymerization of dilute solutions yields a material containing mostly (Mo3Se3(-))n mono- and biwires, 6 to 20 angstroms in diameter and 50 to 100 nanometers long. Polymerization of more concentrated liquid crystalline solutions yields a nanocomposite containing oriented multiwire cables, 20 to 40 angstroms in diameter and up to 1500 nanometers long, that display optical anisotropy and electrical conductivity.

  18. Study on dosimetry characteristics of polymer–CNT nanocomposites: Effect of polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Malekie, Shahryar [Radiation Application Research School, Nuclear Science & Technology Research Institute, PO Box 11365-3486, Tehran (Iran, Islamic Republic of); Ziaie, Farhood, E-mail: fziaie@aeoi.org.ir [Radiation Application Research School, Nuclear Science & Technology Research Institute, PO Box 11365-3486, Tehran (Iran, Islamic Republic of); Esmaeli, Abdolreza [Plasma and Fusion Research School, Nuclear Science & Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2016-04-21

    In this research work, the current density of polymer–carbon nanotube nanocomposite in different weight percentages of nanotubes, over the radiation absorbed dose under a fixed DC voltage for different polymer matrices such as high density polyethylene, polycarbonate, polyethylene terephthalate, polymethyl methacrylate, and polystyrene was investigated via finite element method. The predicted electrical percolation threshold values in different composites were validated by experimental results published by other scientists. The absorbed dose value was considered as multiplying of heat capacity and temperature rise of the composite, regarding the calorimetric approach. Results show that the polymer type having different characteristics of relative permittivity and heat capacity could affect the sensitivity and working dose range of the composite as a dosimeter.

  19. Screen-printed passive matrix displays based on light-emitting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Birnstock, J.; Blassing, J.; Hunze, A.; Scheffel, M.; Sto{ss}el, M.; Heuser, K.; Wittmann, G.; Worle, J.; Winnacker, A.

    2001-06-11

    Due to their outstanding properties, e.g., good contrast, wide viewing angle, low power consumption, and self-emission organic light-emitting (OLE) displays on the basis of conjugated polymers are on the verge of commercialization. Two major disadvantages of the current processing technique for the polymers{emdash}spin coating{emdash}are the material waste and the difficulties involved in patterning multichrome or even full-color displays. Therefore, we investigated the screen-printing technique for the production of OLE displays. In this letter, we present performance data and images of screen-printed OLE diodes. They are already comparable to spin-coated ones. We observed luminance of 10000 cd/m2 at 8 V and peak efficiencies exceeding 10 cd/A for green diodes. These data indicate that printed organic displays have the potential to replace {open_quotes}classical{close_quotes} spin-coated devices. {copyright} 2001 American Institute of Physics.

  20. Properties of Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Matrix Composites

    Science.gov (United States)

    Cano, Roberto J.; Kang, Jin Ho; Grimsley, Brian W.; Ratcliffe, James G.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strength- and stiffness-to-weight ratios, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Carbon nanotubes (CNT) offer the potential to enhance the multi-functionality of composites with improved thermal and electrical conductivity. In this study, hybrid CNT/carbon fiber (CF) polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing. Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated.

  1. Effect of temperature gradients on single-strand conformation polymorphism analysis in a capillary electrophoresis system using Pluronic polymer matrix.

    Science.gov (United States)

    Hwang, Hee Sung; Shin, Gi Won; Park, Han Jin; Ryu, Chang Y; Jung, Gyoo Yeol

    2013-09-02

    Capillary electrophoresis-single strand conformation polymorphism (CE-SSCP) analysis is a prominent bioseparation method based on the mobility diversity caused by sequence-induced conformational differences of single-stranded DNA. The use of Pluronic polymer matrix has opened up new opportunities for CE-SSCP, because it improved the resolution for various genetic analyses. However, there still exists a challenge in optimizing Pluronic-based CE-SSCP, because the physical properties of Pluronic solutions are sensitive to temperature, particularly near the gelation temperature, where the viscoelasticity of Pluronic F108 solutions sharply changes from that of a Newtonian fluid to a hydrogel upon heating. We have focused on a set of experiments to control the ambient temperature of the CE system with the aim of enhancing the reliability of the CE-SSCP analysis by using the Applied Biosystems ABI 3130xl genetic analyzer with Pluronic F108 solution matrix. The ambient temperature control allowed us to vary the inlet and outlet portion of the capillary column, while the temperature of the column was kept at 35°C. The resolution to separate 2 single-base-pair-differing DNA fragments was significantly enhanced by changing the temperature from 19 to 30°C. The viscoelastic properties of the F108 solution matrix upon heating were also investigated by ex situ rheological experiments with an effort to reveal how the development of gels in Pluronic solutions affects the resolution of CE-SSCP. We found that the column inlet and outlet temperatures of the capillary column have to be controlled to optimize the resolution in CE-SSCP by using the Pluronic matrix.

  2. Influence of Selected Natural Polymers on In-vitro Release of Colon Targeted Mebeverine HCl Matrix Tablet

    Directory of Open Access Journals (Sweden)

    Dharmarajsinh Chauhan

    2012-06-01

    Full Text Available The objective of the present study was to develop and evaluate colon specific matrices of mebeverine HCl using various polysaccharides like guar gum, Locust bean gum and xanthan gum by direct compression method. The matrix tablets were evaluated for their physico-chemical properties, swelling study, in-vitro release study and stability studies. The prepared tablets were found to be uniform with respect to thickness (5.53 to 6.03 mm and hardness (5.7 to 6.9 kg/cm2. The friability (0.41 to 0.95 % and weight variation (1.04-1.66% of different batch of tablets were found within prescribed limits. Drug content (96.01 to 99.89 % was found uniform within the batches of different tablets. Swelling studies indicated that, matrix tablets prepared with XG (X4 swelled more as compared to those prepared using GG and LBG. Release profiles indicated that, increase in the polymer concentration has drastically retarded the release of Mebeverine Hcl. The optimized tablets prepared using GG (G4, LG (L4 & XG (X4 showed controlled release over periods of 24 hrs, whereas the marketed product controlled the drug release over a period of 12 hrs. The mechanism of drug release was Non-Fickian diffusion controlled first order kinetics for optimized matrix tablets of GG (G4 and LBG (L4 where as for XG (X4 it followed Highuchi model. The developed matrix tablets can be viewed as a better approach in the colonic delivery of Mebeverine HCl.

  3. Study of optical and structural properties of CdSe quantum dot embedded in PVA polymer matrix

    Science.gov (United States)

    Tyagi, Chetna; Sharma, Ambika

    2015-08-01

    To enhance the properties and applicability of devices it is essential to incorporate semiconductor nanoparticles into polymer matrix. This introduces a new branch of science which includes device fabrications such as gas sensors, nonlinear optics, catalysis etc. Herein, we have synthesized CdSe/PVA nanocomposite (NC) material using wet chemical synthesis technique. The XRD studies revealed the formation of crystalline structure of CdSe nanoparticles (NP's) and PVA NC's with an average size of 100 nm and 5 nm respectively. Energy band gap is determined using UV-VIS Spectroscopy. A red shift in the absorption edge of CdSe/PVA NC is observed with respect to CdSe Np's, The photoluminescence spectra also show red shift for CdSe/PVA NC as compared to CdSe NP's Thus the use of CdSe/PVA for solar cell application would be more preferable than CdSe NP's.

  4. Matrix effects in nilotinib formulations with pH-responsive polymer produced by carbon dioxide-mediated precipitation

    DEFF Research Database (Denmark)

    Colombo, Stefano; Brisander, Magnus; Haglöf, Jakob

    2015-01-01

    the drug dissolution, was characterized with a battery of physicochemical methodologies, including ToF-SIMS for surface composition, SAXS/WAXS and modulated DSC for crystallization characterization, and simultaneous UV-imaging and Raman spectroscopy for monitoring the dissolution process in detail....... The hybrid particle formulations investigated consisted of amorphous nilotinib embedded in a polymer matrix in single continuous phase, displaying extended retained amorphicity also under wet conditions. It was demonstrated by Raman and FTIR spectroscopy that the efficient drug dispersion and amorphization...... acid to neutral pH, thereby preventing re-precipitation and re-crystallization of incorporated nilotinib. These findings provide a mechanistic foundation of formulation development of nilotinib and other protein kinase inhibitors, which are now witnessing an intense therapeutic and industrial attention...

  5. Quantitative matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis of synthetic polymers and peptides.

    Science.gov (United States)

    Hyzak, Lukas; Moos, Rebecca; von Rath, Friederike; Wulf, Volker; Wirtz, Michaela; Melchior, David; Kling, Hans-Willi; Köhler, Michael; Gäb, Siegmar; Schmitz, Oliver J

    2011-12-15

    Matrix-assisted laser desorption ionization (MALDI) is a very powerful and widely used mass spectrometric technique to ionize high molecular weight compounds. The most commonly used dried droplet (DD) technique can lead to a concentration distribution of the analyte on the target and is therefore often not suitable for reproducible analyses. We developed a new solvent-free deposition technique, called compressed sample (CS), to prevent the distribution of the analytes caused by the crystallization of the compounds. The CS technique presented in this work allows the quantitative analysis of synthetic polymers such as derivatized maltosides with correlation coefficients of 0.999 and peptides up to 3500 Da with correlation coefficients of at least 0.982 without the use of stable-isotope-labeled standards.

  6. Laboratory measurements of the light scattering properties of bentonite clay particles embedded in a cylindrical polymer matrix

    Science.gov (United States)

    Gogoi, Ankur; Ahmed, Gazi A.; Das, Gautam; Karak, Niranjan; Boruah, Ratan; Choudhury, Amarjyoti

    2013-05-01

    The volume scattering function and degree of linear polarization of randomly oriented bentonite clay particles were investigated as a function of scattering angle at 543.5 nm, 594.5 nm and 632.8 nm incident laser wavelengths by using a detector array-incorporated laboratory light scattering setup. Readings were taken in steps of 1° from an angle of 10° to 170° and each detector was separated from the next one by an angle of 10°. A transparent cylindrical polymer matrix made of cycloaliphatic amine-cured thermosetting epoxy resin was used to hold the scattering samples in front of the laser beam. For background correction the measurements were taken in differential mode.

  7. Synthesis and characterization of composites of mixed oxides of iron and neodymium in polymer matrix of aniline–formaldehyde

    Indian Academy of Sciences (India)

    Sajdha; H N Sheikh; B L Kalsotra; N Kumar; S Kumar

    2011-07-01

    Nanocomposites of mixed oxides of iron and neodymium in polymer matrix of anilineformaldehyde are reported. The composites have been obtained by treating the aqueous solution of aniline, hydrochloric acid and formaldehyde with halide of iron and neodymium oxide. The infra-red spectra show broad peaks at ∼ 590 cm-1 and at ∼ 610 cm-1 due to the presence of oxides of both iron and neodymium. In heated samples, the absorption peaks due to metal oxides are better resolved. A broad and strong peak in XRD spectra at 2 value of 35.69920 corresponds to spinel -Fe2O3. 57Fe Mössbauer spectrum for unheated sample gives Mössbauer parameters, i.e. isomer shift (), quadrupole splitting ( ) and effective magnetic field (Heff). Transmission electron microscopy (TEM) micrographs reveal well dispersed particles at different magnifications. Vibrating sample magnetometry (VSM) studies indicate that the ferrite nanoparticles exhibit characteristics of ferromagnetism.

  8. Electroabsorption spectroscopy of electronic transition for room-temperature ionic liquid molecules dispersed in a polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Ryuichi; Funamoto, Yuuki [Department of Applied Chemistry, Muroran Institute of Technology, Muroran 050-8585 (Japan); Ohta, Nobuhiro [Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812 (Japan); Iimori, Toshifumi, E-mail: iimori@mmm.muroran-it.ac.jp [Department of Applied Chemistry, Muroran Institute of Technology, Muroran 050-8585 (Japan)

    2015-07-29

    Highlights: • We measure electric field effects on absorption spectra of ionic liquids. • Changes in dipole moment and polarizability on photoexcitation are determined. • Pyridinium ions show reorientation along electric fields in polymer matrix. • Lower limit of electric dipole moment in the ground state is evaluated. - Abstract: Electroabsorption spectroscopy of electronic transitions in the room-temperature ionic liquids (RTILs) 1-butylpyridinium bis(trifluoromethylsulfonyl)imide ([C{sub 4}py][NTf{sub 2}]) and 1-butyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide ([C{sub 4}mpy][NTf{sub 2}]) dispersed in poly(methyl methacrylate) (PMMA) is reported. [C{sub 4}py][NTf{sub 2}] shows a π → π{sup ∗} transition of the cation [C{sub 4}py]{sup +} with an absorption maximum at 258 nm. The changes in the dipole moment and the electronic polarizability between the excited and ground states are determined by analysis of the Stark effect in the absorption band. A field-induced reorientation effect of the pyridinium chromophore is observed at room temperature. This observation implies that the cation [C{sub 4}py]{sup +} is not rigidly fixed to the polymer matrix, which is consistent with the results of previous studies on hybrid materials of RTILs and PMMA. The lower limit of the dipole moment in the ground state is derived from analysis of the field-induced reorientation effect, and the results for [C{sub 4}mpy][NTf{sub 2}] are essentially the same as those for [C{sub 4}py][NTf{sub 2}].

  9. Novel dummy molecularly imprinted polymers for matrix solid-phase dispersion extraction of eight fluoroquinolones from fish samples.

    Science.gov (United States)

    Sun, Xiaoli; Wang, Jincheng; Li, Yun; Yang, Jiajia; Jin, Jing; Shah, Syed Mazhar; Chen, Jiping

    2014-09-12

    A series of novel dummy molecularly imprinted polymers (DMIPs) were prepared as highly class-selective sorbents for fluoroquinolones. A non-poisonous dummy template, daidzein, was used for the first time to create specific molecular recognition sites for fluoroquinolones in the synthesized polymers. The influence of porogen polarity on dummy molecular imprinting effect was studied. The DMIP prepared using dimethylsulfoxide-acetonitrile (1:1.8, v/v) as porogen achieved the highest imprinting factors (IF) for fluoroquinolones over a range of IF 13.4-84.0. This DMIP was then used for selective extraction of eight fluoroquinolones (fleroxacin, ofloxacin, norfloxacin, pefloxacin, ciprofloxacin, lomefloxacin, enrofloxacin and gatifloxacin) from fish samples based on dummy molecularly imprinted matrix solid-phase dispersion (DMI-MSPD). The extracted fluoroquinolones were subsequently analyzed by high-performance liquid chromatography (HPLC) equipped with a fluorescence detector (FLD). The developed method had acceptable recoveries (64.4-102.7%) and precision (RSDs: 1.7-8.5%, n=5) for determination of fluoroquinolones in fish samples fortified at levels of 10 and 100ngg(-1). The limits of detection (LODs) for identification of eight fluoroquinolones ranged between 0.06 and 0.22ngg(-1). The results demonstrated great potential of the optimized method for sample preparation in routine analysis of trace fluoroquinolones in fish samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Solutions for lipophilic drugs: a biodegradable polymer acting as solvent, matrix, and carrier to solve drug delivery issues.

    Science.gov (United States)

    Asmus, Lutz R; Gurny, Robert; Möller, Michael

    2011-02-01

    The purpose of this study was to investigate the polyester hexylsubstituted poly(lactide) (hexPLA) as a possible solvent for lipophilic substances and excipient for pharmaceutical formulations. HexPLA is a biodegradable and semi-solid polymer, which allows the incorporation of active substances by simple mixing and local or systemic application to the patient through injection. The solvent behavior of hexPLA was investigated by adding the lipophilic dye Sudan III to the polymer matrix and optical monitoring of the dissolution process over time by microscopy. As a drug, the antipsychotic compound haloperidol was analyzed for its solubility in hexPLA of different molecular weights by preparing saturated solutions, and measuring the amount of incorporated drug with UV spectroscopy. The influence of the rate of solubilized to suspended drug on the burst release behavior of haloperidol from hexPLA-formulations was investigated in release tests. It is demonstrated that hexPLA dissolves both lipophilic substances, Sudan III and Haloperidol. In the molecular weight range between 2,000 g/mol and 10,000 g/mol, a lower molecular weight hexPLA resulted in a higher incorporation capacity for haloperidol. By changing from a suspension formulation of haloperidol to a solution formulation, the initial burst release established for classical PLA and PLGA systems could be minimized. HexPLA is shown to be a potent solvent and excipient for lipophilic drugs, allowing the initial burst of drug release to be modified and controlled.

  11. Embedding of Hollow Polymer Microspheres with Hydrophilic Shell in Nafion Matrix as Proton and Water Micro-Reservoir

    Directory of Open Access Journals (Sweden)

    Zhaolin Liu

    2012-08-01

    Full Text Available Assimilating hydrophilic hollow polymer spheres (HPS into Nafion matrix by a loading of 0.5 wt % led to a restructured hydrophilic channel, composed of the pendant sulfonic acid groups (–SO3H and the imbedded hydrophilic hollow spheres. The tiny hydrophilic hollow chamber was critical to retaining moisture and facilitating proton transfer in the composite membranes. To obtain such a tiny cavity structure, the synthesis included selective generation of a hydrophilic polymer shell on silica microsphere template and the subsequent removal of the template by etching. The hydrophilic HPS (100–200 nm possessed two different spherical shells, the styrenic network with pendant sulfonic acid groups and with methacrylic acid groups, respectively. By behaving as microreservoirs of water, the hydrophilic HPS promoted the Grotthus mechanism and, hence, enhanced proton transport efficiency through the inter-sphere path. In addition, the HPS with the –SO3H borne shell played a more effective role than those with the –CO2H borne shell in augmenting proton transport, in particular under low humidity or at medium temperatures. Single H2-PEMFC test at 70 °C using dry H2/O2 further verified the impactful role of hydrophilic HPS in sustaining higher proton flux as compared to pristine Nafion membrane.

  12. EFFECT OF NATURAL AND SYNTHETIC POLYMER ON RELEASE OF KETOTIFEN FUMARATE MATRIX TABLETS: A SUSTAINED RELEASE DOSAGE FORM

    Directory of Open Access Journals (Sweden)

    Md. M. Rahman*, A. B. Ripon Khalipha , Md. A. K. Azad , MD. Z. Faruki , A. K. Chaurasiya and H. Hossain

    2013-04-01

    Full Text Available ABSTRACT: With the blend of Methocel K15, a synthetic polymer and xanthan gum, a natural polymer (3:1 was used in the formulation of matrix tablets to find out the effect of natural polymer in the sustained release dosage form. Direct compression process was applied for the preparation of Ketotifen fumarate tablets. The dissolution profiles were carried out by USP apparatus 2 (paddle at 50 rpm in 500 ml 0.1 N HCl and distilled water. For interpreting the results a one way analysis of variance (ANOVA was exploited. Statistically significant differences were found among the drug release profile from different matrices. At a higher polymeric content (60% of the total tablet weight, drug release from the combination of Methocel K15M and xanthan gum (3:1 was slower. On the contrary, at a lower polymeric level (30% of the total tablet weight; the rate of drug release was prominent. The best-fit release kinetics was accomplished with the Higuchi model followed by the zero-order plot, Korsmeyer and Hixson Crowell equations. One formulation showed drug release is more controlled. The data obtained proved that the formulations are useful for a sustained release of ketotifen fumarate. From these formulations corresponded more controlled of the drug release by the higher polymeric level of methocel K15M & xanthan gum and vice versa. The extended release of the model drug found from the higher proportion of methocel K15M and xanthan gum. As a result, the frequency of administration of such type of drug reduced.

  13. A doxycycline-loaded polymer-lipid encapsulation matrix coating for the prevention of implant-related osteomyelitis due to doxycycline-resistant methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Metsemakers, Willem-Jan; Emanuel, Noam; Cohen, Or; Reichart, Malka; Potapova, Inga; Schmid, Tanja; Segal, David; Riool, Martijn; Kwakman, Paulus H S; de Boer, Leonie; de Breij, Anna; Nibbering, Peter H; Richards, R Geoff; Zaat, Sebastian A J; Moriarty, T Fintan

    2015-07-10

    Implant-associated bone infections caused by antibiotic-resistant pathogens pose significant clinical challenges to treating physicians. Prophylactic strategies that act against resistant organisms, such as methicillin-resistant Staphylococcus aureus (MRSA), are urgently required. In the present study, we investigated the efficacy of a biodegradable Polymer-Lipid Encapsulation MatriX (PLEX) loaded with the antibiotic doxycycline as a local prophylactic strategy against implant-associated osteomyelitis. Activity was tested against both a doxycycline-susceptible (doxy(S)) methicillin-susceptible S. aureus (MSSA) as well as a doxycycline-resistant (doxy(R)) methicillin-resistant S. aureus (MRSA). In vitro elution studies revealed that 25% of the doxycycline was released from the PLEX-coated implants within the first day, followed by a 3% release per day up to day 28. The released doxycycline was highly effective against doxy(S) MSSA for at least 14days in vitro. A bolus injection of doxycycline mimicking a one day release from the PLEX-coating reduced, but did not eliminate, mouse subcutaneous implant-associated infection (doxy(S) MSSA). In a rabbit intramedullary nail-related infection model, all rabbits receiving a PLEX-doxycycline-coated nail were culture negative in the doxy(S) MSSA-group and the surrounding bone displayed a normal physiological appearance in both histological sections and radiographs. In the doxy(R) MRSA inoculated rabbits, a statistically significant reduction in the number of culture-positive samples was observed for the PLEX-doxycycline-coated group when compared to the animals that had received an uncoated nail, although the reduction in bacterial burden did not reach statistical significance. In conclusion, the PLEX-doxycycline coating on titanium alloy implants provided complete protection against implant-associated MSSA osteomyelitis, and resulted in a significant reduction in the number of culture positive samples when challenged with a

  14. An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Rivero Pedro

    2011-01-01

    Full Text Available Abstract In this work a novel antibacterial surface composed of an organic-inorganic hybrid matrix of tetraorthosilicate and a polyelectrolyte is presented. A precursor solution of tetraethoxysilane (TEOS and poly(acrylic acid sodium salt (PAA was prepared and subsequently thin films were fabricated by the dip-coating technique using glass slides as substrates. This hybrid matrix coating is further loaded with silver nanoparticles using an in situ synthesis route. The morphology and composition of the coatings have been studied using UV-VIS spectroscopy and atomic force microscopy (AFM. Energy dispersive X-ray (EDX was also used to confirm the presence of the resulting silver nanoparticles within the thin films. Finally the coatings have been tested in bacterial cultures of genus Lactobacillus plantarum to observe their antibacterial properties. It has been experimentally demonstrated that these silver loaded organic-inorganic hybrid films have a very good antimicrobial behavior against this type of bacteria.

  15. An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles

    Science.gov (United States)

    Rivero, Pedro José; Urrutia, Aitor; Goicoechea, Javier; Zamarreño, Carlos Ruiz; Arregui, Francisco Javier; Matías, Ignacio Raúl

    2011-12-01

    In this work a novel antibacterial surface composed of an organic-inorganic hybrid matrix of tetraorthosilicate and a polyelectrolyte is presented. A precursor solution of tetraethoxysilane (TEOS) and poly(acrylic acid sodium salt) (PAA) was prepared and subsequently thin films were fabricated by the dip-coating technique using glass slides as substrates. This hybrid matrix coating is further loaded with silver nanoparticles using an in situ synthesis route. The morphology and composition of the coatings have been studied using UV-VIS spectroscopy and atomic force microscopy (AFM). Energy dispersive X-ray (EDX) was also used to confirm the presence of the resulting silver nanoparticles within the thin films. Finally the coatings have been tested in bacterial cultures of genus Lactobacillus plantarum to observe their antibacterial properties. It has been experimentally demonstrated that these silver loaded organic-inorganic hybrid films have a very good antimicrobial behavior against this type of bacteria.

  16. Additional results on space environmental effects on polymer matrix composites: Experiment A0180

    Science.gov (United States)

    Tennyson, R. C.

    1992-01-01

    Additional experimental results on the atomic oxygen erosion of boron, Kevlar, and graphite fiber reinforced epoxy matrix composites are presented. Damage of composite laminates due to micrometeoroid/debris impacts is also examined with particular emphasis on the relationship between damage area and actual hole size due to particle penetration. Special attention is given to one micrometeoroid impact on an aluminum base plate which resulted in ejecta visible on an adjoining vertical flange structure.

  17. Microencapsulation of phosphogypsum into a sulfur polymer matrix: physico-chemical and radiological characterization.

    Science.gov (United States)

    López, Félix A; Gázquez, Manuel; Alguacil, Francisco José; Bolívar, Juan Pedro; García-Díaz, Irene; López-Coto, Israel

    2011-08-15

    The aim of this work is to prepare a new type of phosphogypsum-sulfur polymer cements (PG-SPC) to be utilised in the manufacture of building materials. Physico-chemical and radiological characterization was performed in phosphogypsum and phosphogypsum-sulfur polymer concretes and modeling of exhalation rates has been also carried out. An optimized mixture of the materials was obtained, the solidified material with optimal mixture (sulfur/phosphogypsum=1:0.9, phosphogypsum dosage=10-40 wt.%) results in highest strength (54-62 MPa) and low total porosity (2.8-6.8%). The activity concentration index (I) in the PG-SPC is lower than the reference value in the most international regulations and; therefore, these cements can be used without radiological restrictions in the manufacture of building materials. Under normal conditions of ventilation, the contribution to the expected radon indoor concentration in a standard room is below the international recommendations, so the building materials studied in this work can be applied to houses built up under normal ventilation conditions. Additionally, and taking into account that the PG is enriched in several natural radionuclides as (226)Ra, the leaching experiments have demonstrated that environmental impact of the using of SPCs cements with PG is negligible.

  18. Schottky diodes between Bi{sub 2}S{sub 3} nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sudip K.; Pal, Amlan J., E-mail: sspajp@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-07-07

    We report the use of metal-semiconductor Schottky junctions in a conjugated polymer matrix as solar cells. The Schottky diodes, which were formed between Bi{sub 2}S{sub 3} nanorods and gold nanoparticles, efficiently dissociated photogenerated excitons. The bulk-heterojunction (BHJ) devices based on such metal-semiconductor Schottky diodes in a polymer matrix therefore acted as an efficient solar cell as compared to the devices based on only the semiconductor nanorods in the polymer matrix or when gold nanoparticles were added separately to the BHJs. In the latter device, gold nanoparticles offered plasmonic enhancement due to an increased cross-section of optical absorption. We report growth and characteristics of the Schottky junctions formed through an intimate contact between Bi{sub 2}S{sub 3} nanorods and gold nanoparticles. We also report fabrication and characterization of BHJ solar cells based on such heterojunctions. We highlight the benefit of using metal-semiconductor Schottky diodes over only inorganic semiconductor nanorods or quantum dots in a polymer matrix in forming hybrid BHJ solar cells.

  19. Research Progress on Structural Design of Polymer Matrix Microwave Absorbing Materials%聚合物基吸波材料结构设计研究进展

    Institute of Scientific and Technical Information of China (English)

    段磊; 温变英

    2014-01-01

    The distribution characteristics and types of present absorbents in polymer matrix were introduced. Comparing with the structure of single layer polymer matrix microwave absorbing materials,the design principle of pyramidal, double layer and multi layer of polymer matrix microwave absorbing materials was emphasized. The structure feature and research progress on pyramidal and layer structure of polymer matrix microwave absorbing materials were reviewed, and future development trends was also presented.%介绍了目前吸收剂在聚合物基体中的分布特点和类型,通过与单层聚合物基吸波材料的结构对比,重点阐述了聚合物基吸波材料角锥、双层、多层结构的设计原理。同时对聚合物基吸波材料的角锥和层状结构特征与研究进展进行了综述,并对其发展方向提出了展望。

  20. Research of the Interface Transcrystallization of Polymer Matrix Composites%聚合物基复合材料界面横晶的分析

    Institute of Scientific and Technical Information of China (English)

    康永

    2012-01-01

      对横晶形成的机制进行分析,并将横晶对材料的一些影响作了相应的剖析。%  The formation mechanism of the transcrystallization is analyzed, and the influence of the transcrystallization to the polymer matrix composites is also analyzed.

  1. Polymer Brushes

    NARCIS (Netherlands)

    Vos, de W.M.; Kleijn, J.M.; Keizer, de A.; Cosgrove, T.; Cohen Stuart, M.A.

    2010-01-01

    A polymer brush can be defined as a dense array of polymers end-attached to an interface that stretch out into the surrounding medium. Polymer brushes have been investigated for the past 30 years and have shown to be an extremely useful tool to control interfacial properties. This review is intended

  2. Ferromagnetic composites with polymer matrix consisted of nanocrystalline Fe-based filler

    Energy Technology Data Exchange (ETDEWEB)

    Nowosielski, Ryszard; Gramatyka, Paweł; Sakiewicz, Piotr; Babilas, Rafał, E-mail: rafal.babilas@polsl.pl

    2015-08-01

    Objective: The paper intends to present structural and magnetic behavior of ferromagnetic composites consisted of nanocrystalline powders obtained by annealing and milling of Fe{sub 78}Si{sub 9}B{sub 13} and Fe{sub 73,5}Cu{sub 1}Nb{sub 3}Si{sub 13,5}B{sub 9} metallic glasses. Methods: The as-cast ribbons were subsequently milled using a high-energy ball mill. The prepared powders were separated into fractions with a particle mean diameter range of 200–500 µm, 75–200 µm and 25–75 µm and then annealed to obtain the nanocrystalline powder materials. The powder particles were mixed and consolidated with a polymer to obtain composites in the form of the toroidal cores. The following experimental techniques were used: scanning and transmission electron microscopy, X-ray diffraction and vibration sample magnetometry. Results: The analysis of magnetic properties of the powders and the composites prepared from the powders revealed that the preparation process caused significant decrease in magnetic properties in a relation to ribbons in as-cast state. Conclusion: The structure and magnetic properties of the examined materials could be improved by means of a right choice of milling time as well as a thermal treatment and by a decrease of the demagnetization effect. Practice implications: The amorphous and nanocrystalline powders obtained by a milling of metallic glasses are an alternative to solid alloys and make it possible to obtain the ferromagnetic nanocomposites with controlled magnetic properties. - Highlights: • Soft magnetic composites consisting nanocrystalline powders were obtained. • Amorphous Fe{sub 78}Si{sub 9}B{sub 13} and Fe{sub 73,5}Cu{sub 1}Nb{sub 3}Si{sub 13,5}B{sub 9} ribbons were milled. • Powders particles were consolidated with polymer to obtain toroidal composites. • Magnetic properties could be formed by milling and annealing parameters. • Polymer nanocomposites with Fe-based powders are an alternative to solid alloys.

  3. Effect of nanoparticle dispersion on mechanical behavior of polymer matrix and their fiber reinforced composites

    Science.gov (United States)

    Uddin, Mohammed Farid

    Fiber reinforced composites are widely used to achieve weight savings in different construction. However, their used are restricted as their matrix-dominant properties are much weaker than their fiber-dominated properties. The recent advent of nanoparticles has attracted much attention in improving the matrix properties by using various nanoparticles as reinforcements. Due to the lack of well-developed and consistent processing method, experimental results on nanocomposites show a broad spectrum of anomalies in their properties. Dispersion of nanoparticles in the polymeric precursor is often blamed for these inconsistencies in their properties which becomes even worse with high particle loading. In this research, a processing technique has been developed to fabricate very well-dispersed nanocomposite even with high particle loading in order to fully utilize the advantages of nanoparticle reinforcement. An attempt has also been made to modify the conventional sonication method to improve the dispersion by combining the sol-gel and sonication methods to fabricate hybrid nanocomposites. Transmission electronic microscopy has been employed to investigate dispersion quality of nanoparticles. Finally, mechanical characterization has been performed to evaluate the effect of different state of particle dispersion. Once the effect of dispersion is identified, a micromechanical model has been proposed to estimate the strength of particle reinforced composites based on particle/matrix interfacial crack growth. Finite element analyses were performed to validate the experimental results for microparticle reinforced composites. Using the model, effect of particle size has also been validated with experimental results. The model is then further extended to reveal the failure modes in nanocomposite with the support of some experimental evidences. Finally, an effort has been made to evaluate the potential application of the nanoparticle modified resin by fabricating unidirectional

  4. Three-Dimensional Nanoporous Cellulose Gels as a Flexible Reinforcement Matrix for Polymer Nanocomposites.

    Science.gov (United States)

    Shi, Zhuqun; Huang, Junchao; Liu, Chuanjun; Ding, Beibei; Kuga, Shigenori; Cai, Jie; Zhang, Lina

    2015-10-21

    With the world's focus on utilization of sustainable natural resources, the conversion of wood and plant fibers into cellulose nanowhiskers/nanofibers is essential for application of cellulose in polymer nanocomposites. Here, we present a novel fabrication method of polymer nanocomposites by in-situ polymerization of monomers in three-dimensionally nanoporous cellulose gels (NCG) prepared from aqueous alkali hydroxide/urea solution. The NCG have interconnected nanofibrillar cellulose network structure, resulting in high mechanical strength and size stability. Polymerization of the monomer gave P(MMA/BMA)/NCG, P(MMA/BA)/NCG nanocomposites with a volume fraction of NCG ranging from 15% to 78%. SEM, TEM, and XRD analyses show that the NCG are finely distributed and preserved well in the nanocomposites after polymerization. DMA analysis demonstrates a significant improvement in tensile storage modulus E' above the glass transition temperature; for instance, at 95 °C, E' is increased by over 4 orders of magnitude from 0.03 MPa of the P(MMA/BMA) up to 350 MPa of nanocomposites containing 15% v/v NCG. This reinforcement effect can be explained by the percolation model. The nanocomposites also show remarkable improvement in solvent resistance (swelling ratio of 1.3-2.2 in chloroform, acetone, and toluene), thermal stability (do not melt or decompose up to 300 °C), and low coefficients of thermal expansion (in-plane CTE of 15 ppm·K(-1)). These nanocomposites will have great promising applications in flexible display, packing, biomedical implants, and many others.

  5. Design of indomethacin-loaded nanoparticles: effect of polymer matrix and surfactant

    Directory of Open Access Journals (Sweden)

    Dupeyrón D

    2013-09-01

    Full Text Available Danay Dupeyrón,1,2 Monique Kawakami,1 Adriana M Ferreira,1 Paolin Rocio Cáceres-Vélez,3 Jacques Rieumont,4 Ricardo Bentes Azevedo,3 José Carlos T Carvalho1 1Laboratório de Pesquisa em Fármacos, Centro de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Brazil; 2Programa de Pós-Graduação em Biodiversidade Tropical, Universidade Federal do Amapá, Brazil; 3Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brazil; 4Departamento de Química – Física, Facultad de Química, Universidad de la Habana, Cuba Abstract: Despite recent advances in nonsteroidal anti-inflammatory drug (NSAID formulations, the design of targeted delivery systems to improve the efficacy and reduce side effects of NSAIDs continues to be a focus of much research. Enteric nanoparticles have been recognized as a potential system to reduce gastrointestinal irritations caused by NSAIDs. The aim of this study was to evaluate the effect of EUDRAGIT® L100, polyethylene glycol, and polysorbate 80 on encapsulation efficiency of indomethacin within enteric nanoparticles. Formulations were developed based on a multilevel factorial design (three factors, two levels. The amount of polyethylene glycol was shown to be the factor that had the greatest influence on the encapsulation efficiency (evaluated response at 95% confidence level. Some properties of nanoparticles like process yield, drug–polymer interaction, particle morphology, and in vitro dissolution profile, which could affect biological performance, have also been evaluated. Keywords: nonsteroidal anti-inflammatory, indomethacin, enteric polymer, polyethylene glycol, nanoparticles

  6. Longtime Durability of PMR-15 Matrix Polymer at 204, 260, 288, and 316 C

    Science.gov (United States)

    Bowles, Kenneth J.; Papadopoulos, Demetrios S.; Inghram, Linda L.; McCorkle, Linda S.; Klan, Ojars V.

    2001-01-01

    Isothermal weight loss studies at the Glenn (Lewis) Research Center were conducted at four temperatures (204, 260, 288, and 316 C) with specimens of varied geometric shapes to investigate the mechanisms involved in the thermal degradation of PMR-15. Both neat resin behavior and composite behaviors were studied. Two points of interest in these studies are the role(s) of oxygen in the mechanisms involved in the thermo-oxidative degradation of these composite materials and the dimensional changes that occur during their useable lifetime. Specimen dimensional changes and surface layer growth were measured and recorded. It was shown that physical and chemical changes take place as a function of time and location in PMR-15 neat resin and composites as aging takes place in air at elevated temperatures. These changes initiate at the outer surfaces of both materials and progress inward following the oxygen as it proceeds by diffusion into the central core of each material. Microstructural changes cause changes in density, material shrinkage (strains), glass transition temperature, dimension, dynamic shear modulus, and compression properties. These changes also occur slowly dividing the polymer material into two distinct parts: a visibly undamaged core section between two visibly damaged surface layers. The surface layer has a significant effect on compression properties of thinner specimens, but the visibly undamaged core material controls these properties for specimens having eight or more plies. It was demonstrated that there are three different mechanisms involved in the degradation of PMR-15 during aging at elevated temperatures. These are a weight gain, a small weight fraction bulk material weight loss, and a large mass fraction weight loss concentrated at the surface of the polymer or composite. At the higher temperatures (260 C and above), the surface loss predominates. Below 260 C, the surface loss and the bulk core loss become more equivalent. Between 175 and 260 C

  7. TiO₂ nanowire dispersions in viscous polymer matrix: electrophoretic alignment and optical properties.

    Science.gov (United States)

    Šutka, Andris; Saal, Kristjan; Kisand, Vambola; Lõhmus, Rünno; Joost, Urmas; Timusk, Martin

    2014-10-17

    The changes in optical properties during TiO₂ nanowire orientation in polydimethylsiloxane (PDMS) matrix under the influence of an electric field are strongly influenced by nanowire (NW) diameter. It was demonstrated for the first time that either positive or negative change in transmittance can be induced by NW alignment parallel to the electric field depending on the NW diameter. These effects can be explained by the interplay between scattering and reflectance. Experimental findings reported could be important for smart window applications for the regulation of visible or even infrared transparency, thus reducing the energy consumption by air conditioning systems in buildings and automobiles in the future.

  8. Laser Induced Fluorescence (LIF) Nondestructive Evaluation of Incipient Heat Damage in Polymer Matrix Composites, A2476

    Science.gov (United States)

    2017-02-15

    composite materials used on structural components of US Naval aircraft:  AS4/3501-6 (Five-harness satin (5HS) Fabric-reinforced, Epoxy matrix)  IM7...Systems Command (NAVAIR). Each set consisted of specimens of a different fiber-reinforced PMC material : AS4/3501 6 5HS; AS4/3501 6 Uni-Tape; IM7...carbon-fiber- reinforced PMC material : AS4/3501-6 5HS; AS4/3501-6 Uni-Tape; IM7/5250-4 Uni-Tape; and IM7/977-3 Uni-Tape. A chemometric model was

  9. Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various continuous fibers

    Science.gov (United States)

    Bowles, Kenneth J.

    1990-01-01

    An experimental study was conducted to measure the thermooxidative stability of PMR-15 composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers studied include graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight-loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.

  10. Effect of residual solvent in polymer adhesive matrix on release and skin permeation of scopolamine.

    Science.gov (United States)

    Anders, Kunst; Lee, Geoffrey

    2015-08-01

    The effects of varying level of residual solvent on the release and permeation of scopolamine from two different polyacrylate matrices through excised mouse skin has been determined. Matrices of the drug-in-adhesive type were prepared having different contents of residual ethyl acetate or heptane adjusted via the drying time at 30°C in a forced-convection oven. The neutral DuroTak 87-4098 showed no effects of residual ethyl acetate on either release or permeation, but was influenced by residual heptane. An increase in release rate from the matrix occurred with an enhancing effect on permeation. The self-curing DuroTak 87-2677 showed effects of residual heptane on both release and permeation. Both solvents were lost from the matrix on contact with an aqueous acceptor medium, although to different extents. Levels of residual ethyl acetate or heptane that fall below the ICH guideline (0.5% w/w) had, however, only a minor, yet measurable, effect on scopolamine release and skin uptake compared with higher solvent levels.

  11. [Bioanode for a microbial fuel cell based on Gluconobacter oxydans inummobilized into a polymer matrix].

    Science.gov (United States)

    Alferov, S V; Minaĭcheva, P R; Arliapov, V A; Asulian, L D; Alferov, V A; Ponomareva, O N; Reshetilov, A N

    2014-01-01

    Acetic acid bacteria Gluconobacter oxydans subsp. industrius RKM V-1280 were immobilized into a synthetic matrix based on polyvinyl alcohol modified with N-vinylpyrrolidone and used as biocatalysts for the development ofbioanodes for microbial fuel cells. The immobilization method did not significantly affect bacterial substrate specificity. Bioanodes based on immobilized bacteria functioned stably for 7 days. The maximum voltage (fuel cell signal) was reached when 100-130 µM of an electron transport mediator, 2,6-dichlorophenolindophenol, was added into the anode compartment. The fuel cell signals reached a maximum at a glucose concentration higher than 6 mM. The power output of the laboratory model of a fuel cell based on the developed bioanode reached 7 mW/m2 with the use of fermentation industry wastes as fuel.

  12. Self-healing of damage in fibre-reinforced polymer-matrix composites.

    Science.gov (United States)

    Hayes, S A; Zhang, W; Branthwaite, M; Jones, F R

    2007-04-22

    Self-healing resin systems have been discussed for over a decade and four different technologies had been proposed. However, little work on their application as composite matrices has been published although this was one of the stated aims of the earliest work in the field. This paper reports on the optimization of a solid-state self-healing resin system and its subsequent use as a matrix for high volume fraction glass fibre-reinforced composites. The resin system was optimized using Charpy impact testing and repeated healing, while the efficiency of healing in composites was determined by analysing the growth of delaminations following repeated impacts with or without a healing cycle. To act as a reference, a non-healing resin system was subjected to the same treatments and the results are compared with the healable system. The optimized resin system displays a healing efficiency of 65% after the first healing cycle, dropping to 35 and 30% after the second and third healing cycles, respectively. Correction for any healability due to further curing showed that approximately 50% healing efficiency could be achieved with the bisphenol A-based epoxy resin containing 7.5% of polybisphenol-A-co-epichlorohydrin. The composite, on the other hand, displays a healing efficiency of approximately 30%. It is therefore clear that the solid-state self-healing system is capable of healing transverse cracks and delaminations in a composite, but that more work is needed to optimize matrix healing within a composite and to develop a methodology for assessing recovery in performance.

  13. Damage Tolerance Enhancement of Carbon Fiber Reinforced Polymer Composites by Nanoreinforcement of Matrix

    Science.gov (United States)

    Fenner, Joel Stewart

    Nanocomposites are a relatively new class of materials which incorporate exotic, engineered nanoparticles to achieve superior material properties. Because of their extremely small size and well-ordered structure, many nanoparticles possess properties that exceed those offered by a wide range of other known materials, making them attractive candidates for novel materials engineering development. Their small size is also an impediment to their practical use, as they typically cannot be employed by themselves to realize those properties in large structures. Furthermore, nanoparticles typically possess strong self-affinity, rendering them difficult to disperse uniformly into a composite. However, contemporary research has shown that, if well-dispersed, nanoparticles have great capacity to improve the mechanical properties of composites, especially damage tolerance, in the form of fracture toughness, fatigue life, and impact damage mitigation. This research focuses on the development, manufacturing, and testing of hybrid micro/nanocomposites comprised of woven carbon fibers with a carbon nanotube reinforced epoxy matrix. Material processing consisted of dispersant-and-sonication based methods to disperse nanotubes into the matrix, and a vacuum-assisted wet lay-up process to prepare the hybrid composite laminates. Various damage tolerance properties of the hybrid composite were examined, including static strength, fracture toughness, fatigue life, fatigue crack growth rate, and impact damage behavior, and compared with similarly-processed reference material produced without nanoreinforcement. Significant improvements were obtained in interlaminar shear strength (15%), Mode-I fracture toughness (180%), shear fatigue life (order of magnitude), Mode-I fatigue crack growth rate (factor of 2), and effective impact damage toughness (40%). Observations by optical microscopy, scanning electron microscopy, and ultrasonic imaging showed significant differences in failure behavior

  14. Quantifying the release of lactose from polymer matrix tablets with an amperometric biosensor utilizing cellobiose dehydrogenase.

    Science.gov (United States)

    Knöös, Patrik; Schulz, Christopher; Piculell, Lennart; Ludwig, Roland; Gorton, Lo; Wahlgren, Marie

    2014-07-01

    The release of lactose (hydrophilic) from polymer tablets made with hydrophobically modified poly(acrylic acid) (HMPAA) have been studied and compared to the release of ibuprofen, a hydrophobic active substance. Lactose is one of the most used excipients for tablets, but lactose release has not been widely studied. One reason could be a lack of good analytical tools. A novel biosensor with cellobiose dehydrogenase (CDH) was used to detect the lactose release, which has a polydiallyldimethylammonium chloride (PDADMAC) layer that increases the response. A sample treatment using polyethylenimine (PEI) was developed to eliminate possible denaturants. The developed methodology provided a good approach to detect and quantify the released lactose. The release was studied with or without the presence of a model amphiphilic substance, sodium dodecyl sulphate (SDS), in the release medium. Ibuprofen showed very different release rates in the different media, which was attributed to hydrophobic interactions between the drug, the HMPAA and the SDS in the release medium. The release of hydrophilic lactose, which did not associate to any of the other components, was rapid and showed only minor differences. The new methodology provides a useful tool to further evaluate tablet formulations by a relatively simple set of experiments.

  15. Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries.

    Science.gov (United States)

    Zhu, Yusong; Wang, Faxing; Liu, Lili; Xiao, Shiyin; Yang, Yaqiong; Wu, Yuping

    2013-11-12

    Lithium ion batteries (LIBs) are going to play more important roles in electric vehicles and smart grids. The safety of the current LIBs of large capacity has been remaining a challenge due to the existence of large amounts of organic liquid electrolytes. Gel polymer electrolytes (GPEs) have been tried to replace the organic electrolyte to improve their safety. However, the application of GPEs is handicapped by their poor mechanical strength and high cost. Here, we report an economic gel-type composite membrane with high safety and good mechanical strength based on glass fiber mats, which are separator for lead-acid batteries. The gelled membrane exhibits high ionic conductivity (1.13 mS cm(-1)), high Li(+) ion transference number (0.56) and wide electrochemical window. Its electrochemical performance is evaluated by LiFePO4 cathode with good cycling. The results show this gel-type composite membrane has great attraction to the large-capacity LIBs requiring high safety with low cost.

  16. Standard Guide for Identification of Fiber-Reinforced Polymer-Matrix Composite Materials in Databases

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide establishes essential and desirable data elements for fiber-reinforced composite materials for two purposes: to establish the material identification component of data-reporting requirements for test reporting and to provide information for the design of material property databases. 1.1.1 This guide is the first part of a two-part modular approach. The first part serves to identify the material and the second part serves to describe testing procedures and variables and to record results. 1.1.2 For mechanical testing, the related document is Guide E 1434. The interaction of this guide with Guide E 1434 is emphasized by the common numbering of data elements. Data Elements A1 through G13 are included in this guide, and numbering of data elements in Guide E 1434 begins with H1 for the next data element block. This guide is most commonly used in combination with a guide for reporting the test procedures and results such as Guide E 1434. 1.2 These guidelines are specific to fiber-reinforced polyme...

  17. Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries

    Science.gov (United States)

    Zhu, Yusong; Wang, Faxing; Liu, Lili; Xiao, Shiyin; Yang, Yaqiong; Wu, Yuping

    2013-11-01

    Lithium ion batteries (LIBs) are going to play more important roles in electric vehicles and smart grids. The safety of the current LIBs of large capacity has been remaining a challenge due to the existence of large amounts of organic liquid electrolytes. Gel polymer electrolytes (GPEs) have been tried to replace the organic electrolyte to improve their safety. However, the application of GPEs is handicapped by their poor mechanical strength and high cost. Here, we report an economic gel-type composite membrane with high safety and good mechanical strength based on glass fiber mats, which are separator for lead-acid batteries. The gelled membrane exhibits high ionic conductivity (1.13 mS cm-1), high Li+ ion transference number (0.56) and wide electrochemical window. Its electrochemical performance is evaluated by LiFePO4 cathode with good cycling. The results show this gel-type composite membrane has great attraction to the large-capacity LIBs requiring high safety with low cost.

  18. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect.

    Science.gov (United States)

    Abdelrasoul, Gaser N; Farkas, Balazs; Romano, Ilaria; Diaspro, Alberto; Beke, Szabolcs

    2015-11-01

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532nm laser, known as the photothermal effect.

  19. Steam pressure induced in crack-like cavities in moisture saturated polymer matrix composities during rapid heating

    Energy Technology Data Exchange (ETDEWEB)

    Chung Yuen Hui; Muralidhharan, V. [Cornell Univ., Ithaca, NY (United States). Dept. of Theoretical and Applied Mechanics; Thompson, M.O. [Cornell Univ., Ithaca, NY (United States). Dept. of Material Science and Engineering

    2005-02-01

    The time history of steam pressure inside an isolated ''crack-like'' micro-cavity in a polymer matrix composite is studied by assuming that the chemical potential of water is continuous across the cavity/polymer interface. Steam pressure inside the cavity is due to rapid heating of moisture-saturated composites from its initial temperature to a final temperature T{sub f}. Exact closed form solutions are obtained for a ''crack-like'' cavity inside an infinite and a finite plate. For the case of an infinite plate, the exact solution shows that the steam pressure approaches the saturated steam pressure p{sub sat}(T{sub f}) at a characteristic time t{sub c}{approx_equal}25h{sup 2}/D{sub f}(M{sub w}p{sub sat}(T{sub f})/RT{sub f}{psi}{sub 0}){sup 2}, where h is the cavity height, D{sub f} is the diffusivity of water at T{sub f}, M{sub w} is the molecular weight of water, {psi}{sub 0} is the initial moisture concentration of the composite and R is the universal gas constant. When moisture is allowed to escape from the composite, such as in the case of a finite plate, the maximum steam pressure depends on a single dimensionless parameter {alpha}=LRT{sub f}{psi}{sub 0}/hM{sub w}p{sub sat}(T{sub f}), where L is the thickness of the composite plate. For large {alpha}, the maximum steam pressure approaches p{sub sat}(T{sub f}). However, the maximum steam pressure can be significantly less than p{sub sat}(T{sub f}) when {alpha} {<=} 4. The present model can also be used to study the 'popcorning' observed in electronic packages. (author)

  20. Solvent selection for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of synthetic polymers employing solubility parameters.

    Science.gov (United States)

    Brandt, Heike; Ehmann, Thomas; Otto, Matthias

    2010-08-30

    The principle relating to the selection of a proper matrix, cationization reagent, and solvent for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of synthetic polymers is still a topic of research. In this work we focused on the selection of a suitable MALDI solvent. Polystyrene PS7600 and poly(ethylene glycol) PEG4820 were analyzed by MALDI-TOF MS using various solvents which were selected based on the Hansen solubility parameter system. For polystyrene (PS), dithranol was used as the matrix and silver trifluoroacetate as the cationization reagent whereas, for poly(ethylene glycol) (PEG), the combination of 2,5-dihydroxybenzoic acid and sodium trifluoroacetate was used for all experiments. When employing solvents which dissolve PS and PEG, reliable MALDI mass spectra were obtained while samples in non-solvents (solvents which are not able to dissolve the polymer) failed to provide spectra. It seems that the solubility of the matrix and the cationization reagent are less important than the polymer solubility.

  1. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrasoul, Gaser N.; Farkas, Balazs; Romano, Ilaria; Diaspro, Alberto; Beke, Szabolcs, E-mail: szabolcs.beke@iit.it

    2015-11-01

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16 μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532 nm laser, known as the photothermal effect. - Highlights: • Gold nanoparticle incorporation into biopolymer resin was realized. • Gold incorporation into biopolymer resin is a big step in tissue engineering. • Composite scaffolds were synthesized and thoroughly characterized. • Gold nanoparticles are remarkable candidates to be utilized as “transport vehicles”. • The photothermal effect was demonstrated using a 532-nm laser.

  2. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix.

    Science.gov (United States)

    Li, Guangru; Tan, Zhi-Kuang; Di, Dawei; Lai, May Ling; Jiang, Lang; Lim, Jonathan Hua-Wei; Friend, Richard H; Greenham, Neil C

    2015-04-08

    Electroluminescence in light-emitting devices relies on the encounter and radiative recombination of electrons and holes in the emissive layer. In organometal halide perovskite light-emitting diodes, poor film formation creates electrical shunting paths, where injected charge carriers bypass the perovskite emitter, leading to a loss in electroluminescence yield. Here, we report a solution-processing method to block electrical shunts and thereby enhance electroluminescence quantum efficiency in perovskite devices. In this method, a blend of perovskite and a polyimide precursor dielectric (PIP) is solution-deposited to form perovskite nanocrystals in a thin-film matrix of PIP. The PIP forms a pinhole-free charge-blocking layer, while still allowing the embedded perovskite crystals to form electrical contact with the electron- and hole-injection layers. This modified structure reduces nonradiative current losses and improves quantum efficiency by 2 orders of magnitude, giving an external quantum efficiency of 1.2%. This simple technique provides an alternative route to circumvent film formation problems in perovskite optoelectronics and offers the possibility of flexible and high-performance light-emitting displays.

  3. Molecular Mobility in Hyperbranched Polymers and Their Interaction with an Epoxy Matrix

    Directory of Open Access Journals (Sweden)

    Frida Román

    2016-03-01

    Full Text Available The molecular mobility related to the glass transition and secondary relaxations in a hyperbranched polyethyleneimine, HBPEI, and its relaxation behaviour when incorporated into an epoxy resin matrix are investigated by dielectric relaxation spectroscopy (DRS and dynamic mechanical analysis (DMA. Three systems are analysed: HBPEI, epoxy and an epoxy/HBPEI mixture, denoted ELP. The DRS behaviour is monitored in the ELP system in three stages: prior to curing, during curing, and in the fully cured system. In the stage prior to curing, DRS measurements show three dipolar relaxations: γ, β and α, for all systems (HBPEI, epoxy and ELP. The α-relaxation for the ELP system deviates significantly from that for HBPEI, but superposes on that for the epoxy resin. The fully cured thermoset displays both β- and α-relaxations. In DMA measurements, both α- and β-relaxations are observed in all systems and in both the uncured and fully cured systems, similar to the behaviour identified by DRS.

  4. Hydrophobic silica nanoparticles as reinforcing filler for poly (lactic acid polymer matrix

    Directory of Open Access Journals (Sweden)

    Pilić Branka M.

    2016-01-01

    Full Text Available Properties of poly (lactic acid (PLA and its nanocomposites, with silica nanoparticles (SiO2, as filler were investigated. Neat PLA films and PLA films with different percentage of hydrophobic fumed silica nanoparticles (0.2, 0.5, 1, 2, 3 and 5 wt. % were prepared by solution casting method. Several tools were used to characterize the influence of different silica content on crystalline behavior, and thermal, mechanical and barrier properties of PLA/SiO2 nanocomposites. Results from scanning electron microscope (SEM showed that the nanocomposite preparation and selection of specific hydrophobic spherical nano filler provide a good dispersion of the silica nanoparticles in the PLA matrix. Addition of silica nanoparticles improved mechanical properties, the most significant improvement being observed for lowest silica content (0.2wt.%. Barrier properties were improved for all measured gases at all loadings of silica nanoparticles. The degree of crystallinity for PLA slightly increased by adding 0.2 and 0.5 wt. % of nano filler. [Projekat Ministarstva nauke Republike Srbije, br. III46001

  5. Protein-resistant polymer coatings obtained by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Rusen, L. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125, Magurele, Bucharest (Romania); Mustaciosu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Magurele, Bucharest (Romania); Mitu, B.; Filipescu, M.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125, Magurele, Bucharest (Romania); Dinca, V., E-mail: dinali@nipne.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125, Magurele, Bucharest (Romania)

    2013-08-01

    Adsorption of proteins and polysaccharides is known to facilitate microbial attachment and subsequent formation of biofilm on surfaces that ultimately results in its biofouling. Therefore, protein repellent modified surfaces are necessary to block the irreversible attachment of microorganisms. Within this context, the feasibility of using the Poly(ethylene glycol)-block-poly(ε-caprolactone) methyl ether (PEG-block-PCL Me) copolymer as potential protein-resistant coating was explored in this work. The films were deposited using Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique that allows good control of composition, thickness and homogeneity. The chemical and morphological characteristics of the films were examined using Fourier Transform Infrared Spectroscopy (FTIR), contact angle measurements and Atomic Force Microscopy (AFM). The FTIR data demonstrates that the functional groups in the MAPLE-deposited films remain intact, especially for fluences below 0.5 J cm{sup −2}. Optical Microscopy and AFM images show that the homogeneity and the roughness of the coatings are related to both laser parameters (fluence, number of pulses) and target composition. Protein adsorption tests were performed on the PEG-block-PCL Me copolymer coated glass and on bare glass surface as a control. The results show that the presence of copolymer as coating significantly reduces the adsorption of proteins.

  6. Thermal/Mechanical Response of a Polymer Matrix Composite at Cryogenic Temperatures

    Science.gov (United States)

    Whitley, Karen S.; Gates, Thomas S.

    2003-01-01

    In order for polymeric-matrix composites to be considered for use as structural materials in the next generation of space transportation systems, the mechanical behavior of these materials at cryogenic temperatures must be investigated. This paper presents experimental data on the residual mechanical properties of a carbon-fiber polymeric composite, IM7/PETI-5, both before and after aging. Both tension and compression modulus and strength were measured at room temperature, -196C, and -269 C on five different laminate configurations. One set of specimens was aged isothermally for 576 hours at -184 C in an unconstrained state. Another set of corresponding specimens was aged under constant uniaxial strain for 576 hours at -184 C. Based on the experimental data presented, it is shown that trends in stiffness and strength that result from changes in temperature are not always smooth and consistent. Moreover, it is shown that loading mode and direction are significant for both stiffness and strength, and aging at cryogenic temperature while under load can alter the mechanical properties of pristine, un-aged laminates made of IM7/PETI-5 material.

  7. Protein-resistant polymer coatings obtained by matrix assisted pulsed laser evaporation

    Science.gov (United States)

    Rusen, L.; Mustaciosu, C.; Mitu, B.; Filipescu, M.; Dinescu, M.; Dinca, V.

    2013-08-01

    Adsorption of proteins and polysaccharides is known to facilitate microbial attachment and subsequent formation of biofilm on surfaces that ultimately results in its biofouling. Therefore, protein repellent modified surfaces are necessary to block the irreversible attachment of microorganisms. Within this context, the feasibility of using the Poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether (PEG-block-PCL Me) copolymer as potential protein-resistant coating was explored in this work. The films were deposited using Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique that allows good control of composition, thickness and homogeneity. The chemical and morphological characteristics of the films were examined using Fourier Transform Infrared Spectroscopy (FTIR), contact angle measurements and Atomic Force Microscopy (AFM). The FTIR data demonstrates that the functional groups in the MAPLE-deposited films remain intact, especially for fluences below 0.5 J cm-2. Optical Microscopy and AFM images show that the homogeneity and the roughness of the coatings are related to both laser parameters (fluence, number of pulses) and target composition. Protein adsorption tests were performed on the PEG-block-PCL Me copolymer coated glass and on bare glass surface as a control. The results show that the presence of copolymer as coating significantly reduces the adsorption of proteins.

  8. Mechanical Properties of Natural Jute Fabric/Jute Mat Fiber Reinforced Polymer Matrix Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Elsayed A. Elbadry

    2012-01-01

    Full Text Available Recycled needle punched jute fiber mats as a first natural fiber reinforcement system and these jute mats used as a core needle punched with recycled jute fabric cloths as skin layers as a second natural fiber reinforcement system were used for unsaturated polyester matrix composites via modifying the hand lay-up technique with resin preimpregnation into the jute fiber in vacuum. The effect of skin jute fabric on the tensile and bending properties of jute mat composites was investigated for different fiber weight contents. Moreover, the notch sensitivity of these composites was also compared by using the characteristic distance do calculated by Finite Element Method (FEM. The results showed that the tensile and flexural properties of jute mat composites increased by increasing the fiber weight content and by adding the jute fabric as skin layers. On the other hand, by adding the skins, the characteristic distance decreased and, therefore, the notch sensitivity of the composites increased. The fracture behavior investigated by SEM showed that extensive fiber pull-out mechanism was revealed at the tension side of jute mat composites under the bending load and by adding the jute cloth, the failure mode of jute mat was changed to fiber bridge mechanism.

  9. Transfer-matrix calculations of DNA polymer micromechanics under tension and torque constraints

    Science.gov (United States)

    Efremov, Artem K.; Winardhi, Ricksen S.; Yan, Jie

    2016-09-01

    Recent development of single-molecule manipulation technologies has made it possible to exert constant force and torque on individual DNA biopolymers to probe their elastic characteristics and structural stability. It has been previously shown that depending on the nature of applied mechanical constraints, DNA can exist in several forms including B-, L-, and P-DNA. However, there is still a lack of understanding of how structural heterogeneity of DNA, which may naturally arise due to sequence-dependent DNA properties, protein binding, or DNA damage, influences local stability of the above DNA states. To provide a more complete and detailed description of the DNA mechanics, we developed a theoretical framework based on transfer-matrix calculations and demonstrated how it can be used to predict the DNA behavior upon application of a wide range of force and torque constraints. The resulting phase diagram shows DNA structural transitions that are in good agreement with previous experimental and theoretical studies. We further discuss how the constructed formalism can be extended to include local inhomogeneities in the DNA physical properties, thus making it possible to investigate the effect of DNA sequence as well as protein binding on DNA structural stability.

  10. Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness.

    Science.gov (United States)

    Keeney, Michael; Onyiah, Sheila; Zhang, Zhe; Tong, Xinming; Han, Li-Hsin; Yang, Fan

    2013-12-01

    Non-viral gene delivery holds great promise for promoting tissue regeneration, and offers a potentially safer alternative than viral vectors. Great progress has been made to develop biodegradable polymeric vectors for non-viral gene delivery in 2D culture, which generally involves isolating and modifying cells in vitro, followed by subsequent transplantation in vivo. Scaffold-mediated gene delivery may eliminate the need for the multiple-step process in vitro, and allows sustained release of nucleic acids in situ. Hydrogels are widely used tissue engineering scaffolds given their tissue-like water content, injectability and tunable biochemical and biophysical properties. However, previous attempts on developing hydrogel-mediated non-viral gene delivery have generally resulted in low levels of transgene expression inside 3D hydrogels, and increasing hydrogel stiffness further decreased such transfection efficiency. Here we report the development of biodegradable polymeric vectors that led to efficient gene delivery inside poly(ethylene glycol) (PEG)-based hydrogels with tunable matrix stiffness. Photocrosslinkable gelatin was maintained constant in the hydrogel network to allow cell adhesion. We identified a lead biodegradable polymeric vector, E6, which resulted in increased polyplex stability, DNA protection and achieved sustained high levels of transgene expression inside 3D PEG-DMA hydrogels for at least 12 days. Furthermore, we demonstrated that E6-based polyplexes allowed efficient gene delivery inside hydrogels with tunable stiffness ranging from 2 to 175 kPa, with the peak transfection efficiency observed in hydrogels with intermediate stiffness (28 kPa). The reported hydrogel-mediated gene delivery platform using biodegradable polyplexes may serve as a local depot for sustained transgene expression in situ to enhance tissue engineering across broad tissue types.

  11. Study of optical and structural properties of CdSe quantum dot embedded in PVA polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Chetna, E-mail: ctyagi05@gmail.com; Sharma, Ambika, E-mail: ambikasharma2004@yahoo.com [Department of Applied Sciences ITM University, HUDA Sector-23 A, Gurgaon, 122017 (Haryana) INDIA (India)

    2015-08-28

    To enhance the properties and applicability of devices it is essential to incorporate semiconductor nanoparticles into polymer matrix. This introduces a new branch of science which includes device fabrications such as gas sensors, nonlinear optics, catalysis etc. Herein, we have synthesized CdSe/PVA nanocomposite (NC) material using wet chemical synthesis technique. The XRD studies revealed the formation of crystalline structure of CdSe nanoparticles (NP’s) and PVA NC’s with an average size of 100 nm and 5 nm respectively. Energy band gap is determined using UV-VIS Spectroscopy. A red shift in the absorption edge of CdSe/PVA NC is observed with respect to CdSe Np’s, The photoluminescence spectra also show red shift for CdSe/PVA NC as compared to CdSe NP’s Thus the use of CdSe/PVA for solar cell application would be more preferable than CdSe NP’s.

  12. A Numerical Study on Electrical Percolation of Polymer-Matrix Composites with Hybrid Fillers of Carbon Nanotubes and Carbon Black

    Directory of Open Access Journals (Sweden)

    Yuli Chen

    2014-01-01

    Full Text Available The electrical percolation of polymer-matrix composites (PMCs containing hybrid fillers of carbon nanotubes (CNTs and carbon black (CB is estimated by studying the connection possibility of the fillers using Monte Carlo simulation. The 3D simulation model of CB-CNT hybrid filler is established, in which CNTs are modeled by slender capped cylinders and CB groups are modeled by hypothetical spheres with interspaces because CB particles are always agglomerated. The observation on the effects of CB and CNT volume fractions and dimensions on the electrical percolation threshold of hybrid filled composites is then carried out. It is found that the composite electrical percolation threshold can be reduced by increasing CNT aspect ratio, as well as increasing the diameter ratio of CB groups to CNTs. And adding CB into CNT composites can decrease the CNT volume needed to convert the composite conductivity, especially when the CNT volume fraction is close to the threshold of PMCs with only CNT filler. Different from previous linear assumption, the nonlinear relation between CB and CNT volume fractions at composite percolation threshold is revealed, which is consistent with the synergistic effect observed in experiments. Based on the nonlinear relation, the estimating equation for the electrical percolation threshold of the PMCs containing CB-CNT hybrid fillers is established.

  13. Polymer-based matrix composites in general industries. Ippan sangyo bun'ya ni okeru kobunshiki fukugo zairyo

    Energy Technology Data Exchange (ETDEWEB)

    Kenmochi, K. (National Institute of Materials and Chemical Research, Tsukuba (Japan))

    1994-02-15

    This paper summarizes the course of development of polymer-based matrix composites (PMC) begun in the 1950's, their future problems, and prospects. Because of PMC being a petroleum product, the changing period before and after the first and second oil crises (1974-1983) has seen even a negative growth from the declined product price out of increased material cost. However, the materials have been continuing expansion in such applications year after year for two decades since then as plant, marine vessel, and housing materials. The course of their development to date has included such proliferation impeding factors as unproved reliability, high production cost, and legal regulations because of being new materials. However, the ardent technical development efforts having produced a number of products including hybrid FRP, particularly the fundamental technology development studies sponsored by the Ministry of International Trade and Industry, have improved properties and reliability and contributed largely to expanding practical applications. Sought in different functions expected in PMC in the future would be application of bionic designs, transfer from functional quality to sensitive quality, and development of material recycling techniques. 8 refs., 11 figs., 1 tab.

  14. Molecularly imprinted polymer-matrix nanocomposite for enantioselective electrochemical sensing of D- and L-aspartic acid.

    Science.gov (United States)

    Prasad, Bhim Bali; Srivastava, Amrita; Tiwari, Mahavir Prasad

    2013-10-01

    A new molecularly imprinted polymer-matrix (titanium dioxide nanoparticle/multiwalled carbon nanotubes) nanocomposite was developed for the modification of pencil graphite electrode as an enantioselective sensing probe for aspartic acid isomers, prevalent at ultra trace level in aqueous and real samples. The nanocomposite having many shape complementary cavities was synthesized adopting surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. The proposed sensor has high stability, nanocomposite uniformity, good reproducibility, and enhanced electrocatalytic activity to respond oxidative peak current of L-aspartic acid quantitatively by differential pulse anodic stripping voltammetry, without any cross-reactivity in real samples. Under the optimized operating conditions, the L-aspartic acid imprinted modified electrode showed a wide linear response for L-aspartic acid within the concentration range 9.98-532.72 ng mL(-1), with the minimum detection limit of 1.73-1.79 ng mL(-1) (S/N=3) in aqueous and real samples. Almost similar stringent limit (1.79 ng mL(-1)) was obtained with cerebrospinal fluid which is typical for the primitive diagnosis of neurological disorders, caused by an acute depletion of L-aspartic acid biomarker, in clinical settings.

  15. Optimal Topology and Experimental Evaluation of Piezoelectric Materials for Actively Shunted General Electric Polymer Matrix Fiber Composite Blades

    Science.gov (United States)

    Choi, Benjamin B.; Duffy, Kirsten; Kauffman, Jeffrey L.; Kray, Nicholas

    2012-01-01

    NASA Glenn Research Center, in collaboration with GE Aviation, has begun the development of a smart adaptive structure system with piezoelectric (PE) transducers to improve composite fan blade damping at resonances. Traditional resonant damping approaches may not be realistic for rotating frame applications such as engine blades. The limited space in which the blades reside in the engine makes it impossible to accommodate the circuit size required to implement passive resonant damping. Thus, a novel digital shunt scheme has been developed to replace the conventional electric passive shunt circuits. The digital shunt dissipates strain energy through the load resistor on a power amplifier. General Electric (GE) designed and fabricated a variety of polymer matrix fiber composite (PMFC) test specimens. Investigating the optimal topology of PE sensors and actuators for each test specimen has revealed the best PE transducer location for each target mode. Also a variety of flexible patches, which can conform to the blade surface, have been tested to identify the best performing PE patch. The active damping control achieved significant performance at target modes. This work has been highlighted by successful spin testing up to 5000 rpm of subscale GEnx composite blades in Glenn s Dynamic Spin Rig.

  16. Computer Simulation of Spatial Arrangement and Connectivity of Particles in Three-Dimensional Microstructure: Application to Model Electrical Conductivity of Polymer Matrix Composite

    Science.gov (United States)

    Louis, P.; Gokhale, A. M.

    1996-01-01

    Computer simulation is a powerful tool for analyzing the geometry of three-dimensional microstructure. A computer simulation model is developed to represent the three-dimensional microstructure of a two-phase particulate composite where particles may be in contact with one another but do not overlap significantly. The model is used to quantify the "connectedness" of the particulate phase of a polymer matrix composite containing hollow carbon particles in a dielectric polymer resin matrix. The simulations are utilized to estimate the morphological percolation volume fraction for electrical conduction, and the effective volume fraction of the particles that actually take part in the electrical conduction. The calculated values of the effective volume fraction are used as an input for a self-consistent physical model for electrical conductivity. The predicted values of electrical conductivity are in very good agreement with the corresponding experimental data on a series of specimens having different particulate volume fraction.

  17. 聚合物基复合材料界面横晶分析%RESEARCH OF THE INTERFACE TRANSCRYSTALLIZATION OF POLYMER MATRIX COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    康永

    2012-01-01

    Some opinions to the formation mechanism of the transcrystallization on the documents were reviewed. The influences of the transcrystallization on the performances of the polymer matrix composites in this article were analyzed.%对横晶的形成的机理通过相应文献作出了分析,并对横晶对材料的一些影响作了相应的剖析.

  18. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar (registered trademark)-Fiber-Reinforced Polymer-Matrix Composites

    Science.gov (United States)

    2013-03-01

    polymer matrix composite materials display quite complex deformation and failure behavior under ballistic/blast impact loading conditions. This complexity is generally attributed to a number of factors such as (a) hierarchical/multi-length scale architecture of the material microstructure; (b) nonlinear, rate-dependent and often pressure-sensitive mechanical response; and (c) the interplay of various intrinsic phenomena and processes such as fiber twisting, interfiber friction/sliding, etc. Material models currently employed in the computational engineering

  19. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Science.gov (United States)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  20. Fatigue damage characterization of braided and woven fiber reinforced polymer matrix composites at room and elevated temperatures

    Science.gov (United States)

    Montesano, John

    The use of polymer matrix composites (PMC) for manufacturing primary load-bearing structural components has significantly increased in many industrial applications. Specifically in the aerospace industry, PMCs are also being considered for elevated temperature applications. Current aerospace-grade composite components subjected to fatigue loading are over-designed due to insufficient understanding of the material failure processes, and due to the lack of available generic fatigue prediction models. A comprehensive literature survey reveals that there are few fatigue studies conducted on woven and braided fabric reinforced PMC materials, and even fewer at elevated temperatures. It is therefore the objective of this study to characterize and subsequently model the elevated temperature fatigue behaviour of a triaxial braided PMC, and to investigate the elevated temperature fatigue properties of two additional woven PMCs. An extensive experimental program is conducted using a unique test protocol on the braided and woven composites, which consists of static and fatigue testing at various test temperatures. The development of mechanically-induced damage is monitored using a combination of non-destructive techniques which included infrared thermography, fiber optic sensors and edge replication. The observed microscopic damage development is quantified and correlated to the exhibited macroscopic material behaviour at all test temperatures. The fiber-dominated PMC materials considered in this study did not exhibit notable time- or temperature-dependent static properties. However, fatigue tests reveal that the local damage development is in fact notably influenced by temperature. The elevated temperature environment increases the toughness of the thermosetting polymers, which results in consistently slower fatigue crack propagation rates for the respective composite materials. This has a direct impact on the stiffness degradation rate and the fatigue lives for the braided

  1. EXPERIMENTAL DEVELOPMENT OF BIO-BASED POLYMER MATRIX BUILDING MATERIAL AND FISH BONE DIAGRAM FOR MATERIAL EFFECT ON QUALITY

    Directory of Open Access Journals (Sweden)

    Asmamaw Tegegne

    2014-06-01

    Full Text Available These days cost of building materials are continuously increasing and the conventional construction materials for this particular purpose become low and low. The weight of conventional construction materials particularly building block is heavy and costly due to particularly cement. Thus, the objective of this paper is to develop an alternative light weight, high strength and relatively cost effective building material that satisfy the quality standard used in the country. A bio-based polymer matrix composite material for residential construction was experimentally developed. Sugar cane bagasse, thermoplastics (polyethylene g roup sand and red ash were used as materials alternatively. Mixing of the additives,melting of the hermoplastics, molding and curing (dryingwere the common methods used on the forming process of the samples. Mechanical behavior evaluation (testing of the product was carried out. Totally 45 specimens were produced and three replicate tests were performed per each test type. Quality analysis was carried out for group B material using Ishikawa diagram. The tensile strength of group A specimen was approximately 3 times greater than that of group B specimens. The compression strength of group A specimens were nearly 2 times greater than group B. Comparing to the conventional building materials(concert block and agrostoneproduced in the country, which the compression strength is 7Mpa and 16Mpa respectively, the newly produced materials show much better results in which Group A is 25.66 Mpa and group B is 16.66 Mpa. energy absorption capacity of group A specimens was approximately 3 times better than that of group B. Water absorption test was carried out for both groups and both showed excellent resistivity. Group A composite material specimens, showed better results in all parameters.

  2. Development of a Subcell Based Modeling Approach for Modeling the Architecturally Dependent Impact Response of Triaxially Braided Polymer Matrix Composites

    Science.gov (United States)

    Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.; Kohlman, Lee W.

    2016-01-01

    Understanding the high velocity impact response of polymer matrix composites with complex architectures is critical to many aerospace applications, including engine fan blade containment systems where the structure must be able to completely contain fan blades in the event of a blade-out. Despite the benefits offered by these materials, the complex nature of textile composites presents a significant challenge for the prediction of deformation and damage under both quasi-static and impact loading conditions. The relatively large mesoscale repeating unit cell (in comparison to the size of structural components) causes the material to behave like a structure rather than a homogeneous material. Impact experiments conducted at NASA Glenn Research Center have shown the damage patterns to be a function of the underlying material architecture. Traditional computational techniques that involve modeling these materials using smeared homogeneous, orthotropic material properties at the macroscale result in simulated damage patterns that are a function of the structural geometry, but not the material architecture. In order to preserve heterogeneity at the highest length scale in a robust yet computationally efficient manner, and capture the architecturally dependent damage patterns, a previously-developed subcell modeling approach where the braided composite unit cell is approximated as a series of four adjacent laminated composites is utilized. This work discusses the implementation of the subcell methodology into the commercial transient dynamic finite element code LS-DYNA (Livermore Software Technology Corp.). Verification and validation studies are also presented, including simulation of the tensile response of straight-sided and notched quasi-static coupons composed of a T700/PR520 triaxially braided [0deg/60deg/-60deg] composite. Based on the results of the verification and validation studies, advantages and limitations of the methodology as well as plans for future work

  3. Molecularly imprinted polymer-matrix nanocomposite for enantioselective electrochemical sensing of D- and L-aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Bhim Bali, E-mail: prof.bbpd@yahoo.com; Srivastava, Amrita; Tiwari, Mahavir Prasad

    2013-10-15

    A new molecularly imprinted polymer-matrix (titanium dioxide nanoparticle/multiwalled carbon nanotubes) nanocomposite was developed for the modification of pencil graphite electrode as an enantioselective sensing probe for aspartic acid isomers, prevalent at ultra trace level in aqueous and real samples. The nanocomposite having many shape complementary cavities was synthesized adopting surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. The proposed sensor has high stability, nanocomposite uniformity, good reproducibility, and enhanced electrocatalytic activity to respond oxidative peak current of L-aspartic acid quantitatively by differential pulse anodic stripping voltammetry, without any cross-reactivity in real samples. Under the optimized operating conditions, the L-aspartic acid imprinted modified electrode showed a wide linear response for L-aspartic acid within the concentration range 9.98–532.72 ng mL{sup −1}, with the minimum detection limit of 1.73–1.79 ng mL{sup −1} (S/N = 3) in aqueous and real samples. Almost similar stringent limit (1.79 ng mL{sup −1}) was obtained with cerebrospinal fluid which is typical for the primitive diagnosis of neurological disorders, caused by an acute depletion of L-aspartic acid biomarker, in clinical settings. Highlights: • We have adopted surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. • This approach takes advantage of the nanostructured ultrathin imprinted film. • Successful enantioselective sensing and ultratrace analysis of D- and L-aspartic acid. • Stringent detection limit without any non-specific false-positive contribution.

  4. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold.

    Science.gov (United States)

    Hong, Yi; Huber, Alexander; Takanari, Keisuke; Amoroso, Nicholas J; Hashizume, Ryotaro; Badylak, Stephen F; Wagner, William R

    2011-05-01

    A biohybrid composite consisting of extracellular matrix (ECM) gel from porcine dermal tissue and biodegradable elastomeric fibers was generated and evaluated for soft tissue applications. ECM gel possesses attractive biocompatibility and bioactivity with weak mechanical properties and rapid degradation, while electrospun biodegradable poly(ester urethane)urea (PEUU) has good mechanical properties but limited cellular infiltration and tissue integration. A concurrent gel electrospray/polymer electrospinning method was employed to create ECM gel/PEUU fiber composites with attractive mechanical properties, including high flexibility and strength. Electron microscopy revealed a structure of interconnected fibrous layers embedded in ECM gel. Tensile mechanical properties could be tuned by altering the PEUU/ECM weight ratio. Scaffold tensile strengths for PEUU/ECM ratios of 67/33, 72/28 and 80/20 ranged from 80 to 187 kPa in the longitudinal axis (parallel to the collecting mandrel axis) and 41-91 kPa in the circumferential axis with 645-938% breaking strains. The 72/28 biohybrid composite and a control scaffold generated from electrospun PEUU alone were implanted into Lewis rats, replacing a full-thickness abdominal wall defect. At 4 wk, no infection or herniation was found at the implant site. Histological staining showed extensive cellular infiltration into the biohybrid scaffold with the newly developed tissue well integrated with the native periphery, while minimal cellular ingress into the electrospun PEUU scaffold was observed. Mechanical testing of explanted constructs showed evidence of substantial remodeling, with composite scaffolds adopting properties more comparable to the native abdominal wall. The described elastic biohybrid material imparts features of ECM gel bioactivity with PEUU strength and handling to provide a promising composite biomaterial for soft tissue repair and replacement.

  5. Thermo- and pH-responsive polymer brushes-grafted gigaporous polystyrene microspheres as a high-speed protein chromatography matrix.

    Science.gov (United States)

    Qu, Jian-Bo; Xu, Yu-Liang; Liu, Jun-Yi; Zeng, Jing-Bin; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo

    2016-04-08

    Dual thermo- and pH-responsive chromatography has been proposed using poly(N-isopropylacrylamide-co-butyl methacrylate-co-N,N-dimethylaminopropyl acrylamide) (P(NIPAM-co-BMA-co-DMAPAAM)) brushes grafted gigaporous polystyrene microspheres (GPM) as matrix. Atom transfer radical polymerization (ATRP) initiator was first coupled onto GPM through Friedel-Crafts acylation with 2-bromoisobutyryl bromide. The dual-responsive polymer brushes were then grafted onto GPM via surface-initiated ATRP. The surface composition, gigaporous structure, protein adsorption and dual-responsive chromatographic properties of the matrix (GPM-P(NIPAM-co-BMA-co-DMAPAAM) were characterized in detail. Results showed that GPM were successfully grafted with thermoresponsive cationic polymer brushes and that the gigaporous structure was well maintained. A column packed with GPM-P(NIPAM-co-BMA-co-DMAPAAM presented low backpressure, good permeability and appreciable thermo-responsibility. By changing pH of the mobile phase and temperature of the column in turn, the column can separate three model proteins at the mobile phase velocity up to 2528cmh(-1). A separation mechanism of this matrix was also proposed. All results indicate that the dual thermo- and pH-responsive chromatography matrix has great potentials in 'green' high-speed protein chromatography.

  6. Losartan potassium loaded sustained release matrix tablets: Influence of various hydrophilic and hydrophobic polymers on drug release behaviour

    Directory of Open Access Journals (Sweden)

    D D Vohra

    2012-01-01

    Full Text Available Losartan potassium is an angiotensin II receptor antagonist readily absorbed from the GIT, following oral administration. It has low bioavailability as it undergoes extensive first pass metabolism and low elimination half-life. The present study was aimed at studying sustained release behaviour of the drug using hydrophilic and hydrophobic polymers and to optimise using a 32 full factorial design. Eudragit and HPMC were used to evaluate the effect of hydrophilic and hydrophobic polymers on the release pattern of the drug. A full factorial was implemented at 20, 30 and 40% concentration of hydrophilic polymer and 2.5, 5 and 7.5% of hydrophobic polymer correlating with the release behaviour. Process variables were investigated and the results showed excellent adaptability in releasing drug over prolonged periods. Based on the results, it was found suitable to formulate a dosage form using optimum concentration of hydrophobic polymer along with hydrophilic polymer to vary the release behaviour for over 12 hours.

  7. A novel core-shell molecularly imprinted polymer based on metal-organic frameworks as a matrix.

    Science.gov (United States)

    Qian, Kun; Fang, Guozhen; Wang, Shuo

    2011-09-28

    A novel core-shell molecularly imprinted polymer is firstly prepared by coating the MIP shell onto the surface of the metal-organic framework, which shows a homogeneous polymer film, cubic shape, thermal stability, and exhibits a higher specific surface area and a faster transfer-mass speed compared with that of the bulk MIP.

  8. Oxygen Plasma Treatment and Deposition of CNx on a Fluorinated Polymer Matrix Composite for Improved Erosion Resistance (Preprint)

    Science.gov (United States)

    2006-12-01

    a challenge. Specifically, it is because of the resin-rich outer plies, mold release agents, and fluorinated high-temperature polymer matricies ...Specifically, it is because of the resin-rich outer plies, mold release agents, and fluorinated high-temperature polymer matricies that treatment

  9. In situ analysis of Bacillus licheniformis biofilms: amyloid-like polymers and eDNA are involved in the adherence and aggregation of the extracellular matrix.

    Science.gov (United States)

    Randrianjatovo-Gbalou, I; Rouquette, P; Lefebvre, D; Girbal-Neuhauser, E; Marcato-Romain, C-E

    2017-05-01

    This study attempts to determine which of the exopolymeric substances are involved in the adherence and aggregation of a Bacillus licheniformis biofilm. The involvement of extracellular proteins and eDNA were particularly investigated using DNase and proteinase K treatment. The permeability of the biofilms increased fivefold after DNase I treatment. The quantification of the matrix components showed that, irrespective to the enzyme tested, eDNA and amyloid-like polymers were removed simultaneously. Size-exclusion chromatography analyses supported these observations and revealed the presence of associated nucleic acid and protein complexes in the biofilm lysates. These data suggest that some extracellular DNA and amyloid-like proteins were closely interlaced within the matrix. Finally, confocal laser scanning microscopy imaging gave supplementary clues about the 3D organization of the biofilms, confirming that eDNA and exoproteins were essentially layered under and around the bacterial cells, whereas the amyloid-like fractions were homogeneously distributed within the matrix. These results confirm that some DNA-amyloid complexes play a key role in the modulation of the mechanical resistance of B. licheniformis biofilms. The study highlights the need to consider the whole structure of biofilms and to target the interactions between matrix components. A better understanding of B. licheniformis biofilm physiology and the structural organization of the matrix will strengthen strategies of biofilm control. © 2017 The Society for Applied Microbiology.

  10. Research Progress on Flame Retardant of Polymer Matrix Composites%聚合物基复合材料阻燃的研究进展

    Institute of Scientific and Technical Information of China (English)

    董金虎

    2012-01-01

    分别从氢氧化物、磷系、硅系、双羟基氢氧化物等几个阻燃剂类型,介绍了聚合物阻燃的主要研究成果及阻燃机理,为聚合物阻燃方面的进一步研究和应用提供参考.%This article introduced various types of flame retardant research and mechanisms from hydrogen peroxide, phosphorus-containing, silicon-containing and double hydroxyl hydroxides respects respectively , which can provide reference for further research and apply flame retardant polymer matrix composites.

  11. Preparation of polypropylene/montmorillonite nanocomposites by intercalative polymerization: Effect of in situ polymer matrix functionalization on the stability of the nanocomposite structure

    Institute of Scientific and Technical Information of China (English)

    YANG KeFang; HUANG YingJuan; DONG JinYong

    2007-01-01

    The copolymerization of propylene and 5-hexenyl-9-borabicyclo[3.3.1]nonane (5-hexenyl-9-BBN) has been conducted with an MgCl2/TiCl4 catalyst intercalated in an organically modified montmorillonite (OMMT) with triethylaluminum (AlEt3) cocatalyst and diphenyldimethoxysilane (DDS) external donor. This polymerization process simultaneously results in both the exfoliation of MMT layers to realize the preparation of polypropylene (PP)/MMT nanocomposites and the implantation of reactive borane groups in the formed PP matrix. The polymer-borne borane groups have been able to undergo an efficient hydrolysis process under very mild reaction conditions (40℃, 3 h, in THF), introducing hydroxy groups into PP without sacrificing the polymerization-formed nanocomposite structure (the exfoliation of MMT). The resultant hydroxyl-functionalized PP/MMT nanocomposites exhibit enhanced structural stability against processing compared with those based on unfunctionalized PP matrix.

  12. 环境友好型聚合物基复合材料的研究进展%Research Progress on Environmental Friendly Polymer Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    何晓烨

    2016-01-01

    Biodegradable polymer attracts people’s attention as an environmentally and friendly material. In recent years, it has carried out extensive research at home and abroad, but its practical application exists some limitations. Using natural macromolecule such as starch and natural fiber or inorganic filler such as silicon dioxide, clay, grapheme, carbon nanotubes, hydrotalcite and calcium sulfate, etc, to produce environmentally and friendly biodegradable polymeric composite can enhance and improve the performance of biodegradable polymer effectively, which expands its scope of application. The research progress on the preparation of environmentally friendly polymer matrix composites by compound from PCL, PBS, PLA, PHBV, PPC and other biodegradable polymers with natural polymer or inorganic filler were discussed.%生物降解高分子作为环境友好型材料受到人们的关注,近年来国内外对它开展了广泛的研究,但其在实际应用中存在一定的局限性。采用天然高分子(淀粉和天然纤维)或无机填料(二氧化硅、粘土、石墨烯、碳纳米管、水滑石和硫酸钙等)与可降解聚合物制备环境友好型可降解复合材料可有效提高和改善生物降解高分子的性能,扩大其应用范围。本文重点介绍了PCL、 PBS、 PLA、 PHBV、 PPC等可降解聚合物与天然高分子或无机填料制备环境友好型聚合物基复合材料的研究进展。

  13. Matrix-assisted laser desorption/ionization mass spectrometry imaging: a powerful tool for probing the molecular topology of plant cutin polymer.

    Science.gov (United States)

    Veličković, Dušan; Herdier, Hélène; Philippe, Glenn; Marion, Didier; Rogniaux, Hélène; Bakan, Bénédicte

    2014-12-01

    The cutin polymers of different fruit cuticles (tomato, apple, nectarine) were examined using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) after in situ release of the lipid monomers by alkaline hydrolysis. The mass spectra were acquired from each coordinate with a lateral spatial resolution of approximately 100 μm. Specific monomers were released at their original location in the tissue, suggesting that post-hydrolysis diffusion can be neglected. Relative quantification of the species was achieved by introducing an internal standard, and the collection of data was subjected to non-supervised and supervised statistical treatments. The molecular images obtained showed a specific distribution of ions that could unambiguously be ascribed to cutinized and suberized regions observed at the surface of fruit cuticles, thus demonstrating that the method is able to probe some structural changes that affect hydrophobic cuticle polymers. Subsequent chemical assignment of the differentiating ions was performed, and all of these ions could be matched to cutin and suberin molecular markers. Therefore, this MALDI-MSI procedure provides a powerful tool for probing the surface heterogeneity of plant lipid polymers. This method should facilitate rapid investigation of the relationships between cuticle phenotypes and the structure of cutin within a large population of mutants.

  14. Impact of Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation (RIR-MAPLE) on Morphology and Charge Conduction in Conjugated Polymer and Bulk Heterojunction Thin Films

    Science.gov (United States)

    Stiff-Roberts, Adrienne; McCormick, Ryan; Atewologun, Ayomide

    2014-03-01

    An approach to improve organic photovoltaic efficiency is to increase vertical charge conduction by promoting out-of-plane π- π stacking in conjugated polymers. Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) features multiple growth parameters that can be varied to achieve a desired organic thin film property. In addition, RIR-MAPLE enables nanoscale domains in blended polymeric films and multi-layer polymeric films regardless of constituent solubility. Thus, RIR-MAPLE deposition is compared to solution-cast films as a possible approach to increase out-of-plane charge transport in polymers and bulk heterojunctions. Two common, solar cell polymers are investigated: P3HT and PCPDTBT. Materials characterization includes grazing-incidence, wide angle x-ray scattering (GIWAXS) for structural information and two techniques to determine hole mobility: organic field effect transistors to measure in-plane mobility and charge extraction by linearly increasing voltage to measure out-of-plane mobility. Initial indications are that the RIR-MAPLE films have a fundamentally different morphology compared to solution-cast films. In the case of P3HT, an enhancement in out-of-plane π- π stacking was observed by GIWAXS in RIR-MAPLE films compared to solution-cast films. A portion of this research was conducted at CNMS at ORNL.

  15. Efficient upconversion polymer-inorganic nanocomposite thin film emitters prepared by the double beam matrix assisted pulsed laser evaporation (DB-MAPLE)

    Science.gov (United States)

    Darwish, Abdalla M.; Burkett, Allan; Blackwell, Ashley; Taylor, Keylantra; Walker, Vernell; Sarkisov, Sergey; Koplitz, Brent

    2014-09-01

    We report on fabrication and investigation of optical and morphological properties of highly efficient (a quantum yield of 1%) upconversion polymer-inorganic nanocomposite thin film emitters prepared by the new technique of double beam matrix assisted pulsed laser evaporation (DB-MAPLE). Polymer poly(methyl methacrylate) (PMMA) host was evaporated on a silicon substrate using a 1064-nm pulsed laser beam using a target made of frozen (to the temperature of liquid nitrogen) solution of PMMA in chlorobenzene. Concurrently, the second 532-nm pulsed beam from the same laser was used to impregnate the polymer host with the inorganic nanoparticulate made of the rare earth upconversion compounds NaYF4: Yb3+, Er3+, NaYF4: Yb3+, Ho3+, and NaYF4: Yb3+, Tm3+. The compounds were initially synthesized using the wet process, baked, and compressed in solid pellet targets. The proposed DB-MAPLE method has the advantage of making highly homogeneous nanocomposite films with precise control of the doping rate due to the optimized overlapping of the plumes produced by the ablation of the organic and inorganic target with the infrared and visible laser beams respectively. X-ray diffraction, electron and atomic force microscopy, and optical fluorescence spectroscopy indicated that the inorganic nanoparticulate preserved its crystalline structure and upconversion properties (strong emission in green, red, and blue bands upon illumination with 980-nm laser diode) after being transferred from the target in the polymer nanocomposite film. The produced films can be used in applications varying from the efficiency enhancement of the photovoltaic cells, optical sensors and biomarkers to anti-counterfeit labels.

  16. 聚合物基复合材料的界面结构与导热性能%Interface Structure and Thermal Conductivity of Polymer Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    赵维维; 傅仁利; 顾席光; 王旭; 方军

    2013-01-01

    在整理近年来国内外对聚合物基导热复合材料性能的研究工作的基础上,总结界面结构与界面处理对聚合物基复合材料界面和导热性能的影响,分析目前已有研究中的缺点和不足,提出未来改善界面结合、提高聚合物基复合材料导热性能的具体方法,并指出探究界面结构与热流散射的关系,特别是弱界面结合情况下的热流传导规律,对提高聚合物基复合材料的热导率有很大的指导意义.%The research about thermal conductivity performance of polymer-based composite material at home and abroad is sorted out, the effect of interface structure and interface treatment on polymer matrix composites'interface and thermal conductivity is summarized, the disadvantages of current research are indicated, the specific method to improve interface combination and thermal conductivity of polymer composites is put forward. In addition, it is also pointed out that exploring the discipline of interface structure versus heat flow scattering,expecially the heat flow conductive rules under the condition of weak interface bonding,has a great significance to improve thermal conductivity of polymer-based composites.

  17. Effect Of Ether Derivative Cellulose Polymers On Hydration, Erosion And Release Kinetics Of Diclofenac Sodium Matrix Tablets

    Directory of Open Access Journals (Sweden)

    Muhammad Akhlaq*1,2, Gul Majid Khan1 , Abdul Wahab1, Waqas Rabbani1, Abid Hussain1, Asif Nawaz1, & Alam Zeb1

    2011-09-01

    Full Text Available Objectives: The work aims to investigate the effect ofhydrophilic and hydrophobic polymers swelling and erosionon the release behaviour of DCL-Na from controlled matrixtablets prepared by direct compression and wet-granulationtechniques.Materials and Methods: Powder preformulation studies wereconducted. Tablets were prepared by direct compressiontechnique and their physicochemical properties wereevaluated. Drug-polymer interaction was analyzed by FTIRspectroscopy. The in-vitro drug release study was conductedusing phosphte buffer pH 7.4 as dissolution medium anddifferent kinetic parameters were applied.Results and Discussion: F-1 and F-5 containing ethycelluloseprepared by direct compression and wet granulationtechniques released 94 % and 84 % drug after 24hrs, while F-2and F-6 containing hydroxypropylmethylcellulose polymerprepared by direct compression and wet granulation released98.46 % and 91.25 % drug after within 24 hrs respectively.Ethylcellulose and hydroxypropylmethylcellulose based matrixtablets showed the best anomalous drug release behaviour,with the release exponents “ n ” ranging from 0.685 to 0.809.Conclusion: It has been concluded that ethylcellulose etherderivative polymer is used to prepare oral controlled releasematrix tablet of diclofenac sodium. Fickian drug diffusion,polymer hydration and erosion mechanisms occurredsimultaneously and were considered as the main drug releasecontrolling factors.

  18. Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix

    NARCIS (Netherlands)

    Kochetov, R.; Korobko, A.V.; Andritsch, T.; Morshuis, P.H.F.; Picken, S.J.; Smit, J.J.

    2011-01-01

    In this paper the thermal conductivity of epoxy-based composite materials is analysed. Two and three-phase Lewis–Nielsen models are proposed for fitting the experimental values of the thermal conductivity of epoxy-based polymer composites. Various inorganic nano- and microparticles were used, namely

  19. Sonochemical deposition of platinum nanoparticles on polymer beads and their transfer on the pore surface of a silica matrix.

    Science.gov (United States)

    Chave, Tony; Grunenwald, Anthony; Ayral, André; Lacroix-Desmazes, Patrick; Nikitenko, Sergey I

    2013-04-01

    This study reported the sonochemical deposition of platinum on the surface of polystyrene beads (PSBs) and the transfer of obtained Pt nanoparticles into a porous silica matrix using the PSB as a sacrificial template. Platinum nanoparticle deposition was ensured by the sonochemical reduction of Pt(IV) at room temperature in latex solutions containing polystyrene beads in the presence of formic acid under Ar or under Ar/CO atmosphere without any additives. After ultrasonic treatments for few hours, well dispersed Pt nanoparticles within the range of 3-5 nm deposited on PSB were obtained in both studied conditions. Samples were then mixed with TEOS, dried, and heated at 450°C to ensure the PSB removal from the silica matrix. TEM and SEM results clearly show that final silica pore size is within the same order of magnitude than initial PSB. Finally, platinum decorated silica matrix with chosen pore sizes was successfully prepared.

  20. Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1)

    KAUST Repository

    Ahn, Juhyeon

    2010-01-01

    Recently, high-free volume, glassy ladder-type polymers, referred to as polymers of intrinsic microporosity (PIM), have been developed and their reported gas transport performance exceeded the Robeson upper bound trade-off for O2/N2 and CO2/CH4. The present work reports the gas transport behavior of PIM-1/silica nanocomposite membranes. The changes in free volume, as well as the presence and volume of the void cavities, were investigated by analyzing the density, thermal stability, and nano-structural morphology. The enhancement in gas permeability (e.g., He, H2, O2, N2, and CO2) with increasing filler content shows that the trend is related to the true silica volume and void volume fraction. Crown Copyright © 2009.

  1. Thermosetting polyimide resin matrix composites with interpenetrating polymer networks for precision foil resistor chips based on special mechanical performance requirements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.Y., E-mail: wxy@tju.edu.cn [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China); Ma, J.X.; Li, C.G. [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China); Wang, H.X. [ZHENGHE electronics Co., Ltd, Jining 272023 (China)

    2014-04-01

    Highlights: • Macromolecular materials were chosen to modify thermosetting polyimide (TSPI). • The formation of IPN structure in TSPI composite polymers was discussed. • The special mechanical properties required were the main study object. • The desired candidate materials should have proper hardness and toughness. • The specific mechanical data are quantitatively determined by experiments. - Abstract: Based on interpenetrating networks (IPNs) different macromolecular materials such as epoxy, phenolic, and silicone resin were chosen to modify thermosetting polyimide (TSPI) resin to solve the lack of performance when used for protecting precision foil resistor chips. Copolymerization modification, controlled at curing stage, was used to prepare TSPI composites considering both performance and process requirements. The mechanical properties related to trimming process were mainly studied due to the special requirements of the regularity of scratch edges caused by a tungsten needle. The analysis on scratch edges reveals that the generation and propagation of microcracks caused by scratching together with crack closure effect may lead to regular scratch traces. Experiments show that the elongation at break of TSPI composites is the main reason that determines the special mechanical properties. The desired candidate materials should have proper hardness and toughness, and the specific mechanical data are that the mean elongation at break and tensile strength of polymer materials are in the range of 9.2–10.4% and 100–107 MPa, respectively. Possible reasons for the effect of the modifiers chosen on TSPI polymers, the reaction mechanisms on modified TSPI resin and the IPN structure in TSPI composite polymers were discussed based on IR and TG analysis.

  2. Load Transfer Analysis in Short Carbon Fibers with Radially-Aligned Carbon Nanotubes Embedded in a Polymer Matrix

    OpenAIRE

    2009-01-01

    A novel shortfiber composite in which the microscopic advanced fiber reinforcements are coated with radially aligned carbon nanotubes (CNTs) is analyzed in this study. A shear-lag model is developed to analyze the load transferred to such coated fibers from the aligned-CNT reinforced matrix in a hybrid composite application. It is found that if the carbon fibers are coated with radially aligned CNTs, then the axial load transferred to the fiber is reduced due to stiffening of the matrix by th...

  3. Practices Surrounding Event Photos

    NARCIS (Netherlands)

    Vyas, Dhaval; Nijholt, Antinus; van der Veer, Gerrit C.; Kotzé, P.; Marsden, G.; Lindgaard, G.; Wesson, J.; Winckler, M.

    Sharing photos through mobile devices has a great potential for creating shared experiences of social events between co-located as well as remote participants. In order to design novel event sharing tools, we need to develop indepth understanding of current practices surrounding these so called

  4. Controlling the Degradation of Bioresorbable Polymers

    Science.gov (United States)

    Moritz, Istvan; Crowley, Brian; Brundage, Elizabeth; Rende, Deniz; Ozisik, Rahmi

    Bioresorbable polymers play a vital role in the development of implantable materials that are used in surgical procedures, controlled drug delivery systems; and tissue engineering scaffolds. The half-life of common bioresorbable polymers ranges from 3 to over 12 months and slow bioresorption rates of these polymers restrict their use to a limited set of applications. The use of embedded enzymes was previously proposed to control the degradation rate of bioresorbable polymers, and was shown to decrease average degradation time to about 0.5 months. In this study, electromagnetic actuation of iron oxide magnetic nanoparticles embedded in an encapsulant polymer, poly(ethyleneoxide), PEO, was employed to initiate enzyme assisted degradation of bioresorbable polymer poly(caprolactone), PCL. Results indicate that the internal temperature of iron oxide magnetic nanoparticle doped PEO samples can be increased via an alternating magnetic field, and temperature increase depends strongly on nanoparticle concentration and magnetic field parameters. The temperature achieved is sufficient to relax the PEO matrix and to enable the diffusion of enzymes from PEO to a surrounding PCL matrix. Current studies are directed at measuring the degradation rate of PCL due to the diffused enzyme. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.

  5. Research Advances on Polymer Matrix Composites with High Dielectric Constant%高介电聚合物基复合材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    殷卫峰; 苏民社; 颜善银

    2013-01-01

    Application progress of high dielectric constant polymer matrix composites(HDPCs) at embedded capacitors, high energy storage, etc. is reviewed. Dielectric mechanism, research efforts of different types of HDPCs, effect of different factors on HDPCs properties are discussed. In addition, prospect of HDPCs is also presented.%综述了高介电聚合物基复合材料(HDPCs)在埋容器件、高能存储等方面的应用,探讨了HDPCs的高介电机理、不同类型HDPCs的研究状况以及不同因素对HDPCs性能的影响,并展望了HDPCs的前景.

  6. Methods and terminology used in cell-culture studies of low-dose effects of matrix constituents of polymer resin-based dental materials.

    Science.gov (United States)

    Nilsen, Bo W; Örtengren, Ulf; Simon-Santamaria, Jaione; Sørensen, Karen K; Michelsen, Vibeke B

    2016-12-01

    General comprehension of terms and confounding factors associated with in vitro experiments can maximize the potential of in vitro testing of substances. In this systematic review, we present an overview of the terms and methods used to determine low-dose effects of matrix constituents in polymer resin-based dental materials in cell-culture studies and discuss the findings in light of how they may influence the comprehension and interpretation of results. Articles published between 1996 and 2015 were identified by searches in the Scopus, Web of Science, MEDLINE, PubMed, and Embase databases using keywords associated with low-dose effects, polymer resin-based materials, in vitro parameters, and dental materials. Twenty-nine articles were included. Subtoxic (n = 11), sublethal (n = 10), and nontoxic (n = 6) were the terms most commonly used to describe the low-dose effects of methacrylates. However, definition of terms varied. Most (82%) studies employed only one method to define the exposure scenario, and no agreement was seen between studies on the use of solvents. Prophylactic use of antibiotics was widespread, and mycoplasma screening was not reported. In conclusion, cell-culture conditions and tests used to define exposure scenarios have changed little in the last decades, despite development in recommendations. Nomenclature alignment is needed for a better understanding of possible biohazards of methacrylates. © 2016 Eur J Oral Sci.

  7. Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten-Polycarbonate Polymer Matrix Composite for Space-Based Applications

    Science.gov (United States)

    Shemelya, Corey M.; Rivera, Armando; Perez, Angel Torrado; Rocha, Carmen; Liang, Min; Yu, Xiaoju; Kief, Craig; Alexander, David; Stegeman, James; Xin, Hao; Wicker, Ryan B.; MacDonald, Eric; Roberson, David A.

    2015-08-01

    Material-extrusion three-dimensional (3D) printing has recently attracted much interest because of its process flexibility, rapid response to design alterations, and ability to create structures "on-the-go". For this reason, 3D printing has possible applications in rapid creation of space-based devices, for example cube satellites (CubeSat). This work focused on fabrication and characterization of tungsten-doped polycarbonate polymer matrix composites specifically designed for x-ray radiation-shielding applications. The polycarbonate-tungsten polymer composite obtained intentionally utilizes low loading levels to provide x-ray shielding while limiting effects on other properties of the material, for example weight, electromagnetic functionality, and mechanical strength. The fabrication process, from tungsten functionalization to filament extrusion and material characterization, is described, including printability, determination of x-ray attenuation, tensile strength, impact resistance, and gigahertz permittivity, and failure analysis. The proposed materials are uniquely advantageous when implemented in 3D printed structures, because even a small volume fraction of tungsten has been shown to substantially alter the properties of the resulting composite.

  8. Secreted Matrix Metalloproteinase-9 of Proliferating Smooth Muscle Cells as a Trigger for Drug Release from Stent Surface Polymers in Coronary Arteries.

    Science.gov (United States)

    Gliesche, Daniel G; Hussner, Janine; Witzigmann, Dominik; Porta, Fabiola; Glatter, Timo; Schmidt, Alexander; Huwyler, Jörg; Meyer Zu Schwabedissen, Henriette E

    2016-07-01

    Cardiovascular diseases are the leading causes of death in industrialized countries. Atherosclerotic coronary arteries are commonly treated with percutaneous transluminal coronary intervention followed by stent deployment. This treatment has significantly improved the clinical outcome. However, triggered vascular smooth muscle cell (SMC) proliferation leads to in-stent restenosis in bare metal stents. In addition, stent thrombosis is a severe side effect of drug eluting stents due to inhibition of endothelialization. The aim of this study was to develop and test a stent surface polymer, where cytotoxic drugs are covalently conjugated to the surface and released by proteases selectively secreted by proliferating smooth muscle cells. Resting and proliferating human coronary artery smooth muscle cells (HCASMC) and endothelial cells (HCAEC) were screened to identify an enzyme exclusively released by proliferating HCASMC. Expression analyses and enzyme activity assays verified selective and exclusive activity of the matrix metalloproteinase-9 (MMP-9) in proliferating HCASMC. The principle of drug release exclusively triggered by proliferating HCASMC was tested using the biodegradable stent surface polymer poly-l-lactic acid (PLLA) and the MMP-9 cleavable peptide linkers named SRL and AVR. The specific peptide cleavage by MMP-9 was verified by attachment of the model compound fluorescein. Fluorescein release was observed in the presence of MMP-9 secreting HCASMC but not of proliferating HCAEC. Our findings suggest that cytotoxic drug conjugated polymers can be designed to selectively release the attached compound triggered by MMP-9 secreting smooth muscle cells. This novel concept may be beneficial for stent endothelialization thereby reducing the risk of restenosis and thrombosis.

  9. Influence of matching solubility parameter of polymer matrix and CNT on electrical conductivity of CNT/rubber composite

    OpenAIRE

    Seisuke Ata; Takaaki Mizuno; Ayumi Nishizawa; Chandramouli Subramaniam; Futaba, Don N.; Kenji Hata

    2014-01-01

    We report a general approach to fabricate elastomeric composites possessing high electrical conductivity for applications ranging from wireless charging interfaces to stretchable electronics. By using arbitrary nine kinds of rubbers as matrices, we experimentally demonstrate that the matching the solubility parameter of CNTs and the rubber matrix is important to achieve higher electrical conductivity in CNT/rubber composite, resulting in continuous conductive pathways leading to electrical co...

  10. Influence of cellulose derivatives and natural polymers on in vitro release kinetics of metoprolol succinate from extended release matrix tablets

    OpenAIRE

    Sunil, R.; Somagoni, Jagan M.; Panakanti, Pavan K.; Ega, Chandra M.; Yamsani, Madhusudan R.

    2011-01-01

    In the present investigation, extended release tablets of metoprolol succinate were developed using cellulose derivatives and natural gums as matrix formers and were evaluated for its extended release characteristics. The optimized formulation (F7) was obtained using cellulose derivatives in the ratio of 1:0.5:1drug, HPMC K 100M and Na CMC, respectively. Prepared tablets were subjected to all the Pharmacopeial quality tests and found to be in the limits. The in vitro release studies of prepar...

  11. Evaluation of the Effect of Fiber Volume Fraction on the Mechanical Properties of a Polymer Matrix Composite

    Directory of Open Access Journals (Sweden)

    Fatai Olufemi ARAMIDE

    2009-07-01

    Full Text Available The possibility of utilization of the fibres made from bagass as reinforcement in polyester matrix composite was evaluated. The various composite formulations were prepared using 0%, 2%, 4%, 6%, 8%, 10%, 15% and 20% bagass fibres as the reinforcement. For tensile strength, samples were prepared according to ASTM D412 and tensile strength of standard and conditioned samples was calculated, using INSTRON 1195 at a fixed crosshead speed of 10mm min-1, for microhardness, the sample was indented using Durometer following ASTM procedure No.D2240 and the reading is noted from the calibrated scale. It was observed that The UTS, Modulus of elasticity and extension to break of the polyester resin matrix composite increase with the amount of bagass fibre up to a certain threshold and then begins to reduce with further increase in the amount of bagass fibre. It was concluded that the bagass fibres are providing a reinforcement effect in polyester matrix composites and the maximum reinforcement is achieved at around 10% by weight of bagass fibre content.

  12. A novel promising biomolecule immobilization matrix: synthesis of functional benzimidazole containing conducting polymer and its biosensor applications.

    Science.gov (United States)

    Uzun, Sema Demirci; Unlu, Naime Akbasoglu; Sendur, Merve; Kanik, Fulya Ekiz; Timur, Suna; Toppare, Levent

    2013-12-01

    In order to construct a robust covalent binding between biomolecule and immobilization platform in biosensor preparation, a novel functional monomer 4-(4,7-di(thiophen-2-yl)-1H-benzo[d]imidazol-2-yl)benzaldehyde (BIBA) was designed and successfully synthesized. After electropolymerization of this monomer, electrochemical and spectroelectrochemical properties were investigated in detail. To fabricate the desired biosensor, glucose oxidase (GOx) was immobilized as a model enzyme on the polymer coated graphite electrode with the help of glutaraldehyde (GA). During the immobilization step, an imine bond was formed between the free amino groups of enzyme and aldehyde group of polymer. The surface characterization and morphology were investigated to confirm bioconjugation by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) at each step of biosensor fabrication. The optimized biosensor shows good linearity between 0.02mM and 1.20mM and a low limit of detection (LOD) of 2.29μM. Kinetic parameters Km(app) and Imax were determined as 0.94mM and 10.91μA, respectively. The biosensor was tested for human blood serum samples.

  13. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries

    Science.gov (United States)

    Zhao, Yanran; Wu, Chuan; Peng, Gang; Chen, Xiaotian; Yao, Xiayin; Bai, Ying; Wu, Feng; Chen, Shaojie; Xu, Xiaoxiong

    2016-01-01

    Li10GeP2S12 (LGPS) is incorporated into polyethylene oxide (PEO) matrix to fabricate composite solid polymer electrolyte (SPE) membranes. The lithium ion conductivities of as-prepared composite membranes are evaluated, and the optimal composite membrane exhibits a maximum ionic conductivity of 1.21 × 10-3 S cm-1 at 80 °C and an electrochemical window of 0-5.7 V. The phase transition behaviors for electrolytes are characterized by DSC, and the possible reasons for their enhanced ionic conductivities are discussed. The LGPS microparticles, acting as active fillers incorporation into the PEO matrix, have a positive effect on the ionic conductivity, lithium ion transference number and electrochemical stabilities. In addition, two kinds of all-solid-state lithium batteries (LiFeO4/SPE/Li and LiCoO2/SPE/Li) are fabricated to demonstrate the good compatibility between this new SPE membrane and different electrodes. And the LiFePO4/Li battery exhibits fascinating electrochemical performance with high capacity retention (92.5% after 50 cycles at 60 °C) and attractive capacities of 158, 148, 138 and 99 mAh g-1 at current rates of 0.1 C, 0.2 C, 0.5 C and 1 C at 60 °C, respectively. It is demonstrated that this new composite SPE should be a promising electrolyte applied in solid state batteries based on lithium metal electrode.

  14. Influence of the Shell Thickness and Ratio Between Core Elements on Photostability of the CdTe/CdS Core/Shell Quantum Dots Embedded in a Polymer Matrix.

    Science.gov (United States)

    Doskaliuk, Nataliia; Khalavka, Yuriy; Fochuk, Petro

    2016-12-01

    This paper reports a study of photooxidation and photomodification processes of the CdTe/CdS quantum dots embedded in a polymer matrix under ambient condition. During the first few minutes of irradiation, the quasi-inverse increase in photoluminescence intensity has been observed indicating the passivation of the nanocrystal surface traps by water molecules. A prolonged irradiation of the polymer film containing CdTe/CdS quantum dots leads to a significant decrease in the photoluminescence intensity together with the "blue shift" of the photoluminescence peak energy associated with quantum dot photooxidation. The mechanisms of the CdTe/CdS core/shell quantum dot photooxidation and photomodification in a polymer matrix are discussed. We have found a correlation between the photostability of the quantum dots and the CdS shell thickness as well as the ratio of core elements.

  15. Enhancement in dose sensitivity of polymer gel dosimeters composed of radiation-crosslinked gel matrix and less toxic monomers

    Science.gov (United States)

    Hiroki, A.; Yamashita, S.; Taguchi, M.

    2015-01-01

    Polymer gel dosimeters based on radiation-crosslinked hydroxypropyl cellulose gel were prepared, which comprised 2-hydroxyethyl methacrylate (HEMA) and polyethylene glycol #400 dimethacrylate (9G) as less toxic monomers and tetrakis (hydroxymethyl) phosphonium chloride (THPC) as an antioxidant. The dosimeters exposed to 60Co γ-rays became cloudy at only 1 Gy. The irradiated dosimeters were optically analyzed by using a UV- vis spectrophotometer to evaluate dose response. Absorbance of the dosimeters linearly increased in the dose range from 0 to 10 Gy, in which dose sensitivity increased with increasing 9G concentration. The dose sensitivity of the dosimeters with 2 wt% HEMA and 3 wt% 9G was also enhanced by increment in THPC.

  16. Co-assembly of Au nanorods with Ag nanowires within polymer nanofiber matrix for enhanced SERS property by electrospinning

    Science.gov (United States)

    Zhang, Chuan-Ling; Lv, Kong-Peng; Huang, Hai-Tao; Cong, Huai-Ping; Yu, Shu-Hong

    2012-08-01

    Gold nanorods (AuNRs) can be successfully co-assembled with Ag nanowires (AgNWs) to form a kind of AuNR-AgNW nanocomposite by electrostatic attraction, in which the AuNRs are arranged along the long axial direction of the AgNWs with a preferential string-like alignment. The assembled AuNR-AgNW nanocomposites are then further embedded within polyvinyl alcohol (PVA) nanofibers by electrospinning, by which both AuNRs and AgNWs can be stabilized and arranged along the axis of polymer nanofibers. When the polymer nanofibers are aligned by collecting on a copper mesh with a woven structure, the AuNR-AgNW nanocomposites assembled within the electrospun nanofibers are also arranged. The influences of the AuNR-AgNW assemblies with different amounts of AuNRs attached on AgNWs on the optical properties and surface enhanced Raman scattering (SERS) enhancement have been investigated. The resulting AuNR-AgNW/PVA electrospun mats show red-shifted and broader absorption bands and higher SERS performances compared with the normal casting films with randomly dispersed AuNRs and AgNWs, or electrospun mats with monometallic components, due to the order alignment of AuNR-AgNW nanocomposites on a large scale.Gold nanorods (AuNRs) can be successfully co-assembled with Ag nanowires (AgNWs) to form a kind of AuNR-AgNW nanocomposite by electrostatic attraction, in which the AuNRs are arranged along the long axial direction of the AgNWs with a preferential string-like alignment. The assembled AuNR-AgNW nanocomposites are then further embedded within polyvinyl alcohol (PVA) nanofibers by electrospinning, by which both AuNRs and AgNWs can be stabilized and arranged along the axis of polymer nanofibers. When the polymer nanofibers are aligned by collecting on a copper mesh with a woven structure, the AuNR-AgNW nanocomposites assembled within the electrospun nanofibers are also arranged. The influences of the AuNR-AgNW assemblies with different amounts of AuNRs attached on AgNWs on the optical

  17. Improvement of copper FAAS determination conditions via preconcentration procedure with the use of salicylaldoxime complex trapped in polymer matrix.

    Science.gov (United States)

    Tobiasz, Anna; Walas, Stanisław; Landowska, Lucyna; Konefał-Góral, Jadwiga

    2012-07-15

    The paper presents application of a new resin dedicated to copper(II) flow-injection on-line preconcentration prior its flame atomic absorption spectrometric (FAAS) determination. The new sorbent, obtained by suspension polymerization technique, was styrene-divinylbenzene copolymer modified with 5-dodecylsalicylaldoxime-copper(II) complex. In flow mode leaching of initially imprinted Cu(II) ions from polymer beads was effective with 1% (v/v) nitric acid, however for elution of ions retained on the sorbent during the loading process sufficient efficiency was obtained for 0.5% (v/v) nitric acid. The most effective copper(II) sorption was observed within sample pH ca. 6.3 at flow rate 7.5mLmin(-1). Furthermore, preconcentration studies of Cu(II) ions realized in the presence of popular foreign ions like Cd(II), Pb(II), Zn(II), Ni(II), Mn(II), Co(II) did not reveal significant interference. The expected effect of Cu(II)-imprinting was confirmed by higher tolerance level for interferents ions concentration for the new sorbent than for the control polymer. It was found that alkaline metals ions and humic acid had the most relevant influence on copper(II) uptake. Accuracy of the evaluated method was assessed for analysis of water samples (tap and mineral water, river water, artesian water) and certified water reference materials compare them to results obtained by inductively plasma mass spectrometry. The satisfactory relative error values obtained with use of standard addition calibration method, confirms the feasibility of this method for Cu(II) determination in water samples. Application of 120s sorption time enabled to obtain 74-fold enrichment factor and limit of detection (3σ) equal to 0.4μgL(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Interplay of domain walls and magnetization rotation on dynamic magnetization process in iron/polymer-matrix soft magnetic composites

    Science.gov (United States)

    Dobák, Samuel; Füzer, Ján; Kollár, Peter; Fáberová, Mária; Bureš, Radovan

    2017-03-01

    This study sheds light on the dynamic magnetization process in iron/resin soft magnetic composites from the viewpoint of quantitative decomposition of their complex permeability spectra into the viscous domain wall motion and magnetization rotation. We present a comprehensive view on this phenomenon over the broad family of samples with different average particles dimension and dielectric matrix content. The results reveal the pure relaxation nature of magnetization processes without observation of spin resonance. The smaller particles and higher amount of insulating resin result in the prevalence of rotations over domain wall movement. The findings are elucidated in terms of demagnetizing effects rising from the heterogeneity of composite materials.

  19. Engineering and Design of Polymeric Shells: Inwards Interweaving Polymers as Multilayer Nanofilm, Immobilization Matrix, or Chromatography Resins.

    Science.gov (United States)

    Pan, Houwen Matthew; Yu, Han; Guigas, Gernot; Fery, Andreas; Weiss, Matthias; Patzel, Volker; Trau, Dieter

    2017-02-15

    Hydrogels with complex internal structures are required for advanced drug delivery systems and tissue engineering or used as inks for 3D printing. However, hydrogels lack the tunability and diversity of polymeric shells and require complicated postsynthesis steps to alter its structure or properties. We report on the first integrated approach to assemble and design polymeric shells to take on various complex structures and functions such as multilayer nanofilms, multidensity immobilization matrix, or multiadhesive chromatography resins via the tuning of four assembly parameters: (a) poly(allylamine) (PA) concentration, (b) number of poly(allylamine)/poly(styrenesulfonic acid) (PA/PSSA) incubations, (c) poly(allylamine) (PA) to poly(ethylene glycol) (PEG) grafting ratio, and (d) % H2O present during assembly. Our approach combines the complex 3D structures of hydrogels with the versatility of self-assembled polymeric layers. Polymeric shells produced from our method have a highly uniform material distribution and well-defined shell boundaries. Shell thickness, density, and adhesive properties are easily tunable. By virtue of such unique material features, we demonstrate that polymeric shells can be designed to expand beyond its conventional function as thin films and serve as immobilization matrix, chromatography resins, or even reaction compartments. This technique could also uncover interesting perspectives in the development of novel multimaterials for 3D printing to synthesize scaffolds at a higher order of complexity.

  20. Bio-inspired Construction of Advanced Fuel Cell Cathode with Pt Anchored in Ordered Hybrid Polymer Matrix

    Science.gov (United States)

    Xia, Zhangxun; Wang, Suli; Jiang, Luhua; Sun, Hai; Liu, Shuang; Fu, Xudong; Zhang, Bingsen; Sheng Su, Dang; Wang, Jianqiang; Sun, Gongquan

    2015-01-01

    The significant use of platinum for catalyzing the cathodic oxygen reduction reactions (ORRs) has hampered the widespread use of polymer electrolyte membrane fuel cells (PEMFCs). The construction of well-defined electrode architecture in nanoscale with enhanced utilization and catalytic performance of Pt might be a promising approach to address such barrier. Inspired by the highly efficient catalytic processes in enzymes with active centers embedded in charge transport pathways, here we demonstrate for the first time a design that allocates platinum nanoparticles (Pt NPs) at the boundaries with dual-functions of conducting both electrons by aid of polypyrrole and protons via Nafion® ionomer within hierarchical nanoarrays. By mimicking enzymes functionally, an impressive ORR activity and stability is achieved. Using this brand new electrode architecture as the cathode and the anode of a PEMFC, a high mass specific power density of 5.23 W mg−1Pt is achieved, with remarkable durability. These improvements are ascribed to not only the electron decoration and the anchoring effects from the Nafion® ionomer decorated PPy substrate to the supported Pt NPs, but also the fast charge and mass transport facilitated by the electron and proton pathways within the electrode architecture. PMID:26537781

  1. Molecularly designed lipid microdomains for solid dispersions using a polymer/inorganic carrier matrix produced by hot-melt extrusion.

    Science.gov (United States)

    Adler, Camille; Schönenberger, Monica; Teleki, Alexandra; Kuentz, Martin

    2016-02-29

    Amorphous solid dispersions have for many years been a focus in oral formulations, especially in combination with a hot-melt extrusion process. The present work targets a novel approach with a system based on a fatty acid, a polymer and an inorganic carrier. It was intended to adsorb the acidic lipid by specific molecular interactions onto the solid carrier to design disorder in the alkyl chains of the lipid. Such designed lipid microdomains (DLM) were created as a new microstructure to accommodate a compound in a solid dispersion. Vibrational spectroscopy, X-ray powder diffraction, atomic force microscopy as well as electron microscopic imaging were employed to study a system of stearic acid, hydroxypropylcellulose and aluminum magnesium silicate. β-carotene was used as a poorly water-soluble model substance that is difficult to formulate with conventional solid dispersion formulations. The results indicated that the targeted molecular excipient interactions indeed led to DLMs for specific compositions. The different methods provided complementary aspects and important insights into the created microstructure. The novel delivery system appeared to be especially promising for the formulation of oral compounds that exhibit both high crystal energy and lipophilicity.

  2. Study of polymeric nanocomposites prepared by inserting graphene and / or Ag, Au and ZnO nanoparticles in a TEGDA polymer matrix, by means of the use of dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Valeria Alzari

    2016-03-01

    Full Text Available Polymeric nanocomposites were prepared by inserting graphene and/or Ag, Au and ZnO nanoparticles in a TEGDA (tetraethyleneglycol diacrylate polymer matrix. The polymeric films were characterized in terms of their dielectric properties by electrochemical impedance spectroscopy. The impedance data were fitted by generalized relaxation functions in order to determine conductivity, dielectric response and molecular relaxation time of the nanocomposite films. In particular, a stretched exponential function, Kohlrausch-Williams-Watts function (KWW, was used to investigate polymer/graphene/metal nanocomposites.

  3. Influence of matching solubility parameter of polymer matrix and CNT on electrical conductivity of CNT/rubber composite

    Science.gov (United States)

    Ata, Seisuke; Mizuno, Takaaki; Nishizawa, Ayumi; Subramaniam, Chandramouli; Futaba, Don N.; Hata, Kenji

    2014-12-01

    We report a general approach to fabricate elastomeric composites possessing high electrical conductivity for applications ranging from wireless charging interfaces to stretchable electronics. By using arbitrary nine kinds of rubbers as matrices, we experimentally demonstrate that the matching the solubility parameter of CNTs and the rubber matrix is important to achieve higher electrical conductivity in CNT/rubber composite, resulting in continuous conductive pathways leading to electrical conductivities as high as 15 S/cm with 10 vol% CNT in fluorinated rubber. Further, using thermodynamic considerations, we demonstrate an approach to mix CNTs to arbitrary rubber matrices regardless of solubility parameter of matrices by adding small amounts of fluorinated rubber as a polymeric-compatibilizer of CNTs. We thereby achieved electrical conductivities ranging from 1.2 to 13.8 S/cm (10 vol% CNTs) using nine varieties of rubber matrices differing in chemical structures and physical properties. Finally, we investigated the components of solubility parameter of CNT by using Hansen solubility parameters, these findings may useful for controlling solubility parameter of CNTs.

  4. Exploring the frontiers of synthetic eumelanin polymers by high-resolution matrix-assisted laser/desorption ionization mass spectrometry.

    Science.gov (United States)

    Reale, Samantha; Crucianelli, Marcello; Pezzella, Alessandro; d'Ischia, Marco; De Angelis, Francesco

    2012-01-01

    New trends in material science and nanotechnologies have spurred growing interest in eumelanins black insoluble biopolymers derived by tyrosinase-catalysed oxidation of tyrosine via 5,6-dihydroxyindole (DHI) and its 2-carboxylic acid (DHICA). Efficient antioxidant and photoprotective actions, associated with peculiar optoelectronic properties, are recognised as prominent functions of eumelanin macromolecules within the human and mammalian pigmentary system, making them unique candidates for the realisation of innovative bio-inspired functional soft materials, with structure-based physical-chemical properties. An unprecedented breakthrough into the mechanism of synthetic eumelanin buildup has derived from a detailed investigation of the oxidative polymerization of DHI and its N-methyl derivative (NMDHI) by linear and reflectron matrix-assisted laser/desorption ionization mass spectrometry. Regular collections of oligomers of increasing masses, spanning the entire m/z ranges up to 5000 Da (>30-mer) and 8000 Da (> 50-mer) for the two building blocks, respectively, were disclosed. It is the first time that the in vitro polymerisation of dihydroxyindoles to form synthetic eumelanins is explored up to its high mass limits, giving at the same time information on the polymerisation mode, whether it follows a stepwise pattern (being this the conclusion in our case) or a staking sequencing of small-sized entities. It also highlighted the influence of the N-methyl substituent on the polymerization process; this opens the way to the production of N-functionalized, synthetic eumelanin-inspired soft materials, for possible future technological applications. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Monte Carlo calculation of dosimetric parameters of a {sup 125}I brachytherapy seed encapsulation with biocompatible polymer and a ceramic matrix as radiographic marker

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Lucas P.; Santos, Adriano M.; Grynberg, Suely E., E-mail: lpr@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Dosimetria e Simulacao Computacional; Facure, Alessandro, E-mail: facure@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    For prostate cancer treatments, there is an increasing interest in the permanent radioactive seeds implant technique. Currently, in Brazil, the seeds are imported at high prices, which prohibit their use in public hospitals. One of the seed models that have been developed at CDTN has a ceramic matrix as a radioisotope carrier and a radiographic marker; the seed is encapsulated with biocompatible polymer. In this work, Monte Carlo simulations were performed in order to assess the dose distributions generated by the prototype seed model. The obtained data was assessed as described in the TG-43U1 report by the AAPM. The dosimetric parameters dose rate constant, {Lambda}, radial dose function, g{sub L}(r), and anisotropy function, F(r,{theta}), were derived from simulations using the MCNP5 code. The function g(r) shows that the seed has a lower decrease in dose rate on its transverse axis when compared to the 6711 model (one of the most used seeds in permanent prostate implants). F(r,{theta}) shows that CDTN's seed anisotropy curves are smoother than the 6711 model curves for {theta}{<=}20 deg and 0.25{<=}r{<=}1 cm. As well, the {Lambda} value is 15% lower than the {Lambda} value of 6711. The results show that CDTN's seed model can deposit a more isotropic dose. Because of the model's characteristics, the seeds can be impregnated with iodine of lower specific activity which would help reducing costs. (author)

  6. Incorporation of a lauric acid-conjugated GRGDS peptide directly into the matrix of a poly(carbonate-urea)urethane polymer for use in cardiovascular bypass graft applications.

    Science.gov (United States)

    Kidane, Asmeret G; Punshon, Geoffrey; Salacinski, Henryk J; Ramesh, Bala; Dooley, Audrey; Olbrich, Michael; Heitz, Johannes; Hamilton, George; Seifalian, Alexander M

    2006-12-01

    Gly-Arg-Gly-Asp-Ser (GRGDS) was modified by conjugation to lauric acid (LA) to facilitate incorporation into the matrix of a poly(carbonate-urea)urethane (PCU) used in vascular bypass grafts. GRGDS and LA-GRGDS were synthesized using solid phase Fmoc chemistry and characterized by high performance liquid chromatography and Fourier transform infrared spectroscopy. LA-GRGDS was passively coated and incorporated as nanoparticle dispersion on the PCU films. Biocompatibility of the modified surfaces was investigated. Endothelial cells seeded on LA-GRGDS coated and incorporated PCU showed after 48 h and 72 h a significant (p < 0.05) increase in metabolism compared with unmodified PCU. The platelet adhesion and hemolysis studies showed that the modification of PCU had no adverse effect. In conclusion, LA-conjugated RGD derivatives, such as LA-GRGDS, that permit solubility into solvents used in solvent casting methodologies should have wide applicability in polymer development for use in coronary, vascular, and dialysis bypass grafts, and furthermore scaffolds utilized for tissue regeneration and tissue engineering.

  7. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar®-Fiber-Reinforced Polymer-Matrix Composites

    Science.gov (United States)

    Grujicic, M.; Pandurangan, B.; Snipes, J. S.; Yen, C.-F.; Cheeseman, B. A.

    2013-03-01

    Fiber-reinforced polymer matrix composite materials display quite complex deformation and failure behavior under ballistic/blast impact loading conditions. This complexity is generally attributed to a number of factors such as (a) hierarchical/multi-length scale architecture of the material microstructure; (b) nonlinear, rate-dependent and often pressure-sensitive mechanical response; and (c) the interplay of various intrinsic phenomena and processes such as fiber twisting, interfiber friction/sliding, etc. Material models currently employed in the computational engineering analyses of ballistic/blast impact protective structures made of this type of material do not generally include many of the aforementioned aspects of the material dynamic behavior. Consequently, discrepancies are often observed between computational predictions and their experimental counterparts. To address this problem, the results of an extensive set of molecular-level computational analyses regarding the role of various microstructural/morphological defects on the Kevlar® fiber mechanical properties are used to upgrade one of the existing continuum-level material models for fiber-reinforced composites. The results obtained show that the response of the material is significantly affected as a result of the incorporation of microstructural effects both under quasi-static simple mechanical testing condition and under dynamic ballistic-impact conditions.

  8. MOISTURE DIFFUSION PARAMETERS OF POLYMER MATRIX COMPOSITES%聚合物基复合材料的湿扩散参数研究

    Institute of Scientific and Technical Information of China (English)

    过梅丽; 阳芳; 范欣愉; 许凤和; 陈新文

    2001-01-01

    The moisture diffusion behavior of several types of domestic polymer matrix composites was systematically studied and their basic moisture diffusion parameters, such as the equilibrium moisture content Mm, the constants a and b in the relationship between Mm and relative humidity φ, the moisture diffusion coefficient in the direction of laminate thickness Dx, the constants ΔE(the active energy of moisture diffusion)and D0 in the relationship of Dx and temperature T, were obtained.%通过系统地研究几种国产复合材料的吸湿行为,获得了描述湿气在其中扩散的基本参数,如平衡湿含量Mm,Mm与相对湿度φ关系中的常数a和b,沿板材厚度方向上的一维湿扩散系数Dx以及Dx与温度关系中的常数ΔE(湿扩散活化能)和D0等。

  9. Capillary-channeled polymer (C-CP) films as processing platforms for protein analysis by matrix-assisted laser/desorption ionization mass spectrometry (MALDI-MS).

    Science.gov (United States)

    Pittman, Jennifer J; Manard, Benjamin T; Kowalski, Paul J; Marcus, R Kenneth

    2012-01-01

    Polypropylene (PP) capillary-channeled polymer (C-CP) films have parallel, μm-sized channels that induce solution wicking via capillary action. Efficient mass transport from the solution phase to the channel surface leads to adsorption of hydrophobic protein solutes. The basic premise by which C-CP films can be used as media to manipulate analyte solutions (e.g., proteins in buffer), for the purpose of desalting or chromatographic separation prior to MALDI-MS analysis is presented here. Cytochrome c and myoglobin prepared in a Tris-HCl buffer, and ribonuclease A, lysozyme, and transferrin prepared in phosphate buffered saline (PBS), are used as the test solutions to demonstrate the desalting concept. Protein analysis is performed after deposition on a C-CP film with and without a water washing step, followed by spray deposition of a typical sinapinic acid matrix. Extracted MALDI mass spectra exhibit much improved signal-to-noise characteristics after water washing. A mixture of cytochrome c and myoglobin (2 μL of 2.5 μM each in Tris-HCl buffer) was applied, washed with water and spatially separated via simple capillary action (wicking) using a reversed-phase solvent composition of 0.1% trifluoroacetic acid (TFA) in 50:50 acetonitrile (ACN):H(2)O. Subsequent application of sinapinic acid followed by imaging of the film using MALDI-MS reveals that as the protein solution is wicked down the film, separation occurs.

  10. Embedding nano-Li{sub 4}Ti{sub 5}O{sub 12} in hierarchical porous carbon matrixes derived from water soluble polymers for ultra-fast lithium ion batteries anodic materials

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Chun-Kai; Bao, Qi; Huang, Yao-Hui; Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw

    2016-07-15

    Li{sub 4}Ti{sub 5}O{sub 12}/hierarchical porous carbon matrixes composites are successfully prepared by a facile and fast polymers assisted sol–gel method, aiming to promote both electronic and ionic conductivity. As indicated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis, three less expensive cost and available water soluble polymers (e.g. PAA, CMC, and SA) can homogeneously react with Li–Ti–O precursor to incorporate into interior of nano-scale lithium titanate and provide a continues conductive network after pyrolysis. In addition, the results of scanning electron microscopy and transmission electron microscopy also prove that the Li{sub 4}Ti{sub 5}O{sub 12} nanoparticles are firmly embedded in porous carbon matrix with no obvious agglomeration. EIS measurement and cyclic voltammetry further reveal that the facilitated electrode kinetics and better ionic transport of Li{sub 4}Ti{sub 5}O{sub 12}/hierarchical porous carbon matrixes composites than that of Li{sub 4}Ti{sub 5}O{sub 12}. The c-CMC-LTO exhibits a superior capacity of 92 mAh g{sup −1} and retains its initial value with no obviously capacity decay over 200 cycles under an ultra-high C rate (50 C). - Graphical abstract: Schematic illustrations of the formation process of embedding LTO into Carbon matrixes derived from water soluable polymers (upper) and the electrochemical reaction paths in LTO/Carbon composites during charging/discharging processes (lower). - Highlights: • Hierarchical porous carbon matrixes were used to improve the Li{sub 4}Ti{sub 5}O{sub 12} anodes. • Carbon matrixes could suppress the agglomeration of Li{sub 4}Ti{sub 5}O{sub 12} nanoparticles. • meso-nanoporous carbon structure was beneficial for filtration of electrolyte. • The c-CMC-LTO exhibited superior high rate capability and cycling durability.

  11. Development of novel encapsulated formulations using albumin-chitosan as a polymer matrix for ocular drug delivery

    Science.gov (United States)

    Addo, Richard Tettey

    exposed up to 120 minutes to different BSA-CSN MS concentrations. Using fluorometry, the influence of temperature and effect of metabolic inhibition were studied. The in vitro uptake and internalization studies were evaluated using confocal microscopy in HCET-1. In vivo studies were evaluated in rabbit's eye using blink response and pupil to cornea ratio for tetracaine and atropine studies respectively. Results: Our results showed particles size in the range of 3-5 microns with encapsulation efficiency of about 96 percent. Differential Scanning Calorimetry showed no drug-polymer interactions. BSA-CSN MS were internalized by the HCET-1 and was affected both by temperature and metabolic inhibitor, sodium azide. There were no signs of ocular surface toxicity or inflammation. The encapsulated drugs exhibited superior properties in vivo compared to the solution formulations currently in clinical use. Conclusion: We successfully developed microparticulate drug carriers for ocular delivery. BSA-CSN MS were internalized by the HCET-1 by temperature dependent active transport mechanism that did not compromise cell viability.

  12. Effect of HPMC - E15 LV premium polymer on release profile and compression characteristics of chitosan/ pectin colon targeted mesalamine matrix tablets and in vitro study on effect of pH impact on the drug release profile.

    Science.gov (United States)

    Newton, A M J; Lakshmanan, Prabakaran

    2014-04-01

    The study was designed to investigate the in vitro dissolution profile and compression characteristics of colon targeted matrix tablets prepared with HPMC E15 LV in combination with pectin and Chitosan. The matrix tablets were subjected to two dissolution models in various simulated fluids such as pH 1.2, 6, 6.8, 7.2, 5.5. The fluctuations in colonic pH conditions during IBD (inflammatory bowel disease) and the nature of less fluid content in the colon may limit the expected drug release in the polysaccharide-based matrices when used alone. The Hydrophilic hydroxyl propyl methylcellulose ether premium polymer (HPMC E15 LV) of low viscosity grade was used in the formulation design, which made an excellent modification in physical and compression characteristics of the granules. The release studies indicated that the prepared matrices could control the drug release until the dosage form reaches the colon and the addition HPMC E15 LV showed the desirable changes in the dissolution profile by its hydrophilic nature since the colon is known for its less fluid content. The hydrophilic HPMC E15 LV allowed the colonic fluids to enter into the matrix and confirmed the drug release at the target site from a poorly water soluble polymer such as Chitosan and also from water soluble Pectin. The dramatic changes occurred in the drug release profile and physicochemical characteristics of the Pectin, Chitosan matrix tablets when a premium polymer HPMC E15 LV added in the formulation design in the optimized concentration. Various drug release mechanisms used for the examination of drug release characteristics. Drug release followed the combined mechanism of diffusion, erosion, swelling and polymer entanglement. In recent decade, IBD attracts many patents in novel treatment methods by using novel drug delivery systems.

  13. 树脂基复合材料拉挤成形工艺的应用与探讨%Application and discussion of pultrusion molding process for polymer matrix composites

    Institute of Scientific and Technical Information of China (English)

    彭世新

    2011-01-01

    通过对树脂基复合材料拉挤成形工艺进行分析,确定最佳的工艺参数,从而达到提高产品质量与生产效率的目的.%By analysis of pultrusion molding process for polymer matrix composites, the optimal process parameters have been determined, which improves the product quality and the efficiency of the production.

  14. Forest Fragments Surrounded by Sugar Cane Are More Inhospitable to Terrestrial Amphibian Abundance Than Fragments Surrounded by Pasture

    Directory of Open Access Journals (Sweden)

    Paula Eveline Ribeiro D’Anunciação

    2013-01-01

    Full Text Available In recent years, there has been increasing interest in matrix-type influence on forest fragments. Terrestrial amphibians are good bioindicators for this kind of research because of low vagility and high philopatry. This study compared richness, abundance, and species composition of terrestrial amphibians through pitfall traps in two sets of semideciduous seasonal forest fragments in southeastern Brazil, according to the predominant surrounding matrix (sugar cane and pasture. There were no differences in richness, but fragments surrounded by sugar cane had the lowest abundance of amphibians, whereas fragments surrounded by pastures had greater abundance. The most abundant species, Rhinella ornata, showed no biometric differences between fragment groups but like many other amphibians sampled showed very low numbers of individuals in fragments dominated by sugar cane fields. Our data indicate that the sugar cane matrix negatively influences the community of amphibians present in fragments surrounded by this type of land use.

  15. Obtention and dynamical mechanical behavior of polymer matrix carbon fire reinforced composites; Obtencao e comportamento mecanodinamico de compositos com matriz polimerica reforcada com fibras de carbono

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, Nelson Marques

    2001-07-01

    Polymer matrix composites reinforced with carbon fibres have been extensively used in the nuclear, aeronautics, automotive and leisure industry. This is due to their superior performance when compared to conventional materials in terms of specific strength and specific modulus (3 to 4 times higher than that of mild steels). However, these materials are anisotropic, requiring characterisation for each process and particular application. In the present work, the evaluation of epoxy resin reinforced with unidirectional and continuous carbon fibres was carried out. The composites materials were obtained by filament winding, with three different cure cycles, with two types of carbon fibres (6000 and 12000 filaments per strand) and with fibres volumetric fraction around 60 %. The evaluation of the composites was undertaken using following techniques: scanning electron microscopy (SEM); dynamic mechanical analysis (DMA); thermogravimetric analysis (TGA), and differential scanning calorimeter (DSC). These techniques allowed the evaluation and comparison of storage modulus, internal energy dissipation, glass transition region and glass transition temperature - Tg, cure cycling. Besides, void volumetric fraction was measured. The results indicate that the DMA is a good alternative technique to DSC and TGA. It provides an indication of the quality of the produced composite, both thermal and mechanical. The technique can assist the quality control of composite components by measuring mechanical and thermal properties - modulus and Tg. The DMA technique was sensitive to cure cycling evaluation. Regarding the obtained composites, the results showed the need for the development of specific cure cycle for each application, establishing a compromise between properties such as storage modulus and internal energy dissipation, and involved costs. The results demonstrated differences between the storage modulus and internal energy dissipation for the two types of used fibres. (author)

  16. Response of female Ceratitis capitata (Diptera: Tephritidae) to a spinosad bait and polymer matrix mixture with extended residual effect in Hawaii.

    Science.gov (United States)

    Piñero, Jaime C; Souder, Steven K; Gomez, Luis E; Mau, Ronald F L; Vargas, Roger I

    2011-12-01

    The effectiveness of foliar applications of protein baits against pestiferous fruit flies (Tephritidae) can be adversely affected by a rapid loss of attractive volatile compounds and by rainfall due to the high water solubility of the baits. In a large coffee, Coffea arabica L., plantation in Hawaii with high and low populations of Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), the relative attractiveness of GF-120 NF Naturalyte Fruit Fly Bait as either a 40% (vol:vol) spray solution (= GF-120 NF) or as a formulated proprietary amorphous polymer matrix (= GF-120 APM) was compared. The GF-120 APM formulations contained either, 25, 50, or 75% of GF-120 NF (wt:wt). All baits were tested in association with visually attractive yellow bait stations as a way of standardizing the evaluations. With both high and low C. capitata populations, significantly more females were attracted to the fresh sprayed GF-120 NF than to any of the three fresh GF-120 APM formulations. The attractiveness of GF-120 sprayed decreased significantly after 1 wk, whereas 1-wk-old GF-120 APM formulations were as attractive as similar fresh formulations. GF-120 APM 75% aged for 3 wk outperformed similarly-aged sprayed GF-120 NF with comparatively high C. capitata populations. With low populations, both GF-120 APM 75% and GF-120 APM 50% aged for 2 wk outperformed the similarly aged sprayed GF-120 NF. Combined findings indicate that APM mixed with either 50 or 75% GF-120 applied to bait stations can be attractive to female C. capitata for up to 3 wk longer than the standard sprayed GF-120 NF.

  17. Highly efficient direct aerobic oxidative esterification of cinnamyl alcohol with alkyl alcohols catalysed by gold nanoparticles incarcerated in a nanoporous polymer matrix: a tool for investigating the role of the polymer host.

    Science.gov (United States)

    Buonerba, Antonio; Noschese, Annarita; Grassi, Alfonso

    2014-04-25

    The selective aerobic oxidation of cinnamyl alcohol to cinnamaldehyde, as well as direct oxidative esterification of this alcohol with primary and secondary aliphatic alcohols, were achieved with high chemoselectivity by using gold nanoparticles supported in a nanoporous semicrystalline multi-block copolymer matrix, which consisted of syndiotactic polystyrene-co-cis-1,4-polybutadiene. The cascade reaction that leads to the alkyl cinnamates occurs through two oxidation steps: the selective oxidation of cinnamyl alcohol to cinnamaldehyde, followed by oxidation of the hemiacetal that results from the base-catalysed reaction of cinnamaldehyde with an aliphatic alcohol. The rate constants for the two steps were evaluated in the temperature range 10-45 °C. The cinnamyl alcohol oxidation is faster than the oxidative esterification of cinnamaldehyde with methanol, ethanol, 2-propanol, 1-butanol, 1-hexanol or 1-octanol. The rate constants of the latter reaction are pseudo-zero order with respect to the aliphatic alcohol and decrease as the bulkiness of the alcohol is increased. The activation energy (Ea) for the two oxidation steps was calculated for esterification of cinnamyl alcohol with 1-butanol (Ea = 57.8±11.5 and 62.7±16.7 kJ mol(-1) for the first and second step, respectively). The oxidative esterification of cinnamyl alcohol with 2-phenylethanol follows pseudo-first-order kinetics with respect to 2-phenylethanol and is faster than observed for other alcohols because of fast diffusion of the aromatic alcohol in the crystalline phase of the support. The kinetic investigation allowed us to assess the role of the polymer support in the determination of both high activity and selectivity in the title reaction.

  18. Application Progress of AE in Fiber Reinforced Polymer Matrix Composites%声发射在纤维增强聚合物基复合材料中的应用进展

    Institute of Scientific and Technical Information of China (English)

    郭勇; 李大纲; 陈玉霞; 李晶晶; 杨莹; 方菲

    2013-01-01

    The recent progress in the research of application of Acoustic Emission(AE)technique to monitoring mechanical performance of fiber-reinforced polymer matrix composites was reviewed.AE technical principle in detecting polymer composites and its characteristics were analyzed,and then the applications of AE technique to analyzing damage and fracture progress of fiber reinforced polymer matrix composites with different fibers such as glass fiber,carbon fiber,plant fiber and other traditional fiber were summarized.Based on the current problems in the research of application of AE technique to monitoring mechanical performance of fiber-reinforced polymer matrix composites,its development trend was prospected.%综述了近年来声发射(AE)技术应用于监测纤维增强聚合物基复合材料力学性能的研究进展。分析了聚合物基复合材料AE技术检测原理及特性,并总结了AE技术在分析玻璃纤维、碳纤维、其他传统纤维以及植物纤维增强聚合物基复合材料损伤、断裂过程中的应用。结合AE技术在监测纤维增强聚合物基复合材料力学性能中存在的问题对其研究趋势进行了展望。

  19. Clinical Application of Surrounding Puncture

    Institute of Scientific and Technical Information of China (English)

    GUO Yao-jie; HAN Chou-ping

    2003-01-01

    Surrounding puncture can stop pathogenic qi from spreading, consolidate the connection between local meridians and enrich local qi and blood, which can eventually supplement anti-pathogenic qi and remove pathogenic qi, and consequently remedy diseases. The author of this article summrized and analyzed the clinical application of surrounding puncture for the purpose of studying this technique and improving the therapeutic effect.

  20. Polymer Functionalized Nanoparticles in Polymer Nanocomposites

    Science.gov (United States)

    Jayaraman, Arthi

    2013-03-01

    Significant interest has grown around the ability to control spatial arrangement of nanoparticles in a polymer nanocomposite to engineer materials with target properties. Past work has shown that one could achieve controlled assembly of nanoparticles in the polymer matrix by functionalizing nanoparticle surfaces with homopolymers. This talk will focus on our recent work using Polymer Reference Interaction Site Model (PRISM) theory and Monte Carlo simulations and GPU-based molecular dynamics simulations to specifically understand how heterogeneity in the polymer functionalization in the form of a) copolymers with varying monomer chemistry and monomer sequence, and b) polydispersity in homopolymer grafts can tune effective interactions between functionalized nanoparticles, and the assembly of functionalized nanoparticles.

  1. Formulation of a modified release metformin. HCl matrix tablet: influence of some hydrophilic polymers on release rate and in-vitro evaluation

    Directory of Open Access Journals (Sweden)

    John Rojas

    2011-09-01

    Full Text Available Metformin hydrochloride is an antidiabetic agent which improves glucose tolerance in patients with type 2 diabetes and reduces basal plasma levels of glucose. In this study, a simplex centroid experimental design with 69 runs was used to select the best combination of some hydrophilic polymers that rendered a 24 h in-vitro release profile of metformin.HCl. The Korsmeyer-Peppas model was used to model the dissolution profiles since it presented the best fit to the experimental data. Further, a cubic model predicted the best formulation of metformin.HCl containing polyvinyl pyrrolidone, ethyl cellulose, hydroxypropyl methyl cellulose, carrageenan, sodium alginate, and gum arabic at 6.26, 68.7, 6.26, 6.26, 6.26 and 6.26 % levels, respectively. The validation runs confirmed the accuracy of the cubic model with six components for predicting the best set of components which rendered a once-a-day modified release hydrophilic matrix tablet in compliance with the USP specifications.O cloridrato de metformina é um agente antidiabético que melhora a tolerância à glicose em pacientes com diabetes tipo 2 e reduz os níveis plasmáticos basais de glicose. Neste estudo, um projeto experimental do tipo "centróide simplex" com 69 tomadas foi usado para selecionar a melhor combinação de alguns polímeros hidrofílicos que gerou um perfil de liberação da metformina.HCl de 24 horas. O modelo Korsmeyer-Peppas foi usado para modelar os perfis de dissolução, uma vez que apresentou os melhores ajustes aos dados experimentais. Além disso, um modelo cúbico previu a melhor formulação de metformina.HCl sendo aquela contendo polivinilpirrolidona, etilcelulose, hidroxipropilmetil celulose, carragena, alginato de sódio e goma arábica nos níveis 6.26, 68.7, 6.26, 6.26, 6.26 e 6.26 %, respectivamente. As corridas de validação confirmaram a precisão do modelo cúbico com os seis componentes para prever o melhor conjunto de componentes que originou uma

  2. Polymer-phyllosilicate nanocomposites and their preparation

    Science.gov (United States)

    Chaiko, David J.

    2007-01-09

    Polymer-phyllosilicate nanocomposites that exhibit superior properties compared to the polymer alone, and methods-for producing these polymer-phyllosilicate nanocomposites, are provided. Polymeric surfactant compatabilizers are adsorbed onto the surface of hydrophilic or natural phyllosilicates to facilitate the dispersal and exfoliation of the phyllosilicate in a polymer matrix. Utilizing polymeric glycol based surfactants, polymeric dicarboxylic acids, polymeric diammonium surfactants, and polymeric diamine surfactants as compatabilizers facilitates natural phyllosilicate and hydrophilic organoclay dispersal in a polymer matrix to produce nanocomposites.

  3. Visual surround suppression in schizophrenia

    Directory of Open Access Journals (Sweden)

    Marc Samuel Tibber

    2013-02-01

    Full Text Available Compared to unaffected observers patients with schizophrenia show characteristic differences in visual perception, including a reduced susceptibility to the influence of context on judgements of contrast - a manifestation of weaker surround suppression. To examine the generality of this phenomenon we measured the ability of 24 individuals with schizophrenia to judge the luminance, contrast, orientation and size of targets embedded in contextual surrounds that would typically influence the target’s appearance. Individuals with schizophrenia demonstrated weaker surround suppression compared to matched controls for stimuli defined by contrast or size, but not for those defined by luminance or orientation. As perceived luminance is thought to be regulated at the earliest stages of visual processing our findings are consistent with a suppression deficit that is predominantly cortical in origin. In addition, we propose that preserved orientation surround suppression in schizophrenia may reflect the sparing of broadly tuned mechanisms of suppression. We attempt to reconcile these data with findings from previous studies.

  4. Educational Success and Surrounding Culture

    Science.gov (United States)

    Walters, Garrison

    2016-01-01

    The curriculum, instruction, and services we provide in schools, colleges, and universities matter a lot, but if we continue to ignore our students' "surrounding culture," progress toward a more educated nation will continue to be disappointing.

  5. Educational Success and Surrounding Culture

    Science.gov (United States)

    Walters, Garrison

    2016-01-01

    The curriculum, instruction, and services we provide in schools, colleges, and universities matter a lot, but if we continue to ignore our students' "surrounding culture," progress toward a more educated nation will continue to be disappointing.

  6. Multichannel spatial surround sound system

    Institute of Scientific and Technical Information of China (English)

    RAO Dan; XIE Bosun

    2004-01-01

    Based on the consideration of being compatible with 5.1 channel horizontal surround sound system, a spatial surround sound system is proposed. Theoretical and experimental results show that the system has a wide listening area. It can not only recreate stable image in the front and rear direction, but also eliminate the defect of poor lateral image of 5.1 channel system. The system can be used to reproduce special 3D sound effect and the spaciousness of hall.

  7. Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix.

    Science.gov (United States)

    Zhang, Hongbo; Liu, Dongfei; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Herranz-Blanco, Bárbara; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-07-01

    A multifunctional nano-in-micro drug delivery platform is developed by conjugating the porous silicon nanoparticles with mucoadhesive polymers and subsequent encapsulation into a pH-responsive polymer using microfluidics. The multistage platform shows monodisperse size distribution and pH-responsive payload release, and the released nanoparticles are mucoadhesive. Moreover, this platform is capable of simultaneously loading and releasing multidrugs with distinct properties.

  8. Antimicrobial polymers.

    Science.gov (United States)

    Jain, Anjali; Duvvuri, L Sailaja; Farah, Shady; Beyth, Nurit; Domb, Abraham J; Khan, Wahid

    2014-12-01

    Better health is basic requirement of human being, but the rapid growth of harmful pathogens and their serious health effects pose a significant challenge to modern science. Infections by pathogenic microorganisms are of great concern in many fields such as medical devices, drugs, hospital surfaces/furniture, dental restoration, surgery equipment, health care products, and hygienic applications (e.g., water purification systems, textiles, food packaging and storage, major or domestic appliances etc.) Antimicrobial polymers are the materials having the capability to kill/inhibit the growth of microbes on their surface or surrounding environment. Recently, they gained considerable interest for both academic research and industry and were found to be better than their small molecular counterparts in terms of enhanced efficacy, reduced toxicity, minimized environmental problems, resistance, and prolonged lifetime. Hence, efforts have focused on the development of antimicrobial polymers with all desired characters for optimum activity. In this Review, an overview of different antimicrobial polymers, their mechanism of action, factors affecting antimicrobial activity, and application in various fields are given. Recent advances and the current clinical status of these polymers are also discussed.

  9. 聚合物基绝缘导热复合材料的研究进展%Research Progress of Polymer Matrix Composites with Insulating and Thermal Conductivity

    Institute of Scientific and Technical Information of China (English)

    李名英; 周曦亚; 王达; 万杰

    2013-01-01

    The insulating and thermal conductivity mechanism of materials was expounded. The concrete application of some materials such as insulating and thermal conductivity plastic, rubber, adhesives and coating were summarized. The progress of polymer matrix composites with insulating and thermal conductivity in the fillers respect was summarized, including single component type and multi-component type. By comparing the advantages and disadvantages of single component type and multi-component type composites and combined with the cost of industrial production, it raised the further research of polymer matrix composites with insulating and thermal conductivity.%阐述了物质绝缘、导热的机理.介绍了绝缘导热塑料、橡胶、胶粘剂和涂层的具体应用.从填料方面(包括单组分型及多组分型)概述了聚合物基绝缘导热复合材料的研究进展.通过对比单组分型和多组分型复合材料的优缺点并结合工业化生产成本,指出聚合物基绝缘导热复合材料将成为今后研究的重点.

  10. 聚合物基复合材料的增强增韧%Reinforcement and Toughening of Polymer Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    董金虎

    2012-01-01

    The methods and mechanisms in the reinforcement and toughening of polymers with small organic molecules, elastomers, rigid particles, fiber, and carbon nano-tubes were reviewed. Some representative polymer/reinforcer systems were introduced. The development of reinforcement and toughening of polymers was forecast.%介绍了聚合物基复合材料增强增韧的改性方法和机理,包括有机小分子、弹性体、刚性粒子、纤维以及碳纳米管增强增韧聚合物。并介绍了一些具有代表性的聚合物/增强增韧剂体系。并对聚合物基复合材料增强增韧的发展前景进行了展望。

  11. Blue to near-IR energy transfer cascade within a dye-doped polymer matrix, mediated by a photochromic molecular switch.

    Science.gov (United States)

    Dryza, Viktoras; Smith, Trevor A; Bieske, Evan J

    2016-02-21

    The spectroscopic properties of a poly(methyl methacrylate) matrix doped with a coumarin dye, a cyanine dye, and a photochromic spiropyran dye have been investigated. Before UV irradiation of the matrix, excitation of the coumarin dye results in minimal energy transfer to the cyanine dye. The energy transfer is substantially enhanced following UV irradiation of the matrix, which converts the colourless spiropyran isomer to the coloured merocyanine isomer, which then acts as an intermediate bridge by accepting energy from the coumarin dye and then donating energy to the cyanine dye. This demonstration of a switchable energy transfer cascade should help initiate new research directions in molecular photonics.

  12. Wetting of brushes by polymer melts

    NARCIS (Netherlands)

    Maas, J.

    2001-01-01

    The scientific and practical importance of thin polymer films is evident and in many applications polymer films are required. Hence, studying properties of polymer films is relevant. Adsorption of polymer at liquid/solid interfaces can stabilise particles in a matrix. Homopolymers are often used for

  13. Carbon nanotube-polymer composite actuators

    Science.gov (United States)

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  14. Donor Acceptor Polymerization Chemistry as a Vehicle to Low Energy Cure of Matrix Resins: Evolution of the 2-Tg Concept to Produce High Tg Polymers at Ambient Temperatures

    Science.gov (United States)

    1989-03-01

    tetrafunctional acceptors. DSC and TGA analysis of these polymers indicated they possessed the thermal stability necessary for performance in their...be enhanced by choosing comonomers that act as "solvents", and that the "onset of decomposition" temperature as measured by TGA analysis under nitrogen

  15. Composites incorporated a conductive polymer nanofiber network

    Energy Technology Data Exchange (ETDEWEB)

    Pozzo, Lilo Danielle; Newbloom, Gregory

    2017-04-11

    Methods of forming composites that incorporate networks of conductive polymer nanofibers are provided. Networks of less-than conductive polymers are first formed and then doped with a chemical dopant to provide networks of conductive polymers. The networks of conductive polymers are then incorporated into a matrix in order to improve the conductivity of the matrix. The formed composites are useful as conductive coatings for applications including electromagnetic energy management on exterior surfaces of vehicles.

  16. Visual Surround Suppression in Schizophrenia

    Science.gov (United States)

    Tibber, Marc S.; Anderson, Elaine J.; Bobin, Tracy; Antonova, Elena; Seabright, Alice; Wright, Bernice; Carlin, Patricia; Shergill, Sukhwinder S.; Dakin, Steven C.

    2013-01-01

    Compared to unaffected observers patients with schizophrenia (SZ) show characteristic differences in visual perception, including a reduced susceptibility to the influence of context on judgments of contrast – a manifestation of weaker surround suppression (SS). To examine the generality of this phenomenon we measured the ability of 24 individuals with SZ to judge the luminance, contrast, orientation, and size of targets embedded in contextual surrounds that would typically influence the target’s appearance. Individuals with SZ demonstrated weaker SS compared to matched controls for stimuli defined by contrast or size, but not for those defined by luminance or orientation. As perceived luminance is thought to be regulated at the earliest stages of visual processing our findings are consistent with a suppression deficit that is predominantly cortical in origin. In addition, we propose that preserved orientation SS in SZ may reflect the sparing of broadly tuned mechanisms of suppression. We attempt to reconcile these data with findings from previous studies. PMID:23450069

  17. Antibacterial Properties of Silver-Loaded Plasma Polymer Coatings

    Directory of Open Access Journals (Sweden)

    Lydie Ploux

    2012-01-01

    Full Text Available In a previous paper, we proposed new silver nanoparticles (SNPs based antibacterial coatings able to protect eukaryotic cells from SNPs related toxic effects, while preserving antibacterial efficiency. A SNPs containing n-heptylamine (HA polymer matrix was deposited by plasma polymerization and coated by a second HA layer. In this paper, we elucidate the antibacterial action of these new coatings. We demonstrated that SNPs-loaded material can be covered by thin HA polymer layer without losing the antibacterial activity to planktonic bacteria living in the near surroundings of the material. SNPs-containing materials also revealed antibacterial effect on adhered bacteria. Adhered bacteria number was significantly reduced compared to pure HA plasma polymer and the physiology of the bacteria was affected. The number of adhered bacteria directly decreased with thickness of the second HA layer. Surprisingly, the quantity of cultivable bacteria harvested by transfer to nutritive agar decreased not only with the presence of SNPs, but also in relation to the covering HA layer thickness, that is, oppositely to the increase in adhered bacteria number. Two hypotheses are proposed for this surprising result (stronger attachment or weaker vitality, which raises the question of the diverse potential ways of action of SNPs entrapped in a polymer matrix.

  18. Distinctive contributions from organic filler and relaxorlike polymer matrix to dielectric response of CuPc-P(VDF-TrFE-CFE) composite.

    Science.gov (United States)

    Bobnar, V; Levstik, A; Huang, C; Zhang, Q M

    2004-01-30

    The dielectric response of copper-phthalocyanine (CuPc) oligomers embedded in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer matrix was studied. Although admixture of CuPc strongly increases the dielectric constant of the terpolymer at all temperatures, each of the two constituents determines the dielectric dynamics in a different temperature region-the relaxorlike matrix above and CuPc below the terpolymer's freezing temperature. Two relaxations, reflecting the charge carriers' response in CuPc, were detected. Results on ac conductivity reveal that the tunneling of polarons is the dominating charge transport mechanism.

  19. Fluorescence characterization of co-immobilization-induced multi-enzyme aggregation in a polymer matrix using Förster resonance energy transfer (FRET): toward the metabolon biomimic.

    Science.gov (United States)

    Wu, Fei; Minteer, Shelley D

    2013-08-12

    Sequential metabolic enzymes can form supramolecular complexes named metabolons in vivo through enzyme-enzyme association or aggregation to facilitate efficient substrate channeling. By separately labeling enzymes with lysine-targeting carboxylic acid succinimidyl ester fluorophores of distinct excitation wavelengths, this research presents a quantitative study of polymer-entrapment-induced in vitro multi-enzyme aggregation from three Krebs cycle enzymes using Förster resonance energy transfer (FRET) to find potential polymer materials for immobilizing enzyme cascades and inducing the metabolon biomimic formation on electrodes. The effect of hydrophobic modification of linear polyethylenimine, Nafion, and chitosan polymers on metabolon formation has been investigated through photobleaching FRET imaging in addition to traditional steady-state fluorescence spectroscopy. By partially destroying FRET acceptors of longer excitation wavelength, increased fluorescence from dequenched donors of shorter excitation wavelength was measured and enzyme interactions in terms of energy-transfer efficiencies were mapped point by point. Results show that trimethyloctadecylammonium-modified Nafion works best in inducing multi-enzyme aggregation and exhibits a promising future in immobilized metabolon biomimics with the most uniform enzyme organization, as indicated by the protein distance distribution.

  20. 炭纤维增强聚合物基复合材料的热氧老化机理%Thermo-oxidative aging mechanism of carbon fiber reinforced polymer matrix composites

    Institute of Scientific and Technical Information of China (English)

    樊威; 李嘉禄

    2015-01-01

    从基体、纤维和纤维/基体界面的角度,探讨了炭纤维增强聚合物基复合材料( CFRPMCs)的热氧老化机理。总结了纤维性能、纤维取向、纤维体积含量、织物结构、树脂性能、纤维/基体界面强度等因素对CFRPMCs热氧老化性能的影响规律,并简要分析了目前提高CFRPMCs热氧老化性能的方法。研究指出,立体织物增强的聚合物基复合材料能够很好地克服传统层合复合材料热氧老化后易分层的缺点,采用立体织物来增强聚合物,将会是今后提高CFRPMCs热氧稳定性的一个主要发展方向。%The thermo⁃oxidative aging mechanism of carbon fiber reinforced polymer matrix composites ( CFRPMCs) was dis⁃cussed from the perspective of matrix,fiber and the fiber/matrix interface.The influence of fiber properties,fiber orientation,fiber volume fraction,fabric structure,resin properties and fiber/matrix interface strength on the thermo⁃oxidative aging performance of CFRPMCs was investigated,and the current methods of improving the thermo⁃oxidative stability of CFRPMCs were analyzed. The study indicates that the CFRPMCs reinforced by three⁃dimensional fabrics are good at resisting the delamination as the traditional laminated composites after thermo⁃oxidative aging,and the three⁃dimensional fabric reinforced polymer composites will become an important direction of improving the thermo⁃oxidative stability of the CFRPMCs.

  1. The effect of filler parameters on the healing of thermal conductivity and mechanical properties of a thermal interface material based on a self-healable organic-inorganic polymer matrix

    Science.gov (United States)

    Zhong, Nan; Garcia, Santiago J.; van der Zwaag, Sybrand

    2016-08-01

    Thermal interface materials (TIMs) are widely used in all kinds of electronic devices to handle the heat dissipation and the mechanical anchoring of the heat producing component. The aging of TIMs may lead to delamination and internal crack formation causing a loss of heat transfer and mechanical integrity both leading to premature device failure. In the present work, a novel TIM system based on a self-healing organic-inorganic polymer matrix filled with spherical glass beads is presented which is capable of healing both the thermal conductivity and the mechanical properties upon thermal activation. The effect of particle volume concentration (PVC) and particle size on tensile strength and thermal conductivity healing behavior is investigated. The results show that a higher PVC increases the mechanical property but decreases mechanical healing. For the same PVC, bigger particles lead to lower mechanical properties but higher thermal conductivities and higher mechanical healing efficiencies.

  2. 玻璃纤维增强聚合物基复合材料的表面研究进展%Advance in Study of Interface of Fiber Reinforced Polymer Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    王芳; 吴涛; 袁炜

    2012-01-01

    文章较系统的综述了国内外增强树脂用玻璃纤维表面处理的方法,包括用偶联剂处理、等离子体表面处理、在玻璃纤维的表面接枝处理以及其它处理方法。对各种改性技术的特点进行了评述。并指出了其进一步的发展趋势。%The surface treating methods of GF used in resin matrix composites were summarized,including coating of the coupling agent,plasma surface treatment,grafting the monomer or polymer on the GF and other treating methods.The characteristics of these methods and their further development were also discussed.

  3. Some Key Problems in Mechanical Property Tests for Polymer Matrix Composites%聚合物基复合材料力学试验的一些关键问题

    Institute of Scientific and Technical Information of China (English)

    陈新文; 王海鹏; 邓立伟; 马丽婷; 王翔

    2013-01-01

    总结了工程项目中聚合物基复合材料拉伸、压缩、弯曲和剪切力学试验中容易出现的问题,分析了影响各种力学性能试验结果的主要因素,如:拉伸试验中试样的对中度和失效模式;压缩试验中的工装夹具、弯曲百分比和失效模式;弯曲试验的跨厚比和失效模式;剪切试验的跨厚比和失效模式等。找出了引起这些问题的原因,提出了解决措施,取得了良好的工程应用效果。%Some key problems were summarized ,which were often happened in mechanical property tests for polymer matrix composites .The main factors effecting on tested results were analyzed ,for example ,which were alignment and failure mode in tension test ,loading device and grips ,percent bending and failure mode in compression test ,span-to-thickness ratio and failure mode in flexural tests and inter-laminar shear tests .Reasons resulting to these problems were revealed ,and some ways of approaching these problem were found .It was proofed that these ways had lead some good effects to engineering me-chanical property tests for polymer matrix composites .

  4. Determining the polymer threshold amount for achieving robust drug release from HPMC and HPC matrix tablets containing a high-dose BCS class I model drug: in vitro and in vivo studies.

    Science.gov (United States)

    Klančar, Uroš; Baumgartner, Saša; Legen, Igor; Smrdel, Polona; Kampuš, Nataša Jeraj; Krajcar, Dejan; Markun, Boštjan; Kočevar, Klemen

    2015-04-01

    It is challenging to achieve mechanically robust drug-release profiles from hydrophilic matrices containing a high dose of a drug with good solubility. However, a mechanically robust drug release over prolonged period of time can be achieved, especially if the viscosity and amount of the polymer is sufficiently high, above the "threshold values." The goal of this research was to determine the hydroxypropyl cellulose (HPC) and hydroxypropyl methylcellulose (HPMC) polymer threshold amount that would enable robust drug release from matrix tablets containing a high dose of levetiracetam as a class I model drug according to the Biopharmaceutical Classification System (BCS). For this purpose, formulations containing HPC or HPMC of similar viscosity range, but in different amounts, were prepared. Based on the dissolution results, two final formulations were selected for additional in vitro and in vivo evaluation to confirm the robustness and to show bioequivalence. Tablets were exposed to various stress conditions in vitro with the use of different mechanically stress-inducing dissolution methods. The in vitro results were compared with in vivo results obtained from fasted and fed bioequivalence studies. Under both conditions, the formulations were bioequivalent and food had a negligible influence on the pharmacokinetic parameters C max and area under the curve (AUC). It was concluded that the drug release from both selected formulations is mechanically robust and that HPC and HPMC polymers with intrinsic viscosities above 9 dL/g and in quantities above 30% enable good mechanical resistance, which ensures bioequivalence. In addition, HPC matrices were found to be more mechanically robust compared to HPMC.

  5. THERMOCHROMIC POLYMER MATERIALS

    Institute of Scientific and Technical Information of China (English)

    A.Seeboth; A.Klukowska; R.Ruhmann; D.L(o)tzsch

    2007-01-01

    Thermochromic polymers will play an extremely important role in the next future.The physical background of thermochromism and the state of development of thermochromic polymers based on light absorption effects are reported.In detail.the interactions between the polymer matrix and the thermochromic composite-composed of leuco or indicator dyes-are discussed on a molecular level.Thermochromic hydrogels with extremely high transparency,an outstanding switching behavior from colorless to colored or between different colors is presented.Preparation of thermosetting and thermoplastic polymers,including the resulting optical,and,for the first time,the mechanical properties are discussed in relation to matrix tuned high-resistant microcapsules.

  6. Endor Studies of Radiation-Produced Trapped Electrons and Radicals in Disordered Systems and Radical-Matrix Interactions in Polymers and on Surfaces.

    Science.gov (United States)

    1982-04-30

    electron. 8 4. ENDOR and ELDOR of Paramagnetic Species in Disordered Matrices, L. Kevan and P.A. Narayana, Chapter IV, in Multiple Electron Resonance...electron-electron double resonance ( ELDOR ) to radicals trapped in disordered matrices such as glasses and polycrystals are dis- cussed. In...model is currently being developed which appears to give a more quantitative picture of the matrix ENDOR response. ELDOR has been used to evaluate the

  7. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  8. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  9. Wetting and dispersion in ceramic/polymer melt injection molding systems: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, M.D.; Williams, J.W.; Batich, C.D.

    1986-11-01

    Research progress is reported in the areas of rheological characterization, mixing/deagglomeration, ceramic/polymer interface modification, polymer matrix chemistry, and microstructure characterization. (DLC)

  10. Computer-simulation-based selection of optimal monomer for imprinting of tri-O-acetyl adenosine in a polymer matrix: calculations for benzene solution.

    Science.gov (United States)

    Douhaya, Ya V; Barkaline, V V; Tsakalof, A

    2016-07-01

    Molecular imprinting is a promising way to create polymer materials that can be used as artificial receptors, and have anticipated use in synthetic imitation of natural antibodies. In case of successful imprinting, the selectivity and affinity of the imprint for the substrate molecules are comparable with those of natural counterparts. Various calculation methods can be used to estimate the effects of a large range of imprinting parameters under different conditions, and to find better ways to improve polymer characteristics. However, one difficulty is that properties such as hydrogen bonding can be modeled only by quantum methods that demand a lot of computational resources. Combined quantum mechanics/molecular mechanics (QM/MM) methods allow the use of MM and QM for different parts of the modeled system. In present study this method was realized in the NWChem package to compare estimations of the stability of tri-O-acetyl adenosine-monomer pre-polymerization complexes in benzene solution with previous results under vacuum.

  11. Standard Test Method for Measuring the Curved Beam Strength of a Fiber-Reinforced Polymer-Matrix Composite - (View Full Text) D6416/D6416M-01(2007) Standard Test Method for Two-Dimensional Flexural Properties of Simply Supported Sandwich Composite Plates Subjected to a Distributed Load

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    Standard Test Method for Measuring the Curved Beam Strength of a Fiber-Reinforced Polymer-Matrix Composite - (View Full Text) D6416/D6416M-01(2007) Standard Test Method for Two-Dimensional Flexural Properties of Simply Supported Sandwich Composite Plates Subjected to a Distributed Load

  12. Caracterización de bentonitas y zeolitas sin tratamiento como refuerzo en materiales compuestos de matriz polimérica//Characterization of untreated zeolites and bentonites as reinforcement in polymer matrix composites

    Directory of Open Access Journals (Sweden)

    Francisco Jesús Mondelo‐García

    2014-01-01

    Full Text Available Las bentonitas con microestructuras compuestas de placas silicio aluminosas. Se logró el objetivo de caracterizar las bentonitas sódicas de Wyoming, USA, Patagonia de Argentina, nordeste de Brasil, así como las bentonitas policatiónicas de Brasil, la cálcica activada con sodio y zeolita de Cuba no organofilizadas para emplearlas como refuerzo en materiales compuestos de matriz polimérica. Estosmateriales se evaluaron usando técnicas físico-químicas como fluorescencia de rayos X, difracción de rayos X, microscopia electrónica de barrido, humedad, capacidad de intercambio catiónico, absorción e hinchabilidad en diluyente acuoso. Los resultados confirmaron rangos variables de intercambio catiónico,hinchamiento y absorciòn en agua entre las bentonitas analizadas, debido a su naturaleza química estructural en hidratación, logrando mayores valores las sódicas, luego la cálcica activada y con menor valor las policatiónicas, pero permiten usarlas como carga en polímeros.Palabras claves: bentonita, zeolita, matriz polimérica, organofilizada, materiales compuestos._____________________________________________________________________________AbstractBentonites with aluminous silicon microstructure composed of plates. The work accomplished to characterize the sodium bentonites in Wyoming USA, Patagonia Argentina, Northeast Brazil and the Brazilian polycationic bentonites, calcium-activated sodium zeolite from Cuba without organic modificationnot organophilized to employ as reinforcing in composite materials of polymer matrix. These materials were evaluated for physical and chemical assay techniques such as X-ray fluorescence, X-ray diffraction, scanning electron microscopy, moisture, cation exchange capacity, absorption and swelling aqueousdiluent. The results confirmed variables ranges of cationic exchange, swelling and water absorption from the bentonites tested, due to its chemical-structural hydration, achieving higher values nature

  13. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  14. Preparation of monoclonal antibodies to nuclear matrix proteins of tissues surrounding esophagus cancer and its preliminary identification%食管癌旁组织核基质蛋白单克隆抗体的制备及初步鉴定

    Institute of Scientific and Technical Information of China (English)

    张新梅; 林汉良; 刘乐和; 张昌卿; 钟叔平; 曾金云; 郑克立

    2000-01-01

    目的 制备抗食管癌旁组织核基质蛋白的特异性单抗。方法 SDS-PAGE分析正常食管组织、食管癌旁组织及 食管癌组织核基质蛋白间的差异。用食管癌旁组织核基质蛋白做免疫原免疫Balb/c小鼠,利用杂交瘤技术制备了5株能稳定 分泌单克隆抗体的杂交瘤细胞株,并对9-1-2/D、9-1-7/D 2株细胞作了初步鉴定。结果 免疫组化分析发现9-1-2/D单抗与食管 癌及正常食管组织均有反应,而9-1-7/D单抗只与食管癌组织反应,与正常食管组织无反应。Western Blotting分析显示: 9-1-2/D单抗与电泳图谱上正常食管组织核基质和食管癌旁组织核基质52 kD的蛋白反应,而与食管癌组织核基质55 kD的蛋 白反应。9-1-7/D单抗只与电泳图谱上食管癌旁组织及癌组织核基质46 kD的蛋白反应,与正常食管组织核基质无反应。结论 本实验为食管癌的早期诊断作了初步有意义的探讨。%Objective To prepare anti-nuclear matrix proteins of tissues surrounding esophagus cancer monoclonal anti- bodies. Methods Differences among nuclear matrix proteins (NMPS) of normal esophagus tissues, esophagus cancer tissues and tissues adjacent to cancer were identified by SDS-PAGE. Balb/c mouse were hyperimmunized with NMPS of tissues adja- cent to esophagus cancer. Five mouse lymphocyte hybridoma cell lines were established and preliminary identification of cell lines 9-1-2/D, 9-1-7/D were made. Results Immunohistochemical analysis showed monoclonal antibody 9-1-2/D reacted both with esophagus cancer and normal esophageal tissues; monoclonal antibody 9-1-7/D reacted only with nucleoli of esophagus cancer cells. Western Blotting analysis showed monoclonal antibody 9-1-2/D reacted with 52 kD NMPS of normal esophagus tissues and tissues adjacent to esophagus cancer and reacted with 55 kD NMP of esophagus cancer tissue. Monoclonal anti- body 9-1-7/D reacted only with 46 kD protein of esophagus cancer

  15. Incorporation and Effects of Nanoparticles in a Supramolecular Polymer

    Science.gov (United States)

    2016-05-01

    polymers provide potential innovative applications in coatings, adhesives, fuel cells, and biosensors due to retention of physical and mechanical properties...Adding an inorganic or organic filler to a polymer matrix to make polymer composite materials has become a very expansive field. Interest in polymer ...needed for many US Army applications . One method to improve the physical properties of a film is to alter the morphology of the polymer matrix.25

  16. Carbon nanotube reinforced polymer composites—A state of the art

    Indian Academy of Sciences (India)

    S Bal; S S Samal

    2007-08-01

    Because of their high mechanical strength, carbon nanotubes (CNTs) are being considered as nanoscale fibres to enhance the performance of polymer composite materials. Novel CNT-based composites have been fabricated using different methods, expecting that the resulting composites would possess enhanced or completely new set of physical properties due to the addition of CNTs. However, the physics of interactions between CNT and its surrounding matrix material in such nano-composites has yet to be elucidated and methods for determining the parameters controlling interfacial characteristics such as interfacial shear stress, is still challenging. An improvement of the physical properties of polymer nanocomposites, based on carbon nanotubes (CNTs), is addicted to a good dispersion and strong interactions between the matrix and the filler.

  17. Polymer electrolyte reviews. 1

    Energy Technology Data Exchange (ETDEWEB)

    Mac Callum, J.R.; Vincent, C.A.

    1987-01-01

    The development of polymer electrolytes which have potential applications in battery technology has resulted in an escalation of research into the synthesis of new macromolecular supports and the mechanisms of ionic transport within the solid matrix. Investigation of the properties of polymer electrolytes has brought together polymer chemists and electrochemists, and the understanding of the solubility and transport of electrolytes in organic polymers is now developing from this pooled experience. This book deals with experimental, theoretical and applied aspects of solid solutions of electrolytes used in coordinating polymer matrices. Attention is focused on the synthesis and properties of these new materials, the mechanisms of conduction processes and practical applications, especially with regard to battery technology.

  18. Encapsulation of Polymer Colloids in a Sol-Gel Matrix. Direct-Writing of Coassembling Organic-Inorganic Hybrid Photonic Crystals.

    Science.gov (United States)

    Mikosch, Annabel; Kuehne, Alexander J C

    2016-03-22

    The spontaneous self-assembly of polymer colloids into ordered arrangements provides a facile strategy for the creation of photonic crystals. However, these structures often suffer from defects and insufficient cohesion, which result in flaking and delamination from the substrate. A coassembly process has been developed for convective assembly, resulting in large-area encapsulated colloidal crystals. However, to generate patterns or discrete deposits in designated places, convective assembly is not suitable. Here we experimentally develop conditions for direct-writing of coassembling monodisperse dye-doped polystyrene particles with a sol-gel precursor to form solid encapsulated photonic crystals. In a simple procedure the colloids are formulated in a sol-gel precursor solution, drop-cast on a flat substrate, and dried. We here establish the optimal parameters to form reproducible highly ordered photonic crystals with good optical performance. The obtained photonic crystals interact with light in the visible spectrum with a narrow optical stop-gap.

  19. A Facile Method for the Synthesis Fluorescent Zinc Chalcogenide (ZnO, ZnS and ZnSe) Nanoparticles in PS and PMMA Polymer Matrix.

    Science.gov (United States)

    Hariharan, P S; Subhashini, N; Vasanthalakshmi, J; Anthony, Savarimuthu Philip

    2016-03-01

    A simple method for the synthesis of fluorescent zinc chalcogenide (ZnO, ZnS and ZnSe) nanoparticles directly in the transparent PMMA and PS polymer matrices were reported. Highly dispersed small spherical ZnO nanoparticles (3-5 nm) was obtained by hydrothermal reaction of PMMA/PS-Zn(acac)2H2O in toluene. ZnS and ZnSe nanoparticles were prepared by heterogeneous stirring of PMMA/PS-Zn(acac)2H2O in toluene with aqueous solution of thiourea or NaHSe. Interestingly, ZnO and ZnS-PMMA thin film showed strong fluorescence quenching upon exposure to ammonia.

  20. Novel molecularly imprinted polymers with carbon nanotube as matrix for selective solid-phase extraction of emodin from kiwi fruit root.

    Science.gov (United States)

    Yang, Xiao; Zhang, Zhaohui; Li, Jiaxing; Chen, Xing; Zhang, Minlei; Luo, Lijuan; Yao, Shouzhuo

    2014-02-15

    In this paper, we present a novel surface imprinting technique for the preparation of molecularly imprinted polymers/multi-walled carbon nanotubes (MIPs/MWNTs) for extraction of emodin from kiwi fruit root. The MIPs/MWNTs were characterised by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy (FT-IR). The properties involving adsorption dynamics, static adsorption, and selective recognition capacity were evaluated. The MIPs/MWNTs exhibited good site accessibility in which it only took 60 min to achieve adsorption equilibrium and highly selective recognition for the template emodin. Furthermore, the performance of the MIPs/MWNTs as solid phase extraction (SPE) material was investigated in detail. The proposed MIPs/MWNTs-SPE procedure for emodin exhibited satisfactory recoveries ranging from 89.2% to 93.8% for real samples. It was used for the purification and enrichment of emodin from kiwi fruit root successfully.

  1. Influence of carbon nano- and micron-sized fibers on structure, mechanical and tribotechnical properties of polymer composites with UHMWPE matrix

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Aleksenko, V. O.; Ivanova, L. R.; Shilko, S. V.

    2016-11-01

    To compare the efficiency of the solid lubricating and enforcing properties of carbon nano-and microfibers in ultra-high molecular weight polyethylene (UHMWPE) composites their mechanical and tribotechnical characteristics under dry sliding friction and abrasion have been studied. It is shown that under dry sliding friction the wear resistance of the polymer composite "UHMWPE + 0.5 wt % C (nano)" has increased up to 6.6 times, while in the composite "UHMWPE + 5 wt % C (micro)"—by 2.5 times only. At the same time abrasive wear resistance of these composites has increased approximately 2-fold for both types of fillers. The mechanisms of the observed effects are discussed and interpreted.

  2. Interfaces in polymer, ceramic, and metal matrix composites; Proceedings of the Second International Conference on Composite Interfaces (ICCI-II), Cleveland, OH, June 13-17, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, H.

    1988-01-01

    The present conference on interfacial factors in advanced composite materials discusses such topics in their development status and properties as silane coupling, the electrochemical and plasma-surface treatment of carbon fibers, fiber surface-analytical techniques, polymer molecular scale characterization by atom-probe field-ion microscopy, the study of carbon fiber-epoxy resin interface interactions by means of labeling techniques, and the surface tailoring of SiC by ion implantation. Also discussed are developments in laser light-scattered photoelasticity, microstructural evolutions under heat treatment and radiation damage, TEM for composites, the interfaces of carbon fiber-reinforced Al composites, the influence of the interface on macroscopic composite properties, and the status of the theoretical understanding of composite interfaces.

  3. A novel nuclear magnetic resonance (NMR) imaging method for measuring the water front penetration rate in hydrophilic polymer matrix capsule plugs and its role in drug release.

    Science.gov (United States)

    Ashraf, M; Iuorno, V L; Coffin-Beach, D; Evans, C A; Augsburger, L L

    1994-05-01

    An NMR imaging method was developed to estimate the rate of water movement in slow-release capsule matrices of pseudoephdrine HCl and hydroxypropyl cellulose (HPC). Test capsules were first placed in a USP method 2 (paddles, 50 rpm) dissolution apparatus. Each plug was removed from the dissolution medium at predetermined times, blotted dry, and placed within the magnetic field of a General Electric 400-MHz wide-bore NMR spectrometer equipped with a microimaging accessory. Images were recorded along the transverse plane of each plug. The water penetration rate was determined by comparison of the cut and weighed contour plots of the images acquired. After 1 hr, the plugs tamped to 200 N exhibited water penetration to the center, while only 45% of the drug was released. The percentage dry matrix was fitted to the Jost equation to obtain a diffusion coefficient of 4.15 x 10(-6) cm2/sec. NMR imaging is set forth as an important and practicable technique to investigate drug formulations. In the HPC matrix system of this study, the NMR imaging results convincingly revealed the rate of hydration front penetration not to be a rate-limiting step in the drug release process.

  4. New composites of nanoparticle Cu (I) oxide and titania in a novel inorganic polymer (geopolymer) matrix for destruction of dyes and hazardous organic pollutants.

    Science.gov (United States)

    Falah, Mahroo; MacKenzie, Kenneth J D; Knibbe, Ruth; Page, Samuel J; Hanna, John V

    2016-11-15

    New photoactive composites to efficiently remove organic dyes from water are reported. These consist of Cu2O/TiO2 nanoparticles in a novel inorganic geopolymer matrix modified by a large tertiary ammonium species (cetyltrimethylammonium bromide, CTAB) whose presence in the matrix is demonstrated by FTIR spectroscopy. The CTAB does not disrupt the tetrahedral geopolymer structural silica and alumina units as demonstrated by (29)Si and (27)Al MAS NMR spectroscopy. SEM/EDS, TEM and BET measurements suggest that the Cu2O/TiO2 nanoparticles are homogenously distributed on the surface and within the geopolymer pores. The mechanism of removal of methylene blue (MB) dye from solution consists of a combination of adsorption (under dark conditions) and photodegradation (under UV radiation). MB adsorption in the dark follows pseudo second-order kinetics and is described by Freundlich-Langmuir type isotherms. The performance of the CTAB-modified geopolymer based composites is superior to composites based on unmodified geopolymer hosts, the most effective composite containing 5wt% Cu2O/TiO2 in a CTAB-modified geopolymer host. These composites constitute a new class of materials with excellent potential in environmental protection applications.

  5. Binaural Rendering in MPEG Surround

    Directory of Open Access Journals (Sweden)

    Kristofer Kjörling

    2008-04-01

    Full Text Available This paper describes novel methods for evoking a multichannel audio experience over stereo headphones. In contrast to the conventional convolution-based approach where, for example, five input channels are filtered using ten head-related transfer functions, the current approach is based on a parametric representation of the multichannel signal, along with either a parametric representation of the head-related transfer functions or a reduced set of head-related transfer functions. An audio scene with multiple virtual sound sources is represented by a mono or a stereo downmix signal of all sound source signals, accompanied by certain statistical (spatial properties. These statistical properties of the sound sources are either combined with statistical properties of head-related transfer functions to estimate “binaural parameters” that represent the perceptually relevant aspects of the auditory scene or used to create a limited set of combined head-related transfer functions that can be applied directly on the downmix signal. Subsequently, a binaural rendering stage reinstates the statistical properties of the sound sources by applying the estimated binaural parameters or the reduced set of combined head-related transfer functions directly on the downmix. If combined with parametric multichannel audio coders such as MPEG Surround, the proposed methods are advantageous over conventional methods in terms of perceived quality and computational complexity.

  6. Reduced surround inhibition in musicians.

    Science.gov (United States)

    Shin, Hae-Won; Kang, Suk Y; Hallett, Mark; Sohn, Young H

    2012-06-01

    To investigate whether surround inhibition (SI) in the motor system is altered in professional musicians, we performed a transcranial magnetic stimulation (TMS) study in 10 professional musicians and 15 age-matched healthy non-musicians. TMS was set to be triggered by self-initiated flexion of the index finger at different intervals ranging from 3 to 1,000 ms. Average motor evoked potential (MEP) amplitudes obtained from self-triggered TMS were normalized to average MEPs of the control TMS at rest and expressed as a percentage. Normalized MEP amplitudes of the abductor digiti minimi (ADM) muscles were compared between the musicians and non-musicians with the primary analysis being the intervals between 3 and 80 ms (during the movement). A mixed-design ANOVA revealed a significant difference in normalized ADM MEPs during the index finger flexion between groups, with less SI in the musicians. This study demonstrated that the functional operation of SI is less strong in musicians than non-musicians, perhaps due to practice of movement synergies involving both muscles. Reduced SI, however, could lead susceptible musicians to be prone to develop task-specific dystonia.

  7. Binaural Rendering in MPEG Surround

    Science.gov (United States)

    Breebaart, Jeroen; Villemoes, Lars; Kjörling, Kristofer

    2008-12-01

    This paper describes novel methods for evoking a multichannel audio experience over stereo headphones. In contrast to the conventional convolution-based approach where, for example, five input channels are filtered using ten head-related transfer functions, the current approach is based on a parametric representation of the multichannel signal, along with either a parametric representation of the head-related transfer functions or a reduced set of head-related transfer functions. An audio scene with multiple virtual sound sources is represented by a mono or a stereo downmix signal of all sound source signals, accompanied by certain statistical (spatial) properties. These statistical properties of the sound sources are either combined with statistical properties of head-related transfer functions to estimate "binaural parameters" that represent the perceptually relevant aspects of the auditory scene or used to create a limited set of combined head-related transfer functions that can be applied directly on the downmix signal. Subsequently, a binaural rendering stage reinstates the statistical properties of the sound sources by applying the estimated binaural parameters or the reduced set of combined head-related transfer functions directly on the downmix. If combined with parametric multichannel audio coders such as MPEG Surround, the proposed methods are advantageous over conventional methods in terms of perceived quality and computational complexity.

  8. Polymeric matrix materials for infrared metamaterials

    Science.gov (United States)

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  9. Environmental scanning electron microscopy study of the fine structure of the triple line and cassie-wenzel wetting transition for sessile drops deposited on rough polymer substrates.

    Science.gov (United States)

    Bormashenko, Edward; Bormashenko, Yelena; Stein, Tamir; Whyman, Gene; Pogreb, Roman; Barkay, Zahava

    2007-04-10

    The wetting of rough honeycomb micrometrically scaled polymer substrates was studied. A very strong dependence of the apparent contact angle on the drop volume has been established experimentally. The environmental scanning electron microscopy study of the fine structure of the triple line is reported first. The triple line is not smooth and prefers grasping the polymer matrix over air holes. The precursor rim surrounding the drop has been observed. The revealed dependence of the apparent contact angle on the drop volume is explained by the transition between the pure Cassie and combined Wenzel-Cassie wetting regimes, which is induced by capillarity penetration of water into the holes of relief.

  10. Electrically conducting polymers for aerospace applications

    Science.gov (United States)

    Meador, Mary Ann B.; Gaier, James R.; Good, Brian S.; Sharp, G. R.; Meador, Michael A.

    1991-01-01

    Current research on electrically conducting polymers from 1974 to the present is reviewed focusing on the development of materials for aeronautic and space applications. Problems discussed include extended pi-systems, pyrolytic polymers, charge-transfer systems, conductive matrix resins for composite materials, and prospects for the use of conducting polymers in space photovoltaics.

  11. Effect of combination of acrylic polymers on the release of nevirapine formulated as extended release matrix pellets using extrusion and spheronization technique.

    Science.gov (United States)

    Sharma, Anshuli; Prasad, Anjaneya; Dua, Kamal; Singh, Gurvinder

    2014-01-01

    The aim of the present research work was to formulate and evaluate the extended release matrix pellets of nevirapine using extrusion and spheronization technique which will be an alternative technique for making extended release dosage forms and to compare the drug release profiles of the formulations with the reference product. In vitro dissolutions were carried out in 0.04M Phosphate buffer pH 6.8 with 2% w/v SLS (sodium lauryl sulphate) for 24 hours with USP type I apparatus at 75rpm. The drug release from the optimised formulation was comparable to that of the reference product and follows first order kinetics followed by non-fickian transport mechanism of drug release which confirms the drug release pattern involves complex mixture of diffusion and erosion. The similarity factor, f2 value of optimised formulation was found to be 70, which shows that the developed formulation was comparable to that of the reference product.

  12. Debonding damage analysis in composite-masonry strengthening systems with polymer- and mortar-based matrix by means of the acoustic emission technique

    Science.gov (United States)

    Verstrynge, E.; Wevers, M.; Ghiassi, B.; Lourenço, P. B.

    2016-01-01

    Different types of strengthening systems, based on fiber reinforced materials, are under investigation for external strengthening of historic masonry structures. A full characterization of the bond behavior and of the short- and long-term failure mechanisms is crucial to ensure effective design, compatibility with the historic substrate and durability of the strengthening solution. Therein, non-destructive techniques are essential for bond characterization, durability assessment and on-site condition monitoring. In this paper, the acoustic emission (AE) technique is evaluated for debonding characterization and localization on fiber reinforced polymer (FRP) and steel reinforced grout-strengthened clay bricks. Both types of strengthening systems are subjected to accelerated ageing tests under thermal cycles and to single-lap shear bond tests. During the reported experimental campaign, AE data from the accelerated ageing tests demonstrated the thermal incompatibility between brick and epoxy-bonded FRP composites, and debonding damage was successfully detected, characterized and located. In addition, a qualitative comparison is made with digital image correlation and infrared thermography, in view of efficient on-site debonding detection.

  13. Temperature effects on quasi-isolated conjugated polymers as revealed by temperature-dependent optical spectra of 16-mer oligothiophene diluted in a sold matrix.

    Science.gov (United States)

    Kanemoto, Katsuichi; Akai, Ichiro; Sugisaki, Mitsuru; Hashimoto, Hideki; Karasawa, Tsutomu; Negishi, Nobukazu; Aso, Yoshio

    2009-06-21

    Temperature dependences (4-300 K) of photoluminescence (PL) and absorption spectra of 16-mer oligothiophene (16 T) extremely diluted in polypropylene (PP) have been investigated in order to clarify temperature effects on quasi-isolated conjugated polymers. The PL and absorption spectra are found to blueshift with increasing temperature. The reason for the blueshift is discussed by comparing models based on the refractive index of the solvent (PP) and on the thermal conformational change of 16 T. The blueshift is concluded to result from the thermal conformational change. Time-resolved PL spectra show a redshift of PL band following photoexcitation (spectral migration). The amount of the migration is shown to increase with increasing temperature. The increased migration is concluded to be due to the thermal conformational change. The temperature dependence of the effective conjugation length (ECL) of 16 T is calculated for the absorption and PL transitions. The calculation suggests that ECL is reduced at room temperature to two-thirds of the intrinsic chain length. The activation energy of the conformational change is estimated to be 22.4 meV from the temperature dependence of ECL. We demonstrate that the steady-state PL spectra are well reproduced by simple Franck-Condon analyses using a single Huang-Ryes factor over a wide temperature range. The analyses reveal features of temperature dependence in important spectral parameters such as the Stokes shift, linewidth, and Huang-Ryes factor.

  14. Polymer composite coatings to protect parts of oil field equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kislyy, P.S.; Alekseyenko, A.A.; Dzyadykevich, Yu.V.; Kalba, Ye.N.

    1983-01-01

    A study was made of the possibility of using polymer composite coating for protection from corrosion and wear of working wheels of oil pumping pumps. A study was made of the physicomechanical properties of the polymer matrix. Technology was developed for applying the coating based on a polymer matrix and refractory filler which was introduced at the UMN ''Druzhba.''

  15. Equivalent Estimating Methods of Ageing on Polymer Matrix Composites Residual Strength%聚合物基复合材料老化剩余强度等效预测方法研究

    Institute of Scientific and Technical Information of China (English)

    张颖军; 朱锡; 梅志远; 李华东

    2012-01-01

    Considering the effect of ageing factors to composite in engineering, an advanced estimating equation of ageing on polymer matrix composites residual strength is founded by studying and analyzing the ageing equation proposed by Gunyaev r m. The advanced ageing equation which is adopted to estimate the residual strength is fit here by least squares method with the ageing experimental data. The results indicate that the theoretical calculating data is consistent with the experimental data. The advanced ageing equation used among different ageing environment as considering equivalent effect of ageing factors can reduce experimental times of the same material in different ageing environment. The work provides a reference for ageing equivalent study of polymer matrix composites between nature ageing and accelerated ageing.%通过对r.M.古尼耶夫提出的老化方程的分析研究,考虑了各种老化因素在实际工程中对复合材料的影响,建立了改进的聚合物基复合材料老化剩余强度估算方程.结合老化试验数据,采用最小二乘非线性回归计算方法拟合老化方程,并进行剩余强度估算.结果表明,理论计算结果与试验结果吻合较好,同时由于改进公式考虑了环境老化因素对材料影响的等效,使得改进公式能够在不同老化环境中进行等效计算,可以减少同种材料的不同老化环境试验次数.本实验对聚合物基复合材料在自然老化和加速老化环境下的等效研究具有参考价值.

  16. Quantitative measurement of Au and Fe in ferromagnetic nanoparticles with Laser Induced Breakdown Spectroscopy using a polymer-based gel matrix

    Energy Technology Data Exchange (ETDEWEB)

    Borowik, T., E-mail: tomasz.borowik@pwr.wroc.pl [Laboratory for Biophysics of Macromolecular Aggregates, Institute of Biomedical Engineering and Measurements, Wroclaw Technical University, Wroclaw, Pl. Grunwaldzki 13 (Poland); Przybylo, M., E-mail: magdalena.przybylo@pwr.wroc.pl [Laboratory for Biophysics of Macromolecular Aggregates, Institute of Biomedical Engineering and Measurements, Wroclaw Technical University, Wroclaw, Pl. Grunwaldzki 13 (Poland); Pala, K., E-mail: pala@protein.pl [Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw Tamka 2, 50-137 (Poland); Otlewski, J., E-mail: otlewski@protein.pl [Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw Tamka 2, 50-137 (Poland); Langner, M., E-mail: marek.langner@pwr.wroc.pl [Laboratory for Biophysics of Macromolecular Aggregates, Institute of Biomedical Engineering and Measurements, Wroclaw Technical University, Wroclaw, Pl. Grunwaldzki 13 (Poland)

    2011-09-15

    The medical applications of nanomaterials require substantial changes in the research and development stage, such as the introduction of new processes and methods, and adequate modifications of the national and international laws on the medical product registration. To accomplish this, proper parameterizations of nano-scaled products need to be developed and implemented, accompanied by suitable measuring methods. The introduction of metallic particles to medical practices requires the precise, quantitative evaluation of the production process and later quantification and characterization of the nanoparticles in biological matrices for the bioavailability and biodistribution evaluation. In order to address these issues we propose a method for the quantitative analysis of the metallic nanoparticles composition by Laser Induced Breakdown Spectroscopy (LIBS). Au/Fe ferro-magnetic nanoparticles were used to evaluate the method applicability. Since the powder form of nanoparticles spatters upon laser ablation, first we had to develop fast, convenient and quantitative method for the nano-powdered sample preparation. The proposed method is based on the polymer gelation of nanopowders or their water suspensions. It has been shown that nanopowders compositional changes throughout the production process, along with their final characterization, can be reliable performed with LIBS technique. The quantitative values obtained were successfully correlated with those derived with ICP technique. - Highlights: Black-Right-Pointing-Pointer The atomic composition of nanoparticles was analyzed with LIBS. Black-Right-Pointing-Pointer The amount of gold on ferromagnetic particles was quantified by the method. Black-Right-Pointing-Pointer Gel fixation was used as new way of handling powdered samples. Black-Right-Pointing-Pointer LIBS results are comparable with other equivalent methods (ICP). Black-Right-Pointing-Pointer There was a difference between measured and assumed nanoparticle

  17. 'Stuffed' conducting polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjørn; Chen, Jun; West, Keld

    2005-01-01

    Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid. In the pres......Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid....... In the present work we demonstrate this principle on three different CP's: polypyrrole (PPy), poly-terthiophene (PTTh) and poly(3,4-ethylenedioxy thiophene) (PEDT), using ferrocene as a model molecule to be trapped in the polymer films. (c) 2005 Elsevier Ltd. All rights reserved....

  18. Microwave dielectric properties of composites consisting of MgAl2O4 filler synthesized by molten-salt method and isotactic polypropylene polymer matrix

    Science.gov (United States)

    Takahashi, Susumu; Imai, Yusuke; Kan, Akinori; Hotta, Yuji; Ogawa, Hirotaka

    2015-10-01

    MgAl2O4 particles were synthesized through the solid-state reaction method (MAO-S) or molten-salt method (MAO-M). The crystallinity, particle size, and crystal structure of spinel-structured MAO-S and MAO-M particles were characterized and these particles used as dielectric fillers were filled into an isotactic polypropylene matrix, up to 30 vol % filler concentration. Significant differences in the degree of inversion (λ), which represents the cation distribution in tetrahedral and octahedral sites, were obtained for MAO-S and MAO-M by solid-state NMR measurements and the λ value of MAO-S fired for 10 h was 0.39, while that of MAO-M fired for 10 h was 0.64. The dielectric constant of MAO-S- or MAO-M-filled composites increased from 2.4 to 3.7 with increasing filler concentration and was consistent with the Bruggeman model. The dielectric loss and thermal conductivity of the composites were remarkably improved by the addition of the MAO-M filler, depending on the increase in the duration of firing, and were 1.74 × 10-4 and 0.62 W/(m·K), respectively. The coefficient of thermal expansion and the temperature coefficient of the dielectric constant of composites also depended on the filler concentration.

  19. Polymer Nanocomposites for Wind Energy Applications: Perspectives and Computational Modeling

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Zhou, H.W.; Peng, R.D.;

    2013-01-01

    Strength and reliability of wind blades produced from polymer composites are the important preconditions for the successful development of wind energy. One of the ways to increase the reliability and lifetime of polymer matrix composites is the nanoengineering of matrix or fiber/matrix interfaces...

  20. Synthesis and characterization of polymer matrix composite material with combination of ZnO filler and nata de coco fiber as a candidate of semiconductor material

    Science.gov (United States)

    Saputra, Asep Handaya; Anindita, Hana Nabila

    2015-12-01

    Synthesis of semiconductor composite using acrylic matrix filled with ZnO and nata de coco fiber has been conducted in this research. The purpose of this research is to obtain semiconductor composite material that has a good mechanical strength and thermal resistance. In situ polymerization method is used in this research and the composites are ready to be characterized after 12 hours. The main parameter that is characterized is the electric conductivity of the composite. Additional parameters are also characterized such as composite's elastic modulus and glass transition temperature. The composites that has been made in this research can be classified as semiconductor material because the conductivity is in the range of 10-8-103 S/cm. In general the addition of ZnO and nata de coco filler can increase the conductivity of the composite. The highest semiconductor characteristic in acrylic/ZnO composite is obtained from 30% volume filler that reach 3.4 x 10-7 S/cm. Similar with acrylic/ZnO composite, in acrylic/nata de coco fiber composite the highest semiconductor characteristic is also obtained from 30% volume filler that reach 1.15 x 10-7 S/cm. Combination of 20% volume of ZnO, 10% volume of nata de coco, and 70% volume of acrylic resulting in composite with electric conductivity of 1.92 x 10-7 S/cm. In addition, combination of ZnO and nata de coco fiber as filler in composite can also improve the characteristic of composite where composite with 20% volume of ZnO filler and 10% volume of nata de coco fiber resulting in composite with elastic modulus of 1.79 GPa and glass transition temperature of 175.73°C which is higher than those in acrylic/ZnO composite.

  1. Polymer fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Hadermann, A. F.

    1985-04-09

    Soluble polymers are fractionated according to molecular weight by cryogenically comminuting the polymer and introducing the polymer particles, while still in the active state induced by cryogenic grinding, into a liquid having a solvent power selected to produce a coacervate fraction containing high molecular weight polymer species and a dilute polymer solution containing lower molecular weight polymer species. The coacervate may be physically separated from the solution and finds use in the production of antimisting jet fuels and the like.

  2. Biodegradable Polymers

    OpenAIRE

    Isabelle Vroman; Lan Tighzert

    2013-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  3. Winner of the 2013 Young Investigator Award for the Society for Biomaterials annual meeting and exposition, April 10-13, 2013, Boston, Massachusetts. Osteogenic differentiation of mesenchymal stem cells on demineralized and devitalized biodegradable polymer and extracellular matrix hybrid constructs.

    Science.gov (United States)

    Thibault, Richard A; Mikos, Antonios G; Kasper, F Kurtis

    2013-05-01

    Devitalization and demineralization processing of biodegradable polymer and extracellular matrix (ECM) hybrid constructs was explored for the effect on the retention of ECM components and construct osteogenicity. Hybrid constructs were generated by seeding osteogenically predifferentiated rat mesenchymal stem cells (MSCs) onto electrospun poly(ε-caprolactone) fiber meshes and culturing in osteogenic medium for 12 or 16 days within a flow perfusion bioreactor to create an ECM coating. The resulting constructs were then either devitalized (using a freeze-thaw or a detergent technique), devitalized and demineralized, or left untreated, and subsequently characterized for DNA, glycosaminoglycan, collagen, and calcium content. The osteogenicity of each construct was investigated by culturing MSCs on the hybrid constructs within a flow perfusion bioreactor for 4, 8, and 12 days in osteogenic medium. Histological staining demonstrated that devitalization via the freeze-thaw method retained the thickest coating of ECM components within the constructs. Demineralization and devitalization processing of ECM coated constructs resulted in a decrease in their osteogenicity.

  4. Polyhedral oligomeric silsesquioxane grafted polymer in polymeric foam

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce A.; Patankar, Kshitish A.; Costeux, Stephane; Jeon, Hyun K.

    2017-01-17

    A polymeric foam article with a polymer matrix defining multiple cells therein has a polymer component with a first polymer that is a polyhedral oligomeric silsesquioxane grafted polymer that has a weight-average molecular weight of two kilograms per mole or higher and 200 kilograms per mole or lower.

  5. Polyhedral oligomeric silsesquioxane grafted polymer in polymeric foam

    Science.gov (United States)

    King, Bruce A.; Patankar, Kshitish A.; Costeux, Stephane; Jeon, Hyun K.

    2017-01-17

    A polymeric foam article with a polymer matrix defining multiple cells therein has a polymer component with a first polymer that is a polyhedral oligomeric silsesquioxane grafted polymer that has a weight-average molecular weight of two kilograms per mole or higher and 200 kilograms per mole or lower.

  6. Microscopic Dynamics and Topology of Polymer Rings Immersed in a Host Matrix of Longer Linear Polymers: Results from a Detailed Molecular Dynamics Simulation Study and Comparison with Experimental Data

    Directory of Open Access Journals (Sweden)

    George D. Papadopoulos

    2016-08-01

    Full Text Available We have performed molecular dynamics (MD simulations of melt systems consisting of a small number of long ring poly(ethylene oxide (PEO probes immersed in a host matrix of linear PEO chains and have studied their microscopic dynamics and topology as a function of the molecular length of the host linear chains. Consistent with a recent neutron spin echo spectroscopy study (Goossen et al., Phys. Rev. Lett. 2015, 115, 148302, we have observed that the segmental dynamics of the probe ring molecules is controlled by the length of the host linear chains. In matrices of short, unentangled linear chains, the ring probes exhibit a Rouse-like dynamics, and the spectra of their dynamic structure factor resemble those in their own melt. In striking contrast, in matrices of long, entangled linear chains, their dynamics is drastically altered. The corresponding dynamic structure factor spectra exhibit a steep initial decay up to times on the order of the entanglement time τe of linear PEO at the same temperature but then they become practically time-independent approaching plateau values. The plateau values are different for different wavevectors; they also depend on the length of the host linear chains. Our results are supported by a geometric analysis of topological interactions, which reveals significant threading of all ring molecules by the linear chains. In most cases, each ring is simultaneously threaded by several linear chains. As a result, its dynamics at times longer than a few τe should be completely dictated by the release of the topological restrictions imposed by these threadings (interpenetrations. Our topological analysis did not indicate any effect of the few ring probes on the statistical properties of the network of primitive paths of the host linear chains.

  7. An investigation of adhesive/adherend and fiber/matrix interactions. Part A: Surface characterization of titanium dioxide, titantium and titanium 6% Al to 4% V powders: Interaction with water, hydrogen chloride and polymers

    Science.gov (United States)

    Siriwardane, R. V.; Wightman, J. P.

    1982-01-01

    The titanium dioxide surface is discussed. Polymer adhesive are also discussed. Titanium powders are considered. Characterization techniques are also considered. Interactions with polymers, water vapor, and HCl are reported. Adsorbents are characterized.

  8. Matrix theory

    CERN Document Server

    Franklin, Joel N

    2003-01-01

    Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.

  9. Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Isabelle Vroman

    2009-04-01

    Full Text Available Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources or from biological resources (renewable resources. In general natural polymers offer fewer advantages than synthetic polymers. The following review presents an overview of the different biodegradable polymers that are currently being used and their properties, as well as new developments in their synthesis and applications.

  10. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  11. Magneto-dielectric properties of polymer-Fe{sub 3}O{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ta-I; Brown, Rene N.C. [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742 (United States); Kempel, Leo C. [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 (United States); Kofinas, Peter [Fischell Department of Bioengineering, University of Maryland, 1120 Jeong H. Kim Building, College Park, MD 20742 (United States)], E-mail: kofinas@umd.edu

    2008-11-15

    The aim of this research is to elucidate the size effect of magnetic nanoparticles on the resultant magneto-dielectric properties of polymer nanocomposites at radio frequencies. The block copolymer of [styrene-b-ethylene/butylene-b-styrene] (SEBS) was utilized as a matrix for the templating of magnetic nanoparticles. Surfactant-modified iron oxide (Fe{sub 3}O{sub 4}) nanoparticles of various sizes were successfully synthesized by a seed-mediated growth method. The surfactant prevented Fe{sub 3}O{sub 4} aggregation and provided compatibility with the polymer matrix. The nucleation and growth of Fe{sub 3}O{sub 4} nanoparticles was controlled by changing the concentration ratio of surfactant to iron-precursor. The free iron ions present during synthesis are the major factor contributing to the growth of larger particles. The Fe{sub 3}O{sub 4} nanoparticle critical size for superparamagnetic to ferrimagnetic transition was determined to be near 30 nm at room temperature. The dielectric permittivity ({epsilon}{sub r}) of the polymer composite increased with increasing amount of Fe{sub 3}O{sub 4} doping, and was not influenced by nanoparticle size. However, the magnetic permeability ({mu}{sub r}) of the composites was significantly influenced by the size of Fe{sub 3}O{sub 4} nanoparticles templated within the block copolymer matrix due to thermal energy fluctuations from the nanoparticle surroundings.

  12. PERFORMANCE IMPROVEMENT OF POLYMERS BY THE ADDITION OF GRAFTED NANO-INORGANIC PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Ming-qiu Zhang; Min-zhi Rong

    2003-01-01

    An irradiation grafting method was applied for the modification of nanoparticles so that the latter can be added to polymeric materials for improving their mechanical performance using existing compounding techniques. The following items are discussed in this paper: (a) chemical interaction between the grafting monomers and the nanoparticles during irradiation, (b) properties including modulus, yield strength, impact strength and fracture toughness of the resultant composites, and (c) possible morphological changes induced by the addition of nanoparticles. Through irradiation grafting polymerization, nanoparticle agglomerates turn into a nano-composite microstructure (comprised of the nanoparticles and the grafted, homopolymerized secondary polymer), which in turn builds up a strong interfacial interaction with the surrounding,primary polymeric matrix during the subsequent mixing procedure. Due to the fact that different grafting polymers brought about different nanoparticle/matrix interfacial features, microstructures and properties of the ultimate composites could thus be tailored. It was found that the reinforcing and toughening effects of the nanoparticles on the polymer matrix can be fully brought into play at a rather low filler loading in comparison to conventional particulate filled composites.

  13. Photovoltaic effect in single layer 1H-pyrazolo[3,4-b]quinoline and 1H-pyrazolo[3,4-b]quioxaline/poly(3-decylthiophene) polymer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gondek, Ewa [Inst. of Physics, Technical Univ. of Cracow (Poland); Kityk, Ivan V. [Electrical Engineering Dept., Technological Univ. of Czestochowa (Poland); Danel, Andrzej [Dept. of Chemistry, Agricultural Univ. of Krakow (Poland)

    2009-09-15

    We have explored photovoltaic (PV) reponse for the pyrazoloquinoline and pyrazoloquinoxaline dyes incorporated into the poly(3-decylthiophene) (PDT) polymer matrices. The photovoltaic response correlates generally with the enhancement of the state dipole moments. Generally we have shown that enhanced state dipole moments lead to an increase of the open circuit voltage. The surrounded polymer matrix of the polythiophene enhances the ground state dipole moments and its relative changes are decreased with the increase of the particular state dipole moments. An appearance of the three-phenyl backside groups substantially diminishes the effect. (orig.)

  14. Contour detection by surround suppression of texture

    NARCIS (Netherlands)

    Petkov, Nicolai; Tavares, JMRS; Jorge, RMN

    2007-01-01

    Based on a keynote lecture at Complmage 2006, Coimbra, Oct. 20-21, 2006, an overview is given of our activities in modelling and using surround inhibition for contour detection. The effect of suppression of a line or edge stimulus by similar surrounding stimuli is known from visual perception studie

  15. Research Progress on Thermal Conductivity of Carbon Fiber Reinforced Polymer Matrix Composites%导热型碳纤维增强聚合物基复合材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    李仕通; 彭超义; 邢素丽; 肖加余

    2012-01-01

    The present state and development of thermal conductivity of carbon fiber reinforced polymer matrix composites (CFRP) are reviewed. Phonon and photon thermal conduction mechanism of CFRP are described. The computing models and testing methods for the thermal conductivity of CFRP, prepared by different ply angles and different packing fractions, are illustrated. The effects of the resin systems (including epoxy resin, cyanate ester, bisma-leimide resin), carbon fibers (including PAN carbon fibers, mesophase pitch carbon fibers, vapor grown carbon fibers, carbon nanotube fibers), processing technologies etc. on the thermal conductivity of CFRP are also analyzed.%综述了导热型连续碳纤维增强聚合物基复合材料(CFRP)的研究与应用现状和进展,阐述了CFRP的声子导热和光子导热机理,介绍了不同铺层角度和铺层比的CFRP面内和厚度方向热导率计算模型及测试方法,分析了环氧树脂、氰酸酯、双马来酰亚胺等3类树脂体系和聚丙烯腈基(PAN)碳纤维、中间相沥青基碳纤维、气相生长碳纤维、碳纳米管纤维等4类增强体以及工艺方法等因素对CFRP热导率的影响.

  16. Addition of magnetic markers for non-destructive evaluation of polymer composites

    Directory of Open Access Journals (Sweden)

    Ana Paula Pereira Fulco

    2011-12-01

    Full Text Available Polymer composite pipes are an appealing option as a substitute for conventional steel pipes, particularly due to their inherent corrosion resistance. However, the composite pipes currently used do not allow non-destructive evaluation (NDE using instrumented devices which operate with magnetic sensors. The present work aims at the development of polymer composites with the addition magnetic markers to allow the application non-destructive evaluation techniques which use magnetic sensors. Glass-polyester composite flat, circular plates were fabricated with the addition of ferrite particles (barium ferrite and strontium ferrite and four types of notches were introduced on the plates' surfaces. The influence of these notches on the measured magnetic properties of each material was measured. X-ray diffraction (XRD, X-ray fluorescence (XRF and Brunauer, Emmett, and Teller (BET nitrogen adsorption were used for the characterization of the ferrite particles. Particle dispersion in the polymer matrix was analyzed by scanning electron microscopy (SEM. According to the results, a particular variation in magnetic field was detected over the region surrounding each type of notch. The results suggest that the proposed technique has great potential for damage detection in polymer composites using magnetic sensors and thus constitute a valuable contribution which may ultimately lead to the development of non-destructive evaluation techniques for assessing the structural integrity polymer composite pipes.

  17. Energy transfer in PPV-based conjugated polymers: a defocused widefield fluorescence microscopy study.

    Science.gov (United States)

    Hooley, E N; Tilley, A J; White, J M; Ghiggino, K P; Bell, T D M

    2014-04-21

    Both pendant and main chain conjugated MEH-PPV based polymers have been studied at the level of single chains using confocal and widefield fluorescence microscopy techniques. In particular, defocused widefield fluorescence is applied to reveal the extent of energy transfer in these polymers by identifying whether they act as single emitters. For main chain conjugated MEH-PPV, molecular weight and the surrounding matrix play a primary role in determining energy transport processes and whether single emitter behaviour is observed. Surprisingly in polymers with a saturated backbone but containing the same pendant MEH-PPV oligomer on each repeating unit, intra-chain energy transfer to a single emitter is also apparent. The results imply there is chromophore heterogeneity that can facilitate energy funneling to the emitting site. Both main chain conjugated and pendant MEH-PPV polymers exhibit changes in orientation of the emission dipole during a fluorescence trajectory of many seconds, whereas a model MEH-PPV oligomer does not. The results suggest that, in the polymers, the nature of the emitting chromophores can change during the time trajectory.

  18. A permeability barrier surrounds taste buds in lingual epithelia.

    Science.gov (United States)

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2015-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003-1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste.

  19. Matrix Factorization and Matrix Concentration

    OpenAIRE

    Mackey, Lester

    2012-01-01

    Motivated by the constrained factorization problems of sparse principal components analysis (PCA) for gene expression modeling, low-rank matrix completion for recommender systems, and robust matrix factorization for video surveillance, this dissertation explores the modeling, methodology, and theory of matrix factorization.We begin by exposing the theoretical and empirical shortcomings of standard deflation techniques for sparse PCA and developing alternative methodology more suitable for def...

  20. Agroforestry practice in villages surrounding Nyamure former ...

    African Journals Online (AJOL)

    cntaganda

    Key words: Agroforestry, fuel wood, tree products, woodlot, forest plantation. INTRODUCTION ... The study area included three administrative cells in the surroundings of Nyamure ..... Table 6: Distance and time spent on firewood collection.

  1. Explaining preferences for home surroundings and locations

    Directory of Open Access Journals (Sweden)

    Hans Skifter Andersen

    2011-01-01

    Full Text Available This article is based on a survey carried out in Denmark that asked a random sample of the population about their preferences for home surroundings and locations. It shows that the characteristics of social surroundings are very important and can be divided into three independent dimensions: avoiding social nuisances, preferring social homogeneity and living close to one’s social network and place of origin. The study shows that most people have many detailed preferences, whereas some have very few. This confirms an earlier theory that some people are very connected to certain places with given characteristics and thus do not have priorities regarding home surroundings and locations. For others, mostly young people and singles, home is just a place to sleep and relax, whereas life is lived elsewhere. For this group, there are only preferences for location and there are few specific preferences for surroundings.

  2. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  3. Electrochemical Study of Conductive Gel Polymer

    Institute of Scientific and Technical Information of China (English)

    Zhaohui Li; Jing Jiang; Gangtie Lei

    2005-01-01

    @@ 1Introduction Conventional ion-conducting polymer consists of electrolyte salt and polymer matrix, so-called salt-inpolymer. It possesses lower conductivity because the migration of ions depends on the motion of polymer segmental. To increase the ionic conductivity, a kind of gel polymer film (GPF) was prepared by in situ polymerization of methyl methacrylate (MMA) monomer in room-temperature ionic liquid(RTIL), 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6). Due to immeasurably low vapor pressure, high ionic conductivity, and greater thermal and electrochemical stability, BMIPF6 is suitable electrolyte salts for ion-conducting polymer.

  4. Dynamic Polymer Brush at Polymer/Water Interface

    Science.gov (United States)

    Yokoyama, Hideaki; Inoue, Kazuma; Ito, Kohzo; Inutsuka, Manabu; Tanaka, Keiji; Yamada, Norifumi

    2015-03-01

    A layer of polymer chains tethered by one end to a surface is called polymer brush and known to show various unique properties such as anti-fouling. The surface segregation phenomena of copolymers with surface-active blocks should be useful for preparing such a brush layer in spontaneous process. We report hydrophilic polymer brushes formed at the interface between water and polymer by the segregation of amphiphilic diblock copolymers blended in a crosslinked rubbery matrix and call it ``dynamic polymer brush.'' In this system, the hydrophilic block with high surface energy avoids air surface, but segregates to cover the interface between hydrophobic elastomer and water. The structures of the brush layers at D2O/polymer interfaces were measured by neutron reflectivity. The dynamic polymer brush layer surprisingly reached 75% of the contour length of the chain and 2.7 chains/nm2. The brush density was surprisingly comparable to the polymer brush fabricated by the ``grafting-from'' method. We will discuss the dependence of the brush structure on molecular weight and block fraction of amphiphilic block copolymers. Such a surprisingly thick and dense polymer brush were induced by the large enthalpy gain of hydration of hydrophilic block.

  5. PHOTOREFRACTIVE POLYMERS

    NARCIS (Netherlands)

    Morichere, D; Malliaras, G.G; Krasnikov, V.V.; Bolink, H.J; Hadziioannou, G

    1995-01-01

    The use of polymers as photorefractive materials offers many advantages : flexibility in synthesis, doping, processing and low cost. The required functionalities responsible for photorefractivity, namely charge generation, transport, trapping and linear electrooptic effect are given in the polymer w

  6. PHOTOREFRACTIVE POLYMERS

    NARCIS (Netherlands)

    Morichere, D; Malliaras, G.G; Krasnikov, V.V.; Bolink, H.J; Hadziioannou, G

    1995-01-01

    The use of polymers as photorefractive materials offers many advantages : flexibility in synthesis, doping, processing and low cost. The required functionalities responsible for photorefractivity, namely charge generation, transport, trapping and linear electrooptic effect are given in the polymer w

  7. Surround-Masking Affects Visual Estimation Ability

    Science.gov (United States)

    Jastrzebski, Nicola R.; Hugrass, Laila E.; Crewther, Sheila G.; Crewther, David P.

    2017-01-01

    Visual estimation of numerosity involves the discrimination of magnitude between two distributions or perceptual sets that vary in number of elements. How performance on such estimation depends on peripheral sensory stimulation is unclear, even in typically developing adults. Here, we varied the central and surround contrast of stimuli that comprised a visual estimation task in order to determine whether mechanisms involved with the removal of unessential visual input functionally contributes toward number acuity. The visual estimation judgments of typically developed adults were significantly impaired for high but not low contrast surround stimulus conditions. The center and surround contrasts of the stimuli also differentially affected the accuracy of numerosity estimation depending on whether fewer or more dots were presented. Remarkably, observers demonstrated the highest mean percentage accuracy across stimulus conditions in the discrimination of more elements when the surround contrast was low and the background luminance of the central region containing the elements was dark (black center). Conversely, accuracy was severely impaired during the discrimination of fewer elements when the surround contrast was high and the background luminance of the central region was mid level (gray center). These findings suggest that estimation ability is functionally related to the quality of low-order filtration of unessential visual information. These surround masking results may help understanding of the poor visual estimation ability commonly observed in developmental dyscalculia.

  8. Carbon nanotube-reinforced composites: frequency analysis theories based on the matrix stiffness

    Science.gov (United States)

    Amin, Sara Shayan; Dalir, Hamid; Farshidianfar, Anooshirvan

    2009-03-01

    Strong and versatile carbon nanotubes are finding new applications in improving conventional polymer-based fibers and films. This paper studies the influence of matrix stiffness and the intertube radial displacements on free vibration of an individual double-walled carbon nanotube (DWNT). For this, a double elastic beam model is presented for frequency analysis in a DWNT embedded in an elastic matrix. The analysis is based on both Euler-Bernoulli and Timoshenko beam theories which considers shear deformation and rotary inertia and for both concentric and non-concentric assumptions considering intertube radial displacements and the related internal degrees of freedom. New intertube resonant frequencies and the associated non-coaxial vibrational modes are calculated. Detailed results are demonstrated for the dependence of resonant frequencies and mode shapes on the matrix stiffness. The results indicate that internal radial displacement and surrounding matrix stiffness could substantially affect resonant frequencies especially for longer double-walled carbon nanotubes of larger innermost radius at higher resonant frequencies, and thus the latter does not keep the otherwise concentric structure at ultrahigh frequencies. Therefore, depending on the matrix stiffness, for carbon nanotubes reinforced composites, different analysis techniques should be used while the aspect ratio of carbon nanotubes has a little effect on the analysis theory which should be selected.

  9. Multilayer Electroactive Polymer Composite Material

    Science.gov (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  10. Statistical properties of curved polymer

    Indian Academy of Sciences (India)

    Surya Kanta Ghosh; Anirban Sain

    2008-08-01

    Intrinsic curvature of biopolymers is emerging as an essential feature in various biological phenomena. Examples of polymers with intrinsic curvature are microtubule in eukaryotic cells or FtsZ filaments in prokaryotic cells. We consider the general model for polymers with intrinsic curvature. We aim to study both equilibrium and dynamic properties of such polymers. Here we report preliminary results on the equilibrium distribution function $P({\\mathbf{R}})$ of the end-to-end distance ${\\mathbf{R}}$. We employ transfer matrix method for this study.

  11. Matrix calculus

    CERN Document Server

    Bodewig, E

    1959-01-01

    Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well

  12. Phase stability and dynamics of entangled polymer-nanoparticle composites.

    KAUST Repository

    Mangal, Rahul

    2015-06-05

    Nanoparticle-polymer composites, or polymer-nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.

  13. Using theory and simulation to link molecular features of nanoscale fillers to morphology in polymer nanocomposites

    Science.gov (United States)

    Jayaraman, Arthi; Martin, Tyler

    2014-03-01

    Polymer nanocomposites are a class of materials that consist of a polymer matrix embedded with nanoscale fillers or additives that enhance the inherent properties of the matrix polymer. To engineer polymer nanocomposites for specific applications with target macroscopic properties (e.g. photovoltaics, photonics, automobile parts) it is important to have design rules that relate molecular features to equilibrium morphology of the composite. In the first part of the talk I will present our recent theory and simulation work on composites containing polymer grafted nanoparticles, showing how polydispersity in graft and matrix polymers (physical heterogeneity) can be used to stabilize dispersion of the nanoparticles within a polymer matrix. In the second part of the talk I will present our recent work linking block-copolymer functionalization to the nanoparticle location in a polymer matrix consisting of homopolymer blends.

  14. Theory and Simulation Studies of Copolymer Functionalized Nanoparticles in Polymer Nanocomposites

    Science.gov (United States)

    Jayaraman, Arthi; Nair, Nitish; Seifpour, Arezou; Spicer, Philip

    2010-03-01

    Significant interest has grown around the ability to create polymer nanocomposites with controlled spatial arrangement of nanoparticles mediated by a polymer matrix. By functionalizing or grafting polymers on to nanoparticle surfaces and systematically tuning the composition, chemistry, molecular weight and grafting density of the functionalized polymers we can tailor the inter-particle interactions and precisely control the assembly/dispersion of the particles in the polymer matrix. While prior experimental and theoretical work in this area has mostly been on homopolymer grafted particles at high brush-like grafting densities, we study copolymer grafted nanoparticles at low grafting densities in a homopolymer matrix. Using an integrated approach involving Polymer Reference Interaction Site Model (PRISM) theory and Monte Carlo simulations we will present the effect of monomer sequence and molecular weight of the grafted copolymer, compatibility of the graft and matrix polymers, and nanoparticle size on the conformations of the grafted polymers, and the effective interactions between the grafted nanoparticles in the matrix.

  15. Recent advances in photorefractive polymers

    Science.gov (United States)

    Thomas, Jayan; Christenson, C. W.; Lynn, B.; Blanche, P.-A.; Voorakaranam, R.; Norwood, R. A.; Yamamoto, M.; Peyghambarian, N.

    2011-10-01

    Photorefractive composites derived from conducting polymers offer the advantage of dynamically recording holograms without the need for processing of any kind. Thus, they are the material of choice for many cutting edge applications, such as updatable three-dimensional (3D) displays and 3D telepresence. Using photorefractive polymers, 3D images or holograms can be seen with the unassisted eye and are very similar to how humans see the actual environment surrounding them. Absence of a large-area and dynamically updatable holographic recording medium has prevented realization of the concept. The development of a novel nonlinear optical chromophore doped photoconductive polymer composite as the recording medium for a refreshable holographic display is discussed. Further improvements in the polymer composites could bring applications in telemedicine, advertising, updatable 3D maps and entertainment.

  16. Improved Dispersion of Carbon Nanotubes in Polymers at High Concentrations

    Science.gov (United States)

    Liu, Chao-Xuan; Choi, Jin-Woo

    2012-01-01

    The polymer nanocomposite used in this work comprises elastomer poly(dimethylsiloxane) (PDMS) as a polymer matrix and multi-walled carbon nanotubes (MWCNTs) as a conductive nanofiller. To achieve uniform distribution of carbon nanotubes within the polymer, an optimized dispersion process was developed, featuring a strong organic solvent—chloroform, which dissolved PDMS base polymer easily and allowed high quality dispersion of MWCNTs. At concentrations as high as 9 wt.%, MWCNTs were dispersed uniformly through the polymer matrix, which presented a major improvement over prior techniques. The dispersion procedure was optimized via extended experimentation, which is discussed in detail. PMID:28348312

  17. Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating

    KAUST Repository

    Yang, Yuan

    2011-11-22

    Rechargeable lithium-sulfur (Li-S) batteries hold great potential for next-generation high-performance energy storage systems because of their high theoretical specific energy, low materials cost, and environmental safety. One of the major obstacles for its commercialization is the rapid capacity fading due to polysulfide dissolution and uncontrolled redeposition. Various porous carbon structures have been used to improve the performance of Li-S batteries, as polysulfides could be trapped inside the carbon matrix. However, polysulfides still diffuse out for a prolonged time if there is no effective capping layer surrounding the carbon/sulfur particles. Here we explore the application of conducting polymer to minimize the diffusion of polysulfides out of the mesoporous carbon matrix by coating poly(3,4-ethylenedioxythiophene)- poly(styrene sulfonate) (PEDOT:PSS) onto mesoporous carbon/sulfur particles. After surface coating, coulomb efficiency of the sulfur electrode was improved from 93% to 97%, and capacity decay was reduced from 40%/100 cycles to 15%/100 cycles. Moreover, the discharge capacity with the polymer coating was ∼10% higher than the bare counterpart, with an initial discharge capacity of 1140 mAh/g and a stable discharge capacity of >600 mAh/g after 150 cycles at C/5 rate. We believe that this conductive polymer coating method represents an exciting direction for enhancing the device performance of Li-S batteries and can be applicable to other electrode materials in lithium ion batteries. © 2011 American Chemical Society.

  18. A Study of Impact Response of Electrified Organic Matrix Composites (Preprint)

    Science.gov (United States)

    2006-09-01

    temperature across the thickness of the carbon fiber polymer matrix composite plate due to an electric current passing in the carbon fibers. A long...unidirectional carbon fiber polymer matrix composite plate that carries a DC current I in the fiber direction. Assume that the ratio of the thickness, h , to...the minimum temperature, minT , is at the surface, 2z h= ± . Moreover, a strong temperature gradient appears in carbon fiber polymer matrix composite plates

  19. Smart Chips for Smart Surroundings - 4S

    NARCIS (Netherlands)

    Schuler, Eberhard; König, Ralf; Becker, Jürgen; Rauwerda, Gerard; Burgwal, van de Marcel; Smit, Gerard J.M.; Cardoso, João M.P.; Hübner, Michael

    2011-01-01

    The overall mission of the 4S project (Smart Chips for Smart Surroundings) was to define and develop efficient flexible, reconfigurable core building blocks, including the supporting tools, for future Ambient System Devices. Reconfigurability offers the needed flexibility and adaptability, it provid

  20. Electrical condition monitoring method for polymers

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Jr. Kenneth S. (Dahlonega, GA); Morris, Shelby J. (Hampton, VA); Masakowski, Daniel D. (Worcester, MA); Wong, Ching Ping (Duluth, GA); Luo, Shijian (Boise, ID)

    2010-02-16

    An electrical condition monitoring method utilizes measurement of electrical resistivity of a conductive composite degradation sensor to monitor environmentally induced degradation of a polymeric product such as insulated wire and cable. The degradation sensor comprises a polymeric matrix and conductive filler. The polymeric matrix may be a polymer used in the product, or it may be a polymer with degradation properties similar to that of a polymer used in the product. The method comprises a means for communicating the resistivity to a measuring instrument and a means to correlate resistivity of the degradation sensor with environmentally induced degradation of the product.