WorldWideScience

Sample records for surrounding matrix material

  1. Viscoplastic Matrix Materials for Embedded 3D Printing.

    Science.gov (United States)

    Grosskopf, Abigail K; Truby, Ryan L; Kim, Hyoungsoo; Perazzo, Antonio; Lewis, Jennifer A; Stone, Howard A

    2018-03-16

    Embedded three-dimensional (EMB3D) printing is an emerging technique that enables free-form fabrication of complex architectures. In this approach, a nozzle is translated omnidirectionally within a soft matrix that surrounds and supports the patterned material. To optimize print fidelity, we have investigated the effects of matrix viscoplasticity on the EMB3D printing process. Specifically, we determine how matrix composition, print path and speed, and nozzle diameter affect the yielded region within the matrix. By characterizing the velocity and strain fields and analyzing the dimensions of the yielded regions, we determine that scaling relationships based on the Oldroyd number, Od, exist between these dimensions and the rheological properties of the matrix materials and printing parameters. Finally, we use EMB3D printing to create complex architectures within an elastomeric silicone matrix. Our methods and findings will both facilitate future characterization of viscoplastic matrices and motivate the development of new materials for EMB3D printing.

  2. Structure and function of the interphotoreceptor matrix surrounding retinal photoreceptor cells.

    Science.gov (United States)

    Ishikawa, Makoto; Sawada, Yu; Yoshitomi, Takeshi

    2015-04-01

    The interphotoreceptor matrix (IPM) is a highly organized structure with interconnected domains surrounding cone and rod photoreceptor cells and extends throughout the subretinal space. Based on known roles of the extracellular matrix in other tissues, the IPM is thought to have several prominent functions including serving as a receptor for growth factors, regulating retinoid transport, participating in cytoskeletal organization in surrounding cells, and regulation of oxygen and nutrient transport. In addition, a number of studies suggest that the IPM also may play a significant role in the etiology of retinal degenerative disorders. In this review, we describe the present knowledge concerning the structure and function of the IPM under physiological and pathological conditions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Research on the preparation, biocompatibility and bioactivity of magnesium matrix hydroxyapatite composite material.

    Science.gov (United States)

    Linsheng, Li; Guoxiang, Lin; Lihui, Li

    2016-08-12

    In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity.

  4. Ultrastructure of the fibrous matrix surrounding cells of Trypanosoma melophagium in the hind-gut of the sheep ked, Melophagus ovinus.

    Science.gov (United States)

    Heywood, P; Molyneux, D H

    1985-01-01

    A fibrous material surrounds cells of Trypanosoma (Megatrypanum) melophagium in the hind-gut of the sheep ked, Melophagus ovinus, and terminates just beyond the distal portions of the attached cells. The fibres of this extracellular matrix have a diameter of approximately 4 nm and are closely packed. Individual fibres have approximately the same orientation as adjacent fibres and usually lie parallel to the longitudinal axis of the parasite cells.

  5. Composite materials

    International Nuclear Information System (INIS)

    Sambrook, D.J.

    1976-01-01

    A superconductor composite is described comprising at least one longitudinally extending superconductor filament or bundle of sub-filaments, each filament or bundle of sub-filaments being surrounded by and in good electrical contact with a matrix material, the matrix material comprising a plurality of longitudinally extending cells of a metal of high electrical conductivity surrounded by a material of lower electrical conductivity. The high electrical conductivity material surrounding the superconducting filament or bundle of sub-filaments is interrupted by a radially extending wall of the material of the lower electrical conductivity, the arrangement being such that at least two superconductor filaments or sub-filaments are circumferentially circumscribed by a single annulus of the material of high electrical conductivity. The annulus is electrically interrupted by a radially extending wall of the material of low electrical conductivity

  6. Piezoelectric ceramic-reinforced metal matrix composites

    OpenAIRE

    2004-01-01

    Composite materials comprising piezoelectric ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the piezoelectric ceramic particulates are subjected to strain, such as the strain experienced during vibration of the material, they generate an electrical voltage that is converted into Joule heat in the surrounding metal matrix, thereby dissipating the vibrational energy. The piezoelectric ceramic particulates may also act as reinforcements to improve the mec...

  7. Complex interactions between human myoblasts and the surrounding 3D fibrin-based matrix.

    Directory of Open Access Journals (Sweden)

    Stéphane Chiron

    Full Text Available Anchorage of muscle cells to the extracellular matrix is crucial for a range of fundamental biological processes including migration, survival and differentiation. Three-dimensional (3D culture has been proposed to provide a more physiological in vitro model of muscle growth and differentiation than routine 2D cultures. However, muscle cell adhesion and cell-matrix interplay of engineered muscle tissue remain to be determined. We have characterized cell-matrix interactions in 3D muscle culture and analyzed their consequences on cell differentiation. Human myoblasts were embedded in a fibrin matrix cast between two posts, cultured until confluence, and then induced to differentiate. Myoblasts in 3D aligned along the longitudinal axis of the gel. They displayed actin stress fibers evenly distributed around the nucleus and a cortical mesh of thin actin filaments. Adhesion sites in 3D were smaller in size than in rigid 2D culture but expression of adhesion site proteins, including α5 integrin and vinculin, was higher in 3D compared with 2D (p<0.05. Myoblasts and myotubes in 3D exhibited thicker and ellipsoid nuclei instead of the thin disk-like shape of the nuclei in 2D (p<0.001. Differentiation kinetics were faster in 3D as demonstrated by higher mRNA concentrations of α-actinin and myosin. More important, the elastic modulus of engineered muscle tissues increased significantly from 3.5 ± 0.8 to 7.4 ± 4.7 kPa during proliferation (p<0.05 and reached 12.2 ± 6.0 kPa during differentiation (p<0.05, thus attesting the increase of matrix stiffness during proliferation and differentiation of the myocytes. In conclusion, we reported modulations of the adhesion complexes, the actin cytoskeleton and nuclear shape in 3D compared with routine 2D muscle culture. These findings point to complex interactions between muscle cells and the surrounding matrix with dynamic regulation of the cell-matrix stiffness.

  8. Apparatus and method for identification of matrix materials in which transuranic elements are embedded using thermal neutron capture gamma-ray emission

    Science.gov (United States)

    Close, D.A.; Franks, L.A.; Kocimski, S.M.

    1984-08-16

    An invention is described that enables the quantitative simultaneous identification of the matrix materials in which fertile and fissile nuclides are embedded to be made along with the quantitative assay of the fertile and fissile materials. The invention also enables corrections for any absorption of neutrons by the matrix materials and by the measurement apparatus by the measurement of the prompt and delayed neutron flux emerging from a sample after the sample is interrogated by simultaneously applied neutrons and gamma radiation. High energy electrons are directed at a first target to produce gamma radiation. A second target receives the resulting pulsed gamma radiation and produces neutrons from the interaction with the gamma radiation. These neutrons are slowed by a moderator surrounding the sample and bathe the sample uniformly, generating second gamma radiation in the interaction. The gamma radiation is then resolved and quantitatively detected, providing a spectroscopic signature of the constituent elements contained in the matrix and in the materials within the vicinity of the sample. (LEW)

  9. Survey of matrix materials for solidified radioactive high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Gurwell, W.E.

    1981-09-01

    Pacific Northwest Laboratory (PNL) has been investigating advanced waste forms, including matrix waste forms, that may provide a very high degree of stability under the most severe repository conditions. The purpose of this study was to recommend practical matrix materials for future development that most enhance the stability of the matrix waste forms. The functions of the matrix were reviewed. Desirable matrix material properties were discussed and listed relative to the matrix functions. Potential matrix materials were discussed and recommendations were made for future matrix development. The matrix mechanically contains waste cores, reduces waste form temperatures, and is capable of providing a high-quality barrier to leach waters. High-quality barrier matrices that separate and individually encapsulate the waste cores are fabricated by powder fabrication methods, such as sintering, hot pressing, and hot isostatic pressing. Viable barrier materials are impermeable, extremely corrosion resistant, and mechanically strong. Three material classes potentially satisfy the requirements for a barrier matrix and are recommended for development: titanium, glass, and graphite. Polymers appear to be marginally adequate, and a more thorough engineering assessment of their potential should be made.

  10. Survey of matrix materials for solidified radioactive high-level waste

    International Nuclear Information System (INIS)

    Gurwell, W.E.

    1981-09-01

    Pacific Northwest Laboratory (PNL) has been investigating advanced waste forms, including matrix waste forms, that may provide a very high degree of stability under the most severe repository conditions. The purpose of this study was to recommend practical matrix materials for future development that most enhance the stability of the matrix waste forms. The functions of the matrix were reviewed. Desirable matrix material properties were discussed and listed relative to the matrix functions. Potential matrix materials were discussed and recommendations were made for future matrix development. The matrix mechanically contains waste cores, reduces waste form temperatures, and is capable of providing a high-quality barrier to leach waters. High-quality barrier matrices that separate and individually encapsulate the waste cores are fabricated by powder fabrication methods, such as sintering, hot pressing, and hot isostatic pressing. Viable barrier materials are impermeable, extremely corrosion resistant, and mechanically strong. Three material classes potentially satisfy the requirements for a barrier matrix and are recommended for development: titanium, glass, and graphite. Polymers appear to be marginally adequate, and a more thorough engineering assessment of their potential should be made

  11. Polymeric matrix materials for infrared metamaterials

    Science.gov (United States)

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  12. Forest Fragments Surrounded by Sugar Cane Are More Inhospitable to Terrestrial Amphibian Abundance Than Fragments Surrounded by Pasture

    Directory of Open Access Journals (Sweden)

    Paula Eveline Ribeiro D’Anunciação

    2013-01-01

    Full Text Available In recent years, there has been increasing interest in matrix-type influence on forest fragments. Terrestrial amphibians are good bioindicators for this kind of research because of low vagility and high philopatry. This study compared richness, abundance, and species composition of terrestrial amphibians through pitfall traps in two sets of semideciduous seasonal forest fragments in southeastern Brazil, according to the predominant surrounding matrix (sugar cane and pasture. There were no differences in richness, but fragments surrounded by sugar cane had the lowest abundance of amphibians, whereas fragments surrounded by pastures had greater abundance. The most abundant species, Rhinella ornata, showed no biometric differences between fragment groups but like many other amphibians sampled showed very low numbers of individuals in fragments dominated by sugar cane fields. Our data indicate that the sugar cane matrix negatively influences the community of amphibians present in fragments surrounded by this type of land use.

  13. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    Science.gov (United States)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  14. Graphite matrix materials for nuclear waste isolation

    International Nuclear Information System (INIS)

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept

  15. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials

    Science.gov (United States)

    Jordan, William

    1998-01-01

    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  16. Absorption properties of waste matrix materials

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, J.B. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-06-01

    This paper very briefly discusses the need for studies of the limiting critical concentration of radioactive waste matrix materials. Calculated limiting critical concentration values for some common waste materials are listed. However, for systems containing large quantities of waste materials, differences up to 10% in calculated k{sub eff} values are obtained by changing cross section data sets. Therefore, experimental results are needed to compare with calculation results for resolving these differences and establishing realistic biases.

  17. Development of natural matrix reference materials for monitoring environmental radioactivity

    International Nuclear Information System (INIS)

    Holmes, A.S.; Houlgate, P.R.; Pang, S.; Brookman, B.

    1992-01-01

    The Department of the Environment commissioned the Laboratory of the Government Chemist to carry out a contract on natural matrix reference materials. A survey of current availability of such materials in the western world, along with the UK's need, was conducted. Four suitable matrices were identified for production and validation. Due to a number of unforeseen problems with the collection, processing and validation of the materials, the production of the four identified reference materials was not completed in the allocated period of time. In the future production of natural matrix reference materials the time required, the cost and the problems encountered should not be underestimated. Certified natural matrix reference materials are a vital part of traceability in analytical science and without them there is no absolute method of checking the validity of measurement in the field of radiochemical analysis. (author)

  18. Gabriela Mistral, in a Maternal-Matrix-Material Language

    Directory of Open Access Journals (Sweden)

    María Binetti

    2017-10-01

    Full Text Available For some decades, feminist thinkers such as Luce Irigaray, Luisa Muraro and Rosi Braidotti —among others— have tried to reconstruct the ontological assumptions of a language independent of the abstract phallogocentric logic, emerging by metonymic mediation from the maternal-material-matristic substrate, in essential continuity with that origin and immediate connection with life. In the context of this new maternal-matrix-material symbolic, this article aims to read Mistralian poetics, conceived and nurtured by the same matrix from which life is born.

  19. Identification of β-SiC surrounded by relatable surrounding diamond ...

    Indian Academy of Sciences (India)

    β-SiC is identified in the presence of a relatable surrounding diamond medium using subtle, but discernible Raman ... Change in the nature of the surrounding material structure and its .... intensity implies very low graphite content in thin film. In.

  20. Integrating Molecular Computation and Material Production in an Artificial Subcellular Matrix

    DEFF Research Database (Denmark)

    Fellermann, Harold; Hadorn, Maik; Bönzli, Eva

    Living systems are unique in that they integrate molecular recognition and information processing with material production on the molecular scale. Pre- dominant locus of this integration is the cellular matrix, where a multitude of biochemical reactions proceed simultaneously in highly compartmen......Living systems are unique in that they integrate molecular recognition and information processing with material production on the molecular scale. Pre- dominant locus of this integration is the cellular matrix, where a multitude of biochemical reactions proceed simultaneously in highly...... compartmentalized re- action compartments that interact and get delivered through vesicle trafficking. The European Commission funded project MatchIT (Matrix for Chemical IT) aims at creating an artificial cellular matrix that seamlessly integrates infor- mation processing and material production in much the same...

  1. Ceramic matrix composites -- Advanced high-temperature structural materials

    International Nuclear Information System (INIS)

    Lowden, R.A.; Ferber, M.K.; DiPietro, S.G.

    1995-01-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy's Office of Industrial Technology's Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base

  2. Ceramic Matrix Composite (CMC) Materials Characterization

    Science.gov (United States)

    Calomino, Anthony

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  3. Ceramic Matrix Composite (CMC) Materials Development

    Science.gov (United States)

    DiCarlo, James

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  4. Dual-nanoparticulate-reinforced aluminum matrix composite materials

    International Nuclear Information System (INIS)

    Kwon, Hansang; Cho, Seungchan; Kawasaki, Akira; Leparoux, Marc

    2012-01-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al 4 C 3 ) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al 4 C 3 . Along with the CNT and the nano-SiC, Al 4 C 3 also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials. (paper)

  5. Enhancement of thermal neutron self-shielding in materials surrounded by reflectors

    International Nuclear Information System (INIS)

    Cornelia Chilian; Gregory Kennedy

    2012-01-01

    Materials containing from 41 to 1124 mg chlorine and surrounded by polyethylene containers of various thicknesses, from 0.01 to 5.6 mm, were irradiated in a research reactor neutron spectrum and the 38 Cl activity produced was measured as a function of polyethylene reflector thickness. For the material containing the higher amount of chlorine, the 38 Cl specific activity decreased with increasing reflector thickness, indicating increased neutron self-shielding. It was found that the amount of neutron self-shielding increased by as much as 52% with increasing reflector thickness. This is explained by neutrons which have exited the material subsequently reflecting back into it and thus increasing the total mean path length in the material. All physical and empirical models currently used to predict neutron self-shielding have ignored this effect and need to be modified. A method is given for measuring the adjustable parameter of a self-shielding model for a particular sample size and combination of neutron reflectors. (author)

  6. Mathematical model for choosing the nuclear safe matrix compositions for fissile material immobilization

    International Nuclear Information System (INIS)

    Gorshtein, A.I.; Matyunin, Yu.I.; Poluehktov, P.P.

    2000-01-01

    A mathematical model is proposed for preliminary choice of the nuclear safe matrix compositions for fissile material immobilization. The IBM PC computer software for nuclear safe matrix composition calculations is developed. The limiting concentration of fissile materials in the some used and perspective nuclear safe matrix compositions for radioactive waste immobilization is calculated [ru

  7. Standard Guide for Testing Polymer Matrix Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide summarizes the application of ASTM standard test methods (and other supporting standards) to continuous-fiber reinforced polymer matrix composite materials. The most commonly used or most applicable ASTM standards are included, emphasizing use of standards of Committee D30 on Composite Materials. 1.2 This guide does not cover all possible standards that could apply to polymer matrix composites and restricts discussion to the documented scope. Commonly used but non-standard industry extensions of test method scopes, such as application of static test methods to fatigue testing, are not discussed. A more complete summary of general composite testing standards, including non-ASTM test methods, is included in the Composite Materials Handbook (MIL-HDBK-17). Additional specific recommendations for testing textile (fabric, braided) composites are contained in Guide D6856. 1.3 This guide does not specify a system of measurement; the systems specified within each of the referenced standards shall appl...

  8. Development and characterization of woven kevlar reinforced epoxy matrix composite materials

    International Nuclear Information System (INIS)

    Imran, A.; Alam, S.; Irfan, S.; Iftikhar, F.; Raza, M.A.

    2006-01-01

    Composite materials are actually well established materials that have demonstrated their promising advantages among the light weight structural materials used for aerospace and advanced applications. A great effort is now being made to develop and characterize the Kevlar Epoxy Composite Materials by changing the % age composition of curing agent in epoxy matrix. In order to study the phenomenon; how the change in composition of curing agent effect the composite material and which optimum composition can give the optimum properties of the material, when Kevlar reinforced to Epoxy Matrix by Hand Lay-up process. It was ensured that factors which can .affect the experiment remained the same for each experiment. The composite produced were subjected to mechanical tests to analyze the performance, to optimize the material. (author)

  9. Macro-mechanical material model for fiber reinforced metal matrix composites

    CERN Document Server

    Banks-Sills, L

    1999-01-01

    The stress-strain behavior of a metal matrix composite reinforced with unidirectional, continuous and periodic fibers is investigated. Three-dimensional micro-mechanical analyses of a unit cell by means of the finite element method $9 and homogenization-localization are carried out. These calculations allow the determination of material behavior of the in-plane, as well as the fiber directions. The fibers are assumed to be elastic and the matrix elasto-plastic. $9 The matrix material is governed by a von Mises yield surface, isotropic hardening and an associated flow rule. With the aid of these analyses, the foundation to a macro-mechanical material model is presented which is employed to $9 consider an elementary problem. The model includes an anisotropic yield surface with isotropic hardening and an associated flow rule. A beam in bending containing square fibers under plane strain conditions is analyzed by means of $9 the model. Two cases are considered: one in which the fibers are symmetric with respect t...

  10. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    International Nuclear Information System (INIS)

    Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; Bojnicic-Kninski, Clemens M. von; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A.R.; Breitling, Frank

    2016-01-01

    Highlights: • New matrix material for peptide array synthesis from a ‘solid solvent’. • Resolution was increased with possible spot densities of up to 20.000 spots per cm"2. • The coupling depth and the effectiveness of washing steps analyzed by ToF-SIMS. • Adaptations and custom changes of the matrix material are possible. - Abstract: Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a “solid” solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm"2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  11. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ridder, Barbara [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Foertsch, Tobias C. [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Welle, Alexander [Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mattes, Daniela S. [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Bojnicic-Kninski, Clemens M. von; Loeffler, Felix F.; Nesterov-Mueller, Alexander [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Meier, Michael A.R., E-mail: m.a.r.meier@kit.edu [Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Breitling, Frank, E-mail: frank.breitling@kit.edu [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-12-15

    Highlights: • New matrix material for peptide array synthesis from a ‘solid solvent’. • Resolution was increased with possible spot densities of up to 20.000 spots per cm{sup 2}. • The coupling depth and the effectiveness of washing steps analyzed by ToF-SIMS. • Adaptations and custom changes of the matrix material are possible. - Abstract: Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a “solid” solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm{sup 2}, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  12. Internal friction in a new kind of metal matrix composites

    International Nuclear Information System (INIS)

    San Juan, J.; No, M.L.

    2006-01-01

    We have developed a new kind of metal matrix composites, based on powders of Cu-Al-Ni shape memory alloys (SMAs) surrounded by an indium matrix, specifically designed to exhibit high mechanical damping. The damping properties have been characterized by mechanical spectroscopy as a function of temperature between 150 and 400 K, frequency between 3 x 10 -3 and 3 Hz, and strain amplitude between 5 x 10 -6 and 10 -4 . The material exhibits, in some range of temperature, internal friction as high as 0.54. The extremely high damping is discussed in the light of the microstructure of the material, which has been characterized in parallel

  13. High Porosity Alumina as Matrix Material for Composites of Al-Mg Alloys

    International Nuclear Information System (INIS)

    Gömze, L A; Egész, Á; Gömze, L N; Ojima, F

    2013-01-01

    The sophisticated industry and technologies require higher and higher assumptions against mechanical strength and surface hardness of ceramic reinforced metal alloys and metal matrix composites. Applying the well-known alumina powders by dry pressing technology and some special pore-forming additives and sintering technology the authors have successfully developed a new, high porosity alumina matrix material for composites of advenced Al-Mg alloys. The developed new matrix material have higher than 30% porosity, with homogenous porous structure and pore sizes from few nano up to 2–3 mm depending on the alloys containments. Thanks to the used materials and the sintering conditions the authors could decrease the wetting angles less than 90° between the high porosity alumina matrix and the Al-Mg alloys. Applied analytical methods in this research were laser granulometry, scanning electron microscopy, and X-ray diffraction. Digital image analysis was applied to microscopy results, to enhance the results of transformation

  14. A two-dimensional analytical subthreshold behavior model for junctionless dual-material cylindrical surrounding-gate MOSFETs

    International Nuclear Information System (INIS)

    Li Cong; Zhuang Yi-Qi; Zhang Li; Jin Gang

    2014-01-01

    A two-dimensional analytical subthreshold behavior model for junctionless dual-material cylindrical surrounding-gate (JLDMCSG) metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed. It is derived by solving the two-dimensional Poisson's equation in two continuous cylindrical regions with any simplifying assumption. Using this analytical model, the subthreshold characteristics of JLDMCSG MOSFETs are investigated in terms of channel electrostatic potential, horizontal electric field, and subthreshold current. Compared to junctionless single-material cylindrical surrounding-gate MOSFETs, JLDMCSG MOSFETs can effectively suppress short-channel effects and simultaneously improve carrier transport efficiency. It is found that the subthreshold current of JLDMCSG MOSFETs can be significantly reduced by adopting both a thin oxide and thin silicon channel. The accuracy of the analytical model is verified by its good agreement with the three-dimensional numerical simulator ISE TCAD

  15. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  16. Micromechanical Analyses of Debonding and Matrix Cracking in Dual-Phase Materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Yang, Qingda

    2016-01-01

    Failure in elastic dual-phase materials under transverse tension is studied numerically. Cohesive zones represent failure along the interface and the augmented finite element method (A-FEM) is used for matrix cracking. Matrix cracks are formed at an angle of 55 deg - 60 deg relative to the loading...... direction, which is in good agreement with experiments. Matrix cracks initiate at the tip of the debond, and for equi-biaxial loading cracks are formed at both tips. For elliptical reinforcement the matrix cracks initiate at the narrow end of the ellipse. The load carrying capacity is highest for ligaments...

  17. Diffusion in the matrix of granitic rock

    International Nuclear Information System (INIS)

    Birgersson, L.; Neretnieks, I.

    1982-07-01

    A migration experiment in the rock matrix is presented. The experiment has been carried out in undisturbed rock, that is rock under its natural stress environment. Since the experiment was performed at the 360 m-level (in the Stripa mine), the rock had nearly the same conditions as the rock surrounding a nuclear waste storage. The results show that all three tracers (Uranine, Cr-EDTA and I - ) have passed the disturbed zone from the injection hole and migrated into undisturbed rock. At the distance of 11 cm from the injection hole 5-10 percent of the injection concentration was found. The results also indicate that the tracer have passed through fissure filling material. These results indicate that it is possible for tracers (and therefore radionuclides) to migrate from a fissure, through fissure filling material, and into the undisturbed rock matrix. (Authors)

  18. Mean deformation metrics for quantifying 3D cell–matrix interactions without requiring information about matrix material properties

    OpenAIRE

    Stout, David A.; Bar-Kochba, Eyal; Estrada, Jonathan B.; Toyjanova, Jennet; Kesari, Haneesh; Reichner, Jonathan S.; Franck, Christian

    2016-01-01

    Investigations in mechanobiology rely on correlation of cellular processes with mechanical signals, such as matrix stiffness and cell tractions. Almost all cell traction and force quantification methodologies require knowledge of the underlying mechanical properties of the extracellular matrix to convert displacement data into corresponding traction data, which restricts the use of these techniques to systems in which the material properties are known. To overcome this hurdle, we present a ne...

  19. Thermal modelling of normal distributed nanoparticles through thickness in an inorganic material matrix

    Science.gov (United States)

    Latré, S.; Desplentere, F.; De Pooter, S.; Seveno, D.

    2017-10-01

    Nanoscale materials showing superior thermal properties have raised the interest of the building industry. By adding these materials to conventional construction materials, it is possible to decrease the total thermal conductivity by almost one order of magnitude. This conductivity is mainly influenced by the dispersion quality within the matrix material. At the industrial scale, the main challenge is to control this dispersion to reduce or even eliminate thermal bridges. This allows to reach an industrially relevant process to balance out the high material cost and their superior thermal insulation properties. Therefore, a methodology is required to measure and describe these nanoscale distributions within the inorganic matrix material. These distributions are either random or normally distributed through thickness within the matrix material. We show that the influence of these distributions is meaningful and modifies the thermal conductivity of the building material. Hence, this strategy will generate a thermal model allowing to predict the thermal behavior of the nanoscale particles and their distributions. This thermal model will be validated by the hot wire technique. For the moment, a good correlation is found between the numerical results and experimental data for a randomly distributed form of nanoparticles in all directions.

  20. Development of neutron shielding material using metathesis-polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Yoshinori E-mail: ysakurai@rri.kyoto-u.ac.jp; Sasaki, Akira; Kobayashi, Tooru

    2004-04-21

    A neutron shielding material using a metathesis-polymer matrix, which is a thermosetting resin, was developed. This shielding material has characteristics that can be controlled for different mixing ratios of neutron absorbers and for formation in the laboratory. Additionally, the elastic modulus can be changed at the hardening process, from a flexible elastoma to a mechanically tough solid. Experiments were performed at the Kyoto University Research Reactor in order to determine the important characteristics of this metathesis-polymer shielding material, such as neutron shielding performance, secondary gamma-ray generation and activation. The metathesis-polymer shielding material was shown to be practical and as effective as the other available shielding materials, which mainly consist of thermoplastic resin.

  1. Characterization of selected LDEF polymer matrix resin composite materials

    Science.gov (United States)

    Young, Philip R.; Slemp, Wayne S.; Witte, William G., Jr.; Shen, James Y.

    1991-01-01

    The characterization of selected graphite fiber reinforced epoxy (934 and 5208) and polysulfone (P1700) matrix resin composite materials which received 5 years and 10 months of exposure to the LEO environment on the Long Duration Exposure Facility is reported. Resin loss and a decrease in mechanical performance as well as dramatic visual effects were observed. However, chemical characterization including infrared, thermal, and selected solution property measurements showed that the molecular structure of the polymeric matrix had not changed significantly in response to this exposure. The potential effect of a silicon-containing molecular contamination of these specimens is addressed.

  2. Alpha damage in non-reference waste form matrix materials

    International Nuclear Information System (INIS)

    Burnay, S.G.

    1987-05-01

    Although bitumen is the matrix material currently used for European α-bearing intermediate level waste streams, polymer and polymer-modified cement matrices could have advantages over bitumen for such wastes. Two organic matrix systems have been studied - an epoxide resin, and an epoxide modified cement. Alpha irradiations were carried out by incorporating 241 Am at approx. 0.9 Ci/l. Comparisons have been made with unirradiated material and with materials which had been γ-irradiated to the same dose as the α-irradiated samples. Measurements were made of dimensional changes, mechanical properties and the leaching behaviour of 241 Am and 137 Cs. A limited amount of swelling (< 3%) was observed in α-irradiated epoxide resin; none was observed in the epoxide modified cement. Gamma irradiation to 300 kGy has no significant effect on the mechanical properties of either system. However, alpha irradiation to the same dose produced significant changes in flexural strength, an increase for the polymer and a decrease for the polymer-cement. Leaching in these systems was found to be a diffusion-controlled process; alpha irradiation to approx. 250 kGy has little effect on the leaching behaviour of either system. (author)

  3. Determination of the reduced matrix of the piezoelectric, dielectric, and elastic material constants for a piezoelectric material with C∞ symmetry.

    Science.gov (United States)

    Sherrit, Stewart; Masys, Tony J; Wiederick, Harvey D; Mukherjee, Binu K

    2011-09-01

    We present a procedure for determining the reduced piezoelectric, dielectric, and elastic coefficients for a C(∞) material, including losses, from a single disk sample. Measurements have been made on a Navy III lead zirconate titanate (PZT) ceramic sample and the reduced matrix of coefficients for this material is presented. In addition, we present the transform equations, in reduced matrix form, to other consistent material constant sets. We discuss the propagation of errors in going from one material data set to another and look at the limitations inherent in direct calculations of other useful coefficients from the data.

  4. Flow evaluation of the leaching hazardous materials from spent nickel-cadmium batteries discarded in different water surroundings.

    Science.gov (United States)

    Guo, Xingmei; Song, Yan; Nan, Junmin

    2018-02-01

    The leaching characteristics of hazardous materials from Ni-Cd batteries immersed in four typical water samples, i.e., water with NaCl, river water, tap water, and deionized water, were investigated to evaluate the potential environmental harm of spent Ni-Cd batteries in the water surroundings. It is shown that four water surroundings all could leach hazardous materials from the Ni-Cd batteries. The water with NaCl concentration of 66.7 mg L -1 had the highest leaching ability, the hazardous materials were leached after only approximately 50 days (average time, with a standard deviation of 4.1), while less than 100 days were needed in the others. An electrochemical corrosion is considered to be the main leaching mechanism leading to battery breakage, while the dissolution-deposition process and the powder route result in the leakage and transference of nickel and cadmium materials from the electrodes. The anions, i.e., SO 4 2- and Cl - , and dissolved oxygen in water were demonstrated to be the vital factors that influence the leaching processes. Thus, it is proposed that spent Ni-Cd batteries must be treated properly to avoid potential danger to the environment.

  5. Spiked natural matrix materials as quality assessment samples

    International Nuclear Information System (INIS)

    Feiner, M.S.; Sanderson, C.G.

    1988-01-01

    The Environmental Measurements Laboratory has conducted the Quality Assessment Program since 1976 to evaluate the quality of the environmental radioactivity data, which is reported to the Department of Energy by as many as 42 commercial contractors involved in nuclear work. In this program, matrix materials of known radionuclide concentrations are distributed routinely to the contractors and the reported results are compared. The five matrices used are: soil, vegetation, animal tissue, water and filter paper. Environmental soil, vegetation and animal tissue are used, but the water and filter paper samples are prepared by spiking with known amounts of standard solutions traceable to the National Bureau of Standards. A summary of results is given to illustrate the successful operation of the program. Because of the difficulty and high cost of collecting large samples of natural matrix material and to increase the versatility of the program, an attempt was recently made to prepare the soil, vegetation and animal tissue samples with spiked solutions. A description of the preparation of these reference samples and the results of analyses are presented along with a discussion of the pitfalls and advantages of this approach. 19 refs.; 6 tabs

  6. Copper matrix composites as heat sink materials for water-cooled divertor target

    Directory of Open Access Journals (Sweden)

    Jeong-Ha You

    2015-12-01

    Full Text Available According to the recent high heat flux (HHF qualification tests of ITER divertor target mock-ups and the preliminary design studies of DEMO divertor target, the performance of CuCrZr alloy, the baseline heat sink material for DEMO divertor, seems to only marginally cover the envisaged operation regime. The structural integrity of the CuCrZr heat sink was shown to be affected by plastic fatigue at 20 MW/m². The relatively high neutron irradiation dose expected for the DEMO divertor target is another serious concern, as it would cause significant embrittlement below 250 °C or irradiation creep above 350 °C. Hence, an advanced design concept of the divertor target needs to be devised for DEMO in order to enhance the HHF performance so that the structural design criteria are fulfilled for full operation scenarios including slow transients. The biggest potential lies in copper-matrix composite materials for the heat sink. In this article, three promising Cu-matrix composite materials are reviewed in terms of thermal, mechanical and HHF performance as structural heat sink materials. The considered candidates are W particle-reinforced, W wire-reinforced and SiC fiber-reinforced Cu matrix composites. The comprehensive results of recent studies on fabrication technology, design concepts, materials properties and the HHF performance of mock-ups are presented. Limitations and challenges are discussed.

  7. Effect of matrix cracking and material uncertainty on composite plates

    International Nuclear Information System (INIS)

    Gayathri, P.; Umesh, K.; Ganguli, R.

    2010-01-01

    A laminated composite plate model based on first order shear deformation theory is implemented using the finite element method. Matrix cracks are introduced into the finite element model by considering changes in the A, B and D matrices of composites. The effects of different boundary conditions, laminate types and ply angles on the behavior of composite plates with matrix cracks are studied. Finally, the effect of material property uncertainty, which is important for composite material on the composite plate, is investigated using Monte Carlo simulations. Probabilistic estimates of damage detection reliability in composite plates are made for static and dynamic measurements. It is found that the effect of uncertainty must be considered for accurate damage detection in composite structures. The estimates of variance obtained for observable system properties due to uncertainty can be used for developing more robust damage detection algorithms.

  8. Optimization and characterization of woven kevlar reinforced epoxy matrix composite materials

    International Nuclear Information System (INIS)

    Imran, A.; Aslam, S.

    2007-01-01

    Composite materials are actually well established materials that have demonstrated their promising advantages among the light weight structural materials used for aerospace and advanced applications. An effort is now being made to develop and characterize the Kevlar Epoxy Composite Materials by changing the vol. fraction of Kevlar in epoxy matrix. The optimum characteristics were observed with 37% fiber with resin by applying hand-lay-up process. The composites produced were subjected to mechanical testing to evaluate the mechanical characteristics. (author)

  9. Corrosion-induced changes in pore-size distributions of fuel-matrix material

    International Nuclear Information System (INIS)

    Krautwasser, P.; Eatherly, W.P.

    1981-01-01

    In order to understand the mechanism of metallic fission-product adsorption and desorption as well as diffusion in graphitic materials, a detailed knowledge of the material microstructure is essential. Different types of grahitic matrix material used or to be used in fuel elements of the German HTR Program were measured at ORNL in cooperation with the Hahn-Meitner-Institut Berlin. Actual measurements of fission product diffusion and adsorption/desorption were performed at HMI Berlin

  10. Cytocompatibility and biologic characteristics of synthetic scaffold materials of rabbit acellular vascular matrix combining with human-like collagen I.

    Science.gov (United States)

    Liu, Xuqian; Wang, Jie; Dong, Fusheng; Song, Peng; Tian, Songbo; Li, Hexiang; Hou, Yali

    2017-10-01

    Scaffold material provides a three-dimensional growing environment for seed cells in the research field of tissue engineering. In the present study, rabbit arterial blood vessel cells were chemically removed with trypsin and Triton X-100 to prepare rabbit acellular vascular matrix scaffold material. Observation by He&Masson staining revealed that no cellular components or nuclei existed in the vascular intima and media after decellularization. Human-like collagen I was combined with acellular vascular matrix by freeze-drying to prepare an acellular vascular matrix-0.25% human-like collagen I scaffold to compensate for the extracellular matrix loss during the decellularization process. We next performed a series of experiments to test the water absorbing quality, biomechanics, pressure resistance, cytotoxicity, and ultra-micro structure of the acellular vascular matrix composite material and natural rabbit artery and found that the acellular vascular matrix-0.25% human-like collagen I material behaved similarly to natural rabbit artery. In conclusion, the acellular vascular matrix-0.25% human-like collagen I composite material provides a new approach and lays the foundation for novel scaffold material research into tissue engineering of blood vessels.

  11. Standard test method for translaminar fracture toughness of laminated and pultruded polymer matrix composite materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method covers the determination of translaminar fracture toughness, KTL, for laminated and pultruded polymer matrix composite materials of various ply orientations using test results from monotonically loaded notched specimens. 1.2 This test method is applicable to room temperature laboratory air environments. 1.3 Composite materials that can be tested by this test method are not limited by thickness or by type of polymer matrix or fiber, provided that the specimen sizes and the test results meet the requirements of this test method. This test method was developed primarily from test results of various carbon fiber – epoxy matrix laminates and from additional results of glass fiber – epoxy matrix, glass fiber-polyester matrix pultrusions and carbon fiber – bismaleimide matrix laminates (1-4, 6, 7). 1.4 A range of eccentrically loaded, single-edge-notch tension, ESE(T), specimen sizes with proportional planar dimensions is provided, but planar size may be variable and adjusted, with asso...

  12. Use of waste materials in rubber matrix

    Directory of Open Access Journals (Sweden)

    Pajtášová Mariana

    2018-01-01

    Full Text Available The presented paper deals with the use of waste materials as ecological fillers into rubber matrix. Waste materials were used as partial replacement of the commercial filler – carbon black, designated as N339. These prepared rubber compounds were characterized on the basis of the rheology and vulcanization characteristics – minimum torque (ML, maximum torque (MH, optimum time of vulcanization (t(c90, processing safety of compound (ts, rate coefficient of vulcanization (Rv. In the case of the prepared vulcanizates, physical-mechanical properties (tensile strength, tensibility and hardness and dynamic-mechanical properties (storage modulus, loss modulus, loss angle tan δ were investigated. Using the dependency of loss angle on temperature, the selected properties for tyre tread vulcanizates were evaluated, including traction on snow and ice, traction on the wet surface and rolling resistance.

  13. Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix

    KAUST Repository

    O'Keeffe, Stephen G.

    2013-11-01

    We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.

  14. A feasibility study for producing an egg matrix candidate reference material for the polyether ionophore salinomycin.

    Science.gov (United States)

    Ferreira, Rosana Gomes; Monteiro, Mychelle Alves; Pereira, Mararlene Ulberg; da Costa, Rafaela Pinto; Spisso, Bernardete Ferraz; Calado, Veronica

    2016-08-01

    The aim of this work was to study the feasibility of producing an egg matrix candidate reference material for salinomycin. Preservation techniques investigated were freeze-drying and spray drying dehydration. Homogeneity and stability studies of the produced batches were conducted according to ISO Guides 34 and 35. The results showed that all produced batches were homogeneous and both freeze-drying and spray drying techniques were suitable for matrix dehydrating, ensuring the material stability. In order to preserve the material integrity, it must be transported within the temperature range of -20 up to 25°C. The results constitute an important step towards the development of an egg matrix reference material for salinomycin is possible. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Nanofiber reinforcement of a geopolymer matrix for improved composite materials mechanical performance

    Science.gov (United States)

    Rahman, AKM Samsur

    Geopolymers have the potential to cross the process performance gap between polymer matrix and ceramic matrix composites (CMC), enabling high temperature capable composites that are manufactured at relatively low temperatures. Unfortunately, the inherently low toughness of these geopolymers limits the performance of the resulting fiber reinforced geopolymer matrix composites. Toughness improvements in composites can be addressed through the adjustments in the fiber/matrix interfacial strength and through the improvements in the inherent toughness of the constituent materials. This study investigates the potential to improve the inherent toughness of the geopolymer matrix material through the addition of nanofillers, by considering physical dimensions, mechanical properties, reinforcing capability and interfacial bond strength effects. A process optimization study was first undertaken to develop the ability to produce consistent, neat geopolymer samples, a critical precursor to producing nano-filled geopolymer for toughness evaluation. After that, single edge notched bend beam fracture toughness and un-notched beam flexural strength were evaluated for silicon carbide, alumina and carbon nanofillers reinforced geopolymer samples treated at various temperatures in reactive and inert environments. Toughness results of silicon carbide and carbon nanofillers reinforced geopolymers suggested that with the improved baseline properties, high aspect ratio nanofillers with high interfacial bond strength are the most capable in further improving the toughness of geopolymers. Among the high aspect ratio nanofillers i.e. nanofibers, 2vol% silicon carbide whicker (SCW) showed the highest improvement in fracture toughness and flexural strength of ~164% & ~185%, respectively. After heat treatment at 650 °C, SCW reinforcement was found to be effective, with little reduction in the performance, while the performance of alumina nanofiber (ANF) reinforced geopolymer significantly

  16. The existence state of uranium(VI) in portland cement matrix material immobilization body

    International Nuclear Information System (INIS)

    Tan Hongbin; Li Yuxiang

    2005-01-01

    The basis of Portland cement material reaction with uranium, the corrosion of uranium minerals in nature and the state of study on immobilization of uranium by Portland cement matrix material are introduced, and some considerations are presented. (authors)

  17. Mapping the coupled role of structure and materials in mechanics of platelet-matrix composites

    Science.gov (United States)

    Farzanian, Shafee; Shahsavari, Rouzbeh

    2018-03-01

    Despite significant progresses on understanding and mimicking the delicate nano/microstructure of biomaterials such as nacre, decoding the indistinguishable merger of materials and structures in controlling the tradeoff in mechanical properties has been long an engineering pursuit. Herein, we focus on an archetype platelet-matrix composite and perform ∼400 nonlinear finite element simulations to decode the complex interplay between various structural features and material characteristics in conferring the balance of mechanical properties. We study various combinatorial models expressed by four key dimensionless parameters, i.e. characteristic platelet length, matrix plasticity, platelet dissimilarity, and overlap offset, whose effects are all condensed in a new unifying parameter, defined as the multiplication of strength, toughness, and stiffness over composite volume. This parameter, which maximizes at a critical characteristic length, controls the transition from intrinsic toughening (matrix plasticity driven without crack growths) to extrinsic toughening phenomena involving progressive crack propagations. This finding, combined with various abstract volumetric and radar plots, will not only shed light on decoupling the complex role of structure and materials on mechanical performance and their trends, but provides important guidelines for designing lightweight staggered platelet-matrix composites while ensuring the best (balance) of their mechanical properties.

  18. Magnetic response from a composite of metal-dielectric particles in the visible range: T-matrix simulation

    Directory of Open Access Journals (Sweden)

    O. Zhuromskyy

    2011-09-01

    Full Text Available The optical response of a particle composed of a dielectric core surrounded by a densely packed shell of small metal spheres is simulated with the superposition Tmatrix method for realistic material parameters. In order to compute the electric and magnetic particle polarizabilities a single expansion T-matrix is derived from a particle centered T-matrix. Finally the permeability of a medium comprising such particles is found to deviate considerable from unity resulting in a noticeable optical response.

  19. Demineralized dentin matrix composite collagen material for bone tissue regeneration.

    Science.gov (United States)

    Li, Jianan; Yang, Juan; Zhong, Xiaozhong; He, Fengrong; Wu, Xiongwen; Shen, Guanxin

    2013-01-01

    Demineralized dentin matrix (DDM) had been successfully used in clinics as bone repair biomaterial for many years. However, particle morphology of DDM limited it further applications. In this study, DDM and collagen were prepared to DDM composite collagen material. The surface morphology of the material was studied by scanning electron microscope (SEM). MC3T3-E1 cells responses in vitro and tissue responses in vivo by implantation of DDM composite collagen material in bone defect of rabbits were also investigated. SEM analysis showed that DDM composite collagen material evenly distributed and formed a porous scaffold. Cell culture and animal models results indicated that DDM composite collagen material was biocompatible and could support cell proliferation and differentiation. Histological evaluation showed that DDM composite collagen material exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results suggested that DDM composite collagen material might have a significant clinical advantage and potential to be applied in bone and orthopedic surgery.

  20. Forces and torques on rigid inclusions in an elastic environment: Resulting matrix-mediated interactions, displacements, and rotations

    Science.gov (United States)

    Puljiz, Mate; Menzel, Andreas M.

    2017-05-01

    Embedding rigid inclusions into elastic matrix materials is a procedure of high practical relevance, for instance, for the fabrication of elastic composite materials. We theoretically analyze the following situation. Rigid spherical inclusions are enclosed by a homogeneous elastic medium under stick boundary conditions. Forces and torques are directly imposed from outside onto the inclusions or are externally induced between them. The inclusions respond to these forces and torques by translations and rotations against the surrounding elastic matrix. This leads to elastic matrix deformations, and in turn results in mutual long-ranged matrix-mediated interactions between the inclusions. Adapting a well-known approach from low-Reynolds-number hydrodynamics, we explicitly calculate the displacements and rotations of the inclusions from the externally imposed or induced forces and torques. Analytical expressions are presented as a function of the inclusion configuration in terms of displaceability and rotateability matrices. The role of the elastic environment is implicitly included in these relations. That is, the resulting expressions allow a calculation of the induced displacements and rotations directly from the inclusion configuration, without having to explicitly determine the deformations of the elastic environment. In contrast to the hydrodynamic case, compressibility of the surrounding medium is readily taken into account. We present the complete derivation based on the underlying equations of linear elasticity theory. In the future, the method will, for example, be helpful to characterize the behavior of externally tunable elastic composite materials, to accelerate numerical approaches, as well as to improve the quantitative interpretation of microrheological results.

  1. Gel-like properties of MCM-41 material and its transformation to MCM-50 in a caustic alkaline surround

    International Nuclear Information System (INIS)

    Saputra, Hens; Othman, Raihan; Sutjipto, A.G.E.; Muhida, R.; Ani, M.H.

    2012-01-01

    Highlights: ► MCM-41 material transforms gradually into MCM-50 lamellar gel upon controlled exposure to 6 M KOH. ► The formation of MCM-50 ordered gel structure occurs at KOH weight content of 40–70 wt. %. ► MCM gel phase shows pseudoplastic behavior and possesses homogeneous matrix texture. -- Abstract: MCM-41 material, prepared by sol–gel method, reveals gel-like properties in a caustic alkaline environment, i.e., 6 M potassium hydroxide (KOH) electrolyte. The gellation of MCM-41 starts at a KOH weight ratio of 40 wt.%. The structural change of the material is verified with X-Ray diffractograms and supported by observation using Scanning Electron Microscope (SEM). As the KOH weight ratio increases, the MCM-41 hexagonal arrays structure gradually transforms into MCM-50 lamellar structure before disappearing completely at 80 wt.% KOH. The MCM gel phase is further characterized by rotational viscometry and texture analysis. The gel phase shows shear thinning or pseudoplastic behavior and possesses homogeneous matrix structure.

  2. A matrix in life cycle perspective for selecting sustainable materials for buildings in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Abeysundara, U.G. Yasantha [Ministry of Education, Isurupaya, Battaramulla (Sri Lanka); Babel, Sandhya [Environmental Technology Program, School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathumthani 12121 (Thailand); Gheewala, Shabbir [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand)

    2009-05-15

    This paper presents a matrix to select sustainable materials for buildings in Sri Lanka, taking into consideration environmental, economic and social assessments of materials in a life cycle perspective. Five building elements, viz., foundations, roofs, ceilings, doors and windows, and floors are analyzed based on materials used for these elements. Environmental burdens associated with these elements are analyzed in terms of embodied energy and environmental impacts such as global warming, acidification and nutrient enrichment. Economic analysis is based on market prices and affordability of materials. Social factors that are taken into account are thermal comfort, interior (aesthetics), ability to construct quickly, strength and durability. By compiling the results of analyses, two building types with minimum and maximum impacts are identified. These two cases along with existing buildings are compared in a matrix of environmental, economic and social scores. Analysis of the results also indicates need for higher consideration of environmental parameters in decision-making over social and economic factors, as social and economic scores do not vary much between cases. Hence, this matrix helps decision-makers to select sustainable materials for buildings, meaningfully, and thus helps to move towards a more sustainable buildings and construction sector. (author)

  3. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  4. Production of candidate natural matrix reference materials for micro-analytical techniques

    International Nuclear Information System (INIS)

    Zeisler, R.; Fajgelj, A.; Zeiller, E.

    2002-01-01

    Homogeneity is considered to be the most vital prerequisite for a certified reference material (CRM); more stringent requirements exist for the analysis of small subsamples. Many of the natural matrix CRMs are prepared from bulk samples by grinding and milling them to a certain particle size, which is expected to provide a more homogenous material; however recommended sample sizes for biological and environmental reference materials are found to be more than 100 mg. Since the milling of materials is costly and has some drawbacks, natural materials that already occur as small particles such as air particulate matter, certain sediments, and cellular biological materials may form the basis of the required reference materials. The nature of these materials, i.e. naturally occurring particles, may provide ideal model reference material. We describe here the production of the materials and preliminary tests, the evaluation for the micro-analytical techniques

  5. Aging linear viscoelasticity of matrix-inclusion composite materials featuring ellipsoidal inclusions

    OpenAIRE

    LAVERGNE, Francis; SAB, Karam; SANAHUJA, Julien; BORNERT, Michel; TOULEMONDE, Charles

    2016-01-01

    A multi-scale homogenization scheme is proposed to estimate the time-dependent strains of fiber-reinforced concrete. This material is modeled as an aging linear viscoelastic composite material featuring ellipsoidal inclusions embedded in a viscoelastic cementitious matrix characterized by a time-dependent Poisson's ratio. To this end, the homogenization scheme proposed in Lavergne et al. [1] is adapted to the case of a time-dependent Poisson's ratio and it is successfully validated on a non-a...

  6. Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions

    Science.gov (United States)

    Snead, L. L.; Terrani, K. A.; Katoh, Y.; Silva, C.; Leonard, K. J.; Perez-Bergquist, A. G.

    2014-05-01

    This paper addresses certain key feasibility issues facing the application of SiC-matrix microencapsulated fuels for light water reactor application. Issues addressed are the irradiation stability of the SiC-based nano-powder ceramic matrix under LWR-relevant irradiation conditions, the presence or extent of reaction of the SiC matrix with zirconium-based cladding, the stability of the inner and outer pyrolytic graphite layers of the TRISO coating system at this uncharacteristically low irradiation temperature, and the state of the particle-matrix interface following irradiation which could possibly affect thermal transport. In the process of determining these feasibility issues microstructural evolution and change in dimension and thermal conductivity was studied. As a general finding the SiC matrix was found to be quite stable with behavior similar to that of CVD SiC. In magnitude the irradiation-induced swelling of the matrix material was slightly higher and irradiation-degraded thermal conductivity was slightly lower as compared to CVD SiC. No significant reaction of this SiC-based nano-powder ceramic matrix material with Zircaloy was observed. Irradiation of the sample in the 320-360 °C range to a maximum dose of 7.7 × 1025 n/m2 (E > 0.1 MeV) did not have significant negative impact on the constituent layers of the TRISO coating system. At the highest dose studied, layer structure and interface integrity remained essentially unchanged with good apparent thermal transport through the microsphere to the surrounding matrix.

  7. Composite Materials With Uncured Epoxy Matrix Exposed in Stratosphere During NASA Stratospheric Balloon Flight

    Science.gov (United States)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela; de Groh, Kim K.

    2013-01-01

    A cassette of uncured composite materials with epoxy resin matrixes was exposed in the stratosphere (40 km altitude) over three days. Temperature variations of -76 to 32.5C and pressure up to 2.1 torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polymerization reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composites in a free space environment during an orbital space flight.

  8. Internal damping due to dislocation movements induced by thermal expansion mismatch between matrix and particles in metal matrix composites. [Al/SiC

    Energy Technology Data Exchange (ETDEWEB)

    Girand, C.; Lormand, G.; Fougeres, R.; Vincent, A. (GEMPPM, Villeurbanne (France))

    1993-05-01

    In metal matrix composites (MMCs), the mechanical 1 of the reinforcement-matrix interface is an important parameter because it governs the load transfer from matrix to particles, from which the mechanical properties of these materials are derived. Therefore, it would be useful to set out an experimental method able to characterize the interface and the adjacent matrix behaviors. Thus, a study has been undertaken by means of internal damping (I.D.) measurements, which are well known to be very sensitive for studying irreversible displacements at the atomic scale. More especially, this investigation is based on the fact that, during cooling of MMC's, stress concentrations originating from differences in coefficients of thermal expansion (C.T.E.) of matrix and particles should induce dislocation movements in the matrix surrounding the reinforcement; that is, local microplastic strains occur. Therefore, during I.D. measurements vs temperature these movements should contribute to MMCs I.D. in a process similar to those involved around first order phase transitions in solids. The aim of this paper is to present, in the case of Al/SiC particulate composites, new developments of this approach that has previously led to promising results in the case of Al-Si alloys.

  9. Anisotropic Material Behavior of Uni-axially Compacted Graphite Matrix for HTGR Fuel Compact Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Yoon, Ji-Hae; Cho, Moon Sung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In developing the fuel compact fabrication technology, and fuel graphite material to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions and the material properties of fuel element. It was observed, during this development, that the pressing technique employed for the compaction fabrication prior to the two successive heat treatments (carbonization and final high temperature heat treatment) was of extreme importance in determining the material properties of the final compact product. In this work, the material behavior of the uni-axially pressed graphite matrix during the carbonization and final heat treatment are evaluated and summarized along the different directions, viz., perpendicular and parallel directions to pressing direction. In this work, the dimensional variations and variations in thermal expansion, thermal conductivity and Vickers hardness of the graphite matrix compact samples in the axial and radial directions prepared by uni-axial pressing are evaluated, and compared with those of samples prepared by cold isostatic pressing with the available data. From this work, the followings are observed. 1) Dimensional changes of matrix graphite green compacts during carbonization show that the difference in radial and axial variations shows a large anisotropic behavior in shrinkage. The radial variation is very small while the axial variation is large. During carbonization, the stresses caused by the force would be released in to the axial direction together with the phenolic resin vapor. 2) Dimensional variation of compact samples in perpendicular and parallel directions during carbonization shows a large difference in behavior when compact sample is prepared by uni-axial pressing. However, when compact sample is prepared by cold isostatic pressing, there is

  10. Anisotropic Material Behavior of Uni-axially Compacted Graphite Matrix for HTGR Fuel Compact Fabrication

    International Nuclear Information System (INIS)

    Lee, Young-Woo; Yeo, Seunghwan; Yoon, Ji-Hae; Cho, Moon Sung

    2016-01-01

    In developing the fuel compact fabrication technology, and fuel graphite material to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions and the material properties of fuel element. It was observed, during this development, that the pressing technique employed for the compaction fabrication prior to the two successive heat treatments (carbonization and final high temperature heat treatment) was of extreme importance in determining the material properties of the final compact product. In this work, the material behavior of the uni-axially pressed graphite matrix during the carbonization and final heat treatment are evaluated and summarized along the different directions, viz., perpendicular and parallel directions to pressing direction. In this work, the dimensional variations and variations in thermal expansion, thermal conductivity and Vickers hardness of the graphite matrix compact samples in the axial and radial directions prepared by uni-axial pressing are evaluated, and compared with those of samples prepared by cold isostatic pressing with the available data. From this work, the followings are observed. 1) Dimensional changes of matrix graphite green compacts during carbonization show that the difference in radial and axial variations shows a large anisotropic behavior in shrinkage. The radial variation is very small while the axial variation is large. During carbonization, the stresses caused by the force would be released in to the axial direction together with the phenolic resin vapor. 2) Dimensional variation of compact samples in perpendicular and parallel directions during carbonization shows a large difference in behavior when compact sample is prepared by uni-axial pressing. However, when compact sample is prepared by cold isostatic pressing, there is

  11. Are calcifying matrix vesicles in atherosclerotic lesions of cellular origin?

    Science.gov (United States)

    Bobryshev, Yuri V; Killingsworth, Murray C; Huynh, Thuan G; Lord, Reginald S A; Grabs, Anthony J; Valenzuela, Stella M

    2007-03-01

    Over recent years, the role of matrix vesicles in the initial stages of arterial calcification has been recognized. Matrix calcifying vesicles have been isolated from atherosclerotic arteries and the biochemical composition of calcified vesicles has been studied. No studies have yet been carried out to examine the fine structure of matrix vesicles in order to visualize the features of the consequent stages of their calcification in arteries. In the present work, a high resolution ultrastructural analysis has been employed and the study revealed that matrix vesicles in human atherosclerotic lesions are heterogeneous with two main types which we classified. Type I calcified vesicles were presented by vesicles surrounded by two electron-dense layers and these vesicles were found to be resistant to the calcification process in atherosclerotic lesions in situ. Type II matrix vesicles were presented by vesicles surrounded by several electron-dense layers and these vesicles were found to represent calcifying vesicles in atherosclerotic lesions. To test the hypothesis that calcification of matrix vesicles surrounded by multilayer sheets may occur simply as a physicochemical process, independently from the cell regulation, we produced multilamellar liposomes and induced their calcification in vitro in a manner similar to that occurring in matrix vesicles in atherosclerotic lesions in situ.

  12. Al-matrix composite materials reinforced by Al-Cu-Fe particles

    International Nuclear Information System (INIS)

    Bonneville, J; Laplanche, G; Joulain, A; Gauthier-Brunet, V; Dubois, S

    2010-01-01

    Al-matrix material composites were produced using hot isostatic pressing technique, starting with pure Al and icosahedral (i) Al-Cu-Fe powders. Depending on the processing temperature, the final reinforcement particles are either still of the initial i-phase or transformed into the tetragonal ω-Al0 0.70 Cu 0.20 Fe 0.10 crystalline phase. Compression tests performed in the temperature range 293K - 823K on the two types of composite, i.e. Al/i and Al/ω, indicate that the flow stress of both composites is strongly temperature dependent and exhibit distinct regimes with increasing temperature. Differences exist between the two composites, in particular in yield stress values. In the low temperature regime (T ≤ 570K), the yield stress of the Al/ω composite is nearly 75% higher than that of the Al/i composite, while for T > 570K both composites exhibit similar yield stress values. The results are interpreted in terms of load transfer contribution between the matrix and the reinforcement particles and elementary dislocation mechanisms in the Al matrix.

  13. Life Modeling and Design Analysis for Ceramic Matrix Composite Materials

    Science.gov (United States)

    2005-01-01

    The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.

  14. Biomimetic materials for controlling bone cell responses.

    Science.gov (United States)

    Drevelle, Olivier; Faucheux, Nathalie

    2013-01-01

    Bone defects that cannot "heal spontaneously during life" will become an ever greater health problem as populations age. Harvesting autografts has several drawbacks, such as pain and morbidity at both donor and acceptor sites, the limited quantity of material available, and frequently its inappropriate shape. Researchers have therefore developed alternative strategies that involve biomaterials to fill bone defects. These biomaterials must be biocompatible and interact with the surrounding bone tissue to allow their colonization by bone cells and blood vessels. The latest generation biomaterials are not inert; they control cell responses like adhesion, proliferation and differentiation. These biomaterials are called biomimetic materials. This review focuses on the development of third generation materials. We first briefly describe the bone tissue with its cells and matrix, and then how bone cells interact with the extracellular matrix. The next section covers the materials currently used to repair bone defects. Finally, we describe the strategies employed to modify the surface of materials, such as coating with hydroxyapatite and grafting biomolecules.

  15. Insights on synergy of materials and structures in biomimetic platelet-matrix composites

    Science.gov (United States)

    Sakhavand, Navid; Shahsavari, Rouzbeh

    2018-01-01

    Hybrid materials such as biomimetic platelet-matrix composites are in high demand to confer low weight and multifunctional mechanical properties. This letter reports interfacial-bond regulated assembly of polymers on cement-an archetype model with significant infrastructure applications. We demonstrate a series of 20+ molecular dynamics studies on decoding and optimizing the complex interfacial interactions including the role and types of various heterogeneous, competing interfacial bonds that are key to adhesion and interfacial strength. Our results show an existence of an optimum overlap length scale (˜15 nm) between polymers and cement crystals, exhibiting the best balance of strength, toughness, stiffness, and ductility for the composite. This finding, combined with the fundamental insights into the nature of interfacial bonds, provides key hypotheses for selection and processing of constituents to deliberate the best synergy in the structure and materials of platelet-matrix composites.

  16. Heat stress effects on the cumulus cells surrounding the bovine oocyte during maturation: altered matrix metallopeptidase 9 and progesterone production.

    Science.gov (United States)

    Rispoli, L A; Payton, R R; Gondro, C; Saxton, A M; Nagle, K A; Jenkins, B W; Schrick, F N; Edwards, J L

    2013-08-01

    When the effects of heat stress are detrimental during maturation, cumulus cells are intimately associated with the oocyte. To determine the extent to which heat stress affects these cells, in this study, transcriptome profiles of the cumulus that surrounded control and heat-stressed oocytes (41 °C during the first 12 h only and then shifted back to 38.5 °C) during in vitro maturation (IVM) were compared using Affymetrix bovine microarrays. The comparison of cumulus-derived profiles revealed a number of transcripts whose levels were increased (n=11) or decreased (n=13) ≥ twofold after heat stress exposure (P1.7-fold decrease in the protein levels of latent matrix metallopeptidase 9 (proMMP9). Heat-induced reductions in transcript levels were noted at 6 h IVM with reductions in proMMP9 protein levels at 18 h IVM (P=0.0002). Independent of temperature, proMMP9 levels at 24 h IVM were positively correlated with the development rate of blastocysts (R²=0.36; P=0.002). The production of progesterone increased during maturation; heat-induced increases were evident by 12 h IVM (P=0.002). Both MMP9 and progesterone are associated with the developmental competence of the oocyte; thus, it seems plausible for some of the negative consequences of heat stress on the cumulus-oocyte complex to be mediated through heat-induced perturbations occurring in the surrounding cumulus.

  17. Spiked environmental matrix for use as a reference material for gamma-ray spectrometry: Production and homogeneity test

    International Nuclear Information System (INIS)

    Sobiech-Matura, K.; Máté, B.; Altzitzoglou, T.

    2016-01-01

    The application of a spiking method for reference material production and its utilisation for a food matrix is presented. The raw rice powder was tested by means of γ-ray spectrometry and spiked with a "1"3"7Cs solution. The spiked material was mixed and tested for homogeneity. The future use of the rice powder reference material after the entire characterisation cycle will be for γ-ray spectrometry method validation. - Highlights: • Spiking blank substance with a traceable radioactive solution • Spiked reference material for γ-ray emitting radionuclides in food matrix • Results of the homogeneity tests are presented

  18. The NIST natural-matrix radionuclide standard reference material program for ocean studies

    International Nuclear Information System (INIS)

    Inn, K.G.W.; Zhichao Lin; Zhongyu Wu; MacMahon, C.; Filliben, J.J.; Krey, P.; Feiner, M.; Harvey, J.

    2001-01-01

    In 1997, the Low-level Working Group of the International Committee on Radionuclide Metrology met in Boston, MA (USA) to define the characteristics of a new set of environmental radioactivity reference materials. These reference materials were to provide the radiochemist with the same analytical challenges faced when assaying environmental samples. It was decided that radionuclide bearing natural materials should be collected from sites where there had been sufficient time for natural processes to redistribute the various chemically different species of the radionuclides. Over the succeeding years, the National Institute of Standards and Technology (NIST), in cooperation with other highly experienced laboratories, certified and issued a number of these as low-level radioactivity Standard Reference Materials (SRMs) for fission and activation product and actinide concentrations. The experience of certifying these SRMs has given NIST the opportunity to compare radioanalytical methods and learn of their limitations. NIST convened an international workshop in 1994 to define the natural-matrix radionuclide SRM needs for ocean studies. The highest priorities proposed at the workshop were for sediment, shellfish, seaweed, fish flesh and water matrix SRMs certified for mBq per sample concentrations of 90 Sr, 137 Cs and 239 Pu + 240 Pu. The most recent low-level environmental radionuclide SRM issued by NIST, Ocean Sediment (SRM 4357) has certified and uncertified values for the following 22 radionuclides: 40 K, 90 Sr, 129 I, 137 Cs, 155 Eu, 210 Pb, 210 Po, 212 Pb, 214 Bi, 226 Ra, 228 Ra, 228 Th, 230 Th, 232 Th, 234 U, 235 U, 237 Np, 238 U, 238 Pu, 239 Pu + 240 Pu, and 241 Am. The uncertainties for a number of the certified radionuclides are non-symmetrical and relatively large because of the non-normal distribution of reported values. NIST is continuing its efforts to provide the ocean studies community with additional natural matrix radionuclide SRMs. The freeze

  19. Cell–material interactions on biphasic polyurethane matrix

    Science.gov (United States)

    Dicesare, Patrick; Fox, Wade M.; Hill, Michael J.; Krishnan, G. Rajesh; Yang, Shuying; Sarkar, Debanjan

    2013-01-01

    Cell–matrix interaction is a key regulator for controlling stem cell fate in regenerative tissue engineering. These interactions are induced and controlled by the nanoscale features of extracellular matrix and are mimicked on synthetic matrices to control cell structure and functions. Recent studies have shown that nanostructured matrices can modulate stem cell behavior and exert specific role in tissue regeneration. In this study, we have demonstrated that nanostructured phase morphology of synthetic matrix can control adhesion, proliferation, organization and migration of human mesenchymal stem cells (MSCs). Nanostructured biodegradable polyurethanes (PU) with segmental composition exhibit biphasic morphology at nanoscale dimensions and can control cellular features of MSCs. Biodegradable PU with polyester soft segment and hard segment composed of aliphatic diisocyanates and dipeptide chain extender were designed to examine the effect polyurethane phase morphology. By altering the polyurethane composition, morphological architecture of PU was modulated and its effect was examined on MSC. Results show that MSCs can sense the nanoscale morphology of biphasic polyurethane matrix to exhibit distinct cellular features and, thus, signifies the relevance of matrix phase morphology. The role of nanostructured phases of a synthetic matrix in controlling cell–matrix interaction provides important insights for regulation of cell behavior on synthetic matrix and, therefore, is an important tool for engineering tissue regeneration. PMID:23255285

  20. Comparison of Material Behavior of Matrix Graphite for HTGR Fuel Elements upon Irradiation: A literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The fuel elements for the HTGRs (i.e., spherical fuel element in pebble-bed type core design and fuel compact in prismatic core design) consists of coated fuel particles dispersed and bonded in a closely packed array within a carbonaceous matrix. This matrix is generally made by mixing fully graphitized natural and needle- or pitchcoke originated powders admixed with a binder material (pitch or phenolic resin), The resulting resinated graphite powder mixture, when compacted, may influence a number of material properties as well as its behavior under neutron irradiation during reactor operation. In the fabrication routes of these two different fuel element forms, different consolidation methods are employed; a quasi-isostatic pressing method is generally adopted to make pebbles while fuel compacts are fabricated by uni-axial pressing mode. The result showed that the hardness values obtained from the two directions showed an anisotropic behavior: The values obtained from the perpendicular section showed much higher micro hardness (176.6±10.5MPa in average) than from the parallel section ((125.6±MPa in average). This anisotropic behavior was concluded to be related to the microstructure of the matrix graphite. This may imply that the uni-axial pressing method to make compacts influence the microstructure of the matrix and hence the material properties of the matrix graphite.

  1. A Study on AE Signal Analysis of Composite Materials Using Matrix Piezo Electric Sensor

    International Nuclear Information System (INIS)

    Yu, Yeun Ho; Choi, Jin Ho; Kweon, Jin Hwe

    2007-01-01

    As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the study on non-destructive testing methods has become an important research area for improving their reliability and safety. AE (acoustic emission) can evaluate the defects by detecting the emitting strain energy when elastic waves are generated by the initiation and growth of crack, plastic deformation, fiber breakage, matrix cleavage, or delamination. In the paper, AE signals generated under uniaxial tension were measured and analyzed using the 8x8 matrix piezo electric sensor. The electronic circuit to control the transmitting distance of AE signals was designed and constructed. The optical data storage system was also designed to store the AE signal of 64 channels using LED (light emitting diode) elements. From the tests, it was shown that the source location and propagation path of AE signals in composite materials could be detected effectively by the 8x8 matrix piezo electric sensor

  2. Highly Enriched Uranium Metal Cylinders Surrounded by Various Reflector Materials

    International Nuclear Information System (INIS)

    Bernard Jones; J. Blair Briggs; Leland Monteirth

    2007-01-01

    A series of experiments was performed at Los Alamos Scientific Laboratory in 1958 to determine critical masses of cylinders of Oralloy (Oy) reflected by a number of materials. The experiments were all performed on the Comet Universal Critical Assembly Machine, and consisted of discs of highly enriched uranium (93.3 wt.% 235U) reflected by half-inch and one-inch-thick cylindrical shells of various reflector materials. The experiments were performed by members of Group N-2, particularly K. W. Gallup, G. E. Hansen, H. C. Paxton, and R. H. White. This experiment was intended to ascertain critical masses for criticality safety purposes, as well as to compare neutron transport cross sections to those obtained from danger coefficient measurements with the Topsy Oralloy-Tuballoy reflected and Godiva unreflected critical assemblies. The reflector materials examined in this series of experiments are as follows: magnesium, titanium, aluminum, graphite, mild steel, nickel, copper, cobalt, molybdenum, natural uranium, tungsten, beryllium, aluminum oxide, molybdenum carbide, and polythene (polyethylene). Also included are two special configurations of composite beryllium and iron reflectors. Analyses were performed in which uncertainty associated with six different parameters was evaluated; namely, extrapolation to the uranium critical mass, uranium density, 235U enrichment, reflector density, reflector thickness, and reflector impurities. In addition to the idealizations made by the experimenters (removal of the platen and diaphragm), two simplifications were also made to the benchmark models that resulted in a small bias and additional uncertainty. First of all, since impurities in core and reflector materials are only estimated, they are not included in the benchmark models. Secondly, the room, support structure, and other possible surrounding equipment were not included in the model. Bias values that result from these two simplifications were determined and associated

  3. Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions

    International Nuclear Information System (INIS)

    Snead, L.L.; Terrani, K.A.; Katoh, Y.; Silva, C.; Leonard, K.J.; Perez-Bergquist, A.G.

    2014-01-01

    This paper addresses certain key feasibility issues facing the application of SiC-matrix microencapsulated fuels for light water reactor application. Issues addressed are the irradiation stability of the SiC-based nano-powder ceramic matrix under LWR-relevant irradiation conditions, the presence or extent of reaction of the SiC matrix with zirconium-based cladding, the stability of the inner and outer pyrolytic graphite layers of the TRISO coating system at this uncharacteristically low irradiation temperature, and the state of the particle–matrix interface following irradiation which could possibly affect thermal transport. In the process of determining these feasibility issues microstructural evolution and change in dimension and thermal conductivity was studied. As a general finding the SiC matrix was found to be quite stable with behavior similar to that of CVD SiC. In magnitude the irradiation-induced swelling of the matrix material was slightly higher and irradiation-degraded thermal conductivity was slightly lower as compared to CVD SiC. No significant reaction of this SiC-based nano-powder ceramic matrix material with Zircaloy was observed. Irradiation of the sample in the 320–360 °C range to a maximum dose of 7.7 × 10 25 n/m 2 (E > 0.1 MeV) did not have significant negative impact on the constituent layers of the TRISO coating system. At the highest dose studied, layer structure and interface integrity remained essentially unchanged with good apparent thermal transport through the microsphere to the surrounding matrix

  4. Metal Matrix Composite Material by Direct Metal Deposition

    Science.gov (United States)

    Novichenko, D.; Marants, A.; Thivillon, L.; Bertrand, P. H.; Smurov, I.

    Direct Metal Deposition (DMD) is a laser cladding process for producing a protective coating on the surface of a metallic part or manufacturing layer-by-layer parts in a single-step process. The objective of this work is to demonstrate the possibility to create carbide-reinforced metal matrix composite objects. Powders of steel 16NCD13 with different volume contents of titanium carbide are tested. On the base of statistical analysis, a laser cladding processing map is constructed. Relationships between the different content of titanium carbide in a powder mixture and the material microstructure are found. Mechanism of formation of various precipitated titanium carbides is investigated.

  5. Ultrafine Ceramic Grains Embedded in Metallic Glass Matrix: Achieving Superior Wear Resistance via Increase in Both Hardness and Toughness.

    Science.gov (United States)

    Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan

    2018-05-09

    As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.

  6. Independent control of matrix adhesiveness and stiffness within a 3D self-assembling peptide hydrogel.

    Science.gov (United States)

    Hogrebe, Nathaniel J; Reinhardt, James W; Tram, Nguyen K; Debski, Anna C; Agarwal, Gunjan; Reilly, Matthew A; Gooch, Keith J

    2018-04-01

    A cell's insoluble microenvironment has increasingly been shown to exert influence on its function. In particular, matrix stiffness and adhesiveness strongly impact behaviors such as cell spreading and differentiation, but materials that allow for independent control of these parameters within a fibrous, stromal-like microenvironment are very limited. In the current work, we devise a self-assembling peptide (SAP) system that facilitates user-friendly control of matrix stiffness and RGD (Arg-Gly-Asp) concentration within a hydrogel possessing a microarchitecture similar to stromal extracellular matrix. In this system, the RGD-modified SAP sequence KFE-RGD and the scrambled sequence KFE-RDG can be directly swapped for one another to change RGD concentration at a given matrix stiffness and total peptide concentration. Stiffness is controlled by altering total peptide concentration, and the unmodified base peptide KFE-8 can be included to further increase this stiffness range due to its higher modulus. With this tunable system, we demonstrate that human mesenchymal stem cell morphology and differentiation are influenced by both gel stiffness and the presence of functional cell binding sites in 3D culture. Specifically, cells 24 hours after encapsulation were only able to spread out in stiffer matrices containing KFE-RGD. Upon addition of soluble adipogenic factors, soft gels facilitated the greatest adipogenesis as determined by the presence of lipid vacuoles and PPARγ-2 expression, while increasing KFE-RGD concentration at a given stiffness had a negative effect on adipogenesis. This three-component hydrogel system thus allows for systematic investigation of matrix stiffness and RGD concentration on cell behavior within a fibrous, three-dimensional matrix. Physical cues from a cell's surrounding environment-such as the density of cell binding sites and the stiffness of the surrounding material-are increasingly being recognized as key regulators of cell function

  7. IAEA programme of natural matrix reference materials for the determination of radionuclides

    International Nuclear Information System (INIS)

    Strachnov, V.; Valkovic, V.; LaRosa, J.; Dekner, R.; Zeisler, R.

    1993-01-01

    The International Atomic Energy Agency has been providing analytical quality control services (AQCS) to its Member States since the 1960's. The AQCS programme distributes reference materials (RMs), organizes intercomparison runs, and provides training courses for quality assurance in chemical analysis and radioactivity measurements of food, biological, environmental and marine materials. This paper focusses on those aspects of the subject dealing with reference materials and intercomparison runs for the determination of radionuclides. Nineteen natural matrix reference materials are available for the determination of radionuclides. Twelve new intercomparison and reference materials are in preparation or under consideration. The radionuclides of interest include: K-40, Mn-54, Co-60, Sr-90, Tc-99, Ru-106, Ba-133, Cs-134, Cs-137, Pb-210, Ra-226, Th-228, Th-232, Pu-238, Pu-239 + 240. (orig.)

  8. The Process of Nanostructuring of Metal (Iron Matrix in Composite Materials for Directional Control of the Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Elena Zemtsova

    2014-01-01

    Full Text Available We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1 preparation of porous metal matrix; (2 surface structuring of the porous metal matrix by TiC nanowires; (3 pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based materials with improved mechanical properties for the different areas of technology.

  9. Synthesis of new metal-matrix Al-Al2O3-graphene composite materials

    Science.gov (United States)

    Elshina, L. A.; Muradymov, R. V.; Kvashnichev, A. G.; Vichuzhanin, D. I.; Molchanova, N. G.; Pankratov, A. A.

    2017-08-01

    The mechanism of formation of ceramic microparticles (alumina) and graphene in a molten aluminum matrix is studied as a function of the morphology and type of precursor particles, the temperature, and the gas atmosphere. The influence of the composition of an aluminum composite material (as a function of the concentration and size of reinforcing particles) on its mechanical and corrosion properties, melting temperature, and thermal conductivity is investigated. Hybrid metallic Al-Al2O3-graphene composite materials with up to 10 wt % alumina microparticles and 0.2 wt % graphene films, which are uniformly distributed over the metal volume and are fully wetted with aluminum, are synthesized during the chemical interaction of a salt solution containing yttria and boron carbide with molten aluminum in air. Simultaneous introduction of alumina and graphene into an aluminum matrix makes it possible to produce hybrid metallic composite materials having a unique combination of the following properties: their thermal conductivity is higher than that of aluminum, their hardness and strength are increased by two times, their relative elongation during tension is increased threefold, and their corrosion resistance is higher than that of initial aluminum by a factor of 2.5-4. We are the first to synthesize an in situ hybrid Al-Al2O3-graphene composite material having a unique combination of some characteristics. This material can be recommended as a promising material for a wide circle of electrical applications, including ultrathin wires, and as a structural material for the aerospace industry, the car industry, and the shipbuilding industry.

  10. Material properties of biofilms – key methods for understanding permeability and mechanics

    Science.gov (United States)

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2015-01-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the three-dimensional biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gasses, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms. PMID:25719969

  11. Study of ionization process of matrix molecules in matrix-assisted laser desorption ionization

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Kazumasa; Sato, Asami; Hashimoto, Kenro; Fujino, Tatsuya, E-mail: fujino@tmu.ac.jp

    2013-06-20

    Highlights: ► Proton transfer and adduction reaction of matrix in MALDI were studied. ► Hydroxyl group forming intramolecular hydrogen bond was related to the ionization. ► Intramolecular proton transfer in the electronic excited state was the initial step. ► Non-volatile analytes stabilized protonated matrix in the ground state. ► A possible mechanism, “analyte support mechanism”, has been proposed. - Abstract: Proton transfer and adduction reaction of matrix molecules in matrix-assisted laser desorption ionization were studied. By using 2,4,6-trihydroxyacetophenone (THAP), 2,5-dihydroxybenzoic acid (DHBA), and their related compounds in which the position of a hydroxyl group is different, it was clarified that a hydroxyl group forming an intramolecular hydrogen bond is related to the ionization of matrix molecules. Intramolecular proton transfer in the electronic excited state of the matrix and subsequent proton adduction from a surrounding solvent to the charge-separated matrix are the initial steps for the ionization of matrix molecules. Nanosecond pump–probe NIR–UV mass spectrometry confirmed that the existence of analyte molecules having large dipole moment in their structures is necessary for the stabilization of [matrix + H]{sup +} in the electronic ground state.

  12. Effects of LDEF flight exposure on selected polymer matrix resin composite materials

    Science.gov (United States)

    Slemp, Wayne S.; Young, Philip R.; Witte, William G., Jr.; Shen, James Y.

    1992-01-01

    The characterization of selected graphite fiber reinforced epoxy (934 and 5208) and polysulfone (P1700) matrix resin composites materials which received over five years and nine months of exposure to the low earth orbit (LEO) environment in experiment AO134 on the Long Duration Exposure Facility is reported. The changes in mechanical properties of ultimate tensile strength and tensile modulus for exposed flight specimens are compared to the three sets of control specimens. Marked changes in surface appearance are discussed, and resin loss is reported. The chemical characterization including infrared, thermal, and selected solution property measurements showed that the molecular structure of the polymetric matrix had not changed significantly in response to this exposure.

  13. Method for immobilizing particulate materials in a packed bed

    Science.gov (United States)

    Even, Jr., William R.; Guthrie, Stephen E.; Raber, Thomas N.; Wally, Karl; Whinnery, LeRoy L.; Zifer, Thomas

    1999-01-01

    The present invention pertains generally to immobilizing particulate matter contained in a "packed" bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that a) the particulate retains its essential chemical nature, b) the local movement of the particulate particles is not unduly restricted, c) bulk powder migration and is prevented, d) physical and chemical access to the particulate is unchanged over time, and e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport.

  14. Matrix remodeling between cells and cellular interactions with collagen bundle

    Science.gov (United States)

    Kim, Jihan; Sun, Bo

    When cells are surrounded by complex environment, they continuously probe and interact with it by applying cellular traction forces. As cells apply traction forces, they can sense rigidity of their local environment and remodel the matrix microstructure simultaneously. Previous study shows that single human carcinoma cell (MDA-MB-231) remodeled its surrounding extracellular matrix (ECM) and the matrix remodeling was reversible. In this study we examined the matrix microstructure between cells and cellular interaction between them using quantitative confocal microscopy. The result shows that the matrix microstructure is the most significantly remodeled between cells consisting of aligned, and densified collagen fibers (collagen bundle)., the result shows that collagen bundle is irreversible and significantly change micromechanics of ECM around the bundle. We further examined cellular interaction with collagen bundle by analyzing dynamics of actin and talin formation along with the direction of bundle. Lastly, we analyzed dynamics of cellular protrusion and migrating direction of cells along the bundle.

  15. Mechanical and tribological properties of ceramic-matrix friction materials with steel fiber and mullite fiber

    International Nuclear Information System (INIS)

    Wang, Fahui; Liu, Ying

    2014-01-01

    Highlights: • Interaction of mixing the steel and mullite fibers can improve the mechanical properties. • Mixing the steel and mullite fibers can also improve friction stability. • Friction coefficient increases with increasing additional mullite fiber content. • Ceramic-matrix friction material shows sever fade due to mullite fibers agglomerated. - Abstract: The purpose of the present work was to investigate and compare the mechanical and tribological behaviors of ceramic-matrix friction material (CMFM) with steel fiber (SF), mullite fiber (MF), and mixing SF and MF. The CMFM was prepared by hot-pressing sintering, and the tribological behaviors were determined using a constant speed friction tester. The worn surfaces and wear debris were observed by a scanning electron microscopy (SEM). Experiment results show that the combination of SF and MF can improve the mechanical properties that each single fiber does not have. The sever fade for the specimen reinforced by single MF during the whole friction testing can be attributed to the poor interface cohesive strength between MF and matrix. Mixing the SF and MF can improve the friction stability, and the friction coefficients for friction material with a mixture of the SF and MF increases with increasing MF content. For all specimens, increasing in the friction temperatures result in the increase of wear rates

  16. Mean deformation metrics for quantifying 3D cell–matrix interactions without requiring information about matrix material properties

    Science.gov (United States)

    Stout, David A.; Bar-Kochba, Eyal; Estrada, Jonathan B.; Toyjanova, Jennet; Kesari, Haneesh; Reichner, Jonathan S.; Franck, Christian

    2016-01-01

    Mechanobiology relates cellular processes to mechanical signals, such as determining the effect of variations in matrix stiffness with cell tractions. Cell traction recorded via traction force microscopy (TFM) commonly takes place on materials such as polyacrylamide- and polyethylene glycol-based gels. Such experiments remain limited in physiological relevance because cells natively migrate within complex tissue microenvironments that are spatially heterogeneous and hierarchical. Yet, TFM requires determination of the matrix constitutive law (stress–strain relationship), which is not always readily available. In addition, the currently achievable displacement resolution limits the accuracy of TFM for relatively small cells. To overcome these limitations, and increase the physiological relevance of in vitro experimental design, we present a new approach and a set of associated biomechanical signatures that are based purely on measurements of the matrix's displacements without requiring any knowledge of its constitutive laws. We show that our mean deformation metrics (MDM) approach can provide significant biophysical information without the need to explicitly determine cell tractions. In the process of demonstrating the use of our MDM approach, we succeeded in expanding the capability of our displacement measurement technique such that it can now measure the 3D deformations around relatively small cells (∼10 micrometers), such as neutrophils. Furthermore, we also report previously unseen deformation patterns generated by motile neutrophils in 3D collagen gels. PMID:26929377

  17. Neutron spectrum in small iron pile surrounded by lead reflector

    International Nuclear Information System (INIS)

    Kimura, Itsuro; Hayashi, S.A.; Kobayashi, Katsuhei; Matsumura, Tetsuo; Nishihara, Hiroshi.

    1978-01-01

    In order to save the quantity of sample material, a possibility to assess group constants of a reactor material through measurement and analysis of neutron spectrum in a small sample pile surrounded by a reflector of heavy moderator, was investigated. As the sample and the reflector, we chose iron and lead, respectively. Although the time dispersion in moderation of neutrons was considerably prolonged by the lead reflector, this hardly interferes with the assessment of group constants. Theoretical calculation revealed that both the neutron flux spectrum and the sensitivity coefficient of group constants in an iron sphere, 35 cm in diameter surrounded by the lead reflector, 25 cm thick, were close to those of the bare iron sphere, 108 cm in diameter. The neutron spectra in a small iron pile surrounded by a lead reflector were experimentally obtained by the time-of-flight method with an electron linear accelerator and the result was compared with the predicted values. It could be confirmed that a small sample pile surrounded by a reflector, such as lead, was as useful as a much larger bulk pile for the assessment of group constants of a reactor material. (auth.)

  18. Reducing Actinide Production Using Inert Matrix Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Deinert, Mark [Colorado School of Mines, Golden, CO (United States)

    2017-08-23

    The environmental and geopolitical problems that surround nuclear power stem largely from the longlived transuranic isotopes of Am, Cm, Np and Pu that are contained in spent nuclear fuel. New methods for transmuting these elements into more benign forms are needed. Current research efforts focus largely on the development of fast burner reactors, because it has been shown that they could dramatically reduce the accumulation of transuranics. However, despite five decades of effort, fast reactors have yet to achieve industrial viability. A critical limitation to this, and other such strategies, is that they require a type of spent fuel reprocessing that can efficiently separate all of the transuranics from the fission products with which they are mixed. Unfortunately, the technology for doing this on an industrial scale is still in development. In this project, we explore a strategy for transmutation that can be deployed using existing, current generation reactors and reprocessing systems. We show that use of an inert matrix fuel to recycle transuranics in a conventional pressurized water reactor could reduce overall production of these materials by an amount that is similar to what is achievable using proposed fast reactor cycles. Furthermore, we show that these transuranic reductions can be achieved even if the fission products are carried into the inert matrix fuel along with the transuranics, bypassing the critical separations hurdle described above. The implications of these findings are significant, because they imply that inert matrix fuel could be made directly from the material streams produced by the commercially available PUREX process. Zirconium dioxide would be an ideal choice of inert matrix in this context because it is known to form a stable solid solution with both fission products and transuranics.

  19. Determination of temperature dependence of full matrix material constants of PZT-8 piezoceramics using only one sample.

    Science.gov (United States)

    Zhang, Yang; Tang, Liguo; Tian, Hua; Wang, Jiyang; Cao, Wenwu; Zhang, Zhongwu

    2017-08-15

    Resonant ultrasound spectroscopy (RUS) was used to determine the temperature dependence of full matrix material constants of PZT-8 piezoceramics from room temperature to 100 °C. Property variations from sample to samples can be eliminated by using only one sample, so that data self-consistency can be guaranteed. The RUS measurement system error was estimated to be lower than 2.35%. The obtained full matrix material constants at different temperatures all have excellent self-consistency, which can help accurately predict device performance at high temperatures using finite element simulations.

  20. Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Nadell, Carey D; Ricaurte, Deirdre; Yan, Jing; Drescher, Knut; Bassler, Bonnie L

    2017-01-13

    Bacteria often live in biofilms, which are microbial communities surrounded by a secreted extracellular matrix. Here, we demonstrate that hydrodynamic flow and matrix organization interact to shape competitive dynamics in Pseudomonas aeruginosa biofilms. Irrespective of initial frequency, in competition with matrix mutants, wild-type cells always increase in relative abundance in planar microfluidic devices under simple flow regimes. By contrast, in microenvironments with complex, irregular flow profiles - which are common in natural environments - wild-type matrix-producing and isogenic non-producing strains can coexist. This result stems from local obstruction of flow by wild-type matrix producers, which generates regions of near-zero shear that allow matrix mutants to locally accumulate. Our findings connect the evolutionary stability of matrix production with the hydrodynamics and spatial structure of the surrounding environment, providing a potential explanation for the variation in biofilm matrix secretion observed among bacteria in natural environments.

  1. Fabrication and properties of microencapsulated-paraffin/gypsum-matrix building materials for thermal energy storage

    International Nuclear Information System (INIS)

    Su Junfeng; Wang Xinyu; Wang Shengbao; Zhao Yunhui; Huang Zhen

    2012-01-01

    Graphical abstract: DSC curves of microPCMs/gypsum composite samples before and after a thermal cycling treatment. Highlights: ► Microcapsules containing paraffin was fabricated by in-situ polymerization. ► Methanol-modified melamine–formaldehyde (MMF) was used as shell material. ► MicroPCMs/gypsum-matrix building materials were applied for solar energy storage. ► The structure and thermal conductivity of composites had been investigated. - Abstract: Microencapsulated phase change materials (microPCMs) have been widely applied in solid matrix as thermal-storage or temperature-controlling functional composites. The aim of this work was to prepare and investigate the properties of microPCMs/gypsum-matrix building materials for thermal energy storage. MicroPCMs contain paraffin was fabricated by in situ polymerization using methanol-modified melamine–formaldehyde (MMF) as shell material. A series of microPCMs samples were prepared under emulsion stirring rates in range of 1000–3000 r min −1 with core/shell weight ratios of 3/1, 2/1, 1/1, 1/2 and 1/3, respectively. The shell of microPCMs was smooth and compact with global shape, its thickness was not greatly affected by the core/shell ratio and emulsion stirring rate. DSC tests showed that the shell of microPCMs did not influence the phase change behavior of pure paraffin. It was found from TGA analysis that microPCMs samples containing paraffin lost their weight at the temperature of nearly 250 °C, which indicated that the PCM had been protected by shell. More shell material in microPCMs could enhance the thermal stability and provide higher compact condition for core material. After a 100-times thermal cycling treatment, the microPCMs contain paraffin also nearly did not change the phase change behaviors of PCM. With the increasing of weight contents of microPCMs in gypsum board, the thermal conductivity (λ) values of composites had decreased. The simulation of temperature tests proved that the

  2. Femtosecond Laser Irradiation of Plasmonic Nanoparticles in Polymer Matrix: Implications for Photothermal and Photochemical Material Alteration

    Directory of Open Access Journals (Sweden)

    Anton A. Smirnov

    2014-11-01

    Full Text Available We analyze the opportunities provided by the plasmonic nanoparticles inserted into the bulk of a transparent medium to modify the material by laser light irradiation. This study is provoked by the advent of photo-induced nano-composites consisting of a typical polymer matrix and metal nanoparticles located in the light-irradiated domains of the initially homogeneous material. The subsequent irradiation of these domains by femtosecond laser pulses promotes a further alteration of the material properties. We separately consider two different mechanisms of material alteration. First, we analyze a photochemical reaction initiated by the two-photon absorption of light near the plasmonic nanoparticle within the matrix. We show that the spatial distribution of the products of such a reaction changes the symmetry of the material, resulting in the appearance of anisotropy in the initially isotropic material or even in the loss of the center of symmetry. Second, we analyze the efficiency of a thermally-activated chemical reaction at the surface of a plasmonic particle and the distribution of the product of such a reaction just near the metal nanoparticle irradiated by an ultrashort laser pulse.

  3. Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites

    International Nuclear Information System (INIS)

    Beg, M.D.H.; Pickering, K.L.; Weal, S.J.

    2005-01-01

    This study was undertaken to investigate corn gluten meal (CGM) as a biodegradable matrix material for wood fibre reinforced composites. CGM was used alone, as well as hybridized with polypropylene, and reinforced with radiata pine (Pinus Radiata) fibre using a twin-screw extruder followed by injection moulding. Tensile testing, scanning electron microscopy and differential scanning calorimetry were carried out to assess the composites. For composites from CGM and wood fibres, extrusion was carried out with the aid of the following plasticizers: octanoic acid, glycerol, polyethylene glycol and water. Windows of processability for the different plasticizers were obtained for all plasticizers. These were found to lie between 20 and 50 wt.% of plasticizer with a maximum of approximately 20% wood fibre reinforcement. The best mechanical properties were obtained with a matrix containing 10 wt.% octanoic acid and 30 wt.% water, which gave a tensile strength and Young's modulus of 18.7 MPa and 4 GPa, respectively. Hybrid matrix composites were compounded with a maleated polypropylene coupling agent and benzoyl peroxide as a cross-linking agent. The highest tensile strength and Young's modulus obtained from hybrid matrix composites were 36.9 MPa and 5.8 GPa with 50 wt.% fibre

  4. Method and apparatus for fabricating a composite structure consisting of a filamentary material in a metal matrix

    Science.gov (United States)

    Banker, J.G.; Anderson, R.C.

    1975-10-21

    A method and apparatus are provided for preparing a composite structure consisting of filamentary material within a metal matrix. The method is practiced by the steps of confining the metal for forming the matrix in a first chamber, heating the confined metal to a temperature adequate to effect melting thereof, introducing a stream of inert gas into the chamber for pressurizing the atmosphere in the chamber to a pressure greater than atmospheric pressure, confining the filamentary material in a second chamber, heating the confined filamentary material to a temperature less than the melting temperature of the metal, evacuating the second chamber to provide an atmosphere therein at a pressure, placing the second chamber in registry with the first chamber to provide for the forced flow of the molten metal into the second chamber to effect infiltration of the filamentary material with the molten metal, and thereafter cooling the metal infiltrated-filamentary material to form said composite structure.

  5. Method and apparatus for fabricating a composite structure consisting of a filamentary material in a metal matrix

    International Nuclear Information System (INIS)

    Banker, J.G.; Anderson, R.C.

    1975-01-01

    A method and apparatus are provided for preparing a composite structure consisting of filamentary material within a metal matrix. The method is practiced by the steps of confining the metal for forming the matrix in a first chamber, heating the confined metal to a temperature adequate to effect melting thereof, introducing a stream of inert gas into the chamber for pressurizing the atmosphere in the chamber to a pressure greater than atmospheric pressure, confining the filamentary material in a second chamber, heating the confined filamentary material to a temperature less than the melting temperature of the metal, evacuating the second chamber to provide an atmosphere therein at a pressure, placing the second chamber in registry with the first chamber to provide for the forced flow of the molten metal into the second chamber to effect infiltration of the filamentary material with the molten metal, and thereafter cooling the metal infiltrated-filamentary material to form said composite structure

  6. Jordanian silica sand and cement as a reinforcement material for polystyrene matrix composites

    International Nuclear Information System (INIS)

    Jalham, S. I.

    1999-01-01

    The behaviour of polystyrene matrix composites with different percentages of Jordaanian Silica Sand as a Reinforcement Materials (0, 5, 25, 50, and 75 wt%) and different mean grain sizes of sand particles (60, 75, 85, and 300μ m) and with cement as a boning materials in the amount fo 1/6 wt% of the wt% of silica sand were manufactured and tested under compression loading in the Industrial Engineering Department as the Uninersity of Jordan as a part of large study on local materials. The main conclusions of this investigation are: a long-term, durable structure of the polystyrene composite reinforced by silica sand and cement was achieved by mixing the constituents with water; the higher the volume fraction of the reinforcement, the higher the volume fraction of reinforcement, the higher the strength while for 75% of reinforcement, the strength dropped to an amount less than that of the matrix; the higher the grain size, the higher the strength; longitudinal brittle fracture was observed for the composites, and a homogeneous distribution of the sand particles helped in increasing the strength of the composite by playing an important role in distributing the applied load. (author). 11 refs., 6 tabs, 2 figs

  7. Significance of Shrinkage Induced Clamping Pressure in Fiber-Matrix Bonding in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Stang, Henrik

    1996-01-01

    used in high performance cementitious composite materials.Assuming a Coulomb type of friction on the fiber/matrix interface andusing typical values for the frictional coefficient it is shownthat the shrinkage induced clamping pressure could be one of the mostimportant factors determining the frictional...

  8. On the Thermal Conductivity Change of Matrix Graphite Materials after Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Kim, Eung-Seon; Sah, Injin; Park, Daegyu; Kim, Youngjun; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this work, the variations of the thermal conductivity of the A3-3 matrix graphite after neutron irradiation is discussed as well as of the IG-110 graphite for comparison. Neutron irradiation of the graphite specimens was carried out as a part of the first irradiation test of KAERI's coated particle fuel specimens by use of Hanaro research reactor. This work can be summarized as follows: 1) In the evaluation of the specific heat of the graphite materials, various literature data were used and the variations of the specific heat data of all the graphite specimens are observed well agreed, irrespectively of the difference in specimens (graphite and matrix graphite and irradiated and un-irradiated). 2) This implies that it should be reasonable that for both structural graphite and fuel matrix graphite, and even for the neuron-irradiated graphite, any of these specific heat data set be used in the calculation of the thermal conductivity. 3) For the irradiated A3-3 matrix graphite specimens, the thermal conductivity decreased on both directions. On the radial direction, the tendency of variation upon temperature is similar to that of unirradiated specimen, i.e., decreasing as the temperature increases. 4) In the German irradiation experiments with A3-27 matrix graphite specimens, the thermal conductivity of the un-irradiated specimen shows a decrease and that of irradiated specimen is nearly constant as the temperature increases. 5) The thermal conductivity of the irradiated IG-110 was considerably decreased compared with that of un-irradiated specimens The difference of the thermal conductivity of un-irradiated and irradiated IG-110 graphite specimens is much larger than that of un-irradiated and irradiated A3-3 matrix graphite specimens.

  9. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    Science.gov (United States)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  10. Application of pristine and doped SnO2 nanoparticles as a matrix for agro-hazardous material (organophosphate) detection

    Science.gov (United States)

    Khan, Naushad; Athar, Taimur; Fouad, H.; Umar, Ahmad; Ansari, Z. A.; Ansari, S. G.

    2017-02-01

    With an increasing focus on applied research, series of single/composite materials are being investigated for device development to detect several hazardous, dangerous, and toxic molecules. Here, we report a preliminary attempt of an electrochemical sensor fabricated using pristine Ni and Cr-doped nano tin oxide material (SnO2) as a tool to detect agro-hazardous material, i.e. Organophosphate (OP, chlorpyrifos). The nanomaterial was synthesized using the solution method. Nickel and chromium were used as dopant during synthesis. The synthesized material was calcined at 1000 °C and characterized for morphological, structural, and elemental analysis that showed the formation of agglomerated nanosized particles of crystalline nature. Screen-printed films of powder obtained were used as a matrix for working electrodes in a cyclic voltammogram (CV) at various concentrations of organophosphates (0.01 to 100 ppm). The CV curves were obtained before and after the immobilization of acetylcholinesterase (AChE) on the nanomaterial matrix. An interference study was also conducted with hydroquinone to ascertain the selectivity. The preliminary study indicated that such material can be used as suitable matrix for a device that can easily detect OP to a level of 10 ppb and thus contributes to progress in terms of desired device technology for the food and agricultural-industries.

  11. New methodology developed for the differential scanning calorimetry analysis of polymeric matrixes incorporating phase change materials

    International Nuclear Information System (INIS)

    Barreneche, Camila; Solé, Aran; Miró, Laia; Martorell, Ingrid; Cabeza, Luisa F; Fernández, A Inés

    2012-01-01

    Nowadays, thermal comfort needs in buildings have led to an increase in energy consumption of the residential and service sectors. For this reason, thermal energy storage is shown as an alternative to achieve reduction of this high consumption. Phase change materials (PCM) have been studied to store energy due to their high storage capacity. A polymeric material capable of macroencapsulating PCM was developed by the authors of this paper. However, difficulties were found while measuring the thermal properties of these materials by differential scanning calorimetry (DSC). The polymeric matrix interferes in the detection of PCM properties by DSC. To remove this interfering effect, a new methodology which replaces the conventional empty crucible used as a reference in the DSC analysis by crucibles composed of the polymeric matrix was developed. Thus, a clear signal from the PCM is obtained by subtracting the new full crucible signal from the sample signal. (paper)

  12. Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Beg, M.D.H. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Pickering, K.L. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand)]. E-mail: klp@waikato.ac.nz; Weal, S.J. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand)

    2005-12-05

    This study was undertaken to investigate corn gluten meal (CGM) as a biodegradable matrix material for wood fibre reinforced composites. CGM was used alone, as well as hybridized with polypropylene, and reinforced with radiata pine (Pinus Radiata) fibre using a twin-screw extruder followed by injection moulding. Tensile testing, scanning electron microscopy and differential scanning calorimetry were carried out to assess the composites. For composites from CGM and wood fibres, extrusion was carried out with the aid of the following plasticizers: octanoic acid, glycerol, polyethylene glycol and water. Windows of processability for the different plasticizers were obtained for all plasticizers. These were found to lie between 20 and 50 wt.% of plasticizer with a maximum of approximately 20% wood fibre reinforcement. The best mechanical properties were obtained with a matrix containing 10 wt.% octanoic acid and 30 wt.% water, which gave a tensile strength and Young's modulus of 18.7 MPa and 4 GPa, respectively. Hybrid matrix composites were compounded with a maleated polypropylene coupling agent and benzoyl peroxide as a cross-linking agent. The highest tensile strength and Young's modulus obtained from hybrid matrix composites were 36.9 MPa and 5.8 GPa with 50 wt.% fibre.

  13. Extracellular matrix fluctuations during early embryogenesis

    International Nuclear Information System (INIS)

    Szabó, A; Rupp, P A; Rongish, B J; Little, C D; Czirók, A

    2011-01-01

    Extracellular matrix (ECM) movements and rearrangements were studied in avian embryos during early stages of development. We show that the ECM moves as a composite material, whereby distinct molecular components as well as spatially separated layers exhibit similar displacements. Using scanning wide field and confocal microscopy we show that the velocity field of ECM displacement is smooth in space and that ECM movements are correlated even at locations separated by several hundred micrometers. Velocity vectors, however, strongly fluctuate in time. The autocorrelation time of the velocity fluctuations is less than a minute. Suppression of the fluctuations yields a persistent movement pattern that is shared among embryos at equivalent stages of development. The high resolution of the velocity fields allows a detailed spatio-temporal characterization of important morphogenetic processes, especially tissue dynamics surrounding the embryonic organizer (Hensen's node)

  14. Measured and Predicted Neutron Flux Distributions in a Material Surrounding a Cylindrical Duct

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, J; Sandlin, R

    1966-03-15

    The radial fast neutron flux attenuations in the material (iron) surrounding ducts of diameters 7, 9, and 15 cm and total duct length of about 1.5 m have been investigated with and without neutron scattering cans filled with D{sub 2}O in the duct. Experimentally the problem was solved by the use of foil activation techniques. Theoretically it was attacked by, in the first place, a Monte Carlo program specially written for this purpose and utilizing an importance sampling technique. In the second place non- and single-scattering removal flux codes were tried, and also simple hand calculations. The Monte Carlo results accounted well for the fast flux attenuation, while the non- and single-scattering methods overestimated the attenuation generally by a factor of 10 or less. Simple hand calculations using three empirical parameters could be fitted to the measured data within a factor of 1.2 - 1.3 at penetration depths greater than 3 - 4 cm. The distribution of the D{sub 2}O-scattered flux could well be described in terms of single scattering.

  15. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    Science.gov (United States)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  16. Diamond xenolith and matrix organic matter in the Sutter's Mill meteorite measured by C-XANES

    Science.gov (United States)

    Kebukawa, Yoko; Zolensky, Michael E.; Kilcoyne, A. L. David; Rahman, Zia; Jenniskens, Peter; Cody, George D.

    2014-11-01

    The Sutter's Mill (SM) meteorite fell in El Dorado County, California, on April 22, 2012. This meteorite is a regolith breccia composed of CM chondrite material and at least one xenolithic phase: oldhamite. The meteorite studied here, SM2 (subsample 5), was one of three meteorites collected before it rained extensively on the debris site, thus preserving the original asteroid regolith mineralogy. Two relatively large (10 μm sized) possible diamond grains were observed in SM2-5 surrounded by fine-grained matrix. In the present work, we analyzed a focused ion beam (FIB) milled thin section that transected a region containing these two potential diamond grains as well as the surrounding fine-grained matrix employing carbon and nitrogen X-ray absorption near-edge structure (C-XANES and N-XANES) spectroscopy using a scanning transmission X-ray microscope (STXM) (Beamline 5.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory). The STXM analysis revealed that the matrix of SM2-5 contains C-rich grains, possibly organic nanoglobules. A single carbonate grain was also detected. The C-XANES spectrum of the matrix is similar to that of insoluble organic matter (IOM) found in other CM chondrites. However, no significant nitrogen-bearing functional groups were observed with N-XANES. One of the possible diamond grains contains a Ca-bearing inclusion that is not carbonate. C-XANES features of the diamond-edges suggest that the diamond might have formed by the CVD process, or in a high-temperature and -pressure environment in the interior of a much larger parent body.

  17. Chemical and microstructural changes at high temperature in tungsten wire reinforced metal-matrix composite materials

    International Nuclear Information System (INIS)

    Eaton, H.C.; Norden, H.

    1985-01-01

    Tungsten wire reinforced metal-matrix composites have been developed as a gas turbine blade material. Initially it was thought desirable to employ nickel or iron based superalloys as the matrix material due to their demonstrated reliability in applications where a high degree of dimensional stability, and thermal and mechanical fatigue resistance are required. It has been found, however, that deleterious fiber/matrix interactions occur in these systems under in-service conditions. These interactions seriously degrade the mechanical properties, and there is an effective lowering of the recrystallization temperature of the tungsten to the degree that grain structure changes can take place at unusually low temperatures. The present communication reports a study of the early stages of these interactions. Several microscopic and analytical techniques are used: TEM, SIMS, FIM, and the field ion atom probe. The nickel/tungsten interaction is thought to involve solute atom transport along grain boundaries. The grain boundary chemistry after short exposures to nickel at 1100 0 C is determined. In this manner the precursor interaction mechanisms are observed. These observations suggest that the strong nickel/tungsten grain boundary interactions do not involve the formation of distinct alloy phases, but instead involve rapid diffusion of essentially unalloyed nickel along the grain boundaries

  18. Pre design processing of waste of ex-resin without materials matrix from nuclear power plant type PWR 1000 MW

    International Nuclear Information System (INIS)

    Cerdas Tarigan

    2010-01-01

    Have been done pre design processing of waste ex-resin without capacities matrix materials from nuclear power plant type PWR 1000 MW During the time radioactive waste of ex-resin processed to use process of immobilization use matrix materials like mixture cement and epoxy resin and then conditioning. This process is not effective and efficient because end result volume of end product bigger than volume early operation system and maintenance of its installation more difficult. To overcome this created a design of technology processing of waste of ex- resin without matrix materials through process of strainer, drying and conditioning represent technological innovation newly processing of radioactive waste of ex-resin. Besides this process more effective and efficient, volume of end product waste much more small from volume early and operation system and maintenance of its easier installation. Pre design is expected to be used as a basis to make conceptual of pre design installation of strainer, drying and conditioning for the processing of waste of ex-resin from nuclear power plant type PWR 1000 MW. (author)

  19. Process for the manufacture of seamless metal-clad fiber-reinforced organic matrix composite structures

    Science.gov (United States)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1991-01-01

    A process for producing seamless metal-clad composite structures includes providing a hollow, metallic inner member and an outer sleeve to surround the inner member and define an inner space therebetween. A plurality of continuous reinforcing fibers is attached to the distal end of the outside diameter of the inner member, and the inner member is then introduced, distal end first, into one end of the outer sleeve. The inner member is then moved, distal end first, into the outer sleeve until the inner member is completely enveloped by the outer sleeve. A liquid matrix material is then injected into the space containing the reinforcing fibers between the inner member and the outer sleeve. Next a pressurized heat transfer medium is passed through the inner member to cure the liquid matrix material. Finally, the wall thickness of both the inner member and the outer sleeve are reduced to desired dimensions by chemical etching, which adjusts the thermal expansion coefficient of the metal-clad composite structure to a desired value.

  20. From Real Materials to Model Hamiltonians With Density Matrix Downfolding

    Directory of Open Access Journals (Sweden)

    Huihuo Zheng

    2018-05-01

    Full Text Available Due to advances in computer hardware and new algorithms, it is now possible to perform highly accurate many-body simulations of realistic materials with all their intrinsic complications. The success of these simulations leaves us with a conundrum: how do we extract useful physical models and insight from these simulations? In this article, we present a formal theory of downfolding–extracting an effective Hamiltonian from first-principles calculations. The theory maps the downfolding problem into fitting information derived from wave functions sampled from a low-energy subspace of the full Hilbert space. Since this fitting process most commonly uses reduced density matrices, we term it density matrix downfolding (DMD.

  1. Electrodeposition of Metal Matrix Composites and Materials Characterization for Thin-Film Solar Cells

    Science.gov (United States)

    2017-12-04

    Air Mass CNT Carbon Nanotubes DIV Dark Current -Voltage DMA Dynamic Mechanical Analysis EL Electroluminescence FEM Finite Element Method IMM...AFRL-RV-PS- AFRL-RV-PS- TR-2017-0174 TR-2017-0174 ELECTRODEPOSITION OF METAL MATRIX COMPOSITES AND MATERIALS CHARACTERIZATION FOR THIN-FILM SOLAR...research which is exempt from public affairs security and policy review in accordance with AFI 61-201, paragraph 2.3.5.1. This report is available to

  2. Optimization of Surrounding Reflector Material for Hyb-WT

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Hong, Song Hee; Kim, Myung Hyun

    2013-01-01

    The choice of reflector material is crucial for fusion and hybrid reactors as it was for the fission reactors. Multiple reflector materials were studied for pure fusion blanket design. The purpose of reflector in fusion blanket is to enhance the tritium breeding ratio (TBR). In fusion fission hybrid blanket the roll of reflector is slightly changed as it include the fission core and the performance of fission core also needs to be optimized and evaluated with the choice of reflector material, along with the enhancement of TBR. The performance parameters of Hyb-WT are significantly influenced by the choice of reflector material. TiC is best for TRU transmutation, TBR and reduced the neutron wall loading and graphite is best for FP transmutation. Strategy of multi reflector materials gives the best TRU and FP transmutation performance and also enhanced TBR with reduced neutron wall loading and it is a better choice for Hyb-WT reflector. The neutron flux is primarily dominated by the fission neutrons

  3. Atmospheric-Pressure Cold Plasmas Used to Embed Bioactive Compounds in Matrix Material for Active Packaging of Fruits and Vegetables

    Science.gov (United States)

    Fernandez, Sulmer; Pedrow, Patrick; Powers, Joseph; Pitts, Marvin

    2009-10-01

    Active thin film packaging is a technology with the potential to provide consumers with new fruit and vegetable products-if the film can be applied without deactivating bioactive compounds.Atmospheric pressure cold plasma (APCP) processing can be used to activate monomer with concomitant deposition of an organic plasma polymerized matrix material and to immobilize a bioactive compound all at or below room temperature.Aims of this work include: 1) immobilize an antimicrobial in the matrix; 2) determine if the antimicrobial retains its functionality and 3) optimize the reactor design.The plasma zone will be obtained by increasing the voltage on an electrode structure until the electric field in the feed material (argon + monomer) yields electron avalanches. Results will be described using Red Delicious apples.Prospective matrix precursors are vanillin and cinnamic acid.A prospective bioactive compound is benzoic acid.

  4. Placental vascular responses are dependent on surrounding tissue

    DEFF Research Database (Denmark)

    Brøgger, Torbjørn Halle

    . Materials and methods. From fresh born placentas, stem villi arteries were carefully dissected. The artery branches were divided. The surrounding tissue was removed from one end and was left untouched in the other end.Then, using wire myography, they were investigated in terms of contractility...... and sensitivity to physiological relevant human-like agonists. Results. Sensitivity to PGF2α, Tx-analog, 5-HT and endothelin-1 was significantly lower in arteries with intact surrounding tissue compared to arteries stripped of the tissue. The maximal force development was also significantly lower in arteries...... with surrounding tissue when they were depolarized high extracellular [K+] or stimulated with PGF2α or endotheline-1. Conclusion. The perivascular tissue significantly alters stem villi arteries' sensitivity and force development in a suppressive way. This implicates a new aspect of blood flow regulation...

  5. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    Science.gov (United States)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  6. Nondestructive evaluation of ceramic and metal matrix composites for NASA's HITEMP and enabling propulsion materials programs

    Science.gov (United States)

    Generazio, Edward R.

    1992-01-01

    In a preliminary study, ultrasonic, x-ray opaque, and fluorescent dye penetrants techniques were used to evaluate and characterize ceramic and metal matrix composites. Techniques are highlighted for identifying porosity, fiber alignment, fiber uniformity, matrix cracks, fiber fractures, unbonds or disbonds between laminae, and fiber-to-matrix bond variations. The nondestructive evaluations (NDE) were performed during processing and after thermomechanical testing. Specific examples are given for Si3N4/SiC (SCS-6 fiber), FeCrAlY/Al2O3 fibers, Ti-15-3/SiC (SCS-6 fiber) materials, and Si3N4/SiC (SCS-6 fiber) actively cooled panel components. Results of this study indicate that the choice of the NDE tools to be used can be optimized to yield a faithful and accurate evaluation of advanced composites.

  7. Polymer matrix electroluminescent materials and devices

    Science.gov (United States)

    Marrocco, III, Matthew L.; Motamedi, Farshad J [Claremont, CA; Abdelrazzaq, Feras Bashir [Covina, CA; Abdelrazzaq, legal representative, Bashir Twfiq

    2012-06-26

    Photoluminescent and electroluminescent compositions are provided which comprise a matrix comprising aromatic repeat units covalently coordinated to a phosphorescent or luminescent metal ion or metal ion complexes. Methods for producing such compositions, and the electroluminescent devices formed therefrom, are also disclosed.

  8. Development and Application of a Tool for Optimizing Composite Matrix Viscoplastic Material Parameters

    Science.gov (United States)

    Murthy, Pappu L. N.; Naghipour Ghezeljeh, Paria; Bednarcyk, Brett A.

    2018-01-01

    This document describes a recently developed analysis tool that enhances the resident capabilities of the Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) and its application. MAC/GMC is a composite material and laminate analysis software package developed at NASA Glenn Research Center. The primary focus of the current effort is to provide a graphical user interface (GUI) capability that helps users optimize highly nonlinear viscoplastic constitutive law parameters by fitting experimentally observed/measured stress-strain responses under various thermo-mechanical conditions for braided composites. The tool has been developed utilizing the MATrix LABoratory (MATLAB) (The Mathworks, Inc., Natick, MA) programming language. Illustrative examples shown are for a specific braided composite system wherein the matrix viscoplastic behavior is represented by a constitutive law described by seven parameters. The tool is general enough to fit any number of experimentally observed stress-strain responses of the material. The number of parameters to be optimized, as well as the importance given to each stress-strain response, are user choice. Three different optimization algorithms are included: (1) Optimization based on gradient method, (2) Genetic algorithm (GA) based optimization and (3) Particle Swarm Optimization (PSO). The user can mix and match the three algorithms. For example, one can start optimization with either 2 or 3 and then use the optimized solution to further fine tune with approach 1. The secondary focus of this paper is to demonstrate the application of this tool to optimize/calibrate parameters for a nonlinear viscoplastic matrix to predict stress-strain curves (for constituent and composite levels) at different rates, temperatures and/or loading conditions utilizing the Generalized Method of Cells. After preliminary validation of the tool through comparison with experimental results, a detailed virtual parametric study is

  9. Method for modeling the gradual physical degradation of a porous material

    Energy Technology Data Exchange (ETDEWEB)

    Flach, Greg [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-20

    Cementitious and other engineered porous materials encountered in waste disposals may degrade over time due to one or more mechanisms. Physical degradation may take the form of cracking (fracturing) and/or altered (e.g. increased) porosity, depending on the material and underlying degradation mechanism. In most cases, the hydraulic properties of degrading materials are expected to evolve due to physical changes occurring over roughly the pore to decimeter scale, which is conducive to calculating equivalent or effective material properties. The exact morphology of a degrading material in its end-state may or may not be known. In the latter case, the fully-degraded condition can be assumed to be similar to a more-permeable material in the surrounding environment, such as backfill soil. Then the fully-degraded waste form or barrier material is hydraulically neutral with respect to its surroundings, constituting neither a barrier to nor conduit for moisture flow and solute transport. Unless the degradation mechanism is abrupt, a gradual transition between the intact initial and fully-degraded final states is desired. Linear interpolation through time is one method for smoothly blending hydraulic properties between those of an intact matrix and those of a soil or other surrogate for the end-state.

  10. Method for modeling the gradual physical degradation of a porous material

    International Nuclear Information System (INIS)

    Flach, Greg

    2017-01-01

    Cementitious and other engineered porous materials encountered in waste disposals may degrade over time due to one or more mechanisms. Physical degradation may take the form of cracking (fracturing) and/or altered (e.g. increased) porosity, depending on the material and underlying degradation mechanism. In most cases, the hydraulic properties of degrading materials are expected to evolve due to physical changes occurring over roughly the pore to decimeter scale, which is conducive to calculating equivalent or effective material properties. The exact morphology of a degrading material in its end-state may or may not be known. In the latter case, the fully-degraded condition can be assumed to be similar to a more-permeable material in the surrounding environment, such as backfill soil. Then the fully-degraded waste form or barrier material is hydraulically neutral with respect to its surroundings, constituting neither a barrier to nor conduit for moisture flow and solute transport. Unless the degradation mechanism is abrupt, a gradual transition between the intact initial and fully-degraded final states is desired. Linear interpolation through time is one method for smoothly blending hydraulic properties between those of an intact matrix and those of a soil or other surrogate for the end-state.

  11. Concurrent material-fabrication optimization of metal-matrix laminates under thermo-mechanical loading

    Science.gov (United States)

    Saravanos, D. A.; Morel, M. R.; Chamis, C. C.

    1991-01-01

    A methodology is developed to tailor fabrication and material parameters of metal-matrix laminates for maximum loading capacity under thermomechanical loads. The stresses during the thermomechanical response are minimized subject to failure constrains and bounds on the laminate properties. The thermomechanical response of the laminate is simulated using nonlinear composite mechanics. Evaluations of the method on a graphite/copper symmetric cross-ply laminate were performed. The cross-ply laminate required different optimum fabrication procedures than a unidirectional composite. Also, the consideration of the thermomechanical cycle had a significant effect on the predicted optimal process.

  12. Biochemical and biomechanical properties of the pacemaking sinoatrial node extracellular matrix are distinct from contractile left ventricular matrix.

    Directory of Open Access Journals (Sweden)

    Jessica M Gluck

    Full Text Available Extracellular matrix plays a role in differentiation and phenotype development of its resident cells. Although cardiac extracellular matrix from the contractile tissues has been studied and utilized in tissue engineering, extracellular matrix properties of the pacemaking sinoatrial node are largely unknown. In this study, the biomechanical properties and biochemical composition and distribution of extracellular matrix in the sinoatrial node were investigated relative to the left ventricle. Extracellular matrix of the sinoatrial node was found to be overall stiffer than that of the left ventricle and highly heterogeneous with interstitial regions composed of predominantly fibrillar collagens and rich in elastin. The extracellular matrix protein distribution suggests that resident pacemaking cardiomyocytes are enclosed in fibrillar collagens that can withstand greater tensile strength while the surrounding elastin-rich regions may undergo deformation to reduce the mechanical strain in these cells. Moreover, basement membrane-associated adhesion proteins that are ligands for integrins were of low abundance in the sinoatrial node, which may decrease force transduction in the pacemaking cardiomyocytes. In contrast to extracellular matrix of the left ventricle, extracellular matrix of the sinoatrial node may reduce mechanical strain and force transduction in pacemaking cardiomyocytes. These findings provide the criteria for a suitable matrix scaffold for engineering biopacemakers.

  13. Impact Strength of Composite Materials Based on EN AC-44200 Matrix Reinforced with Al2O3 Particles

    Directory of Open Access Journals (Sweden)

    Kurzawa A.

    2017-09-01

    Full Text Available The paper presents the results of research of impact strength of aluminum alloy EN AC-44200 based composite materials reinforced with alumina particles. The research was carried out applying the materials produced by the pressure infiltration method of ceramic preforms made of Al2O3 particles of 3-6μm with the liquid EN AC-44200 Al alloy. The research was aimed at determining the composite resistance to dynamic loads, taking into account the volume of reinforcing particles (from 10 to 40% by volume at an ambient of 23°C and at elevated temperatures to a maximum of 300°C. The results of this study were referred to the unreinforced matrix EN AC-44200 and to its hardness and tensile strength. Based on microscopic studies, an analysis and description of crack mechanics of the tested materials were performed. Structural analysis of a fracture surface, material structures under the crack surfaces of the matrix and cracking of the reinforcing particles were performed.

  14. Integrins and extracellular matrix in mechanotransduction

    Directory of Open Access Journals (Sweden)

    Ramage L

    2011-12-01

    Full Text Available Lindsay RamageQueen’s Medical Research Institute, University of Edinburgh, Edinburgh, UKAbstract: Integrins are a family of cell surface receptors which mediate cell–matrix and cell–cell adhesions. Among other functions they provide an important mechanical link between the cells external and intracellular environments while the adhesions that they form also have critical roles in cellular signal-transduction. Cell–matrix contacts occur at zones in the cell surface where adhesion receptors cluster and when activated the receptors bind to ligands in the extracellular matrix. The extracellular matrix surrounds the cells of tissues and forms the structural support of tissue which is particularly important in connective tissues. Cells attach to the extracellular matrix through specific cell-surface receptors and molecules including integrins and transmembrane proteoglycans. Integrins work alongside other proteins such as cadherins, immunoglobulin superfamily cell adhesion molecules, selectins, and syndecans to mediate cell–cell and cell–matrix interactions and communication. Activation of adhesion receptors triggers the formation of matrix contacts in which bound matrix components, adhesion receptors, and associated intracellular cytoskeletal and signaling molecules form large functional, localized multiprotein complexes. Cell–matrix contacts are important in a variety of different cell and tissue properties including embryonic development, inflammatory responses, wound healing, and adult tissue homeostasis. This review summarizes the roles and functions of integrins and extracellular matrix proteins in mechanotransduction.Keywords: ligand binding, α subunit, ß subunit, focal adhesion, cell differentiation, mechanical loading, cell–matrix interaction

  15. Atomic structure of embedded Fe nanoclusters as a function of host matrix material: a synchrotron radiation study

    International Nuclear Information System (INIS)

    Baker, S H; Roy, M; Gurman, S J; Louch, S; Bleloch, A; Binns, C

    2004-01-01

    The atomic structure of Fe nanoclusters embedded in a range of matrix materials has been studied using synchrotron radiation. In particular, the effect of embedding the clusters in Ag, amorphous carbon (a-C) and a porous C 60 matrix is investigated. The embedded cluster samples were prepared by co-deposition using a gas aggregation cluster source. Samples with both dilute and high-volume-filling fraction of clusters, at 4 and 40% respectively, were prepared. Fe K edge EXAFS measurements were used to probe the structure within the clusters. In a Ag matrix, the Fe clusters retain the b.c.c. structure of bulk Fe while in a-C there is evidence for both b.c.c. and f.c.c. structures in the clusters. These results are independent of cluster volume-filling fraction over the range investigated. When embedded in a porous C 60 matrix, the Fe clusters oxidize to Fe 2 O 3

  16. Development of a material property database on selected ceramic matrix composite materials

    Science.gov (United States)

    Mahanta, Kamala

    1996-01-01

    Ceramic Matrix Composites, with fiber/whisker/particulate reinforcement, possess the attractive properties of ceramics such as high melting temperature, high strength and stiffness at high temperature, low density, excellent environmental resistance, combined with improved toughness and mechanical reliability. These unique properties have made these composites an enabling technology for thermomechanically demanding applications in high temperature, high stress and aggressive environments. On a broader scale, CMC's are anticipated to be applicable in aircraft propulsion, space propulsion, power and structures, in addition to ground based applications. However, it is also true that for any serious commitment of the material toward any of the intended critical thermo-mechanical applications to materialize, vigorous research has to be conducted for a thorough understanding of the mechanical and thermal behavior of CMC's. The high technology of CMC'S is far from being mature. In view of this growing need for CMC data, researchers all over the world have found themselves drawn into the characterization of CMC's such as C/SiC, SiC/SiC, SiC/Al203, SiC/Glass, SiC/C, SiC/Blackglas. A significant amount of data has been generated by the industries, national laboratories and educational institutions in the United States of America. NASA/Marshall Space Flight Center intends to collect the 'pedigreed' CMC data and store those in a CMC database within MAPTIS (Materials and Processes Technical Information System). The task of compilation of the CMC database is a monumental one and requires efforts in various directions. The project started in the form of a summer faculty fellowship in 1994 and has spilled into the months that followed and into the summer faculty fellowship of 1995 and has the prospect of continuing into the future for a healthy growth, which of course depends to a large extent on how fast CMC data are generated. The 10-week long summer fellowship has concentrated

  17. The controversial nuclear matrix: a balanced point of view.

    Science.gov (United States)

    Martelli, A M; Falcieri, E; Zweyer, M; Bortul, R; Tabellini, G; Cappellini, A; Cocco, L; Manzoli, L

    2002-10-01

    The nuclear matrix is defined as the residual framework after the removal of the nuclear envelope, chromatin, and soluble components by sequential extractions. According to several investigators the nuclear matrix provides the structural basis for intranuclear order. However, the existence itself and the nature of this structure is still uncertain. Although the techniques used for the visualization of the nuclear matrix have improved over the years, it is still unclear to what extent the isolated nuclear matrix corresponds to an in vivo existing structure. Therefore, considerable skepticism continues to surround the nuclear matrix fraction as an accurate representation of the situation in living cells. Here, we summarize the experimental evidence in favor of, or against, the presence of a diffuse nucleoskeleton as a facilitating organizational nonchromatin structure of the nucleus.

  18. Osteoarthritis as a disease of the cartilage pericellular matrix.

    Science.gov (United States)

    Guilak, Farshid; Nims, Robert; Dicks, Amanda; Wu, Chia-Lung; Meulenbelt, Ingrid

    2018-05-22

    Osteoarthritis is a painful joint disease characterized by progressive degeneration of the articular cartilage as well as associated changes to the subchondral bone, synovium, and surrounding joint tissues. While the effects of osteoarthritis on the cartilage extracellular matrix (ECM) have been well recognized, it is now becoming apparent that in many cases, the onset of the disease may be initially reflected in the matrix region immediately surrounding the chondrocytes, termed the pericellular matrix (PCM). Growing evidence suggests that the PCM - which along with the enclosed chondrocytes are termed the "chondron" - acts as a critical transducer or "filter" of biochemical and biomechanical signals for the chondrocyte, serving to help regulate the homeostatic balance of chondrocyte metabolic activity in response to environmental signals. Indeed, it appears that alterations in PCM properties and cell-matrix interactions, secondary to genetic, epigenetic, metabolic, or biomechanical stimuli, could in fact serve as initiating or progressive factors for osteoarthritis. Here, we discuss recent advances in the understanding of the role of the PCM, with an emphasis on the reciprocity of changes that occur in this matrix region with disease, as well as how alterations in PCM properties could serve as a driver of ECM-based diseases such as osteoarthritis. Further study of the structure, function, and composition of the PCM in normal and diseased conditions may provide new insights into the understanding of the pathogenesis of osteoarthritis, and presumably new therapeutic approaches for this disease. Copyright © 2017. Published by Elsevier B.V.

  19. Feasibility study on production of a matrix reference material for cyanobacterial toxins.

    Science.gov (United States)

    Hollingdale, Christie; Thomas, Krista; Lewis, Nancy; Békri, Khalida; McCarron, Pearse; Quilliam, Michael A

    2015-07-01

    The worldwide increase in cyanobacterial contamination of freshwater lakes and rivers is of great concern as many cyanobacteria produce potent hepatotoxins and neurotoxins (cyanotoxins). Such toxins pose a threat to aquatic ecosystems, livestock, and drinking water supplies. In addition, dietary supplements prepared from cyanobacteria can pose a risk to consumers if they contain toxins. Analytical monitoring for toxins in the environment and in consumer products is essential for the protection of public health. Reference materials (RMs) are an essential tool for the development and validation of analytical methods and are necessary for ongoing quality control of monitoring operations. Since the availability of appropriate RMs for cyanotoxins has been very limited, the present study was undertaken to examine the feasibility of producing a cyanobacterial matrix RM containing various cyanotoxins. The first step was large-scale culturing of various cyanobacterial cultures that produce anatoxins, microcystins, and cylindrospermopsins. After harvesting, the biomass was lyophilized, blended, homogenized, milled, and bottled. The moisture content and physical characteristics were assessed in order to evaluate the effectiveness of the production process. Toxin levels were measured by liquid chromatography with tandem mass spectrometry and ultraviolet detection. The reference material was found to be homogeneous for toxin content. Stability studies showed no significant degradation of target toxins over a period of 310 days at temperatures up to +40 °C except for the anatoxin-a, which showed some degradation at +40 °C. These results show that a fit-for-purpose matrix RM for cyanotoxins can be prepared using the processes and techniques applied in this work.

  20. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun Kit; Luo, Baiwen; Guneta, Vipra [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Li, Liang; Foo, Selin Ee Min [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Dai, Yun; Tan, Timothy Thatt Yang [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Tan, Nguan Soon [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore 138673 (Singapore); KK Research Centre, KK Women' s and Children' s Hospital, 100 Bukit Timah Road, Singapore 229899 (Singapore); Choong, Cleo, E-mail: cleochoong@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); KK Research Centre, KK Women' s and Children' s Hospital, 100 Bukit Timah Road, Singapore 229899 (Singapore); Wong, Marcus Thien Chong [Plastic, Reconstructive & Aesthetic Surgery, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore)

    2017-06-01

    Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO{sub 2}) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO{sub 2}-treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO{sub 2}-treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO{sub 2}-treated ECM coating can be potentially used for various biomedical applications. The SC-CO{sub 2}-treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO{sub 2}-treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO{sub 2}-treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall

  1. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue.

    Science.gov (United States)

    Wang, Jun Kit; Luo, Baiwen; Guneta, Vipra; Li, Liang; Foo, Selin Ee Min; Dai, Yun; Tan, Timothy Thatt Yang; Tan, Nguan Soon; Choong, Cleo; Wong, Marcus Thien Chong

    2017-06-01

    Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO 2 ) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO 2 -treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO 2 -treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO 2 -treated ECM coating can be potentially used for various biomedical applications. The SC-CO 2 -treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO 2 -treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO 2 -treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall, this study shows the efficacy

  2. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue

    International Nuclear Information System (INIS)

    Wang, Jun Kit; Luo, Baiwen; Guneta, Vipra; Li, Liang; Foo, Selin Ee Min; Dai, Yun; Tan, Timothy Thatt Yang; Tan, Nguan Soon; Choong, Cleo; Wong, Marcus Thien Chong

    2017-01-01

    Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO 2 ) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO 2 -treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO 2 -treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO 2 -treated ECM coating can be potentially used for various biomedical applications. The SC-CO 2 -treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO 2 -treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO 2 -treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall, this study shows the efficacy

  3. Novel biocompatible polymeric blends for bone regeneration: Material and matrix design and development

    Science.gov (United States)

    Deng, Meng

    The first part of the work presented in this dissertation is focused on the design and development of novel miscible and biocompatible polyphosphazene-polyester blends as candidate materials for scaffold-based bone tissue engineering applications. Biodegradable polyesters such as poly(lactide-co-glycolide) (PLAGA) are among the most widely used polymeric materials for bone tissue engineering. However, acidic degradation products resulting from the bulk degradation mechanism often lead to catastrophic failure of the structure integrity, and adversely affect biocompatibility both in vitro and in vivo. One promising approach to circumvent these limitations is to blend PLAGA with other macromolecules that can buffer the acidic degradation products with a controlled degradation rate. Biodegradable polyphosphazenes (PPHOS), a new class of biomedical materials, have proved to be superior candidate materials to achieve this objective due to their unique buffering degradation products. A highly practical blending approach was adopted to develop novel biocompatible, miscible blends of these two polymers. In order to achieve this miscibility, a series of amino acid ester, alkoxy, aryloxy, and dipeptide substituted PPHOS were synthesized to promote hydrogen bonding interactions with PLAGA. Five mixed-substituent PPHOS compositions were designed and blended with PLAGA at different weight ratios producing candidate blends via a mutual solvent method. Preliminary characterization identified two specific side groups namely glycylglycine dipeptide and phenylphenoxy that resulted in improved blend miscibility and enhanced in vitro osteocompatibility. These findings led to the synthesis of a mixed-substituent polyphosphazene poly[(glycine ethyl glycinato)1(phenylphenoxy)1phosphazene] (PNGEGPhPh) for blending with PLAGA. Two dipeptide-based blends having weight ratios of PNGEGPhPh to PLAGA namely 25:75 (Matrix1) and 50:50 (Matrix2) were fabricated. Both of the blends were

  4. 3D cancer cell migration in a confined matrix

    Science.gov (United States)

    Alobaidi, Amani; Sun, Bo

    Cancer cell migration is widely studied in 2D motion, which does not mimic the invasion processes in vivo. More recently, 3D cell migration studies have been performed. The ability of cancer cells to migrate within the extracellular matrix depends on the physical and biochemical features of the extracellular matrix. We present a model of cell motility in confined matrix geometry. The aim of the study is to study cancer migration in collagen matrix, as a soft tissue, to investigate their motility within the confined and surrounding collagen environment. Different collagen concentrations have been used to show the ability of these cancer cells to move through such a complex structure by measuring Cancer cell migration velocity as well as the displacement. Graduate student physics department.

  5. Composite material

    Science.gov (United States)

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  6. EXPERIMENTAL DEVELOPMENT OF BIO-BASED POLYMER MATRIX BUILDING MATERIAL AND FISH BONE DIAGRAM FOR MATERIAL EFFECT ON QUALITY

    Directory of Open Access Journals (Sweden)

    Asmamaw Tegegne

    2014-06-01

    Full Text Available These days cost of building materials are continuously increasing and the conventional construction materials for this particular purpose become low and low. The weight of conventional construction materials particularly building block is heavy and costly due to particularly cement. Thus, the objective of this paper is to develop an alternative light weight, high strength and relatively cost effective building material that satisfy the quality standard used in the country. A bio-based polymer matrix composite material for residential construction was experimentally developed. Sugar cane bagasse, thermoplastics (polyethylene g roup sand and red ash were used as materials alternatively. Mixing of the additives,melting of the hermoplastics, molding and curing (dryingwere the common methods used on the forming process of the samples. Mechanical behavior evaluation (testing of the product was carried out. Totally 45 specimens were produced and three replicate tests were performed per each test type. Quality analysis was carried out for group B material using Ishikawa diagram. The tensile strength of group A specimen was approximately 3 times greater than that of group B specimens. The compression strength of group A specimens were nearly 2 times greater than group B. Comparing to the conventional building materials(concert block and agrostoneproduced in the country, which the compression strength is 7Mpa and 16Mpa respectively, the newly produced materials show much better results in which Group A is 25.66 Mpa and group B is 16.66 Mpa. energy absorption capacity of group A specimens was approximately 3 times better than that of group B. Water absorption test was carried out for both groups and both showed excellent resistivity. Group A composite material specimens, showed better results in all parameters.

  7. Investigation of Effects of Material Architecture on the Elastic Response of a Woven Ceramic Matrix Composite

    Science.gov (United States)

    Goldberg, Robert K.; Bonacuse, Peter J.; Mital, Subodh K.

    2012-01-01

    To develop methods for quantifying the effects of the microstructural variations of woven ceramic matrix composites on the effective properties and response of the material, a research program has been undertaken which is described in this paper. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, CVI SiC/SiC, composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents and collect relevant statistics such as within ply tow spacing. This information was then used to build two dimensional finite element models that approximated the observed section geometry. With the aid of geometrical models generated by the microstructural characterization process, finite element models were generated and analyses were performed to quantify the effects of the microstructure and its variation on the effective stiffness and areas of stress concentration of the material. The results indicated that the geometry and distribution of the porosity appear to have significant effects on the through-thickness modulus. Similarly, stress concentrations on the outer surface of the composite appear to correlate to regions where the transverse tows are separated by a critical amount.

  8. Activity concentration measurements of 137Cs, 90Sr and 40K in a wild food matrix reference material (Wild Berries) CCRI(II)-S8

    International Nuclear Information System (INIS)

    Watjen, U.; Altzitzogloa, T.; Spasova, Y.; Ceccatelli, A.; Kis-Benedek, G.; Dikmen, H.; Gundogdu, G.; Yucel, U.; Ferreux, L.; Frechou, C.; Pierre, S.; Garcia, L.; Moreno, Y.; Oropesa, P.; La Rosa, J.; Luca, A.; Schmiedel, M.; Wershofen, H.; Szucs, L.; Vasile, M.

    2014-01-01

    In 2009, the CCRI approved a supplementary comparison to be organized by the IRMM as pilot laboratory for the activity concentrations of 137 Cs, 90 Sr and 40 K in a matrix material of dried bilberries. The organization of this comparison and the material and measurement methods used are described. The supplementary comparison reference values (SCRV) for each of the three radionuclides are given together with the degrees of equivalence of each participating laboratory with the SCRV for the specific radionuclide. The results of this supplementary comparison allow the participating NMIs/designated institutes to declare calibration and measurement capabilities (CMCs) for the given radionuclides in a similar type of food matrix, an important aspect given the relatively few supplementary comparisons for activity in matrix materials organized so far. (authors)

  9. A permeability barrier surrounds taste buds in lingual epithelia

    Science.gov (United States)

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa

    2014-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003–1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. PMID:25209263

  10. A permeability barrier surrounds taste buds in lingual epithelia.

    Science.gov (United States)

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2015-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003-1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. Copyright © 2015 the American Physiological Society.

  11. Impact of Material and Architecture Model Parameters on the Failure of Woven Ceramic Matrix Composites (CMCs) via the Multiscale Generalized Method of Cells

    Science.gov (United States)

    Liu, Kuang C.; Arnold, Steven M.

    2011-01-01

    It is well known that failure of a material is a locally driven event. In the case of ceramic matrix composites (CMCs), significant variations in the microstructure of the composite exist and their significance on both deformation and life response need to be assessed. Examples of these variations include changes in the fiber tow shape, tow shifting/nesting and voids within and between tows. In the present work, the effects of many of these architectural parameters and material scatter of woven ceramic composite properties at the macroscale (woven RUC) will be studied to assess their sensitivity. The recently developed Multiscale Generalized Method of Cells methodology is used to determine the overall deformation response, proportional elastic limit (first matrix cracking), and failure under tensile loading conditions. The macroscale responses investigated illustrate the effect of architectural and material parameters on a single RUC representing a five harness satin weave fabric. Results shows that the most critical architectural parameter is weave void shape and content with other parameters being less in severity. Variation of the matrix material properties was also studied to illustrate the influence of the material variability on the overall features of the composite stress-strain response.

  12. Fulgide-based WRE holographic materials: influence of the matrix on the fatigue process

    Science.gov (United States)

    Lessard, Roger A.; Lafond, Christophe; Darderian, Geraldine; Gardette, Jean-Luc; Rivaton, Agnes; Bolte, Michele

    2003-12-01

    The reversible reaction that takes place in the writable, readable, erasable (WRE) photosensitive materials involving fulgides (ABERCHROM 540 and 670) was investigated with a photochemical and holographic approach. It appeared that the fatigue of the photosensitive material was strongly dependent on the properties of the matrix used as a support. This was precisely established both by spectroscopic monitoring (λmax, absorbancemax, photo-stationary state) and by following the diffraction efficiency η values. There was a nice correlation between the evolution of the spectral features of C isomer and of the η values all along the WRE cycles. This combined approach was applied to four different supports: PVK, PMMA, PEPC/PS and epoxy RESIN. So for both fulgides: (1) PVK, frequently used in optics, appears as being the worst one. The starting fulgides were destroyed after only a few WRE cycles. This was assigned to the intrinsic photoaging of PVK whose absorption in UV domain is far from negligible and leads to the formation of radical species able to attack the fulgide. (2) Holograms recorded in PMMA and PEPC/PS present similar behavior with a loss of ~10% after 8 cycles. (3) Epoxy RESIN appears to be a very good candidate for these reversible systems; no fatigue was observed after 40 cycles. It has to be attributed to the matrix in which the detrimental rotation process, giving rise to the non photochromic Z isomer, is strongly inhibited.

  13. Dynamic impact response of high-density square honeycombs made of TRIP steel and TRIP matrix composite material

    Directory of Open Access Journals (Sweden)

    Weigelt C.

    2012-08-01

    Full Text Available Two designs of square-celled metallic honeycomb structures fabricated by a modified extrusion technology based on a powder feedstock were investigated. The strength and ductility of these cellular materials are achieved by an austenitic CrNi (AISI 304 steel matrix particle reinforced by an MgO partially-stabilized zirconia building up their cell wall microstructure. Similar to the mechanical behaviour of the bulk materials, the strengthening mechanism and the martensitic phase transformations in the cell walls are affected by the deformation temperature and the nominal strain rate. The microstructure evolution during quasi-static and dynamic impact compression up to high strain rates of 103 1/s influences the buckling and failure behaviour of the honeycomb structures. In contrast to bending-dominated quasi-isotropic networks like open-celled metal foams, axial compressive loading to the honeycomb’s channels causes membrane stretching as well as crushing of the vertical cell node elements and cell walls. The presented honeycomb materials differ geometrically in their cell wall thickness-to-cell size-ratio. Therefore, the failure behaviour is predominantly controlled by global buckling and torsional-flexural buckling, respectively, accompanied by plastic matrix flow and strengthening of the cell wall microstructure.

  14. Research on the Horizontal Displacement Coefficient of Soil Surrounding Pile in Layered Foundations by Considering the Soil Mass’s Longitudinal Continuity

    Directory of Open Access Journals (Sweden)

    Yao Wen-Juan

    2013-01-01

    Full Text Available When utilizing the p-y curve to simulate the nonlinear characteristics of soil surrounding pile in layered foundations, due to having not taken into account the soil mass’s longitudinal continuity, the calculation deviation of horizontal displacement increases with the growth of a load. This paper adopted the layered elasticity system theory to consider the soil mass’s longitudinal continuity, as well as utilizing the research method for layered isotropic bodies, assuming that the horizontal resistance is evenly distributed around the perimeter of the pile's cross-section. Then an appropriate transfer matrix method of horizontal displacement coefficient for the soil surrounding pile in layered foundations was established. According to the calculation principle of finite element equivalent load, the horizontal displacement coefficient matrix was deduced as well as providing a corrected formula for the horizontal displacement of soil surrounding pile through the p-y curve method when the external load was increased. Following the established model, a program was created which was used for calculating and analyzing the horizontal displacement coefficient matrix of three-layered soil in order to verify this method’s validity and rationale. Where there is a relatively large discrepancy in the soil layers’ properties, this paper’s method is able to reflect the influence on the layered soil’s actual distributional difference as well as the nearby soil layers’ interaction.

  15. Milling Behavior of Matrix Graphite Powders with Different Binder Materials in HTGR Fuel Element Fabrication: I. Variation in Particle Size Distribution

    International Nuclear Information System (INIS)

    Lee, Young Woo; Cho, Moon Sung

    2011-01-01

    The fuel element for HTGR is manufactured by mixing coated fuel particles with matrix graphite powder and forming into either pebble type or cylindrical type compacts depending on their use in different HTGR cores. The coated fuel particle, the so-called TRISO particle, consists of 500-μm spherical UO 2 particles coated with the low density buffer Pyrolytic Carbon (PyC) layer, the inner and outer high density PyC layer and SiC layer sandwiched between the two inner and outer PyC layers. The coated TRISO particles are mixed with a matrix graphite powder properly prepared and pressed into a spherical shape or a cylindrical compact finally heat-treated at about 1900 .deg. C. These fuel elements can have different sizes and forms of compact. The basic steps for manufacturing a fuel element include preparation of graphite matrix powder, overcoating the fuel particles, mixing the fuel particles with a matrix powder, carbonizing green compact, and the final high-temperature heat treatment of the carbonized fuel compact. In order to develop a fuel compact fabrication technology, it is important to develop a technology to prepare the matrix graphite powder (MGP) with proper characteristics, which has a strong influence on further steps and the material properties of fuel element. In this work, the milling behavior of matrix graphite powder mixture with different binder materials and their contents was investigated by analyzing the change in particle size distribution with different milling time

  16. Adhesion of pineapple-leaf fiber to epoxy matrix: The role of surface treatments

    Directory of Open Access Journals (Sweden)

    Yusran Payae

    2009-07-01

    Full Text Available Natural fibers are considered to have potential use as reinforcing agents in polymer composite materials because of their principle benefits: moderate strength and stiffness, low cost, and be an environmental friendly, degradable, and renewablematerial. Due to their inherently hydrophilic nature, they are prone to absorb moisture, which can plasticise or weaken theadhesion of fibers to the surrounding matrix and by this affect the performance of composites used in atmospheric humidity,particularly at elevated temperatures. The surface treatments are often applied to the fiber to improve the bond strengthbetween the fibers and matrix. This work discussed the effect of sodium hydroxide (NaOH treatment and epoxy resin as acompatibilizing agent on interface properties of pineapple leaf fiber (PALF-epoxy composites. A single-fiber fragmentationtest coupled with data reduction technique was employed to assess interface quality in terms of apparent interfacial shearstrength (IFSS or a of untreated, NaOH, and epoxy resin treated PALFs-epoxy composites. Tensile properties of untreatedand treated PALFs were also examined. It was found that both treatments substantially increase a, corresponding to animproved level of adhesion. The improvement in the level of adhesion for the alkali and epoxy treated fiber composites wasdue to an increase in the physical bonding between the alkali treated fibers and the matrix, and due to a promoted compatibilitybetween the epoxy treated fibers and matrix, respectively.

  17. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix

    International Nuclear Information System (INIS)

    Mesalhy, Osama; Lafdi, Khalid; Elgafy, Ahmed; Bowman, Keith

    2005-01-01

    In this paper, the melting process inside an irregular geometry filled with high thermal conductivity porous matrix saturated with phase change material PCM is investigated numerically. The numerical model is resting on solving the volume averaged conservation equations for mass, momentum and energy with phase change (melting) in the porous medium. The convection motion of the liquid phase inside the porous matrix is solved considering the Darcy, Brinkman and Forchiemer effects. A local thermal non-equilibrium assumption is considered due to the large difference in thermal properties between the solid matrix and PCM by applying a two energy equation model. The numerical code shows good agreement for pure PCM melting with another published numerical work. Through this study it is found that the presence of the porous matrix has a great effect on the heat transfer and melting rate of the PCM energy storage. Decreasing the porosity of the matrix increases the melting rate, but it also damps the convection motion. It is also found that the best technique to enhance the response of the PCM storage is to use a solid matrix with high porosity and high thermal conductivity

  18. Matrix-reinforcement reactivity in P/M titanium matrix composites

    International Nuclear Information System (INIS)

    Amigo, V.; Romero, F.; Salvador, M. D.; Busquets, D.

    2007-01-01

    The high reactivity of titanium and the facility of the same one to form intermetallics makes difficult obtaining composites with this material and brings the need in any case of covering the principal fibres used as reinforcement. To obtain composites of titanium reinforced with ceramic particles ins proposed in this paper, for this reason it turns out to be fundamental to evaluate the reactivity between the matrix and reinforcement. Both titanium nitride and carbide (TiN and TiC) are investigated as materials of low reactivity whereas titanium silicide (TiSi 2 ) is also studied as materials of major reactivity, already stated by the scientific community. This reactivity will be analysed by means of scanning electron microscopy (SEM) there being obtained distribution maps of the elements that allow to establish the possible influence of the sintering temperature and time. Hereby the matrix-reinforcement interactions are optimized to obtain suitable mechanical properties. (Author) 39 refs

  19. Graphene-Reinforced Metal and Polymer Matrix Composites

    Science.gov (United States)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  20. A Damage Resistance Comparison Between Candidate Polymer Matrix Composite Feedline Materials

    Science.gov (United States)

    Nettles, A. T

    2000-01-01

    As part of NASAs focused technology programs for future reusable launch vehicles, a task is underway to study the feasibility of using the polymer matrix composite feedlines instead of metal ones on propulsion systems. This is desirable to reduce weight and manufacturing costs. The task consists of comparing several prototype composite feedlines made by various methods. These methods are electron-beam curing, standard hand lay-up and autoclave cure, solvent assisted resin transfer molding, and thermoplastic tape laying. One of the critical technology drivers for composite components is resistance to foreign objects damage. This paper presents results of an experimental study of the damage resistance of the candidate materials that the prototype feedlines are manufactured from. The materials examined all have a 5-harness weave of IM7 as the fiber constituent (except for the thermoplastic, which is unidirectional tape laid up in a bidirectional configuration). The resin tested were 977-6, PR 520, SE-SA-1, RS-E3 (e-beam curable), Cycom 823 and PEEK. The results showed that the 977-6 and PEEK were the most damage resistant in all tested cases.

  1. Mechanical behavior of a ceramic matrix composite material. M.S. Thesis Final Report

    Science.gov (United States)

    Grosskopf, Paul P.; Duke, John C., Jr.

    1991-01-01

    Monolithic ceramic materials have been used in industry for hundreds of years. These materials have proven their usefulness in many applications, yet, their potential for critical structural applications is limited. The existence of an imperfection in a monolithic ceramic on the order of several microns in size may be critical, resulting in catastrophic failure. To overcome this extreme sensitivity to small material imperfections, reinforced ceramic materials were developed. A ceramic matrix which has been reinforced with continuous fibers is not only less sensitive to microscopic flaws, but is also able to sustain significant damage without suffering catastrophic failure. A borosilicate glass reinforced with several layers of plain weave silicon carbide cloth (Nicalon) was studied. The mechanical testing which was performed included both flexural and tensile loading configurations. This testing was done not only to determine the material properties, but also to initiate a controlled amount of damage within each specimen. Several nondestructive testing techniques, including acousto-ultrasonics (AU), were performed on the specimens periodically during testing. The AU signals were monitored through the use of an IBM compatible personal computer with a high speed data acquisition board. Software was written which manipulates the AU signals in both the time and frequency domains, resulting in quantitative measures of the mechanical response of the material. The measured AU parameters are compared to both the mechanical test results and data from other nondestructive methods including ultrasonic C-scans and penetrant enhanced x ray radiography.

  2. Colloid-facilitated radionuclide transport in the fractured rock: effects of decay chain and limited matrix diffusion

    International Nuclear Information System (INIS)

    Park, J. B.; Park, J. W.; Lee, E. Y.; Kim, C. R.

    2002-01-01

    Colloid-facilitated radionuclide transport in the fractured rock is studies by considering radioactive decay chain and limited matrix diffusion into surrounding porous media. Semi-analytical solution in the Laplace domain is obtained from the mass balance equation of radionuclides and colloid particles. Numerical inversion of the Laplace solution is used to get the concentration profiles both in a fracture and in rock matrix. There issues are analyzed for the radionuclide concentration in a fracture by 1) formation constant of pseudo-colloid, 2) filtration coefficient of radio-colloid and 3) effective diffusion depth into the surrounding porous rock media

  3. Electrolyte matrix for molten carbonate fuel cells

    Science.gov (United States)

    Huang, C.M.; Yuh, C.Y.

    1999-02-09

    A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.

  4. Electrolyte matrix for molten carbonate fuel cells

    Science.gov (United States)

    Huang, Chao M.; Yuh, Chao-Yi

    1999-01-01

    A matrix for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 .mu.m to 20 .mu.m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling.

  5. Use of conventional and chirped optical fibre Bragg gratings to detect matrix cracking damage in composite materials

    International Nuclear Information System (INIS)

    Palaniappan, J; Wang, H; Ogin, S L; Thorne, A; Reed, G T; Tjin, S C

    2005-01-01

    A comparison is made between conventional (i.e. uniform) and chirped optical fibre Bragg gratings (FBGs) for the detection of matrix cracking damage in composite materials. Matrix cracking damage is generally the first type of visible damage to develop under load in the off-axis plies of laminated composites and is generally the precursor of more serious damage mechanisms, particularly delamination. The detection of this type of damage is thus important, particularly in aerospace applications. Using a uniform FBG, characteristic changes develop in the reflected spectrum which can be used to identify crack development in the composite. The additional advantage of using a chirped grating is that the crack position can also be located

  6. Waste Material Based "Terrazzo" Tiles: The Effect Of Curing Time And Extreme Environmental Conditions Over Glass Aggregate/Cement Matrix Boundary

    Science.gov (United States)

    Paris, E.; Radica, F.; Stabile, P.; Ansaloni, F.; Giuli, G.; Carroll, M. R.

    2017-12-01

    Currently, more than half of all materials extracted globally (over three billion tonnes/year in the EU only) are transformed for use in construction. Before year 2020, the EU aims to reduce the environmental impact of the construction sector by recycling or re-using large amounts of these materials, thus reducing the consumption of raw materials and helping promote the sector's economic stability. With this challenge in mind an aesthetically pleasant and fully recycled (up to 78%) pre-cast cement based tile (Terrazzo tiles) was designed by replacing raw materials with Glass Waste (GW) and Construction/Demolition Waste (CDW). Several recent studies explored the effect of the addition of GW in the manufacture of urban pavements, concluding that the use of GW can improve various phases of pavement life and structure by enhancing the structural performance, durability, environmental friendliness, and aesthetic features. In this study we extend this knowledge also to interior cement-based tiles by evaluating the technical performances of this this novel designed tile, in particular by focusing on the interface between the GW aggregates and different Portland cement based matrix at extreme environmental conditions. For this work three representative waste material based "terrazzo" tiles were selected and characterized by means of XRD and SEM imaging in order to study the boundary effect between GW aggregate and different binding materials: limestone powder, quartz powder and fine ground WG powder. A fourth additional mixture of Portland cement and CDW material was characterized. Fragments of a Limestone matrix tile were also thermally threated at -18°C and at 60°C for one week to witness the possible formation of new harmful phases at the grain-matrix boundary. Preliminary results on X-ray diffraction patterns show that 1 year after manufacture and/or thermal treatment there is no new formation of harmful phases other than the starting ones. High magnification SEM

  7. Turbine repair process, repaired coating, and repaired turbine component

    Science.gov (United States)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  8. Matrix diffusion studies by electrical conductivity methods. Comparison between laboratory and in-situ measurements

    International Nuclear Information System (INIS)

    Ohlsson, Y.; Neretnieks, I.

    1998-01-01

    Traditional laboratory diffusion experiments in rock material are time consuming, and quite small samples are generally used. Electrical conductivity measurements, on the other hand, provide a fast means for examining transport properties in rock and allow measurements on larger samples as well. Laboratory measurements using electrical conductivity give results that compare well to those from traditional diffusion experiments. The measurement of the electrical resistivity in the rock surrounding a borehole is a standard method for the detection of water conducting fractures. If these data could be correlated to matrix diffusion properties, in-situ diffusion data from large areas could be obtained. This would be valuable because it would make it possible to obtain data very early in future investigations of potentially suitable sites for a repository. This study compares laboratory electrical conductivity measurements with in-situ resistivity measurements from a borehole at Aespoe. The laboratory samples consist mainly of Aespoe diorite and fine-grained granite and the rock surrounding the borehole of Aespoe diorite, Smaaland granite and fine-grained granite. The comparison shows good agreement between laboratory measurements and in-situ data

  9. Ecological mechanisms linking protected areas to surrounding lands.

    Science.gov (United States)

    Hansen, Andrew J; DeFries, Ruth

    2007-06-01

    Land use is expanding and intensifying in the unprotected lands surrounding many of the world's protected areas. The influence of this land use change on ecological processes is poorly understood. The goal of this paper is to draw on ecological theory to provide a synthetic framework for understanding how land use change around protected areas may alter ecological processes and biodiversity within protected areas and to provide a basis for identifying scientifically based management alternatives. We first present a conceptual model of protected areas embedded within larger ecosystems that often include surrounding human land use. Drawing on case studies in this Invited Feature, we then explore a comprehensive set of ecological mechanisms by which land use on surrounding lands may influence ecological processes and biodiversity within reserves. These mechanisms involve changes in ecosystem size, with implications for minimum dynamic area, species-area effect, and trophic structure; altered flows of materials and disturbances into and out of reserves; effects on crucial habitats for seasonal and migration movements and population source/sink dynamics; and exposure to humans through hunting, poaching, exotics species, and disease. These ecological mechanisms provide a basis for assessing the vulnerability of protected areas to land use. They also suggest criteria for designing regional management to sustain protected areas in the context of surrounding human land use. These design criteria include maximizing the area of functional habitats, identifying and maintaining ecological process zones, maintaining key migration and source habitats, and managing human proximity and edge effects.

  10. A prototype knowledge-based system for material selection of ceramic matrix composites of automotive engine components

    Energy Technology Data Exchange (ETDEWEB)

    Sapuan, S.M.; Jacob, M.S.D.; Mustapha, F.; Ismail, N

    2002-12-15

    A prototype knowledge based system (KBS) for material selection of ceramic matrix composites (CMC) for engine components such as piston, connecting rod and piston ring is proposed in this paper. The main aim of this research work is to select the most suitable material for the automotive engine components. The selection criteria are based upon the pre-defined constraint value. The constraint values are mechanical, physical properties and manufacturing techniques. The constraint values are the safety values for the product design. The constraint values are selected from the product design specification. The product design specification values are selected from the past design calculation and some values are calculated by the help of past design data. The knowledge-based system consists of several modules such as knowledge acquisition module, inference module and user interface module. The domains of the knowledge-based system are defined as objects and linked together by hierarchical graph. The system is capable of selecting the most suitable materials and ranks the materials with respect to their properties. The design engineers can choose the required materials related to the materials property.

  11. Celsian Glass-Ceramic Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Dicarlo, James A.

    1996-01-01

    Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.

  12. River bottom sediment from the Vistula as matrix of candidate for a new reference material.

    Science.gov (United States)

    Kiełbasa, Anna; Buszewski, Bogusław

    2017-08-01

    Bottom sediments are very important in aquatic ecosystems. The sediments accumulate heavy metals and compounds belonging to the group of persistent organic pollutants. The accelerated solvent extraction (ASE) was used for extraction of 16 compounds from PAH group from bottom sediment of Vistula. For the matrix of candidate of a new reference material, moisture content, particle size, loss on ignition, pH, and total organic carbon were determined. A gas chromatograph with a selective mass detector (GC/MS) was used for the final analysis. The obtained recoveries were from 86% (SD=6.9) for anthracene to 119% (SD=5.4) for dibenzo(ah)anthracene. For the candidate for a new reference material, homogeneity and analytes content were determined using a validated method. The results are a very important part of the development and certification of a new reference materials. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Cathodic Polarization Coats Titanium Based Implant Materials with Enamel Matrix Derivate (EMD

    Directory of Open Access Journals (Sweden)

    Matthias J. Frank

    2014-03-01

    Full Text Available The idea of a bioactive surface coating that enhances bone healing and bone growth is a strong focus of on-going research for bone implant materials. Enamel matrix derivate (EMD is well documented to support bone regeneration and activates growth of mesenchymal tissues. Thus, it is a prime candidate for coating of existing implant surfaces. The aim of this study was to show that cathodic polarization can be used for coating commercially available implant surfaces with an immobilized but functional and bio-available surface layer of EMD. After coating, XPS revealed EMD-related bindings on the surface while SIMS showed incorporation of EMD into the surface. The hydride layer of the original surface could be activated for coating in an integrated one-step process that did not require any pre-treatment of the surface. SEM images showed nano-spheres and nano-rods on coated surfaces that were EMD-related. Moreover, the surface roughness remained unchanged after coating, as it was shown by optical profilometry. The mass peaks observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS analysis confirmed the integrity of EMD after coating. Assessment of the bioavailability suggested that the modified surfaces were active for osteoblast like MC3M3-E1 cells in showing enhanced Coll-1 gene expression and ALP activity.

  14. Dentin matrix gelatin (DMG) as a possible "universal" grafting material in periodontics.

    Science.gov (United States)

    Gould, T R; Westbury, L; Tillman, J

    1982-01-01

    The ideal of periodontal surgery is the total regeneration of the lost periodontal complex. A promising new osseous grafting material is Dental Matrix Gelation (DMG). DMG was prepared by a method similar to that of Conover and Urist (1979). This consisted of sequential extraction in 1:1 chloroform-methanol, 25 degrees C for 1 hour; 0.6 N HCl, 2 degrees C for 24 hours with constant agitation; 2 M CaCl2, 2 degrees C for 1 hour; 0.5 M EDTA pH 7.4, 2 degrees C for 1 hour; washed in distilled water 1 hour. Twelve rats were anesthetized, had heads shaved, midline flaps reflected, and 2 mm holes drilled through the right and left parietal bones. This type of osseous defect normally heals only by fibrous scarring and has been used to define osteoinductive materials. The DMG was cut into pieces about 1 mm square and placed into the right side defect while the left side remained open as a control. The animals were sacrificed on a schedule of two rats every 2 weeks until the 10th week when four rats were killed. The results showed complete osseous closure of the DMG site while the control healed by fibrous scarring. DMG seems to have strong osteoinductive power, and used allogenically has great potential as a commercially viable implant material.

  15. In vitro evaluation of resonance frequency analysis values to different implant contact ratio and stiffness of surrounding material.

    Science.gov (United States)

    Kwak, Mu-Seung; Kim, Seok-Gyu

    2013-11-01

    The present study was aimed to evaluate the influence of implant contact ratio and stiffness of implant-surrounding materials on the resonance frequency analysis (RFA) values. Seventy resin blocks that had the different amounts (100, 50, 30, 15%) of resin-implant contact (RIC) were fabricated. Ten silicone putty blocks with 100% silicone-implant contact were also made. The implants with Ø5.0 mm × 13.0 mm were placed on eighty specimen blocks. The RFA value was measured on the transducer that was connected to each implant by Osstell Mentor. Kruskal-Wallis and Scheffe's tests (α=.05) were done for statistical analysis. The control resin group with 100% RIC had the highest RFA value of 83.9, which was significantly different only from the resin group with 15% RIC among the resin groups. The silicone putty group with 100% contact had the lowest RFA value of 36.6 and showed statistically significant differences from the resin groups. Within the limitations of this in vitro study, there was no significant difference in the RFA values among the resin groups with different RIC's except when the RIC difference was more than 85%. A significant increase in the RFA value was observed related to the increase in stiffness of material around implant.

  16. Love waves in functionally graded piezoelectric materials by stiffness matrix method.

    Science.gov (United States)

    Ben Salah, Issam; Wali, Yassine; Ben Ghozlen, Mohamed Hédi

    2011-04-01

    A numerical matrix method relative to the propagation of ultrasonic guided waves in functionally graded piezoelectric heterostructure is given in order to make a comparative study with the respective performances of analytical methods proposed in literature. The preliminary obtained results show a good agreement, however numerical approach has the advantage of conceptual simplicity and flexibility brought about by the stiffness matrix method. The propagation behaviour of Love waves in a functionally graded piezoelectric material (FGPM) is investigated in this article. It involves a thin FGPM layer bonded perfectly to an elastic substrate. The inhomogeneous FGPM heterostructure has been stratified along the depth direction, hence each state can be considered as homogeneous and the ordinary differential equation method is applied. The obtained solutions are used to study the effect of an exponential gradient applied to physical properties. Such numerical approach allows applying different gradient variation for mechanical and electrical properties. For this case, the obtained results reveal opposite effects. The dispersive curves and phase velocities of the Love wave propagation in the layered piezoelectric film are obtained for electrical open and short cases on the free surface, respectively. The effect of gradient coefficients on coupled electromechanical factor, on the stress fields, the electrical potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the well known heterostructure PZT-5H/SiO(2), the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Love wave propagation behaviour. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Spatio-temporal diversification of the cell wall matrix materials in the developing stomatal complexes of Zea mays.

    Science.gov (United States)

    Giannoutsou, E; Apostolakos, P; Galatis, B

    2016-11-01

    The matrix cell wall materials, in developing Zea mays stomatal complexes are asymmetrically distributed, a phenomenon appearing related to the local cell wall expansion and deformation, the establishment of cell polarity, and determination of the cell division plane. In cells of developing Zea mays stomatal complexes, definite cell wall regions expand determinately and become locally deformed. This differential cell wall behavior is obvious in the guard cell mother cells (GMCs) and the subsidiary cell mother cells (SMCs) that locally protrude towards the adjacent GMCs. The latter, emitting a morphogenetic stimulus, induce polarization/asymmetrical division in SMCs. Examination of immunolabeled specimens revealed that homogalacturonans (HGAs) with a high degree of de-esterification (2F4- and JIM5-HGA epitopes) and arabinogalactan proteins are selectively distributed in the extending and deformed cell wall regions, while their margins are enriched with rhamnogalacturonans (RGAs) containing highly branched arabinans (LM6-RGA epitope). In SMCs, the local cell wall matrix differentiation constitutes the first structural event, indicating the establishment of cell polarity. Moreover, in the premitotic GMCs and SMCs, non-esterified HGAs (2F4-HGA epitope) are preferentially localized in the cell wall areas outlining the cytoplasm where the preprophase band is formed. In these areas, the forthcoming cell plate fuses with the parent cell walls. These data suggest that the described heterogeneity in matrix cell wall materials is probably involved in: (a) local cell wall expansion and deformation, (b) the transduction of the inductive GMC stimulus, and (c) the determination of the division plane in GMCs and SMCs.

  18. High-flexibility combinatorial peptide synthesis with laser-based transfer of monomers in solid matrix material.

    Science.gov (United States)

    Loeffler, Felix F; Foertsch, Tobias C; Popov, Roman; Mattes, Daniela S; Schlageter, Martin; Sedlmayr, Martyna; Ridder, Barbara; Dang, Florian-Xuan; von Bojničić-Kninski, Clemens; Weber, Laura K; Fischer, Andrea; Greifenstein, Juliane; Bykovskaya, Valentina; Buliev, Ivan; Bischoff, F Ralf; Hahn, Lothar; Meier, Michael A R; Bräse, Stefan; Powell, Annie K; Balaban, Teodor Silviu; Breitling, Frank; Nesterov-Mueller, Alexander

    2016-06-14

    Laser writing is used to structure surfaces in many different ways in materials and life sciences. However, combinatorial patterning applications are still limited. Here we present a method for cost-efficient combinatorial synthesis of very-high-density peptide arrays with natural and synthetic monomers. A laser automatically transfers nanometre-thin solid material spots from different donor slides to an acceptor. Each donor bears a thin polymer film, embedding one type of monomer. Coupling occurs in a separate heating step, where the matrix becomes viscous and building blocks diffuse and couple to the acceptor surface. Furthermore, we can consecutively deposit two material layers of activation reagents and amino acids. Subsequent heat-induced mixing facilitates an in situ activation and coupling of the monomers. This allows us to incorporate building blocks with click chemistry compatibility or a large variety of commercially available non-activated, for example, posttranslationally modified building blocks into the array's peptides with >17,000 spots per cm(2).

  19. Molten carbonate fuel cell integral matrix tape and bubble barrier

    International Nuclear Information System (INIS)

    Reiser, C.A.; Maricle, D.L.

    1983-01-01

    A molten carbonate fuel cell matrix material is described made up of a matrix tape portion and a bubble barrier portion. The matrix tape portion comprises particles inert to molten carbonate electrolyte, ceramic particles and a polymeric binder, the matrix tape being flexible, pliable and having rubber-like compliance at room temperature. The bubble barrier is a solid material having fine porosity preferably being bonded to the matrix tape. In operation in a fuel cell, the polymer binder burns off leaving the matrix and bubble barrier providing superior sealing, stability and performance properties to the fuel cell stack

  20. Microstructure, Friction and Wear of Aluminum Matrix Composites

    Science.gov (United States)

    Florea, R. M.

    2018-06-01

    MMCs are made by dispersing a reinforcing material into a metal matrix. They are prepared by casting, although several technical challenges exist with casting technology. Achieving a homogeneous distribution of reinforcement within the matrix is one such challenge, and this affects directly on the properties and quality of composite. The aluminum alloy composite materials consist of high strength, high stiffness, more thermal stability, more corrosion and wear resistance, and more fatigue life. Aluminum alloy materials found to be the best alternative with its unique capacity of designing the materials to give required properties. In this work a composite is developed by adding silicon carbide in Aluminum metal matrix by mass ratio 5%, 10% and 15%. Mechanical tests such as hardness test and microstructure test are conducted.

  1. Advanced ceramic matrix composite materials for current and future propulsion technology applications

    Science.gov (United States)

    Schmidt, S.; Beyer, S.; Knabe, H.; Immich, H.; Meistring, R.; Gessler, A.

    2004-08-01

    Current rocket engines, due to their method of construction, the materials used and the extreme loads to which they are subjected, feature a limited number of load cycles. Various technology programmes in Europe are concerned, besides developing reliable and rugged, low cost, throwaway equipment, with preparing for future reusable propulsion technologies. One of the key roles for realizing reusable engine components is the use of modern and innovative materials. One of the key technologies which concern various engine manufacturers worldwide is the development of fibre-reinforced ceramics—ceramic matrix composites. The advantages for the developers are obvious—the low specific weight, the high specific strength over a large temperature range, and their great damage tolerance compared to monolithic ceramics make this material class extremely interesting as a construction material. Over the past years, the Astrium company (formerly DASA) has, together with various partners, worked intensively on developing components for hypersonic engines and liquid rocket propulsion systems. In the year 2000, various hot-firing tests with subscale (scale 1:5) and full-scale nozzle extensions were conducted. In this year, a further decisive milestone was achieved in the sector of small thrusters, and long-term tests served to demonstrate the extraordinary stability of the C/SiC material. Besides developing and testing radiation-cooled nozzle components and small-thruster combustion chambers, Astrium worked on the preliminary development of actively cooled structures for future reusable propulsion systems. In order to get one step nearer to this objective, the development of a new fibre composite was commenced within the framework of a regionally sponsored programme. The objective here is to create multidirectional (3D) textile structures combined with a cost-effective infiltration process. Besides material and process development, the project also encompasses the development of

  2. Method and apparatus for measuring neutron characteristics of material surrounding a borehole

    International Nuclear Information System (INIS)

    Hopkinson, E.C.

    1983-01-01

    This invention relates to methods and apparatus for determining the macroscopic thermal neutron absorption cross section of the formations surrounding a borehole as determined by radiation measurements using optimized measurement intervals. A measurement of the decline of the thermal neutron population in the formation is derived by counting the detected radiation within a first pair of measurement intervals occurring at a fixed time after the neutron burst. A ratio of the two counting rates provides the rate of change over the selected time interval. The counting ratio is converted into a natural logarithm representative of the Sigma calculation

  3. Method and apparatus for measuring neutron characteristics of material surrounding a borehole

    International Nuclear Information System (INIS)

    Randall, R.R.

    1983-01-01

    A method for logging the formations surrounding an earth borehole, comprising: pulsedly irradiating said formations with discrete bursts form a source of high energy neutrons; detecting radiations emanating from said irradiated formations at a detector spaced from said source; measuring said detected radiations during first and second time intervals following a burst from said source; generating time-separated electrical pulses indicative of said detected radiations during a third fixed time duration interval following a subsequent burst from said sources; and controlling automatically the starting time of said third measurement interval in accordance with the said measurement from said first and second time intervals

  4. Thermal durability of modified Synroc material as reactor fuel matrix

    International Nuclear Information System (INIS)

    Kikuchi, Akira; Kanazawa, Hiroyuki; Togashi, Yoshihiro; Matumoto, Seiichiro; Nishino, Yasuharu; Ohwada, Isao; Nakata, Masahito; Amano, Hidetoshi; Mitamura, Hisayoshi

    1994-08-01

    A Synroc, a polyphase titanate ceramics composed of three mineral phases (perovskite, hollandite and zirconolite), has an excellent performance of immobilization of high level nuclear waste. A working group in the Department of Hot Laboratories paid special attention to this merit and started a development study on a LWR fuel named 'Waste Disposal Possible (WDP) Fuel', which has the two functions of a reactor fuel and a waste form. The present paper mainly describes thermal durability of a modified Synroc material, which is essentially important for applying the material to a fuel matrix. The two kinds of Synroc specimens, designated 'SM' as modified and 'SB' as a reference, were prepared by hot-pressing and annealed at 1200degC to 1500degC for 30 min in air. Unexpected and peculiar spherical voids were observed in the specimen SM at 1400degC and 1500degC, which caused the specimen swelling. The formation of the voids depends significantly on the existence of spherical precipitates seen in the as-fabricated specimen including latent micropores with high pressure. On the other hand, the heat treatment at 1500degC formed additional new phases, designated 'Phase A' for the specimen SB and 'Phase X' for SM. Phase A is a decomposition product of hollandite and Phase X a reaction product of Phase A and perovskite in the spherical voids. Furthermore, additional information and thermal properties examined are presented in Appendix 1 and Appendix 2, respectively. It was recognized that the modified Synroc specimen SM had excellent thermal properties. (author)

  5. Silver Matrix Composites - Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wieczorek J.

    2016-03-01

    Full Text Available Phase compositions of composite materials determine their performance as well as physical and mechanical properties. Depending on the type of applied matrix and the kind, amount and morphology of the matrix reinforcement, it is possible to shape the material properties so that they meet specific operational requirements. In the paper, results of investigations on silver alloy matrix composites reinforced with ceramic particles are presented. The investigations enabled evaluation of hardness, tribological and mechanical properties as well as the structure of produced materials. The matrix of composite material was an alloy of silver and aluminium, magnesium and silicon. As the reinforcing phase, 20-60 μm ceramic particles (SiC, SiO2, Al2O3 and Cs were applied. The volume fraction of the reinforcing phase in the composites was 10%. The composites were produced using the liquid phase (casting technology, followed by plastic work (the KOBO method. The mechanical and tribological properties were analysed for plastic work-subjected composites. The mechanical properties were assessed based on a static tensile and hardness tests. The tribological properties were investigated under dry sliding conditions. The analysis of results led to determination of effects of the composite production technology on their performance. Moreover, a relationship between the type of reinforcing phase and the mechanical and tribological properties was established.

  6. Phase diagrams of ferroelectric nanocrystals strained by an elastic matrix

    Science.gov (United States)

    Nikitchenko, A. I.; Azovtsev, A. V.; Pertsev, N. A.

    2018-01-01

    Ferroelectric crystallites embedded into a dielectric matrix experience temperature-dependent elastic strains caused by differences in the thermal expansion of the crystallites and the matrix. Owing to the electrostriction, these lattice strains may affect polarization states of ferroelectric inclusions significantly, making them different from those of a stress-free bulk crystal. Here, using a nonlinear thermodynamic theory, we study the mechanical effect of elastic matrix on the phase states of embedded single-domain ferroelectric nanocrystals. Their equilibrium polarization states are determined by minimizing a special thermodynamic potential that describes the energetics of an ellipsoidal ferroelectric inclusion surrounded by a linear elastic medium. To demonstrate the stability ranges of such states for a given material combination, we construct a phase diagram, where the inclusion’s shape anisotropy and temperature are used as two parameters. The ‘shape-temperature’ phase diagrams are calculated numerically for PbTiO3 and BaTiO3 nanocrystals embedded into representative dielectric matrices generating tensile (silica glass) or compressive (potassium silicate glass) thermal stresses inside ferroelectric inclusions. The developed phase maps demonstrate that the joint effect of thermal stresses and matrix-induced elastic clamping of ferroelectric inclusions gives rise to several important features in the polarization behavior of PbTiO3 and BaTiO3 nanocrystals. In particular, the Curie temperature displays a nonmonotonic variation with the ellipsoid’s aspect ratio, being minimal for spherical inclusions. Furthermore, the diagrams show that the polarization orientation with respect to the ellipsoid’s symmetry axis is controlled by the shape anisotropy and the sign of thermal stresses. Under certain conditions, the mechanical inclusion-matrix interaction qualitatively alters the evolution of ferroelectric states on cooling, inducing a structural transition

  7. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures

    Science.gov (United States)

    Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.

    2016-01-01

    Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.

  8. How to Study a Matrix

    Science.gov (United States)

    Jairam, Dharmananda; Kiewra, Kenneth A.; Kauffman, Douglas F.; Zhao, Ruomeng

    2012-01-01

    This study investigated how best to study a matrix. Fifty-three participants studied a matrix topically (1 column at a time), categorically (1 row at a time), or in a unified way (all at once). Results revealed that categorical and unified study produced higher: (a) performance on relationship and fact tests, (b) study material satisfaction, and…

  9. Beyond the Protein Matrix : Probing Cofactor Variants in a Baeyer-Villiger Oxygenation Reaction

    NARCIS (Netherlands)

    Martinoli, Christian; Dudek, Hanna M.; Orru, Roberto; Edmondson, Dale E.; Fraaije, Marco W.; Mattevi, Andrea

    2013-01-01

    A general question in biochemistry is the interplay between the chemical properties of cofactors and the surrounding protein matrix. Here, the functions of NADP(+) and FAD are explored by investigation of a representative monooxygenase reconstituted with chemically modified cofactor analogues. Like

  10. Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments

    Directory of Open Access Journals (Sweden)

    Jill R. Crittenden

    2011-09-01

    Full Text Available The striatum is composed principally of GABAergic, medium spiny projection neurons (MSNs that can be categorized based on their gene expression, electrophysiological profiles and input-output circuits. Major subdivisions of MSN populations include 1 those in ventromedial and dorsolateral striatal regions, 2 those giving rise to the direct and indirect pathways, and 3 those that lie in the striosome and matrix compartments. The first two classificatory schemes have enabled advances in understanding of how basal ganglia circuits contribute to disease. However, despite the large number of molecules that are differentially expressed in the striosomes or the extra-striosomal matrix, and the evidence that these compartments have different input-output connections, our understanding of how this compartmentalization contributes to striatal function is still not clear. A broad view is that the matrix contains the direct and indirect pathway MSNs that form parts of sensorimotor and associative circuits, whereas striosomes contain MSNs that receive input from parts of limbic cortex and project directly or indirectly to the dopamine-containing neurons of the substantia nigra, pars compacta. Striosomes are widely distributed within the striatum and are thought to exert global, as well as local, influences on striatal processing by exchanging information with the surrounding matrix, including through interneurons that send processes into both compartments. It has been suggested that striosomes exert and maintain limbic control over behaviors driven by surrounding sensorimotor and associative parts of the striatal matrix. Consistent with this possibility, imbalances between striosome and matrix functions have been reported in relation to neurological disorders, including Huntington’s disease, L-DOPA-induced dyskinesias, dystonia and drug addiction. Here, we consider how signaling imbalances between the striosomes and matrix might relate to symptomatology in

  11. Boron carbide-coated carbon material, manufacturing method therefor and plasma facing material

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Kikuchi, Yoshihiro; Hyakki, Yasuo.

    1997-01-01

    The present invention concerns a plasma facing material suitable to a thermonuclear device. The material comprises a carbon material formed by converting the surface of a carbon fiber-reinforced carbon material comprising a carbon matrix and carbon fibers to a boron carbide, the material has a surface comprising vertically or substantially vertically oriented carbon fibers, and the thickness of the surface converted to boron carbide is reduced in the carbon fiber portion than in the carbon matrix portion. Alternatively, a carbon fiber-reinforced carbon material containing carbon fibers having a higher graphitizing degree than the carbon matrix is converted to boron carbide on the surface where the carbon fibers are oriented vertically or substantially vertically. The carbon fiber-reinforced material is used as a base material, and a resin material impregnated into a shaped carbon fiber product is carbonized or thermally decomposed carbon is filled as a matrix. The material of the present invention has high heat conduction and excellent in heat resistance thereby being suitable to a plasma facing material for a thermonuclear device. Electric specific resistivity of the entire coating layer can be lowered, occurrence of arc discharge is prevented and melting can be prevented. (N.H.)

  12. The cellulose resource matrix.

    Science.gov (United States)

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  13. Metal Matrix Composites Reinforced by Nano-Particles—A Review

    Directory of Open Access Journals (Sweden)

    Riccardo Casati

    2014-03-01

    Full Text Available Metal matrix composites reinforced by nano-particles are very promising materials, suitable for a large number of applications. These composites consist of a metal matrix filled with nano-particles featuring physical and mechanical properties very different from those of the matrix. The nano-particles can improve the base material in terms of wear resistance, damping properties and mechanical strength. Different kinds of metals, predominantly Al, Mg and Cu, have been employed for the production of composites reinforced by nano-ceramic particles such as carbides, nitrides, oxides as well as carbon nanotubes. The main issue of concern for the synthesis of these materials consists in the low wettability of the reinforcement phase by the molten metal, which does not allow the synthesis by conventional casting methods. Several alternative routes have been presented in literature for the production of nano-composites. This work is aimed at reviewing the most important manufacturing techniques used for the synthesis of bulk metal matrix nanocomposites. Moreover, the strengthening mechanisms responsible for the improvement of mechanical properties of nano-reinforced metal matrix composites have been reviewed and the main potential applications of this new class of materials are envisaged.

  14. CHARACTERISTIC FEATURES OF MUELLER MATRIX PATTERNS FOR POLARIZATION SCATTERING MODEL OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    E DU

    2014-01-01

    Full Text Available We developed a model to describe polarized photon scattering in biological tissues. In this model, tissues are simplified to a mixture of scatterers and surrounding medium. There are two types of scatterers in the model: solid spheres and infinitely long solid cylinders. Variables related to the scatterers include: the densities and sizes of the spheres and cylinders, the orientation and angular distribution of cylinders. Variables related to the surrounding medium include: the refractive index, absorption coefficient and birefringence. In this paper, as a development we introduce an optical activity effect to the model. By comparing experiments and Monte Carlo simulations, we analyze the backscattering Mueller matrix patterns of several tissue-like media, and summarize the different effects coming from anisotropic scattering and optical properties. In addition, we propose a possible method to extract the optical activity values for tissues. Both the experimental and simulated results show that, by analyzing the Mueller matrix patterns, the microstructure and optical properties of the medium can be obtained. The characteristic features of Mueller matrix patterns are potentially powerful tools for studying the contrast mechanisms of polarization imaging for medical diagnosis.

  15. Microstructure of Matrix in UHTC Composites

    Science.gov (United States)

    Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael I.; Chavez-Garia Jose; Doxtad, Evan

    2011-01-01

    Approaches to controlling the microstructure of Ultra High Temperature Ceramics (UHTCs) are described.. One matrix material has been infiltrated into carbon weaves to make composite materials. The microstructure of these composites is described.

  16. Extracellular matrix biomimicry for the creation of investigational and therapeutic devices.

    Science.gov (United States)

    Pellowe, Amanda S; Gonzalez, Anjelica L

    2016-01-01

    The extracellular matrix (ECM) is a web of fibrous proteins that serves as a scaffold for tissues and organs, and is important for maintaining homeostasis and facilitating cellular adhesion. Integrin transmembrane receptors are the primary adhesion molecules that anchor cells to the ECM, thus integrating cells with their microenvironments. Integrins play a critical role in facilitating cell-matrix interactions and promoting signal transduction, both from the cell to the ECM and vice versa, ultimately mediating cell behavior. For this reason, many advanced biomaterials employ biomimicry by replicating the form and function of fibrous ECM proteins. The ECM also acts as a reservoir for small molecules and growth factors, wherein fibrous proteins directly bind and present these bioactive moieties that facilitate cell activity. Therefore biomimicry can be enhanced by incorporating small molecules into ECM-like substrates. Biomimetic ECM materials have served as invaluable research tools for studying interactions between cells and the surrounding ECM, revealing that cell-matrix signaling is driven by mechanical forces, integrin engagement, and small molecules. Mimicking pathological ECMs has also elucidated disease specific cell behaviors. For example, biomimetic tumor microenvironments have been used to induce metastatic cell behaviors, and have thereby shown promise for in vitro cancer drug testing and targeting. Further, ECM-like substrates have been successfully employed for autologous cell recolonization for tissue engineering and wound healing. As we continue to learn more about the mechanical and biochemical characteristics of the ECM, these properties can be harnessed to develop new biomaterials, biomedical devices, and therapeutics. © 2015 Wiley Periodicals, Inc.

  17. Smart Surroundings

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Jansen, P.G.; Lijding, M.E.M.; Scholten, Johan

    2004-01-01

    Ambient systems are networked embedded systems integrated with everyday environments and supporting people in their activities. These systems will create a Smart Surrounding for people to facilitate and enrich daily life and increase productivity at work. Such systems will be quite different from

  18. Rotation of hard particles in a soft matrix

    Science.gov (United States)

    Yang, Weizhu; Liu, Qingchang; Yue, Zhufeng; Li, Xiaodong; Xu, Baoxing

    Soft-hard materials integration is ubiquitous in biological materials and structures in nature and has also attracted growing attention in the bio-inspired design of advanced functional materials, structures and devices. Due to the distinct difference in their mechanical properties, the rotation of hard phases in soft matrixes upon deformation has been acknowledged, yet is lack of theory in mechanics. In this work, we propose a theoretical mechanics framework that can describe the rotation of hard particles in a soft matrix. The rotation of multiple arbitrarily shaped, located and oriented particles with perfectly bonded interfaces in an elastic soft matrix subjected to a far-field tensile loading is established and analytical solutions are derived by using complex potentials and conformal mapping methods. Strong couplings and competitions of the rotation of hard particles among each other are discussed by investigating numbers, relative locations and orientations of particles in the matrix at different loading directions. Extensive finite element analyses are performed to validate theoretical solutions and good agreement of both rotation and stress field between them are achieved. Possible extensions of the present theory to non-rigid particles, viscoelastic matrix and imperfect bonding are also discussed. Finally, by taking advantage of the rotation of hard particles, we exemplify an application in a conceptual design of soft-hard material integrated phononic crystal and demonstrate that phononic band gaps can be successfully tuned with a high accuracy through the mechanical tension-induced rotation of hard particles. The present theory established herein is expected to be of immediate interests to the design of soft-hard materials integration based functional materials, structures and devices with tunable performance via mechanical rotation of hard phases.

  19. Multiscale Modeling of Ceramic Matrix Composites

    Science.gov (United States)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  20. Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea.

    Science.gov (United States)

    Jiang, Hong; Zuo, Yi; Zhang, Li; Li, Jidong; Zhang, Aiming; Li, Yubao; Yang, Xiaochao

    2014-03-01

    Each approach for artificial cornea design is toward the same goal: to develop a material that best mimics the important properties of natural cornea. Accordingly, the selection and optimization of corneal substitute should be based on their physicochemical properties. In this study, three types of polyvinyl alcohol (PVA) hydrogels with different polymerization degree (PVA1799, PVA2499 and PVA2699) were prepared by freeze-thawing techniques. After characterization in terms of transparency, water content, water contact angle, mechanical property, root-mean-square roughness and protein adsorption behavior, the optimized PVA2499 hydrogel with similar properties of natural cornea was selected as a matrix material for artificial cornea. Based on this, a biomimetic artificial cornea was fabricated with core-and-skirt structure: a transparent PVA hydrogel core, surrounding by a ringed PVA-matrix composite skirt that composed of graphite, Fe-doped nano hydroxyapatite (n-Fe-HA) and PVA hydrogel. Different ratio of graphite/n-Fe-HA can tune the skirt color from dark brown to light brown, which well simulates the iris color of Oriental eyes. Moreover, morphologic and mechanical examination showed that an integrated core-and-skirt artificial cornea was formed from an interpenetrating polymer network, no phase separation appeared on the interface between the core and the skirt.

  1. Half a century of "the nuclear matrix".

    Science.gov (United States)

    Pederson, T

    2000-03-01

    A cell fraction that would today be termed "the nuclear matrix" was first described and patented in 1948 by Russian investigators. In 1974 this fraction was rediscovered and promoted as a fundamental organizing principle of eukaryotic gene expression. Yet, convincing evidence for this functional role of the nuclear matrix has been elusive and has recently been further challenged. What do we really know about the nonchromatin elements (if any) of internal nuclear structure? Are there objective reasons (as opposed to thinly veiled disdain) to question experiments that use harsh nuclear extraction steps and precipitation-prone conditions? Are the known biophysical properties of the nucleoplasm in vivo consistent with the existence of an extensive network of anastomosing filaments coursing dendritically throughout the interchromatin space? To what extent may the genome itself contribute information for its own quarternary structure in the interphase nucleus? These questions and recent work that bears on the mystique of the nuclear matrix are addressed in this essay. The degree to which gene expression literally depends on nonchromatin nuclear structure as a facilitating organizational format remains an intriguing but unsolved issue in eukaryotic cell biology, and considerable skepticism continues to surround the nuclear matrix fraction as an accurate representation of the in vivo situation.

  2. Tropical rain-forest matrix quality affects bat assemblage structure in secondary forest patches

    NARCIS (Netherlands)

    Vleut, I.; Levy-Tacher, I.; Galindo-Gonzalez, J.; Boer, de W.F.; Ramirez-Marcial, N.

    2012-01-01

    We studied Phyllostomidae bat assemblage structure in patches of secondary forest dominated by the pioneer tree Ochroma pyramidale, largely (.85%) or partially (,35%) surrounded by a matrix of tropical rain forest, to test 3 hypotheses: the highest bat diversity and richness is observed in the

  3. Multi-length-scale Material Model for SiC/SiC Ceramic-Matrix Composites (CMCs): Inclusion of In-Service Environmental Effects

    Science.gov (United States)

    Grujicic, M.; Galgalikar, R.; Snipes, J. S.; Ramaswami, S.

    2016-01-01

    In our recent work, a multi-length-scale room-temperature material model for SiC/SiC ceramic-matrix composites (CMCs) was derived and parameterized. The model was subsequently linked with a finite-element solver so that it could be used in a general room-temperature, structural/damage analysis of gas-turbine engine CMC components. Due to its multi-length-scale character, the material model enabled inclusion of the effects of fiber/tow (e.g., the volume fraction, size, and properties of the fibers; fiber-coating material/thickness; decohesion properties of the coating/matrix interfaces; etc.) and ply/lamina (e.g., the 0°/90° cross-ply versus plain-weave architectures, the extent of tow crimping in the case of the plain-weave plies, cohesive properties of the inter-ply boundaries, etc.) length-scale microstructural/architectural parameters on the mechanical response of the CMCs. One of the major limitations of the model is that it applies to the CMCs in their as-fabricated conditions (i.e., the effect of prolonged in-service environmental exposure and the associated material aging-degradation is not accounted for). In the present work, the model is upgraded to include such in-service environmental-exposure effects. To demonstrate the utility of the upgraded material model, it is used within a finite-element structural/failure analysis involving impact of a toboggan-shaped turbine shroud segment by a foreign object. The results obtained clearly revealed the effects that different aspects of the in-service environmental exposure have on the material degradation and the extent of damage suffered by the impacted CMC toboggan-shaped shroud segment.

  4. Matrix Effects in XRF Measurements

    International Nuclear Information System (INIS)

    Kandil, A.T.; Gabr, N.A.; El-Aryan, S.M.

    2015-01-01

    This research treats the matrix effect on XRF measurements. The problem is treated by preparing general oxide program, which contains many samples that represent all materials in cement factories, then by using T rail Lachance m ethod to correct errors of matrix effect. This work compares the effect of using lithium tetraborate or sodium tetraborate as a fluxing agent in terms of accuracy and economic cost

  5. Evaluation of gum mastic (Pistacia lentiscus as a microencapsulating and matrix forming material for sustained drug release

    Directory of Open Access Journals (Sweden)

    Dinesh M. Morkhade

    2017-09-01

    Full Text Available In this study, a natural gum mastic was evaluated as a microencapsulating and matrix-forming material for sustained drug release. Mastic was characterized for its physicochemical properties. Microparticles were prepared by oil-in-oil solvent evaporation method. Matrix tablets were prepared by wet and melt granulation techniques. Diclofenac sodium (DFS and diltiazem hydrochloride (DLTZ were used as model drugs. Mastic produced discrete and spherical microspheres with DLTZ and microcapsules with DFS. Particle size and drug loading of microparticles was in the range of 22–62 µm and 50–87%, respectively. Increase in mastic: drug ratio increased microparticle size, improved drug loading and decreased the drug release rate. Microparticles with gum: drug ratio of 2:1 could sustain DLTZ release up to 12 h and released 57% DFS in 12 h. Mastic produced tablets with acceptable pharmacotechnical properties. A 30% w/w of mastic in tablet could sustain DLTZ release for 5 h from wet granulation, and DFS release for 8 h and 11 h from wet and melt granulation, respectively. Results revealed that a natural gum mastic can be used successfully to formulate matrix tablets and microparticles for sustained drug release.

  6. A new approach for modeling composite materials

    Science.gov (United States)

    Alcaraz de la Osa, R.; Moreno, F.; Saiz, J. M.

    2013-03-01

    The increasing use of composite materials is due to their ability to tailor materials for special purposes, with applications evolving day by day. This is why predicting the properties of these systems from their constituents, or phases, has become so important. However, assigning macroscopical optical properties for these materials from the bulk properties of their constituents is not a straightforward task. In this research, we present a spectral analysis of three-dimensional random composite typical nanostructures using an Extension of the Discrete Dipole Approximation (E-DDA code), comparing different approaches and emphasizing the influences of optical properties of constituents and their concentration. In particular, we hypothesize a new approach that preserves the individual nature of the constituents introducing at the same time a variation in the optical properties of each discrete element that is driven by the surrounding medium. The results obtained with this new approach compare more favorably with the experiment than previous ones. We have also applied it to a non-conventional material composed of a metamaterial embedded in a dielectric matrix. Our version of the Discrete Dipole Approximation code, the EDDA code, has been formulated specifically to tackle this kind of problem, including materials with either magnetic and tensor properties.

  7. Cytoskeletal remodeling of connective tissue fibroblasts in response to static stretch is dependent on matrix material properties

    Science.gov (United States)

    Abbott, Rosalyn D; Koptiuch, Cathryn; Iatridis, James C; Howe, Alan K; Badger, Gary J; Langevin, Helene M

    2012-01-01

    In areolar “loose” connective tissue, fibroblasts remodel their cytoskeleton within minutes in response to static stretch resulting in increased cell body cross-sectional area that relaxes the tissue to a lower state of resting tension. It remains unknown whether the loosely arranged collagen matrix, characteristic of areolar connective tissue, is required for this cytoskeletal response to occur. The purpose of this study was to evaluate cytoskeletal remodeling of fibroblasts in and dissociated from areolar and dense connective tissue in response to 2 hours of static stretch in both native tissue and collagen gels of varying crosslinking. Rheometric testing indicated that the areolar connective tissue had a lower dynamic modulus and was more viscous than the dense connective tissue. In response to stretch, cells within the more compliant areolar connective tissue adopted a large “sheet-like” morphology that was in contrast to the smaller dendritic morphology in the dense connective tissue. By adjusting the in vitro collagen crosslinking, and the resulting dynamic modulus, it was demonstrated that cells dissociated from dense connective tissue are capable of responding when seeded into a compliant matrix, while cells dissociated from areolar connective tissue can lose their ability to respond when their matrix becomes stiffer. This set of experiments indicated stretch-induced fibroblast expansion was dependent on the distinct matrix material properties of areolar connective tissues as opposed to the cells’ tissue of origin. These results also suggest that disease and pathological processes with increased crosslinks, such as diabetes and fibrosis, could impair fibroblast responsiveness in connective tissues. PMID:22552950

  8. Acoustic emission as a screening tool for ceramic matrix composites

    Science.gov (United States)

    Ojard, Greg; Goberman, Dan; Holowczak, John

    2017-02-01

    Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.

  9. Intestinal Stem Cell Niche: The Extracellular Matrix and Cellular Components

    Directory of Open Access Journals (Sweden)

    Laween Meran

    2017-01-01

    Full Text Available The intestinal epithelium comprises a monolayer of polarised columnar cells organised along the crypt-villus axis. Intestinal stem cells reside at the base of crypts and are constantly nourished by their surrounding niche for maintenance, self-renewal, and differentiation. The cellular microenvironment including the adjacent Paneth cells, stromal cells, smooth muscle cells, and neural cells as well as the extracellular matrix together constitute the intestinal stem cell niche. A dynamic regulatory network exists among the epithelium, stromal cells, and the matrix via complex signal transduction to maintain tissue homeostasis. Dysregulation of these biological or mechanical signals could potentially lead to intestinal injury and disease. In this review, we discuss the role of different intestinal stem cell niche components and dissect the interaction between dynamic matrix factors and regulatory signalling during intestinal stem cell homeostasis.

  10. On the transition to the normal phase for superconductors surrounded by normal conductors

    DEFF Research Database (Denmark)

    Fournais, Søren; Kachmar, Ayman

    2009-01-01

    For a cylindrical superconductor surrounded by a normal material, we discuss transition to the normal phase of stable, locally stable and critical configurations. Associated with those phase transitions, we define critical magnetic fields and we provide a sufficient condition for which those...

  11. Use of the Materials Genome Initiative (MGI approach in the design of improved-performance fiber-reinforced SiC/SiC ceramic-matrix composites (CMCs

    Directory of Open Access Journals (Sweden)

    Jennifer S. Snipes

    2016-07-01

    Full Text Available New materials are traditionally developed using costly and time-consuming trial-and-error experimental efforts. This is followed by an even lengthier material-certification process. Consequently, it takes 10 to 20 years before a newly-discovered material is commercially employed. An alternative approach to the development of new materials is the so-called materials-by-design approach within which a material is treated as a complex hierarchical system, and its design and optimization is carried out by employing computer-aided engineering analyses, predictive tools and available material databases. In the present work, the materials-by-design approach is utilized to design a grade of fiber-reinforced (FR SiC/SiC ceramic matrix composites (CMCs, the type of materials which are currently being used in stationary components, and are considered for use in rotating components, of the hot sections of gas-turbine engines. Towards that end, a number of mathematical functions and numerical models are developed which relate CMC constituents’ (fibers, fiber coating and matrix microstructure and their properties to the properties and performance of the CMC as a whole. To validate the newly-developed materials-by-design approach, comparisons are made between experimentally measured and computationally predicted selected CMC mechanical properties. Then an optimization procedure is employed to determine the chemical makeup and processing routes for the CMC constituents so that the selected mechanical properties of the CMCs are increased to a preset target level.

  12. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities

    DEFF Research Database (Denmark)

    Delaissé, Jean-Marie; Andersen, Thomas L; Engsig, Michael T

    2003-01-01

    The best established proteolytic event of osteoclasts is bone matrix solubilization by the cysteine proteinase cathepsin K. Here, however, we draw the attention on osteoclastic activities depending on matrix metalloproteinases (MMPs). We discuss the observations supporting that MMPs contribute...... significantly to bone matrix solubilization in specific areas of the skeleton and in some developmental and pathological situations. Our discussion takes into account (1) the characteristics of the bone remodeling persisting in the absence of cathepsin K, (2) the ultrastructure of the resorption zone...... in response to inactivation of MMPs and of cathepsin K in different bone types, (3) bone resorption levels in MMP knockout mice compared to wild-type mice, (4) the identification of MMPs in osteoclasts and surrounding cells, and (5) the effect of different bone pathologies on the serum concentrations...

  13. Advances in HTR fuel matrix technology

    International Nuclear Information System (INIS)

    Voice, E.H.; Sturge, D.W.

    1974-02-01

    Progress in the materials and technology of matrix consolidation in recent years is summarised, noting especially the development of an improved resin and the introduction of a new graphite powder. An earlier irradiation programme, the Matrix Test Series, is recalled and the fabrication of the most recent experiment, the directly-cooled homogeneous Met. VI, is described. (author)

  14. Mechanical Characteristics Analysis of Surrounding Rock on Anchor Bar Reinforcement

    Science.gov (United States)

    Gu, Shuan-cheng; Zhou, Pan; Huang, Rong-bin

    2018-03-01

    Through the homogenization method, the composite of rock and anchor bar is considered as the equivalent material of continuous, homogeneous, isotropic and strength parameter enhancement, which is defined as reinforcement body. On the basis of elasticity, the composite and the reinforcement are analyzed, Based on strengthening theory of surrounding rock and displacement equivalent conditions, the expression of reinforcement body strength parameters and mechanical parameters is deduced. The example calculation shows that the theoretical results are close to the results of the Jia-mei Gao[9], however, closer to the results of FLAC3D numerical simulation, it is proved that the model and surrounding rock reinforcement body theory are reasonable. the model is easy to analyze and calculate, provides a new way for determining reasonable bolt support parameters, can also provides reference for the stability analysis of underground cavern bolting support.

  15. Bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Choi-Yim, H.; Johnson, W.L.

    1997-01-01

    Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics

  16. The Importance of Interactions at the Molecular Level: A Spectroscopic Study of a New Composite Sorber Material.

    Science.gov (United States)

    Crocellà, Valentina; Groppo, Elena; Dani, Alessandro; Castellero, Alberto; Bordiga, Silvia; Zilio, Stefano; De Simone, Agnello; Vacca, Paolo

    2017-10-01

    The functional properties of a new composite material having water vapor getter properties have been investigated by a large arsenal of characterization techniques. The composite system is originated by combining two constituents having very different chemical natures, a magnesium perchlorate (Mg(ClO 4 ) 2 ) salt and a polymeric acrylic matrix. In particular, Fourier transform infrared (FT-IR) and Raman spectroscopy have been fundamental to understand the type of interactions between the salt and the matrix in different hydration conditions. It was found that in the anhydrous composite system the dispersed Mg(ClO 4 ) 2 salt retains its molecular structure, because Mg 2+ cations are still surrounded by their [ClO 4 ] - counter-anions; at the same time, the salt and the polymeric matrix chemically interact each other at the molecular level. These interactions gradually vanish in the presence of water, and disappear in the fully hydrated composite system, where the Mg 2+ cations are completely solvated by the water molecules.

  17. Micromechanical analysis of nanocomposites using 3D voxel based material model

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2012-01-01

    A computational study on the effect of nanocomposite structures on the elastic properties is carried out with the use of the 3D voxel based model of materials and the combined Voigt–Reuss method. A hierarchical voxel based model of a material reinforced by an array of exfoliated and intercalated...... nanoclay platelets surrounded by interphase layers is developed. With this model, the elastic properties of the interphase layer are estimated using the inverse analysis. The effects of aspect ratio, intercalation and orientation of nanoparticles on the elastic properties of the nanocomposites are analyzed....... For modeling the damage in nanocomposites with intercalated structures, “four phase” model is suggested, in which the strength of “intrastack interphase” is lower than that of “outer” interphase around the nanoplatelets. Analyzing the effect of nanoreinforcement in the matrix on the failure probability...

  18. Machining of Metal Matrix Composites

    CERN Document Server

    2012-01-01

    Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manu...

  19. Process of producing a ceramic matrix composite article and article formed thereby

    Science.gov (United States)

    Corman, Gregory Scot [Ballston Lake, NY; McGuigan, Henry Charles [Duanesburg, NY; Brun, Milivoj Konstantin [Ballston Lake, NY

    2011-10-25

    A CMC article and process for producing the article to have a layer on its surface that protects a reinforcement material within the article from damage. The method entails providing a body containing a ceramic reinforcement material in a matrix material that contains a precursor of a ceramic matrix material. A fraction of the reinforcement material is present and possibly exposed at a surface of the body. The body surface is then provided with a surface layer formed of a slurry containing a particulate material but lacking the reinforcement material of the body. The body and surface layer are heated to form the article by converting the precursor within the body to form the ceramic matrix material in which the reinforcement material is contained, and by converting the surface layer to form the protective layer that covers any fraction of the reinforcement material exposed at the body surface.

  20. Comparison of friction and wear performances of brake materials containing different amounts of ZrSiO4 dry sliding against SiCp reinforced Al matrix composites

    International Nuclear Information System (INIS)

    Zhang Shaoyang; Wang Fuping

    2007-01-01

    Low friction levels for brake materials dry sliding against Al matrix composites (Al-MMCs) were observed. Al matrix composites reinforced with 30 vol.% SiC p (34 μm) were used first to fabricate a new brake drum in place of the conventional cast iron brake drum for a Chase Machine. Experimental studies on the brake materials differing in amounts of zirconium silicate (0 wt%, 4 wt%, 8 wt%, and 12 wt% ZrSiO 4 ) dry sliding against the Al-MMCs drum were performed on the Chase Machine in order to examine their effects on friction and wear performances. The test procedures include friction fade and recovery, load and speed sensitivities at 177 deg. C and 316 deg. C, and wear. Experimental results show that the brake material containing 8 wt% ZrSiO 4 had the best wear resistance and higher friction level. The brake material containing 12 wt% ZrSiO 4 had the highest friction level, but wear increased rapidly. The deterioration of the latter wear suggests that this brake material is unreliable in commercial applications

  1. Fragmentation of extracellular matrix by hypochlorous acid

    DEFF Research Database (Denmark)

    Woods, Alan A; Davies, Michael Jonathan

    2003-01-01

    /chloramide decomposition, with copper and iron ions being effective catalysts, and decreased by compounds which scavenge chloramines/chloramides, or species derived from them. The effect of such matrix modifications on cellular behaviour is poorly understood, though it is known that changes in matrix materials can have...... profound effects on cell adhesion, proliferation, growth and phenotype. The observed matrix modifications reported here may therefore modulate cellular behaviour in diseases such as atherosclerosis where MPO-derived oxidants are generated....

  2. Cask for radioactive material and method for preventing release of neutrons from radioactive material

    International Nuclear Information System (INIS)

    Gaffney, M.F.; Shaffer, P.T.

    1981-01-01

    A cask for radioactive material, such as nuclear reactor fuel or spent nuclear reactor fuel, includes a plurality of associated walled internal compartments for containing such radioactive material, with neutron absorbing material present to absorb neutrons emitted by the radioactive material, and a plurality of thermally conductive members, such as longitudinal copper or aluminum castings, about the compartment and in thermal contact with the compartment walls and with other such thermally conductive members and having thermal contact surfaces between such members extending, preferably radially, from the compartment walls to external surfaces of the thermally conductive members, which surfaces are preferably in the form of a cylinder. The ends of the shipping cask also preferably include a neutron absorber and a conductive metal covering to dissipate heat released by decay of the radioactive material. A preferred neutron absorber utilized is boron carbide, preferably as plasma sprayed with metal powder or as particles in a matrix of phenolic polymer, and the compartment walls are preferably of stainless steel, copper or other corrosion resistant and heat conductive metal or alloy. The invention also relates to shipping casks, storage casks and other containers for radioactive materials in which a plurality of internal compartments for such material, e.g., nuclear reactor fuel rods, are joined together, preferably in modular construction with surrounding heat conductive metal members, and the modules are joined together to form a major part of a finished shipping cask, which is preferably of cylindrical shape. Also within the invention are methods of safely storing radioactive materials which emit neutrons, while dissipating the heat thereof, and of manufacturing the present shipping casks

  3. Cyclic Fiber Push-In Test Monitors Evolution of Interfacial Behavior in Ceramic Matrix Composites

    Science.gov (United States)

    Eldridge, Jeffrey I.

    1998-01-01

    SiC fiber-reinforced ceramic matrix composites are being developed for high-temperature advanced jet engine applications. Obtaining a strong, tough composite material depends critically on optimizing the mechanical coupling between the reinforcing fibers and the surrounding matrix material. This has usually been accomplished by applying a thin C or BN coating onto the surface of the reinforcing fibers. The performance of these fiber coatings, however, may degrade under cyclic loading conditions or exposure to different environments. Degradation of the coating-controlled interfacial behavior will strongly affect the useful service lifetime of the composite material. Cyclic fiber push-in testing was applied to monitor the evolution of fiber sliding behavior in both C- and BN-coated small-diameter (15-mm) SiC-fiber-reinforced ceramic matrix composites. The cyclic fiber push-in tests were performed using a desktop fiber push-out apparatus. At the beginning of each test, the fiber to be tested was aligned underneath a 10- mm-diameter diamond punch; then, the applied load was cycled between selected maximum and minimum loads. From the measured response, the fiber sliding distance and frictional sliding stresses were determined for each cycle. Tests were performed in both room air and nitrogen. Cyclic fiber push-in tests of C-coated, SiC-fiber-reinforced SiC showed progressive increases in fiber sliding distances along with decreases in frictional sliding stresses for continued cycling in room air. This rapid degradation in interfacial response was not observed for cycling in nitrogen, indicating that moisture exposure had a large effect in immediately lowering the frictional sliding stresses of C-coated fibers. These results indicate that matrix cracks bridged by C-coated fibers will not be stable, but will rapidly grow in moisture-containing environments. In contrast, cyclic fiber push-in tests of both BN-coated, SiC-fiber-reinforced SiC and BNcoated, Si

  4. Glass matrix armor

    International Nuclear Information System (INIS)

    Calkins, N.C.

    1991-01-01

    This patent describes an armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the insides surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material

  5. The matrix of inspiration

    Science.gov (United States)

    Oehlmann, Dietmar; Ohlmann, Odile M.; Danzebrink, Hans U.

    2005-04-01

    The research of Odile Meulien and Dietmar Ohlmann is about perceiving a multidimensional world. Not about the cyberspace created for new cinema creation, nor the reality which seems to be created by communication. It's the search for the reality we perceive, when the mind "touches" an object with its senses. In fact, it is a study of the surface of an object, which we can record in its visual appearing, its structure, shape and colors. When using photographic media, the tactile sense of the structure is missing, when using some other reproductive media; we experience somewhere a sensation of fault, something different. When using holography, we are able to record some three dimensional shape which has in fact a lot of parameter of a realistic copy. What is missing is the touch, the smell, the way we can go close and far, surround the object, relate the reflected light to its surrounding. The only interesting attribute of a hologram is for Dietmar Ohlmann its capacity to illustrate a continuum. He likes its changing diffractive character during daytime and surrounds lighting. For Odile Meulien the continuum of a hologram represents a new possible model for understanding wholeness in a social context. In fact, both are working on an educational process together, helping children and adults to find a new position of their own in harmony with living surrounding. Dietmar Ohlmann is working on his artistic side, while Odile Meulien works on educational programs experiencing the perspective of a curator and social analyst. New is the implication of using the latest of the techniques like the atomic force microscopy, which make possible to touch the holographic grating while the holographic image remains untouched. In other words it is the reverse of the usual approach of objects which at first we touch to investigate further. Their difference in experiencing and perceiving scientific and technical approach brings a lot of paradigm in their discussion. Together they will

  6. Effect of landscape matrix type on nesting ecology of the Northern Cardinal

    Science.gov (United States)

    R.A. Sargent; J.C. Kilgo; B.R. Chapman; K.V. Miller

    2015-01-01

    Spatial distribution of forests relative to other habitats in a landscape may influence nest success of songbirds. For example, nest predation in mature forests increases as the percentage of clear-cut land in the surrounding matrix increases (Yahner and Scott 1988). Blake and Karr (1987) noted that birds breeding in forest fragments may incorporate adjacent habitats,...

  7. Quantitative image analysis for investigating cell-matrix interactions

    Science.gov (United States)

    Burkel, Brian; Notbohm, Jacob

    2017-07-01

    The extracellular matrix provides both chemical and physical cues that control cellular processes such as migration, division, differentiation, and cancer progression. Cells can mechanically alter the matrix by applying forces that result in matrix displacements, which in turn may localize to form dense bands along which cells may migrate. To quantify the displacements, we use confocal microscopy and fluorescent labeling to acquire high-contrast images of the fibrous material. Using a technique for quantitative image analysis called digital volume correlation, we then compute the matrix displacements. Our experimental technology offers a means to quantify matrix mechanics and cell-matrix interactions. We are now using these experimental tools to modulate mechanical properties of the matrix to study cell contraction and migration.

  8. Quasi-optic millimeter-wave device application of liquid crystal material by using porous PMMA matrix

    Science.gov (United States)

    Nose, T.; Watanabe, Y.; Kon, A.; Ito, R.; Honma, M.

    2018-02-01

    Recently, millimeter-waves (MMWs) have become indispensable for application in next-generation high-speed wireless communication i.e., 5G, in addition to conventional applications such as in automobile collision avoidance radars and airport security inspection systems. Some manageable devices to control MMW propagation will be necessary with the development of this new technology field. We believe that liquid crystal (LC) devices are one of the major candidates for such applications because it is known that LC materials are excellent electro-optic materials. However, as the wavelength of MMWs is extremely longer than the optics region, extremely thick LC layers are necessary if we choose the quasioptic approach to attain LC MMW control devices. Therefore, we adopt a PDLC structure to attain the extremely thick LC layers by using porous (polymethyl methacrylate) PMMA materials, which can be easily obtained using a solvent consisting of a mixture of ethanol/water and a little heating. In this work, we focus on Fresnel lens, which is an important quasi-optic device for MMW application, to introduce a tunable property by using LC materials. Here, we adopt the thin film deposition method to obtain a porous PMMA matrix with the aim of obtaining final composite structure based on the Fresnel substrate. First, the fundamental material properties of porous PMMA are investigated to control the microscopic porous structure. Then, the LC-MMW Fresnel lens substrate is prepared using a 3D printer, and the fundamental MMW focusing properties of the prototype composite Fresnel structure are investigated.

  9. Characterization and control of the fiber-matrix interface in ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, R.A.

    1989-03-01

    Fiber-reinforced SiC composites fabricated by thermal-gradient forced-flow chemical-vapor infiltration (FCVI) have exhibited both composite (toughened) and brittle behavior during mechanical property evaluation. Detailed analysis of the fiber-matrix interface revealed that a silica layer on the surface of Nicalon Si-C-O fibers tightly bonds the fiber to the matrix. The strongly bonded fiber and matrix, combined with the reduction in the strength of the fibers that occurs during processing, resulted in the observed brittle behavior. The mechanical behavior of Nicalon/SiC composites has been improved by applying thin coatings (silicon carbide, boron, boron nitride, molybdenum, carbon) to the fibers, prior to densification, to control the interfacial bond. Varying degrees of bonding have been achieved with different coating materials and film thicknesses. Fiber-matrix bond strengths have been quantitatively evaluated using an indentation method and a simple tensile test. The effects of bonding and friction on the mechanical behavior of this composite system have been investigated. 167 refs., 59 figs., 18 tabs.

  10. Investigation of the Thermal Stability of Nd(x)Sc(y)Zr(1-x-y)O(2-δ) Materials Proposed for Inert Matrix Fuel Applications.

    Science.gov (United States)

    Hayes, John R; Grosvenor, Andrew P; Saoudi, Mouna

    2016-02-01

    Inert matrix fuels (IMF) consist of transuranic elements (i.e., Pu, Am, Np, Cm) embedded in a neutron transparent (inert) matrix and can be used to "burn up" (transmute) these elements in current or Generation IV nuclear reactors. Yttria-stabilized zirconia has been extensively studied for IMF applications, but the low thermal conductivity of this material limits its usefulness. Other elements can be used to stabilize the cubic zirconia structure, and the thermal conductivity of the fuel can be increased through the use of a lighter stabilizing element. To this end, a series of Nd(x)Sc(y)Zr(1-x-y)O(2-δ) materials has been synthesized via a co-precipitation reaction and characterized by multiple techniques (Nd was used as a surrogate for Am). The long-range and local structures of these materials were studied using powder X-ray diffraction, scanning electron microscopy, and X-ray absorption spectroscopy. Additionally, the stability of these materials over a range of temperatures has been studied by annealing the materials at 1100 and 1400 °C. It was shown that the Nd(x)Sc(y)Zr(1-x-y)O(2-δ) materials maintained a single cubic phase upon annealing at high temperatures only when both Nd and Sc were present with y ≥ 0.10 and x + y > 0.15.

  11. In-vitro and in-vivo design and validation of an injectable polysaccharide-hydroxyapatite composite material for sinus floor augmentation.

    Science.gov (United States)

    Fricain, J C; Aid, R; Lanouar, S; Maurel, D B; Le Nihouannen, D; Delmond, S; Letourneur, D; Amedee Vilamitjana, J; Catros, S

    2018-04-07

    Polysaccharide-based composite matrices consisting of natural polysaccharides, pullulan and dextran supplemented with hydroxyapatite (Matrix-HA) have recently been developed. The principal objective of this study was to evaluate the capacities of this composite material to promote new bone formation in a sinus lift model in the sheep. Secondary objectives were to evaluate in vitro properties of the material regarding cell adhesion and proliferation. In this report, once such composite matrix was prepared as injectable beads after dispersion in a physiological buffer, and evaluated using a large animal model (sheep) for a sinus lift procedure. In vitro studies revealed that these microbeads (250-550μm in diameter) allow vascular cell adhesion and proliferation of Endothelial Cells (EC) after 1 and 7 days of culture. In vivo studies were performed in 12 adult sheep, and newly formed tissue was analyzed by Cone Beam Computed Tomography (CBCT scanning electron microscopy (SEM) and by histology 3 and 6 months post-implantation. CBCT analyses at the implantation time revealed the radiolucent properties of these matrices. Quantitative analysis showed an increase of a dense mineralized tissue in the Matrix-HA group up to 3 months of implantation. The mineralized volume over total volume after 6 months reached comparable values to those obtained for Bio-Oss ® used as positive control. Histological examination confirmed that the Matrix-HA did not induce any long term inflammatory events, and promoted direct contact between the osteoid tissue and lamellar bone structures and beads. After 6 months, we observed a dense network of osteocytes surrounding both biomaterials as well as a newly vascularized formed tissue in close contact to the biomaterials. In conclusion, the absence of animal components in Matrix-HA, the osteoconductive property of Matrix-HA in sheep, resulting in a dense bone and vascularized tissue, and the initial radiolucent property to follow graft

  12. Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium-sulfur battery applications.

    Science.gov (United States)

    Zhang, Bin; Xiao, Min; Wang, Shuanjin; Han, Dongmei; Song, Shuqin; Chen, Guohua; Meng, Yuezhong

    2014-08-13

    Novel hierarchically porous carbon materials with very high surface areas, large pore volumes and high electron conductivities were prepared from silk cocoon by carbonization with KOH activation. The prepared novel porous carbon-encapsulated sulfur composites were fabricated by a simple melting process and used as cathodes for lithium sulfur batteries. Because of the large surface area and hierarchically porous structure of the carbon material, soluble polysulfide intermediates can be trapped within the cathode and the volume expansion can be alleviated effectively. Moreover, the electron transport properties of the carbon materials can provide an electron conductive network and promote the utilization rate of sulfur in cathode. The prepared carbon-sulfur composite exhibited a high specific capacity and excellent cycle stability. The results show a high initial discharge capacity of 1443 mAh g(-1) and retain 804 mAh g(-1) after 80 discharge/charge cycles at a rate of 0.5 C. A Coulombic efficiency retained up to 92% after 80 cycles. The prepared hierarchically porous carbon materials were proven to be an effective host matrix for sulfur encapsulation to improve the sulfur utilization rate and restrain the dissolution of polysulfides into lithium-sulfur battery electrolytes.

  13. Caving thickness effects of surrounding rocks macro stress shell evolving characteristics

    Institute of Scientific and Technical Information of China (English)

    XIE Guang-xiang; YANG Ke

    2009-01-01

    In order to explore the influence of different caving thicknesses on the MSS dis-tribution and evolving characteristics of surrounding rocks in unsymmetrical disposal and fully mechanized top-coal caving (FMTC), based on unsymmetrical disposal characteris-tics, the analyses of numerical simulation, material simulation and in-situ observation were synthetically applied according to the geological and technical conditions of the 1151(3) working face in Xieqiao Mine. The results show that the stress peak value of the MSS-base and the ratio of MSS-body height to caving thickness are nonlinear and inversely proportional to the caving thickness. The MSS-base width, the MSS-body height, the MSS-base distance to working face wall and the rise distance of MSS-base beside coal pillar are nonlinear and directly proportional to the caving thickness. The characteristics of MSS distribution and its evolving rules of surrounding rocks and the integrated caving thickness effects are obtained. The investigations will provide lots of theoretic references to the surrounding rocks' stability control of the working face and roadway, roadway layout, gas extraction and exploitation, and efficiency of caving, etc.

  14. Unusual tensile behaviour of fibre-reinforced indium matrix composite and its in-situ TEM straining observation

    International Nuclear Information System (INIS)

    Luo, Xin; Peng, Jianchao; Zandén, Carl; Yang, Yanping; Mu, Wei; Edwards, Michael; Ye, Lilei; Liu, Johan

    2016-01-01

    Indium-based thermal interface materials are superior in thermal management applications of electronic packaging compared to their polymer-based counterparts. However, pure indium has rather low tensile strength resulting in poor reliability. To enhance the mechanical properties of such a material, a new composite consisting of electrospun randomly oriented continuous polyimide fibres and indium was fabricated. The composite has been characterised by tensile tests and in-situ transmission electron microscopy straining observations. It is shown that the composite's ultimate tensile strength at 20 °C is five times higher than that of pure indium, and the strength of the composite exceeds the summation of strengths of the individual components. Furthermore, contrary to most metallic matrix materials, the ultimate tensile strength of the composite decreases with the increased strain rate in a certain range. The chemical composition and tensile fracture of the novel composite have been analysed comprehensively by means of scanning transmission electron microscopy and scanning electron microscopy. A strengthening mechanism based on mutually reinforcing structures formed by the indium and surrounding fibres is also presented, underlining the effect of compressing at the fibre/indium interfaces by dislocation pileups and slip pinning.

  15. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope.

    Science.gov (United States)

    Wang, Ye; He, Honghui; Chang, Jintao; Zeng, Nan; Liu, Shaoxiong; Li, Migao; Ma, Hui

    2015-12-01

    Polarized light imaging can provide rich microstructural information of samples, and has been applied to the detections of various abnormal tissues. In this paper, we report a polarized light microscope based on Mueller matrix imaging by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission optical microscope. The maximum errors for the absolute values of Mueller matrix elements are reduced to 0.01 after calibration. This Mueller matrix microscope has been used to examine human cervical and liver cancerous tissues with fibrosis. Images of the transformed Mueller matrix parameters provide quantitative assessment on the characteristic features of the pathological tissues. Contrast mechanism of the experimental results are backed up by Monte Carlo simulations based on the sphere-cylinder birefringence model, which reveal the relationship between the pathological features in the cancerous tissues at the cellular level and the polarization parameters. Both the experimental and simulated data indicate that the microscopic transformed Mueller matrix parameters can distinguish the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for liver cancer. With its simple structure, fast measurement and high precision, polarized light microscope based on Mueller matrix shows a good diagnosis application prospect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The mineral chemistry and origin of inclusion matrix and meteorite matrix in the Allende CV3 chondrite

    International Nuclear Information System (INIS)

    Kornacki, A.S.; Wood, J.A.; Harvard Univ., Cambridge, MA

    1984-01-01

    The two textural varieties of olivine-rich Allende inclusions consist primarily of a porous, fine-grained mafic constituent that differs from the opaque meteorite matrix of CV3 chondrites by being relatively depleted in sulfides, metal grains, and carbonaceous material. Olivine is the most abundant mineral in Allende inclusion matrix; clinopyroxene, nepheline, sodalite, and Ti-Al-pyroxene occur in lesser amounts. Olivine in unrimmed olivine aggregates is ferrous and has a narrow compositional range. Olivine in rimmed olivine aggregates is, on average, more magnesian, with a wider compositional range. Olivine grains in the granular rims of Type 1B inclusions are zoned, with magnesian cores and ferrous rinds. Ferrous olivines in both varieties of inclusions commonly contain significant amounts of Al 2 O 3 , CaO and TiO 2 , refractory elements that probably occur in submicroscopic inclusions of Ca, Al, Ti-rich glass. Defocussed beam analyses of Allende matrix materials are discussed. (author)

  17. Evaluation of matrix metalloproteinase-9 expressions in nasopharyngeal carcinoma patients

    Science.gov (United States)

    Farhat; Asnir, R. A.; Yudhistira, A.; Daulay, E. R.; Puspitasari, D.; Yulius, S.

    2018-03-01

    Nasopharyngeal carcinoma (NPC) is one of head and neck cancer with a poor prognosis because of the position of the tumor adjacent to the skull base and vital structures. Degradation of extracellular matrix that will cause tumor cells to invade surrounding tissues, vascular or lymphatic vessels. One that plays a role in the extracellular matrix degradation process is matrix metalloproteinase-9 (MMP-9). MMP-9 plays a role in tumor invasion process, metastasis and induction of tumor tissue vascularization. To determine the expression of MMP-9 in patients with nasopharyngeal carcinoma, a descriptive study was conducted by examining immunohistochemistry MMP-9 in 30 NPC tissues that had never received radiotherapy, chemotherapy or combination. Frequency distribution of NPC patient mostly in the age group 41-50 years old and 51-60 years were nine people (30.0%); men (73.3%) and non-keratinizing squamous cell carcinoma (53.3%) histopathology type. The overexpression of MMP-9 in patients with nasopharyngeal carcinoma were mostly found in advance stage.

  18. Successful application of Low Voltage Electron Microscopy to practical materials problems

    International Nuclear Information System (INIS)

    Bell, David C.; Mankin, Max; Day, Robert W.; Erdman, Natasha

    2014-01-01

    Low-voltage High-Resolution Electron Microscopy (LVHREM) has several advantages, including increased cross-sections for inelastic and elastic scattering, increased contrast per electron, decreased delocalization effects and reduced knock-on damage. Imaging at differing voltages has shown advantages for imaging materials that are knock-on damage sensitive. We show experimentally that different materials systems benefit from low voltage high-resolution microscopy. There are advantages for imaging single layer materials such as graphene at below the knock-on threshold; we present an example of imaging a graphene sheet at 40 kV. We have also examined mesoporous silica decorated with Pd nanoparticles and carbon black functionalized with Pd/Pt nanoparticles. In these cases we show that the lower voltage imaging maintains the structure of the surrounding matrix during imaging, whereas aberration correction provides the higher resolution for imaging the nanoparticle lattice. Perhaps surprisingly we show that zeolites damage preferentially by ionization effects (radiolysis). The current literature suggests that below incident energies of 40 kV the damage is mainly radiolitic, whereas at incident energies above 200 kV the knock-on damage and material sputtering will be the dominant effect. Our experimental observations support this conclusion and the effects we have observed at 40 kV are not indicative of knock-on damage. Other nanoscale materials such as thin silicon nanowires also benefit from lower voltage imaging. LVHREM imaging provides an excellent option to avoid beam damage to nanowires; our results suggest that LVHREM is suitable for nanowire-biological composites. Our experimental observations serve as a clear demonstration that even at 40 keV accelerating voltage, LVHREM can be used without inducing beam damage to locate dislocations and other crystalline defects, which may have adverse effects on nanowire device performance. Low voltage operation will likely

  19. Efficiency criterion for teleportation via channel matrix, measurement matrix and collapsed matrix

    Directory of Open Access Journals (Sweden)

    Xin-Wei Zha

    Full Text Available In this paper, three kinds of coefficient matrixes (channel matrix, measurement matrix, collapsed matrix associated with the pure state for teleportation are presented, the general relation among channel matrix, measurement matrix and collapsed matrix is obtained. In addition, a criterion for judging whether a state can be teleported successfully is given, depending on the relation between the number of parameter of an unknown state and the rank of the collapsed matrix. Keywords: Channel matrix, Measurement matrix, Collapsed matrix, Teleportation

  20. Effects of Heat Treatment on SiC-SiC Ceramic Matrix Composites

    Science.gov (United States)

    Knauf, Michael W.

    Residual stresses resulting from the manufacturing process found within a silicon carbide/silicon carbide (SiC/SiC) ceramic matrix composite were thoroughly investigated through the use of high-energy X-ray diffraction and Raman microspectroscopy. The material system studied was a Rolls-Royce composite produced with Hi-Nicalon fibers woven into a five harness satin weave, coated with boron nitride and silicon carbide interphases, and subsequently infiltrated with silicon carbide particles and a silicon matrix. Constituent stress states were measured before, during, and after heat treatments ranging from 900 °C to 1300 °C for varying times between one and sixty minutes. Stress determination methods developed through these analyses can be utilized in the development of ceramic matrix composites and other materials employing boron-doped silicon. X-ray diffraction experiments were performed at the Argonne National Laboratory Advanced Photon Source to investigate the evolution of constituent stresses through heat treatment, and determine how stress states are affected at high temperature through in situ measurements during heat treatments up to 1250 °C for 30 minutes. Silicon carbide particles in the as-received condition exhibited a nearly isotropic stress state with average tensile stresses of approximately 300 MPa. The silicon matrix exhibited a complimentary average compressive stress of approximately 300 MPa. Strong X-ray diffraction evidence is presented demonstrating solid state boron diffusion and increased boron solubility found in silicon throughout heat treatment. While the constituent stress states did evolve through the heat treatment cycles, including approaching nearly stress-free conditions at temperatures close to the manufacturing temperature, no permanent relaxation of stress was observed. Raman spectroscopy was utilized to investigate stresses found within silicon carbide particles embedded within the matrix and the silicon matrix as an alternate

  1. Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Livi, Francesco; Hagemann, Ole

    2015-01-01

    The results presented demonstrate how the screening of 104 light-absorbing low band gap polymers for suitability in roll coated polymer solar cells can be accomplished through rational synthesis according to a matrix where 8 donor and 13 acceptor units are organized in rows and columns. Synthesis...... silver comb back electrode structure. The matrix organization enables fast identification of active layer materials according to a weighted merit factor that includes more than simply the power conversion efficiency and is used as a method to identify the lead candidates. Based on several characteristics...

  2. Effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of hydroxyapatite-collagen composites as artificial bone materials

    Energy Technology Data Exchange (ETDEWEB)

    Yunoki, Shunji [Life Science Group, Tokyo Metropolitan Industrial Technology Research Institute, 2-11-1 Fukasawa, Setagaya-ku, Tokyo 158-0081 (Japan); Sugiura, Hiroaki; Kondo, Eiji; Yasuda, Kazunori [Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido 060-8638 Japan (Japan); Ikoma, Toshiyuki; Tanaka, Junzo, E-mail: yunoki.shunji@iri-tokyo.jp [Department of Metallurgy and Ceramics Science, 2-12-1-S7-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2011-02-15

    The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm{sup -3} and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 {+-} 0.48 and 0.651 {+-} 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.

  3. Effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of hydroxyapatite-collagen composites as artificial bone materials

    International Nuclear Information System (INIS)

    Yunoki, Shunji; Sugiura, Hiroaki; Kondo, Eiji; Yasuda, Kazunori; Ikoma, Toshiyuki; Tanaka, Junzo

    2011-01-01

    The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm -3 and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 ± 0.48 and 0.651 ± 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.

  4. Directed migration of cancer cells by the graded texture of the underlying matrix

    Science.gov (United States)

    Park, JinSeok; Kim, Deok-Ho; Kim, Hong-Nam; Wang, Chiaochun Joanne; Kwak, Moon Kyu; Hur, Eunmi; Suh, Kahp-Yang; An, Steven S.; Levchenko, Andre

    2016-01-01

    Living cells and the extracellular matrix (ECM) can display complex interactions that define key developmental, physiological and pathological processes. Here, we report a new type of directed migration — which we term ‘topotaxis’ — by which cell movement is guided by the gradient of the nanoscale topographic features in the cells’ ECM environment. We show that the direction of topotaxis is reflective of the effective cell stiffness, and that it depends on the balance of the ECM-triggered signalling pathways PI3K-Akt and ROCK-MLCK. In melanoma cancer cells, this balance can be altered by different ECM inputs, pharmacological perturbations or genetic alterations, particularly a loss of PTEN in aggressive melanoma cells. We conclude that topotaxis is a product of the material properties of cells and the surrounding ECM, and propose that the invasive capacity of many cancers may depend broadly on topotactic responses, providing a potentially attractive mechanism for controlling invasive and metastatic behaviour. PMID:26974411

  5. Contributions in the Preparation and Processing of Composite Material Type Silumin 3 - Reinforced Matrix with S235JR Steel Mesh

    Directory of Open Access Journals (Sweden)

    Remus Belu-Nica

    2015-07-01

    Full Text Available In the paper are presented concrete data on developing technological batches of metal composite material (MCM type Silumin 3-reinforced matrix with steel mesh S235JR, with the indicating of the parameter and of the distinct stages of work. The samples from prepared batches were cut along and across by water jet abrasive process and were subjected to a destructive testing program and microstructural examination, obtaining results in concordance with the desired quality. The abrasive material used for cut was GMA granite with the average mesh of 80, the particle size ranging between 150-300 µm, density 2300 kg/m3 and melting point 1240°C.

  6. Improvement of characteristics of diffraction gratings in Dot-matrix holograms

    International Nuclear Information System (INIS)

    ZHUMALIEV, K.M.; ISMAILOV, D.A.; ZHEENBEKOV, A.A.; SARYBAEVA, A.A.; KAZAKBAEVA, Z.M.

    2014-01-01

    This paper describes the results of research of the formation and recording of matrix hologram by Dot-matrix (dot-matrix hologram) technology on the photosensitive material of the photoresist. The principle of creating and modifying the characteristics of diffraction gratings of each pixel based on the diffraction efficiency, and recovery of colors and dynamic visual effects in dot-matrix holograms are discussed. An optical schematic diagram of the device and the process of recording dot-matrix holograms are presented. (authors)

  7. ASTM and VAMAS activities in titanium matrix composites test methods development

    Science.gov (United States)

    Johnson, W. S.; Harmon, D. M.; Bartolotta, P. A.; Russ, S. M.

    1994-01-01

    Titanium matrix composites (TMC's) are being considered for a number of aerospace applications ranging from high performance engine components to airframe structures in areas that require high stiffness to weight ratios at temperatures up to 400 C. TMC's exhibit unique mechanical behavior due to fiber-matrix interface failures, matrix cracks bridged by fibers, thermo-viscoplastic behavior of the matrix at elevated temperatures, and the development of significant thermal residual stresses in the composite due to fabrication. Standard testing methodology must be developed to reflect the uniqueness of this type of material systems. The purpose of this paper is to review the current activities in ASTM and Versailles Project on Advanced Materials and Standards (VAMAS) that are directed toward the development of standard test methodology for titanium matrix composites.

  8. Matrix effects on the determination of manganese in geological materials by atomic-absorption spectrophotometry under different flame conditions

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.

    1978-01-01

    Suppression caused by five of the seven matrix elements studied (Si, Al, Fe, Ca and Mg) was observed in the atomic-absorption determination of manganese in geological materials, when synthetic solutions and the recommended oxidizing air-acetylene flame were used. The magnitude of the suppression effects depends on (1) the kind and concentration of the interfering elements, (2) the type of acid medium, and (3) the concentration of manganese to be determined. All interferences noted are removed or alleviated by using a reducing nitrous oxide-acetylene flame. The atomic-absorption method using this flame can be applied to the determination of total and extractable manganese in a wide range of geological materials without interferences. Analyses of six U.S. Geological Survey rock standards for manganese gave results in agreement with the reported values. ?? 1978.

  9. Matrix mechanics and fluid shear stress control stem cells fate in three dimensional microenvironment.

    Science.gov (United States)

    Chen, Guobao; Lv, Yonggang; Guo, Pan; Lin, Chongwen; Zhang, Xiaomei; Yang, Li; Xu, Zhiling

    2013-07-01

    Stem cells have the ability to self-renew and to differentiate into multiple mature cell types during early life and growth. Stem cells adhesion, proliferation, migration and differentiation are affected by biochemical, mechanical and physical surface properties of the surrounding matrix in which stem cells reside and stem cells can sensitively feel and respond to the microenvironment of this matrix. More and more researches have proven that three dimensional (3D) culture can reduce the gap between cell culture and physiological environment where cells always live in vivo. This review summarized recent findings on the studies of matrix mechanics that control stem cells (primarily mesenchymal stem cells (MSCs)) fate in 3D environment, including matrix stiffness and extracellular matrix (ECM) stiffness. Considering the exchange of oxygen and nutrients in 3D culture, the effect of fluid shear stress (FSS) on fate decision of stem cells was also discussed in detail. Further, the difference of MSCs response to matrix stiffness between two dimensional (2D) and 3D conditions was compared. Finally, the mechanism of mechanotransduction of stem cells activated by matrix mechanics and FSS in 3D culture was briefly pointed out.

  10. R&D of MCFC matrix for long term operation

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Takashi; Fujita, Yoji; Urushibata, Hiroaki; Sasaki, Akira [Mitsubishi Electric Corp., Hyogo (Japan)

    1996-12-31

    Long term operation is an essential subject in the commercialization of the Molten Carbonate Fuel Cell (MCFC). Material stability is important for the development of the MCFC. particularly for long term operation. In this paper, the specification and the stabilization of MCFC matrix arc investigated, with the aim of producing 40000 hours of operation. It is common knowledge that matrix thickness has a large influence on shorting time, as shorting is caused by the dissolution of the nickel oxide cathodes. Therefore, the optimum thickness of a matrix designed for 40000 hours operation without the nickel shorting was sought. The influences of different electrolytes and matrix specifications on the shorting time were measured with accelerated cell tests. The internal resistance of the matrix was also estimated. Gamma( {gamma} )-lithium aluminate (LiAlO{sub 2}) powder with a sub-micron particle diameter is commonly used for a raw material of matrix to retain molten carbonate electrolytes. This is because most researchers found that {gamma}-LiA1O{sub 2} was the most stable material in the MCFC environment among the three allotropic forms alpha ( {alpha} ), beta ( {beta} ), and {gamma}. However. two problems with the stability of {gamma} -LiAlO{sub 2} are being vigorously discussed. especially in Japan: particle growth causes decreasing electrolyte retention, and the transformation of {gamma} to {alpha}. This transformation contradicts the accepted opinion that {gamma} is the most stable form. In this paper, the particle growth and the phase transformation of LiAlO{sub 2} are examined with post-test analyses. The influence of matrix degradation on cell performance is also considered.

  11. Ferroelastic ceramic-reinforced metal matrix composites

    OpenAIRE

    2006-01-01

    Composite materials comprising ferroelastic ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the ferroelastic ceramic particulates are subjected to stress, such as the cyclic stress experienced during vibration of the material, internal stresses in the ceramic cause the material to deform via twinning, domain rotation or domain motion thereby dissipating the vibrational energy. The ferroelastic ceramic particulates may also act as reinforcements to impro...

  12. Tool material effect on the friction stir butt welding of AA2124-T4 Alloy Matrix MMC

    Directory of Open Access Journals (Sweden)

    Yahya Bozkurt

    2018-01-01

    Full Text Available The purpose of the present work is to study on the effect of material properties tool on friction stir butt welding of AA2124-T4 alloy matrix MMC. Uncoated tool, coated tool with a CrN, and coated tool with AlTiN were used to weld aluminum MMC plates. Macrostructure and microstructure observations, ultimate tensile strength, wear resistance, and chemical analysis were carried out to determine the appropriate tool for joining these composite plates. Results showed that the good welded joints could be obtained when a tool is coated with AlTiN.

  13. Evolution of new materials for space applications

    International Nuclear Information System (INIS)

    Purdy, D.M.

    1983-01-01

    The implications of spacecraft design requirements for materials technology are surveyed, with a focus on current trends and future needs. Criteria for materials selection are discussed, including contamination control (low-outgassing materials), electrical and thermal characteristics, structural stiffness, safety requirements, and survivability (under natural space conditions for longer periods and under potential hostile particle-beam or laser attack). The applications and potential of polymer-matrix, metal-matrix and ceramic-matrix composites are discussed and compared. While polymer-matrix-material applications are seen as extendable by using high-stiffness fibers and improving ultraviolet protection, the greatest potential is seen in the development of the metal-matrix and ceramic-matrix composites, as used in the Space Shuttle. A need for cheaper, lighter, more radiation-resistant and less contamination-prone thermal-control coatings than the present optical-solar-reflector tiles, silica fabric, and indium-tin-oxide coating is projected. Methods for the analysis of structural defects in viscoelastic electrical components are presented. The materials requirements of larger and more powerful future spacecraft are evaluated. 17 references

  14. Method of tissue repair using a composite material

    Energy Technology Data Exchange (ETDEWEB)

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O' Neill, Hugh M.

    2016-03-01

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  15. Method of tissue repair using a composite material

    Science.gov (United States)

    Hutchens, Stacy A; Woodward, Jonathan; Evans, Barbara R; O'Neill, Hugh M

    2014-03-18

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  16. The minimum amount of "matrix " needed for matrix-assisted pulsed laser deposition of biomolecules

    DEFF Research Database (Denmark)

    Tabetah, Marshall; Matei, Andreea; Constantinescu, Catalin

    2014-01-01

    The ability of matrix-assisted pulsed laser evaporation (MAPLE) technique to transfer and deposit high-quality thin organic, bioorganic, and composite films with minimum chemical modification of the target material has been utilized in numerous applications. One of the outstanding problems in MAPLE...

  17. Changes in unique hues induced by chromatic surrounds.

    Science.gov (United States)

    Klauke, Susanne; Wachtler, Thomas

    2016-03-01

    A chromatic surround can have a strong influence on the perceived hue of a stimulus. We investigated whether chromatic induction has similar effects on the perception of colors that appear pure and unmixed (unique red, green, blue, and yellow) as on other colors. Subjects performed unique hue settings of stimuli in isoluminant surrounds of different chromaticities. Compared with the settings in a neutral gray surround, unique hue settings altered systematically with chromatic surrounds. The amount of induced hue shift depended on the difference between stimulus and surround hues, and was similar for unique hue settings as for settings of nonunique hues. Intraindividual variability in unique hue settings was roughly twice as high as for settings obtained in asymmetric matching experiments, which may reflect the presence of a reference stimulus in the matching task. Variabilities were also larger with chromatic surrounds than with neutral gray surrounds, for both unique hue settings and matching of nonunique hues. The results suggest that the neural representations underlying unique hue percepts are influenced by the same neural processing mechanisms as the percepts of other colors.

  18. Rigidity percolation in dispersions with a structured viscoelastic matrix

    NARCIS (Netherlands)

    Wilbrink, M.W.L.; Michels, M.A.J.; Vellinga, W.P.; Meijer, H.E.H.

    2005-01-01

    This paper deals with rigidity percolation in composite materials consisting of a dispersion of mineral particles in a microstructured viscoelastic matrix. The viscoelastic matrix in this specific case is a hydrocarbon refinery residue. In a set of model random composites the mean interparticle

  19. Matrix matters: differences of grand skink metapopulation parameters in native tussock grasslands and exotic pasture grasslands.

    Directory of Open Access Journals (Sweden)

    Konstanze Gebauer

    Full Text Available Modelling metapopulation dynamics is a potentially very powerful tool for conservation biologists. In recent years, scientists have broadened the range of variables incorporated into metapopulation modelling from using almost exclusively habitat patch size and isolation, to the inclusion of attributes of the matrix and habitat patch quality. We investigated the influence of habitat patch and matrix characteristics on the metapopulation parameters of a highly endangered lizard species, the New Zealand endemic grand skink (Oligosoma grande taking into account incomplete detectability. The predictive ability of the developed zxmetapopulation model was assessed through cross-validation of the data and with an independent data-set. Grand skinks occur on scattered rock-outcrops surrounded by indigenous tussock (bunch and pasture grasslands therefore implying a metapopulation structure. We found that the type of matrix surrounding the habitat patch was equally as important as the size of habitat patch for estimating occupancy, colonisation and extinction probabilities. Additionally, the type of matrix was more important than the physical distance between habitat patches for colonisation probabilities. Detection probability differed between habitat patches in the two matrix types and between habitat patches with different attributes such as habitat patch composition and abundance of vegetation on the outcrop. The developed metapopulation models can now be used for management decisions on area protection, monitoring, and the selection of translocation sites for the grand skink. Our study showed that it is important to incorporate not only habitat patch size and distance between habitat patches, but also those matrix type and habitat patch attributes which are vital in the ecology of the target species.

  20. Calculation of contraction stresses in dental composites by analysis of crack propagation in the matrix surrounding a cavity.

    Science.gov (United States)

    Yamamoto, Takatsugu; Ferracane, Jack L; Sakaguchi, Ronald L; Swain, Michael V

    2009-04-01

    Polymerization contraction of dental composite produces a stress field in the bonded surrounding substrate that may be capable of propagating cracks from pre-existing flaws. The objectives of this study were to assess the extent of crack propagation from flaws in the surrounding ceramic substrate caused by composite contraction stresses, and to propose a method to calculate the contraction stress in the ceramic using indentation fracture. Initial cracks were introduced with a Vickers indenter near a cylindrical hole drilled into a glass-ceramic simulating enamel. Lengths of the radial indentation cracks were measured. Three composites having different contraction stresses were cured within the hole using one- or two-step light-activation methods and the crack lengths were measured. The contraction stress in the ceramic was calculated from the crack length and the fracture toughness of the glass-ceramic. Interfacial gaps between the composite and the ceramic were expressed as the ratio of the gap length to the hole perimeter, as well as the maximum gap width. All groups revealed crack propagation and the formation of contraction gaps. The calculated contraction stresses ranged from 4.2 MPa to 7.0 MPa. There was no correlation between the stress values and the contraction gaps. This method for calculating the stresses produced by composites is a relatively simple technique requiring a conventional hardness tester. The method can investigate two clinical phenomena that may occur during the placement of composite restorations, i.e. simulated enamel cracking near the margins and the formation of contraction gaps.

  1. Effects of ductile matrix failure in three dimensional analysis of metal matrix composites

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1998-01-01

    Full three dimensional numerical cell model analyses are carried out for a metal reinforced by short fibers, to study the development of ductile matrix failure. A porous ductile material model is used to describe the effect of the nucleation and growth of voids to coalescence. In each case studied...

  2. Mechanical Properties of TC4 Matrix Composites Prepared by Laser Cladding

    Directory of Open Access Journals (Sweden)

    WANG Lin

    2017-06-01

    Full Text Available In order to improve the penetration performance of TC4, the direct laser deposition technology was used to prepare TC4 composite material. TA15+30% TiC powder, TA15+20%Cr3C2 powder and TA15+15%B4C powder were used as deposited materials for TC4 matrix. The micromorphology, change of hardness of the deposited coating and mechanical properties of the three composites were studied. The experimental results demonstrate that the TC4 matrix with the three kinds of materials can form a complete metallurgical bonding, and the strength of TC4-(TA15+TiC, TC4-(TA15+Cr3C2 and TC4-(TA15+B4C are higher than that of TC4 matrix materials, while the plasticity is slightly worse.

  3. Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method.

    Science.gov (United States)

    Wang, Yifeng; Dong, Meng; Guo, Mengmeng; Wang, Xia; Zhou, Jing; Lei, Jian; Guo, Chuanhang; Qin, Chaoran

    2017-08-01

    We present a simple and environmentally-friendly method to generate an agar/gelatin bilayer gel matrix for further biomedical applications. In this method, the thermally responsive sol-gel transitions of agar and gelatin combined with the different transition temperatures are exquisitely employed to fabricate the agar/gelatin bilayer gel matrix and achieve separate loading for various materials (e.g., drugs, fluorescent materials, and nanoparticles). Importantly, the resulting bilayer gel matrix provides two different biopolymer environments (a polysaccharide environment vs a protein environment) with a well-defined border, which allows the loaded materials in different layers to retain their original properties (e.g., magnetism and fluorescence) and reduce mutual interference. In addition, the loaded materials in the bilayer gel matrix exhibit an interesting release behavior under the control of thermal stimuli. Consequently, the resulting agar/gelatin bilayer gel matrix is a promising candidate for biomedical applications in drug delivery, controlled release, fluorescence labeling, and bio-imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Materials Behavior Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to evaluate mechanical properties of materials including metals, intermetallics, metal-matrix composites, and ceramic-matrix composites under typical...

  5. COMPOSITION OF FOWLPOX VIRUS AND INCLUSION MATRIX.

    Science.gov (United States)

    RANDALL, C C; GAFFORD, L G; DARLINGTON, R W; HYDE, J

    1964-04-01

    Randall, Charles C. (University of Mississippi School of Medicine, Jackson), Lanelle G. Gafford, Robert W. Darlington, and James M. Hyde. Composition of fowlpox virus and inclusion matrix. J. Bacteriol. 87:939-944. 1964.-Inclusion bodies of fowlpox virus infection are especially favorable starting material for the isolation of virus and inclusion matrix. Electron micrographs of viral particles and matrix indicated a high degree of purification. Density-gradient centrifugation of virus in cesium chloride and potassium tartrate was unsatisfactory because of inactivation, and clumping or disintegration. Chemical analyses of virus and matrix revealed significant amounts of lipid, protein, and deoxyribonucleic acid, but no ribonucleic acid or carbohydrate. Approximately 47% of the weight of the virus and 83% of the matrix were extractable in chloroform-methanol. The lipid partitions of the petroleum ether extracts were similar, except that the phospholipid content of the matrix was 2.2 times that of the virus. Viral particles were sensitive to diethyl ether and chloroform.

  6. Composite materials design and applications

    CERN Document Server

    Gay, Daniel; Tsai, Stephen W

    2002-01-01

    PART ONE. PRINCIPLES OF CONSTRUCTIONCOMPOSITE MATERIALS, INTEREST AND PROPERTIESWhat is Composite Material Fibers and MatrixWhat can be Made Using Composite Materials?Typical Examples of Interest on the Use of Composite MaterialsExamples on Replacing Conventional Solutions with CompositesPrincipal Physical PropertiesFABRICATION PROCESSESMolding ProcessesOther Forming ProcessesPractical Hints in the Manufacturing ProcessesPLY PROPERTIESIsotropy and AnisotropyCharacteristics of the Reinforcement-Matrix MixtureUnidirectional PlyWoven FabricsMats and Reinforced MatricesMultidimensional FabricsMetal Matrix CompositesTestsSANDWICH STRUCTURES:What is a Sandwich Structure?Simplified FlexureA Few Special AspectsFabrication and Design ProblemsNondestructive Quality ControlCONCEPTION AND DESIGNDesign of a Composite PieceThe LaminateFailure of LaminatesSizing of LaminatesJOINING AND ASSEMBLYRiveting and BoltingBondingInsertsCOMPOSITE MATERIALS AND AEROSPACE CONSTRUCTIONAircraftHelicoptersPropeller Blades for AirplanesTur...

  7. Wetted-region structure in horizontal unsaturated fractures: Water entry through the surrounding porous matrix

    International Nuclear Information System (INIS)

    Glass, R.J.; Norton, D.L.

    1991-01-01

    Small-scale processes that influence wetted structure within the plane of a horizontal fracture as the fracture wets or drains through the matrix are investigated. Our approach integrates both aperture-scale modeling and physical experimentation. Several types of aperture-scale models have been defined and implemented. A series of physical experimental systems that allow us to measure wetted-region structure as a function of system parameters and water pressure head in analogue fractures also have been designed. In our preliminary proof-of-concept experiment, hysteresis is clearly evident in the measured saturation/pressure relation, as is the process of air entrapment, which causes a reduction in the connected areas between blocks and the wetted region available for flow in the plane of the fracture. A percolation threshold where the system is quickly spanned, allowing fluid conduction in the fracture plane, is observed which is analogous to that found in the aperture-scale models. A fractal wetted and entrapped-region structure is suggested by both experiment and modeling. This structure implies that flow tortuosity for both flow in the fracture and for inter-block fluid transfer is a scale-dependent function of pressure head

  8. Hydrophilic nanoporous materials

    DEFF Research Database (Denmark)

    2010-01-01

    The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.05, the ......The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.......05, the method comprising the steps of: (a) preparing a precursor material comprising at least one polymeric component and having a first phase and a second phase; (b) removal of at least a part of the first phase of the precursor material prepared in step (a) so as to leave behind a nanoporous material...... of the polymer matrix; (c) irradiating at least a part of said nanoporous material with light of a wave length of in the range of 250-400 nm (or 200-700 nm) in the presence of oxygen and/or ozone. Corresponding hydrophilic nanoporous materials are also disclosed. L...

  9. On the fabricability of a composite material containing the FCC matrix with embedded ductile B2 intermetallics

    International Nuclear Information System (INIS)

    Hosseinifar, Mehdi; Malakhov, Dmitri V.

    2010-01-01

    An imaginary composite material containing a ductile Al-rich FCC matrix with embedded particles of ductile RMg intermetallics (R is a rare-earth metal) may possess high strength and formability thus making it suitable as a replacement for steel in automotive applications. Although different fabrications routes can be explored, a direct-chill casting is likely least expensive of them. A crucial question is whether it is possible to find such a composition of the ternary Al-R-Mg melt whose solidification would result in the desired Al/RMg structure. In order to answer the question, a thermodynamic model of the Al-La-Mg system was built using the CALPHAD method. The model, whose validity was demonstrated by calorimetric experiments, was then used to prove that the FCC + LaMg composite material could not be produced via casting. Similar properties of rare-earth metals suggest that the conclusion based on the analysis of the particular Al-La-Mg case, will likely remain valid for other rare-earth elements.

  10. Long-term effects of neutron absorber and fuel matrix corrosion on criticality

    International Nuclear Information System (INIS)

    Culbreth, W.G.; Zielinski, P.R.

    1994-01-01

    Proposed waste package designs will require the addition of neutron absorbing material to prevent the possibility of a sustained chain reaction occurring in the fuel in the event of water intrusion. Due to the low corrosion rates of the fuel matrix and the Zircaloy cladding, there is a possibility that the neutron absorbing material will corrode and leak from the waste container long before the subsequent release of fuel matrix material. An analysis of the release of fuel matrix and neutron absorber material based on a probabilistic model was conducted and the results were used to prepare input to KENO-V, an neutron criticality code. The results demonstrate that, in the presence of water, the computed values of k eff exceeded the maximum of 0.95 for an extended period of time

  11. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  12. Analytical V TH and S models for (DMG-GC-stack) surrounding-gate MOSFET

    Science.gov (United States)

    Aouaj, Abdellah; Bouziane, Ahmed; Nouaçry, Ahmed

    2012-01-01

    This article presents an analytical model of surface potential, threshold voltage and subthreshold swing for a new structure of surrounding-gate MOSFET by combining dual-material gate, graded channel and gate stack. By comparison with published results, it is shown that the new MOSFET structure can improve the immunity of CMOS-based devices in the nanoscale regime against short-channel effects.

  13. Processing of intractable polymers using reactive solvents. 2. Poly(2,6-Dimethyl-1,4-Phenylene Ether) as a Matrix Material for High-Performance Composites

    NARCIS (Netherlands)

    Venderbosch, R.W.; Meijer, H.E.H.; Lemstra, P.J.

    1995-01-01

    The application of poly(2,6-dimethyl-1,4-phenylene ether) (PPE) as a matrix material for continuous carbon fibre reinforced composites has been studied. Owing to the intractable nature of PPE, melt impregnation is not feasible and therefore a solution impregnation route was explored using epoxy

  14. Multifunctional Nanotube Polymer Nanocomposites for Aerospace Applications: Adhesion between SWCNT and Polymer Matrix

    Science.gov (United States)

    Park, Cheol; Wise, Kristopher E.; Kang, Jin Ho; Kim, Jae-Woo; Sauti, Godfrey; Lowther, Sharon E.; Lillehei, Peter T.; Smith, Michael W.; Siochi, Emilie J.; Harrison, Joycelyn S.; hide

    2008-01-01

    Multifunctional structural materials can enable a novel design space for advanced aerospace structures. A promising route to multifunctionality is the use of nanotubes possessing the desired combination of properties to enhance the characteristics of structural polymers. Recent nanotube-polymer nanocomposite studies have revealed that these materials have the potential to provide structural integrity as well as sensing and/or actuation capabilities. Judicious selection or modification of the polymer matrix to promote donor acceptor and/or dispersion interactions can improve adhesion at the interface between the nanotubes and the polymer matrix significantly. The effect of nanotube incorporation on the modulus and toughness of the polymer matrix will be presented. Very small loadings of single wall nanotubes in a polyimide matrix yield an effective sensor material that responds to strain, stress, pressure, and temperature. These materials also exhibit significant actuation in response to applied electric fields. The objective of this work is to demonstrate that physical properties of multifunctional material systems can be tailored for specific applications by controlling nanotube treatment (different types of nanotubes), concentration, and degree of alignment.

  15. Effect of particle size of mineral fillers on polymer-matrix composite shielding materials against ionizing electromagnetic radiation

    International Nuclear Information System (INIS)

    Belgin, E.E.; Aycik, G.A.

    2017-01-01

    Filler particle size is an important particle that effects radiation attenuation performance of a composite shielding material but the effects of it have not been exploited so far. In this study, two mineral (hematite-ilmenite) with different particle sizes were used as fillers in a polymer-matrix composite and effects of particle size on shielding performance was investigated within a widerange of radiation energy (0-2000 keV). The thermal and structural properties of the composites were also examined. The results showed that as the filler particle size decreased the shielding performance increased. The highest shielding performance reached was 23% with particle sizes being between <7 and <74 µm. (author)

  16. Migration of metallic ions from screwposts into dentin and surrounding tissues

    International Nuclear Information System (INIS)

    Arvidson, K.; Wroblewski, R.

    1978-01-01

    Previous investigations have shown that corrosion and other electrochemical processes occur when different alloys or metals are found together in the same mouth. In the present report, when teeth were restored using non-noble metallic posts, the metals diffused out to surrounding hard and soft connective tissues. The material consisted of extracted teeth with screwposts and surrounding discolored connective tissues. The screwposts had been cemented to the teeth 3-10 years earlier. The distribution of metal ion was determined by means of energy-dispersive X-ray microanalysis. Copper and zinc were found in both hard and soft tissues. Relatively high concentrations of copper ions were identified in areas of the teeth with blue-green discolorations. Zinc ions were detected in the dentin; they most probably originated from the screwposts and the cement, but zinc is also found in normal human dentin. Copper, zinc, silver and iron were found in the dark discolorations of the gingiva adjacent to the extracted teeth. (author)

  17. NERI FINAL TECHNICAL REPORT, DE-FC07-O5ID14647. OPTIMIZATION OF OXIDE COMPOUNDS FOR ADVANCED INERT MATRIX MATERIALS

    International Nuclear Information System (INIS)

    Nino, Juan C.

    2009-01-01

    In order to reduce the current excesses of plutonium (both weapon grade and reactor grade) and other transuranium elements, a concept of inert matrix fuel (IMF) has been proposed for an uranium free transmutation of fissile actinides which excludes continuous uranium-plutonium conversion in thermal reactors and advanced systems. Magnesium oxide (MgO) is a promising candidate for inert matrix (IM) materials due to its high melting point (2827 C), high thermal conductivity (13 W/K · m at 1000 C), good neutronic properties, and irradiation stability However, MgO reacts with water and hydrates easily, which prevents it from being used in light water reactors (LWRs) as an IM. To improve the hydration resistance of MgO-based inert matrix materials, Medvedev and coworkers have recently investigated the introduction of a secondary phase that acts as a hydration barrier. An MgO-ZrO 2 composite was specifically studied and the results showed that the composite exhibited improved hydration resistance than pure MgO. However, ZrO 2 is insoluble in most acids except HF, which is undesirable for fuel reprocessing. Moreover, the thermal conductivity of ZrO 2 is low and typically less than 3 W · m -1 · K -1 at 1000 C. In search for an alternative composite strategy, Nd 2 Zr 2 O 7 , an oxide compound with pyrochlore structure, has been proposed recently as a corrosion resistant phase, and MgO-Nd 2 Zr 2 O 7 composites have been investigated as potential IM materials. An adequate thermal conductivity of 6 W · m - 1 · K -1 at 1000 C for the MgO-Nd 2 Zr 2 O 7 composite with 90 vol% MgO was recently calculated and reported. Other simulations proposed that the MgO-pyrochlore composites could exhibit higher radiation stability than previously reported. Final optimization of the composite microstructure was performed on the 70 vol% MgO-Nd 2 Zr 2 O 7 composite that burnup calculations had shown to have the closest profile to that of MOX fuel. Theoretical calculations also indicated that

  18. Residual stresses and mechanical properties of metal matrix composites

    International Nuclear Information System (INIS)

    Persson, Christer.

    1993-01-01

    The large difference in coefficient of thermal expansion of the matrix and particles in a metal matrix composite will introduce residual stresses during cooling from process temperature. These stresses are locally very high, and are known to influence the mechanical behaviour of the material. Changes in the stress state will occur during heat treatments and when the material is loaded due to different elastic, plastic, and creep properties of the constituents. The change of residual stresses in an Al-SiC particulate composite after different degree of plastic straining has been studied. The effect of plastic straining was modelled by an Eshelby model. The model and the measurements both show that the stress in the loading direction decreases for a tensile plastic strain and increases for a compressive plastic strain. By x-ray diffraction the stress response in the matrix and particles can be measured independently. This has been used to determine the stress state under and after heat treatments and under mechanical loading in two Al 15% SiC metal matrix composites. By analysing the line width from x-ray experiment the changes in the microstrains in the material were studied. A finite element model was used to model the generation of thermal residual stresses, stress relaxation during heat treatments, and load sharing during the first load cycle. Calculated stresses and microstrains were found to be in good agreement with the measured values. The elastic behaviour of the composite can be understood largely in terms of elastic load transfer between matrix and particles. However, at higher loads when the matrix becomes plastic residual stresses also become important. 21 refs

  19. Strategy BMT Al-Ittihad Using Matrix IE, Matrix SWOT 8K, Matrix SPACE and Matrix TWOS

    Directory of Open Access Journals (Sweden)

    Nofrizal Nofrizal

    2018-03-01

    Full Text Available This research aims to formulate and select BMT Al-Ittihad Rumbai strategy to face the changing of business environment both from internal environment such as organization resources, finance, member and external business such as competitor, economy, politics and others. This research method used Analysis of EFAS, IFAS, IE Matrix, SWOT-8K Matrix, SPACE Matrix and TWOS Matrix. our hope from this research it can assist BMT Al-Ittihad in formulating and selecting strategies for the sustainability of BMT Al-Ittihad in the future. The sample in this research is using purposive sampling technique that is the manager and leader of BMT Al-IttihadRumbaiPekanbaru. The result of this research shows that the position of BMT Al-Ittihad using IE Matrix, SWOT-8K Matrix and SPACE Matrix is in growth position, stabilization and aggressive. The choice of strategy after using TWOS Matrix is market penetration, market development, vertical integration, horizontal integration, and stabilization (careful.

  20. Investigation of the structure of multiwall carbon nanotubes in polymer matrix

    International Nuclear Information System (INIS)

    Major, A Adamne; Belina, K

    2013-01-01

    In the last ten years carbon nanotube composites are in the focus of the researchers. Concentration series were prepared using carbon nanotube containing master blend by IDMX mixer. In the experiments polypropylene, polycarbonate and ABS polymers were used as matrix materials. The prepared materials were characterised by scanning electron microscopy. The carbon nanotubes can be seen on the fractured surfaces. We did not find any sign of agglomerates in the materials. The nanocomposites were investigated by LP-FTIR method. The specimens were irradiated with 1 W for 1 minute by CO 2 laser. The polymer matrix was burnt or charred by the CO 2 laser; the structure of the carbon nanotubes in the matrix was studied. The carbon nanotubes create a physical network in the polymers we used

  1. Electrically conductive material

    Science.gov (United States)

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  2. Parameter studies to determine sensitivity of slug impact loads to properties of core surrounding structures

    International Nuclear Information System (INIS)

    Gvildys, J.

    1985-01-01

    A sensitivity study of the HCDA slug impact response of fast reactor primary containment to properties of core surrounding structures was performed. Parameters such as the strength of the radial shield material, mass, void, and compressibility properties of the gas plenum material, mass of core material, and mass and compressibility properties of the coolant were used as variables to determine the magnitude of the slug impact loads. The response of the reactor primary containment and the partition of energy were also given. A study was also performed using water as coolant to study the difference in slug impact loads

  3. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    Science.gov (United States)

    Holcomb, Matthew J.

    2002-01-01

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  4. Adhesion and multi-materials

    International Nuclear Information System (INIS)

    Schultz, J.

    1997-01-01

    Adhesion is a multidisciplinary science relevant to many practical fields. The main application of adhesion is bonding by adhesives. This technique is widely used in the industrial world and more specifically in the advanced technical domains. Adhesion is also involved in multi-component materials such as coatings, multilayer materials, polymer blends, composite materials... The multidisciplinary aspect of adhesion is well demonstrated by considering the wide variety of concepts, models and theories proposed for its description. An example of the adhesion between a fiber and a matrix in a composite material will lead to a general model relating the molecular properties of the interface to its capacity of stress transfer and hence to the macroscopic mechanical properties of the composite. This relationship is valid whatever the fiber (glass, carbon, polymeric) or the polymer matrix (thermoplastics, thermosetting). Any deviation from this model can be attributed to the existence of an interfacial zone or interphase exhibiting properties, mainly mechanical properties, different from the bulk matrix. Two examples are examined: the first one deals with the creation of a trans crystalline interphase in a semi-crystalline thermoplastic matrix and the second one is concerned with the formation of a pseudo glassy interphase in an elastomer matrix. These examples stress the need for complementary approaches in the understanding of adhesion phenomena at different levels of knowledge, from molecular to macroscopic. They also show how important it is to understand the mechanisms of formation of inter phases in order to be able to master the performance of multicomponent materials. (Author)

  5. Spectrophotometric determination of silicon in silumin matrix

    International Nuclear Information System (INIS)

    Samanta, Papu; Pandey, K.L.; Kumar, Pradeep; Bagchi, A.C.; Abdulla, K.K.

    2015-01-01

    In dispersion fuel, fissile material is dispersed in inert matrix. Aluminum-silicon-nickel (silumin) alloy is employed as inert matrix owing to its high thermal conductivity, high castability, high corrosion resistance. All these properties depend on the chemical composition and the structure of silumin. Silicon is stringent specification in silumin. A spectrophotometric method has been developed for the determination of silicon content in silumin matrix. Silumin matrix was fused with LiOH and subsequent dissolution in water along with few drops of conc. sulphuric acid. The molybodo-silicic formed by the addition of ammonium molybdate is reduced to molybdenum blue by ascorbic acid in the presence of antimony. The absorbance was measured at 810 nm. Aluminum and nickel were found to be non-interfering with the silicon determination. (author)

  6. Rupture of Al matrix in U-Mo/Al dispersion fuel by fission induced creep

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Sohn, Dong Seong [UNIST, Daejeon (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, Argonnge (United States); Lee, Kyu Hong [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This phenomenon was found specifically in the dispersion fuel plate with Si addition in the Al matrix to suppress interaction layer (IL) formation between UMo and Al. It is known that the stresses induced by fission induced swelling in U-Mo fuel particles are relieved by creep deformation of the IL, surrounding the fuel particles, that has a much higher creep rate than the Al matrix. Thus, when IL growth is suppressed, the stress is instead exerted on the Al matrix. The observed rupture in the Al matrix is believed to be caused when the stress exceeded the rupture strength of the Al matrix. In this study, the possibility of creep rupture of the Al matrix between the neighboring U-Mo fuel particles was examined using the ABAQUS finite element analysis (FEA) tool. The predicted rupture time for a plate was much shorter than its irradiation life indicating a rupture during the irradiation. The higher stress leads Al matrix to early creep rupture in this plate for which the Al matrix with lower creep strain rate does not effectively relieve the stress caused by the swelling of the U-Mo fuel particles. For the other plate, no rupture was predicted for the given irradiation condition. The effect of creeping of the continuous phase on the state of stress is significant.

  7. Effect of matrix granulation and wax coating on the dissolution rates ...

    African Journals Online (AJOL)

    disintegrating) granules consisting of paracetamol (drug) and acrylatemethacrylate copolymer, a matrix forming material. The effect of coating the matrix granules with wax on the drug release profiles was also investigated. The objective was to ...

  8. Feasibility study on development of metal matrix composite by microwave stir casting

    Science.gov (United States)

    Lingappa, S. M.; Srinath, M. S.; Amarendra, H. J.

    2018-04-01

    Need for better service oriented materials has boosted the demand for metal matrix composite materials, which can be developed to have necessary properties. One of the most widely utilized metal matrix composite is Al-SiC, which is having a matrix made of aluminium metal and SiC as reinforcement. Lightweight and conductivity of aluminium, when combined with hardness and wear resistance of SiC provides an excellent platform for various applications in the field of electronics, automotives, and aerospace and so on. However, uniform distribution of reinforcement particles is an issue and has to be addressed. The present study is an attempt made to develop Al-SiC metal matrix composite by melting base metal using microwave hybrid heating technique, followed by addition of reinforcement and stirring the mixture for obtaining homogenous mixture. X-Ray Diffraction analysis shows the presence of aluminium and SiC in the cast material. Further, microstructural study shows the distribution of SiC particles in the grain boundaries.

  9. Superconductivity and thermal property of MgB2/aluminum matrix composite materials fabricated by 3-dimensional penetration casting method

    International Nuclear Information System (INIS)

    Matsuda, Kenji; Saeki, Tomoaki; Nishimura, Katsuhiko; Ikeno, Susumu; Mori, Katsunori; Yabumoto, Yukinobu

    2006-01-01

    Superconductive MgB 2 /Al composite material with low and high volume fractions of particles were fabricated by our special pre-packing technique and 3-dimensional penetration casting method. The composite material showed homogeneous distribution of MgB 2 particles in the Al-matrix with neither any aggregation of particles nor defects such as cracks or cavities. The critical temperature of superconducting transition (T C ) was determined by electrical resistivity and magnetization to be about 37-39 K. Specific heat measurements further supported these T C findings. The Meissner effect was also verified in the liquid He, in which a piece of the composite floated above a permanent magnet. The thermal conductivity of the MgB 2 /Al composite material was about 25 W/K·m at 30K, a value much higher than those found for NbTi or Nb 3 Sn superconducting wires normally used in practice, which are 0.5 and 0.2 W/K·m at 10 K, respectively. A billet of the superconducting material was successfully hot-extruded, forming a rod. The same as the billet sample, the rod showed an onset T C of electrical resistivity of 39 K. (author)

  10. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications

    Science.gov (United States)

    Zhu, Dongming

    2018-01-01

    Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.

  11. New materials options for nuclear systems

    International Nuclear Information System (INIS)

    Jones, R.H.; Garner, F.A.; Bruemmer, S.M.; Gelles, D.S.

    1989-01-01

    Development of new materials for nuclear reactor systems is continuing to produce options for improved reactor designs. Materials with reduced environment-induced crack growth is a key materials issue for the light water reactor (LWR) industry while the development of low activation ferritic, austenitic and vanadium alloys has been an active area for materials development for fusion reactor structural applications. Development of advanced materials such as metal matrix and ceramic matrix composites for reactor systems have received a limited amount of attention. (author)

  12. Improvement of thermal conductivity of ceramic matrix composites for 4. generation nuclear reactors

    International Nuclear Information System (INIS)

    Cabrero, J.

    2009-11-01

    This study deals with thermal conductivity improvement of SiCf/SiC ceramic matrix composites materials to be used as cladding material in 4. generation nuclear reactor. The purpose of the study is to develop a composite for which both the temperature and irradiation effect is less pronounced on thermal conductivity of material than for SiC. This material will be used as matrix in CMC with SiC fibers. Some TiC-SiC composites with different SiC volume contents were prepared by spark plasma sintering (SPS). The sintering process enables to fabricate specimens very fast, with a very fine microstructure and without any sintering aids. Neutron irradiation has been simulated using heavy ions, at room temperature and at 500 C. Evolution of the thermal properties of irradiated materials is measured using modulated photothermal IR radiometry experiment and was related to structural evolution as function of dose and temperature. It appears that such approach is reliable to evaluate TiC potentiality as matrix in CMC. Finally, CMC with TiC matrix and SiC fibers were fabricated and both mechanical and thermal properties were measured and compare to SiCf/SiC CMC. (author)

  13. Fumonisin concentrations and in vivo toxicity of nixtamalized Fusarium verticillioides culture material: evidence for fumonisin-matrix interactions.

    Science.gov (United States)

    Burns, T D; Snook, M E; Riley, R T; Voss, K A

    2008-08-01

    The toxic potential of nixtamalized foods can be underestimated if, during cooking, reversible fumonisin-food matrix interactions reduce the amount of mycotoxin that is detected but not the amount that is bioavailable. Fusarium verticillioides culture material (CM) was nixtamalized as is (NCM) or after mixing with ground corn (NCMC). Additional portions were sham nixtamalized without (SCM) or with corn (SCMC). Nixtamalization and sham nixtamalization reduced FB(1); CM, NCM, and SCM diets contained 9.08, 2.08, and 1.19 ppm, respectively. FB(1) was further reduced in the NCMC (0.49 ppm) but not the SCMC (1.01 ppm) diets compared to their NCM and SCM counterparts. Equivalent weights of the cooked products, uncooked CM, corn (UC) or nixtamalized UC (NUC) were fed to rats for up to three weeks. Kidney lesions in the NCM-fed group were less severe than in the CM-fed, positive control group and no lesions were found in the NCMC and other groups. Group kidney sphinganine (biomarker of fumonisin exposure) concentrations decreased in the order: CM (absolute concentration (nmol/g)=600-800)>NCM (400-600)>SCM and SCMC (30-90)>NCMC, UC and NUC (<8). Together, these results suggest that mycotoxin-corn matrix interactions during nixtamalization reduce the bioavailability and toxicity of FB(1).

  14. Enhancement of Afterimage Colors by Surrounding Contours

    Directory of Open Access Journals (Sweden)

    Takao Sato

    2011-05-01

    Full Text Available Presenting luminance contours surrounding the adapted areas in test phase enhances color afterimages in both duration and color appearance. The presence of surrounding contour is crucial to some color phenomenon such as van Lier's afterimage, but the contour-effect itself has not been seriously examined. In this paper, we compared the contour-effect to color afterimages and to actually colored patches to examine the nature of color information subserving color-aftereffect. In the experiment, observers were adapted for 1 sec to a small colored square (red, green, yellow, or blue presented on a gray background. Then, a test field either with or without surrounding contour was presented. Observers matched the color of a test-patch located near the afterimage to the color of afterimage. It was found that the saturation of negative afterimage was almost doubled by the presence of surrounding contours. There was no effect of luminance contrast or polarity of contours. In contrast, no enhancement of saturation by surrounding contours was observed for actually colored patches even though the colors of patches were equalized to that of afterimage without contours. This dissociation in the contour-effect demonstrates the crucial difference between the color information for aftereffects and for ordinary bottom-up color perception.

  15. Encapsulated Vanadium-Based Hybrids in Amorphous N-Doped Carbon Matrix as Anode Materials for Lithium-Ion Batteries.

    Science.gov (United States)

    Long, Bei; Balogun, Muhammad-Sadeeq; Luo, Lei; Luo, Yang; Qiu, Weitao; Song, Shuqin; Zhang, Lei; Tong, Yexiang

    2017-11-01

    Recently, researchers have made significant advancement in employing transition metal compound hybrids as anode material for lithium-ion batteries and developing simple preparation of these hybrids. To this end, this study reports a facile and scalable method for fabricating a vanadium oxide-nitride composite encapsulated in amorphous carbon matrix by simply mixing ammonium metavanadate and melamine as anode materials for lithium-ion batteries. By tuning the annealing temperature of the mixture, different hybrids of vanadium oxide-nitride compounds are synthesized. The electrode material prepared at 700 °C, i.e., VM-700, exhibits excellent cyclic stability retaining 92% of its reversible capacity after 200 cycles at a current density of 0.5 A g -1 and attractive rate performance (220 mAh g -1 ) under the current density of up to 2 A g -1 . The outstanding electrochemical properties can be attributed to the synergistic effect from heterojunction form by the vanadium compound hybrids, the improved ability of the excellent conductive carbon for electron transfer, and restraining the expansion and aggregation of vanadium oxide-nitride in cycling. These interesting findings will provide a reference for the preparation of transition metal oxide and nitride composites as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electron microscopic studies of the matrix formation of hard tissue organized cell

    International Nuclear Information System (INIS)

    Chou, Ching-Eng

    1982-01-01

    In order to study the functions of odontoblast, especially on the matrix formation, odontoblasts of rats' incisor and molar teeth were used. The animals were sacrificed 5 minutes, 15 minutes, 30 minutes, 1 hour, 2 hours and 24 hours after 3 H-proline administration to obtain the specimen. The specimens were processed for electron microscopic autoradiography. The following results were obtained. 1. 5 minutes after 3 H-proline administration: Silver grains indicated 3 H-proline uptake were already noted within the cells and localized in the rough surfaced endoplasmic reticulum and surrounding ribosomes, partially within the karyoplasm. 2. 15 minutes after 3 H-proline administration: The number of silver grains were generally increased as compared with the findings obtained in 5 minutes. The localization moved to the Golgi apparatus and their surroundings. 3. 30 minutes after 3 H-proline administration: Silver grains obtained in Tome's fibers area and some in predentin. In this area granules derived from Golgi body were found. 4. 1 hour after 3 H-proline administration: The number of silver grains were generally decreased and more pronounced movement toward predentin, the marked movement of silver grains were obtained onto the collagen fibers and surroundings. 5. 2 hours after 3 H-proline administration: Silver grains moved to the calcified area and there collagen fibers became more remarkable. 6. 24 hours after 3 H-proline administration: No silver grains were founded in the odontoblast side but deposited in the predentin calcified area with stable condition. Based on the results of these observations, odontoblasts were shown to perform the function of synthesis, storage, transportation and control of collagen formation in addition to the role of matrix formation. (author)

  17. The Euclid Statistical Matrix Tool

    Directory of Open Access Journals (Sweden)

    Curtis Tilves

    2017-06-01

    Full Text Available Stataphobia, a term used to describe the fear of statistics and research methods, can result from a lack of improper training in statistical methods. Poor statistical methods training can have an effect on health policy decision making and may play a role in the low research productivity seen in developing countries. One way to reduce Stataphobia is to intervene in the teaching of statistics in the classroom; however, such an intervention must tackle several obstacles, including student interest in the material, multiple ways of learning materials, and language barriers. We present here the Euclid Statistical Matrix, a tool for combatting Stataphobia on a global scale. This free tool is comprised of popular statistical YouTube channels and web sources that teach and demonstrate statistical concepts in a variety of presentation methods. Working with international teams in Iran, Japan, Egypt, Russia, and the United States, we have also developed the Statistical Matrix in multiple languages to address language barriers to learning statistics. By utilizing already-established large networks, we are able to disseminate our tool to thousands of Farsi-speaking university faculty and students in Iran and the United States. Future dissemination of the Euclid Statistical Matrix throughout the Central Asia and support from local universities may help to combat low research productivity in this region.

  18. Aerial radiological survey of the Feed Materials Production Center and surrounding area, Fernald, Ohio. Date of survey: April 1985

    International Nuclear Information System (INIS)

    1985-10-01

    An aerial radiological survey was performed over the area surrounding the Feed Materials Production Center, located near Fernald, Ohio, during the period April 24 to 27, 1985. The survey covered a 70-square-kilometer (27-square-mile) area centered on the plant. The highest exposure rates, in excess of 0.35 milliroentgens per hour (mR/h), were inferred from the data measured directly over the plant. This radiation was due to the presence of nuclides which were consistent with normal plant operations. For the remainder of the survey area, the inferred radiation exposure rates, varying from 6 to 12 microroentgens per hour (μR/h), were due to naturally-occurring potassium, uranium, thorium, and daughter products. The reported exposure rate values include an estimated cosmic ray contribution of 3.7μR/h. Ground-based measurements, conducted during the time of the aerial survey, were compared to the aerial results. Pressurized ionization chamber readings and a group of soil samples were acquired at several locations within the survey area. The exposure rate values obtained from these measurements were in agreement with the inferred aerial results. Soil sample results showed several areas just outside the site boundary with slightly elevated amounts of U-238. The levels, however, were well below the detection limit of the aerial system. The only off-site area that showed apparent above background activity in the aerial data was directly west of the storage silos. The symmetric shape of the contours, however, suggests that these elevated levels are due to ''shine'' from material stored on-site in the silos and not to actual off-site contamination. Detailed comparison of the 1985 aerial survey data with a previous survey conducted in 1976 showed no significant change in any area outside the plant boundary. 6 refs., 9 figs., 3 tabs

  19. Radionuclides in a deciduous forest surrounding a shallow-land-burial site in the eastern United States

    International Nuclear Information System (INIS)

    Rickard, W.H.; Kirby, L.J.; McShane, M.C.

    1981-06-01

    The objective of this study was to determine if radioactive materials buried in trenches at the Maxey Flats burial ground in eastern Kentucky have migrated into the surrounding oak-hickory forest. Forest floor litter, minearl soil, and tree leaves were sampled and the radionuclide content measured

  20. Chromatic induction from surrounding stimuli under perceptual suppression.

    Science.gov (United States)

    Horiuchi, Koji; Kuriki, Ichiro; Tokunaga, Rumi; Matsumiya, Kazumichi; Shioiri, Satoshi

    2014-11-01

    The appearance of colors can be affected by their spatiotemporal context. The shift in color appearance according to the surrounding colors is called color induction or chromatic induction; in particular, the shift in opponent color of the surround is called chromatic contrast. To investigate whether chromatic induction occurs even when the chromatic surround is imperceptible, we measured chromatic induction during interocular suppression. A multicolor or uniform color field was presented as the surround stimulus, and a colored continuous flash suppression (CFS) stimulus was presented to the dominant eye of each subject. The subjects were asked to report the appearance of the test field only when the stationary surround stimulus is invisible by interocular suppression with CFS. The resulting shifts in color appearance due to chromatic induction were significant even under the conditions of interocular suppression for all surround stimuli. The magnitude of chromatic induction differed with the surround conditions, and this difference was preserved regardless of the viewing conditions. The chromatic induction effect was reduced by CFS, in proportion to the magnitude of chromatic induction under natural (i.e., no-CFS) viewing conditions. According to an analysis with linear model fitting, we revealed the presence of at least two kinds of subprocesses for chromatic induction that reside at higher and lower levels than the site of interocular suppression. One mechanism yields different degrees of chromatic induction based on the complexity of the surround, which is unaffected by interocular suppression, while the other mechanism changes its output with interocular suppression acting as a gain control. Our results imply that the total chromatic induction effect is achieved via a linear summation of outputs from mechanisms that reside at different levels of visual processing.

  1. Fracture of a Brittle-Particle Ductile Matrix Composite with Applications to a Coating System

    Science.gov (United States)

    Bianculli, Steven J.

    In material systems consisting of hard second phase particles in a ductile matrix, failure initiating from cracking of the second phase particles is an important failure mechanism. This dissertation applies the principles of fracture mechanics to consider this problem, first from the standpoint of fracture of the particles, and then the onset of crack propagation from fractured particles. This research was inspired by the observation of the failure mechanism of a commercial zinc-based anti-corrosion coating and the analysis was initially approached as coatings problem. As the work progressed it became evident that failure mechanism was relevant to a broad range of composite material systems and research approach was generalized to consider failure of a system consisting of ellipsoidal second phase particles in a ductile matrix. The starting point for the analysis is the classical Eshelby Problem, which considered stress transfer from the matrix to an ellipsoidal inclusion. The particle fracture problem is approached by considering cracks within particles and how they are affected by the particle/matrix interface, the difference in properties between the particle and matrix, and by particle shape. These effects are mapped out for a wide range of material combinations. The trends developed show that, although the particle fracture problem is very complex, the potential for fracture among a range of particle shapes can, for certain ranges in particle shape, be considered easily on the basis of the Eshelby Stress alone. Additionally, the evaluation of cracks near the curved particle/matrix interface adds to the existing body of work of cracks approaching bi-material interfaces in layered material systems. The onset of crack propagation from fractured particles is then considered as a function of particle shape and mismatch in material properties between the particle and matrix. This behavior is mapped out for a wide range of material combinations. The final section of

  2. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink

    Science.gov (United States)

    Pati, Falguni; Jang, Jinah; Ha, Dong-Heon; Won Kim, Sung; Rhie, Jong-Won; Shim, Jin-Hyung; Kim, Deok-Ho; Cho, Dong-Woo

    2014-06-01

    The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method.

  3. Enter the Matrix: Building Creative Industry through Delivering Insights in Comics

    Directory of Open Access Journals (Sweden)

    Hafiz Ahmad Aziz

    2014-10-01

    Full Text Available Comic is a media which delivers its content through visual sequence. This media has negative preference in Indonesia’s community because viewed as mild entertainment for children. Yet in modern society, comics observed and researched as one of media which could penetrate deep within its reader’s mind. In re-create cultural insight through comic, the content must encrypt into visual and sequential mode which form a matrix of insight. This matrix will encompasses the effective transformation of cultural content in comic and also other visual media through media linkage strategy. The media linkage strategy is to surround the children’s access of information and visual entertainment in order to build certain knowledge and understanding. It’s a system that crystallized from global marketing practices of visual media industry over decades. This paper urges to highlight the visual communication design study in creating a matrix of cultural insight in translating cultures of Archipelago and media linkage strategy in order to strengthen cultural understanding among children.

  4. The Candida albicans Biofilm Matrix: Composition, Structure and Function.

    Science.gov (United States)

    Pierce, Christopher G; Vila, Taissa; Romo, Jesus A; Montelongo-Jauregui, Daniel; Wall, Gina; Ramasubramanian, Anand; Lopez-Ribot, Jose L

    2017-03-01

    A majority of infections caused by Candida albicans -the most frequent fungal pathogen-are associated with biofilm formation. A salient feature of C. albicans biofilms is the presence of the biofilm matrix. This matrix is composed of exopolymeric materials secreted by sessile cells within the biofilm, in which all classes of macromolecules are represented, and provides protection against environmental challenges. In this review, we summarize the knowledge accumulated during the last two decades on the composition, structure, and function of the C. albicans biofilm matrix. Knowledge of the matrix components, its structure, and function will help pave the way to novel strategies to combat C. albicans biofilm infections.

  5. The TRUPACT-II Matrix Depleton Program

    International Nuclear Information System (INIS)

    Connolly, M.J.; Djordjevic, S.M.; Loehr, C.A.; Smith, M.C.; Banjac, V.; Lyon, W.F.

    1995-01-01

    Contact-handled transuranic (CH-TRU) wastes will be shipped and disposed at the Waste Isolation Pilot Plant (WIPP) repository in the Transuranic Package Transporter-II (TRUPACT-II) shipping package. A primary transportation requirement for the TRUPACT-II is that the concentration of potentially flammable gases (i.e., hydrogen and methane) must not exceed 5 percent by volume in the package or the payload during a 60-day shipping period. Decomposition of waste materials by radiation, or radiolysis, is the predominant mechanism of gas generation during transport. The gas generation potential of a target waste material is characterized by a G-value, which is the number of molecules of gas generated per 100 eV of ionizing radiation absorbed by the target material. To demonstrate compliance with the flammable gas concentration requirement, theoretical worst-case calculations were performed to establish allowable wattage (decay heat) limits for waste containers. The calculations were based on the G-value for the waste material with the highest potential for flammable gas generation. The calculations also made no allowances for decreases of the G-value over time due to matrix depletion phenomena that have been observed by many experimenters. Matrix depletion occurs over time when an alpha-generating source particle alters the target material (by evaporation, reaction, or decomposition) into a material of lower gas generating potential. The net effect of these alterations is represented by the ''effective G-value.''

  6. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    Science.gov (United States)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  7. Wear Characterization of Aluminium/Basalt Fiber Reinforced Metal Matrix Composites - A Novel Material

    Directory of Open Access Journals (Sweden)

    P. Amuthakkannan

    2017-06-01

    Full Text Available Aluminum alloy based metal matrix composite participate have a wider applications in wear resistance applications. Attempt made in current study is that, basalt fiber reinforced aluminum metal matrix composite have been prepared using stir casting method. Different weight percentage of basalt fiber reinforced with Al (6061 metal matrix composites are used to study the wear resistance of the composites. For wear study, percentage of reinforcement, normal load and sliding velocity are the considered as important parameters. To study the effect of basalt fiber reinforcement on the dry sliding wear of Al6061 alloy composites the Pin On wear tester is used. Initially hardness of the composites was tested, it was found that increasing reinforcement in the composite hardness value of the composites also increased. Based on the Grey relation analysis (GRA the effects of wear resistance of the composites were studied.

  8. A new classification system for all-ceramic and ceramic-like restorative materials.

    Science.gov (United States)

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  9. Fabrication of fiber composites with a MAX phase matrix by reactive melt infiltration

    International Nuclear Information System (INIS)

    Lenz, F; Krenkel, W

    2011-01-01

    Due to the inherent brittleness of ceramics it is very desirable to increase the damage tolerance of ceramics. The ternary MAX phases are a promising group of materials with high fracture toughness. The topic of this study is the development of ceramic matrix composites (CMCs) with a matrix containing MAX phases, to achieve a damage tolerant structural composite material. For this purpose carbon fiber reinforced preforms with a carbon-titanium carbide matrix (C/C-TiC) were developed and infiltrated with silicon by a pressureless reactive melt infiltration. Finally liquid silicon caused the formation of SiC, TiSi 2 and Ti 3 SiC 2 in the matrix of the composite.

  10. The influence of an in vitro generated bone-like extracellular matrix on osteoblastic gene expression of marrow stromal cells.

    NARCIS (Netherlands)

    Pham, Q.P.; Kasper, F.K.; Baggett, L.S.; Raphael, R.M.; Jansen, J.A.; Mikos, A.G.

    2008-01-01

    The function and development of cells rely heavily on the signaling interactions with the surrounding extracellular matrix (ECM). Therefore, a tissue engineering scaffold should mimic native ECM to recreate the in vivo environment. Previously, we have shown that an in vitro generated ECM secreted by

  11. Manufacturing of aluminum composite material using stir casting process

    International Nuclear Information System (INIS)

    Jokhio, M.H.; Panhwar, M.I.; Unar, M.A.

    2011-01-01

    Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7 xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of 'AI/sub 2/O/sub 3/' particles in 7 xxx aluminum matrix. The 7 xxx series aluminum matrix usually contains Cu-Zn-Mg; Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha 'AI/sub 2/O/sub 3/' particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% 'AI/sub 2/O/sub 3/' particles reinforced in aluminum matrix. (author)

  12. Manufacturing of Aluminum Composite Material Using Stir Casting Process

    Directory of Open Access Journals (Sweden)

    Muhammad Hayat Jokhio

    2011-01-01

    Full Text Available Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of \\"Al2O3\\" particles in 7xxx aluminum matrix. The 7xxx series aluminum matrix usually contains Cu-Zn-Mg. Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha \\"Al2O3\\" particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% \\"Al2O3\\" particles reinforced in aluminum matrix.

  13. Determination of Thermal Conductivity of Silicate Matrix for Applications in Effective Media Theory

    Science.gov (United States)

    Fiala, Lukáš; Jerman, Miloš; Reiterman, Pavel; Černý, Robert

    2018-02-01

    Silicate materials have an irreplaceable role in the construction industry. They are mainly represented by cement-based- or lime-based materials, such as concrete, cement mortar, or lime plaster, and consist of three phases: the solid matrix and air and water present in the pores. Therefore, their effective thermal conductivity depends on thermal conductivities of the involved phases. Due to the time-consuming experimental determination of the effective thermal conductivity, its calculation by means of homogenization techniques presents a reasonable alternative. In the homogenization theory, both volumetric content and particular property of each phase need to be identified. For porous materials the most problematic part is to accurately identify thermal conductivity of the solid matrix. Due to the complex composition of silicate materials, the thermal conductivity of the matrix can be determined only approximately, based on the knowledge of thermal conductivities of its major compounds. In this paper, the thermal conductivity of silicate matrix is determined using the measurement of a sufficiently large set of experimental data. Cement pastes with different open porosities are prepared, dried, and their effective thermal conductivity is determined using a transient heat-pulse method. The thermal conductivity of the matrix is calculated by means of extrapolation of the effective thermal conductivity versus porosity functions to zero porosity. Its practical applicability is demonstrated by calculating the effective thermal conductivity of a three-phase silicate material and comparing it with experimental data.

  14. Matrix analysis

    CERN Document Server

    Bhatia, Rajendra

    1997-01-01

    A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu­ ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe­ matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to...

  15. Fabrication of metal matrix composites by powder metallurgy: A review

    Science.gov (United States)

    Manohar, Guttikonda; Dey, Abhijit; Pandey, K. M.; Maity, S. R.

    2018-04-01

    Now a day's metal matrix components are used in may industries and it finds the applications in many fields so, to make it as better performable materials. So, the need to increase the mechanical properties of the composites is there. As seen from previous studies major problem faced by the MMC's are wetting, interface bonding between reinforcement and matrix material while they are prepared by conventional methods like stir casting, squeeze casting and other techniques which uses liquid molten metals. So many researchers adopt PM to eliminate these defects and to increase the mechanical properties of the composites. Powder metallurgy is one of the better ways to prepare composites and Nano composites. And the major problem faced by the conventional methods are uniform distribution of the reinforcement particles in the matrix alloy, many researchers tried to homogeneously dispersion of reinforcements in matrix but they find it difficult through conventional methods, among all they find ultrasonic dispersion is efficient. This review article is mainly concentrated on importance of powder metallurgy in homogeneous distribution of reinforcement in matrix by ball milling or mechanical milling and how powder metallurgy improves the mechanical properties of the composites.

  16. Comparison of Socioeconomic Factors between Surrounding and Non-Surrounding Areas of the Qinghai–Tibet Railway before and after Its Construction

    Directory of Open Access Journals (Sweden)

    Shicheng Li

    2016-08-01

    Full Text Available As the world’s highest railway, and the longest highland railway, the Qinghai–Tibet Railway (QTR has been paid considerable attention by researchers. However, most attention has been paid to the ecological and environmental issues affecting it, and sustainable ecological, social, and economic development-related studies of the QTR are rare. In this study, by analyzing the passenger traffic, freight traffic, passenger-kilometers, and freight-kilometers of the QTR for the period 1982–2013 and the transport structure of the Tibetan Plateau (TP for 1990–2013, the evolutionary process of the transport system in the TP following the construction of the QTR has been revealed. Subsequently, by comparing Gross Domestic Product (GDP, population, industrial structure, and urbanization level at the county and 1 km scales between surrounding and non-surrounding areas of the QTR, the differences in socioeconomic performance before and after its construction were detected. The results show that (1 in the TP, the highway-dominated transport system will break up and an integrated and sustainable transport system will form; (2 at the county scale, the annual growth rates of GDP of counties surrounding the QTR were greater than those of non-surrounding counties for the period 2000–2010. At the 1 km scale, following the opening of the completed line, the GDP of surrounding areas had a greater growth rate than before; (3 analysis at the county and 1 km scales indicated that population was not aggregated into the surrounding areas of the QTR in the period 2000–2010; (4 in terms of industrial structure, the proportion of primary industry decreased continuously, while the proportion of secondary and tertiary industries increased overall in the period 1984–2012. The QTR had no obvious impact on changes in the urbanization level of its surrounding areas.

  17. Adherence of extracellular matrix components to modified surfaces of titanium alloys

    International Nuclear Information System (INIS)

    Stelzer, C; Uhlmann, E; Meinke, M; Lademann, J; Hansen, U

    2009-01-01

    The adherence of biological materials on metal surfaces is of special importance in biology and medicine. The underlying interactions between surface and biological materials (e.g. extracellular matrix components or cells) are responsible for the application as a medical device. Numerous products are made of pure titanium and titanium alloys. This paper shows the influence of a laser production technology on machined surfaces of TiAl 6 V 4 and the resulting adherence of biological material on the basis of the surface characterisation. In this study, different machined TiAl 6 V 4 surfaces were used for coatings with extracellular matrix components. For this process, different coating with collagen I monomers and a complex mixture of extracellular matrix proteins derived from the dermal-epidermal basement membrane zone were analysed. The efficiency of the coating was analysed by different methods and the results are presented in this paper

  18. Thermoelectric Performance Enhancement by Surrounding Crystalline Semiconductors with Metallic Nanoparticles

    Science.gov (United States)

    Kim, Hyun-Jung; King, Glen C.; Park, Yeonjoon; Lee, Kunik; Choi, Sang H.

    2011-01-01

    Direct conversion of thermal energy to electricity by thermoelectric (TE) devices may play a key role in future energy production and utilization. However, relatively poor performance of current TE materials has slowed development of new energy conversion applications. Recent reports have shown that the dimensionless Figure of Merit, ZT, for TE devices can be increased beyond the state-of-the-art level by nanoscale structuring of materials to reduce their thermal conductivity. New morphologically designed TE materials have been fabricated at the NASA Langley Research Center, and their characterization is underway. These newly designed materials are based on semiconductor crystal grains whose surfaces are surrounded by metallic nanoparticles. The nanoscale particles are used to tailor the thermal and electrical conduction properties for TE applications by altering the phonon and electron transport pathways. A sample of bismuth telluride decorated with metallic nanoparticles showed less thermal conductivity and twice the electrical conductivity at room temperature as compared to pure Bi2Te3. Apparently, electrons cross easily between semiconductor crystal grains via the intervening metallic nanoparticle bridges, but phonons are scattered at the interfacing gaps. Hence, if the interfacing gap is larger than the mean free path of the phonon, thermal energy transmission from one grain to others is reduced. Here we describe the design and analysis of these new materials that offer substantial improvements in thermoelectric performance.

  19. Applied linear algebra and matrix analysis

    CERN Document Server

    Shores, Thomas S

    2018-01-01

    In its second edition, this textbook offers a fresh approach to matrix and linear algebra. Its blend of theory, computational exercises, and analytical writing projects is designed to highlight the interplay between these aspects of an application. This approach places special emphasis on linear algebra as an experimental science that provides tools for solving concrete problems. The second edition’s revised text discusses applications of linear algebra like graph theory and network modeling methods used in Google’s PageRank algorithm. Other new materials include modeling examples of diffusive processes, linear programming, image processing, digital signal processing, and Fourier analysis. These topics are woven into the core material of Gaussian elimination and other matrix operations; eigenvalues, eigenvectors, and discrete dynamical systems; and the geometrical aspects of vector spaces. Intended for a one-semester undergraduate course without a strict calculus prerequisite, Applied Linear Algebra and M...

  20. NERI FINAL TECHNICAL REPORT, DE-FC07-O5ID14647, OPTIMIZATION OF OXIDE COMPOUNDS FOR ADVANCED INERT MATRIX MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    PI: JUAN C. NINO, ASSOCIATE PROFESSOR

    2009-01-11

    In order to reduce the current excesses of plutonium (both weapon grade and reactor grade) and other transuranium elements, a concept of inert matrix fuel (IMF) has been proposed for an uranium free transmutation of fissile actinides which excludes continuous uranium-plutonium conversion in thermal reactors and advanced systems. Magnesium oxide (MgO) is a promising candidate for inert matrix (IM) materials due to its high melting point (2827 C), high thermal conductivity (13 W/K {center_dot} m at 1000 C), good neutronic properties, and irradiation stability However, MgO reacts with water and hydrates easily, which prevents it from being used in light water reactors (LWRs) as an IM. To improve the hydration resistance of MgO-based inert matrix materials, Medvedev and coworkers have recently investigated the introduction of a secondary phase that acts as a hydration barrier. An MgO-ZrO{sub 2} composite was specifically studied and the results showed that the composite exhibited improved hydration resistance than pure MgO. However, ZrO{sub 2} is insoluble in most acids except HF, which is undesirable for fuel reprocessing. Moreover, the thermal conductivity of ZrO{sub 2} is low and typically less than 3 W {center_dot} m{sup -1} {center_dot} K{sup -1} at 1000 C. In search for an alternative composite strategy, Nd{sub 2}Zr{sub 2}O{sub 7}, an oxide compound with pyrochlore structure, has been proposed recently as a corrosion resistant phase, and MgO-Nd{sub 2}Zr{sub 2}O{sub 7} composites have been investigated as potential IM materials. An adequate thermal conductivity of 6 W {center_dot} m{sup -} 1 {center_dot} K{sup -1} at 1000 C for the MgO-Nd{sub 2}Zr{sub 2}O{sub 7} composite with 90 vol% MgO was recently calculated and reported. Other simulations proposed that the MgO-pyrochlore composites could exhibit higher radiation stability than previously reported. Final optimization of the composite microstructure was performed on the 70 vol% MgO-Nd{sub 2}Zr{sub 2}O{sub 7

  1. Raw material and energetic matrix: a synthetic, generic and attention considerations for the future of the Camacari Industrial pole, Bahia, Brazil; Materias-prima e matriz energetica: uma visao sintetica, generica e de atencao para o futuro do Polo Industrial de Camacari

    Energy Technology Data Exchange (ETDEWEB)

    Lins Neto, Joao Bispo [Braskem S.A., Camacari, BA (Brazil). Gerencia de Energia], e-mail: joao.lins@braskem.com.br; Lima, Alberto Ferreira [Bahia Pulp, Camacari, BA (Brazil). Gerencia de Qualidade e Desenvolvimento de Produto], e-mail: alberto_lima@bahiapulp.com; Petti, Ana Carla [Braskem S.A., Camacari, BA (Brazil). Gerencia de Gestao e Regulacao de Energia], e-mail: ana.petti@braskem.com.br; Correia, Antonia Lucia Santiago [PETROBRAS S.A., Norte/Nordeste (Brazil)

    2008-01-15

    This paper makes a synthetic evaluation of the present and raw material situation and the energetic matrix, and future perspectives, focusing on the following aspects: analysis of the existent production chains; threats to the raw material and incomes; integration between the enterprises and opportunities for new business, and availability and competitiveness of the energetic matrix.

  2. Biomineralization of a Self-assembled, Soft-Matrix Precursor: Enamel

    Science.gov (United States)

    Snead, Malcolm L.

    2015-04-01

    Enamel is the bioceramic covering of teeth, a composite tissue composed of hierarchical organized hydroxyapatite crystallites fabricated by cells under physiologic pH and temperature. Enamel material properties resist wear and fracture to serve a lifetime of chewing. Understanding the cellular and molecular mechanisms for enamel formation may allow a biology-inspired approach to material fabrication based on self-assembling proteins that control form and function. A genetic understanding of human diseases exposes insight from nature's errors by exposing critical fabrication events that can be validated experimentally and duplicated in mice using genetic engineering to phenocopy the human disease so that it can be explored in detail. This approach led to an assessment of amelogenin protein self-assembly that, when altered, disrupts fabrication of the soft enamel protein matrix. A misassembled protein matrix precursor results in loss of cell-to-matrix contacts essential to fabrication and mineralization.

  3. Nonlinear mechanical response of the extracellular matrix: learning from articular cartilage

    Science.gov (United States)

    Kearns, Sarah; Das, Moumita

    2015-03-01

    We study the mechanical structure-function relations in the extracellular matrix (ECM) with focus on nonlinear shear and compression response. As a model system, our study focuses on the ECM in articular cartilage tissue which has two major mechanobiological components: a network of the biopolymer collagen that acts as a stiff, reinforcing matrix, and a flexible aggrecan network that facilitates deformability. We model this system as a double network hydrogel made of interpenetrating networks of stiff and flexible biopolymers respectively. We study the linear and nonlinear mechanical response of the model ECM to shear and compression forces using a combination of rigidity percolation theory and energy minimization approaches. Our results may provide useful insights into the design principles of the ECM as well as biomimetic hydrogels that are mechanically robust and can, at the same time, easily adapt to cues in their surroundings.

  4. Transfer matrix representation for periodic planar media

    Science.gov (United States)

    Parrinello, A.; Ghiringhelli, G. L.

    2016-06-01

    Sound transmission through infinite planar media characterized by in-plane periodicity is faced by exploiting the free wave propagation on the related unit cells. An appropriate through-thickness transfer matrix, relating a proper set of variables describing the acoustic field at the two external surfaces of the medium, is derived by manipulating the dynamic stiffness matrix related to a finite element model of the unit cell. The adoption of finite element models avoids analytical modeling or the simplification on geometry or materials. The obtained matrix is then used in a transfer matrix method context, making it possible to combine the periodic medium with layers of different nature and to treat both hard-wall and semi-infinite fluid termination conditions. A finite sequence of identical sub-layers through the thickness of the medium can be handled within the transfer matrix method, significantly decreasing the computational burden. Transfer matrices obtained by means of the proposed method are compared with analytical or equivalent models, in terms of sound transmission through barriers of different nature.

  5. Influence of surrounding environment on subcritical crack growth in marble

    Science.gov (United States)

    Nara, Yoshitaka; Kashiwaya, Koki; Nishida, Yuki; , Toshinori, Ii

    2017-06-01

    Understanding subcritical crack growth in rock is essential for determining appropriate measures to ensure the long-term integrity of rock masses surrounding structures and for construction from rock material. In this study, subcritical crack growth in marble was investigated experimentally, focusing on the influence of the surrounding environment on the relationship between the crack velocity and stress intensity factor. The crack velocity increased with increasing temperature and/or relative humidity. In all cases, the crack velocity increased with increasing stress intensity factor. However, for Carrara marble (CM) in air, we observed a region in which the crack velocity still increased with temperature, but the increase in the crack velocity with increasing stress intensity factor was not significant. This is similar to Region II of subcritical crack growth observed in glass in air. Region II in glass is controlled by mass transport to the crack tip. In the case of rock, the transport of water to the crack tip is important. In general, Region II is not observed for subcritical crack growth in rock materials, because rocks contain water. Because the porosity of CM is very low, the amount of water contained in the marble is also very small. Therefore, our results imply that we observed Region II in CM. Because the crack velocity increased in both water and air with increasing temperature and humidity, we concluded that dry conditions at low temperature are desirable for the long-term integrity of a carbonate rock mass. Additionally, mass transport to the crack tip is an important process for subcritical crack growth in rock with low porosity.

  6. Matrix completion by deep matrix factorization.

    Science.gov (United States)

    Fan, Jicong; Cheng, Jieyu

    2018-02-01

    Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Accumulation of worn-out GBM material substantially contributes to mesangial matrix expansion in diabetic nephropathy

    NARCIS (Netherlands)

    Kriz, Wilhelm; Loewen, Jana; Federico, Giuseppina; van den Born, Jacob; Groene, Elisabeth; Groene, Hermann Josef

    2017-01-01

    Thickening of the glomerular basement membrane (GBM) and expansion of the mesangial matrix are hallmarks of diabetic nephropathy (DN), generally considered to emerge from different sites of overproduction: GBM components from podocytes and mesangial matrix from mesangial cells. Reevaluation of 918

  8. Ultrastructural analysis of anastomosis group 9 of Rhizoctonia solani

    International Nuclear Information System (INIS)

    Cedeno, L; Palacios Pru, E

    1996-01-01

    The ultrastructure of R. solani AG-9 (S-21, ATCC 62804) was investigated with transmission electron microscopy (TEM). The most important characteristics were those related with cell wall thickness, cytoplasmic matrix composition, number of nuclei and nucleoli and secretory material production. The majority of examined hyphae showed lateral cell walls thinner than those recorded before. The cytoplasmic matrix consistently appeared differentiated into two classes, one formed by a highly electron dense granular fine material and the other one showing a coloidal substance of very low density which give these cells a 'tiger-like' aspect. The granular dense matrix always had abundant free ribosomes and usually surrounded the cytoplasmic organelles and the septal pore apparatus. The somatic cells showed up to 5 nuclei, some of which with three nucleoli. Masses of secretory material surrounded by membrane were regularly seen in the cytoplasm, with sizes similar to those of nuclei

  9. Induced radioactivity in a 4 MW target and its surroundings

    CERN Document Server

    Agosteo, Stefano; Otto, Thomas; Silari, Marco

    2003-01-01

    An important aspect of a future CERN Neutrino Factory is the material activation arising from a 2.2 GeV, 4 MW proton beam striking a mercury target. An estimation of the hadronic inelastic interactions and the production of residual nuclei in the target, the magnetic horn, the decay tunnel, the surrounding rock and a downstream dump was performed by the Monte Carlo hadronic cascade code FLUKA. The aim was both to assess the dose equivalent rate to be expected during maintenance work and to evaluate the amount of residual radioactivity, which will have to be disposed of after the facility has ceased operation.

  10. Process for the production of superconductor containing filaments

    Energy Technology Data Exchange (ETDEWEB)

    Tuominen, Olli P. (Candler, NC); Hoyt, Matthew B. (Arden, NC); Mitchell, David F. (Asheville, NC); Morgan, Carol W. (Asheville, NC); Roberts, Clyde Gordon (Asheville, NC); Tyler, Robert A. (Canton, NC)

    2002-01-01

    Superconductor containing filaments having embedments of superconducting material surrounded by a rayon matrix are formed by preparing a liquid suspension which contains at least 10 weight percent superconducting material; forming a multicomponent filament having a core of the suspension and a viscose sheath which contains cellulose xanthate; and thereafter, regenerating cellulose from the cellulose xanthate to form a rayon matrix.

  11. Separation of Nuclear Fuel Surrogates from Silicon Carbide Inert Matrix

    International Nuclear Information System (INIS)

    Baney, Ronald

    2008-01-01

    The objective of this project has been to identify a process for separating transuranic species from silicon carbide (SiC). Silicon carbide has become one of the prime candidates for the matrix in inert matrix fuels, (IMF) being designed to reduce plutonium inventories and the long half-lives actinides through transmutation since complete reaction is not practical it become necessary to separate the non-transmuted materials from the silicon carbide matrix for ultimate reprocessing. This work reports a method for that required process

  12. Paths correlation matrix.

    Science.gov (United States)

    Qian, Weixian; Zhou, Xiaojun; Lu, Yingcheng; Xu, Jiang

    2015-09-15

    Both the Jones and Mueller matrices encounter difficulties when physically modeling mixed materials or rough surfaces due to the complexity of light-matter interactions. To address these issues, we derived a matrix called the paths correlation matrix (PCM), which is a probabilistic mixture of Jones matrices of every light propagation path. Because PCM is related to actual light propagation paths, it is well suited for physical modeling. Experiments were performed, and the reflection PCM of a mixture of polypropylene and graphite was measured. The PCM of the mixed sample was accurately decomposed into pure polypropylene's single reflection, pure graphite's single reflection, and depolarization caused by multiple reflections, which is consistent with the theoretical derivation. Reflection parameters of rough surface can be calculated from PCM decomposition, and the results fit well with the theoretical calculations provided by the Fresnel equations. These theoretical and experimental analyses verify that PCM is an efficient way to physically model light-matter interactions.

  13. Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms

    Science.gov (United States)

    Janson, Isaac A.; Putnam, Andrew J.

    2014-01-01

    Chemical, mechanical, and topographic extracellular matrix (ECM) cues have been extensively studied for their influence on cell behavior. These ECM cues alter cell adhesion, cell shape, and cell migration, and activate signal transduction pathways to influence gene expression, proliferation, and differentiation. ECM elasticity and topography, in particular, have emerged as material properties of intense focus based on strong evidence these physical cue can partially dictate stem cell differentiation. Cells generate forces to pull on their adhesive contacts, and these tractional forces appear to be a common element of cells’ responses to both elasticity and topography. This review focuses on recently published work that links ECM topography and mechanics and their influence on differentiation and other cell behaviors, We also highlight signaling pathways typically implicated in mechanotransduction that are (or may be) shared by cells subjected to topographic cues. Finally, we conclude with a brief discussion of the potential implications of these commonalities for cell based therapies and biomaterial design. PMID:24910444

  14. Visualization and quantification of heterogeneous diffusion rates in granodiorite samples by X-ray absorption imaging. Diffusion within gouge materials, altered rim and intact rock matrix

    Energy Technology Data Exchange (ETDEWEB)

    Altman, S.J.; Tidwell, V.C. [Sandia National Laboratories, Albuquerque, NM (United States); Uchida, M. [Japan Nuclear Cycle Development Inst., Ibaraki (Japan)

    2001-08-01

    Matrix diffusion is one of the most important contaminant migration retardation processes in crystalline rocks. Performance assessment calculations in various countries assume that only the area of the fracture surface where advection is active provides access to the rock matrix. However, accessibility to the matrix could be significantly enhanced with diffusion into stagnant zones, fracture fillings, and through an alteration rim in the matrix. Laboratory visualization experiments were conducted on granodiorite samples to investigate and quantify diffusion rates within different zones of a Cretaceous granodiorite. Samples were collected from the Kamaishi experimental site in the northern part of the main island of Japan. Diffusion of iodine out of the sample is visualized and rates are measured using x-ray absorption imaging. X-ray images allow for measurements of relative iodine concentration and relative iodine mass as a function of time and two-dimensional space at a sub-millimeter spatial resolution. In addition, two-dimensional heterogeneous porosity fields (at the same resolution as the relative concentration fields) are measured. This imaging technique allows for a greater understanding of the spatial variability of diffusion rates than can be accomplished with standard bulk measurements. It was found that diffusion rates were fastest in partially gouge-filled fractures. Diffusion rates in the recrystallized calcite-based fracture-filling material were up to an order of magnitude lower than in gouge-filled fractures. Diffusion in altered matrix around the fractures was over an order of magnitude lower than that in the gouge-filled fractures. Healed fractures did not appear to have different diffusion rates than the unaltered matrix.

  15. Visualization and quantification of heterogeneous diffusion rates in granodiorite samples by X-ray absorption imaging. Diffusion within gouge materials, altered rim and intact rock matrix

    International Nuclear Information System (INIS)

    Altman, S.J.; Tidwell, V.C.; Uchida, M.

    2001-01-01

    Matrix diffusion is one of the most important contaminant migration retardation processes in crystalline rocks. Performance assessment calculations in various countries assume that only the area of the fracture surface where advection is active provides access to the rock matrix. However, accessibility to the matrix could be significantly enhanced with diffusion into stagnant zones, fracture fillings, and through an alteration rim in the matrix. Laboratory visualization experiments were conducted on granodiorite samples to investigate and quantify diffusion rates within different zones of a Cretaceous granodiorite. Samples were collected from the Kamaishi experimental site in the northern part of the main island of Japan. Diffusion of iodine out of the sample is visualized and rates are measured using x-ray absorption imaging. X-ray images allow for measurements of relative iodine concentration and relative iodine mass as a function of time and two-dimensional space at a sub-millimeter spatial resolution. In addition, two-dimensional heterogeneous porosity fields (at the same resolution as the relative concentration fields) are measured. This imaging technique allows for a greater understanding of the spatial variability of diffusion rates than can be accomplished with standard bulk measurements. It was found that diffusion rates were fastest in partially gouge-filled fractures. Diffusion rates in the recrystallized calcite-based fracture-filling material were up to an order of magnitude lower than in gouge-filled fractures. Diffusion in altered matrix around the fractures was over an order of magnitude lower than that in the gouge-filled fractures. Healed fractures did not appear to have different diffusion rates than the unaltered matrix

  16. Matrix effects corrections in DDT assay of {sup 239}Pu with the CTEN instrument

    Energy Technology Data Exchange (ETDEWEB)

    Hollas, C.L.; Arnone, G.; Brunson, G.; Coop, K. [Los Alamos National Lab., NM (United States)

    1997-11-01

    The accuracy of transuranic (TRU) waste assay using the differential die-away technique depends upon significant corrections to compensate for the effects of the matrix material in which the TRU waste is located. We have used a new instrument, the combined thermal/epithermal neutron (CTEN) instrument for the assay of TRU waste, to develop methods to improve the accuracy of these corrections. Neutrons from a pulsed 14-MeV neutron generator are moderated in the walls of the CTEN cavity and induce fission in the TRU material. The prompt neutrons from these fission events are detected in cadmium-wrapped {sup 3}He neutron detectors. We have developed methods of data acquisition and analysis to extract correlation in the neutron signals resulting from fission during active interrogation. This correlation information, in conjunction with the total number of neutrons detected, is used to determine the fraction of fission neutrons transmitted through the matrix material into the {sup 3}He detectors. This determination allows us to cleanly separate the matrix effects into two processes: matrix modification upon the neutron interrogating flux and matrix modification upon the fraction of fission neutrons transmitted to the neutron detectors. Recent results indicate that for some matrix systems, corrections for position dependent effects within the matrix are possible. 7 refs., 7 figs., 1 tab.

  17. 3-D FEM Modeling of fiber/matrix interface debonding in UD composites including surface effects

    International Nuclear Information System (INIS)

    Pupurs, A; Varna, J

    2012-01-01

    Fiber/matrix interface debond growth is one of the main mechanisms of damage evolution in unidirectional (UD) polymer composites. Because for polymer composites the fiber strain to failure is smaller than for the matrix multiple fiber breaks occur at random positions when high mechanical stress is applied to the composite. The energy released due to each fiber break is usually larger than necessary for the creation of a fiber break therefore a partial debonding of fiber/matrix interface is typically observed. Thus the stiffness reduction of UD composite is contributed both from the fiber breaks and from the interface debonds. The aim of this paper is to analyze the debond growth in carbon fiber/epoxy and glass fiber/epoxy UD composites using fracture mechanics principles by calculation of energy release rate G II . A 3-D FEM model is developed for calculation of energy release rate for fiber/matrix interface debonds at different locations in the composite including the composite surface region where the stress state differs from the one in the bulk composite. In the model individual partially debonded fiber is surrounded by matrix region and embedded in a homogenized composite.

  18. Particles geometry influence in the thermal stress level in an SiC reinforced aluminum matrix composite considering the material non-linear behavior

    International Nuclear Information System (INIS)

    Miranda, Carlos A. de J.; Libardi, Rosani M.P.; Boari, Zoroastro de M.

    2009-01-01

    An analytical methodology was developed to predict the thermal stress level that occurs in a metallic matrix composite reinforced with SiC particles, when the temperature decreases from 600 deg C to 20 deg C during the fabrication process. This analytical development is based on the Eshelby method, dislocation mechanisms, and the Maxwell-Boltzmann distribution model. The material was assumed to have a linear elastic behavior. The analytical results from this formulation were verified against numerical linear analyses that were performed over a set of random non-uniform distribution of particles that covers a wide range of volumetric ratios. To stick with the analytical hypothesis, particles with round geometry were used. Each stress distribution, represented by the isostress curves at ΔT=-580 deg C, was analyzed with an image analyzer. A statistical procedure was applied to obtain the most probable thermal stress level. Analytical and numerical results compared very well. Plastic deformation as well as particle geometry can alter significantly the stress field in the material. To account for these effects, in this work, several numerical analyses were performed considering the non-linear behavior for the aluminum matrix and distinct particle geometries. Two distinct sets of data with were used. To allow a direct comparison, the first set has the same models (particle form, size and distribution) as used previously. The second set analyze quadrilateral particles and present very tight range of volumetric ratio, closer to what is found in actual SiC composites. A simple and fast algorithm was developed to analyze the new results. The comparison of these results with the previous ones shows, as expected, the strong influence of the elastic-plastic behavior of the aluminum matrix on the composite thermal stress distribution due to its manufacturing process and shows, also, a small influence of the particles geometry and volumetric ratio. (author)

  19. Effects of electron beam irradiation on mechanical properties at low and high temperature of fiber reinforced composites using PEEK as matrix material

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Seguchi, Tadao; Sakai, Hideo; Odajima, Toshikazu; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-11-01

    Carbon fiber reinforced composite (PEEK-CF) using polyarylether-ether-ketone (PEEK) as a matrix material was prepared and the electron beam radiation effects on the mechanical properties at low and high temperature and the effects of annealing after irradiation were studied. Cooling down to 77 K, the flexural strength of PEEK-CF increased to about 20 % than that at room temperature. The data of flexural strength for the irradiated specimens showed some scattering, but the strength and modulus at 77 K were changed scarcely up to 120 MGy. The flexural strength and modulus in the unirradiated specimen decreased with increasing of measurement temperature, and the strength at 140 deg C, which is the just below temperature of the glass transition of PEEK, was to 70 % of the value at room temperature. For the irradiated specimens, the strength and modulus increased with dose and the values at 140 deg C for the specimen irradiated with 120 MGy were nearly the same with the unirradiated specimen measured at room temperature. The improvement of mechanical properties at high temperature by irradiation was supported by a viscoelastic measurement in which the glass transition shifted to the higher temperature by the radiation-induced crosslinking. A glass fiber reinforced PEEK composite (PEEK-GF) was prepared and its irradiation effects by electron beam was studied. Unirradiated PEEK-GF showed the same performance with that for GFRP of epoxide resin as matrix material, but by irradiation the flexual strength and modulus decreased with dose. It was revealed that this composite was destroyed by delamination because inter laminar shear strength (ILSS) decreased with dose and analysis of the profile of S-S curve showed typical delamination. Fractoglaphy by electron microscopy supported the delamination which is caused by the lowering of adhesion on interface between the fiber and matrix with increase of dose. (author)

  20. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Barczy, P.; Szigeti, F.

    1998-01-01

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  1. Metallic composite materials

    International Nuclear Information System (INIS)

    Frommeyer, G.

    1987-01-01

    The structure and properties of metallic composite materials and composite materials with metallic matrix are considered. In agreement with the morphology of constituent phases the following types of composite materials are described: dispersion-strengthened composite materials; particle-reinforced composite materials; fibrous composite materials; laminar composite materials. Data on strength and electric properties of the above-mentioned materials, as well as effect of the amount, location and geometric shape of the second phase on them, are presented

  2. Modern filaments for composite materials

    International Nuclear Information System (INIS)

    Krivelli-Viskonti, I.

    1982-01-01

    Analysis of modern state and ways to improve properties of different filaments for the forecast of the filament application in composite materials has been conducted. In the near future as before the greatest attention will be paid to fibre glass, as this material is widely used in the reinforcing of organic matrices. Carbon and kevlar filaments are the most prospective ones. For the service at medium, high or superhigh temperatures selection of matrix material is more significant than selection of filament. Organic matrices can not be used at temperatures > 250 deg C: this is already the range of metal matrix application. Though at temperatures above room one many filaments can be used, boron filaments and metal wire are the only reinforcing materials, inspite of the fact that carbon filaments are successfully used for metal matrix reinforcing. At very high temperatures only carbon filaments or silicon carbide ones can be used, but their cost is very high and besides economical problems there are many difficulties of technical character

  3. Study of extraterrestrial disposal of radioactive wastes. Part 2: Preliminary feasibility screening study of extraterrestrial disposal of radioactive wastes in concentrations, matrix materials, and containers designed for storage on earth

    Science.gov (United States)

    Hyland, R. E.; Wohl, M. L.; Thompson, R. L.; Finnegan, P. M.

    1972-01-01

    The results are reported of a preliminary feasibility screening study for providing long-term solutions to the problems of handling and managing radioactive wastes by extraterrestrial transportation of the wastes. Matrix materials and containers are discussed along with payloads, costs, and destinations for candidate space vehicles. The conclusions reached are: (1) Matrix material such as spray melt can be used without exceeding temperature limits of the matrix. (2) The cost in mills per kw hr electric, of space disposal of fission products is 4, 5, and 28 mills per kw hr for earth escape, solar orbit, and solar escape, respectively. (3) A major factor effecting cost is the earth storage time. Based on a normal operating condition design for solar escape, a storage time of more than sixty years is required to make the space disposal charge less than 10% of the bus-bar electric cost. (4) Based on a 10 year earth storage without further processing, the number of shuttle launches required would exceed one per day.

  4. A planar model study of creep in metal matrix composites with misaligned short fibres

    DEFF Research Database (Denmark)

    Sørensen, N.J.

    1993-01-01

    The effect of fibre misalignment on the creep behaviour of metal matrix composites is modelled, including hardening behaviour (stage 1), dynamic recovery and steady state creep (stage 2) of the matrix material, using an internal variable constitutive model for the creep behaviour of the metal...... matrix. Numerical plane strain results in terms of average properties and detailed local deformation behaviour up to large strains are needed to show effects of fibre misalignment on the development of inelastic strains and the resulting over-all creep resistance of the material. The creep resistance...

  5. Vascular Canals in Permanent Hyaline Cartilage: Development, Corrosion of Nonmineralized Cartilage Matrix, and Removal of Matrix Degradation Products.

    Science.gov (United States)

    Gabner, Simone; Häusler, Gabriele; Böck, Peter

    2017-06-01

    Core areas in voluminous pieces of permanent cartilage are metabolically supplied via vascular canals (VCs). We studied cartilage corrosion and removal of matrix degradation products during the development of VCs in nose and rib cartilage of piglets. Conventional staining methods were used for glycosaminoglycans, immunohistochemistry was performed to demonstrate collagens types I and II, laminin, Ki-67, von Willebrand factor, VEGF, macrophage marker MAC387, S-100 protein, MMPs -2,-9,-13,-14, and their inhibitors TIMP1 and TIMP2. VCs derived from connective tissue buds that bulged into cartilage matrix ("perichondrial papillae", PPs). Matrix was corroded at the tips of PPs or resulting VCs. Connective tissue stromata in PPs and VCs comprised an axial afferent blood vessel, peripherally located wide capillaries, fibroblasts, newly synthesized matrix, and residues of corroded cartilage matrix (collagen type II, acidic proteoglycans). Multinucleated chondroclasts were absent, and monocytes/macrophages were not seen outside the blood vessels. Vanishing acidity characterized areas of extracellular matrix degradation ("preresorptive layers"), from where the dismantled matrix components diffused out. Leached-out material stained in an identical manner to intact cartilage matrix. It was detected in the stroma and inside capillaries and associated downstream veins. We conclude that the delicate VCs are excavated by endothelial sprouts and fibroblasts, whilst chondroclasts are specialized to remove high volumes of mineralized cartilage. VCs leading into permanent cartilage can be formed by corrosion or inclusion, but most VCs comprise segments that have developed in either of these ways. Anat Rec, 300:1067-1082, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. From single cells to tissues: interactions between the matrix and human breast cells in real time.

    Directory of Open Access Journals (Sweden)

    Clifford Barnes

    Full Text Available Mammary gland morphogenesis involves ductal elongation, branching, and budding. All of these processes are mediated by stroma--epithelium interactions. Biomechanical factors, such as matrix stiffness, have been established as important factors in these interactions. For example, epithelial cells fail to form normal acinar structures in vitro in 3D gels that exceed the stiffness of a normal mammary gland. Additionally, heterogeneity in the spatial distribution of acini and ducts within individual collagen gels suggests that local organization of the matrix may guide morphogenesis. Here, we quantified the effects of both bulk material stiffness and local collagen fiber arrangement on epithelial morphogenesis.The formation of ducts and acini from single cells and the reorganization of the collagen fiber network were quantified using time-lapse confocal microscopy. MCF10A cells organized the surrounding collagen fibers during the first twelve hours after seeding. Collagen fiber density and alignment relative to the epithelial surface significantly increased within the first twelve hours and were a major influence in the shaping of the mammary epithelium. The addition of Matrigel to the collagen fiber network impaired cell-mediated reorganization of the matrix and increased the probability of spheroidal acini rather than branching ducts. The mechanical anisotropy created by regions of highly aligned collagen fibers facilitated elongation and branching, which was significantly correlated with fiber organization. In contrast, changes in bulk stiffness were not a strong predictor of this epithelial morphology.Localized regions of collagen fiber alignment are required for ductal elongation and branching suggesting the importance of local mechanical anisotropy in mammary epithelial morphogenesis. Similar principles may govern the morphology of branching and budding in other tissues and organs.

  7. Advanced materials for space nuclear power systems

    International Nuclear Information System (INIS)

    Titran, R.H.; Grobstein, T.L.

    1991-01-01

    Research on monolithic refractory metal alloys and on metal matrix composites is being conducted at the NASA Lewis Research Center, Cleveland, Ohio, in support of advanced space power systems. The overall philosophy of the research is to develop and characterize new high-temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites (Gr/Cu) for heat rejection fins, and tungsten fiber reinforced niobium matrix composites (W/NB) for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications

  8. Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations

    KAUST Repository

    Zhang, Chen

    2014-05-29

    ZIF-8/6FDA-DAM, a proven mixed-matrix material that demonstrated remarkably enhanced C3H6/C3H8 selectivity in dense film geometry, was extended to scalable hollow fiber geometry in the current work. We successfully formed dual-layer ZIF-8/6FDA-DAM mixed-matrix hollow fiber membranes with ZIF-8 nanoparticle loading up to 30 wt % using the conventional dry-jet/wet-quench fiber spinning technique. The mixed-matrix hollow fibers showed significantly enhanced C3H6/C3H8 selectivity that was consistent with mixed-matrix dense films. Critical variables controlling successful formation of mixed-matrix hollow fiber membranes with desirable morphology and attractive transport properties were discussed. Furthermore, the effects of coating materials on selectivity recovery of partially defective fibers were investigated. To our best knowledge, this is the first article reporting successful formation of high-loading mixed-matrix hollow fiber membranes with significantly enhanced selectivity for separation of condensable olefin/paraffin mixtures. Therefore, it represents a major step in the research area of advanced mixed-matrix membranes. © 2014 American Institute of Chemical Engineers.

  9. Strain Rate Dependent Deformation of a Polymer Matrix Composite with Different Microstructures Subjected to Off-Axis Loading

    Directory of Open Access Journals (Sweden)

    Xiaojun Zhu

    2014-01-01

    Full Text Available This paper aims to investigate the comprehensive influence of three microstructure parameters (fiber cross-section shape, fiber volume fraction, and fiber off-axis orientation and strain rate on the macroscopic property of a polymer matrix composite. During the analysis, AS4 fibers are considered as elastic solids, while the surrounding PEEK resin matrix exhibiting rate sensitivities are described using the modified Ramaswamy-Stouffer viscoplastic state variable model. The micromechanical method based on generalized model of cells has been used to analyze the representative volume element of composites. An acceptable agreement is observed between the model predictions and experimental results found in the literature. The research results show that the stress-strain curves are sensitive to the strain rate and the microstructure parameters play an important role in the behavior of polymer matrix.

  10. Monitoring program of surrounding of the NPP SE-EBO

    International Nuclear Information System (INIS)

    Dobis, L.; Kostial, J.

    1997-01-01

    The paper dealt with monitoring program of radiation control of surrounding of the NPP Bohunice, which has the aim: (1) to ensure the control of influence of work of the NPP Bohunice on the environment in their surrounding; (2) to ensure the back-ground for regular brief of control and supervisory organs about condition of the environment in surrounding of the NPP Bohunice; (3) to maintain the expected technical level of control of the NPP Bohunice and to exploit optimally the technical means; (4) to solicit permanently the data about the radioactivity of environment in surrounding of the NPP Bohunice for forming of files of the data; (5) to exploit purposefully the technical equipment, technical workers and to maintain their in permanent emergency and technical eligibility for the case of the breakdown; (6) to obtain permanently the files of the values for qualification of the reference levels. This program of monitoring includes the radiation control of surrounding of the NPP Bohunice, in the time of normal work of power-station's blocks, inclusively of all types of trouble-shooting and repairer works in surrounding of the NPP Bohunice, up to distance 20 km from power-station. The monitoring includes: outlets from the NPP Bohunice, monitoring of radiation characteristics in surrounding of the NPP Bohunice, (aerosols, fall-outs, soil), the links of food chains: (grass and fodder, milk, agriculture products), hydrosphere in surrounding (surface waters, drink water, bores of radiation control in complex of the NPP Bohunice, components of the hydrosphere), measurement of radiation from external sources (measurement of the dose rates, measurement of the doses [sk

  11. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix.

    Science.gov (United States)

    Friedman, Lisa; Kolter, Roberto

    2004-07-01

    Pseudomonas aeruginosa forms biofilms, which are cellular aggregates encased in an extracellular matrix. Molecular genetics studies of three common autoaggregative phenotypes, namely wrinkled colonies, pellicles, and solid-surface-associated biofilms, led to the identification of two loci, pel and psl, that are involved in the production of carbohydrate-rich components of the biofilm matrix. The pel gene cluster is involved in the production of a glucose-rich matrix material in P. aeruginosa strain PA14 (L. Friedman and R. Kolter, Mol. Microbiol. 51:675-690, 2004). Here we investigate the role of the pel gene cluster in P. aeruginosa strain ZK2870 and identify a second genetic locus, termed psl, involved in the production of a mannose-rich matrix material. The 11 predicted protein products of the psl genes are homologous to proteins involved in carbohydrate processing. P. aeruginosa is thus able to produce two distinct carbohydrate-rich matrix materials. Either carbohydrate-rich matrix component appears to be sufficient for mature biofilm formation, and at least one of them is required for mature biofilm formation in P. aeruginosa strains PA14 and ZK2870. Copyright 2004 American Society for Microbiology

  12. CEMCAN Software Enhanced for Predicting the Properties of Woven Ceramic Matrix Composites

    Science.gov (United States)

    Murthy, Pappu L. N.; Mital, Subodh K.; DiCarlo, James A.

    2000-01-01

    Major advancements are needed in current high-temperature materials to meet the requirements of future space and aeropropulsion structural components. Ceramic matrix composites (CMC's) are one class of materials that are being evaluated as candidate materials for many high-temperature applications. Past efforts to improve the performance of CMC's focused primarily on improving the properties of the fiber, interfacial coatings, and matrix constituents as individual phases. Design and analysis tools must take into consideration the complex geometries, microstructures, and fabrication processes involved in these composites and must allow the composite properties to be tailored for optimum performance. Major accomplishments during the past year include the development and inclusion of woven CMC micromechanics methodology into the CEMCAN (Ceramic Matrix Composites Analyzer) computer code. The code enables one to calibrate a consistent set of constituent properties as a function of temperature with the aid of experimentally measured data.

  13. Targeting the extracellular matrix to disrupt cancer progression

    Directory of Open Access Journals (Sweden)

    Freja Albjerg Venning

    2015-10-01

    Full Text Available Metastatic complications are responsible for more than 90% of cancer related deaths. The progression from an isolated tumor to disseminated metastatic disease is a multi-step process, with each step involving intricate cross-talk between the cancer cells and their non-cellular surroundings, the extracellular matrix (ECM. Many ECM proteins are significantly de-regulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic cascade. In this review, the influence of several ECM proteins on these multiple steps of cancer spread is summarized. In addition, we highlight the promising (pre-clinical data showing benefits of targeting these ECM macromolecules to prevent cancer progression.

  14. Failure Criteria for Reinforced Materials

    DEFF Research Database (Denmark)

    Rathkjen, Arne

    Failure of materials is often characterized as ductile yielding, brittle fracture, creep rupture, etc., and different criteria given in terms of different parameters have been used to describe different types of failure. Only criteria expressing failure in terms of stress are considered in what...... place until the matrix, the continuous component of the composite, fails. When an isotropic matrix is reinforced as described above, the result is an anisotropic composite material. Even if the material is anisotropic, it usually exhibits a rather high degree of symmetry and such symmetries place...... certain restrictions on the form of the failure criteria for anisotropic materials. In section 2, some failure criteria for homogenous materials are reviewed. Both isotropic and anisotropic materials are described, and in particular the constraints imposed on the criteria from the symmetries orthotropy...

  15. Ejection of matrix-polymer clusters in matrix-assisted laser evaporation: Experimental observations

    International Nuclear Information System (INIS)

    Sellinger, Aaron T; Leveugle, Elodie; Gogick, Kristy; Peman, Guillaume; Zhigilei, Leonid V; Fitz-Gerald, James M

    2007-01-01

    The morphology of polymer films deposited with the matrix-assisted pulsed laser evaporation (MAPLE) technique is explored for various target compositions and laser fluences. Composite targets of 1 to 5 wt.% poly(methyl methacrylate), PMMA, dissolved in a volatile matrix material, toluene, were ablated using an excimer laser at fluences ranging from 0.045 J/cm 2 to 0.75 J/cm 2 . Films were deposited on Si substrates at room temperature in a dynamic 100 mTorr Ar atmosphere. Scanning electron microscopy (SEM) imaging revealed that the morphology of the deposited films varied significantly with both laser fluence and PMMA concentration. The morphologies of large deposited particles were similar to that of deflated ''balloons''. It is speculated that during ablation of the frozen target, clusters comprised of both polymer and solvent ranging from 100 nm to 10 μm in size are ejected and deposited onto the substrate. The solvent begins to evaporate from the clusters during flight from the target, but does not completely evaporate until deposited on the room temperature substrate. The dynamics of the toluene evaporation may lead to the formation of the deflated structures. This explanation is supported by the observation of stable polymer-matrix droplets ejected in molecular dynamics simulations of MAPLE

  16. Estimating the size of the cavity and surrounding failed region for underground nuclear explosions from scaling rules

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Leo A [El Paso Natural Gas Company (United States)

    1970-05-01

    The fundamental physical principles involved in the formation of an underground cavity by a nuclear explosion and breakage of the rock surrounding the cavity are examined from the point of view of making preliminary estimates of their sizes where there is a limited understanding of the rock characteristics. Scaling equations for cavity formation based on adiabatic expansion are reviewed and further developed to include the strength of the material surrounding the shot point as well as the overburden above the shot point. The region of rock breakage or permanent distortion surround ing the explosion generated cavity is estimated using both the Von Mises and Coulomb-Mohr failure criteria. It is found that the ratio of the rock failure radius to the cavity radius for these two criteria becomes independent of yield and dependent only on the failure mechanics of the rock. The analytical solutions developed for the Coulomb-Mohr and Von Mises criteria are presented in graphical form. (author)

  17. Stimulus size dependence of hue changes induced by chromatic surrounds.

    Science.gov (United States)

    Kellner, Christian Johannes; Wachtler, Thomas

    2016-03-01

    A chromatic surround induces a change in the perceived hue of a stimulus. This shift in hue depends on the chromatic difference between the stimulus and the surround. We investigated how chromatic induction varies with stimulus size and whether the size dependence depends on the surround hue. Subjects performed asymmetric matching of color stimuli with different sizes in surrounds of different chromaticities. Generally, induced hue shifts decreased with increasing stimulus size. This decrease was quantitatively different for different surround hues. However, when size effects were normalized to an overall induction strength, the chromatic specificity was largely reduced. The separability of inducer chromaticity and stimulus size suggests that these effects are mediated by different neural mechanisms.

  18. Analysis of Service Quality Management in the Materials Industry using the BCG Matrix Method

    OpenAIRE

    Adrian Ioana; Vasile Mirea; Cezar Balescu

    2009-01-01

    For each product or service, the area of the circle represents the value of its sales. The BCG (Boston Consulting Group) matrix thus offers a very useful map of the organization's service strengths and weaknesses, at least in terms of current profitability, as well as the likely cash flows. The criteria function concept consists of transforming the criteria function (CF) in a qualityeconomical matrix MQE. The levels of prescribing the criteria function were obtained by using a composition alg...

  19. Explaining preferences for home surroundings and locations

    DEFF Research Database (Denmark)

    Andersen, Hans Skifter

    2011-01-01

    This article is based on a survey carried out in Denmark that asked a random sample of the population about their preferences for home surroundings and locations. It shows that the characteristics of social surroundings are very important and can be divided into three independent dimensions......: avoiding social nuisances, preferring social homogeneity and living close to one’s social network and place of origin. The study shows that most people have many detailed preferences, whereas some have very few. This confirms an earlier theory that some people are very connected to certain places...... with given characteristics and thus do not have priorities regarding home surroundings and locations. For others, mostly young people and singles, home is just a place to sleep and relax, whereas life is lived elsewhere. For this group, there are only preferences for location and there are few specific...

  20. Metal matrix composites synthesis, wear characteristics, machinability study of MMC brake drum

    CERN Document Server

    Natarajan, Nanjappan; Davim, J Paulo

    2015-01-01

    This book is dedicated to composite materials, presenting different synthesis processes, composite properties and their machining behaviour. The book describes also the problems on manufacturing of metal matrix composite components. Among others, it provides procedures for manufacturing of metal matrix composites and case studies.

  1. The density matrix - The story of a failed transfer

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Alexander [MPI fuer Wissenschaftsgeschichte, Berlin (Germany)

    2013-07-01

    With the discovery of the positron in 1933, Paul Dirac (along with most other physicists) was forced to really take seriously his earlier suggestion that in the world as we know it all negative energy states are occupied and we are thus surrounded by an infinite sea of electrons. What was needed was a way to treat this large number of electrons in a manageable fashion. Dirac resorted to the use of the density matrix, a technique he had earlier used to describe the large number of electrons in complex atoms. Initially, this transfer from atomic physics to what we would nowadays call particle physics was quite successful, and for a few years the density matrix was the state of the art in describing the Dirac electron sea, but then rapidly fell out of favor. I investigate the causes of this ultimately failed transfer and how it relates to changes in the physical notion of the vacuum, changes which eventually eliminated the analogy on which the transfer had been based in the first place.

  2. HIV behavioural surveillance among refugees and surrounding host ...

    African Journals Online (AJOL)

    We used a standardised behavioural surveillance survey (BSS), modified to be directly relevant to populations in conflict and post-conflict settings as well as to their surrounding host populations, to survey the populations of a refugee settlement in south-western Uganda and its surrounding area. Two-stage probability ...

  3. [Fabrication of porous poly lactic acid-bone matrix gelatin composite bioactive material and its osteoinductive activity].

    Science.gov (United States)

    Zhang, Yumin; Li, Baoxing; Li, Ji

    2007-02-01

    To fabricate a novel porous bioactive composite biomaterial consisting of poly lactic acid (PLA)-bone matrix gelatin (BMG) by using the supercritical carbon dioxide fluid technique (SC-CO2) and to evaluate its osteoinductive activity. The cortical bones selected from healthy adult donors were processed into BMG by the defatting, demineralizing, and deproteinizing processes. PLA and BMG were mixed at a volume radio of 3 : 1; then, the PLA-BMG mixed material and the pure PLA material were respectively placed in the supercritical carbon dioxide reaction kettles, and were respectively added by the NaCl particles 100-200 microm in diameter for the porosity of the materials so that the porous PLA-BMG composite material and the porous PLA composite material could be formed. The mouse osteoblast-like MC3T3-E1 cells were cultured in the dulbecco's modified eagle medium (DMEM) supplemented with 10% fetal bovine serum. Then, 20 microl of the MC3T3-E1 cell suspensions containing 2 X 10(6) cells /ml were delivered into the culturing plate (24 wells/plate) made of the different materials, which were co-cultured for 2 weeks. In the PLA-BMG group, 100 microg of the crushed PLA-BMG material was contained in each well; in the PLA group, 100 microg of the crushed PLA material was contained in each well; and in the DMEM group, only DMEM was contained, which served as the control group. There were 6 wells in each group. The quantitative analysis on the calcification area was performed by the staining of the alizarin red S. The co-cultured cells were harvested and lysated in 1 ml of 0. 2% Nonidet P-40 by the ultrasonic lysating technique. Then, the ALP activity and the Ca content were measured according to the illuminations of the reagent kits. The porous PLA-BMG composite material showed a good homological porosity with a pore diameter of 50-150 microm and a good connectivity between the pores. The ALP activity, the Ca content, and the calcification area were significantly greater in

  4. Oxygen vacancy rich Cu2O based composite material with nitrogen doped carbon as matrix for photocatalytic H2 production and organic pollutant removal.

    Science.gov (United States)

    Lu, Lele; Xu, Xinxin; Yan, Jiaming; Shi, Fa-Nian; Huo, Yuqiu

    2018-02-06

    A nitrogen doped carbon matrix supported Cu 2 O composite material (Cu/Cu2O@NC) was fabricated successfully with a coordination polymer as precursor through calcination. In this composite material, Cu 2 O particles with a size of about 6-10 nm were dispersed evenly in the nitrogen doped carbon matrix. After calcination, some coordinated nitrogen atoms were doped in the lattice of Cu 2 O and replace oxygen atoms, thus generating a large number of oxygen vacancies. In Cu/Cu2O@NC, the existence of oxygen vacancies has been confirmed by electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS). Under visible light irradiation, Cu/Cu2O@NC exhibits excellent H 2 production with the rate of 379.6 μmol h -1 g -1 . Its photocatalytic activity affects organic dyes, such as Rhodamine B (RhB) and methyl orange (MO). In addition to photocatalysis, Cu/Cu2O@NC also exhibits striking catalytic activity in reductive conversion of 4-nitrophenol to 4-aminophenol with in presence of sodium borohydride (NaBH 4 ). The conversion efficiency reaches almost 100% in 250 s with the quantity of Cu/Cu2O@NC as low as 5 mg. The outstanding H 2 production and organic pollutants removal are attributed to the oxygen vacancy. We expect that Cu/Cu2O@NC will find its way as a new resource for hydrogen energy as well as a promising material in water purification.

  5. Mechanics and crack formation in the extracellular matrix with articular cartilage as a model system

    Science.gov (United States)

    Kearns, Sarah; Silverberg, Jesse; Bonassar, Lawrence; Cohen, Itai; Das, Moumita

    We investigate the mechanical structure-function relations in the extracellular matrix (ECM) with focus on crack formation and failure. As a model system, our study focuses on the ECM in articular cartilage (AC), the tissue that covers the ends of bones, and distributes load in joints including in the knees, shoulders, and hips. The strength, toughness, and crack resistance of native articular cartilage is unparalleled in materials made by humankind. This mechanical response is mainly due to its ECM. The ECM in AC has two major mechanobiological components: a network of the biopolymer collagen and a flexible aggrecan gel. We model this system as a biopolymer network embedded in a swelling gel, and investigate the conditions for the formation and propagation of cracks using a combination of rigidity percolation theory and energy minimization approaches. Our results may provide useful insights into the design principles of the ECM as well as of biomimetic hydrogels that are mechanically robust and can, at the same time, easily adapt to cues in their surroundings. This work was partially supported by a Cottrell College Science Award.

  6. Nanophosphor composite scintillators comprising a polymer matrix

    Science.gov (United States)

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  7. Random matrix theory

    CERN Document Server

    Deift, Percy

    2009-01-01

    This book features a unified derivation of the mathematical theory of the three classical types of invariant random matrix ensembles-orthogonal, unitary, and symplectic. The authors follow the approach of Tracy and Widom, but the exposition here contains a substantial amount of additional material, in particular, facts from functional analysis and the theory of Pfaffians. The main result in the book is a proof of universality for orthogonal and symplectic ensembles corresponding to generalized Gaussian type weights following the authors' prior work. New, quantitative error estimates are derive

  8. Thermal conductivity of microPCMs-filled epoxy matrix composites

    OpenAIRE

    Su, J.F.; Wang, X.Y; Huang, Z.; Zhao, Y.H.; Yuan, X.Y.

    2011-01-01

    Microencapsulated phase change materials (microPCMs) have been widely applied in solid matrix as thermal-storage or temperature-controlling functional composites. The thermal conductivity of these microPCMs/matrix composites is an important property need to be considered. In this study, a series of microPCMs have been fabricated using the in situ polymerization with various core/shell ratio and average diameter; the thermal conductivity of microPCMs/epoxy composites were investigated in detai...

  9. The study of electromagnetic wave propagation in photonic crystals via planewave based transfer (scattering) matrix method with active gain material applications

    Science.gov (United States)

    Li, Ming

    In this dissertation, a set of numerical simulation tools are developed under previous work to efficiently and accurately study one-dimensional (1D), two-dimensional (2D), 2D slab and three-dimensional (3D) photonic crystal structures and their defects effects by means of spectrum (transmission, reflection, absorption), band structure (dispersion relation), and electric and/or magnetic fields distribution (mode profiles). Further more, the lasing property and spontaneous emission behaviors are studied when active gain materials are presented in the photonic crystal structures. First, the planewave based transfer (scattering) matrix method (TMM) is described in every detail along with a brief review of photonic crystal history (Chapter 1 and 2). As a frequency domain method, TMM has the following major advantages over other numerical methods: (1) the planewave basis makes Maxwell's Equations a linear algebra problem and there are mature numerical package to solve linear algebra problem such as Lapack and Scalapack (for parallel computation). (2) Transfer (scattering) matrix method make 3D problem into 2D slices and link all slices together via the scattering matrix (S matrix) which reduces computation time and memory usage dramatically and makes 3D real photonic crystal devices design possible; and this also makes the simulated domain no length limitation along the propagation direction (ideal for waveguide simulation). (3) It is a frequency domain method and calculation results are all for steady state, without the influences of finite time span convolution effects and/or transient effects. (4) TMM can treat dispersive material (such as metal at visible light) naturally without introducing any additional computation; and meanwhile TMM can also deal with anisotropic material and magnetic material (such as perfectly matched layer) naturally from its algorithms. (5) Extension of TMM to deal with active gain material can be done through an iteration procedure with gain

  10. Development of the material selection practice - a study exploring articulation of material requirements

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Hasling, Karen Marie

    2014-01-01

    indicates that students focus on technical requirements when using the matrix and justifying their selection of materials. This is surprising since the students attend an arts and crafts oriented design school and are encouraged and guided to consider non-technical requirements, as part of the course where...... the matrix is introduced. A possible reason for the undesired behavior could be that students are allowed very freely to define their own matrices, having only little guidance to which requirements to use. A more formal procedure for making the material matrices is therefore proposed. The procedure requires...

  11. Analysis of crack initiation in the vicinity of an interface in brittle materials. Applications to ceramic matrix composites and nuclear fuels

    International Nuclear Information System (INIS)

    Poitou, B.

    2007-11-01

    In this study, criterions are proposed to describe crack initiation in the vicinity of an interface in brittle bi-materials. The purpose is to provide a guide for the elaboration of ceramic multi-layer structures being able to develop damage tolerance by promoting crack deflection along interfaces. Several cracking mechanisms are analyzed, like the competition between the deflection of a primary crack along the interface or its penetration in the second layer. This work is first completed in a general case and is then used to describe the crack deviation at the interface in ceramic matrix composites and nuclear fuels. In this last part, experimental tests are carried out to determine the material fracture properties needed to the deflection criteria. An optimization of the fuel coating can be proposed in order to increase its toughness. (author)

  12. Matrix-isolation studies on alkali-metal phosphates

    International Nuclear Information System (INIS)

    Jenny, S.N.; Ogden, J.S.

    1979-01-01

    This paper describes the results of a matrix-isolation i.r. study on the vaporisation of trisodium orthophosphate. When this material is heated in vacuo to ca. 1600 K, and the products condensed in a low-temperature argon matrix, the i.r. spectrum obtained is shown to be due to a trapped species NaPO 3 . With the aid of 18 O-enrichment, this molecule is shown to have a Csub(2v) bidentate structure with characteristic i.r. bands at 1 341.7, 1 211.1, 1 004.0, 536.6, 474.0 and 287.0 cm -1 . (author)

  13. Desenvolvimento de material de referência para microbiologia de alimentos contendo estafilococos coagulase positiva em matriz queijo Development of reference material for the microbiology of foods containing coagulase-positive Staphylococcus in a cheese matrix

    Directory of Open Access Journals (Sweden)

    Marcelo Luiz Lima Brandão

    2013-03-01

    Full Text Available O uso de materiais de referência (MR é uma das principais ferramentas utilizadas para garantia e controle da qualidade de laboratórios de microbiologia de alimentos. No Brasil, a RDC n.º 12/01 da Anvisa prevê como um dos parâmetros para a avaliação da qualidade de queijos a enumeração de estafilococos coagulase positiva (ECP. O grande desafio na produção de MR destinados a ensaios microbiológicos é a instabilidade natural dos micro-organismos, o que dificulta o desenvolvimento e a manutenção desses MR. O objetivo deste estudo foi produzir um MR quantitativo destinado ao ensaio de enumeração de ECP em matriz queijo. Uma amostra de queijo ultrafiltrado com contagem de ECP The use of reference materials (RM is one of the principal tools used for assurance and quality control in food microbiology laboratories. In Brazil, Anvisa RDC nº 12/01 specifies the enumeration of coagulase-positive staphylococcus (CPS as one of the parameters for evaluating cheese quality. The main challenge in the production of RM destined for microbiological assays is the natural instability of the microorganisms, which makes it difficult to develop and maintain them. This study aimed to produce a quantitative RM for use in enumeration assays of CPS in cheese matrixes. A sample of an ultra-filtered cheese with a CPS count of <10 CFU/g and a total nº of viable aerobes of 1.2 × 10³ CFU/g was used as the matrix to produce the RM. The matrix was distributed in flasks, contaminated with specific concentrations of the target bacteria and submitted to freeze-drying. Sucrose was used as the cryo-protector. The RM produced was considered homogeneous and stable at < -70ºC during the entire study period (10 months. The material was shown to be stable at 4, 25, 30 and 35 ºC for 4 days, although the results indicated a decrease in cell concentration at 35 ºC. At -20 ºC the RM was stable for 48 days. It was concluded that the material showed all the necessary

  14. How A Black Hole Lights Up Its Surroundings

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    How do the supermassive black holes that live at the centers of galaxies influence their environments? New observations of a distant active galaxy offer clues about this interaction.Signs of CoevolutionPlot demonstrating the m-sigma relation, the empirical correlation between the stellar velocity dispersion of a galactic bulge and the mass of the supermassive black hole at its center. [Msigma]We know that the centers of active galaxies host supermassive black holes with masses of millions to billions of suns. One mystery surrounding these beasts is that they are observed to evolve simultaneously with their host galaxies for instance, an empirical relationship is seen between the growth of a black hole and the growth of its host galaxys bulge. This suggests that there must be a feedback mechanism through which the evolution of a black hole is linked to that of its host galaxy.One proposed source of this coupling is the powerful jets emitted from the poles of these supermassive black holes. These jets are thought to be produced as some of the material accreting onto the black hole is flung out, confined by surrounding gas and magnetic fields. Because the jets of hot gas and radiation extend outward through the host galaxy, they provide a means for the black hole to influence the gas and dust of its surroundings.In our current model of a radio-loud active galactic nuclei,a region of hot, ionized gas the narrow-line region lies beyond the sphere of influence of the supermassive black hole. [C.M. Urry and P. Padovani]Clues in the Narrow-Line RegionThe region of gas thought to sit just outside of the black holes sphere of influence (at a distance of perhaps a thousand to a few thousand light-years) is known as the narrow line region so named because we observe narrow emission lines from this gas. Given its hot, ionized state, this gas must somehow be being pummeled with energy. In the canonical picture, radiation from the black hole heats the gas directly in a process

  15. An Experiment on the Carbonization of Fuel Compact Matrix Graphite for HTGR

    International Nuclear Information System (INIS)

    Lee, Young Woo; Kim, Joo Hyoung; Cho, Moon Sung

    2012-01-01

    The fuel element for HTGR is manufactured by mixing coated fuel particles with matrix graphite powder and forming into either pebble type or cylindrical type compacts depending on their use in different HTGR cores. The coated fuel particle, the so-called TRISO particle, consists of 500-μm spherical UO 2 particles coated with the low density buffer Pyrolytic Carbon (PyC) layer, the inner and outer high density PyC layer and SiC layer sandwiched between the two inner and outer PyC layers. The coated TRISO particles are mixed with a properly prepared matrix graphite powder, pressed into a spherical shape or a cylindrical compact, and finally heat-treated at about 1800 .deg. C. These fuel elements can have different sizes and forms of compact. The basic steps for manufacturing a fuel element include preparation of graphite matrix powder, over coating the fuel particles, mixing the fuel particles with a matrix powder, carbonizing green compact, and the final high-temperature heat treatment of the carbonized fuel compact. The carbonization is a process step where the binder that is incorporated during the matrix graphite powder preparation step is evaporated and the residue of the binder is carbonized during the heat treatment at about 1073 K, In order to develop a fuel compact fabrication technology, and for fuel matrix graphite to meet the required material properties, it is of extreme importance to investigate the relationship among the process parameters of the matrix graphite powder preparation, fabrication parameters of fuel element green compact and the carbonization condition, which has a strong influence on further steps and the material properties of fuel element. In this work, the carbonization behavior of green compact samples prepared from the matrix graphite powder mixtures with different binder materials was investigated in order to elucidate the behavior of binders during the carbonization heat treatment by analyzing the change in weight, density and its

  16. Structure and properties of nanocrystalline soft magnetic composite materials with silicon polymer matrix

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Nowosielski, R.; Konieczny, J.; PrzybyI, A.; WysIocki, J.

    2005-01-01

    The paper concerns investigation of nanocrystalline composites technology preparation. The composites in the form of rings with rectangular transverse section, and with polymer matrix and nanocrystalline metallic powders fulfillment were made, for obtaining good ferromagnetic properties. The nanocrystalline ferromagnetic powders were manufactured by high-energy ball milling of metallic glasses strips in an as-quenched state. Generally for investigation, Co matrix alloys with the silicon polymer were used. Magnetic properties in the form of hysteresis loop by rings method were measured. Generally composite cores showed lower soft ferromagnetic properties than winded cores of nanocrystalline strips, but composite cores showed interesting mechanical properties. Furthermore, the structure of strips and powders on properties of composites were investigated

  17. Universal composition-structure-property maps for natural and biomimetic platelet-matrix composites and stacked heterostructures.

    Science.gov (United States)

    Sakhavand, Navid; Shahsavari, Rouzbeh

    2015-03-16

    Many natural and biomimetic platelet-matrix composites--such as nacre, silk, and clay-polymer-exhibit a remarkable balance of strength, toughness and/or stiffness, which call for a universal measure to quantify this outstanding feature given the structure and material characteristics of the constituents. Analogously, there is an urgent need to quantify the mechanics of emerging electronic and photonic systems such as stacked heterostructures. Here we report the development of a unified framework to construct universal composition-structure-property diagrams that decode the interplay between various geometries and inherent material features in both platelet-matrix composites and stacked heterostructures. We study the effects of elastic and elastic-perfectly plastic matrices, overlap offset ratio and the competing mechanisms of platelet versus matrix failures. Validated by several 3D-printed specimens and a wide range of natural and synthetic materials across scales, the proposed universally valid diagrams have important implications for science-based engineering of numerous platelet-matrix composites and stacked heterostructures.

  18. Improvement of the fracture toughness matrix cured by electron beam radiation, by incorporation of thermoplastic

    International Nuclear Information System (INIS)

    Chauray, E.

    2003-07-01

    The aim of the present study is to improve the fracture toughness of a vinyl-ester matrix cured by electron beam radiation, by incorporation of a thermoplastic polymer. The ultimate plan is to improve the fracture toughness of the composite material made of this reinforced matrix and carbon fibres. The first step deals with the study of an epoxy matrix reinforced by a polyether-sulfone. This well-known material, as it is used in industrial formulation, allowed us to characterize all the parameters needed to obtain a good reinforcement as for instance the morphology, and also to compare two kinds of processes: thermal and electron beam curing. In fact, we are really interested in increasing fracture toughness of a vinyl-ester matrix that is not miscible with polyether-sulfone. So a copolymer which has a similar structure as polyether-sulfone is synthesized in order to obtain a miscible blend. The corresponding material has good fracture toughness, with an increase of 80 % for 15 % addition of thermoplastic. (author)

  19. Consolidation effects on tensile properties of an elemental Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Tang, F. [Building 4515, MS 6064, Metals and Ceramics Division, Oak Ridge National Lab, Oak Ridge, TN 37831 (United States)]. E-mail: tangf@ornl.gov; Meeks, H. [Ceracon Inc., 5150 Fairoaks Blvd. 01-330, Carmichael, CA 95628 (United States); Spowart, J.E. [UES Incorporated, AFRL/MLLM Building 655, 2230 Tenth St. Suite 1, Wright-Patterson AFB, OH 45433 (United States); Gnaeupel-Herold, T. [NIST Center for Neutron Research, 100 Bureau Dr. Stop 8562, Gaithersburg, MD 20899-8562 (United States); Prask, H. [NIST Center for Neutron Research, 100 Bureau Dr. Stop 8562, Gaithersburg, MD 20899-8562 (United States); Anderson, I.E. [Materials and Engineering Physics Program, Ames Laboratory, Iowa State University, Ames, IA 50011 (United States)

    2004-11-25

    In a simplified composite design, an unalloyed Al matrix was reinforced by spherical Al-Cu-Fe alloy particles (30 vol.%), using either commercial purity (99.7%) or high purity (99.99%) fine powders (diameter < 10 {mu}m). This composite material was consolidated by either vacuum hot pressing (VHP) or quasi-isostatic forging. The spatial distribution of reinforcement particles in both VHP and forged samples was shown to be almost the same by quantitative characterization with a multi-scale area fraction analysis technique. The tensile properties of all composite samples were tested and the forged materials showed significantly higher strength, while the elastic modulus values of all composite materials were close to the upper bound of theoretical predictions. Neutron diffraction measurements showed that there were high compressive residual stresses in the Al matrix of the forged samples and relatively low Al matrix residual stresses (predominantly compressive) in the VHP samples. By tensile tests and neutron diffraction measurements of the forged samples after annealing, it was shown that the high compressive residual stresses in the Al matrix were relieved and that tensile strength was also reduced to almost the same level as that of the VHP samples. Therefore, it was deduced that increased compressive residual stresses and enhanced dislocation densities in the forged composites raised the tensile strength to higher values than those of the VHP composites.

  20. Circumstances surrounding aneurysmal subarachnoid hemorrhage

    NARCIS (Netherlands)

    Schievink, W. I.; Karemaker, J. M.; Hageman, L. M.; van der Werf, D. J.

    1989-01-01

    The circumstances surrounding aneurysmal subarachnoid hemorrhage were investigated in a group of 500 consecutive patients admitted to a neurosurgical center. Subarachnoid hemorrhage occurred during stressful events in 42.8% of the patients, during nonstrenuous activities in 34.4%, and during rest or

  1. Matrix change of bone grafting substitute after implantation into guinea pig bulla.

    Science.gov (United States)

    Punke, Ch; Zehlicke, T; Just, T; Holzhüter, G; Gerber, T; Pau, H W

    2012-05-01

    Many different surgical techniques have been developed to remove open mastoid cavities. In addition to autologous materials, alloplastic substances have been used. A very slow absorption of these materials and extrusion reactions have been reported. We investigated a newly developed, highly porous bone grafting material to eliminate open mastoid cavities, in an animal model. To characterise the transformation process, the early tissue reactions were studied in relation to the matrix transformation of the bone material. NanoBone (NB), a highly porous bone grafting material based on calcium phosphate and silica, was filled into the open bullae from 20 guinea pigs. The bullae were examined histologically. Energy dispersive X-ray spectroscopy (EDX) was used to investigate the change in the elemental composition at different sampling times. The surface topography of the sections was examined by electron microscopy. After 1 week, periodic acid-Schiffs (PAS) staining demonstrated accumulation of glycogen and proteins, particularly in the border area of the NB particles. After 2 weeks, the particles were evenly coloured after PAS staining. EDX analysis showed a rapid absorption of the silica in the bone grafting material. NanoBone showed a rapid matrix change after implantation in the bullae of guinea pigs. The absorption of the silica matrix and replacement by PAS-positive substances like glycoproteins and mucopolysaccharides seems to play a decisive role in the degradation processes of NB. This is associated with the good osteoinductive properties of the material.

  2. Experimental studies on a new highly porous hydroxyapatite matrix for obliterating open mastoid cavities.

    Science.gov (United States)

    Punke, Christoph; Zehlicke, Thorsten; Boltze, Carsten; Pau, Hans Wilhelm

    2008-09-01

    In an initial preliminary study, the applicability of a new high-porosity hydroxyapatite (HA) ceramic for obliterating large open mastoid cavities was proven and tested in an animal model (bulla of guinea pig). Experimental study. NanoBone, a highly porous matrix consisting of 76% hydroxyl apatite and 24% silicone dioxide fabricated in a sol-gel technique, was administered unilaterally into the opened bullae of 30 guinea pigs. In each animal, the opposite bulla was filled with Bio-Oss, a bone substitute consisting of a portion of mineral bovine bone. Histologic evaluations were performed 1, 2, 3, 4, 5, and 12 weeks after the implantation. After an initial phase in which the ceramic granules were surrounded by inflammatory cells (1-2 wk), there were increasing signs of vascularization. Osteoneogenesis and-at the same time-resorption of the HA ceramic were observed after the third week. No major difference in comparison to the bovine bone material could be found. Our results confirm the favorable qualities of the new ceramic reported in association with current maxillofacial literature. Conventional HA granules used for mastoid obliteration to date often showed problems with prolonged inflammatory reactions and, finally, extrusions. In contrast to those ceramics, the new material seems to induce more osteoneogenesis and undergoes early resorption probably due to its high porosity. Overall, it is similar to the bovine bone substance tested on the opposite ear in each animal. Further clinical studies may reveal whether NanoBone can be an adequate material for obliterating open mastoid cavities in patients.

  3. Collagen XII and XIV, New Partners of Cartilage Oligomeric Matrix Protein in the Skin Extracellular Matrix Suprastructure*

    Science.gov (United States)

    Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R.; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate

    2012-01-01

    The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone. PMID:22573329

  4. Collagen XII and XIV, new partners of cartilage oligomeric matrix protein in the skin extracellular matrix suprastructure.

    Science.gov (United States)

    Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate

    2012-06-29

    The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone.

  5. Fracture behaviour of brittle (glass) matrix composites

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk; Boccaccini, A. R.

    2005-01-01

    Roč. 482, - (2005), s. 115-122 ISSN 0255-5476. [International Conference on Materials Structure and Micromechanics of Fracture /4./. Brno, 23.06.2004-25.06.2004] R&D Projects: GA AV ČR(CZ) IAA2041003; GA ČR(CZ) GA101/02/0683 Institutional research plan: CEZ:AV0Z2041904 Keywords : Ceramic matrix composites * fracture toughness * toughening effects Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass Impact factor: 0.399, year: 2005

  6. Modern Nondestructive Test Methods for Army Ceramic Matrix Composites

    National Research Council Canada - National Science Library

    Strand, Douglas J

    2008-01-01

    .... Ceramic matrix composites (CMC) are potentially good high-temperature structural materials because of their low density, high elastic moduli, high strength, and for those with weak interfaces, surprisingly good damage tolerance...

  7. Application of ceramic short fiber reinforced Al alloy matrix composite on piston for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Wu Shenqing

    2010-11-01

    Full Text Available The preparation and properties of ceramic short fiber reinforced Al-Si alloy matrix composite and it’s application on the piston for internal combustion engines are presented. Alumina or aluminosilicate fibers reinforced Al-Si alloy matrix composite has more excellent synthetical properties at elevated temperature than the matrix alloys. A partially reinforced Al-Si alloy matrix composite piston produced by squeeze casting technique has a firm interface between reinforced and unreinforced areas, low reject rate and good technical tolerance. As a new kind of piston material, it has been used for mass production of about 400,000 pieces of automobile engines piston. China has become one of a few countries in which aluminum alloy matrix composite materials have been used in automobile industry and attained industrialization.

  8. sp2 carbon allotropes in elastomer matrix: From master curves for the mechanical reinforcement to lightweight materials

    Directory of Open Access Journals (Sweden)

    M. Galimberti

    2018-03-01

    Full Text Available This work presents high surface area sp2 carbon allotropes as important tools to design and prepare lightweight materials. Composites were prepared based on either carbon black (CB or carbon nanotubes (CNT or hybrid CB/CNT filler systems, with either poly(1,4-cis-isoprene or poly(styrene-co-butadiene as the polymer matrix. A correlation was established between the specific interfacial area (i.a., i.e. the surface made available by the filler per unit volume of composite, and the initial modulus of the composite (G′γmin, determined through dynamic mechanical shear tests. Experimental points could be fitted with a common line, a sort of master curve, up to about 30.2 and 9.8 mass% as CB and CNT content, respectively. The equation of such master curve allowed to correlate modulus and density of the composite. Thanks to the master curve, composites with the same modulus and lower density could be designed by substituting part of CB with lower amount of the carbon allotrope with larger surface area, CNT. This work establishes a quantitative correlation as a tool to design lightweight materials and paves the way for large scale application in polymer matrices of innovative sp2 carbon allotropes.

  9. High power X-ray welding of metal-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1997-12-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10{sup 4} watts/cm{sup 2} and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  10. Cavitation instabilities between fibres in a metal matrix composite

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    induced by bonding to the ceramics that only show elastic deformation. In an MMC the stress state in the metal matrix is highly non-uniform, varying between regions where shear stresses are dominant and regions where hydrostatic tension is strong. An Al–SiC whisker composite with a periodic pattern......Short fibre reinforced metal matrix composites (MMC) are studied here to investigate the possibility that a cavitation instability can develop in the metal matrix. The high stress levels needed for a cavitation instability may occur in metal–ceramic systems due to the constraint on plastic flow...... of transversely staggered fibres is here modelled by using an axisymmetric cell model analysis. First the critical stress level is determined for a cavitation instability in an infinite solid made of the Al matrix material. By studying composites with different distributions and aspect ratios of the fibres...

  11. Formulation of Sustained-Release Diltiazem Matrix Tablets Using ...

    African Journals Online (AJOL)

    Erah

    surface, their drug release behavior appears simple, but ... matrix material for the formulation of ..... formulation F5 (,) and reference formulations. ( , □). 0. 50. 100. 150. 200. 250. 300. 0. 3. 6 .... Coviello T, Matricardi P, Marianecci C, Alhaique F.

  12. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers

    KAUST Repository

    Li, Tao; Pan, Yichang; Peinemann, Klaus-Viktor; Lai, Zhiping

    2013-01-01

    Mixed matrix materials made from selective inorganic fillers and polymers are very attractive for the manufacturing of gas separation membranes. But only few of these materials could be manufactured into high-performance asymmetric or composite

  13. Crustal structure beneath Beijing and its surrounding regions derived from gravity data

    Science.gov (United States)

    Jiang, Wenliang; Zhang, Jingfa; Lu, Xiaocui; Lu, Jing

    2011-06-01

    In this paper we use gravity data to study fine crustal structure and seismogenic environment beneath Beijing and its surrounding regions. Multi-scale wavelet analysis method is applied to separating gravity fields. Logarithmic power spectrum method is also used to calculate depth of gravity field source. The results show that the crustal structure is very complicated beneath Beijing and its surrounding areas. The crustal density exhibits laterally inhomogeneous. There are three large scale tectonic zones in North China, i.e., WNW-striking Zhangjiakou-Bohai tectonic zone (ZBTZ), NE-striking Taihang piedmont tectonic zone (TPTZ) and Cangxian tectonic zone (CTZ). ZBTZ and TPTZ intersect with each other beneath Beijing area and both of them cut through the lithosphere. The upper and middle crusts consist of many small-scale faults, uplifts and depressions. In the lower crust, these small-scale tectonic units disappear gradually, and they are replaced by large-scale tectonic units. In surrounding regions of Beijing, ZBTZ intersects with several other NE-striking tectonic units, such as Cangxian uplift, Jizhong depression and Shanxi Graben System (SGS). In west of Taihangshan uplift, gravity anomalies in upper and middle crusts are correlated with geological and topographic features on the surface. Compared with the crust, the structure is comparatively simple in uppermost mantle. Earthquakes mainly occurred in upper and middle crusts, especially in transitional regions between high gravity anomaly and low gravity anomaly. Occurrence of large earthquakes may be related to the upwelling of upper mantle and asthenosphere heat flow materials, such as Sanhe earthquake ( M S8.0) and Tangshan earthquake ( M S7.8).

  14. Material parameter identification on metal matrix composites

    CSIR Research Space (South Africa)

    Jansen van Rensburg, GJ

    2012-07-01

    Full Text Available conditions that best replicate the experimental data. The quality of the fits is subject to the limits of the material model and boundary parameterisation. An alternative procedure that uses the time and strain history to evolve the yield stress is also...

  15. Carbon fibre reinforced copper matrix composites: processing routes and properties

    Energy Technology Data Exchange (ETDEWEB)

    Le Petitcorps, Y. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Poueylaud, J.M. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Albingre, L. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Berdeu, B. [L`Electrolyse, 33 - Latresne (France); Lobstein, P. [L`Electrolyse, 33 - Latresne (France); Silvain, J.F. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB

    1997-06-01

    Copper matrix composites are of interest for applications in the electronic field which requires materials with high thermal conductivity properties. The use of carbon fibres can (1) decrease the density and the coefficient of thermal expansion of the material and (2) increase the stiffness and strength to rupture of the resulting composite. In order to produce cheap materials, chemical plating and uniaxial hot pressing processing routes were chosen. 1D-C{sub (P55Thornel)} / Cu prepregs were hot pressed in an argon atmosphere at 750 C during 30 min. The volume fraction of the fibres within the composite was in the range of 10-35%. Physical (density and thermal expansion coefficient) and thermal conductivity properties of the composite were in good agreement with the predictions. However this material exhibits very poor mechanical properties (Young`s modulus and tensile strength). Scanning electron microscopy (SEM) observations of the surfaces of ruptures have shown that (1) a very weak bonding between the graphite fibres and the copper matrix was formed and (2) the rupture of the composite was initiated in the matrix at the copper grain boundaries. In order to overcome these two difficulties, the carbon fibres were pre-coated with a thin layer (100 nm) of cobalt. The aim of the cobalt was to react with the carbon to form carbide compounds and as a consequence to increase the bonding between the metal and the fibre. The tensile properties ({sigma}{sub c}{sup R} and E{sub c}) of this composite were then increased by 50% in comparison with the former material; however the strain to rupture was still too weak ({epsilon}{sub c}{sup R} = 0.5%). In order to explain the role of each constituents, X-ray profiles and TEM analyses were done at the fibre/matrix interface and at the grain boundaries. Some modifications of the chemical plating steps were done to improve the purity of the copper. (orig.)

  16. Of extracellular matrix, scaffolds, and signaling: Tissuearchitectureregulates development, homeostasis, and cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Bissell, Mina J.

    2006-03-09

    The microenvironment surrounding cells influences gene expression, such that a cell's behavior is largely determined by its interactions with the extracellular matrix, neighboring cells, and soluble cues released locally or by distant tissues. We describe the essential role of context and organ structure in directing mammary gland development and differentiated function, and in determining response to oncogenic insults including mutations. We expand on the concept of 'dynamic reciprocity' to present an integrated view of development, cancer, and aging, and posit that genes are like piano keys: while essential, it is the context that makes the music.

  17. Matrix effect studies with empirical formulations in maize saplings

    International Nuclear Information System (INIS)

    Bansal, Meenakshi; Deep, Kanan; Mittal, Raj

    2012-01-01

    In X-ray fluorescence, the earlier derived matrix effects from fundamental relations of intensities of analyte/matrix elements with basic atomic and experimental setup parameters and tested on synthetic known samples were found empirically related to analyte/matrix elemental amounts. The present study involves the application of these relations on potassium and calcium macronutrients of maize saplings treated with different fertilizers. The novelty of work involves a determination of an element in the presence of its secondary excitation rather than avoiding the secondary fluorescence. Therefore, the possible utility of this process is in studying the absorption for some intermediate samples in a lot of a category of samples with close Z interfering constituents (just like Ca and K). Once the absorption and enhancement terms are fitted to elemental amounts and fitted coefficients are determined, with the absorption terms from the fit and an enhancer element amount known from its selective excitation, the next iterative elemental amount can be directly evaluated from the relations. - Highlights: ► Empirical formulation for matrix corrections in terms of amounts of analyte and matrix element. ► The study applied on K and Ca nutrients of maize, rice and potato organic materials. ► The formulation provides matrix terms from amounts of analyte/matrix elements and vice versa.

  18. Investigation of fracture-matrix interaction: Preliminary experiments in a simple system

    International Nuclear Information System (INIS)

    Foltz, S.D.

    1992-01-01

    Paramount to the modeling of unsaturated flow and transport through fractured porous media is a clear understanding of the processes controlling fracture-matrix interaction. As a first step toward such an understanding, two preliminary experiments have been performed to investigate the influence of matrix imbibition on water percolation through unsaturated fractures in the plane normal to the fracture. Test systems consisted of thin slabs of either tuff or an analog material cut by a single vertical fracture into which a constant fluid flux was introduced. Transient moisture content and solute concentration fields were imaged by means of x-ray absorption. Flow fields associated with the two different media were significantly different owing to differences in material properties relative to the imposed flux. Richards' equation was found to be a valid means of modeling the imbibition of water into the tuff matrix from a saturated fracture for the current experiment

  19. Determination of Dispersion Curves for Composite Materials with the Use of Stiffness Matrix Method

    Directory of Open Access Journals (Sweden)

    Barski Marek

    2017-06-01

    Full Text Available Elastic waves used in Structural Health Monitoring systems have strongly dispersive character. Therefore it is necessary to determine the appropriate dispersion curves in order to proper interpretation of a received dynamic response of an analyzed structure. The shape of dispersion curves as well as number of wave modes depends on mechanical properties of layers and frequency of an excited signal. In the current work, the relatively new approach is utilized, namely stiffness matrix method. In contrast to transfer matrix method or global matrix method, this algorithm is considered as numerically unconditionally stable and as effective as transfer matrix approach. However, it will be demonstrated that in the case of hybrid composites, where mechanical properties of particular layers differ significantly, obtaining results could be difficult. The theoretical relationships are presented for the composite plate of arbitrary stacking sequence and arbitrary direction of elastic waves propagation. As a numerical example, the dispersion curves are estimated for the lamina, which is made of carbon fibers and epoxy resin. It is assumed that elastic waves travel in the parallel, perpendicular and arbitrary direction to the fibers in lamina. Next, the dispersion curves are determined for the following laminate [0°, 90°, 0°, 90°, 0°, 90°, 0°, 90°] and hybrid [Al, 90°, 0°, 90°, 0°, 90°, 0°], where Al is the aluminum alloy PA38 and the rest of layers are made of carbon fibers and epoxy resin.

  20. A Brief Research Review for Improvement Methods the Wettability between Ceramic Reinforcement Particulate and Aluminium Matrix Composites

    Science.gov (United States)

    Razzaq, Alaa Mohammed; Majid, Dayang Laila Abang Abdul; Ishak, M. R.; B, Uday M.

    2017-05-01

    The development of new methods for addition fine ceramic powders to Al aluminium alloy melts, which would lead to more uniform distribution and effective incorporation of the reinforcement particles into the aluminium matrix alloy. Recently the materials engineering research has moved to composite materials from monolithic, adapting to the global need for lightweight, low cost, quality, and high performance advanced materials. Among the different methods, stir casting is one of the simplest ways of making aluminium matrix composites. However, it suffers from poor distribution and combination of the reinforcement ceramic particles in the metal matrix. These problems become significantly effect to reduce reinforcement size, more agglomeration and tendency with less wettability for the ceramic particles in the melt process. Many researchers have carried out different studies on the wettability between the metal matrix and dispersion phase, which includes added wettability agents, fluxes, preheating the reinforcement particles, coating the reinforcement particles, and use composting techniques. The enhancement of wettability of ceramic particles by the molten matrix alloy and the reinforcement particles distribution improvement in the solidified matrix is the main objective for many studies that will be discussed in this paper.

  1. Immobilization of Mo(IV) complex in hybrid matrix obtained via sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Marques, C.; Sousa, A.M.; Freire, C.; Neves, I.C.; Fonseca, A.M.; Silva, C.J.R

    2003-10-06

    A molybdenum(IV) complex, trans-bis-[1,2-bis(diphenylphosphino)ethane]-fluoro-(diazopropano) -molybdenum tetraphenylborate, [MoF(DIAZO)(dppe){sub 2}][BPh{sub 4}], was prepared and immobilized in a hybrid matrix synthesized by the sol-gel process. The host matrix, designated as U(500), is an organic-inorganic network material, classed as ureasil, that combines a reticulated siliceous backbone linked by short polyether-based segments. Urea bridges make the link between these two components, and the polymerization of silicate substituted terminal groups generates the inorganic network. The free Mo(IV) complex and all new materials were characterized by spectroscopic techniques (FT-IR and UV-Vis) and thermal analysis (DSC). The ionic conductivity of the resulting material was also studied. The results indicate that immobilized Mo(IV) complex has kept its solid-state structure, although there is evidence of inter-molecular interactions between the Mo(IV) complex and some groups/atoms of the hybrid host matrix.

  2. Technology development for nuclear material accountability

    International Nuclear Information System (INIS)

    Hong, Jong Sook; Lee, Byung Doo; Cha, Hong Ryul; Choi, Hyoung Nai; Park, Ho Joon

    1991-03-01

    Using Segmented Gamma Scanning(SGS) System and coaxical Ge detector, the amounts of uranium in 55 gallon waste drums mixed with low density matrix material were determined by segmented gamma-scanning method. Various factors that influence sample measurement were identified as attenuation effects against sample container and matrix material counting loss effect by dead time and signal pile-up and radial and axial non-uniformity effects of sample. External transmission source, Yb-169, was used to correct gamma-ray attenuation by matrix material. The measure deviation caused by non-uniform distribution in the drum was minimized by rotating and dividing the drum. To calibrate the measurement system, calibration sources were prepared in the range of 50g, 100g, 300g, and 500g of U0 2 powder which let it stick to thin gummed papers and mix with other matrix materials such as papers, vinyl sheets, pieces of rubber gloves in 4 each drum. Under the calibrated assay system the uncertainty of measured amounts of UO 2 powder approached about 10% of absolute value at 1σ and a normal flow of waste stream can be maintained at least one drum per hour. On the other hand, in an effort to ease the nuclear material accounting for and control the flow of nuclear material in CANDU Fuel Fabrication Facility was analyzed to develope a model computer network interfaced with hardwares, structual design of network, computer operating system, and hardware set-up were studied to draw out the most practical network system. (Author)

  3. Ultra-low Temperature Curable Conductive Silver Adhesive with different Resin Matrix

    Science.gov (United States)

    Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Li, Xing; Qin, Lei

    2018-03-01

    The ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conductive treatment of piezoelectric composite material due to the low thermal resistance of composite material and low adhesion strength of adhesive. An ultra-low temperature curable conductive adhesive with high adhesion strength was obtained for the applications of piezoelectric composite material. The microstructure, conductive properties and adhesive properties with different resin matrix were investigated. The conductive adhesive with AG-80 as the resin matrix has the shorter curing time (20min), lower curing temperature (90°C) and higher adhesion strength (7.6MPa). The resistivity of AG-80 sample has the lower value (2.13 × 10-4Ω·cm) than the 618 sample (4.44 × 10-4Ω·cm).

  4. Second harmonic generation reveals matrix alterations during breast tumor progression

    Science.gov (United States)

    Burke, Kathleen; Tang, Ping; Brown, Edward

    2013-03-01

    Alteration of the extracellular matrix in tumor stroma influences efficiency of cell locomotion away from the primary tumor into surrounding tissues and vasculature, thereby affecting metastatic potential. We study matrix changes in breast cancer through the use of second harmonic generation (SHG) of collagen in order to improve the current understanding of breast tumor stromal development. Specifically, we utilize a quantitative analysis of the ratio of forward to backward propagating SHG signal (F/B ratio) to monitor collagen throughout ductal and lobular carcinoma development. After detection of a significant decrease in the F/B ratio of invasive but not in situ ductal carcinoma compared with healthy tissue, the collagen F/B ratio is investigated to determine the evolution of fibrillar collagen changes throughout tumor progression. Results are compared with the progression of lobular carcinoma, whose F/B signature also underwent significant evolution during progression, albeit in a different manner, which offers insight into varying methods of tissue penetration and collagen manipulation between the carcinomas. This research provides insights into trends of stromal reorganization throughout breast tumor development.

  5. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    Science.gov (United States)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  6. Structured decomposition design of partial Mueller matrix polarimeters.

    Science.gov (United States)

    Alenin, Andrey S; Scott Tyo, J

    2015-07-01

    Partial Mueller matrix polarimeters (pMMPs) are active sensing instruments that probe a scattering process with a set of polarization states and analyze the scattered light with a second set of polarization states. Unlike conventional Mueller matrix polarimeters, pMMPs do not attempt to reconstruct the entire Mueller matrix. With proper choice of generator and analyzer states, a subset of the Mueller matrix space can be reconstructed with fewer measurements than that of the full Mueller matrix polarimeter. In this paper we consider the structure of the Mueller matrix and our ability to probe it using a reduced number of measurements. We develop analysis tools that allow us to relate the particular choice of generator and analyzer polarization states to the portion of Mueller matrix space that the instrument measures, as well as develop an optimization method that is based on balancing the signal-to-noise ratio of the resulting instrument with the ability of that instrument to accurately measure a particular set of desired polarization components with as few measurements as possible. In the process, we identify 10 classes of pMMP systems, for which the space coverage is immediately known. We demonstrate the theory with a numerical example that designs partial polarimeters for the task of monitoring the damage state of a material as presented earlier by Hoover and Tyo [Appl. Opt.46, 8364 (2007)10.1364/AO.46.008364APOPAI1559-128X]. We show that we can reduce the polarimeter to making eight measurements while still covering the Mueller matrix subspace spanned by the objects.

  7. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    Science.gov (United States)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  8. Unusual patch-matrix organization in the retrosplenial cortex of the reeler mouse and Shaking rat Kawasaki.

    Science.gov (United States)

    Ichinohe, Noritaka; Knight, Adrian; Ogawa, Masaharu; Ohshima, Toshio; Mikoshiba, Katsuhiko; Yoshihara, Yoshihiro; Terashima, Toshio; Rockland, Kathleen S

    2008-05-01

    The rat granular retrosplenial cortex (GRS) is a simplified cortex, with distinct stratification and, in the uppermost layers, distinct modularity. Thalamic and cortical inputs are segregated by layers and in layer 1 colocalize, respectively, with apical dendritic bundles originating from neurons in layers 2 or 5. To further investigate this organization, we turned to reelin-deficient reeler mouse and Shaking rat Kawasaki. We found that the disrupted lamination, evident in Nissl stains in these rodents, is in fact a patch-matrix mosaic of segregated afferents and dendrites. Patches consist of thalamocortical connections, visualized by vesicular glutamate transporter 2 (VGluT2) or AChE. The surrounding matrix consists of corticocortical terminations, visualized by VGluT1 or zinc. Dendrites concentrate in the matrix or patches, depending on whether they are OCAM positive (matrix) or negative (patches). In wild-type rodents and, presumably, mutants, OCAM(+) structures originate from layer 5 neurons. By double labeling for dendrites (filled by Lucifer yellow in fixed slice) and OCAM immunofluorescence, we ascertained 2 populations in reeler: dendritic branches either preferred (putative layer 5 neurons) or avoided (putative supragranular neurons) the OCAM(+) matrix. We conclude that input-target relationships are largely preserved in the mutant GRS and that dendrite-dendrite interactions involving OCAM influence the formation of the mosaic configuration.

  9. Cholinergic enhancement reduces orientation-specific surround suppression but not visual crowding

    Directory of Open Access Journals (Sweden)

    Anna A. Kosovicheva

    2012-09-01

    Full Text Available Acetylcholine (ACh reduces the spatial spread of excitatory fMRI responses in early visual cortex and the receptive field sizes of V1 neurons. We investigated the perceptual consequences of these physiological effects of ACh with surround suppression and crowding, two tasks that involve spatial interactions between visual field locations. Surround suppression refers to the reduction in perceived stimulus contrast by a high-contrast surround stimulus. For grating stimuli, surround suppression is selective for the relative orientations of the center and surround, suggesting that it results from inhibitory interactions in early visual cortex. Crowding refers to impaired identification of a peripheral stimulus in the presence of flankers and is thought to result from excessive integration of visual features. We increased synaptic ACh levels by administering the cholinesterase inhibitor donepezil to healthy human subjects in a placebo-controlled, double-blind design. In Exp. 1, we measured surround suppression of a central grating using a contrast discrimination task with three conditions: 1 surround grating with the same orientation as the center (parallel, 2 surround orthogonal to the center, or 3 no surround. Contrast discrimination thresholds were higher in the parallel than in the orthogonal condition, demonstrating orientation-specific surround suppression (OSSS. Cholinergic enhancement reduced thresholds only in the parallel condition, thereby reducing OSSS. In Exp. 2, subjects performed a crowding task in which they reported the identity of a peripheral letter flanked by letters on either side. We measured the critical spacing between the target and flanking letters that allowed reliable identification. Cholinergic enhancement had no effect on critical spacing. Our findings suggest that ACh reduces spatial interactions in tasks involving segmentation of visual field locations but that these effects may be limited to early visual cortical

  10. Design Studies for a Multiple Application Thermal Reactor for Irradiation Experiments (MATRIX)

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Michael A.; Gougar, Hans D.; Ryskamp, J. M.

    2015-03-01

    The Advanced Test Reactor (ATR) is a high power density test reactor specializing in fuel and materials irradiation. For more than 45 years, the ATR has provided irradiations of materials and fuels testing along with radioisotope production. Should unforeseen circumstances lead to the decommissioning of ATR, the U.S. Government would be left without a large-scale materials irradiation capability to meet the needs of its nuclear energy and naval reactor missions. In anticipation of this possibility, work was performed under the Laboratory Directed Research and Development (LDRD) program to investigate test reactor concepts that could satisfy the current missions of the ATR along with an expanded set of secondary missions. A survey was conducted in order to catalogue the anticipated needs of potential customers. Then, concepts were evaluated to fill the role for this reactor, dubbed the Multi-Application Thermal Reactor Irradiation eXperiments (MATRIX). The baseline MATRIX design is expected to be capable of longer cycle lengths than ATR given a particular batch scheme. The volume of test space in In-Pile-Tubes (IPTs) is larger in MATRIX than in ATR with comparable magnitude of neutron flux. Furthermore, MATRIX has more locations of greater volume having high fast neutron flux than ATR. From the analyses performed in this work, it appears that the lead MATRIX design can be designed to meet the anticipated needs of the ATR replacement reactor. However, this design is quite immature, and therefore any requirements currently met must be re-evaluated as the design is developed further.

  11. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2014-10-01

    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly degreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  12. Stochastic analysis of uncertain thermal characteristic of foundation soils surrounding the crude oil pipeline in permafrost regions

    International Nuclear Information System (INIS)

    Wang, Tao; Zhou, Guoqing; Wang, Jianzhou; Zhao, Xiaodong

    2016-01-01

    Highlights: • The influence of stochastic properties and conditions on permafrost foundation was investigated. • A stochastic analysis for the uncertain thermal characteristic of crude oil pipe is presented. • The mean temperature and standard deviation of foundation soils are obtained and analyzed. • Average standard deviation and maximum standard deviation of foundation soils increase with time. - Abstract: For foundation soils surrounding the crude oil pipeline in permafrost regions, the soil properties and the upper boundary conditions are stochastic because of complex geological processes and changeable atmospheric environment. The conventional finite element analysis of thermal characteristics for crude oil pipeline is always deterministic, rather than taking stochastic parameters and conditions into account. This study investigated the stochastic influence of an underground crude oil pipeline on the thermal stability of the permafrost foundation on the basis of a stochastic analysis model and the stochastic finite element method. A stochastic finite element program is compiled by Matrix Laboratory (MATLAB) software, and the random temperature fields of foundation soils surrounding a crude oil pipeline in a permafrost region are obtained and analyzed by Neumann stochastic finite element method (NSFEM). The results provide a new way to predict the thermal effects of the crude oil pipeline in permafrost regions, and it shows that the standard deviations in temperature increase with time when considering the stochastic effect of soil properties and boundary conditions, which imply that the results of conventional deterministic analysis may be far from the true value, even if in different seasons. It can improve our understanding of the random temperature field of foundation soils surrounding the crude oil pipeline and provide a theoretical basis for actual engineering design in permafrost regions.

  13. Effects of Control Mode and R-Ratio on the Fatigue Behavior of a Metal Matrix Composite

    Science.gov (United States)

    2005-01-01

    Composite Because of their high specific stiffness and strength at elevated temperatures, continuously reinforced metal matrix composites (MMC's) are under consideration for a future generation of aeropropulsion systems. Since components in aeropropulsion systems experience substantial cyclic thermal and mechanical loads, the fatigue behavior of MMC's is of great interest. Almost without exception, previous investigations of the fatigue behavior of MMC's have been conducted in a tension-tension, load-controlled mode. This has been due to the fact that available material is typically less than 2.5-mm thick and, therefore, unable to withstand high compressive loads without buckling. Since one possible use of MMC's is in aircraft skins, this type of testing mode may be appropriate. However, unlike aircraft skins, most engine components are thick. In addition, the transient thermal gradients experienced in an aircraft engine will impose tension-compression loading on engine components, requiring designers to understand how the MMC will behave under fully reversed loading conditions. The increased thickness of the MMC may also affect the fatigue life. Traditionally, low-cycle fatigue (LCF) tests on MMC's have been performed in load control. For monolithic alloys, low-cycle fatigue tests are more typically performed in strain control. Two reasons justify this choice: (1) the critical volume from which cracks initiate and grow is generally small and elastically constrained by the larger surrounding volume of material, and (2) load-controlled, low-cycle fatigue tests of monolithics invariably lead to unconstrained ratcheting and localized necking--an undesired material response because the failure mechanism is far more severe than, and unrelated to, the fatigue mechanism being studied. It is unknown if this is the proper approach to composite testing. However, there is a lack of strain-controlled data on which to base any decisions. Consequently, this study addresses the

  14. Ceramic/metal and A15/metal superconducting composite materials exploiting the superconducting proximity effect and method of making the same

    International Nuclear Information System (INIS)

    Holcomb, M.J.

    1999-01-01

    A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material is disclosed. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy

  15. Ceramic/metal and A15/metal superconducting composite materials exploiting the superconducting proximity effect and method of making the same

    Science.gov (United States)

    Holcomb, Matthew J.

    1999-01-01

    A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.

  16. METAL MATRIX COMPOSITE BRAKE ROTORS: HISTORICAL DEVELOPMENT AND PRODUCT LIFE CYCLE ANALYSIS

    Directory of Open Access Journals (Sweden)

    M.M. Rahman

    2011-12-01

    Full Text Available Metal matrix composites (MMCs have become attractive for engineering structural applications due to their excellent specific strength and are increasingly seen as an alternative to conventional materials, particularly in the automotive industry. In this study, a historical background on the development and application of metal matrix composites for automotive brake rotors is presented. The discussion also includes an analysis of the product life cycle with stir casting as a case study. The historical review analysis revealed that gradual development of material and processing techniques have led to lighter weight, lower cost and higher performance brake rotors as a result of a better understanding of the mechanics of metal matrix composites. It emerged from the study that the stir casting technique provides ease of operation, sustainability and, most significantly, very competitive costs without sacrificing quality relative to other techniques; as such, it is the most attractive manufacturing process in the industry. These findings can be used for future design and manufacture of an efficient and effective aluminium matrix composite brake rotor for automotive and other applications.

  17. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion

    OpenAIRE

    Yan, Jing; Nadell, Carey D.; Stone, Howard A.; Wingreen, Ned S.; Bassler, Bonnie L.

    2017-01-01

    Biofilms, surface-attached communities of bacteria encased in an extracellular matrix, are a major mode of bacterial life. How the material properties of the matrix contribute to biofilm growth and robustness is largely unexplored, in particular in response to environmental perturbations such as changes in osmotic pressure. Here, using Vibrio cholerae as our model organism, we show that during active cell growth, matrix production enables biofilm-dwelling bacterial cells to establish an osmot...

  18. D2O clusters isolated in rare-gas solids: Dependence of infrared spectrum on concentration, deposition rate, heating temperature, and matrix material

    Science.gov (United States)

    Shimazaki, Yoichi; Arakawa, Ichiro; Yamakawa, Koichiro

    2018-04-01

    The infrared absorption spectra of D2O monomers and clusters isolated in rare-gas matrices were systematically reinvestigated under the control of the following factors: the D2O concentration, deposition rate, heating temperature, and rare-gas species. We clearly show that the cluster-size distribution is dependent on not only the D2O concentration but also the deposition rate of a sample; as the rate got higher, smaller clusters were preferentially formed. Under the heating procedures at different temperatures, the cluster-size growth was successfully observed. Since the monomer diffusion was not enough to balance the changes in the column densities of the clusters, the dimer diffusion was likely to contribute the cluster growth. The frequencies of the bonded-OD stretches of (D2O)k with k = 2-6 were almost linearly correlated with the square root of the critical temperature of the matrix material. Additional absorption peaks of (D2O)2 and (D2O)3 in a Xe matrix were assigned to the species trapped in tight accommodation sites.

  19. Modelling prospects for in situ matrix diffusion at Palmottu natural analogue site, SW Finland

    International Nuclear Information System (INIS)

    Rasilainen, K.; Suksi, J.

    1994-01-01

    Concentration distributions of natural decay chains 4n+2 and 4n+3 in crystalline rock intersected by a natural fracture were measured. Calcite coating on the same fracture surface was dated. Material properties of the rock matrix, and nuclide concentrations in groundwater were measured. The interpretation of the concentration distributions is based on the classical matrix diffusion concept. Although support was obtained, this calibration exercise does not yet validate the model. Besides initial and boundary conditions, matrix properties are uncertain due to the small amount of rock material. Experimental sorption data was not available, but its importance and the need for systematic studies was demonstrated. (orig.) (10 refs., 5 figs., 5 tabs.)

  20. The regulations concerning refining business of nuclear source material and nuclear fuel materials

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions concerning refining business in the law concerning the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors and the ordinance for the execution of this law, and to enforce them. Basic terms are defined, such as: exposure radiation dose, cumulative dose, control area, surrounding monitoring area and worker. The application for the designation for refining business under the law shall be classified into the facilities for crushing and leaching-filtration, thikening, and refining, the storage facilities for nuclear raw materials and nuclear fuel materials, and the disposal facilities for radioactive wastes, etc. To the application, shall be attached business plans, the explanations concerning the technical abilities of applicants and the prevention of hazards by nuclear raw materials and nuclear fuel materials regarding refining facilities, etc. Records shall be made on the accept, delivery and stock of each kind of nuclear raw materials and nuclear fuel materials, radiation control, the maintenance of and accidents in refining facilities, and kept for specified periods, respectively. Security regulations shall be enacted for each works or enterprise on the functions and organizations of persons engaged in the control of refining facilities, the operation of the apparatuses which must be controlled for the prevention of accidents, and the establishment of control area and surrounding monitoring area, etc. The report on the usage of internationally regulated goods and the measures taken at the time of danger are defined particularly. (Okada, K.)

  1. Characteristics of hot-pressed fiber-reinforced ceramics with SiC matrix

    Science.gov (United States)

    Miyoshi, Tadahiko; Kodama, Hironori; Sakamoto, Hiroshi; Goto, Akihiro; Iijima, Shiroo

    1989-11-01

    Silicon carbide ceramics’ matrix composites with SiC or C filaments were fabricated through hot pressing, and the effects of the filament pullout on their fracture toughness were experimentally investigated. The C-rich coating layers on the SiC filaments were found to have a significant effect on the frictional stress at the filament/matrix interfaces, through assising the filamet pullout from the matrix. Although the coating layers were apt to burn out in the sintering process of SiC matrix compposites, a small addition of carbon to the raw materials was found to be effective for the retention of the layers on the fibers, thus increasing the fracture toughness of the composites. The fracture toughness of the C filament/SiC matrix composite increased with temperature due to the larger interfacial frictional stress at higher temperatures, because of the higher thermal expansion of the filament in the radial direction than that of the matrix.

  2. Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp)

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Merino, S.; Viejo, F.; Carboneras, M.; Arrabal, R.

    2005-01-01

    The influence of silicon carbide (SiCp) proportion and matrix composition on four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) immersed in 1-3.5 wt% NaCl at 22 deg C was investigated by potentiodynamic polarization. The kinetics of the corrosion process was studied on the basis of gravimetric measurements. The nature of corrosion products was analysed by scanning electron microscopy (SEM) and low angle X-ray diffraction (XRD). The corrosion damage in Al/SiCp composites was caused by pitting attack and by nucleation and growth of Al 2 O 3 . 3H 2 O on the material surface. The main attack nucleation sites were the interface region between the matrix and the reinforcement particles. The corrosion process was influenced more by the concentration of alloy elements in the matrix than by the proportion of SiCp reinforcement and saline concentration

  3. Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp)

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain)]. E-mail: anpardo@quim.ucm.es; Merino, M.C. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, 28691, Villanueva de la Canada, Madrid (Spain); Viejo, F. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Carboneras, M. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Arrabal, R. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain)

    2005-07-01

    The influence of silicon carbide (SiCp) proportion and matrix composition on four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) immersed in 1-3.5 wt% NaCl at 22 deg C was investigated by potentiodynamic polarization. The kinetics of the corrosion process was studied on the basis of gravimetric measurements. The nature of corrosion products was analysed by scanning electron microscopy (SEM) and low angle X-ray diffraction (XRD). The corrosion damage in Al/SiCp composites was caused by pitting attack and by nucleation and growth of Al{sub 2}O{sub 3} . 3H{sub 2}O on the material surface. The main attack nucleation sites were the interface region between the matrix and the reinforcement particles. The corrosion process was influenced more by the concentration of alloy elements in the matrix than by the proportion of SiCp reinforcement and saline concentration.

  4. Debonding analyses in anisotropic materials with strain- gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2012-01-01

    A unit cell approach is adopted to numerically analyze the effect of plastic anisotropy on damage evolution in a micro-reinforced composite. The matrix material exhibit size effects and a visco-plastic anisotropic strain gradient plasticity model accounting for such size effects is adopted....... A conventional cohesive law is extended such that both the average as well as the jump in plastic strain across the fiber-matrix interface are accounted for. Results are shown for both conventional isotropic and anisotropic materials as well as for higher order isotropic and anisotropic materials...... with and without debonding. Generally, the strain gradient enhanced material exhibits higher load carry capacity compared to the corresponding conventional material. A sudden stress drop occurs in the macroscopic stress-strain response curve due to fiber-matrix debonding and the results show that a change in yield...

  5. Nano-fillers to tune Young’s modulus of silicone matrix

    International Nuclear Information System (INIS)

    Xia Lijin; Xu Zhonghua; Sun Leming; Caveney, Patrick M.; Zhang Mingjun

    2013-01-01

    In this study, we investigated nanoparticles, nanofibers, and nanoclays for their filler effects on tuning the Young’s modulus of silicone matrix, a material with broad in vivo applications. Nano-fillers with different shapes, sizes, and surface properties were added into silicone matrix, and then their filler effects were evaluated through experimental studies. It was found that spherical nanoparticles could clearly improve Young’s modulus of the silicone matrix, while nanoclays and carbon nanofibers had limited effects. Smaller spherical nanoparticles were better in performance compared to larger nanoparticles. In addition, enhanced distribution of the nanoparticles in the matrix has been observed to improve the filler effect. In order to minimize toxicity of the nanoparticles for in vivo applications, spherical nanoparticles coated with amine, acid, or hydroxide groups were also investigated, but they were found only to diminish the filler effect of nanoparticles. This study demonstrated that spherical nanoparticles could serve as fillers to tune Young’s modulus of silicone matrix for potential applications in medicine.

  6. Exactly solvable models of material breakdown

    International Nuclear Information System (INIS)

    Duxbury, P.M.; Leath, P.L.

    1994-01-01

    We present the solutions to two simple models for the brittle failure of materials containing random flaws. These solutions provide support for simple scaling theories we had previously developed for more complex models, and refute recent claims that models with random dilution scale in a manner similar to a disorderless material. In particular, we find that for these models, the asymptotic size effect in the average strength is logarithmic, and the failure distribution is of an exponential of an exponential form (often with an algebraic prefactor). The method of solution is also interesting. The failure probability of the quasi-one-dimensional models we solve can be written in terms of a transition matrix introduced by Harlow. For large sample sizes, the largest eigenvalue of this transition matrix approaches one, and our solution rests on a perturbative expansion of the largest eigenvalue about one. The small and intermediate lattice behavior of the model is analyzed by using sparse matrix methods to find the largest eigenvalue of the transition matrix, and the trace of powers of the transition matrix

  7. Effect of composition on thermal conductivity of MgO–Nd2Zr2O7 composites for inert matrix materials

    International Nuclear Information System (INIS)

    Nelson, A.T.; Giachino, M.M.; Nino, J.C.; McClellan, K.J.

    2014-01-01

    Inert matrix fuels based on magnesium oxide (MgO) as the inert phase have been of historic interest due to its high thermal conductivity. Minor actinide-bearing phases possessing an A 2 B 2 O 7 pyrochlore structure are also believed to contain a range of favorable attributes, suggesting a possible pairing with MgO to yield a high performance inert matrix fuel. The thermal diffusivity, heat capacity, and thermal expansion of MgO–Nd 2 Zr 2 O 7 composites were measured from room temperature to 1273 K, where the MgO phase content was varied from 40 to 70 volume percent. The thermal conductivity of each composition was calculated using these results and then compared to widely employed methods to approximate the thermal conductivity of composite materials based upon the properties of the constituent phases. Results suggest that use of either a rule of mixtures or geometric mean approximation for the thermal conductivity of composite systems such as this one would be subject to significant uncertainties when the constituent properties widely differ. A sigmoidal average of the upper and lower Hashin–Shtrikman bounds was found to be in good agreement with the thermal conductivity of the composites as determined experimentally

  8. Desarrollo de un material compuesto de fibras de henequén utilizando una matriz termofija//Development of Composite with Henequen´s fibres and termofix matrix

    Directory of Open Access Journals (Sweden)

    Angel‐A. Rodríguez‐Soto

    2014-08-01

    Full Text Available En este trabajo fue obtenida la influencia de la proporción másica de las fibras de henequén como refuerzo sobre las propiedades mecánicas de resistencia a la tracción y al impacto de un material compuesto de matriz polimérica termoestable. Fueron encontradas muy semejantes, física y químicamente las fibras de dos regiones. Se analizaron las probetas mediante interferometría digitalpara detectar la presencia de defectos y se observaron las zonas de ruptura mediante microscopía electrónica de barrido. Fue determinado que el aumento de la inclusión de las fibras como refuerzoen el material aumenta las propiedades estudiadas llegando a su máximo en un 20 % de relación másica fibra-matriz. Se observó un aumento máximo del 53 % en la resistencia a la tracción y un aumento máximo del 88 % en el impacto respecto a la matriz pura.Palabras claves: PRF: plásticos reforzados con fibras, fibras naturales, interferometría digital.______________________________________________________________________________AbstractIn this work was obtained the influence of the mass ratio of the henequen’s fibers as reinforcing over the mechanical properties in traction an impact resistance of the composite with polymeric thermosetting matrix. Was found very similar physics and chemically, fibers from two regions of the country. Was analyzed the samples using digital interferometry searching for defects and was observed the region of rupture using electronic microscopy of sweeping. Was determined that theincrease of the inclusion of the fiber as reinforcement in this material cause the increase of the study properties, raising a maximum over the 20 % of the mass ratio in the relation fiber-matrix. Was observed an increasing over the 53 % in the resistance to traction and over 88 % in the impact resistance compare to the matrix alone.Key words: FRP: fiber reinforced plastics,natural fibers, digital interferometry.

  9. Bulk metallic glass matrix composite for good biocompatibility

    International Nuclear Information System (INIS)

    Hadjoub, F; Metiri, W; Doghmane, A; Hadjoub, Z

    2012-01-01

    Reinforcement volume fraction effects on acoustical parameters of Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 matrix composites reinforced by Mg, Ag and Cd metals have been studied via a simulation program based on acoustic microscopy technique. Moreover, acoustical parameters of human bone were compared to those of BMGs in both monolithic and reinforced case. It was found that elastic behavior of BMGs matrix composites in high reinforcement volume fraction is similar of that of human bone. This behavior leads to high biocompatibility and good transfer of stress between composite material and human system.

  10. Placental vascular responses are dependent on surrounding tissue

    DEFF Research Database (Denmark)

    Brøgger, Torbjørn Halle

    -depth understanding of the mechanism regulating blood flow and perfusion is necessary if we are to come up with new ideas for intervention and treatment. Method: From fresh born placentas stem villi arteries were carefully dissected. The artery branches were divided. The surrounding tissue was removed from one end...... and was left untouched in the other end. Then using wire myography they were investigated in terms of contractility and sensitivity to physiological relevant human-like agonists. Results: Sensitivity to PGF2α, Tx-analog, 5-HT and endothelin-1 was significantly lower in arteries with intact surrounding tissue...... compared to arteries stripped of the tissue. The maximal force development was also significantly lower in arteries with surrounding tissue, when they were depolarized high extracellular [K+] or stimulated with PGF2α or endotheline-1. Conclusion: The perivascular tissue significantly alters stem villi...

  11. The Complex Interaction of Matrix Metalloproteinases in the Migration of Cancer Cells through Breast Tissue Stroma

    Directory of Open Access Journals (Sweden)

    Kerry J. Davies

    2014-01-01

    Full Text Available Breast cancer mortality is directly linked to metastatic spread. The metastatic cell must exhibit a complex phenotype that includes the capacity to escape from the primary tumour mass, invade the surrounding normal tissue, and penetrate into the circulation before proliferating in the parenchyma of distant organs to produce a metastasis. In the normal breast, cellular structures change cyclically in response to ovarian hormones leading to regulated cell proliferation and apoptosis. Matrix metalloproteinases (MMPs are a family of zinc dependent endopeptidases. Their primary function is degradation of proteins in the extracellular matrix to allow ductal progression through the basement membrane. A complex balance between matrix metalloproteinases and their inhibitors regulate these changes. These proteinases interact with cytokines, growth factors, and tumour necrosis factors to stimulate branching morphologies in normal breast tissues. In breast cancer this process is disrupted facilitating tumour progression and metastasis and inhibiting apoptosis increasing the life of the metastatic cells. This paper highlights the role of matrix metalloproteinases in cell progression through the breast stroma and reviews the complex relationships between the different proteinases and their inhibitors in relation to breast cancer cells as they metastasise.

  12. Micromechanics of the Interface in Fibre-Reinforced Cement Materials

    DEFF Research Database (Denmark)

    Stang, Henrik; Shah, S.P.

    1996-01-01

    In fibre reinforced brittle matrix composites the mechanicalbehaviour of the interface between the fibres and the matrix has avery significant influence on the overall mechanical behaviour ofthe composite material. Since brittle matrix composites are designed primarilywith the aim of improving th...

  13. A synchronous surround increases the motion strength gain of motion.

    Science.gov (United States)

    Linares, Daniel; Nishida, Shin'ya

    2013-11-12

    Coherent motion detection is greatly enhanced by the synchronous presentation of a static surround (Linares, Motoyoshi, & Nishida, 2012). To further understand this contextual enhancement, here we measured the sensitivity to discriminate motion strength for several pedestal strengths with and without a surround. We found that the surround improved discrimination of low and medium motion strengths, but did not improve or even impaired discrimination of high motion strengths. We used motion strength discriminability to estimate the perceptual response function assuming additive noise and found that the surround increased the motion strength gain, rather than the response gain. Given that eye and body movements continuously introduce transients in the retinal image, it is possible that this strength gain occurs in natural vision.

  14. The importance of reference materials in doping-control analysis.

    Science.gov (United States)

    Mackay, Lindsey G; Kazlauskas, Rymantas

    2011-08-01

    Currently a large range of pure substance reference materials are available for calibration of doping-control methods. These materials enable traceability to the International System of Units (SI) for the results generated by World Anti-Doping Agency (WADA)-accredited laboratories. Only a small number of prohibited substances have threshold limits for which quantification is highly important. For these analytes only the highest quality reference materials that are available should be used. Many prohibited substances have no threshold limits and reference materials provide essential identity confirmation. For these reference materials the correct identity is critical and the methods used to assess identity in these cases should be critically evaluated. There is still a lack of certified matrix reference materials to support many aspects of doping analysis. However, in key areas a range of urine matrix materials have been produced for substances with threshold limits, for example 19-norandrosterone and testosterone/epitestosterone (T/E) ratio. These matrix-certified reference materials (CRMs) are an excellent independent means of checking method recovery and bias and will typically be used in method validation and then regularly as quality-control checks. They can be particularly important in the analysis of samples close to threshold limits, in which measurement accuracy becomes critical. Some reference materials for isotope ratio mass spectrometry (IRMS) analysis are available and a matrix material certified for steroid delta values is currently under production. In other new areas, for example the Athlete Biological Passport, peptide hormone testing, designer steroids, and gene doping, reference material needs still need to be thoroughly assessed and prioritised.

  15. Steel-SiC Metal Matrix Composite Development. Final report

    International Nuclear Information System (INIS)

    Smith, Don D.

    2005-01-01

    One of the key materials challenges for Generation IV reactor technology is to improve the strength and resistance to corrosion and radiation damage in the metal cladding of the fuel pins during high-temperature operation. Various candidate Gen IV designs call for increasing core temperature to improve efficiency and facilitate hydrogen production, operation with molten lead moderator to use fast neutrons. Fuel pin lifetime against swelling and fracture is a significant limit in both respects. The goal of this project is to develop a method for fabricating SiC-reinforced high-strength steel. We are developing a metal-matrix composite (MMC) in which SiC fibers are be embedded within a metal matrix of steel, with adequate interfacial bonding to deliver the full benefit of the tensile strength of the SiC fibers in the composite. In the context of the mission of the SBIR program, this Phase I grant has been successful. The development of a means to attain interfacial bonding between metal and ceramic has been a pacing challenge in materials science and technology for a century. It entails matching or grading of thermal expansion across the interface and attaining a graded chemical composition so that impurities do not concentrate at the boundary to create a slip layer. To date these challenges have been solved in only a modest number of pairings of compatible materials, e.g. Kovar and glass, titanium and ceramic, and aluminum and ceramic. The latter two cases have given rise to the only presently available MMC materials, developed for aerospace applications. Those materials have been possible because the matrix metal is highly reactive at elevated temperature so that graded composition and intimate bonding happens naturally at the fiber-matrix interface. For metals that are not highly reactive at processing temperature, however, successful bonding is much more difficult. Recent success has been made with copper MMCs for cooling channels in first-wall designs for fusion

  16. The Visual Matrix Method: Imagery and Affect in a Group-Based Research Setting

    Directory of Open Access Journals (Sweden)

    Lynn Froggett

    2015-07-01

    Full Text Available The visual matrix is a method for researching shared experience, stimulated by sensory material relevant to a research question. It is led by imagery, visualization and affect, which in the matrix take precedence over discourse. The method enables the symbolization of imaginative and emotional material, which might not otherwise be articulated and allows "unthought" dimensions of experience to emerge into consciousness in a participatory setting. We describe the process of the matrix with reference to the study "Public Art and Civic Engagement" (FROGGETT, MANLEY, ROY, PRIOR & DOHERTY, 2014 in which it was developed and tested. Subsequently, examples of its use in other contexts are provided. Both the matrix and post-matrix discussions are described, as is the interpretive process that follows. Theoretical sources are highlighted: its origins in social dreaming; the atemporal, associative nature of the thinking during and after the matrix which we describe through the Deleuzian idea of the rhizome; and the hermeneutic analysis which draws from object relations theory and the Lorenzerian tradition of scenic understanding. The matrix has been conceptualized as a "scenic rhizome" to account for its distinctive quality and hybrid origins in research practice. The scenic rhizome operates as a "third" between participants and the "objects" of contemplation. We suggest that some of the drawbacks of other group-based methods are avoided in the visual matrix—namely the tendency for inter-personal dynamics to dominate the event. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs150369

  17. Matrix Sampling of Items in Large-Scale Assessments

    Directory of Open Access Journals (Sweden)

    Ruth A. Childs

    2003-07-01

    Full Text Available Matrix sampling of items -' that is, division of a set of items into different versions of a test form..-' is used by several large-scale testing programs. Like other test designs, matrixed designs have..both advantages and disadvantages. For example, testing time per student is less than if each..student received all the items, but the comparability of student scores may decrease. Also,..curriculum coverage is maintained, but reporting of scores becomes more complex. In this paper,..matrixed designs are compared with more traditional designs in nine categories of costs:..development costs, materials costs, administration costs, educational costs, scoring costs,..reliability costs, comparability costs, validity costs, and reporting costs. In choosing among test..designs, a testing program should examine the costs in light of its mandate(s, the content of the..tests, and the financial resources available, among other considerations.

  18. Solidification of TRU wastes in a ceramic matrix

    International Nuclear Information System (INIS)

    Loida, A.; Schubert, G.

    1991-01-01

    Aluminumsilicate based ceramic materials have been evaluated as an alternative waste form for the incorporation of TRU wastes. These waste forms are free of water and - cannot generate hydrogen radiolyticly, - they show good compatibility between the compounds of the waste and the matrix, - they are resistent against aqueous solutions, heat and radiation. R and D-work has been performed to demonstrate the suitability of this waste form for the immobilization of TRU-wastes. Four kinds of original TRU-waste streams and a mixture of all of them have been immobilized by ceramization, using glove box and remote operation technique as well. Clay minerals, (kaolinite, bentonite) and reactive corundum were selected as ceramic raw materials (KAB 78) in an appropriate ratio yielding 78 wt% Al 2 O 3 and 22 wt%SiO 2 . The main process steps are (i) pretreatment of the liquid waste (concentration, denitration, neutralization, solid- liquid separation), (ii) mixing with ceramic raw materials and forming, (iii) heat treatment with T max. of 1300 0 C for 15 minutes. The waste load of the ceramic matrix has been increased gradually from 20 to 50, in some cases to 60 wt.%

  19. Influence of polymer matrix and adsorption onto silica materials on the migration of alpha-tocopherol into 95% ethanol from active packaging.

    Science.gov (United States)

    Heirlings, L; Siró, I; Devlieghere, F; Van Bavel, E; Cool, P; De Meulenaer, B; Vansant, E F; Debevere, J

    2004-11-01

    In this study, the effect of polymer materials with different polarity, namely low density polyethylene (LDPE) and ethylene vinyl acetate (EVA), on the migration behaviour of alpha-tocopherol from active packaging was investigated. The antioxidant was also adsorbed onto silica materials, namely SBA-15 (Santa Barbara-15) and Syloblock, in order to protect the antioxidant during extrusion and to ensure a controlled and sufficient release during the shelf-life of the food product. Migration experiments were performed at 7.0 +/- 0.5 degrees C and 95% ethanol was used as fatty food simulant. All films contained a high concentration of alpha-tocopherol, approximately 2000 mg kg(-1), to obtain an active packaging. Polymer matrix had a small influence on the migration profile. The migration of 80% of total migrated amount of antioxidant was retarded for 2.4 days by using LDPE instead of EVA. When alpha-tocopherol was adsorbed onto both silica materials, the migration of 80% of total migrated amount of antioxidant was retarded for 3.4 days in comparison to pure alpha-tocopherol. No difference was seen between the migration profiles of alpha-tocopherol adsorbed onto both silica materials. In the case of pure alpha-tocopherol, 82% of the initial amount of alpha-tocopherol in the film migrated into the food simulant at a rather fast migration rate. In the case of adsorption on silica materials, a total migration was observed. These antioxidative films can have positive food applications.

  20. Fracture toughness and fatigue crack propagation in cast irons with spheroidal vanadium carbides dispersed within martensitic matrix microstructure

    International Nuclear Information System (INIS)

    Uematsu, Y.; Tokaji, K.; Horie, T.; Nishigaki, K.

    2007-01-01

    Fracture toughness and fatigue crack propagation (FCP) have been studied using compact tension (CT) specimens of as-cast and subzero-treated materials in a cast iron with spheroidal vanadium carbides (VCs) dispersed in the martensitic matrix microstructure. X-ray diffraction (XRD) analysis revealed that retained austenite was transformed to martensite by subzero treatment. Vickers hardness was increased from 738 for the as-cast material to 782 for the subzero-treated material, which could be attributed to retained austenite to martensite transformation. The subzero-treated material exhibited lower fracture toughness than the as-cast material because soft and ductile retained austenite which possesses high fracture toughness was transformed to martensite in the subzero-treated material. Intrinsic FCP resistance after taking account of crack closure was decreased by the subzero treatment, which was attributed to the predominant crack propagation through the interface between VCs and the matrix and the straight crack path in the matrix microstructure

  1. Overall mechanical properties of fiber-reinforced metal matrix composites for fusion applications

    International Nuclear Information System (INIS)

    You, J.H.; Bolt, H.

    2002-01-01

    The high-temperature strength and creep properties are among the crucial criteria for the structural materials of plasma facing components (PFC) of fusion reactors, as they will be subjected to severe thermal stresses. The fiber-reinforced metal matrix composites are a potential heat sink material for the PFC application, since the combination of different material properties can lead to versatile performances. In this article, the overall mechanical properties of two model composites based on theoretical predictions are presented. The matrix materials considered were a precipitation hardened CuCrZr alloy and reduced activation martensitic steel 'Eurofer'. Continuous SiC fibers were used for the reinforcement. The results demonstrate that yield stress, ultimate tensile strength, work hardening rate and creep resistance could be extensively improved by the fiber reinforcement up to fiber content of 40 vol.%. The influence of the residual stresses on the plastic behavior of the composites is also discussed

  2. Mechanical properties of aluminium matrix composites reinforced with intermetallics

    International Nuclear Information System (INIS)

    Torres, B.; Garcia-Escorial, A.; Ibanez, J.; Lieblich, M.

    2001-01-01

    In this work 2124 aluminium matrix composites reinforced with Ni 3 Al, NiAl, MoSi 2 and Cr 3 Si intermetallic powder particles have been investigated. For comparison purposes, un reinforced 2124 and reinforced with SiC have also been studied. In all cases, the same powder metallurgy route was used, i. e. the 2124 alloy was obtained by rapid solidification and the intermetallic particles by self-propagating high-temperature synthesis (SHS). The matrix and the intermetallics were mechanically blended, cold compacted and finally hot extruded. Tensile tests were carried out in T1 and T4 treatments. Results indicate that mechanical properties depend strongly on the tendency to form new phases at the matrix-intermetallic interface during processing and/or further thermal treatments. The materials which present better properties are those that present less reaction between matrix and intermetallic reinforcement, i. e. MoSi 2 and SiC reinforced composites. (Author) 9 refs

  3. Effect of precipitate-matrix interface sinks on the growth of voids in the matrix

    International Nuclear Information System (INIS)

    Brailsford, A.D.; Mansur, L.K.

    1981-01-01

    A qualitative discussion of the differing roles played by coherent and incoherent precipitates as point defect sinks is presented. Rate theory is used to obtain semiquantitative estimates of the growth of cavities in the matrix when either type of precipitate is present. Methods for deriving the sink strengths of precipitates of arbitrary shape are developed. In three materials where available microstructural information allows an analysis, precipitates are found to cause only a small relative suppression of cavity growth via the mechanisms here considered

  4. Cytoplasmic movement profiles of mouse surrounding nucleolus and not-surrounding nucleolus antral oocytes during meiotic resumption.

    Science.gov (United States)

    Bui, Thi Thu Hien; Belli, Martina; Fassina, Lorenzo; Vigone, Giulia; Merico, Valeria; Garagna, Silvia; Zuccotti, Maurizio

    2017-05-01

    Full-grown mouse antral oocytes are classified as surrounding nucleolus (SN) or not-surrounding nucleolus (NSN), depending on the respective presence or absence of a ring of Hoechst-positive chromatin surrounding the nucleolus. In culture, both types of oocytes resume meiosis and reach the metaphase II (MII) stage, but following insemination, NSN oocytes arrest at the two-cell stage whereas SN oocytes may develop to term. By coupling time-lapse bright-field microscopy with image analysis based on particle image velocimetry, we provide the first systematic measure of the changes to the cytoplasmic movement velocity (CMV) occurring during the germinal vesicle-to-MII (GV-to-MII) transition of these two types of oocytes. Compared to SN oocytes, NSN oocytes display a delayed GV-to-MII transition, which can be mostly explained by retarded germinal vesicle break down and first polar body extrusion. SN and NSN oocytes also exhibit significantly different CMV profiles at four main time-lapse intervals, although this difference was not predictive of SN or NSN oocyte origin because of the high variability in CMV. When CMV profile was analyzed through a trained artificial neural network, however, each single SN or NSN oocyte was blindly identified with a probability of 92.2% and 88.7%, respectively. Thus, the CMV profile recorded during meiotic resumption may be exploited as a cytological signature for the non-invasive assessment of the oocyte developmental potential, and could be informative for the analysis of the GV-to-MII transition of oocytes of other species. © 2017 Wiley Periodicals, Inc.

  5. Critical State of Sand Matrix Soils

    Science.gov (United States)

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803–0.998, 0.144–0.248, and 1.727–2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated. PMID:24757417

  6. High temperature resin matrix composites for aerospace structures

    Science.gov (United States)

    Davis, J. G., Jr.

    1980-01-01

    Accomplishments and the outlook for graphite-polyimide composite structures are briefly outlined. Laminates, skin-stiffened and honeycomb sandwich panels, chopped fiber moldings, and structural components were fabricated with Celion/LARC-160 and Celion/PMR-15 composite materials. Interlaminar shear and flexure strength data obtained on as-fabricated specimens and specimens that were exposed for 125 hours at 589 K indicate that epoxy sized and polyimide sized Celion graphite fibers exhibit essentially the same behavior in a PMR-15 matrix composite. Analyses and tests of graphite-polyimide compression and shear panels indicate that utilization in moderately loaded applications offers the potential for achieving a 30 to 50 percent reduction in structural mass compared to conventional aluminum panels. Data on effects of moisture, temperature, thermal cycling, and shuttle fluids on mechanical properties indicate that both LARC-160 and PMR-15 are suitable matrix materials for a graphite-polyimide aft body flap. No technical road blocks to building a graphite-polyimide composite aft body flap are identified.

  7. Using environment friendly finely divided materials in brittle matrix composites

    International Nuclear Information System (INIS)

    Rizwan, S.A.; Ahmad, H.

    2005-01-01

    Material engineers the world over are increasingly recommending the use of environment friendly efficient construction materials, which otherwise would have been classed as waste materials for improving the durability of concrete. Pakistan has been blessed by nature with huge natural resources of lime, and fly-ash is also becoming increasingly available with the induction of thermal power generation plants. To introduce the benefits of such concrete modifying materials to the engineering community in our country, an investigation has been carried out on the use of locally available powdered hydrated lime, fly-ash and their combinations in making concretes with a view to evaluate their strength, workability, durability and cost effectiveness. As such there is no documented data of local materials available on the topic in Pakistan. ACI mentions powdered hydrated lime and fly-ash as finely divided admixtures which can be used to improve concrete properties at microstructure level. It is commonly believed by the engineers that the use of such materials is especially desirable for durability purposes. Moreover, lime when added in concrete absorbs CO/sub 2/ from the environment thus making it friendly flexible material. he results of investigation are encouraging especially when the two were used in combination as some weight fraction of cement to make quality and environment friendly concrete. (author)

  8. Surrounding Moving Obstacle Detection for Autonomous Driving Using Stereo Vision

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2013-06-01

    Full Text Available Detection and tracking surrounding moving obstacles such as vehicles and pedestrians are crucial for the safety of mobile robotics and autonomous vehicles. This is especially the case in urban driving scenarios. This paper presents a novel framework for surrounding moving obstacles detection using binocular stereo vision. The contributions of our work are threefold. Firstly, a multiview feature matching scheme is presented for simultaneous stereo correspondence and motion correspondence searching. Secondly, the multiview geometry constraint derived from the relative camera positions in pairs of consecutive stereo views is exploited for surrounding moving obstacles detection. Thirdly, an adaptive particle filter is proposed for tracking of multiple moving obstacles in surrounding areas. Experimental results from real-world driving sequences demonstrate the effectiveness and robustness of the proposed framework.

  9. Hidden Identification on Parts: Magnetic Machine-Readable Matrix Symbols

    Science.gov (United States)

    Schramm, Harry F.; Jones, Clyde S.; Roxby, Donald L.; Teed, James D.; Shih, William C. L.; Fitzpatrick, Gerald L.; Knisely, Craig

    2005-01-01

    All NASA parts have identification, usually expressed in terms of part number, serial number, and the like. In most cases, this identification is permanently marked directly on the part for tracking throughout its life cycle. NASA has developed a method for reading the matrix symbol through up to 15 mils (25 m) of paint (5 or 6 layers). This method of part identification involves coating selected patches on the objects with magnetic materials in matrix symbol patterns and reading the patterns by use of magneto-optical imaging equipment.

  10. Chemically bonded ceramic matrix composites: Densification and conversion to diffusion bonding

    International Nuclear Information System (INIS)

    Johnson, B.R.; Guelguen, M.A.; Kriven, W.M.

    1995-01-01

    Chemically bonded ceramics appear to be a promising alternative route for near-net shape fabrication of multi-phase ceramic matrix composites (CMC's). The hydraulic (and refractory) properties of fine mono-calcium aluminate (CaAl 2 O 4 ) powders were used as the chemically bonding matrix phase, while calcia stabilized zirconia powders were the second phase material. Samples containing up to 70 wt% (55 vol%) zirconia have been successfully compacted and sintered. Various processing techniques were evaluated. Processing was optimized based on material properties, dilatometry and simultaneous thermal analysis (DTA/TGA). The physical characteristics of this novel CMC were characterized by hardness, density, and fracture toughness testing. Microstructures were evaluated by SEM and phase identification was verified using XRD

  11. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    International Nuclear Information System (INIS)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R.M.

    2015-01-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence

  12. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: bloisi@na.infn.it [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)

    2015-05-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  13. Stochastic-Strength-Based Damage Simulation of Ceramic Matrix Composite Laminates

    Science.gov (United States)

    Nemeth, Noel N.; Mital, Subodh K.; Murthy, Pappu L. N.; Bednarcyk, Brett A.; Pineda, Evan J.; Bhatt, Ramakrishna T.; Arnold, Steven M.

    2016-01-01

    The Finite Element Analysis-Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program was used to characterize and predict the progressive damage response of silicon-carbide-fiber-reinforced reaction-bonded silicon nitride matrix (SiC/RBSN) composite laminate tensile specimens. Studied were unidirectional laminates [0] (sub 8), [10] (sub 8), [45] (sub 8), and [90] (sub 8); cross-ply laminates [0 (sub 2) divided by 90 (sub 2),]s; angled-ply laminates [plus 45 (sub 2) divided by -45 (sub 2), ]s; doubled-edge-notched [0] (sub 8), laminates; and central-hole laminates. Results correlated well with the experimental data. This work was performed as a validation and benchmarking exercise of the FEAMAC/CARES program. FEAMAC/CARES simulates stochastic-based discrete-event progressive damage of ceramic matrix composite and polymer matrix composite material structures. It couples three software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/Life), and (3) the Abaqus finite element analysis program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating-unit-cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC, and Abaqus is used to model the overall composite structure. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events that incrementally progress until ultimate structural failure.

  14. Equilibrium stability of a cylindrical body subject to the internal structure of the material and inelastic behaviour of the completely compressed matrix

    Science.gov (United States)

    Gotsev, D. V.; Perunov, N. S.; Sviridova, E. N.

    2018-03-01

    The mathematical model describing the stress-strain state of a cylindrical body under the uniform radial compression effect is constructed. The model of the material is the porous medium model. The compressed skeleton of the porous medium possesses hardening elastic-plastic properties. Deforming of the porous medium under the specified compressive loads is divided into two stages: elastic deforming of the porous medium and further elastic-plastic deforming of the material with completely compressed matrix. The analytical relations that define the fields of stress and displacement at each stage of the deforming are obtained. The influence of the porosity and other physical, mechanical and geometric parameters of the construction on the size of the plastic zone is evaluated. The question of the ground state equilibrium instability is investigated within the framework of the three-dimensional linearized relationships of the stability theory of deformed bodies.

  15. Characterization on C/SiC Ceramic Matrix Composites with Novel Fiber Coatings

    Science.gov (United States)

    Petko, Jeanne; Kiser, J. Douglas; McCue, Terry; Verrilli, Michael

    2002-01-01

    Ceramic Matrix Composites (CMCs) are attractive candidate materials in the aerospace industry due to their high specific strength, low density and higher temperature capabilities. The National Aeronautics and Space Administration (NASA) is pursuing the use of CMC components in advanced Reusable Launch Vehicle (RLV) propulsion applications. Carbon fiber-reinforced silicon carbide (C/SiC) is the primary material of interest for a variety of RLV propulsion applications. These composites offer high- strength carbon fibers and a high modulus, oxidation-resistant matrix. For comparison, two types of carbon fibers were processed with novel types of interface coatings (multilayer and pseudoporous). For RLV propulsion applications, environmental durability will be critical. The coatings show promise of protecting the carbon fibers from the oxidizing environment. The strengths and microstructures of these composite materials are presented.

  16. Nanoscale characterization of the evolution of the twin–matrix orientation in Fe–Mn–C twinning-induced plasticity steel by means of transmission electron microscopy orientation mapping

    International Nuclear Information System (INIS)

    Albou, A.; Galceran, M.; Renard, K.; Godet, S.; Jacques, P.J.

    2013-01-01

    The evolution of the orientation relationship between mechanical twins and the surrounding matrix with the degree of plastic deformation has been characterized at the nanoscale in twinning-induced plasticity steel. The recently developed automated crystal orientation mapping in transmission electron microscopy revealed that the ideal twin relationship is retained up to large levels of strain, while large orientation gradients are built up within the matrix. This particular evolution undoubtedly plays a role in the large work hardening rate of these steels.

  17. MicroCT Bone Densitometry: Context Sensitivity, Beam Hardening Correction and the Effect of Surrounding Media

    Directory of Open Access Journals (Sweden)

    Philip L. Salmon

    2014-12-01

    Full Text Available The context-sensitivity of microCT bone densitometry due to beam hardening artefacts was assessed. Bones and teeth are scanned with varying thickness of surrounding media (water, alcohol, biological tissue and it is important to understand how this affects reconstructed attenuation (“density” of the mineralized tissue. Aluminium tubes and rods with thickness 0.127mm–5mm were scanned both in air or surrounded by up to 2cm of water. Scans were performed with different energy filters and degrees of software beam hardening correction (BHC. Also tested were the effects of signal-to-noise ratio, magnification and truncation. The thickness of an aluminium tube significantly affected its mean reconstructed attenuation. This effect of thickness could be reduced substantially by BHC for scans in air, but not for scans in water. Varying thickness of surrounding water also changed the mean attenuation of an aluminium tube. This artefact could be almost eliminated by an optimal BHC value. The “cupping” artefact of heterogeneous attenuation (elevated at outer surfaces could be corrected if aluminium was scanned in air, but in water BHC was much less effective. Scan truncation, changes to magnification and signal-to-noise ratio also caused artificial changes to measured attenuation. Measurement of bone mineral density by microCT is highly context sensitive. A surrounding layer of liquid or biological tissue reduces the ability of software BHC to remove bone density artefacts. Sample thickness, truncation, magnification and signal to noise ratio also affect reconstructed attenuation. Thus it is important for densitometry that sample and calibration phantom dimensions and mounting materials are standardised.

  18. Dynamic shear-lag model for understanding the role of matrix in energy dissipation in fiber-reinforced composites.

    Science.gov (United States)

    Liu, Junjie; Zhu, Wenqing; Yu, Zhongliang; Wei, Xiaoding

    2018-07-01

    Lightweight and high impact performance composite design is a big challenge for scientists and engineers. Inspired from well-known biological materials, e.g., the bones, spider silk, and claws of mantis shrimp, artificial composites have been synthesized for engineering applications. Presently, the design of ballistic resistant composites mainly emphasizes the utilization of light and high-strength fibers, whereas the contribution from matrix materials receives less attention. However, recent ballistic experiments on fiber-reinforced composites challenge our common sense. The use of matrix with "low-grade" properties enhances effectively the impact performance. In this study, we establish a dynamic shear-lag model to explore the energy dissipation through viscous matrix materials in fiber-reinforced composites and the associations of energy dissipation characteristics with the properties and geometries of constituents. The model suggests that an enhancement in energy dissipation before the material integrity is lost can be achieved by tuning the shear modulus and viscosity of a matrix. Furthermore, our model implies that an appropriately designed staggered microstructure, adopted by many natural composites, can repeatedly activate the energy dissipation process and thus improve dramatically the impact performance. This model demonstrates the role of matrix in energy dissipation, and stimulates new advanced material design concepts for ballistic applications. Biological composites found in nature often possess exceptional mechanical properties that man-made materials haven't be able to achieve. For example, it is predicted that a pencil thick spider silk thread can stop a flying Boeing airplane. Here, by proposing a dynamic shear-lag model, we investigate the relationships between the impact performance of a composite with the dimensions and properties of its constituents. Our analysis suggests that the impact performance of fiber-reinforced composites could improve

  19. Turbulent flow through channels in a viscously deforming matrix

    Science.gov (United States)

    Meyer, Colin; Hewitt, Ian; Neufeld, Jerome

    2017-11-01

    Channels of liquid melt form within a surrounding solid matrix in a variety of natural settings, for example, lava tubes and water flow through glaciers. Channels of water on the underside of glaciers, known as Rothlisberger (R-) channels, are essential components of subglacial hydrologic systems and can control the rate of glacier sliding. Water flow through these channels is turbulent, and dissipation melts open the channel while viscous creep of the surrounding closes the channel leading to the possibility of a steady state. Here we present an analogous laboratory experiment for R-channels. We pump warm water from the bottom into a tank of corn syrup and a channel forms. The pressure is lower in the water than in the corn syrup, therefore the syrup creeps inward. At the same time, the water ablates the corn syrup through dissolution and shear erosion, which we measure by determining the change in height of the syrup column over the course of the experiment. We find that the creep closure is much stronger than turbulent ablation which leads to traveling solitary waves along the water-syrup interface. These waves or `magmons' have been previously observed in experiments and theory for laminar magma melt conduits. We compliment our experiments with numerical simulations. David Crighton Fellowship.

  20. Can the Hydroxyapatite-Coated Skin-Penetrating Abutment for Bone Conduction Hearing Implants Integrate with the Surrounding Skin?

    Science.gov (United States)

    van Hoof, Marc; Wigren, Stina; Duimel, Hans; Savelkoul, Paul H M; Flynn, Mark; Stokroos, Robert Jan

    2015-01-01

    Percutaneous implants, such as bone conduction hearing implants, suffer from complications that include inflammation of the surrounding skin. A sealed skin-abutment interface can prevent the ingress of bacteria, which should reduce the occurrence of peri-abutment dermatitis. It was hypothesized that a hydroxyapatite (HA)-coated abutment in conjunction with soft tissue preservation surgery should enable integration with the adjacent skin. Previous research has confirmed that integration is never achieved with as-machined titanium abutments. Here, we investigate, in vivo, if skin integration is achievable in patients using a HA-coated abutment. One titanium abutment (control) and one HA-coated abutment (case) together with the surrounding skin were surgically retrieved from two patients who had a medical indication for this procedure. Histological sections of the skin were investigated using light microscopy. The abutment was qualitatively analyzed using scanning electron microscopy. The titanium abutment only had a partial and thin layer of attached amorphous biological material. The HA-coated abutment was almost fully covered by a pronounced thick layer of organized skin, composed of different interconnected structural layers. Proof-of-principle evidence that the HA-coated abutment can achieve integration with the surrounding skin was presented for the first time.

  1. Influence of Surrounding Colors in the Illuminant-Color Mode on Color Constancy

    Directory of Open Access Journals (Sweden)

    Kazuho Fukuda

    2011-05-01

    Full Text Available On color constancy, we showed that brighter surrounding colors had greater influence than dim colors (Uchikawa, Kitazawa, MacLeod, Fukuda, 2010 APCV. Increasing luminance of a stimulus causes the change in appearance from the surface-color to the illuminant-color mode. However it is unknown whether the visual system considers such color appearance mode of surrounding colors to achieve color constancy. We investigated the influence of surrounding colors that appeared illuminant on color constancy. The stimulus was composed of a central test stimulus and surrounding six colors: bright and dim red, green and blue. The observers adjusted the chromaticity of the test stimulus to be appeared as an achromatic surface. The luminance balance of three bright surrounding colors was equalized with that of the optimal colors in three illuminant conditions, then, the luminance of one of the three bright colors was varied in the range beyond the critical luminance of color appearance mode transition. The results showed that increasing luminance of a bright surrounding color shifted the observers' achromatic setting toward its chromaticity, but this effect diminished for the surrounding color in the illuminant-color mode. These results suggest that the visual system considers color appearance mode of surrounding colors to accomplish color constancy.

  2. Mechanisms of de cohesion in cutting aluminium matrix composites

    International Nuclear Information System (INIS)

    Cichosz, Piotr; Karolczak, Pawel; Kuzinovski, Mikolaj

    2008-01-01

    In this paper properties and applications of aluminium matrix composites are presented with a composite reinforced with saffil fibres selected for topical study. Behavior of matrix and reinforcement during machining with a cutting tool is analyzed. The paper presents an explosive quick-stop device designed to obtain undisturbed machined surface for examination. Meso hardness measurements of deformed structure, resultant chips and built-up-edge were carried out. Scanning micrographs of machined surface are presented with morphology and types of chips analysed. Values of the fibrousness angle ψ and thickening index k h of chip are evaluated. The research performed has enabled the authors to define mechanisms of e cohesion during cutting aluminium matrix composites. The results received for composite material are compared with those pertinent to aluminum alloys.

  3. Creep and threshold tension in aluminum-matrix composite with short fibers obtained by hot pressing

    International Nuclear Information System (INIS)

    Moreno, M.F; Gonzalez Oliver, C.R.J

    2004-01-01

    An aluminum matrix composite reinforced with 5% vol. of short fibers of silicon carbide and un-reinforced matrix, produced by pulvimetallurgy (PM) were studied using creep compression at different deformation speeds and in the range of 300 o C to 500 o C. The creep curve of both materials showed the typical behavior of a material with threshold tension τ 0 ; with an estimate value of 6.31MPa for the matrix at 400 o C and 6.43, 8.76 and 11MPa at 350, 400 and 450 o C respectively for the composite. The τ 0 was shown to obey a thermally activated mechanism whose energy is about 17 kJ/mol. Nanometric particles of aluminum oxide were scattered throughout the matrix and the composite, arising from the inevitable film of oxides and hydroxides formed in the metallic powder. The exponent of power-law creep occurs in the values of n = 4.3 to 4.85 by reducing the tension to an effective value τ-τ 0 , corresponding to a drilling fault in both materials. In the composite, the activation energy was estimated at 167 to 125 kJ/mol, close to the self- diffusion enthalpy of the pure aluminum at 143.4 kJ/mol so that the creep process in the composite is controlled exclusively by the deformation of the matrix (CW)

  4. P1-13: Color Induction from Surround Color under Interocular Suppression

    Directory of Open Access Journals (Sweden)

    Ichiro Kuriki

    2012-10-01

    Full Text Available The effect of surround colors on color appearance is known to subserve color constancy in humans, but how multiple mechanisms in the visual system are involved in this effect is controversial. We used an interocular-suppression technique to examine how the effect occurs at the level higher than the interaction of binocular information. A test color chip (1.7 × 1.7 deg visual angle was presented in a static surround either with continuous-flash suppression in the dominant eye (CFS condition to make the surround inperceptible or without the suppression (no-CFS condition. The surround stimulus was either a Mondrian or a uniform field of the same mean chromaticity. Stimuli were simulated OSA color chips under red, white (D65, or green illuminant color and were presented on a CRT display. Unique yellows were measured by asking the subjects to judge whether the test stimulus appeared reddish or greenish. Two sizes of the surround stimuli (widths of 1 deg and 4 deg were used. Results showed significant shifts in unique yellow even under the CFS conditions, except for the 1 deg uniform-surround condition. Under the no-CFS condition, the shifts showed remarkable difference between subjects, except for the 4 deg Mondrian-surround condition. Interestingly, trends of the shifts showed high consistency within each subject, across conditions. These results indicate that mechanisms at both higher and lower levels than the neuronal site of interocular suppression are involved, and that the color shifts follow each subject's strategy in the higher-order mechanisms when only insufficient clues are available in the surround to estimate illuminant color.

  5. Multilayer composite material and method for evaporative cooling

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2002-01-01

    A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

  6. Confronting, Confirming, and Dispelling Myths Surrounding ERP-in-the-Cloud

    DEFF Research Database (Denmark)

    Beaulieu, Tanya; C. Martin, Todd; Sarker, Saonee

    2015-01-01

    on the topic, there is substantial uncertainty surrounding the benefits and challenges of ERP cloud computing. Consequently, as often is the case with new technologies, popular myths surrounding the technology are used to make adoption and implementation decisions. As a first step toward providing an informed...... with stakeholders related to an ERP cloud-based solution. Our results dispel some of the myths, while supporting others, and highlight how ERP vendors work around the different types of challenges surrounding this technology. Our study also helps understand the benefits of ERP cloud computing, and informs about how...

  7. Dynamic Materials do the Trick in Participatory Business Modeling

    DEFF Research Database (Denmark)

    Caglio, Agnese; Buur, Jacob

    In this position paper we suggest that design material with dynamic behaviour is particularly suited to scaffold groups of diverse participants in discussing the ‘if – then’ causalities of business models. Based on video data from a number of innovation project workshops we present a comparison...... matrix of five different material types for participatory business modeling. The comparison matrix highlights patterns in the use of materials, and how they allow people to participate, negotiate and make meaning....

  8. Machinability study of Al-TiC metal matrix composite

    Directory of Open Access Journals (Sweden)

    Siddappa P. N.

    2018-01-01

    Full Text Available Aluminum Metal Matrix Composites have emerged as an advanced class of structural materials have a combination of different, superior properties compared to an unreinforced matrix, which can result in a number of service benefits such as increased strength, higher elastic moduli, higher service temperature, low CTE, improved wear resistance, high toughness, etc. The excellent mechanical properties of these materials together with weight saving makes them very attractive for a variety of engineering applications in aerospace, automotive, electronic industries, etc. Hence, these materials provide as alternative substitutes for conventional engineering materials when specific mechanical properties necessary for required applications. In this work an attempt is made to study the machining parameters of Al6061/TiC MMC. The composite is developed by reinforcing TiC particles in varying proportions of 3, 6, 9 and 12 % weight fractions to the Al6061 matric alloy through stir casting technique. Cutting forces were measured by varying cutting speed and feed rate with constant depth of cut for different % weight fractions. The results showed that the cutting force increases with the increase of feed rate and decreases with the increase of cutting speed for all the weight fractions. Cutting parameters were optimized using Taguchi technique.

  9. Composites having an intermetallic containing matrix

    International Nuclear Information System (INIS)

    Nagle, D.C.; Brupbacher, J.M.; Christodoulou, L.

    1990-01-01

    This paper describes a composite material. It comprises: a dispersion of in-situ precipitated second phase particles selected from the group consisting of borides, carbides, nitrides, and sulfides, in an intermetallic containing matrix selected from the group consisting of the aluminides, silicides, and beryllides of nickel, copper, titanium, cobalt, iron, platinum, gold, silver, niobium, tantalum, zinc, molybdenum, hafnium, tin, tungsten, lithium, magnesium, thorium, chromium, vanadium, zirconium, and manganese

  10. Absorbable Suture as an Apical Matrix in Single Visit Apexification with Mineral Trioxide Aggregate

    Directory of Open Access Journals (Sweden)

    Ayush Goyal

    2016-01-01

    Full Text Available Several procedures have been recommended to induce the root end barrier formation in teeth with open apices. Conventional treatment for such cases will require many appointments with an average duration of 12.9 months. During this period, the root canal is susceptible to reinfection from around the provisional restoration, which may promote apical periodontitis and arrest of apical repair. Mineral trioxide aggregate (MTA has been successfully used for one visit apexification wherein the root canal can be obturated within 24 hours after placement of MTA. Using a matrix prior to the placement of MTA avoids its extrusion, reduces leakage in the sealing material, and allows favorable response of the periapical tissues. This report presents a case of apexification where an absorbable suture was used as an apical matrix. Use of an absorbable suture circumvents all the problems associated with other conventional materials. Conclusion. Placement of the matrix made from the suture material is predictable and is easily positioned at the apex and the length can be adjusted as required. 10-month follow-up of the case shows resorbed matrix and bone healing in the periapical region. The patient was asymptomatic during the whole follow-up period and tooth exhibited mobility within physiologic limits and was functioning normally.

  11. Absorbable Suture as an Apical Matrix in Single Visit Apexification with Mineral Trioxide Aggregate.

    Science.gov (United States)

    Goyal, Ayush; Nikhil, Vineeta; Jha, Padmanabh

    2016-01-01

    Several procedures have been recommended to induce the root end barrier formation in teeth with open apices. Conventional treatment for such cases will require many appointments with an average duration of 12.9 months. During this period, the root canal is susceptible to reinfection from around the provisional restoration, which may promote apical periodontitis and arrest of apical repair. Mineral trioxide aggregate (MTA) has been successfully used for one visit apexification wherein the root canal can be obturated within 24 hours after placement of MTA. Using a matrix prior to the placement of MTA avoids its extrusion, reduces leakage in the sealing material, and allows favorable response of the periapical tissues. This report presents a case of apexification where an absorbable suture was used as an apical matrix. Use of an absorbable suture circumvents all the problems associated with other conventional materials. Conclusion . Placement of the matrix made from the suture material is predictable and is easily positioned at the apex and the length can be adjusted as required. 10-month follow-up of the case shows resorbed matrix and bone healing in the periapical region. The patient was asymptomatic during the whole follow-up period and tooth exhibited mobility within physiologic limits and was functioning normally.

  12. Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions

    Science.gov (United States)

    Kraberger, Gernot J.; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus

    2017-10-01

    We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.

  13. Mechanics of Platelet-Matrix Composites across Scales: Theory, Multiscale Modeling, and 3D Fabrication

    Science.gov (United States)

    Sakhavand, Navid

    Many natural and biomimetic composites - such as nacre, silk and clay-polymer - exhibit a remarkable balance of strength, toughness, and/or stiffness, which call for a universal measure to quantify this outstanding feature given the platelet-matrix structure and material characteristics of the constituents. Analogously, there is an urgent need to quantify the mechanics of emerging electronic and photonic systems such as stacked heterostructures, which are composed of strong in-plane bonding networks but weak interplanar bonding matrices. In this regard, development of a universal composition-structure-property map for natural platelet-matrix composites, and stacked heterostructures opens up new doors for designing materials with superior mechanical performance. In this dissertation, a multiscale bottom-up approach is adopted to analyze and predict the mechanical properties of platelet-matrix composites. Design guidelines are provided by developing universally valid (across different length scales) diagrams for science-based engineering of numerous natural and synthetic platelet-matrix composites and stacked heterostructures while significantly broadening the spectrum of strategies for fabricating new composites with specific and optimized mechanical properties. First, molecular dynamics simulations are utilized to unravel the fundamental underlying physics and chemistry of the binding nature at the atomic-level interface of organic-inorganic composites. Polymer-cementitious composites are considered as case studies to understand bonding mechanism at the nanoscale and open up new venues for potential mechanical enhancement at the macro-scale. Next, sophisticated mathematical derivations based on elasticity and plasticity theories are presented to describe pre-crack (intrinsic) mechanical performance of platelet-matrix composites at the microscale. These derivations lead to developing a unified framework to construct series of universal composition

  14. Europa Lander Material Selection Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Tappan, Alexander S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Heller, Mellisa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-10

    Energetic materials (EMs, explosives, pyrotechnics, propellants) provide high-power output of high temperature reaction products. These products can be solid, liquid, or gaseous during reaction or after the products have equilibrated with the surroundings. For example, high explosives typically consist of carbon, hydrogen, nitrogen, and oxygen bonded within a single molecule, and produce almost exclusively gaseous products. Conversely, intermetallics consist of physical mixtures of metals and metalloids, and produce almost exclusively condensed products. Other materials such as pyrotechnics and propellants have intermediate behavior. All energetic materials react in a self-propagating manner that after ignition, does not necessarily require energy input from the surroundings. The range of reaction velocities can range from mm/s for intermetallics, to km/s for high explosives. Energetic material selection depends on numerous requirements specific to the needs of a system. High explosives are used for applications where high pressure gases are necessary for pushing or fracturing materials (e.g., rock, metal) or creating shock waves or air blast. Propellants are used to produce moderate-pressure, high-temperature products without a shock wave. Pyrotechnics are used to produce numerous effects including: high-temperature products, gases, light, smoke, sound, and others. Thermites are used to produce heat, high-temperature products, materials, and other effects that require condensed products. Intermetallics are used to produce high-temperature condensed products and materials, with very little gas production. Numerous categories of energetic materials exist with overlapping definitions, effects, and properties.

  15. Thermal conductivity of highly porous mullite material

    International Nuclear Information System (INIS)

    Barea, Rafael; Osendi, Maria Isabel; Ferreira, Jose M.F.; Miranzo, Pilar

    2005-01-01

    The thermal diffusivity of highly porous mullite materials (35-60 vol.% porosity) has been measured up to 1000 deg C by the laser flash method. These materials were fabricated by a direct consolidation method based on the swelling properties of starch granules in concentrated aqueous suspensions and showed mainly spherical shaped pores of about 30 μm in diameter. From the point of view of heat conduction, they behave as a bi-phase material of voids dispersed in the continuous mullite matrix. The temperature dependence of thermal conductivity for the different porosities was modeled by a simple equation that considers the contribution to heat conduction of the mullite matrix and the gas inside the pores, as well as the radiation. The thermal conductivity of the matrix was taken from the measurements done in a dense mullite while the conductivity in the voids was assumed to be that of the testing atmosphere

  16. Mechanocatalytic polymerization and cross-linking in a polymeric matrix

    NARCIS (Netherlands)

    Jakobs, R.T.M.; Ma, Shuang; Sijbesma, R.P.

    2013-01-01

    A latent olefin metathesis catalyst, bearing two polymeric NHC ligands, was embedded in a semicrystalline polymer matrix containing cyclic olefins. The catalyst was activated by straining the solid material under compression, resulting in polymerization and cross-linking reactions of the monomers in

  17. NEW METHODS FOR IMPLANT MATRIX FORMATION BASED ON ELECTROSPINNING AND BIOPRINTING TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    V. N. Vasilets

    2009-01-01

    Full Text Available New implant materials for regenerative and replacement surgery based on biodegradable polymers like collagens and polyoxybutirates are developed. Porous structures with controllable morphology were formed from biodegradable polymers using electrospinning and bioprinting technologies. The matrixes were studied by visible and electron scanning microscopy as well as INTEGRA Tomo scanning probe platform making possible the restoration of inner 3D structure of polymer matrix

  18. Comportamiento frente a la corrosión del material compuesto 2124/SiC

    Directory of Open Access Journals (Sweden)

    López-Caballero, J. A.

    2005-12-01

    Full Text Available A comparative study was performed on the corrosion behaviour of an aluminium matrix composite reinforced with silicon carbide particles, obtained by powder metallurgic. The 2124/SiC material was heat treated using T4 and T6 procedures. The T6 heat treatment induced the formation of several intermetallics and reducing the corrosion resistance. The silicon carbide particles did not have a cathodic behaviour as compared with the aluminium matrix. However, these particles produced a diminution in the corrosion resistance due to the formation of more active zones in the matrix/reinforced interface. These ceramic particles caused intermetallic precipitation and deformation originating in the surrounding zones localized corrosion.

    Se realiza un estudio comparativo del comportamiento frente a la corrosión de la aleación de aluminio 2124 reforzada con partículas de carburo de silicio, obtenida por pulvimetalurgia y con tratamientos térmicos T4 y T6. Los resultados experimentales muestran que el tratamiento térmico T6 induce la formación de numerosos intermetálicos que reducen la resistencia a la corrosión. Las partículas de carburo de silicio no tienen un comportamiento catódico con respecto a la matriz de aluminio, sin embargo, disminuyen la resistencia a la corrosión, ya que generan zonas más activas en la interfase matriz/ refuerzo, debido a la acumulación de dislocaciones, tensiones residuales y a la precipitación de intermetálicos.

  19. Freeze Casting for Assembling Bioinspired Structural Materials.

    Science.gov (United States)

    Cheng, Qunfeng; Huang, Chuanjin; Tomsia, Antoni P

    2017-12-01

    Nature is very successful in designing strong and tough, lightweight materials. Examples include seashells, bone, teeth, fish scales, wood, bamboo, silk, and many others. A distinctive feature of all these materials is that their properties are far superior to those of their constituent phases. Many of these natural materials are lamellar or layered in nature. With its "brick and mortar" structure, nacre is an example of a layered material that exhibits extraordinary physical properties. Finding inspiration in living organisms to create bioinspired materials is the subject of intensive research. Several processing techniques have been proposed to design materials mimicking natural materials, such as layer-by-layer deposition, self-assembly, electrophoretic deposition, hydrogel casting, doctor blading, and many others. Freeze casting, also known as ice-templating, is a technique that has received considerable attention in recent years to produce bioinspired bulk materials. Here, recent advances in the freeze-casting technique are reviewed for fabricating lamellar scaffolds by assembling different dimensional building blocks, including nanoparticles, polymer chains, nanofibers, and nanosheets. These lamellar scaffolds are often infiltrated by a second phase, typically a soft polymer matrix, a hard ceramic matrix, or a metal matrix. The unique architecture of the resultant bioinspired structural materials displays excellent mechanical properties. The challenges of the current research in using the freeze-casting technique to create materials large enough to be useful are also discussed, and the technique's promise for fabricating high-performance nacre-inspired structural materials in the future is reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Measurement of moisture depth distribution in composite materials using positron lifetime technique

    International Nuclear Information System (INIS)

    Singh, J.J.; Holt, W.H.; Mock, W. Jr.; Mall, G.H.

    1980-01-01

    Fiber-reinforced resin matrix composites reportedly suffer significant degradation in their mechanical properties when exposed to hot, moist, environments for extended periods. Moisture weakens the fiber matrix bond as well as the matrix shear strength. An important factor in determining the extent of degradation is the depth distribution of moisture in the resin matrix. Despite the importance of measuring moisture distribution and its effects on composite material properties, not enough data are available on suitable nondestructive techniques for detecting and measuring moisture diffusion in organic composite materials. This paper addresses itself to the problem of measuring the moisture content of such materials, with special emphasis on its depth distribution, using positron lifetime technique

  1. Random matrix models for phase diagrams

    International Nuclear Information System (INIS)

    Vanderheyden, B; Jackson, A D

    2011-01-01

    We describe a random matrix approach that can provide generic and readily soluble mean-field descriptions of the phase diagram for a variety of systems ranging from quantum chromodynamics to high-T c materials. Instead of working from specific models, phase diagrams are constructed by averaging over the ensemble of theories that possesses the relevant symmetries of the problem. Although approximate in nature, this approach has a number of advantages. First, it can be useful in distinguishing generic features from model-dependent details. Second, it can help in understanding the 'minimal' number of symmetry constraints required to reproduce specific phase structures. Third, the robustness of predictions can be checked with respect to variations in the detailed description of the interactions. Finally, near critical points, random matrix models bear strong similarities to Ginsburg-Landau theories with the advantage of additional constraints inherited from the symmetries of the underlying interaction. These constraints can be helpful in ruling out certain topologies in the phase diagram. In this Key Issues Review, we illustrate the basic structure of random matrix models, discuss their strengths and weaknesses, and consider the kinds of system to which they can be applied.

  2. Boron-bearing species in ceramic matrix composites for long-term aerospace applications

    International Nuclear Information System (INIS)

    Naslain, R.; Guette, A.; Rebillat, F.; Pailler, R.; Langlais, F.; Bourrat, X.

    2004-01-01

    Boron-bearing refractory species are introduced in non-oxide ceramic matrix fibrous composites (such as SiC/SiC composites) to improve their oxidation resistance under load at high temperatures with a view to applications in the aerospace field. B-doped pyrocarbon and hex-BN have been successfully used as interphase (instead of pure pyrocarbon) either as homogeneous or multilayered fiber coatings, to arrest and deflect matrix cracks formed under load (mechanical fuse function) and to give toughness to the materials. A self-healing multilayered matrix is designed and used in a model composite, which combines B-doped pyrocarbon mechanical fuse layers and B- and Si-bearing compound (namely B 4 C and SiC) layers forming B 2 O 3 -based fluid healing phases when exposed to an oxidizing atmosphere. All the materials are deposited by chemical vapor infiltration. Lifetimes under tensile loading of several hundreds hours at high temperatures are reported

  3. Fracture behaviour of mullite fibre reinforced-mullite matrix composites under quasi-static and ballistic impact loading

    Czech Academy of Sciences Publication Activity Database

    Boccaccini, A. R.; Atiq, S.; Boccaccini, D. N.; Dlouhý, Ivo; Kaya, C.

    č. 65 (2005), s. 325-333 ISSN 0266-3538 R&D Projects: GA AV ČR IAA2041003 Keywords : ceramic matrix composites * mullite matrix * toughness Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.184, year: 2005

  4. Durability of cement-based materials: modeling of the influence of physical and chemical equilibria on the microstructure and the residual mechanical properties

    International Nuclear Information System (INIS)

    Guillon, E.

    2004-09-01

    A large part of mechanical and durability characteristics of cement-based materials comes from the performances of the hydrated cement, cohesive matrix surrounding the granular skeleton. Experimental studies, in situ or in laboratory, associated to models, have notably enhanced knowledge on the cement material and led to adapted formulations to specific applications or particularly aggressive environments. Nevertheless, these models, developed for precise cases, do not permit to specifically conclude for other experimental conclusions. To extend its applicability domain, we propose a new evolutive approach, based on reactive transport expressed at the microstructure scale of the cement. In a general point of view, the evolution of the solid compounds of the cement matrix, by dissolutions or precipitations, during chemical aggressions can be related to the pore solution evolution, and this one relied to the ionic exchanges with the external environment. By the utilization of a geochemical code associated to a thermodynamical database and coupled to a 3D transport model, this approach authorizes the study of all aggressive solution. The approach has been validated by the comparison of experimental observations to simulated degradations for three different environments (pure water, mineralized water, seawater) and on three different materials (CEM I Portland cement with 0.25, 0.4 and 0.5 water-to cement ratio). The microstructural approach permits also to have access to mechanical properties evolutions. During chemical aggressions, the cement matrix evolution is traduced in a microstructure evolution. This one is represented from 3D images similarly to the models developed at NIST (National Institute of Standards and Technology). A new finite-element model, validated on previous tests or models, evaluates the stiffness of the cement paste, using as a mesh these microstructures. Our approach identifies and quantifies the major influence of porosity and its spatial

  5. Organic material in clay-based buffer materials and its potential impact on radionuclide transport

    International Nuclear Information System (INIS)

    Vilks, P.; Goulard, M.; Stroes-Gascoyne, S.; Haveman, S.A.; Bachinski, D.B.; Hamon, C.J.; Comba, R.

    1997-03-01

    AECL has submitted an Environmental Impact Statement (EIS) to evaluate the concept of nuclear fuel disposal at depth in crystalline rock of the Canadian Shield. In this disposal concept used fuel would be emplaced in corrosion-resistant containers which would be surrounded by clay-based buffer and backfill materials. Once groundwater is able to penetrate the buffer and corrosion-resistant container, radionuclides could be transported from the waste form to the surrounding geosphere, and eventually to the biosphere. The release of radionuclides from the waste form and their subsequent transport would be determined by the geochemistry of the disposal vault and surrounding geosphere. Organic substances affect the geochemistry of radionuclides through complexation reactions that increase solubility and alter mobility, by affecting the redox of certain radionuclides and by providing food for microbes. The purpose of this study was to determine whether the buffer and backfill materials proposed for use in a disposal vault contain organics that could be leached by groundwater in large enough quantities to complex with radionuclides and affect their mobility within the disposal vault and surrounding geosphere. Buffer material, made from a mixture of 50 wt.% Avonlea sodium bentonite and 50 wt.% silica sand, was extracted with deionized water to determine the release of dissolved organic carbon, humic acid and fulvic acid. The effect of radiation and heat from the used fuel was simulated by treating samples of buffer before leaching to various amounts of heat (60 deg C and 90 deg C) for periods of 2, 4 and 6 weeks, and to ionizing radiation with doses of 25 kGy and 50 kGy. Humic substances were isolated from the leachates to determine the concentrations of humic and fulvic acids and to determine their functional group content by acid-base titrations. The results showed that groundwater would leach significant amounts of organics that would complex with radionuclides such as

  6. Surface properties of ceramic/metal composite materials for thermionic converter applications

    International Nuclear Information System (INIS)

    Davis, P.R.; Bozack, M.J.; Swanson, L.W.

    1983-01-01

    Ceramic/metal composite electrode materials are of interest for thermionic energy conversion (TEC) applications for several reasons. These materials consist of submicron metal fibers or islands in an oxide matrix and therefore provide a basis for fabricating finely structured electrodes, with projecting or recessed metallic regions for more efficient electron emission or collection. Furthermore, evaporation and surface diffusion of matrix oxides may provide oxygen enhancement of cesium adsorption and work function lowering at both the collecting and emitting electrode surfaces of the TEC. Finally, the high work function oxide matrix or oxide-metal interfaces may provide efficient surface ionization of cesium for space-charge reduction in the device. The authors are investigating two types of ceramic/metal composite materials. One type is a directionally solidified eutectic consisting of a bulk oxide matrix such as UO 2 or stabilized ZrO 2 with parallel metal fibers (W) running through the oxide being exposed at the surface by cutting perpendicular to the fiber direction. The second type of material, called a surface eutectic, consists of a refractory substrate (Mo) with a thin layer of deposited and segregated material (Mo-Cr 2 O 3 -A1 2 O 3 ) on the surface. The final configuration of this layer is an oxide matrix with metallic islands scattered throughout

  7. Evaluation of olibanum and its resin as rate controlling matrix for controlled release of diclofenac

    OpenAIRE

    Chowdary KPR; Mohapatra P; Murali Krishna M

    2006-01-01

    Olibanum and its resin and carbohydrate fractions were evaluated as rate controlling matrix materials in tablets for controlled release of diclofenac. Diclofenac matrix tablets were formulated employing olibanum and its resin and carbohydrate fractions in different concentrations and the tablets were evaluated for various tablet characters including drug release kinetics and mechanism. Olibanum and its resin component exhibited excellent retarding effect on drug release from the matrix tablet...

  8. Screening Test of Greenhouse Seeding Exercise Matrix for Tissue Culture Seeding of Dendrobium Officinale Kimura et Migo

    Directory of Open Access Journals (Sweden)

    Zhou Yuan

    2015-01-01

    Full Text Available The Dendrobium officinale Kimura et Migo has a high demand on planting matrix, while its tissue culture seeding has much more demands on planting matrix. To find out a seeding exercise matrix to enhance the survival rate of tissue culture seeding of Dendrobium officinale Kimura et Migo more efficiently, this article carries out a screening test of greenhouse seeding exercise matrix material for tissue culture seeding of Dendrobium officinale Kimura et Migo. The test adopts full random test design, mainly for screening test of five matrix materials, namely pine bark, camphor tree bark, fern root, peanut shell and longan bark. Compare the impact of prepared seeding exercise matrix on the survival rate and growth trend (including plant height, growth rate and bud growth rate. The test result shows that: The seeding exercise matrix prepared by fern root is the most efficient, and the survival rate, plant height, growth rate and bud growth rate have achieved 100%, 4.5cm, 43.67% and 54.33% respectively. The main reason may be that the seeding exercise matrix C prepared by fern root is fairly loose and has a great water permeability, which is conducive to the growth of Dendrobium officinale Kimura et Migo.

  9. Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials

    Science.gov (United States)

    Nagabandi, N.; Yegin, C.; Feng, X.; King, C.; Oh, J. K.; Scholar, E. A.; Narumanchi, S.; Akbulut, M.

    2018-03-01

    Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of the bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. The internal nanostructure was found to be strongly dependent on the linker chemistry. While the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W m-1 K and 306-321 W m-1 K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 400-495 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3 × 10-6 m2 K-1 s for MBCA-BNNS and 8.5 × 10-7 m2 K-1 s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.

  10. The nature of surround-induced depolarizing responses in goldfish cones

    NARCIS (Netherlands)

    Kraaij, D. A.; Spekreijse, H.; Kamermans, M.

    2000-01-01

    Cones in the vertebrate retina project to horizontal and bipolar cells and the horizontal cells feedback negatively to cones. This organization forms the basis for the center/surround organization of the bipolar cells, a fundamental step in the visual signal processing. Although the surround

  11. Investigation of the readout electronics of DELPHI surround muon chamber

    International Nuclear Information System (INIS)

    Khovanskij, N.; Krumshtejn, Z.; Ol'shevskij, A.; Sadovskij, A.; Sedykh, Yu.; Molnar, J.; Sicho, P.; Tomsa, Z.

    1995-01-01

    The characteristics of the readout electronics of the DELPHI surround muon chambers with various AMPLEX chips (AMPLEX 16 and AMPLEX-SICAL) are presented. This electronics is studied in a cosmic rays test of the real surround muon chamber model. 4 refs., 6 figs., 1 tab

  12. Material Programming

    DEFF Research Database (Denmark)

    Vallgårda, Anna; Boer, Laurens; Tsaknaki, Vasiliki

    2017-01-01

    . Consequently we ask what the practice of programming and giving form to such materials would be like? How would we be able to familiarize ourselves with the dynamics of these materials and their different combinations of cause and effect? Which tools would we need and what would they look like? Will we program......, and color, but additionally being capable of sensing, actuating, and computing. Indeed, computers will not be things in and by themselves, but embedded into the materials that make up our surroundings. This also means that the way we interact with computers and the way we program them, will change...... these computational composites through external computers and then transfer the code them, or will the programming happen closer to the materials? In this feature we outline a new research program that floats between imagined futures and the development of a material programming practice....

  13. In-situ experiments to investigate rock matrix retention properties in ONKALO, Olkiluoto, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Voutilainen, Mikko; Helariutta, Kerttuli [Helsinki Univ. (Finland). Dept. of Chemistry; Poteri, Antti [Technical Research Centre of Finland VTT (Finland); and others

    2015-07-01

    Spent nuclear fuel from nuclear power plants, owned by TVO (Teollisuuden Voima Oy) and Fortum, is planned to be disposed to a repository at a depth of more than 400 meters in the bedrock of Olkiluoto (Eurajoki, Finland). The repository system of multiple release barriers consists of both manmade and natural barriers. The surrounding rock acts as the last barrier if other barriers fail during passage of the millennia. Therefore, safe disposal of spent nuclear fuel requires information on the radionuclide transport and retention properties within the porous and water-containing rock matrix along the water conducting flow paths. To this end, various types of experiments are being performed and planned within ONKALO, the underground rock characterization facility in Olkiluoto, as part of the project @''rock matrix REtention PROperties'' (REPRO). The research site is located at a depth of 420 meters close to the repository site. The aim is to study the diffusion and sorption properties of nuclear compounds in the rock matrix under real in-situ conditions. The first in-situ experiment was performed during 2012 using HTO, Na-22, Cl-36 and I-125 as tracer nuclides. Breakthrough curves show retention and asymptotic behavior that are in-line with those caused by matrix diffusion and sorption were observed in their breakthrough curves. Weak sorption was also observed in the breakthrough curves of Na-22 and I-125.

  14. Thermal interactions of a molten core debris pool with surrounding structural materials

    International Nuclear Information System (INIS)

    Baker, L. Jr.; Cheung, F.B.; Farhadieh, R.; Stein, R.P.; Gabor, J.D.; Bingle, J.D.

    1979-01-01

    Analytical and experimental results on individual aspects of the overall problem of the interaction of a large mass of LMFBR core debris with concrete or other materials are reviewed. Results of recent heat transfer experiments with molten UO 2 have indicated the importance of internal thermal radiation and methods to take account of this are developed. Effects of gas release and density difference are considered. The GROWS-2 Code is used to illustrate the effects of various assumptions

  15. Bone morphogenetic protein 2 and decorin expression in old fracture fragments and surrounding tissues.

    Science.gov (United States)

    Han, X G; Wang, D K; Gao, F; Liu, R H; Bi, Z G

    2015-09-21

    Bone morphogenetic protein 2 (BMP-2) can promote fracture healing. Although the complex role BMP-2 in bone formation is increasingly understood, the role of endogenous BMP-2 in nonunion remains unclear. Decorin (DCN) can promote the formation of bone matrix and calcium deposition to control bone morphogenesis. In this study, tissue composition and expression of BMP-2 and DCN were detected in different parts of old fracture zones to explore inherent anti-fibrotic ability and osteogenesis. Twenty-three patients were selected, including eight cases of delayed union and 15 cases of nonunion. Average duration of delayed union or nonunion was 15 months. Fracture fragments and surrounding tissues, including bone grafts, marrow cavity contents, and sticking scars, were categorically sampled during surgery. Through observation and histological testing, component comparisons were made between fracture fragments and surrounding tissue. The expression levels of DCN and BMP-2 in different tissues were detected by immunohistochemical staining and real-time polymerase chain reaction. The expression of DCN and BMP- 2 in different parts of the nonunion area showed that, compared with bone graft and marrow cavity contents, sticking scars had the highest expression of BMP-2. Compared with the marrow cavity contents and sticking scars, bone grafts had the highest expression of DCN. The low antifibrotic and osteogenic activity of the nonunion area was associated with non-co-expression of BMP-2 and DCN. Therefore, the co-injection of osteogenic factor BMP and DCN into the nonunion area can improve the induction of bone formation and enhance the conversion of the old scar, thereby achieving better nonunion treatment.

  16. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  17. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  18. Damping mathematical modelling and dynamic responses for FRP laminated composite plates with polymer matrix

    Science.gov (United States)

    Liu, Qimao

    2018-02-01

    This paper proposes an assumption that the fibre is elastic material and polymer matrix is viscoelastic material so that the energy dissipation depends only on the polymer matrix in dynamic response process. The damping force vectors in frequency and time domains, of FRP (Fibre-Reinforced Polymer matrix) laminated composite plates, are derived based on this assumption. The governing equations of FRP laminated composite plates are formulated in both frequency and time domains. The direct inversion method and direct time integration method for nonviscously damped systems are employed to solve the governing equations and achieve the dynamic responses in frequency and time domains, respectively. The computational procedure is given in detail. Finally, dynamic responses (frequency responses with nonzero and zero initial conditions, free vibration, forced vibrations with nonzero and zero initial conditions) of a FRP laminated composite plate are computed using the proposed methodology. The proposed methodology in this paper is easy to be inserted into the commercial finite element analysis software. The proposed assumption, based on the theory of material mechanics, needs to be further proved by experiment technique in the future.

  19. ECAP – New consolidation method for production of aluminium matrix composites with ceramic reinforcement

    Directory of Open Access Journals (Sweden)

    Mateja Šnajdar Musa

    2013-06-01

    Full Text Available Aluminium based metal matrix composites are rapidly developing group of materials due to their unique combination of properties that include low weight, elevated strength, improved wear and corrosion resistance and relatively good ductility. This combination of properties is a result of mixing two groups of materials with rather different properties with aluminium as ductile matrix and different oxides and carbides added as reinforcement. Al2O3, SiC and ZrO2 are the most popular choices of reinforcement material. One of the most common methods for producing this type of metal matrix composites is powder metallurgy since it has many variations and also is relatively low-cost method. Many different techniques of compacting aluminium and ceramic powders have been previously investigated. Among those techniques equal channel angular pressing (ECAP stands out due to its beneficial influence on the main problem that arises during powder compaction and that is a non-uniform distribution of reinforcement particles. This paper gives an overview on ECAP method principles, advantages and produced powder composite properties.

  20. Geochemical anomalies from bottom ash in a road construction--comparison of the leaching potential between an ash road and the surroundings.

    Science.gov (United States)

    Lind, Bo B; Norrman, Jenny; Larsson, Lennart B; Ohlsson, Sten-Ake; Bristav, Henrik

    2008-01-01

    A study was performed between June 2001 and December 2004 with the primary objective of assessing long-term leaching from municipal solid waste incineration bottom ash in a test road construction in relation to a reference road made up of conventional materials and the natural geochemical conditions in the surroundings. The metal leaching from the test road and the reference road was compared with the natural weathering in the regional surroundings for three time scales: 16, 80 and 1000 years. The results show that Cu and Zn cause a geochemical anomaly from the test road compared with the surroundings. The leaching of Cu from the test road is initially high but will decline with time and will in the long term be exceeded by natural weathering. Zn on the other hand has low initial leaching, which will increase with time and will in the long term exceed that of the test road and the surroundings by a factor of 100-300. For the other metals studied, Al, Na, K and Mg, there is only very limited leaching over time and the potential accumulation will not exceed the background values in a 1000 years.