WorldWideScience

Sample records for surrounding epidermal cells

  1. Epidermal stem cells: location, potential and contribution to cancer.

    Science.gov (United States)

    Ambler, C A; Määttä, A

    2009-01-01

    Epidermal stem cells have been classically characterized as slow-cycling, long-lived cells that reside in discrete niches in the skin. Gene expression studies of niche-resident cells have revealed a number of stem cell markers and regulators, including the Wnt/beta-catenin, Notch, p63, c-Myc and Hedgehog pathways. A new study challenges the traditional developmental paradigm of slow-cycling stem cells and rapid-cycling transit amplifying cells in some epidermal regions, and there is mounting evidence to suggest that multi-lineage epidermal progenitors can be isolated from highly proliferative, non-niche regions. Whether there is a unique microenvironment surrounding these progenitors remains to be determined. Interestingly, cancer stem cells derived from epidermal tumours exist independent of the classic skin stem cell niche, yet also have stem cell properties, including multi-lineage differentiation. This review summarizes recent studies identifying the location and regulators of mouse and human epidermal stem cells and highlights the strategies used to identify cancer stem cells, including expression of normal epidermal stem cell markers, expression of cancer stem cell markers identified in other epidermal tumours and characterization of side-population tumour cells.

  2. [Progress in epidermal stem cells].

    Science.gov (United States)

    Wang, Li-Juan; Wang, You-Liang; Yang, Xiao

    2010-03-01

    Mammalian skin epidermis contains different epidermal stem cell pools which contribute to the homeostasis and repair of skin epithelium. Epidermal stem cells possess two essential features common to all stem cells: self-renewal and differentiation. Disturbing the balance between self-renewal and differentiation of epidermal stem cell often causes tumors or other skin diseases. Epidermal stem cell niches provide a special microenvironment that maintains a balance of stem cell quiescence and activity. This review primarily concentrates on the following points of the epidermal stem cells: the existing evidences, the self-renewal and differentiation, the division pattern, the signal pathways regulating self-renewal and differentiation, and the microenvironment (niche) and macroenvironment maintaining the homeostasis of stem cells.

  3. Real-time visualization of macromolecule uptake by epidermal Langerhans cells in living animals.

    Science.gov (United States)

    Frugé, Rachel E; Krout, Colleen; Lu, Ran; Matsushima, Hironori; Takashima, Akira

    2012-03-01

    As a skin-resident member of the dendritic cell family, Langerhans cells (LCs) are generally regarded to function as professional antigen-presenting cells. Here we report a simple method to visualize the endocytotic activity of LCs in living animals. BALB/c mice received subcutaneous injection of FITC-conjugated dextran (DX) probes into the ear skin and were then examined under confocal microscopy. Large numbers of FITC(+) epidermal cells became detectable 12-24 hours after injection as background fluorescence signals began to disappear. Most (>90%) of the FITC(+) epidermal cells expressed Langerin, and >95% of Langerin(+) epidermal cells exhibited significant FITC signals. To assess intracellular localization, Alexa Fluor 546-conjugated DX probes were locally injected into IAβ-enhanced green fluorescent protein (EGFP) knock-in mice and Langerin-EGFP-diphtheria toxin receptor mice--three dimensional rotation images showed close association of most of the internalized DX probes with major histocompatibility complex (MHC) class II molecules, but not with Langerin molecules. These observations support the current view that LCs constantly sample surrounding materials, including harmful and innocuous antigens, at the environmental interface. Our data also validate the potential utility of the newly developed imaging approach to monitor LC function in wild-type animals.

  4. Biochemistry of epidermal stem cells.

    Science.gov (United States)

    Eckert, Richard L; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A; Vemuri, Mohan C; Boucher, Shayne E; Bickenbach, Jackie R; Kerr, Candace

    2013-02-01

    The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate.

    Science.gov (United States)

    Chermnykh, Elina; Kalabusheva, Ekaterina; Vorotelyak, Ekaterina

    2018-03-27

    Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.

  6. Oral mucosa: an alternative epidermic cell source to develop autologous dermal-epidermal substitutes from diabetic subjects

    Directory of Open Access Journals (Sweden)

    Daniela GUZMÁN-URIBE

    Full Text Available Abstract Oral mucosa has been highlighted as a suitable source of epidermal cells due to its intrinsic characteristics such as its higher proliferation rate and its obtainability. Diabetic ulcers have a worldwide prevalence that is variable (1%-11%, meanwhile treatment of this has been proven ineffective. Tissue-engineered skin plays an important role in wound care focusing on strategies such autologous dermal-epidermal substitutes. Objective The aim of this study was to obtain autologous dermal-epidermal skin substitutes from oral mucosa from diabetic subjects as a first step towards a possible clinical application for cases of diabetic foot. Material and Methods Oral mucosa was obtained from diabetic and healthy subjects (n=20 per group. Epidermal cells were isolated and cultured using autologous fibrin to develop dermal-epidermal in vitro substitutes by the air-liquid technique with autologous human serum as a supplement media. Substitutes were immunocharacterized with collagen IV and cytokeratin 5-14 as specific markers. A Student´s t- test was performed to assess the differences between both groups. Results It was possible to isolate epidermal cells from the oral mucosa of diabetic and healthy subjects and develop autologous dermal-epidermal skin substitutes using autologous serum as a supplement. Differences in the expression of specific markers were observed and the cytokeratin 5-14 expression was lower in the diabetic substitutes, and the collagen IV expression was higher in the diabetic substitutes when compared with the healthy group, showing a significant difference. Conclusion Cells from oral mucosa could be an alternative and less invasive source for skin substitutes and wound healing. A difference in collagen production of diabetic cells suggests diabetic substitutes could improve diabetic wound healing. More research is needed to determine the crosstalk between components of these skin substitutes and damaged tissues.

  7. Maturational steps of bone marrow-derived dendritic murine epidermal cells. Phenotypic and functional studies on Langerhans cells and Thy-1+ dendritic epidermal cells in the perinatal period.

    Science.gov (United States)

    Elbe, A; Tschachler, E; Steiner, G; Binder, A; Wolff, K; Stingl, G

    1989-10-15

    The adult murine epidermis harbors two separate CD45+ bone marrow (BM)-derived dendritic cell systems, i.e., Ia+, ADPase+, Thy-1-, CD3- Langerhans cells (LC) and Ia-, ADPase-, Thy-1+, CD3+ dendritic epidermal T cells (DETC). To clarify whether the maturation of these cells from their ill-defined precursors is already accomplished before their entry into the epidermis or, alternatively, whether a specific epidermal milieu is required for the expression of their antigenic determinants, we studied the ontogeny of CD45+ epidermal cells (EC). In the fetal life, there exists a considerable number of CD45+, Ia-, ADPase+ dendritic epidermal cells. When cultured, these cells become Ia+ and, in parallel, acquire the potential of stimulating allogeneic T cell proliferation. These results imply that CD45+, Ia-, ADPase+ fetal dendritic epidermal cells are immature LC precursors and suggest that the epidermis plays a decisive role in LC maturation. The day 17 fetal epidermis also contains a small population of CD45+, Thy-1+, ADPase-, CD3- round cells. Over the course of 2 to 3 wk, they are slowly replaced by an ever increasing number of round and, finally, dendritic CD45+, Thy-1+, CD3+ EC. Thus, CD45+, Thy-1+, ADPase-, CD3- fetal EC may either be DETC precursors or, alternatively, may represent a distinctive cell system of unknown maturation potential. According to this latter theory, these cells would be eventually outnumbered by newly immigrating CD45+, Thy-1+, CD3+ T cells--the actual DETC.

  8. Epidermal cell death in frogs with chytridiomycosis

    Directory of Open Access Journals (Sweden)

    Laura A. Brannelly

    2017-02-01

    Full Text Available Background Amphibians are declining at an alarming rate, and one of the major causes of decline is the infectious disease chytridiomycosis. Parasitic fungal sporangia occur within epidermal cells causing epidermal disruption, but these changes have not been well characterised. Apoptosis (planned cell death can be a damaging response to the host but may alternatively be a mechanism of pathogen removal for some intracellular infections. Methods In this study we experimentally infected two endangered amphibian species Pseudophryne corroboree and Litoria verreauxii alpina with the causal agent of chytridiomycosis. We quantified cell death in the epidermis through two assays: terminal transferase-mediated dUTP nick end-labelling (TUNEL and caspase 3/7. Results Cell death was positively associated with infection load and morbidity of clinically infected animals. In infected amphibians, TUNEL positive cells were concentrated in epidermal layers, correlating to the localisation of infection within the skin. Caspase activity was stable and low in early infection, where pathogen loads were light but increasing. In animals that recovered from infection, caspase activity gradually returned to normal as the infection cleared. Whereas, in amphibians that did not recover, caspase activity increased dramatically when infection loads peaked. Discussion Increased cell death may be a pathology of the fungal parasite, likely contributing to loss of skin homeostatic functions, but it is also possible that apoptosis suppression may be used initially by the pathogen to help establish infection. Further research should explore the specific mechanisms of cell death and more specifically apoptosis regulation during fungal infection.

  9. Concise Review: Wnt Signaling Pathways in Skin Development and Epidermal Stem Cells.

    Science.gov (United States)

    Veltri, Anthony; Lang, Christopher; Lien, Wen-Hui

    2018-01-01

    Mammalian skin and its appendages constitute the integumentary system forming a barrier between the organism and its environment. During development, skin epidermal cells divide rapidly and stratify into a multilayered epithelium, as well as invaginate downward in the underlying mesenchyme to form hair follicles (HFs). In postnatal skin, the interfollicular epidermal (IFE) cells continuously proliferate and differentiate while HFs undergo cycles of regeneration. Epidermal regeneration is fueled by epidermal stem cells (SCs) located in the basal layer of the IFE and the outer layer of the bulge in the HF. Epidermal development and SC behavior are mainly regulated by various extrinsic cues, among which Wnt-dependent signaling pathways play crucial roles. This review not only summarizes the current knowledge of Wnt signaling pathways in the regulation of skin development and governance of SCs during tissue homeostasis, but also discusses the potential crosstalk of Wnt signaling with other pathways involved in these processes. Stem Cells 2018;36:22-35. © 2017 AlphaMed Press.

  10. Enrichment of unlabeled human Langerhans cells from epidermal cell suspensions by discontinuous density gradient centrifugation

    NARCIS (Netherlands)

    Teunissen, M. B.; Wormmeester, J.; Kapsenberg, M. L.; Bos, J. D.

    1988-01-01

    In this report we introduce an alternative procedure for enrichment of human epidermal Langerhans cells (LC) from epidermal cell suspensions of normal skin. By means of discontinuous Ficoll-Metrizoate density gradient centrifugation, a fraction containing high numbers of viable, more than 80% pure

  11. Psoriatic T cells reduce epidermal turnover time and affect cell proliferation contributed from differential gene expression.

    Science.gov (United States)

    Li, Junqin; Li, Xinhua; Hou, Ruixia; Liu, Ruifeng; Zhao, Xincheng; Dong, Feng; Wang, Chunfang; Yin, Guohua; Zhang, Kaiming

    2015-09-01

    Psoriasis is mediated primarily by T cells, which reduce epidermal turnover time and affect keratinocyte proliferation. We aimed to identify differentially expressed genes (DEG) in T cells from normal, five pairs of monozygotic twins concordant or discordant for psoriasis, to determine whether these DEG may account for the influence to epidermal turnover time and keratinocyte proliferation. The impact of T cells on keratinocyte proliferation and epidermal turnover time were investigated separately by immunohistochemistry and cultured with (3) H-TdR. mRNA expression patterns were investigated by RNA sequencing and verified by real-time reverse transcription polymerase chain reaction. After co-culture with psoriatic T cells, the expression of Ki-67, c-Myc and p53 increased, while expression of Bcl-2 and epidermal turnover time decreased. There were 14 DEG which were found to participate in the regulation of cell proliferation or differentiation. Psoriatic T cells exhibited the ability to decrease epidermal turnover time and affect keratinocyte proliferation because of the differential expression of PPIL1, HSPH1, SENP3, NUP54, FABP5, PLEKHG3, SLC9A9 and CHCHD4. © 2015 Japanese Dermatological Association.

  12. Epidermal stem cells - role in normal, wounded and pathological psoriatic and cancer skin

    DEFF Research Database (Denmark)

    Kamstrup, M.; Faurschou, A.; Gniadecki, R.

    2008-01-01

    In this review we focus on epidermal stem cells in the normal regeneration of the skin as well as in wounded and psoriatic skin. Furthermore, we discuss current data supporting the idea of cancer stem cells in the pathogenesis of skin carcinoma and malignant melanoma. Epidermal stem cells present...... or transit amplifying cells constitute a primary pathogenetic factor in the epidermal hyperproliferation seen in psoriasis. In cutaneous malignancies mounting evidence supports a stem cell origin in skin carcinoma and malignant melanoma and a possible existence of cancer stem cells Udgivelsesdato: 2008/5...

  13. [Enhanced lymphocyte proliferation in the presence of epidermal cells of HIV-infected patients in vitro].

    Science.gov (United States)

    Kappus, R P; Berger, S; Thomas, C A; Ottmann, O G; Ganser, A; Stille, W; Shah, P M

    1992-07-01

    Clinical observations show that the HIV infection is often associated with affections of the skin. In order to examine the involvement of the epidermal immune system in the HIV infection, we determined accessory cell function of epidermal cells from HIV-1-infected patients. For this we measured the proliferative response of enriched CD(4+)-T-lymphocytes from HIV-infected patients and noninfected controls to stimulation with anti-CD3 and IL-2 in the presence of epidermal cells; the enhancement of the response is dependent on the presence of functionally intact accessory cells. The capacity of epidermal cells to increase the anti-CD3-stimulated T-cell proliferative response was significantly enhanced in HIV patients (CDC III/IVA) as compared with noninfected donors. It is discussed, whether the increased activity of epidermal cells from HIV-infected patients may be responsible for several of the dermal lesions in the course of an HIV infection as due to an enhanced production and release of epidermal cell-derived cytokines.

  14. Gloss, colour and grip: multifunctional epidermal cell shapes in bee- and bird-pollinated flowers.

    Science.gov (United States)

    Papiorek, Sarah; Junker, Robert R; Lunau, Klaus

    2014-01-01

    Flowers bear the function of filters supporting the attraction of pollinators as well as the deterrence of floral antagonists. The effect of epidermal cell shape on the visual display and tactile properties of flowers has been evaluated only recently. In this study we quantitatively measured epidermal cell shape, gloss and spectral reflectance of flowers pollinated by either bees or birds testing three hypotheses: The first two hypotheses imply that bee-pollinated flowers might benefit from rough surfaces on visually-active parts produced by conical epidermal cells, as they may enhance the colour signal of flowers as well as the grip on flowers for bees. In contrast, bird-pollinated flowers might benefit from flat surfaces produced by flat epidermal cells, by avoiding frequent visitation from non-pollinating bees due to a reduced colour signal, as birds do not rely on specific colour parameters while foraging. Moreover, flat petal surfaces in bird-pollinated flowers may hamper grip for bees that do not touch anthers and stigmas while consuming nectar and thus, are considered as nectar thieves. Beside this, the third hypothesis implies that those flower parts which are vulnerable to nectar robbing of bee- as well as bird-pollinated flowers benefit from flat epidermal cells, hampering grip for nectar robbing bees. Our comparative data show in fact that conical epidermal cells are restricted to visually-active parts of bee-pollinated flowers, whereas robbing-sensitive parts of bee-pollinated as well as the entire floral surface of bird-pollinated flowers possess on average flat epidermal cells. However, direct correlations between epidermal cell shape and colour parameters have not been found. Our results together with published experimental studies show that epidermal cell shape as a largely neglected flower trait might act as an important feature in pollinator attraction and avoidance of antagonists, and thus may contribute to the partitioning of flower-visitors.

  15. Gloss, colour and grip: multifunctional epidermal cell shapes in bee- and bird-pollinated flowers.

    Directory of Open Access Journals (Sweden)

    Sarah Papiorek

    Full Text Available Flowers bear the function of filters supporting the attraction of pollinators as well as the deterrence of floral antagonists. The effect of epidermal cell shape on the visual display and tactile properties of flowers has been evaluated only recently. In this study we quantitatively measured epidermal cell shape, gloss and spectral reflectance of flowers pollinated by either bees or birds testing three hypotheses: The first two hypotheses imply that bee-pollinated flowers might benefit from rough surfaces on visually-active parts produced by conical epidermal cells, as they may enhance the colour signal of flowers as well as the grip on flowers for bees. In contrast, bird-pollinated flowers might benefit from flat surfaces produced by flat epidermal cells, by avoiding frequent visitation from non-pollinating bees due to a reduced colour signal, as birds do not rely on specific colour parameters while foraging. Moreover, flat petal surfaces in bird-pollinated flowers may hamper grip for bees that do not touch anthers and stigmas while consuming nectar and thus, are considered as nectar thieves. Beside this, the third hypothesis implies that those flower parts which are vulnerable to nectar robbing of bee- as well as bird-pollinated flowers benefit from flat epidermal cells, hampering grip for nectar robbing bees. Our comparative data show in fact that conical epidermal cells are restricted to visually-active parts of bee-pollinated flowers, whereas robbing-sensitive parts of bee-pollinated as well as the entire floral surface of bird-pollinated flowers possess on average flat epidermal cells. However, direct correlations between epidermal cell shape and colour parameters have not been found. Our results together with published experimental studies show that epidermal cell shape as a largely neglected flower trait might act as an important feature in pollinator attraction and avoidance of antagonists, and thus may contribute to the partitioning of

  16. Effects of Wnt3a on proliferation and differentiation of human epidermal stem cells

    International Nuclear Information System (INIS)

    Jia Liwei; Zhou Jiaxi; Peng Sha; Li Juxue; Cao Yujing; Duan Enkui

    2008-01-01

    Epidermal stem cells maintain development and homeostasis of mammalian epidermis throughout life. However, the molecular mechanisms involved in the proliferation and differentiation of epidermal stem cells are far from clear. In this study, we investigated the effects of Wnt3a and Wnt/β-catenin signaling on proliferation and differentiation of human fetal epidermal stem cells. We found both Wnt3a and active β-catenin, two key members of the Wnt/β-catenin signaling, were expressed in human fetal epidermis and epidermal stem cells. In addition, Wnt3a protein can promote proliferation and inhibit differentiation of epidermal stem cells in vitro culture. Our results suggest that Wnt/β-catenin signaling plays important roles in human fetal skin development and homeostasis, which also provide new insights on the molecular mechanisms of oncogenesis in human epidermis

  17. Epigenetic Regulation of Epidermal Stem Cell Biomarkers and Their Role in Wound Healing

    Directory of Open Access Journals (Sweden)

    Sabita N. Saldanha

    2015-12-01

    Full Text Available As an actively renewable tissue, changes in skin architecture are subjected to the regulation of stem cells that maintain the population of cells responsible for the formation of epidermal layers. Stems cells retain their self-renewal property and express biomarkers that are unique to this population. However, differential regulation of the biomarkers can initiate the pathway of terminal cell differentiation. Although, pockets of non-clarity in stem cell maintenance and differentiation in skin still exist, the influence of epigenetics in epidermal stem cell functions and differentiation in skin homeostasis and wound healing is clearly evident. The focus of this review is to discuss the epigenetic regulation of confirmed and probable epidermal stem cell biomarkers in epidermal stratification of normal skin and in diseased states. The role of epigenetics in wound healing, especially in diseased states of diabetes and cancer, will also be conveyed.

  18. Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack

    Directory of Open Access Journals (Sweden)

    Takemoto Daigo

    2008-06-01

    Full Text Available Abstract Background Plant cells respond to the presence of potential fungal or oomycete pathogens by mounting a basal defence response that involves aggregation of cytoplasm, reorganization of cytoskeletal, endomembrane and other cell components and development of cell wall appositions beneath the infection site. This response is induced by non-adapted, avirulent and virulent pathogens alike, and in the majority of cases achieves penetration resistance against the microorganism on the plant surface. To explore the nature of signals that trigger this subcellular response and to determine the timing of its induction, we have monitored the reorganization of GFP-tagged actin, microtubules, endoplasmic reticulum (ER and peroxisomes in Arabidopsis plants – after touching the epidermal surface with a microneedle. Results Within 3 to 5 minutes of touching the surface of Arabidopsis cotyledon epidermal cells with fine glass or tungsten needles, actin microfilaments, ER and peroxisomes began to accumulate beneath the point of contact with the needle. Formation of a dense patch of actin was followed by focusing of actin cables on the site of contact. Touching the cell surface induced localized depolymerization of microtubules to form a microtubule-depleted zone surrounding a dense patch of GFP-tubulin beneath the needle tip. The concentration of actin, GFP-tubulin, ER and peroxisomes remained focused on the contact site as the needle moved across the cell surface and quickly dispersed when the needle was removed. Conclusion Our results show that plant cells can detect the gentle pressure of a microneedle on the epidermal cell surface and respond by reorganizing subcellular components in a manner similar to that induced during attack by potential fungal or oomycete pathogens. The results of our study indicate that during plant-pathogen interactions, the basal defence response may be induced by the plant's perception of the physical force exerted by the

  19. Evolution of the clonogenic potential of human epidermal stem/progenitor cells with age

    Directory of Open Access Journals (Sweden)

    Zobiri O

    2012-02-01

    Full Text Available Olivia Zobiri, Nathalie Deshayes, Michelle Rathman-JosserandDepartment of Biological Research, L'Oréal Advanced Research, Clichy Cedex, FranceAbstract: A number of clinical observations have indicated that the regenerative potential and overall function of the epidermis is modified with age. The epidermis becomes thinner, repairs itself less efficiently after wounding, and presents modified barrier function recovery. In addition, the dermal papillae flatten out with increasing age, suggesting a modification in the interaction between epidermal and dermal compartments. As the epidermal regenerative capacity is dependent upon stem and progenitor cell function, it is naturally of interest to identify and understand age-related changes in these particular keratinocyte populations. Previous studies have indicated that the number of stem cells does not decrease with age in mouse models but little solid evidence is currently available concerning human skin. The objective of this study was to evaluate the clonogenic potential of keratinocyte populations isolated from the epidermis of over 50 human donors ranging from 18 to 71 years old. The data indicate that the number of epidermal cells presenting high regenerative potential does not dramatically decline with age in human skin. The authors believe that changes in the microenvironment controlling epidermal basal cell activity are more likely to explain the differences in epidermal function observed with increasing age.Keywords: skin, epidermal stem cells, aging, colony-forming efficiency test

  20. Micromorphology and development of the epicuticular structure on the epidermal cell of ginseng leaves

    Directory of Open Access Journals (Sweden)

    Kyounghwan Lee

    2015-04-01

    Conclusion: The outwardly projected cuticle and epidermal cell wall (i.e., an epicuticular wrinkle acts as a major barrier to block out sunlight in ginseng leaves. The small vesicles in the peripheral region of epidermal cells may suppress the cuticle and parts of epidermal wall, push it upward, and consequently contribute to the formation of the epicuticular structure.

  1. Role of Pin1 in UVA-induced cell proliferation and malignant transformation in epidermal cells

    International Nuclear Information System (INIS)

    Han, Chang Yeob; Hien, Tran Thi; Lim, Sung Chul; Kang, Keon Wook

    2011-01-01

    Highlights: → Pin1 expression is enhanced by low energy UVA irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. → UVA irradiation increases activator protein-1 activity and cyclin D1 in a Pin1-dependent manner. → UVA potentiates EGF-inducible, anchorage-independent growth of epidermal cells, and this is suppressed by Pin1 inhibition or by anti-oxidant. -- Abstract: Ultraviolet A (UVA) radiation (λ = 320-400 nm) is considered a major cause of human skin cancer. Pin1, a peptidyl prolyl isomerase, is overexpressed in most types of cancer tissues and plays an important role in cell proliferation and transformation. Here, we demonstrated that Pin1 expression was enhanced by low energy UVA (300-900 mJ/cm 2 ) irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. Exposure of epidermal cells to UVA radiation increased cell proliferation and cyclin D1 expression, and these changes were blocked by Pin1 inhibition. UVA irradiation also increased activator protein-1 (AP-1) minimal reporter activity and nuclear levels of c-Jun, but not c-Fos, in a Pin1-dependent manner. The increases in Pin1 expression and in AP-1 reporter activity in response to UVA were abolished by N-acetylcysteine (NAC) treatment. Finally, we found that pre-exposure of JB6 C141 cells to UVA potentiated EGF-inducible, anchorage-independent growth, and this effect was significantly suppressed by Pin1inhibition or by NAC.

  2. Growth of melanocytes in human epidermal cell cultures

    International Nuclear Information System (INIS)

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C.

    1990-01-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient

  3. Epidermal stem cells response to radiative genotoxic stress

    International Nuclear Information System (INIS)

    Marie, Melanie

    2013-01-01

    Human skin is the first organ exposed to various environmental stresses, which requires the development by skin stem cells of specific mechanisms to protect themselves and to ensure tissue homeostasis. As stem cells are responsible for the maintenance of epidermis during individual lifetime, the preservation of genomic integrity in these cells is essential. My PhD aimed at exploring the mechanisms set up by epidermal stem cells in order to protect themselves from two genotoxic stresses, ionizing radiation (Gamma Rays) and ultraviolet radiation (UVB). To begin my PhD, I have taken part of the demonstration of protective mechanisms used by keratinocyte stem cells after ionizing radiation. It has been shown that these cells are able to rapidly repair most types of radiation-induced DNA damage. Furthermore, we demonstrated that this repair is activated by the fibroblast growth factor 2 (FGF2). In order to know if this protective mechanism is also operating in cutaneous carcinoma stem cells, we investigated the response to gamma Rays of carcinoma stem cells isolated from a human carcinoma cell line. As in normal keratinocyte stem cells, we demonstrated that cancer stem cells could rapidly repair radio-induced DNA damage. Furthermore, fibroblast growth factor 2 also mediates this repair, notably thanks to its nuclear isoforms. The second project of my PhD was to study human epidermal stem cells and progenitors responses to UVB radiation. Once cytometry and irradiation conditions were set up, the toxicity of UVB radiation has been evaluate in the primary cell model. We then characterized UVB photons effects on cell viability, proliferation and repair of DNA damage. This study allowed us to bring out that responses of stem cells and their progeny to UVB are different, notably at the level of part of their repair activity of DNA damage. Moreover, progenitors and stem cells transcriptomic responses after UVB irradiation have been study in order to analyze the global

  4. Examination of tetrachlorosalicylanilide (TCSA) photoallergy using in vitro photohapten-modified Langerhans cell-enriched epidermal cells

    International Nuclear Information System (INIS)

    Gerberick, G.F.; Ryan, C.A.; Von Bargen, E.C.; Stuard, S.B.; Ridder, G.M.

    1991-01-01

    Lymphocytes from BALB/c mice photosensitized in vivo to tetrachlorosalicylanilide (TCSA) were investigated to determine whether they could be stimulated to proliferate when cultured with Langerhans cell-enriched cultured epidermal cells (LC-EC) photohapten-modified in vitro with TCSA + UVA radiation. Cultured LC-EC were photohapten-modified in vitro by irradiation in TCSA-containing medium using a 1000-watt solar simulator equipped with filters to deliver primarily UVA radiation (320-400 nm). Lymphocytes from TCSA-photosensitized mice were incubated with LC-EC that had been treated in vitro with 0.1 mM TCSA and 2 J/cm2 UVA radiation (TCSA + UVA). Responder lymphocytes demonstrated a significant increase in their blastogenesis response compared to lymphocytes that were incubated with LC-EC irradiated with UVA prior to treatment with TCSA (UVA/TCSA) or with LC-EC that had received no treatment. Lymphocytes from naive mice or mice photosensitized with musk ambrette (MA) demonstrated a significantly lower response to LC-EC modified with TCSA + UVA, indicating the specificity of the response. Maximum blastogenesis response was achieved when LC-EC were treated with 0.1 mM TCSA and a UVA radiation dose of at least 0.5 J/cm2. Epidermal cells depleted of LC by treatment with anti-Ia antibody plus complement or by an adherence procedure were unable to stimulate this blastogenesis response. Epidermal cells treated in vitro with TCSA + UVA demonstrated enhanced fluorescence compared to control cells. The fluorescence observed was not restricted to any specific epidermal cell type; however, fluorescence microscopy studies revealed that dendritic Ia-positive cells, presumably LC, were also TCSA fluorescent

  5. Fatal Metastatic Cutaneous Squamous Cell Carcinoma Evolving from a Localized Verrucous Epidermal Nevus

    Directory of Open Access Journals (Sweden)

    Hassan Riad

    2013-10-01

    Full Text Available A malignant transformation is known to occur in many nevi such as a sebaceous nevus or a basal cell nevus, but a verrucous epidermal nevus has only rarely been associated with neoplastic changes. Keratoacanthoma, multifocal papillary apocrine adenoma, multiple malignant eccrine poroma, basal cell carcinoma and cutaneous squamous cell carcinoma (CSCC have all been reported to develop from a verrucous epidermal nevus. CSCC has also been reported to arise from other nevoid lesions like a nevus comedonicus, porokeratosis, a sebaceous nevus, an oral sponge nevus and an ichthyosiform nevus with CHILD syndrome. Here we report a case of progressive poorly differentiated CSCC arising from a localized verrucous epidermal nevus, which caused both spinal cord and brain metastasis.

  6. Grafting of human epidermal cells, presence and perspectives

    Czech Academy of Sciences Publication Activity Database

    Smetana, Karel; Dvořánková, B.; Labský, Jiří; Vacík, Jiří; Holíková, Z.

    2001-01-01

    Roč. 102, č. 1 (2001), s. 1-6 ISSN 0036-5327 R&D Projects: GA ČR GA203/00/1310; GA AV ČR IBS4050005; GA MZd ND6340; GA MŠk LN00A065; GA AV ČR KSK4055109 Institutional research plan: CEZ:AV0Z4050913 Keywords : cell therapy-keratinocyte-epidermal stem cell * skin defect Subject RIV: CD - Macromolecular Chemistry

  7. TNP-specific Lyt-2+ cytolytic T cell clones preferentially respond to TNP-conjugated epidermal cells

    International Nuclear Information System (INIS)

    Shimada, S.; Katz, S.I.

    1985-01-01

    A most effective method for the induction of hapten-specific allergic contact sensitivity (CS) is via epicutaneous application of the hapten. Another effective method is by the administration of haptenated epidermal cells (EC) subcutaneously. The latter method induces more intense and longer lasting CS than does the subcutaneous administration of haptenated spleen cells (SC). Thus, there may be something unique about EC which, when haptenated, allows them to generate effector cells more effectively than do SC. The authors therefore, attempted to generate T cell clones that were both hapten- and epidermal-specific. Four days after painting mice with 7% trinitrochlorobenzene, draining lymph node cells were obtained and T cells were purified. These cells were co-cultured with trinitrophenylated (TNP) Langerhans cell-enriched EC. After 4 days, cells were harvested and rested on non-TNP-conjugated EC. The cells were restimulated and rested three times, and were then cloned by limiting dilution with added interleukin 2, which was then continually added. Proliferation of T cells was assessed by [ 3 H]-thymidine incorporation. Cytotoxicity assays utilized TNP-conjugated concanavalin A SC blasts or EC as targets. Clones A-2 and E-4 are Thy-1+, Lyt-2+, and L3T4-, and TNP-specific. In contrast to noncloned TNP-specific T cells, the clones proliferate preferentially in response to TNP-EC rather than TNP-SC. Also in contrast to noncloned T cells, the clones were preferentially cytotoxic for TNP-EC; compared to TNP-SC, there was an eight- to 32-fold increase in killing when TNP-EC were used as targets. Clones A-2 and E-4 therefore exhibit hapten and epidermal specificity

  8. Adding a Piece to the Leaf Epidermal Cell Shape Puzzle.

    Science.gov (United States)

    von Wangenheim, Daniel; Wells, Darren M; Bennett, Malcolm J

    2017-11-06

    The jigsaw puzzle-shaped pavement cells in the leaf epidermis collectively function as a load-bearing tissue that controls organ growth. In this issue of Developmental Cell, Majda et al. (2017) shed light on how the jigsaw shape can arise from localized variations in wall stiffness between adjacent epidermal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in dermo-epidermal skin substitutes.

    Science.gov (United States)

    Böttcher-Haberzeth, Sophie; Biedermann, Thomas; Pontiggia, Luca; Braziulis, Erik; Schiestl, Clemens; Hendriks, Bart; Eichhoff, Ossia M; Widmer, Daniel S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst

    2013-02-01

    Recently, Biedermann et al. (2010) have demonstrated that human eccrine sweat gland cells can develop a multilayered epidermis. The question still remains whether these cells can fulfill exclusive and very specific functional properties of epidermal keratinocytes, such as the incorporation of melanin, a feature absent in sweat gland cells. We added human melanocytes to eccrine sweat gland cells to let them develop into an epidermal analog in vivo. The interaction between melanocytes and sweat gland-derived keratinocytes was investigated. The following results were gained: (1) macroscopically, a pigmentation of the substitutes was seen 2-3 weeks after transplantation; (2) we confirmed the development of a multilayered, stratified epidermis with melanocytes distributed evenly throughout the basal layer; (3) melanocytic dendrites projected to suprabasal layers; and (4) melanin was observed to be integrated into former eccrine sweat gland cells. These skin substitutes were similar or equal to skin substitutes cultured from human epidermal keratinocytes. The only differences observed were a delay in pigmentation and less melanin uptake. These data suggest that eccrine sweat gland cells can form a functional epidermal melanin unit, thereby providing striking evidence that they can assume one of the most characteristic keratinocyte properties.

  10. Autodegradation of 125I-labeled human epidermal cell surface proteins

    International Nuclear Information System (INIS)

    Hashimoto, K.; Singer, K.H.; Lazarus, G.S.

    1982-01-01

    Triton X-100 extracts of cultured human epidermal cells exhibited proteolytic activity as measured by the hydrolysis of [ 3 H]-casein at neutral pH. The majority of endogenous proteolytic activity was inhibited by parahydroxy mercuribenzoate and by mersalyl acid, indicating the enzyme(s) was a thiol class proteinase(s). Crude Triton X-100 extracts were prepared from epidermal cells following labeling of proteins with 125 I. Autodegradation of labeled proteins at 37 degrees C was detected as early as 1 hr and reached a plateau level by 4 hr. Degradation was inhibited by thiol class proteinase inhibitors. Among the detergent-solubilized radiolabeled proteins a polypeptide chain of Mr 155,000 was particularly sensitive to degradation by endogenous thiol proteinase(s)

  11. Radiosensitivity of normal human epidermal cells in culture

    International Nuclear Information System (INIS)

    Dover, R.; Potten, C.S.

    1983-01-01

    Using an in vitro culture system the authors have derived #betta#-radiation survival curves over a dose range 0-8 Gy for the clonogenic cells of normal human epidermis. The culture system used allows the epidermal cells to stratify and form a multi-layered sheet of keratinizing cells. The cultures appear to be a very good model for epidermis in vivo. The survival curves show a population which is apparently more sensitive than murine epidermis in vivo. It remains unclear whether this is an intrinsic difference between the species or is a consequence of the in vitro cultivation of the human cells. (author)

  12. Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure.

    Science.gov (United States)

    Pasakarnis, Laurynas; Frei, Erich; Caussinus, Emmanuel; Affolter, Markus; Brunner, Damian

    2016-11-01

    Tissue morphogenesis requires coordination of multiple force-producing components. During dorsal closure in fly embryogenesis, an epidermis opening closes. A tensioned epidermal actin/MyosinII cable, which surrounds the opening, produces a force that is thought to combine with another MyosinII force mediating apical constriction of the amnioserosa cells that fill the opening. A model proposing that each force could autonomously drive dorsal closure was recently challenged by a model in which the two forces combine in a ratchet mechanism. Acute force elimination via selective MyosinII depletion in one or the other tissue shows that the amnioserosa tissue autonomously drives dorsal closure while the actin/MyosinII cable cannot. These findings exclude both previous models, although a contribution of the ratchet mechanism at dorsal closure onset remains likely. This shifts the current view of dorsal closure being a combinatorial force-component system to a single tissue-driven closure event.

  13. Skin Stem Cells: At the Frontier Between the Laboratory and Clinical Practice. Part 1: Epidermal Stem Cells.

    Science.gov (United States)

    Pastushenko, I; Prieto-Torres, L; Gilaberte, Y; Blanpain, C

    2015-11-01

    Stem cells are characterized by their ability to self-renew and differentiate into the different cell lineages of their tissue of origin. The discovery of stem cells in adult tissues, together with the description of specific markers for their isolation, has opened up new lines of investigation, expanding the horizons of biomedical research and raising new hope in the treatment of many diseases. In this article, we review in detail the main characteristics of the stem cells that produce the specialized cells of the skin (epidermal, mesenchymal, and melanocyte stem cells) and their potential implications and applications in diseases affecting the skin. Part I deals with the principal characteristics and potential applications of epidermal stem cells in dermatology. Copyright © 2015 Elsevier España, S.L.U. and AEDV. All rights reserved.

  14. Beta1 integrin-mediated adhesion signalling is essential for epidermal progenitor cell expansion

    DEFF Research Database (Denmark)

    Piwko-Czuchra, Aleksandra; Koegel, Heidi; Meyer, Hannelore

    2009-01-01

    BACKGROUND: There is a major discrepancy between the in vitro and in vivo results regarding the role of beta1 integrins in the maintenance of epidermal stem/progenitor cells. Studies of mice with skin-specific ablation of beta1 integrins suggested that epidermis can form and be maintained in thei...... of increased keratinocyte proliferation such as wound healing. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that expression of beta1 integrins is critically important for the expansion of epidermal progenitor cells to maintain epidermal homeostasis....... that developed similar, but less severe defects than mice with beta1-deficient keratinocytes. Surprisingly we found that upon aging these abnormalities attenuated due to a rapid expansion of cells, which escaped or compensated for the down-regulation of beta1 integrin expression. A similar phenomenon...... was observed in aged mice with a complete, skin-specific ablation of the beta1 integrin gene, where cells that escaped Cre-mediated recombination repopulated the mutant skin in a very short time period. The expansion of beta1 integrin expressing keratinocytes was even further accelerated in situations...

  15. Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions

    NARCIS (Netherlands)

    Nagao, Keisuke; Ginhoux, Florent; Leitner, Wolfgang W.; Motegi, Sei-Ichiro; Bennett, Clare L.; Clausen, Björn E.; Merad, Miriam; Udey, Mark C.

    2009-01-01

    A new langerin(+) DC subset has recently been identified in murine dermis (langerin(+) dDC), but the lineage and functional relationships between these cells and langerin(+) epidermal Langerhans cells (LC) are incompletely characterized. Selective expression of the cell adhesion molecule EpCAM by LC

  16. UVB-induced epidermal hyperproliferation is modified by a single, topical treatment with a mitosis inhibitory epidermal pentapeptide

    International Nuclear Information System (INIS)

    Olsen, W.M.; Elgjo, K.

    1990-01-01

    A single application of a water-miscible cream base containing the recently identified mitosis inhibitory epidermal pentapeptide pyroGlu-Glu-Asp-Ser-GlyOH (EPP) to hairless mouse skin is followed by a long-lasting period of reduced epidermal cell proliferation. To examine if a similar growth inhibition could be achieved in stimulated and rapidly proliferating epidermis, EPP was applied at two different concentrations, 0.005 or 0.02%, to hairless mouse skin immediately after exposure of the left flank to an erythemic dose of ultraviolet B light (UVB). This dose of UVB alone induces a sustained period of rapid epidermal cell proliferation, starting at about 18 h after the irradiation. Epidermal cell proliferation was followed from 18 to 54 h (0.005% cream) or from 18 to 30 h (0.02% cream) after the treatment by estimating the rate of G2-M cell flux (the mitotic rate) by means of Colcemid, and epidermal DNA synthesis by counting labeled cells after pulse-labeling with 3H-thymidine. The unirradiated side of the mice was used as reference. The results showed that topical treatment with a 0.02% EPP cream partially inhibited UVB-induced epidermal hyperproliferation, while the 0.005% EPP cream inhibited as well as stimulated the UVB-induced hyperproliferation. Thus, EPP is effective even in rapidly proliferating epidermal cell populations, but the outcome is obviously dose-dependent in this test system

  17. Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2012-09-01

    Plant epidermal trichomes are as varied in morphology as they are in function. In the halophyte Mesembryanthemum crystallinum, specialized trichomes called epidermal bladder cells (EBC) line the surface of leaves and stems, and increase dramatically in size and volume upon plant salt-treatment. These cells have been proposed to have roles in plant defense and UV protection, but primarily in sodium sequestration and as water reservoirs. To gain further understanding into the roles of EBC, a cell-type-specific proteomics approach was taken in which precision single-cell sampling of cell sap from individual EBC was combined with shotgun peptide sequencing (LC-MS/MS). Identified proteins showed diverse biological functions and cellular locations, with a high representation of proteins involved in H(+)-transport, carbohydrate metabolism, and photosynthesis. The proteome of EBC provides insight into the roles of these cells in ion and water homeostasis and raises the possibility that they are photosynthetically active and functioning in Crassulacean acid metabolism. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Epidermal Langerhans' cell induction of immunity against an ultraviolet-induced skin tumour

    International Nuclear Information System (INIS)

    Cavanagh, L.L.; Sluyter, R.; Henderson, K.G.; Barnetson, R.St.C.; Halliday, G.M.

    1996-01-01

    Lanerghans' cells (LC) have been shown experimentally to induce immune response against many antigens; however, their role in the initiation of anti-tumour immunity has received little attention. This study examined the ability of murine epidermal LC to induce immunity to an ultraviolet radiation (UV)-induced skin tumour. Freshly prepared epidermal cells (EC) were cultured for 2 or 20 hr with granulocyte-macrophage colony-stimulating factor (GM-CSF), pulsed with an extract of the UV-13-1 tumour, then used to immunize naive syngeneic mice. Delayed type hypersensitivity (DTH) was elicited 10 days after immunization by injection of UV-13-1 tumour cells into the ear pinna, and measured 24 hr later. EC cultured with GM-CSF for 2 hr induced anti-tumour DTH, as did EC cultured for 20 hr without GM-CSF. Conversely, EC cultured for 2 hr without GM-CSF, or EC cultured for 20 hr with GM-CSF were unable to induce a DTH. Induction of immunity required active presentation of tumour antigens by Ia + EC and was tumour specific. Thus Ia + epidermal cells are capable of inducing anti-tumour immunity to UV-induced skin tumours, but only when they contact antigen in particular states of maturation. (author)

  19. Isolation and In Vitro Characterization of Epidermal Stem Cells

    DEFF Research Database (Denmark)

    Moestrup, Kasper S; Andersen, Marianne Stemann; Jensen, Kim Bak

    2017-01-01

    flow cytometry. Using markers that define the spatial origin of epidermal cells, it is possible to interrogate the specific characteristics of subpopulations of cells based on their in vivo credentials. Here, we describe how to isolate, culture, and characterize keratinocytes from murine back and tail......Colony-forming assays represent prospective methods, where cells isolated from enzymatically dissociated tissues or from tissue cultures are assessed for their proliferative capacity in vitro. Complex tissues such as the epithelial component of the skin (the epidermis) are characterized...

  20. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells.

    Science.gov (United States)

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-04-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle-like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.

  1. Dermal-epidermal membrane systems by using human keratinocytes and mesenchymal stem cells isolated from dermis

    Energy Technology Data Exchange (ETDEWEB)

    Salerno, Simona, E-mail: s.salerno@itm.cnr.it [Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87036, Rende (CS) (Italy); Messina, Antonietta [Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87036, Rende (CS) (Italy); Giordano, Francesca [Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, (CS) (Italy); Bader, Augustinus [Biomedical-Biotechnological Center, BBZ, University of Leipzig, D-04103 Leipzig (Germany); Drioli, Enrico [Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87036, Rende (CS) (Italy); WCU Energy Engineering Department, Hanyang University, Seoul (Korea, Republic of); De Bartolo, Loredana, E-mail: l.debartolo@itm.cnr.it [Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87036, Rende (CS) (Italy)

    2017-02-01

    Dermal-epidermal membrane systems were developed by co-culturing human keratinocytes with Skin derived Stem Cells (SSCs), which are Mesenchymal Stem Cells (MSCs) isolated from dermis, on biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT and PCL. The membranes display physico-chemical, morphological, mechanical and biodegradation properties that could satisfy and fulfil specific requirements in skin tissue engineering. CHT membrane exhibits an optimal biodegradation rate for acute wounds; CHT-PCL for the chronic ones. On the other hand, PCL membrane in spite of its very slow biodegradation rate exhibits mechanical properties similar to in vivo dermis, a lower hydrophilic character, and a surface roughness, all properties that make it able to sustain cell adhesion and proliferation for in vitro skin models. Both CHT–PCL and PCL membranes guided epidermal and dermal differentiation of SSCs as pointed out by the expression of cytokeratins and the deposition of the ECM protein fibronectin, respectively. In the dermal-epidermal membrane systems, a more suitable microenvironment for the SSCs differentiation was promoted by the interactions and the mutual interplay with keratinocytes. Being skin tissue-biased stem cells committed to their specific final dermal and/or epidermal cell differentiation, SSCs are more suitable for skin tissue engineering than other adult MSCs with different origin. For this reason, they represent a useful autologous cell source for engineering skin substitutes for both in vivo and in vitro applications.

  2. Beta1 integrin-mediated adhesion signalling is essential for epidermal progenitor cell expansion.

    Directory of Open Access Journals (Sweden)

    Aleksandra Piwko-Czuchra

    Full Text Available BACKGROUND: There is a major discrepancy between the in vitro and in vivo results regarding the role of beta1 integrins in the maintenance of epidermal stem/progenitor cells. Studies of mice with skin-specific ablation of beta1 integrins suggested that epidermis can form and be maintained in their absence, while in vitro data have shown a fundamental role for these adhesion receptors in stem/progenitor cell expansion and differentiation. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate this discrepancy we generated hypomorphic mice expressing reduced beta1 integrin levels on keratinocytes that developed similar, but less severe defects than mice with beta1-deficient keratinocytes. Surprisingly we found that upon aging these abnormalities attenuated due to a rapid expansion of cells, which escaped or compensated for the down-regulation of beta1 integrin expression. A similar phenomenon was observed in aged mice with a complete, skin-specific ablation of the beta1 integrin gene, where cells that escaped Cre-mediated recombination repopulated the mutant skin in a very short time period. The expansion of beta1 integrin expressing keratinocytes was even further accelerated in situations of increased keratinocyte proliferation such as wound healing. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that expression of beta1 integrins is critically important for the expansion of epidermal progenitor cells to maintain epidermal homeostasis.

  3. Transient expression of P-type ATPases in tobacco epidermal cells

    DEFF Research Database (Denmark)

    Pedas, Lisbeth Rosager; Palmgren, Michael Broberg; Lopez Marques, Rosa Laura

    2016-01-01

    Transient expression in tobacco cells is a convenient method for several purposes such as analysis of protein-protein interactions and the subcellular localization of plant proteins. A suspension of Agrobacterium tumefaciens cells carrying the plasmid of interest is injected into the intracellula...... for example protein-protein interaction studies. In this chapter, we describe the procedure to transiently express P-type ATPases in tobacco epidermal cells, with focus on subcellular localization of the protein complexes formed by P4-ATPases and their β-subunits....

  4. Protective immunity to UV radiation-induced skin tumours induced by skin grafts and epidermal cells

    International Nuclear Information System (INIS)

    Ronald Sluyter; Kylie S Yuen; Gary M Halliday

    2001-01-01

    There is little evidence that cutaneous dendritic cells (DC), including epidermal Langerhans cells (LC), can induce immunity to UV radiation (UVR)-induced skin tumours. Here, it is shown that cells within skin can induce protective antitumour immunity against a UVR-induced fibrosarcoma. Transplantation of the skin overlying subcutaneous tumours onto naive recipients could induce protective antitumour immunity, probably because the grafting stimulated the tumour Ag-loaded DC to migrate to local lymph nodes. This suggests that cutaneous APC can present tumour Ag to induce protective antitumour immunity. Previously, it has been shown that immunization of mice with MHC class II+ epidermal cells (EC) pulsed with tumour extracts could induce delayed-type hypersensitivity against tumour cells. Here, this same immunization protocol could induce protective immunity against a minimum tumorigenic dose of UVR-induced fibrosarcoma cells, but not higher doses. Epidermal cells obtained from semiallogeneic donors and pulsed with tumour extract could also induce protective immunity. However, presentation of BSA Ag from the culture medium was found to contribute to this result using semiallogeneic EC. The results suggest that LC overlying skin tumours may be able to induce protective immunity to UVR-induced tumours if stimulated to migrate from the skin. Copyright (2001) Australasian Society of Immunology Inc

  5. Preparation of epidermal growth factor (EGF) conjugated iron oxide nanoparticles and their internalization into colon cancer cells

    International Nuclear Information System (INIS)

    Creixell, Mar; Herrera, Adriana P.; Ayala, Vanessa; Latorre-Esteves, Magda; Perez-Torres, Marianela; Torres-Lugo, Madeline; Rinaldi, Carlos

    2010-01-01

    Epidermal growth factor (EGF) was conjugated with carboxymethyldextran (CMDx) coated iron oxide magnetic nanoparticles using carbodiimide chemistry to obtain magnetic nanoparticles that target the epidermal growth factor receptor (EGFR). Epidermal growth factor modified magnetic nanoparticles were colloidally stable when suspended in biological buffers such as PBS and cell culture media. Both targeted and non-targeted nanoparticles were incubated with CaCo-2 cancer cells, known to overexpress EGFR. Nanoparticle localization within the cell was visualized by confocal laser scanning microscopy and light microscopy using Prussian blue stain. Results showed that targeted magnetic nanoparticles were rapidly accumulated in both flask-shaped small vesicles and large circular endocytic structures. Internalization patterns suggest that both clathrin-dependent and clathrin-independent receptors mediated endocytosis mechanisms are responsible for nanoparticle internalization.

  6. UVA-induced immune suppression in human skin: protective effect of vitamin E in human epidermal cells in vitro

    International Nuclear Information System (INIS)

    Clement-Lacroix, P.; Michel, L.; Moysan, A.; Morliere, P.; Dubertret, L.

    1996-01-01

    UVA (320-400 nm) radiation damage to membranes, proteins, DNA and other cellular targets is predominantly related to oxidative processes. In the present study, we demonstrated that cutaneous UVA-induced immunosuppression can be related, at least in part, to the appearance of these oxidative processes. The UVA-induced oxidative processes in freshly isolated epidermal cells were monitored by measuring the thiobarbituric acid reactive substances (TBARS) as an index of peroxidation. The in vitro immunosuppressive effects of UVA were demonstrated by measuring the allogenic lymphocyte proliferation induced by epidermal cells or purified Langerhans cells in the mixed epidermal cell-lymphocyte reaction (MECLR). In addition, the effects of a potent antioxidant (vitamin E) on these two UVA-induced processes were analysed. (author)

  7. Turnover of pigment granules: cyclic catabolism and anabolism of ommochromes within epidermal cells.

    Science.gov (United States)

    Insausti, T C; Casas, J

    2009-12-01

    Ommochromes are end products of the tryptophan metabolism in arthropods. While the anabolism of ommochromes has been well studied, the catabolism is totally unknown. In order to study it, we used the crab-spider Misumena vatia, which is able to change color reversibly in a few days, from yellow to white and back. Ommochromes is the only pigment class responsible for the body coloration in this animal. The aim of this study was to analyze the fine structure of the epidermal cells in bleaching spiders, in an attempt to correlate morphological changes with the fate of the pigment granules. Central to the process of bleaching is the lysis of the ommochrome granules. In the same cell, intact granules and granules in different degradation stages are found. The degradation begins with granule autolysis. Some components are extruded in the extracellular space and others are recycled via autophagy. Abundant glycogen appears associated to granulolysis. In a later stage of bleaching, ommochrome progranules, typical of white spiders, appear in the distal zone of the same epidermal cell. Catabolism and anabolism of pigment granules thus take place simultaneously in spider epidermal cells. A cyclic pathway of pigment granules formation and degradation, throughout a complete cycle of color change is proposed, together with an explanation for this turnover, involving photoprotection against UV by ommochromes metabolites. The presence of this turnover for melanins is discussed.

  8. Proton extrusion is an essential signalling component in the HR of epidermal single cells in the barley-powdery mildew interaction

    DEFF Research Database (Denmark)

    Zhou, F.S.; Andersen, C.H.; Burhenne, K.

    2000-01-01

    We propose a model for activation of the epidermal cell hypersensitive response (HR) in the barley/powdery mildew interaction. The model suggests that the plasma membrane proton pump (H+-ATPase) of epidermal cells is activated following penetration by an avirulent powdery mildew fungus...... in the incompatible interaction; (4) race-specific proton extrusion is observed underneath epidermal tissue detached from leaves inoculated 15 h earlier; and (5) treatment of leaves with fusicoccin, an activator of the plasma membrane H+-ATPase, increases the number of HR-cells in the compatible interaction........ This will cause an acidification of the apoplast towards the mesophyll cells, thereby activating generation of H2O2 from the mesophyll, which subsequently triggers the epidermal cell to undergo HR. The model is supported by the following data: (1) the earliest HR-related H2O2 is found in the attachment zones...

  9. Expression and analysis of exogenous proteins in epidermal cells.

    Science.gov (United States)

    Dagnino, Lina; Ho, Ernest; Chang, Wing Y

    2010-01-01

    In this chapter we review protocols for transient transfection of primary keratinocytes. The ability to transfect primary epidermal cells regardless of their differentiation status allows the biochemical and molecular characterization of multiple proteins. We review methods to analyze exogenous protein abundance in transfected keratinocytes by immunoblot and immunoprecipitation. We also present protocols to determine the subcellular distribution of these proteins by indirect immunofluorescence microscopy approaches.

  10. Amplification of epidermal growth factor receptor gene in renal cell carcinoma

    DEFF Research Database (Denmark)

    El-Hariry, Iman; Powles, Thomas; Lau, Mike R

    2010-01-01

    Expression of epidermal growth factor receptor (EGFR) may be of prognostic value in renal cell cancer (RCC). Gene amplification of EGFR was investigated in a cohort of 315 patients with advanced RCC from a previously reported randomised study. Using fluorescent in situ hybridisation, only 2...

  11. In vitro transformation of primary cultures of neonatal BALB/c mouse epidermal cells with ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Ananthaswamy, H.N.; Kripke, M.L.

    1981-01-01

    Primary epidermal cultures from neonatal BALB/c mice were used to study the carcinogenic effects of ultraviolet radiation in vitro. These cultures were irradiated once through a Falcon plastic dish cover with an FS40 sunlamp [ultraviolet B, lambda approximately 290 to 400 nm] for various lengths of time and maintained for 8 to 12 weeks without subculturing. During this period, most of the cells in the untreated control showed signs of morphological differentiation and eventually died. The cultures irradiated with ultraviolet B radiation also behaved in the same manner except that, in some dishes, small populations of surviving cells began to proliferate and developed into morphologically distinct foci. Seven long-term cell lines were derived from these ultraviolet-irradiated primary epidermal cell cultures. Six of these cell lines produced tumors when injected s.c. into normal and/or immunosuppressed syngeneic recipients. These tumorigenic cell lines lacked definitive characteristics of differentiated epidermal cells, but the cells possessed intermediate junctions, suggesting that they were of epithelial origin. Some of these in vitro-transformed cell lines appeared to be highly antigenic inasmuch as they grew preferentially in immunosuppressed BALB/c mice as compared to their growth in normal syngeneic recipients

  12. Immune sensitization against epidermal antigens in polymorphous light eruption

    International Nuclear Information System (INIS)

    Gonzalez-Amaro, R.; Baranda, L.; Salazar-Gonzalez, J.F.; Abud-Mendoza, C.; Moncada, B.

    1991-01-01

    To get further insight into the pathogenesis of polymorphous light eruption, we studied nine patients with polymorphous light eruption and six healthy persons. Two skin biopsy specimens were obtained from each person, one from previously ultraviolet light-irradiated skin and another one from unirradiated skin. An epidermal cell suspension, skin homogenate, or both were prepared from each specimen. Autologous cultures were made with peripheral blood mononuclear cells combined with irradiated or unirradiated skin homogenate and peripheral blood mononuclear cells combined with irradiated or unirradiated epidermal cell suspension. Cell proliferation was assessed by 3H-thymidine incorporation assay. The response of peripheral blood mononuclear cells to unirradiated epidermal cells or unirradiated skin homogenate was similar in both patients and controls. However, peripheral blood mononuclear cells from patients with polymorphous light eruption showed a significantly increased proliferative response to both irradiated epidermal cells and irradiated skin homogenate. Our results indicate that ultraviolet light increases the stimulatory capability of polymorphous light eruption epidermal cells in a unidirectional mixed culture with autologous peripheral blood mononuclear cells. This suggests that an immune sensitization against autologous ultraviolet light-modified skin antigens occurs in polymorphous light eruption

  13. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum

    OpenAIRE

    Barkla, Bronwyn J.; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte and facultative CAM plant Mesembryathemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and tr...

  14. Duox, Flotillin-2, and Src42A are required to activate or delimit the spread of the transcriptional response to epidermal wounds in Drosophila.

    Directory of Open Access Journals (Sweden)

    Michelle T Juarez

    2011-12-01

    Full Text Available The epidermis is the largest organ of the body for most animals, and the first line of defense against invading pathogens. A breach in the epidermal cell layer triggers a variety of localized responses that in favorable circumstances result in the repair of the wound. Many cellular and genetic responses must be limited to epidermal cells that are close to wounds, but how this is regulated is still poorly understood. The order and hierarchy of epidermal wound signaling factors are also still obscure. The Drosophila embryonic epidermis provides an excellent system to study genes that regulate wound healing processes. We have developed a variety of fluorescent reporters that provide a visible readout of wound-dependent transcriptional activation near epidermal wound sites. A large screen for mutants that alter the activity of these wound reporters has identified seven new genes required to activate or delimit wound-induced transcriptional responses to a narrow zone of cells surrounding wound sites. Among the genes required to delimit the spread of wound responses are Drosophila Flotillin-2 and Src42A, both of which are transcriptionally activated around wound sites. Flotillin-2 and constitutively active Src42A are also sufficient, when overexpressed at high levels, to inhibit wound-induced transcription in epidermal cells. One gene required to activate epidermal wound reporters encodes Dual oxidase, an enzyme that produces hydrogen peroxide. We also find that four biochemical treatments (a serine protease, a Src kinase inhibitor, methyl-ß-cyclodextrin, and hydrogen peroxide are sufficient to globally activate epidermal wound response genes in Drosophila embryos. We explore the epistatic relationships among the factors that induce or delimit the spread of epidermal wound signals. Our results define new genetic functions that interact to instruct only a limited number of cells around puncture wounds to mount a transcriptional response, mediating

  15. Human papillomavirus E6/E7 oncogenes promote mouse ear regeneration by increasing the rate of wound re-epithelization and epidermal growth.

    Science.gov (United States)

    Valencia, Concepción; Bonilla-Delgado, José; Oktaba, Katarzyna; Ocádiz-Delgado, Rodolfo; Gariglio, Patricio; Covarrubias, Luis

    2008-12-01

    Mammals have limited regeneration capacity. We report here that, in transgenic mice (Tg(bK6-E6/E7)), the expression of the E6/E7 oncogenes of human papilloma virus type 16 (HPV16) under the control of the bovine keratin 6 promoter markedly improves the mouse's capacity to repair portions of the ear after being wounded. Increased repair capacity correlates with an increased number of epidermal proliferating cells. In concordance with the expected effects of the E6 and E7 oncogenes, levels of p53 decreased and those of p16 in epidermal cells increased. In addition, we observed that wound re-epithelization proceeded faster in transgenic than in wild-type animals. After the initial re-epithelization, epidermal cell migration from the intact surrounding tissue appears to be a major contributor to the growing epidermis, especially in the repairing tissue of transgenic mice. We also found that there is a significantly higher number of putative epidermal stem cells in Tg(bK6-E6/E7) than in wild-type mice. Remarkably, hair follicles and cartilage regenerated within the repaired ear tissue, without evidence of tumor formation. We propose that the ability to regenerate ear portions is limited by the capacity of the epidermis to repair itself and grow.

  16. BAG-1 enhances cell-cell adhesion, reduces proliferation and induces chaperone-independent suppression of hepatocyte growth factor-induced epidermal keratinocyte migration

    International Nuclear Information System (INIS)

    Hinitt, C.A.M.; Wood, J.; Lee, S.S.; Williams, A.C.; Howarth, J.L.; Glover, C.P.; Uney, J.B.; Hague, A.

    2010-01-01

    Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF) in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.

  17. Dynein and EFF-1 control dendrite morphology by regulating the localization pattern of SAX-7 in epidermal cells.

    Science.gov (United States)

    Zhu, Ting; Liang, Xing; Wang, Xiang-Ming; Shen, Kang

    2017-12-01

    Our previous work showed that the cell adhesion molecule SAX-7 forms an elaborate pattern in Caenorhabditis elegans epidermal cells, which instructs PVD dendrite branching. However, the molecular mechanism forming the SAX-7 pattern in the epidermis is not fully understood. Here, we report that the dynein light intermediate chain DLI-1 and the fusogen EFF-1 are required in epidermal cells to pattern SAX-7. While previous reports suggest that these two molecules act cell-autonomously in the PVD, our results show that the disorganized PVD dendritic arbors in these mutants are due to the abnormal SAX-7 localization patterns in epidermal cells. Three lines of evidence support this notion. First, the epidermal SAX-7 pattern was severely affected in dli-1 and eff-1 mutants. Second, the abnormal SAX-7 pattern was predictive of the ectopic PVD dendrites. Third, expression of DLI-1 or EFF-1 in the epidermis rescued both the SAX-7 pattern and the disorganized PVD dendrite phenotypes, whereas expression of these molecules in the PVD did not. We also show that DLI-1 functions cell-autonomously in the PVD to promote distal branch formation. These results demonstrate the unexpected roles of DLI-1 and EFF-1 in the epidermis in the control of PVD dendrite morphogenesis. © 2017. Published by The Company of Biologists Ltd.

  18. Biochemistry of epidermal stem cells☆

    Science.gov (United States)

    Eckert, Richard L.; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A.; Vemuri, Mohan C.; Boucher, Shayne E.; Bickenbach, Jackie R.; Kerr, Candace

    2014-01-01

    Background The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. Scope of review A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. Major conclusions An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. General significance Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. PMID:22820019

  19. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte Mesembryanthemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF) and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples identified 352 significantly differing metabolites (268 after correction for FDR). Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na(+) and Cl(-) ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggests large alterations in M. crystallinum epidermal bladder cells.

  20. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum

    Science.gov (United States)

    Barkla, Bronwyn J.; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte Mesembryanthemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF) and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples identified 352 significantly differing metabolites (268 after correction for FDR). Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na+ and Cl− ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggests large alterations in M. crystallinum epidermal bladder cells. PMID:26113856

  1. Effects of epidermal growth factor on neural crest cells in tissue culture

    International Nuclear Information System (INIS)

    Erickson, C.A.; Turley, E.A.

    1987-01-01

    Epidermal growth factor (EGF) stimulates the release of hyaluronic acid (HA) and chondroitin sulfate proteoglycan (CSPG) from quail trunk neural crest cultures in a dose-dependent fashion. It also promotes the expression of cell-associated heparan sulfate proteoglycan (HSPG) as detected by immunofluorescence and immunoprecipitation of the 3 H-labeled proteoglycan. Furthermore, EGF stimulates [ 3 H]thymidine incorporation into total cell DNA. These results raise the possibility that EGF or an analogous growth factor is involved in regulation of neural crest cell morphogenesis

  2. Myosin II activity is required for functional leading-edge cells and closure of epidermal sheets in fish skin ex vivo.

    Science.gov (United States)

    Morita, Toshiyuki; Tsuchiya, Akiko; Sugimoto, Masazumi

    2011-09-01

    Re-epithelialization in skin wound healing is a process in which epidermal sheets grow and close the wound. Although the actin-myosin system is thought to have a pivotal role in re-epithelialization, its role is not clear. In fish skin, re-epithelialization occurs around 500 μm/h and is 50 times faster than in mammalian skin. We had previously reported that leading-edge cells of the epidermal outgrowth have both polarized large lamellipodia and "purse string"-like actin filament cables in the scale-skin culture system of medaka fish, Oryzias latipes (Cell Tissue Res, 2007). The actin purse-string (APS) is a supracellular contractile machinery in which adherens junctions (AJs) link intracellular myosin II-including actin cables between neighboring cells. In this study, we developed a modified "face-to-face" scale-skin culture system as an ex vivo model to study epidermal wound healing, and examined the role of the actin-myosin system in the rapid re-epithelialization using a myosin II ATPase inhibitor, blebbistatin. A low level of blebbistatin suppressed the formation of APS and induced the dissociation of keratocytes from the leading edge without attenuating the growth of the epidermal sheet or the migration rate of solitary keratocytes. AJs in the superficial layer showed no obvious changes elicited by blebbistatin. However, two epidermal sheets without APSs did not make a closure with each other, which was confirmed by inhibiting the connecting AJs between the superficial layers. These results suggest that myosin II activity is required for functional leading-edge cells and for epidermal closure.

  3. Bioengineering of cultured epidermis from adult epidermal stem cells using Mebio gel sutable as autologous graft material

    Directory of Open Access Journals (Sweden)

    Lakshmana K Yerneni

    2007-01-01

    Full Text Available Closure of burn wound is the primary requirement in order to reduce morbidity and mortality that are otherwise very high due to non-availability of permanent wound covering materials. Sheets of cultured epidermis grown from autologous epidermal keratinocyte stem cells are accepted world over as one of the best wound covering materials. In a largely populated country like ours where burn casualties occur more frequently due to inadequate safety practices, there is a need for indigenous research inputs to develop such methodologies. The technique to culturing epidermal sheets in vitro involves the basic Reheinwald-Green method with our own beneficial inputs. The technique employs attenuated 3T3 cells as feeders for propagating keratinocyte stem cells that are isolated from the epidermis of an initial skin biopsy of about 5 cm2 from the patient. The cultures are then maintained in Dulbecco's modified Eagle's medium strengthened with Ham's F12 formula, bovine fetal serum and various specific growth-promoting agents and factors in culture flasks under standard culture conditions. The primary cultures thus established would be serially passaged to achieve the required expansion. Our major inputs are into the establishment of (1 an efficient differential trypsinization protocol to isolate large number epidermal keratinocytes from the skin biopsy, (2 a highly specific, unique and foolproof attenuation protocol for 3T3 cells and (3 a specialized and significant decontamination protocol. The fully formed epidermal sheet as verified by immuno-histochemical and light & electron microscopic studies, is lifted on to paraffin gauze by incubating in a neutral protease. The graft is then ready to be transported to the operating theatre for autologous application. We have a capability of growing cultured epidermal sheets sufficient enough to cover 40 per cent burn wound in 28 days. The preliminary small area clinical applications undertaken so far revealed

  4. The organization of human epidermis: functional epidermal units and phi proportionality.

    Science.gov (United States)

    Hoath, Steven B; Leahy, D G

    2003-12-01

    The concept that mammalian epidermis is structurally organized into functional epidermal units has been proposed on the basis of stratum corneum (SC) architecture, proliferation kinetics, melanocyte:keratinocyte ratios (1:36), and, more recently, Langerhans cell: epidermal cell ratios (1:53). This article examines the concept of functional epidermal units in human skin in which the maintenance of phi (1.618034) proportionality provides a central organizing principle. The following empirical measurements were used: 75,346 nucleated epidermal cells per mm2, 1394 Langerhans cells per mm2, 1999 melanocytes per mm2, 16 (SC) layers, 900-microm2 corneocyte surface area, 17,778 corneocytes per mm2, 14-d (SC) turnover time, and 93,124 per mm2 total epidermal cells. Given these empirical data: (1) the number of corneocytes is a mean proportional between the sum of the Langerhans cell + melanocyte populations and the number of epidermal cells, 3393/17,778-17,778/93,124; (2) the ratio of nucleated epidermal cells over corneocytes is phi proportional, 75,346/17,778 approximately phi3; (3) assuming similar 14-d turnover times for the (SC) and Malpighian epidermis, the number of corneocytes results from subtraction of a cellular fraction equal to approximately 2/phi2 x the number of living cells, 75,436 - (2/phi2 x 75,346) approximately 17,778; and (4) if total epidermal turnover time equals (SC) turnover time x the ratio of living/dead cells, then compartmental turnover times are unequal (14 d for (SC) to 45.3 d for nucleated epidermis approximately 1/2phi) and cellular replacement rates are 52.9 corneocytes/69.3 keratinocytes per mm2 per h approximately 2/phi2. These empirically derived equivalences provide logicomathematical support for the presence of functional epidermal units in human skin. Validation of a phi proportional unit architecture in human epidermis will be important for tissue engineering of skin and the design of instruments for skin measurement.

  5. Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.

    Science.gov (United States)

    Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De

    2016-10-01

    In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Bioengineering a human plasma-based epidermal substitute with efficient grafting capacity and high content in clonogenic cells.

    Science.gov (United States)

    Alexaline, Maia M; Trouillas, Marina; Nivet, Muriel; Bourreau, Emilie; Leclerc, Thomas; Duhamel, Patrick; Martin, Michele T; Doucet, Christelle; Fortunel, Nicolas O; Lataillade, Jean-Jacques

    2015-06-01

    Cultured epithelial autografts (CEAs) produced from a small, healthy skin biopsy represent a lifesaving surgical technique in cases of full-thickness skin burn covering >50% of total body surface area. CEAs also present numerous drawbacks, among them the use of animal proteins and cells, the high fragility of keratinocyte sheets, and the immaturity of the dermal-epidermal junction, leading to heavy cosmetic and functional sequelae. To overcome these weaknesses, we developed a human plasma-based epidermal substitute (hPBES) for epidermal coverage in cases of massive burn, as an alternative to traditional CEA, and set up critical quality controls for preclinical and clinical studies. In this study, phenotypical analyses in conjunction with functional assays (clonal analysis, long-term culture, or in vivo graft) showed that our new substitute fulfills the biological requirements for epidermal regeneration. hPBES keratinocytes showed high potential for cell proliferation and subsequent differentiation similar to healthy skin compared with a well-known reference material, as ascertained by a combination of quality controls. This work highlights the importance of integrating relevant multiparameter quality controls into the bioengineering of new skin substitutes before they reach clinical development. This work involves the development of a new bioengineered epidermal substitute with pertinent functional quality controls. The novelty of this work is based on this quality approach. ©AlphaMed Press.

  7. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Directory of Open Access Journals (Sweden)

    Bronwyn Jane Barkla

    2015-06-01

    Full Text Available One of the remarkable adaptive features of the halophyte and facultative CAM plant Mesembryathemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples was used to identify 352 significantly differing metabolites (268 after correction for FDR. Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na and Cl ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggest large alterations in Mesembryanthemum crystallinum epidermal bladder cells.

  8. Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Takagi, Ryo; Yamato, Masayuki; Murakami, Daisuke; Sugiyama, Hiroaki; Okano, Teruo

    2011-01-01

    Highlights: → Normal human epidermal keratinocytes serially cultured under low calcium concentration were cytokeratin and vimentin double positive cells. → The human keratinocytes expressed some epithelial stem/progenitor cell makers, mesenchymal cell markers, and markers of epithelial-mesenchymal transition. → Mesenchymal cell-like phenotype in the keratinocytes was suppressed under high-calcium condition. -- Abstract: Epithelial-mesenchymal transition (EMT) is an important cellular phenomenon in organ developments, cancer invasions, and wound healing, and many types of transformed cell lines are used for investigating for molecular mechanisms of EMT. However, there are few reports for EMT in normal human epithelial cells, which are non-transformed or non-immortalized cells, in vitro. Therefore, normal human epidermal keratinocytes (NHEK) serially cultured in low-calcium concentration medium (LCM) were used for investigating relations between differentiation and proliferation and mesenchymal-like phenotype in the present study, since long-term cultivation of NHEK is achieved in LCM. Interestingly, NHEK serially cultured in LCM consisted essentially of cytokeratin-vimentin double positive cells (98%), although the NHEK exhibited differentiation under high-calcium culture condition with 3T3 feeder layer. The vimentin expression was suppressed under high-calcium condition. These results may indicate the importance of mesenchymal-like phenotype for serially cultivation of NHEK in vitro.

  9. Epidermal growth factor in the rat prostate

    DEFF Research Database (Denmark)

    Tørring, Niels; Jørgensen, P E; Poulsen, Steen Seier

    1998-01-01

    Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate.......Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate....

  10. Signalling in the epidermis: the E2F cell cycle regulatory pathway in epidermal morphogenesis, regeneration and transformation.

    Science.gov (United States)

    Ivanova, Iordanka A; D'Souza, Sudhir J A; Dagnino, Lina

    2005-01-01

    The epidermis is the outermost layer in the skin, and it is the first line of defence against the environment. The epidermis also provides a barrier against loss of fluids and electrolytes, which is crucial for life. Essential in the maintenance of this tissue is its ability to continually self-renew and regenerate after injury. These two characteristics are critically dependent on the ability of the principal epidermal cell type, the keratinocyte, to proliferate and to respond to differentiation cues. Indeed, the epidermis is a multilayered tissue composed of keratinocyte stem cells and their differentiated progeny. Central for the control of cell proliferation is the E2F transcription factor regulatory network. This signaling network also includes cyclins, cdk, cdk inhibitors and the retinoblastoma (pRb) family of proteins. The biological importance of the E2F/pRb pathway is emphasized by the fact that a majority of human tumours exhibit alterations that disrupt the ability of pRb proteins to inhibit E2F, leading to permanent activation of the latter. Further, E2F is essential for normal epidermal regeneration after injury. Other member of the E2F signaling pathway are also involved in epidermal development and pathophysiology. Thus, whereas the pRb family of proteins is essential for epidermal morphogenesis, abnormal regulation of cyclins and E2F proteins results in tumorgenesis in this tissue. In this review, we discuss the role of each member of this important growth regulatory network in epidermal formation, homeostasis and carcinogenesis.

  11. Induction of suppression of delayed type hypersensitivity to herpes simplex virus by epidermal cells exposed to UV-irradiated urocanic acid in vivo

    International Nuclear Information System (INIS)

    Ross, J.A.; Howie, S.E.; Norval, M.; Maingay, J.P.

    1987-01-01

    Urocanic acid (UCA), the putative photoreceptor for ultraviolet radiation (UV)-induced suppression, undergoes a UV-dependent trans to cis isomerisation. Epidermal cells from mice painted with UCA, containing a known proportion of the cis-isomer, generate suppression of the delayed type hypersensitivity response to herpes simplex virus type 1 (HSV-1) when transferred to naive syngeneic recipients at the same time and site as infection with HSV-1. One T suppressor cell subset, of phenotype (Thy1+, L3T4+, Ly2-), is induced by the cis-UCA modified epidermal cell transfer. Flow cytometric analysis of the epidermal cells from skin treated with UV or cis-UCA indicates an overall reduction from normal in the number of cells expressing MHC Class II antigens, but no alteration in the number expressing I-J antigens

  12. Penile epidermal inclusion cyst: a late complication of penile girth enhancement surgery.

    Science.gov (United States)

    Park, Hyun Jun; Park, Nam Cheol; Park, Sung Woo; Jern, Tae Kyung; Choi, Kyung-Un

    2008-09-01

    Epidermal inclusion cysts are benign lesions that can develop in any part of the body. However, the finding of an epidermal inclusion cyst in the penis is rare. The aim of this article was to present the management of a case of a penile epidermal inclusion cyst that occurred because of late complications of a penile girth enhancement surgery. A 52-year-old man presented with a painless, slowly growing mass in the penis, which was first noted after a penile girth enhancement surgery 20 years ago. A cystic mobile mass about 2 cm in depth was found surrounding the coronal sulcus. Excision of the mass was performed for diagnosis and treatment. There was no communication with the urethra. The pathological diagnosis was an epidermal inclusion cyst of the penis. A penile epidermal inclusion cyst in adult men is rare. It can develop after an inadequate procedure for penile girth enhancement, and should be treated by complete resection.

  13. Genetic analysis of Ras genes in epidermal development and tumorigenesis

    Science.gov (United States)

    Drosten, Matthias; Lechuga, Carmen G; Barbacid, Mariano

    2013-01-01

    Proliferation and differentiation of epidermal keratinocytes are tightly controlled to ensure proper development and homeostasis of the epidermis. The Ras family of small GTPases has emerged as a central node in the coordination of cell proliferation in the epidermis. Recent genetic evidence from mouse models has revealed that the intensity of Ras signaling modulates the proliferative capacity of epidermal keratinocytes. Interfering with Ras signaling either by combined elimination of the 3 Ras genes from the basal layer of the epidermis or by overexpression of dominant-negative Ras isoforms caused epidermal thinning due to hypoproliferation of keratinocytes. In contrast, overexpression of oncogenic Ras mutants in different epidermal cell layers led to hyperproliferative phenotypes including the development of papillomas and squamous cell carcinomas. Here, we discuss the value of loss- and gain-of-function studies in mouse models to assess the role of Ras signaling in the control of epidermal proliferation. PMID:24150175

  14. Effect of glucocorticoids and gamma radiation on epidermal Langerhans cells

    International Nuclear Information System (INIS)

    Belsito, D.V.; Baer, R.L.; Thorbecke, G.J.; Gigli, I.

    1984-01-01

    The effect of 750 rads of gamma radiation on the rate of return of epidermal Langerhans cells (LC) following suppressive doses of topical glucorticoids was studied in guinea pigs. Gamma radiation alone had no effect on the LC as assessed by staining for cell membrane ATPase activity and Ia antigen. It did, however, delay the expected return of Ia but not ATPase surface markers on the LC after perturbation with glucocorticoids. The delayed return of surface Ia antigen is possibly related to a radiation-induced defect in the production of a required lymphokine and/or in intracellular Ia transport. Although our data do not rule out a cytolytic effect of steroids on the LC, they do strongly suggest that, at least in part, glucocorticoids act on the LC by altering cell surface characteristics

  15. Expression of PML tumor suppressor in A 431 cells reduces cellular growth by inhibiting the epidermal growth factor receptor expression

    International Nuclear Information System (INIS)

    Vallian, S.; Chang, K.S.

    2004-01-01

    Our previous studies showed that the promyelocytic leukemia, PML, protein functions as a cellular and growth suppressor. Transient expression of PML was also found to repress the activity of the epidermal growth factor receptor gene promoter. In this study we have examined the effects of PML on A431 cells, which express a high level of + protein. The PML gene was introduced into the cells using the adenovirus-mediated gene transfer system. Western blot analysis on the extracts from the cells expressing PML showed a significant repression in the expression of the epidermal growth factor receptor protein. The cells were examined for growth and DNA synthesis. The data showed a marked reduction in both growth and DNA synthesis rate in the cells expressing PML compared with the control cells. Furthermore, in comparison with the controls, the cells expressing PML were found to be more in G1 phase, fewer in S and about the same number in the G2/M phase. This data clearly demonstrated that the repression of epidermal growth factor receptor expression in A 431 cells by PML was associated with inhibition of cell growth and alteration of the cell cycle distribution, suggesting a novel mechanism for the known growth inhibitory effects of PML

  16. Foliar Epidermal Studies of Plants in Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    H. A. Thakur

    2014-03-01

    Full Text Available This paper describes foliar epidermal structure in 17 species belonging to 17 genera of the family Euphoprbiaceae. Anomocytic stomata is predominant, rarely they are anisocytic, paracytic on the same foliar surface with different combinations. Leaves are hypostomatic and rarely amphistomatic. The foliar surface is smooth, rarely striated. The foliar epidermal cell walls are straight or undulate. Distribution of stomata, stomatal index, stomatal frequency, stomatal size and other cell wall contours are described in detail.

  17. Epidermal growth in the bottlenose dolphin, Tursiops truncatus

    International Nuclear Information System (INIS)

    Hicks, B.D.; St Aubin, D.J.; Geraci, J.R.; Brown, W.R.

    1985-01-01

    Epidermal growth in two mature female bottlenose dolphins, Tursiops truncatus, was investigated by following the movement of a cohort of tritiated thymidine-labeled epidermal cells for 59 days. The majority of the cells migrated in a cluster which was estimated to reach the skin surface in 73 days. The authors calculate that the outermost cell layer is sloughed 12 times per day. Turnover time and sloughing rate are estimated to be 1.7 times longer and 8.5 times faster than the respective values for epidermal cell kinetics in humans. This apparent inconsistency of slow transit time and rapid sloughing rate is reconciled by the convoluted structure of the stratum germinativum in the dolphin which results in a ratio of germinatival to superficial cells of 876:1. The stratum germinativum of dolphin epidermis appears to lack morphologically distinct, spatially segregated subpopulations of anchoring and stem cells. Dolphin epidermis has a large capacity for cell population, relatively long turnover time, and rapid sloughing rate. The adaptive advantages of these characteristics are discussed

  18. Epidermal growth in the bottlenose dolphin, Tursiops truncatus

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, B.D.; St. Aubin, D.J.; Geraci, J.R.; Brown, W.R.

    1985-07-01

    Epidermal growth in two mature female bottlenose dolphins, Tursiops truncatus, was investigated by following the movement of a cohort of tritiated thymidine-labeled epidermal cells for 59 days. The majority of the cells migrated in a cluster which was estimated to reach the skin surface in 73 days. The authors calculate that the outermost cell layer is sloughed 12 times per day. Turnover time and sloughing rate are estimated to be 1.7 times longer and 8.5 times faster than the respective values for epidermal cell kinetics in humans. This apparent inconsistency of slow transit time and rapid sloughing rate is reconciled by the convoluted structure of the stratum germinativum in the dolphin which results in a ratio of germinatival to superficial cells of 876:1. The stratum germinativum of dolphin epidermis appears to lack morphologically distinct, spatially segregated subpopulations of anchoring and stem cells. Dolphin epidermis has a large capacity for cell population, relatively long turnover time, and rapid sloughing rate. The adaptive advantages of these characteristics are discussed.

  19. Stimulation of allogeneic lymphocytes by skin epidermal cells in the rat

    International Nuclear Information System (INIS)

    Tanaka, S.; Sakai, A.

    1979-01-01

    The ability of skin epidermal cells to induce allogeneic lymphocytes into proliferation was examined in mixed skin cell-lymphocyte culture reaction (MSLR). The stimulatng capacity of skin cells was reduced significantly by trypsin digestion, although the damage was repaired by incubation at 37 C for 3 hr. The optimal concentration of mitomycin C for treatment of stimulating cells in the MSLR differed from that in mixed lymphocyte culture reaction (MLR). Irradiation rendered them three to four times more stimulatory than did mitomycin C. Removal of adherent cells from responding cells by passage through a nylon-wool column gave a substantial elevation of the MSLR. The lymphocytes cocultured with skin cells in the primary MSLR incorporated 3 H-thymidine, with the peak at the 6th day of culture. If the lymphocytes primed in the MSLR were restimulated with skin cells from the same stimulating strain, the primed lymphocytes responded promptly and in great magnitude

  20. In vivo UVB irradiation induces clustering of Fas (CD95) on human epidermal cells

    DEFF Research Database (Denmark)

    Bang, Bo; Gniadecki, Robert; Larsen, Jørgen K

    2003-01-01

    a single dose of UVB irradiation. Normal healthy individuals were irradiated with three minimal erythema doses (MED) of UVB on forearm or buttock skin. Suction blisters from unirradiated and irradiated skin were raised, and Fas, FasL, and apoptosis of epidermal cells quantified by flow cytometry...

  1. Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors.

    Science.gov (United States)

    Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E; Cao, Mengjun; Wu, Yaojiong

    2016-12-01

    : Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. ©AlphaMed Press.

  2. Combined inhibition of EMMPRIN and epidermal growth factor receptor prevents the growth and migration of head and neck squamous cell carcinoma cells.

    Science.gov (United States)

    Suzuki, Shinsuke; Ishikawa, Kazuo

    2014-03-01

    It has been reported that the epidermal growth factor receptor (EGFR) expression is associated with the extracellular matrix metalloproteinase inducer (EMMPRIN) in some solid tumors; however, the relationship of EMMPRIN with EGFR in head and neck cancers is not fully understood. To determine the relationship between EMMPRIN and EGFR in head and neck squamous cell carcinoma (HNSCC), HNSCC cells were stimulated with epidermal growth factor (EGF), a ligand of EGFR. EMMPRIN expression in HNSCC cells was upregulated by EGF. In addition, EGF stimulation induced HNSCC cell invasion and MMP-9 expression. This increase in invasion and MMP-9 expression was abrogated by downmodulation of EMMPRIN. Furthermore, to determine the effects of combined EMMPRIN and EGFR targeting in HNSCC, HNSCC cells were treated with an EMMPRIN function-blocking antibody and the EGFR inhibitor AG1478. This combined treatment resulted in greater inhibition of HNSCC cell proliferation and migration compared with the individual agents alone. These results suggest that EMMPRIN mediates EGFR-induced tumorigenicity and that combined targeting of EMMPRIN and EGFR may be an efficacious treatment approach.

  3. An Epidermal Biosensor for Carcinoembryonic Antigen

    National Research Council Canada - National Science Library

    Schwartz, Pauline

    2001-01-01

    ...). An epidermal biosensor is a new approach for the early continuous, in vivo detection of the onset of disease by the using genetically modified skin cells to respond to molecules secreted by tumor cells...

  4. Shavenbaby couples patterning to epidermal cell shape control.

    Directory of Open Access Journals (Sweden)

    Hélène Chanut-Delalande

    2006-09-01

    Full Text Available It is well established that developmental programs act during embryogenesis to determine animal morphogenesis. How these developmental cues produce specific cell shape during morphogenesis, however, has remained elusive. We addressed this question by studying the morphological differentiation of the Drosophila epidermis, governed by a well-known circuit of regulators leading to a stereotyped pattern of smooth cells and cells forming actin-rich extensions (trichomes. It was shown that the transcription factor Shavenbaby plays a pivotal role in the formation of trichomes and underlies all examined cases of the evolutionary diversification of their pattern. To gain insight into the mechanisms of morphological differentiation, we sought to identify shavenbaby's downstream targets. We show here that Shavenbaby controls epidermal cell shape, through the transcriptional activation of different classes of cellular effectors, directly contributing to the organization of actin filaments, regulation of the extracellular matrix, and modification of the cuticle. Individual inactivation of shavenbaby's targets produces distinct trichome defects and only their simultaneous inactivation prevent trichome formation. Our data show that shavenbaby governs an evolutionarily conserved developmental module consisting of a set of genes collectively responsible for trichome formation, shedding new light on molecular mechanisms acting during morphogenesis and the way they can influence evolution of animal forms.

  5. Changes in epidermal growth factor receptor expression during chemotherapy in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Santoni-Rugiu, Eric; Sørensen, Jens Benn

    2014-01-01

    BACKGROUND: Antibodies targeting epidermal growth factor receptor (EGFR), such as cetuximab, may potentially improve outcome in non-small cell lung cancer (NSCLC) patients with high EGFR expression. The EGFR expression may be heterogeneously distributed within tumors, and small biopsies may thus...

  6. Human Epidermal Langerhans Cells Maintain Immune Homeostasis in Skin by Activating Skin Resident Regulatory T Cells

    Science.gov (United States)

    Seneschal, Julien; Clark, Rachael A.; Gehad, Ahmed; Baecher-Allan, Clare M.; Kupper, Thomas S.

    2013-01-01

    Recent discoveries indicate that the skin of a normal individual contains 10-20 billion resident memory T cells ( which include various T helper, T cytotoxic, and T regulatory subsets, that are poised to respond to environmental antigens. Using only autologous human tissues, we report that both in vitro and in vivo, resting epidermal Langerhan cells (LC) selectively and specifically induced the activation and proliferation of skin resident regulatory T cells (Treg), a minor subset of skin resident memory T cells. In the presence of foreign pathogen, however, the same LC activated and induced proliferation of effector memory T (Tem) cells and limited Treg cells activation. These underappreciated properties of LC: namely maintenance of tolerance in normal skin, and activation of protective skin resident memory T cells upon infectious challenge, help clarify the role of LC in skin. PMID:22560445

  7. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell......Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...

  8. An Epidermal Biosensor for Carcinoembryonic Antigen

    National Research Council Canada - National Science Library

    Schwartz, Pauline

    2003-01-01

    ...) An epidermal biosensor was conceived as a new approach for the early continuous, in vivo detection of the onset of disease by the using genetically modified skin cells to respond to molecules secreted by tumor cells...

  9. Skin mucus of Cyprinus carpio inhibits cyprinid herpesvirus 3 binding to epidermal cells

    Directory of Open Access Journals (Sweden)

    Raj Victor

    2011-08-01

    Full Text Available Abstract Cyprinid herpesvirus 3 (CyHV-3 is the aetiological agent of a mortal and highly contagious disease in common and koi carp. The skin is the major portal of entry of CyHV-3 in carp after immersion in water containing the virus. In the present study, we used in vivo bioluminescence imaging to investigate the effect of skin mucus removal and skin epidermis lesion on CyHV-3 entry. Physical treatments inducing removal of the mucus up to complete erosion of the epidermis were applied on a defined area of carp skin just before inoculation by immersion in infectious water. CyHV-3 entry in carp was drastically enhanced on the area of the skin where the mucus was removed with or without associated epidermal lesion. To investigate whether skin mucus inhibits CyHV-3 binding to epidermal cells, tail fins with an intact mucus layer or without mucus were inoculated ex vivo. While electron microscopy examination revealed numerous viral particles bound on the fins inoculated after mucus removal, no particle could be detected after infection of mucus-covered fins. Finally, anti-CyHV-3 neutralising activity of mucus extract was tested in vitro. Incubation of CyHV-3 with mucus extract reduced its infectivity in a dose dependent manner. The present study demonstrates that skin mucus removal and epidermal lesions enhance CyHV-3 entry in carp. It highlights the role of fish skin mucus as an innate immune protection against viral epidermal entry.

  10. Skin mucus of Cyprinus carpio inhibits cyprinid herpesvirus 3 binding to epidermal cells

    Science.gov (United States)

    2011-01-01

    Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a mortal and highly contagious disease in common and koi carp. The skin is the major portal of entry of CyHV-3 in carp after immersion in water containing the virus. In the present study, we used in vivo bioluminescence imaging to investigate the effect of skin mucus removal and skin epidermis lesion on CyHV-3 entry. Physical treatments inducing removal of the mucus up to complete erosion of the epidermis were applied on a defined area of carp skin just before inoculation by immersion in infectious water. CyHV-3 entry in carp was drastically enhanced on the area of the skin where the mucus was removed with or without associated epidermal lesion. To investigate whether skin mucus inhibits CyHV-3 binding to epidermal cells, tail fins with an intact mucus layer or without mucus were inoculated ex vivo. While electron microscopy examination revealed numerous viral particles bound on the fins inoculated after mucus removal, no particle could be detected after infection of mucus-covered fins. Finally, anti-CyHV-3 neutralising activity of mucus extract was tested in vitro. Incubation of CyHV-3 with mucus extract reduced its infectivity in a dose dependent manner. The present study demonstrates that skin mucus removal and epidermal lesions enhance CyHV-3 entry in carp. It highlights the role of fish skin mucus as an innate immune protection against viral epidermal entry. PMID:21816061

  11. Protein profiling of single epidermal cell types from Arabidopsis thaliana using surface-enhanced laser desorption and ionization technology.

    Science.gov (United States)

    Ebert, Berit; Melle, Christian; Lieckfeldt, Elke; Zöller, Daniela; von Eggeling, Ferdinand; Fisahn, Joachim

    2008-08-25

    Here, we describe a novel approach for investigating differential protein expression within three epidermal cell types. In particular, 3000 single pavement, basal, and trichome cells from leaves of Arabidopsis thaliana were harvested by glass micro-capillaries. Subsequently, these single cell samples were joined to form pools of 100 individual cells and analyzed using the ProteinChip technology; SELDI: surface-enhanced laser desorption and ionization. As a result, numerous protein signals that were differentially expressed in the three epidermal cell types could be detected. One of these proteins was characterized by tryptical digestion and subsequent identification via tandem quadrupole-time of flight (Q-TOF) mass spectrometry. Down regulation of this sequenced small subunit precursor of ribulose-1,5 bisphosphate carboxylase(C) oxygenase(O) (RuBisCo) in trichome and basal cells indicates the sink status of these cell types that are located on the surface of A. thaliana source leaves. Based on the obtained protein profiles, we suggest a close functional relationship between basal and trichome cells at the protein level.

  12. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    Science.gov (United States)

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  13. Topical grape seed proanthocyandin extract reduces sunburn cells and mutant p53 positive epidermal cell formation, and prevents depletion of Langerhans cells in an acute sunburn model.

    Science.gov (United States)

    Yuan, Xiao-Ying; Liu, Wei; Hao, Jian-Chun; Gu, Wei-Jie; Zhao, Yan-Shuang

    2012-01-01

    The purpose of this study was to investigate whether grape seed proanthocyanidin extract (GSPE) can provide photoprotection against ultraviolet (UV) irradiation. Study has shown that GSPE is a natural oxidant, and is used in many fields such as ischemia-reperfusion injury, chronic pancreatitis, and even cancer. However, the effect of GSPE on UV irradiation is as yet unknown. Cutaneous areas on the backs of normal volunteers were untreated or treated with GSPE solutions or vehicles 30 min before exposure to two minimal erythema doses (MED) of solar simulated radiation. Cutaneous areas at different sites were examined histologically for the number of sunburn cells, or immunohistochemically for Langerhans cells and mutant p53 epidermal cells. On histological and immunohistochemical examination, skin treated with GSPE before UV radiation showed fewer sunburn cells and mutant p53-positive epidermal cells and more Langerhans cells compared with skin treated with 2-MED UV radiation only (p<0.001, p<0.001, and p<0.01, respectively). GSPE may be a possible preventive agent for photoprotection.

  14. Epidermal wound repair is regulated by the planar cell polarity signaling pathway.

    Science.gov (United States)

    Caddy, Jacinta; Wilanowski, Tomasz; Darido, Charbel; Dworkin, Sebastian; Ting, Stephen B; Zhao, Quan; Rank, Gerhard; Auden, Alana; Srivastava, Seema; Papenfuss, Tony A; Murdoch, Jennifer N; Humbert, Patrick O; Parekh, Vishwas; Boulos, Nidal; Weber, Thomas; Zuo, Jian; Cunningham, John M; Jane, Stephen M

    2010-07-20

    The mammalian PCP pathway regulates diverse developmental processes requiring coordinated cellular movement, including neural tube closure and cochlear stereociliary orientation. Here, we show that epidermal wound repair is regulated by PCP signaling. Mice carrying mutant alleles of PCP genes Vangl2, Celsr1, PTK7, and Scrb1, and the transcription factor Grhl3, interact genetically, exhibiting failed wound healing, neural tube defects, and disordered cochlear polarity. Using phylogenetic analysis, ChIP, and gene expression in Grhl3(-)(/-) mice, we identified RhoGEF19, a homolog of a RhoA activator involved in PCP signaling in Xenopus, as a direct target of GRHL3. Knockdown of Grhl3 or RhoGEF19 in keratinocytes induced defects in actin polymerization, cellular polarity, and wound healing, and re-expression of RhoGEF19 rescued these defects in Grhl3-kd cells. These results define a role for Grhl3 in PCP signaling and broadly implicate this pathway in epidermal repair. (c) 2010 Elsevier Inc. All rights reserved.

  15. Secreted Frizzled related protein-4 (sFRP4) promotes epidermal differentiation and apoptosis

    International Nuclear Information System (INIS)

    Maganga, Richard; Giles, Natalie; Adcroft, Katharine; Unni, Ambili; Keeney, Diane; Wood, Fiona; Fear, Mark; Dharmarajan, Arunasalam

    2008-01-01

    The skin provides vital protection from infection and dehydration. Maintenance of the skin is through a constant program of proliferation, differentiation and apoptosis of epidermal cells, whereby proliferating cells in the basal layer differentiating to form the keratinized, anucleated stratum corneum. The WNT signalling pathway is known to be important in the skin. WNT signalling has been shown to be important both in epidermal development and in the maintenance and cycling of hair follicles and epidermal stem cells. However, the precise role for this pathway in epidermal differentiation remains unknown. We investigated the role of the WNT signalling inhibitor sFRP4 in epidermal differentiation. sFRP4 is expressed in both normal skin and keratinocytes in culture. Expression of sFRP4 mRNA and protein increases with keratinocyte differentiation and apoptosis, whilst exposure of keratinocytes to exogenous sFRP4 promotes apoptosis and expression of the terminal differentiation marker Involucrin. These data suggest sFRP4 promotes epidermal differentiation.

  16. Bone scan and red blood cell scan in a patient with epidermal naevus syndrome

    International Nuclear Information System (INIS)

    Becker, W.; Wolf, F.; Stosiek, N.; Peters, K.P.

    1990-01-01

    A bone scan and red blood cell scan in the rare epidermal naevus syndrome, associated with multiple haemangiomes of the bone and hypophosphataemic osteomalacia in a 20-year-old man are reported. The typical pattern of osteomalacia on the bone scan was associated with lesions of increased bone metabolism in the peripheral bones. The haemangiomas did not pool labelled red blood cells. Thus, the bone scan seems to be suited for diagnosing the complete extent of haemangiomas in bone, but they could not be specifically proven by red blood cell pooling. (orig.)

  17. Immunoreactive transforming growth factor alpha and epidermal growth factor in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Therkildsen, M H; Poulsen, Steen Seier; Bretlau, P

    1993-01-01

    Forty oral squamous cell carcinomas have been investigated immunohistochemically for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF). The same cases were recently characterized for the expression of EGF-receptors. TGF-alpha was detected...... previous results confirms the existence of TGF-alpha, EGF, and EGF-receptors in the majority of oral squamous cell carcinomas and their metastases......., the cells above the basal cell layer were positive for both TGF-alpha and EGF. The same staining pattern was observed in oral mucosa obtained from healthy persons. In moderately to well differentiated carcinomas, the immunoreactivity was mainly confined to the cytologically more differentiated cells, thus...

  18. The SKINT1-like gene is inactivated in hominoids but not in all primate species: implications for the origin of dendritic epidermal T cells.

    Directory of Open Access Journals (Sweden)

    Rania Hassan Mohamed

    Full Text Available Dendritic epidermal T cells, which express an invariant Vγ5Vδ1 T-cell receptor and account for 95% of all resident T cells in the mouse epidermis, play a critical role in skin immune surveillance. These γδ T cells are generated by positive selection in the fetal thymus, after which they migrate to the skin. The development of dendritic epidermal T cells is critically dependent on the Skint1 gene expressed specifically in keratinocytes and thymic epithelial cells, suggesting an indispensable role for Skint1 in the selection machinery for specific intraepithelial lymphocytes. Phylogenetically, rodents have functional SKINT1 molecules, but humans and chimpanzees have a SKINT1-like (SKINT1L gene with multiple inactivating mutations. In the present study, we analyzed SKINT1L sequences in representative primate species and found that all hominoid species have a common inactivating mutation, but that Old World monkeys such as olive baboons, green monkeys, cynomolgus macaques and rhesus macaques have apparently functional SKINT1L sequences, indicating that SKINT1L was inactivated in a common ancestor of hominoids. Interestingly, the epidermis of cynomolgus macaques contained a population of dendritic-shaped γδ T cells expressing a semi-invariant Vγ10/Vδ1 T-cell receptor. However, this population of macaque T cells differed from rodent dendritic epidermal T cells in that their Vγ10/Vδ1 T-cell receptors displayed junctional diversity and expression of Vγ10 was not epidermis-specific. Therefore, macaques do not appear to have rodent-type dendritic epidermal T cells despite having apparently functional SKINT1L. Comprehensive bioinformatics analysis indicates that SKINT1L emerged in an ancestor of placental mammals but was inactivated or lost multiple times in mammalian evolution and that Skint1 arose by gene duplication in a rodent lineage, suggesting that authentic dendritic epidermal T cells are presumably unique to rodents.

  19. Recycling of epidermal growth factor in a human pancreatic carcinoma cell line

    International Nuclear Information System (INIS)

    Korc, M.; Magun, B.E.

    1985-01-01

    PANC-1 human pancreatic carcinoma cells readily bound and internalized 125 I-labeled epidermal growth factor (EGF). Bound 125 I-labeled EGF was then partially processed to a number of high molecular weight acidic species. Percoll gradient centrifugation of cell homogenates indicated that the majority of 125 I activity localized to several intracellular vesicular compartments. Both intact EGF and its processed species were subsequently released into the incubation medium. A major portion of the released radioactivity was capable of rebinding to the cell. Only a small amount of bound 125 I-labeled EGF was degraded to low molecular weight products, and this degradation was completely blocked by methylamine. These findings suggest that in PANC-1 cells, bound EGF undergoes only limited processing. Both intact EGF and its major processed species bypass the cellular degradative pathways, are slowly released from the cell, and then rebind to the cell

  20. Inhibition of epidermal cell proliferation by borderline rays

    Energy Technology Data Exchange (ETDEWEB)

    Born, W [Freiburg Univ.; Daikeler, G

    1976-08-01

    Treatment of guinea pig flanks with very soft x-rays (borderline rays) directly caused a partial block of epidermal DNA synthesis which had been determined by measuring the /sup 3/H-Tdr incorporation. Higher doses and repeated applications would undoubtedly cause lasting damage to the tissue. The enhanced epidermal DNA synthesis which is sometimes observed should not be misinterpreted as a sign of a directly biopositive utilisation of the quantum energy supplied. Rather, it is a secondary repair process following initial phases of depression. A reparative increase in DNA synthesis may also occur as a primary process if the radiation is almost completely absorbed above the germinative layer.

  1. Epidermal growth factor-mediated effects on equine vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Grosenbaugh, D.A.; Amoss, M.S.; Hood, D.M.; Morgan, S.J.; Williams, J.D.

    1988-01-01

    Epidermal growth factor (EGF) receptor binding kinetics and EGF-mediated stimulation of DNA synthesis and cellular proliferation were studied in cultured vascular smooth muscle cells (VSMC) from the equine thoracic aorta. Binding studies, using murine 125 I-labeled EGF, indicate the presence of a single class of high-affinity binding sites, with an estimated maximal binding capacity of 5,800 sites/cells. EGF stimulated [ 3 H]thymidine uptake in confluent quiescent monolayers in a dose-dependent fashion, half-maximal stimulation occurring at 7.5 x 10 -11 M. Likewise, EGF-mediated cellular proliferation was dose dependent under reduced serum concentrations. Equine VSMC contain specific receptors for EGF, and EGF can stimulate DNA synthesis and proliferation in these cultured cells, which suggests that EGF may participate in the proliferative changes observed in equine distal digital peripheral vascular disease

  2. Yorkie regulates epidermal wound healing in Drosophila larvae independently of cell proliferation and apoptosis.

    Science.gov (United States)

    Tsai, Chang-Ru; Anderson, Aimee E; Burra, Sirisha; Jo, Juyeon; Galko, Michael J

    2017-07-01

    Yorkie (Yki), the transcriptional co-activator of the Hippo signaling pathway, has well-characterized roles in balancing apoptosis and cell division during organ growth control. Yki is also required in diverse tissue regenerative contexts. In most cases this requirement reflects its well-characterized roles in balancing apoptosis and cell division. Whether Yki has repair functions outside of the control of cell proliferation, death, and growth is not clear. Here we show that Yki and Scalloped (Sd) are required for epidermal wound closure in the Drosophila larval epidermis. Using a GFP-tagged Yki transgene we show that Yki transiently translocates to some epidermal nuclei upon wounding. Genetic analysis strongly suggests that Yki interacts with the known wound healing pathway, Jun N-terminal kinase (JNK), but not with Platelet Derived Growth Factor/Vascular-Endothelial Growth Factor receptor (Pvr). Yki likely acts downstream of or parallel to JNK signaling and does not appear to regulate either proliferation or apoptosis in the larval epidermis during wound repair. Analysis of actin structures after wounding suggests that Yki and Sd promote wound closure through actin regulation. In sum, we found that Yki regulates an epithelial tissue repair process independently of its previously documented roles in balancing proliferation and apoptosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Induction of tolerance to topically applied INCB using TNP-conjugated ultraviolet light-irradiated epidermal cells

    International Nuclear Information System (INIS)

    Sauder, D.N.; Tamaki, K.; Moshell, A.N.; Fujiwara, H.; Katz, S.I.

    1981-01-01

    Ultraviolet (uv) radiation has profound effects on the immune system both in vitro and in vivo. Recent studies, utilizing uv irradiation of intact animals, have focused on the suppressive effect of uv irradiation on the generation of allergic contact sensitization (ACS). To explore the mechanism(s) by which uv affects ACS, we used a recently described technique of sensitizing mice with the subcutaneous (s.c.) injection of haptenated epidermal cells. uv-treated or untreated mouse epidermal cells (EC) were conjugated with 1 mM trinitrobenzene sulfonate and injected s.c. into syngeneic recipients. Six days later the ear was challenged with 20 μl of 1% trinitrochlorobenzene (TNCB), and 24 h later ear thickness was measured. Our studies indicate that uv irradiation of EC prior to haptenation not only abrogates their capability of inducing ACS but also induces a state of specific immunologic tolerance. These studies indicate that the s.c. injection of trinitrophenyl conjugated (TNP) uv-irradiated (TNP-uv) EC induces a state of specific immunologic hyporesponsiveness, and passive transfer studies showed that this hyporesponsiveness is in part due to the generation of suppressor T-cells

  4. Effects of epidermal growth factor, transferrin, and insulin on lipofection efficiency in human lung carcinoma cells.

    Science.gov (United States)

    Yanagihara, K; Cheng, H; Cheng, P W

    2000-01-01

    Poor transfection efficiency is the major drawback of lipofection. We showed previously that addition of transferrin (TF) to Lipofectin enhanced the expression of a reporter gene in HeLa cells by 120-fold and achieved close to 100% transfection efficiency. The purpose of this study was to determine whether TF and other ligands could improve the efficiency of lipofection in lung carcinoma cells. Confluent A549, Calu3, and H292 cells were transfected for 18 hours with a plasmid DNA (pCMVlacZ) using Lipofectin plus TF, insulin, or epidermal growth factor as the vector. The transfected cells were assessed for transfection efficiency by beta-galactosidase activity (light units/microg protein) and the percentage of blue cells following 5-bromo-4-chloro-3-indolyl beta-D-galactopyranoside staining. Lipofectin supplemented with epidermal growth factor yielded the largest enhancement of lipofection efficiency (lipofection efficiency in A549 and Calu3 cells but not in H292 cells, whereas TF showed significant lipofection efficiency-enhancing effect in Calu3 and H292 cells but not in A549 cells. The transfection efficiency correlated well with the amounts of DNA delivered to the nucleus as well as the amounts of the receptor. These results indicate that the gene delivery strategy employing ligand-facilitated lipofection can achieve high transfection efficiency in human lung carcinoma cells. In addition, enhancement of the expression of the receptor may be a possible strategy for increasing the efficiency of gene targeting.

  5. Model system for plant cell biology: GFP imaging in living onion epidermal cells

    Science.gov (United States)

    Scott, A.; Wyatt, S.; Tsou, P. L.; Robertson, D.; Allen, N. S.

    1999-01-01

    The ability to visualize organelle localization and dynamics is very useful in studying cellular physiological events. Until recently, this has been accomplished using a variety of staining methods. However, staining can give inaccurate information due to nonspecific staining, diffusion of the stain or through toxic effects. The ability to target green fluorescent protein (GFP) to various organelles allows for specific labeling of organelles in vivo. The disadvantages of GFP thus far have been the time and money involved in developing stable transformants or maintaining cell cultures for transient expression. In this paper, we present a rapid transient expression system using onion epidermal peels. We have localized GFP to various cellular compartments (including the cell wall) to illustrate the utility of this method and to visualize dynamics of these compartments. The onion epidermis has large, living, transparent cells in a monolayer, making them ideal for visualizing GFP. This method is easy and inexpensive, and it allows for testing of new GFP fusion proteins in a living tissue to determine deleterious effects and the ability to express before stable transformants are attempted.

  6. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    Science.gov (United States)

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. The Antiaging Properties of Andrographis paniculata by Activation Epidermal Cell Stemness

    Directory of Open Access Journals (Sweden)

    Jiyoung You

    2015-09-01

    Full Text Available Andrographis paniculata (A. paniculata, Chuanxinlian, a medicinal herb with an extremely bitter taste that is native to China and other parts of Southeast Asia, possesses immense therapeutic value; however, its therapeutic properties have rarely been applied in the field of skin care. In this study, we investigated the effect of an A. paniculata extract (APE on human epidermal stem cells (EpSCs, and confirmed its anti-aging effect through in vitro, ex vivo, and in vivo study. An MTT assay was used to determine cell proliferation. A flow cytometric analysis, with propidium iodide, was used to evaluate the cell cycle. The expression of integrin β1 (CD29, the stem cell marker, was detected with antibodies, using flow cytometry in vitro, and immunohistochemical assays in ex vivo. Type 1 collagen and VEGF (vascular endothelial growth factor were measured using an enzyme-linked immunosorbent assay (ELISA. During the clinical study, skin hydration, elasticity, wrinkling, sagging, and dermal density were evaluated before treatment and at four and eight weeks after the treatment with the test product (containing the APE on the face. The proliferation of the EpSCs, treated with the APE, increased significantly. In the cell cycle analysis, the APE increased the G2/M and S stages in a dose-dependent manner. The expression of integrin β1, which is related to epidermal progenitor cell expansion, was up-regulated in the APE-treated EpSCs and skin explants. In addition, the production of VEGF in the EpSCs increased significantly in response to the APE treatment. Consistent with these results, the VEGF and APE-treated EpSCs conditioned medium enhanced the Type 1 collagen production in normal human fibroblasts (NHFs. In the clinical study, the APE improved skin hydration, dermal density, wrinkling, and sagging significantly. Our findings revealed that the APE promotes a proliferation of EpSCs, through the up-regulation of the integrin β1 and VEGF expression

  8. The Antiaging Properties of Andrographis paniculata by Activation Epidermal Cell Stemness.

    Science.gov (United States)

    You, Jiyoung; Roh, Kyung-Baeg; Li, Zidan; Liu, Guangrong; Tang, Jian; Shin, Seoungwoo; Park, Deokhoon; Jung, Eunsun

    2015-09-22

    Andrographis paniculata (A. paniculata, Chuanxinlian), a medicinal herb with an extremely bitter taste that is native to China and other parts of Southeast Asia, possesses immense therapeutic value; however, its therapeutic properties have rarely been applied in the field of skin care. In this study, we investigated the effect of an A. paniculata extract (APE) on human epidermal stem cells (EpSCs), and confirmed its anti-aging effect through in vitro, ex vivo, and in vivo study. An MTT assay was used to determine cell proliferation. A flow cytometric analysis, with propidium iodide, was used to evaluate the cell cycle. The expression of integrin β1 (CD29), the stem cell marker, was detected with antibodies, using flow cytometry in vitro, and immunohistochemical assays in ex vivo. Type 1 collagen and VEGF (vascular endothelial growth factor) were measured using an enzyme-linked immunosorbent assay (ELISA). During the clinical study, skin hydration, elasticity, wrinkling, sagging, and dermal density were evaluated before treatment and at four and eight weeks after the treatment with the test product (containing the APE) on the face. The proliferation of the EpSCs, treated with the APE, increased significantly. In the cell cycle analysis, the APE increased the G2/M and S stages in a dose-dependent manner. The expression of integrin β1, which is related to epidermal progenitor cell expansion, was up-regulated in the APE-treated EpSCs and skin explants. In addition, the production of VEGF in the EpSCs increased significantly in response to the APE treatment. Consistent with these results, the VEGF and APE-treated EpSCs conditioned medium enhanced the Type 1 collagen production in normal human fibroblasts (NHFs). In the clinical study, the APE improved skin hydration, dermal density, wrinkling, and sagging significantly. Our findings revealed that the APE promotes a proliferation of EpSCs, through the up-regulation of the integrin β1 and VEGF expression. The VEGF

  9. The epidermal cell kinetic response to ultraviolet B irradiation combines regenerative proliferation and carcinogen associated cell cycle delay

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, W.M.; Kirkhus, B. (Oslo Univ. (Norway))

    1989-09-01

    The cell cycle traverse of epidermal basal cells 24 h after in vivo exposure of ultraviolet B (UVB) irradiation was studied by immunochemical staining of incorporated bromodeoxyuridine (BrdU) and bivariate BrdU/DNA flow cytometric analysis. The results were compared with the cell kinetic patterns following topical application of the skin carcinogen methylnitrosourea (MNU) as well as the skin irritant cantharidin. The cell cycle traverse in hairless mouse epidermis 24 h after in vivo exposure to UVB seemed to be a combination of the cell kinetic effects following chemical skin carcinogens and skin irritants. UVB irradiation induced both a delay in transit time through S phase, probably due to DNA damage and subsequent repair, as well as a reduction in the total cell cycle time consistent with rapid regenerative proliferation. (author).

  10. Comparative SAXS and DSC study on stratum corneum structural organization in an epidermal cell culture model (ROC)

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Herre, Angela; Fahr, Alfred

    2013-01-01

    barrier similar to that of human stratum corneum is, however, a prerequisite. In this study, the stratum corneum lipid organization in an epidermal cell culture model based on rat epidermal keratinocytes (REK organotypic culture, ROC) was investigated by small-angle X-ray scattering (SAXS) in dependence......Cell cultured skin equivalents present an alternative for dermatological in vitro evaluations of drugs and excipients as they provide the advantage of availability, lower variability and higher assay robustness compared to native skin. For penetration/permeation studies, an adequate stratum corneum...... and SC lipid organization. Cultivation for 21days resulted in further minor changes in the structural organization of ROC SC. The SAXS patterns of ROC SC had overall large similarities with that of human SC and point to the presence of a long periodicity phase with a repeat distance of about 122Å, e...

  11. Regulators of floral fragrance production and their target genes in petunia are not exclusively active in the epidermal cells of petals.

    Science.gov (United States)

    Van Moerkercke, Alex; Galván-Ampudia, Carlos S; Verdonk, Julian C; Haring, Michel A; Schuurink, Robert C

    2012-05-01

    In which cells of the flower volatile biosynthesis takes place is unclear. In rose and snapdragon, some enzymes of the volatile phenylpropanoid/benzenoid pathway have been shown to be present in the epidermal cells of petals. It is therefore generally believed that the production of these compounds occurs in these cells. However, whether the entire pathway is active in these cells and whether it is exclusively active in these cells remains to be proven. Cell-specific transcription factors activating these genes will determine in which cells they are expressed. In petunia, the transcription factor EMISSION OF BENZENOIDS II (EOBII) activates the ODORANT1 (ODO1) promoter and the promoter of the biosynthetic gene isoeugenol synthase (IGS). The regulator ODO1 in turn activates the promoter of the shikimate gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Here the identification of a new target gene of ODO1, encoding an ABC transporter localized on the plasma membrane, PhABCG1, which is co-expressed with ODO1, is described. PhABCG1 expression is up-regulated in petals overexpressing ODO1 through activation of the PhABCG1 promoter. Interestingly, the ODO1, PhABCG1, and IGS promoters were active in petunia protoplasts originating from both epidermal and mesophyll cell layers of the petal, suggesting that the volatile phenylpropanoid/benzenoid pathway in petunia is active in these different cell types. Since volatile release occurs from epidermal cells, trafficking of (volatile) compounds between cell layers must be involved, but the exact function of PhABCG1 remains to be resolved.

  12. Genetically induced cell death in bulge stem cells reveals their redundancy for hair and epidermal regeneration.

    Science.gov (United States)

    Driskell, Iwona; Oeztuerk-Winder, Feride; Humphreys, Peter; Frye, Michaela

    2015-03-01

    Adult mammalian epidermis contains multiple stem cell populations in which quiescent and more proliferative stem and progenitor populations coexist. However, the precise interrelation of these populations in homeostasis remains unclear. Here, we blocked the contribution of quiescent keratin 19 (K19)-expressing bulge stem cells to hair follicle formation through genetic ablation of the essential histone methyltransferase Setd8 that is required for the maintenance of adult skin. Deletion of Setd8 eliminated the contribution of bulge cells to hair follicle regeneration through inhibition of cell division and induction of cell death, but the growth and morphology of hair follicles were unaffected. Furthermore, ablation of Setd8 in the hair follicle bulge blocked the contribution of K19-postive stem cells to wounded epidermis, but the wound healing process was unaltered. Our data indicate that quiescent bulge stem cells are dispensable for hair follicle regeneration and epidermal injury in the short term and support the hypothesis that quiescent and cycling stem cell populations are equipotent. © 2014 AlphaMed Press.

  13. Characterization of A Three-Dimensional Organotypic Co-Culture Skin Model for Epidermal Differentiation of Rat Adipose-Derived Stem Cells.

    Science.gov (United States)

    Ghanavati, Zeinab; Orazizadeh, Mahmoud; Bayati, Vahid; Abbaspour, Mohammad Reza; Khorsandi, Layasadat; Mansouri, Esrafil; Neisi, Niloofar

    2016-01-01

    The organotypic co-culture is a well-known technique to examine cellular interactions and their roles in stem cell proliferation and differentiation. This study aims to evaluate the effects of dermal fibroblasts (DFs) on epidermal differentiation of adipose-derived stem cells (ASCs) using a three-dimensional (3D) organotypic co- culture technique. In this experimental research study, rat DFs and ASCs were isolated and cultured separately on electrospun polycaprolactone (PCL) matrices. The PCL matrices seeded by ASCs were superimposed on to the matrices seeded by DFs in order to create a 3D organotypic co-culture. In the control groups, PCL matrices seeded by ASCs were placed on matrices devoid of DFs. After 10 days, we assessed the expressions of keratinocyte-related genes by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and expression of pan-cytokeratin protein by immunofluorescence in the differentiated keratinocyte-like cells from co- culture and control groups. Keratinocyte-like cell morphologies were also observed by scanning electron microscopy (SEM). The early, intermediate, and terminal differentiation keratinocyte markers-Cytokeratin14, Filaggrin, and Involucrin significantly expressed in the co-culture groups com- pared to the control ones (P<0.05). We observed pan-cytokeratin in keratinocyte-like cells of both groups by immunofluorescence. SEM observation of the co-culture groups showed that the differentiated keratinocyte-like cells developed a polygonal cobblestone shape, considered characteristic of keratinocytes. The 3D organotypic co-culture bilayered construct that consisted of DFs and ASCs was an effective technique for epidermal differentiation of ASCs. This co-culture might be useful for epidermal differentiation of stem cells for future applications in skin regeneration.

  14. Outcome of burns treated with autologous cultured proliferating epidermal cells: a prospective randomized multicenter intrapatient comparative trial

    NARCIS (Netherlands)

    Gardien, K.L.M.; Marck, R.E.; Bloemen, M.C.T.; Waaijman, T.; Gibbs, S.; Uhlrich, M.M.W.; Middelkoop, E.

    2016-01-01

    Standard treatment for large burns is transplantation with meshed split skin autografts (SSGs). A disadvantage of this treatment is that healing is accompanied by scar formation. Application of autologous epidermal cells (keratinocytes and melanocytes) may be a suitable therapeutic alternative,

  15. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins

    OpenAIRE

    Barkla, Bronwyn J.; Vera-Estrella, Rosario; Raymond, Carolyn

    2016-01-01

    Background Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. Results In...

  16. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions

    DEFF Research Database (Denmark)

    Perrais, Michaël; Chen, Xiao; Perez-Moreno, Mirna

    2007-01-01

    growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-cadherin protein attached to microspheres. We find that E-cadherin ligation alone reduces the frequency...... of cells entering the S phase, demonstrating that E-cadherin ligation directly transduces growth inhibitory signals. E-cadherin binding to beta-catenin is required for cell growth inhibition, but beta-catenin/T-cell factor transcriptional activity is not involved in growth inhibition resulting from...... homophilic binding. Neither E-cadherin binding to p120-catenin nor beta-catenin binding to alpha-catenin, and thereby the actin cytoskeleton, is required for growth inhibition. E-cadherin ligation also inhibits epidermal growth factor (EGF) receptor-mediated growth signaling by a beta...

  17. Effects of icotinib, a novel epidermal growth factor receptor tyrosine kinase inhibitor, in EGFR-mutated non-small cell lung cancer.

    Science.gov (United States)

    Yang, Guangdie; Yao, Yinan; Zhou, Jianya; Zhao, Qiong

    2012-06-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small cell lung cancer (NSCLC). Our study demonstrated the antitumor effects of icotinib hydrochloride, a highly selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in two EGFR-mutated lung cancer cell lines compared to A549, a cell line without EGFR mutations. We incubated PC-9 and HCC827 human lung cancer cell lines both with (E746-A750) mutations with various concentrations of icotinib and gefitinib for 48 h. Cell proliferation and migration were determined using a real-time cell invasion and migration assay and cytotoxicity assay. Apoptosis was assessed by measuring Annexin V staining using flow cytometry. The antitumor effects of icotinib compared to gefitinib were similar and were most effective in reducing the proliferation of EGFR-mutated cells compared to non-mutated controls. Our results suggest the possibility of icotinib as a new therapeutic agent of EGFR-mutated cancer cells, which has the potential to be used in the first-line treatment of EGFR-mutated NSCLC.

  18. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail: typh@jnu.edu.cn

    2015-06-30

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  19. Epidermal growth factor in alkali-burned corneal epithelial wound healing.

    Science.gov (United States)

    Singh, G; Foster, C S

    1987-06-15

    We conducted a double-masked study to evaluate the effect of epidermal growth factor on epithelial wound healing and recurrent erosions in alkali-burned rabbit corneas. Epithelial wounds 10 mm in diameter healed completely under the influence of topical epidermal growth factor, whereas the control corneas did not resurface in the center. On reversal of treatment, the previously nonhealing epithelial defects healed when treated with topical epidermal growth factor eyedrops. Conversely, the epidermal growth factor-treated and resurfaced corneas developed epithelial defects when treatment was discontinued. Histopathologic examination disclosed hyperplastic epithelium growing over the damaged stroma laden with polymorphonuclear leukocytes when treated with epidermal growth factor eyedrops, but it did not adhere to the underlying tissue. Hydropic changes were seen intracellularly as well as between the epithelial cells and the stroma.

  20. Optical characterization of epidermal cells and their relationship to DNA recovery from touch samples [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Cristina E. Stanciu

    2015-11-01

    Full Text Available The goal of this study was to investigate the relative contributions of different cellular and genetic components to biological samples created by touch or contact with a surface – one of the most challenging forms of forensic evidence. Touch samples were generated by having individuals hold an object for five minutes and analyzed for quantity of intact epidermal cells, extracellular DNA, and DNA from pelleted cell material after elution from the collection swab. Comparisons were made between samples where individuals had washed their hands immediately prior to handling and those where hand washing was not controlled. The vast majority (84-100% of DNA detected in these touch samples was extracellular and was uncorrelated to the number of epidermal cells detected. Although little to no extracellular or cell pellet-associated DNA was detected when individuals washed their hands prior to substrate handling, we found that a significant number of epidermal cells (between ~5x103 and ~1x105 could still be recovered from these samples, suggesting that other types of biological information may be present even when no amplifiable nuclear DNA is present. These results help to elucidate the biological context for touch samples and characterize factors that may contribute to patterns of transfer and persistence of genetic material in forensic evidence.

  1. De novo activating epidermal growth factor mutations (EGFR) in small-cell lung cancer.

    Science.gov (United States)

    Thai, Alesha; Chia, Puey L; Russell, Prudence A; Do, Hongdo; Dobrovic, Alex; Mitchell, Paul; John, Thomas

    2017-09-01

    In Australia, mutations in epidermal growth factor mutations (EGFR) occur in 15% of patients diagnosed with non-small-cell lung cancer and are found with higher frequency in female, non-smokers of Asian ethnicity. Activating mutations in the EGFR gene are rarely described in SCLC. We present two cases of de novo EGFR mutations in patients with SCLC detected in tissue and in plasma cell free DNA, both of whom were of Asian ethnicity and never-smokers. These two cases add to the growing body of evidence suggesting that screening for EGFR mutations in SCLC should be considered in patients with specific clinical features. © 2017 Royal Australasian College of Physicians.

  2. Incidental Squamous Cell Carcinoma in an Epidermal Inclusion Cyst: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Ethan Frank

    2018-03-01

    Full Text Available Epidermal inclusion cysts are common lesions that rarely develop into squamous cell carcinoma (SCC. Neoplastic change in these cysts can be associated with prominent symptoms such as pain, rapid growth, or ulceration. This study describes the case of a 64-year-old woman with a 4-year history of a largely asymptomatic neck mass, which after routine excision was found to be an epidermal inclusion cyst harboring well-differentiated SCC. The diagnosis was made incidentally after routine cyst bisection and hematoxylin and eosin staining. Given the potential for variable presentation and low cost of hematoxylin and eosin analysis, we recommend a low threshold for a comprehensive pathological search for malignancy in excised cysts when appropriate.

  3. Structure and function of the interphotoreceptor matrix surrounding retinal photoreceptor cells.

    Science.gov (United States)

    Ishikawa, Makoto; Sawada, Yu; Yoshitomi, Takeshi

    2015-04-01

    The interphotoreceptor matrix (IPM) is a highly organized structure with interconnected domains surrounding cone and rod photoreceptor cells and extends throughout the subretinal space. Based on known roles of the extracellular matrix in other tissues, the IPM is thought to have several prominent functions including serving as a receptor for growth factors, regulating retinoid transport, participating in cytoskeletal organization in surrounding cells, and regulation of oxygen and nutrient transport. In addition, a number of studies suggest that the IPM also may play a significant role in the etiology of retinal degenerative disorders. In this review, we describe the present knowledge concerning the structure and function of the IPM under physiological and pathological conditions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin.

    Science.gov (United States)

    Pellegrini, G; Ranno, R; Stracuzzi, G; Bondanza, S; Guerra, L; Zambruno, G; Micali, G; De Luca, M

    1999-09-27

    Cell therapy is an emerging therapeutic strategy aimed at replacing or repairing severely damaged tissues with cultured cells. Epidermal regeneration obtained with autologous cultured keratinocytes (cultured autografts) can be life-saving for patients suffering from massive full-thickness burns. However, the widespread use of cultured autografts has been hampered by poor clinical results that have been consistently reported by different burn units, even when cells were applied on properly prepared wound beds. This might arise from the depletion of epidermal stem cells (holoclones) in culture. Depletion of holoclones can occur because of (i) incorrect culture conditions, (ii) environmental damage of the exposed basal layer of cultured grafts, or (iii) use of new substrates or culture technologies not pretested for holoclone preservation. The aim of this study was to show that, if new keratinocyte culture technologies and/or "delivery systems" are proposed, a careful evaluation of epidermal stem cell preservation is essential for the clinical performance of this life-saving technology. Fibrin was chosen as a potential substrate for keratinocyte cultivation. Stem cells were monitored by clonal analysis using the culture system originally described by Rheinwald and Green as a reference. Massive full-thickness burns were treated with the composite allodermis/cultured autograft technique. We show that: (i) the relative percentage of holoclones, meroclones, and paraclones is maintained when keratinocytes are cultivated on fibrin, proving that fibrin does not induce clonal conversion and consequent loss of epidermal stem cells; (ii) the clonogenic ability, growth rate, and long-term proliferative potential are not affected by the new culture system; (iii) when fibrin-cultured autografts bearing stem cells are applied on massive full-thickness burns, the "take" of keratinocytes is high, reproducible, and permanent; and (iv) fibrin allows a significant reduction of the cost

  5. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor α to epidermal growth factor receptors promotes cell proliferation

    International Nuclear Information System (INIS)

    Anklesaria, P.; Greenberger, J.S.; Teixido, J.; Laiho, M.; Massague, J.; Pierce, J.H.

    1990-01-01

    The precursor for transforming growth factor α, pro-TGF-α, is a cell surface glycoprotein that can establish contact with epidermal growth factor (EGF) receptors on adjacent cells. To examine whether the pro-TGF-α/EGF receptor pair can simultaneously mediate cell adhesion and promote cell proliferation, the authors have expressed pro-TGF-α in a bone marrow stromal cell line labeled with [ 35 S] cysteine. Expression of pro-TGF-α allows these cells to support long-term attachment of an EGF/interleukin-3-dependent hematopoietic progenitor cell line that expresses EGF receptors but is unable to adhere to normal stroma. This interaction is inhibited by soluble EGF receptor ligands. Further, the hematopoietic progenitor cells replicate their DNA while they are attached to the stromal cell layer and become foci of sustained cell proliferation. Thus, pro-TGF-α and the EGF receptor can function as mediators of intercellular adhesion and this interaction may promote a mitogenic response. They propose the term juxtacrine to designate this form of stimulation between adjacent cells

  6. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis

    Directory of Open Access Journals (Sweden)

    Christian eFalter

    2015-03-01

    Full Text Available The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape – liquid cover glass technique for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the adhesive tape – liquid cover glass technique for simple leaf epidermis preparation and the compatibility to laser microdissection and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.

  7. Combining laser-assisted microdissection (LAM) and RNA-seq allows to perform a comprehensive transcriptomic analysis of epidermal cells of Arabidopsis embryo.

    Science.gov (United States)

    Sakai, Kaori; Taconnat, Ludivine; Borrega, Nero; Yansouni, Jennifer; Brunaud, Véronique; Paysant-Le Roux, Christine; Delannoy, Etienne; Martin Magniette, Marie-Laure; Lepiniec, Loïc; Faure, Jean Denis; Balzergue, Sandrine; Dubreucq, Bertrand

    2018-01-01

    Genome-wide characterization of tissue- or cell-specific gene expression is a recurrent bottleneck in biology. We have developed a sensitive approach based on ultra-low RNA sequencing coupled to laser assisted microdissection for analyzing different tissues of the small Arabidopsis embryo. We first characterized the number of genes detected according to the quantity of tissue yield and total RNA extracted. Our results revealed that as low as 0.02 mm 2 of tissue and 50 pg of total RNA can be used without compromising the number of genes detected. The optimised protocol was used to compare the epidermal versus mesophyll cell transcriptomes of cotyledons at the torpedo-shaped stage of embryo development. The approach was validated by the recovery of well-known epidermal genes such AtML1 or AtPDF2 and genes involved in flavonoid and cuticular waxes pathways. Moreover, the interest and sensitivity of this approach were highlighted by the characterization of several transcription factors preferentially expressed in epidermal cells. This technical advance unlocks some current limitations of transcriptomic analyses and allows to investigate further and efficiently new biological questions for which only a very small amounts of cells need to be isolated. For instance, it paves the way to increasing the spatial accuracy of regulatory networks in developing small embryo of Arabidopsis or other plant tissues.

  8. Nuclear receptor NHR-25 is required for cell-shape dynamics during epidermal differentiation in Caenorhabditis elegans

    Czech Academy of Sciences Publication Activity Database

    Šilhánková, Marie; Jindra, Marek; Asahina, Masako

    2005-01-01

    Roč. 118, č. 1 (2005), s. 223-232 ISSN 0021-9533 R&D Projects: GA AV ČR KJB5022303; GA ČR GD524/03/H133 Institutional research plan: CEZ:AV0Z60220518 Keywords : Caenorhabditis elegans * nuclear receptor * epidermal stem cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.543, year: 2005

  9. Epidermal growth factor in mammary glands and milk from rats

    DEFF Research Database (Denmark)

    Thulesen, J; Raaberg, Lasse; Nexø, Ebba

    1993-01-01

    Epidermal growth factor (EGF) is one of the major growth-promoting agents in milk. Using immunohistochemistry we localized EGF in the mammary glands of lactating rats to the luminal border of the secretory cells. Following proteolytic pretreatment of the histological sections, the EGF-immunoreact......Epidermal growth factor (EGF) is one of the major growth-promoting agents in milk. Using immunohistochemistry we localized EGF in the mammary glands of lactating rats to the luminal border of the secretory cells. Following proteolytic pretreatment of the histological sections, the EGF...

  10. Potential involvement of oxygen intermediates and glutathione depletion in UV-induced epidermal cell injury in vitro

    International Nuclear Information System (INIS)

    Hsieh, G.C.; Acosta, D.

    1991-01-01

    Generation of reactive oxygen species (ROS) and depletion of glutathione (GSH) are suggested as the cytotoxic mechanisms for UVB-induced cellular damage. Primary monolayer cultures of epidermal keratinocytes (KCs) prepared from the skin of neonatal rats were irradiated with UVB at levels of 0.25-3.0 J/cm 2 . Cytotoxicity was measured at 3, 6, and 12 hr after UVB radiation. Exposure of KCs to UVB resulted in time- and dose-related toxic responses as determined by plasma membrane integrity, lysosomal function and mitochondrial metabolic activity. Irradiated KCs generated superoxide in a dose-dependent manner when compared to sham-irradiated cells. Superoxide formation, which occurred before and concomitant with cell injury, was decreased by superoxide dismutase (SOD). Cell injury was also significantly prevented by ROS scavengers, SOD and catalase. Pretreatment of cells with endocytosis inhibitors, cytochalasin B and methylamine, suppressed the ability of SOD and catalase to protect keratinocytes from UVB-induced toxicity. Irradiation of cells with UVB caused rapid depletion of GSH to about 30% of unirradiated levels within 15 min. UVB-irradiation led to a rapid transient increase in GSH peroxidase activity, concomitant with a marked decrease in the GSH/GSSG ratio. After 1 hr., while the GSH/GSSG ratio remained low, the GSH peroxidase activity declined below the control levels in UVB-treated epidermal cells. Following extensive GSH depletion in cells preincubated with 0.1 mM buthiomine sulfoximine, KCs became strongly sensitized to the cytotoxic action of UVB. These results indicate that UVB-induced cell injury in cultured KCs may be mediated by ROs and that endogenous GSH may play an important protective role against the cytotoxic action of UVB

  11. Spatiotemporal Expression of p63 in Mouse Epidermal Commitment

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    2015-12-01

    Full Text Available The embryonic surface ectoderm is a simple flat epithelium consisting of cells that express the cytokeratins K8/K18. Before stratification, K5/K14 expression substitutes K8/K18 expression, marking the event called epidermal commitment. Previous studies show that the transcription factor p63 plays an essential role in epidermal commitment. However, detailed expression information of p63 during early epidermal development in mice is still unclear. We systematically studied the expression pattern of p63 in mouse epidermal commitment, together with K8 and K5. We show that p63 expression could be detected as early as E8.5 in mouse embryos preceding epidermal commitment. p63 expression first appears near the newly formed somites and the posterior part of the embryo, further expanding to the whole embryonic surface with particular enrichment in the first branchial arches and the limb buds. ΔNp63 is the major class of isoforms expressed in this period. Relative expression intensity of p63 depends on the embryonic position. In summary, there is a sequential and regular expression pattern of K8, p63 and K5 in mouse epidermal commitment. Our study not only contributes to understanding the early events during epidermal development but also provides a basal tool to study the function of p63 in mammals.

  12. Multistep change in epidermal growth factor receptors during spontaneous neoplastic progression in Chinese hamster embryo fibroblasts

    International Nuclear Information System (INIS)

    Wakshull, E.; Kraemer, P.M.; Wharton, W.

    1985-01-01

    Whole Chinese hamster embryo lineages have been shown to undergo multistep spontaneous neoplastic progression during serial passage in culture. The authors have studied the binding, internalization, and degradation of 125 I-labeled epidermal growth factor at four different stages of transformation. The whole Chinese hamster embryo cells lost cell surface epidermal growth factor receptors gradually during the course of neoplastic progression until only 10% of the receptor number present in the early-passage cells (precrisis) were retained in the late-passage cells (tumorigenic). No differences in internalization rates, chloroquine sensitivity, or ability to degrade hormone between the various passage levels were seen. No evidence for the presence in conditioned medium of transforming growth factors which might mask or down-regulate epidermal growth factor receptor was obtained. These results suggest that a reduction in cell surface epidermal growth factor receptor might be an early event during spontaneous transformation in whole Chinese hamster embryo cells

  13. Morphometric analysis of epidermal differentiation in primary roots of Zea mays

    Science.gov (United States)

    Moore, R.; Smith, H. S.

    1990-01-01

    Epidermal differentiation in primary roots of Zea mays was divided into six cell types based on cellular shape and cytoplasmic appearance. These six cell types are: 1) apical protoderm, located at the tip of the root pole and characterized by periclinally flattened cells; 2) cuboidal protoderm, located approximately 230 microns from the root pole and characterized by cuboidal cells; 3) tabular epidermis, located approximately 450 microns from the root pole and characterized by anticlinally flattened cells; 4) cuboidal epidermis, located approximately 900 microns from the root pole and characterized by cuboidal cells having numerous small vacuoles; 5) vacuolate cuboidal epidermis, located approximately 1,500 microns from the root pole and characterized by cuboidal cells containing several large vacuoles; and 6) columnar epidermis, located approximately 2,200 microns from the root pole (i.e., at the beginning of the zone of elongation) and characterized by elongated cells. We also used stereology to quantify the cellular changes associated with epidermal differentiation. The quiescent center and the apical protoderm have significantly different ultrastructures. The relative volume of dictyosomes increases dramatically during the early stages of epidermal differentiation. This increase correlates inversely with the amount of coverage provided by the root cap and mucilage.

  14. Regulators of floral fragrance production and their target genes in petunia are not exclusively active in the epidermal cells of petals.

    NARCIS (Netherlands)

    Van Moerkercke, A.; Galván-Ampudia, C.S.; Verdonk, J.C.; Haring, M.A.; Schuurink, R.C.

    2012-01-01

    In which cells of the flower volatile biosynthesis takes place is unclear. In rose and snapdragon, some enzymes of the volatile phenylpropanoid/benzenoid pathway have been shown to be present in the epidermal cells of petals. It is therefore generally believed that the production of these compounds

  15. Reliability of using circulating tumor cells for detecting epidermal growth factor receptor mutation status in advanced non-small-cell lung cancer patients: a meta-analysis and systematic review

    Directory of Open Access Journals (Sweden)

    Hu F

    2018-03-01

    Full Text Available Fang Hu,* Xiaowei Mao,* Yujun Zhang, Xiaoxuan Zheng, Ping Gu, Huimin Wang, Xueyan ZhangDepartment of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this workPurpose: To evaluate the clinical value of circulating tumor cells as a surrogate to detect epidermal growth factor receptor mutation in advanced non-small-cell lung cancer (NSCLC patients.Methods: We searched the electronic databases, and all articles meeting predetermined selection criteria were included in this study. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were calculated. The evaluation indexes of the diagnostic performance were the summary receiver operating characteristic curve and area under the summary receiver operating characteristic curve.Results: Eight eligible publications with 255 advanced NSCLC patients were included in this meta-analysis. Taking tumor tissues as reference, the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio of circulating tumor cells for detecting the epidermal growth factor receptor mutation status were found to be 0.82 (95% confidence interval [CI]: 0.50–0.95, 0.95 (95% CI: 0.24–1.00, 16.81 (95% CI: 0.33–848.62, 0.19 (95% CI: 0.06–0.64, and 86.81 (95% CI: 1.22–6,154.15, respectively. The area under the summary receiver operating characteristic curve was 0.92 (95% CI: 0.89–0.94. The subgroup analysis showed that the factors of blood volume, histological type, EGFR-tyrosine kinase inhibitor therapy, and circulating tumor cell and tissue test methods for EGFR accounted for the significant difference of the pooled specificity. No significant difference was found between the pooled sensitivity of the subgroup.Conclusion: Our meta-analysis confirmed that circulating tumor cells are a good surrogate for

  16. Culture technique of rabbit primary epidermal keratinocytes

    Directory of Open Access Journals (Sweden)

    Marini M

    2012-10-01

    Full Text Available The epidermis is the protective covering outer layer of the mammalian skin. The epidermal cells are stratified squamous epithelia which undergo continuous differentiation of loss and replacement of cells. Ninety per cent of epidermal cells consist of keratinocytes that are found in the basal layer of the stratified epithelium called epidermis. Keratinocytes are responsible for forming tight junctions with the nerves of the skin as well as in the process of wound healing. This article highlights the method of isolation and culture of rabbit primary epidermal keratinocytes in vitro. Approximately 2cm x 2cm oval shaped line was drawn on the dorsum of the rabbit to mark the surgical area. Then, the skin was carefully excised using a surgical blade and the target skin specimens harvested from the rabbits were placed in transport medium comprising of Dulbecco’s Modified Eagle Medium (DMEM and 1% of antibiotic-antimycotic solution. The specimens were transferred into a petri dish containing 70% ethanol and washed for 5 min followed by a wash in 1 x Dulbecco’s Phosphate Buffered Saline (DBPS. Then, the skin specimens were placed in DMEM and minced into small pieces using a scalpel. The minced pieces were placed in a centrifuge tube containing 0.6% Dispase and 1% antibiotic-antimycotic solution overnight at 4°C in a horizontal orientation. The epidermis layer (whitish, semi-transparent was separated from the dermis (pink, opaque, gooey with the aid of curved forceps by fixing the dermis with one pair of forceps while detaching the epidermis with the second pair. The cells were cultured at a density of 4 x 104 cells/cm2 in culture flask at 37°C and 5% CO2. The cell morphology of the keratinocytes was analyzed using inverted microscope.

  17. Assessment of the Developmental Toxicity of Epidermal Growth ...

    African Journals Online (AJOL)

    Purpose: To determine whether epidermal growth factor (EGF) is involved in reproductive developmental toxicity, using the embryonic stem cell test (EST), as well as ascertain how EGF influences embryonic development. Methods: To predict developmental toxicity on the basis of reducing cell viability and inhibition of ...

  18. Microneedle fractional radiofrequency increases epidermal hyaluronan and reverses age-related epidermal dysfunction.

    Science.gov (United States)

    Lee, Hee Jung; Seo, Seong Rak; Yoon, Moon Soo; Song, Ji-Ye; Lee, Eun Young; Lee, Sang Eun

    2016-02-01

    Skin aging results in physiological alterations in keratinocyte activities and epidermal function, as well as dermal changes. Yet, the cellular and molecular mechanisms that cause epidermal dysfunction during skin aging are not well understood. Recently, the role of epidermal hyaluronan (HA) as an active regulator of dynamic cellular processes is getting attention and alterations in HA metabolism are thought to be important in age-related epidermal dysfunction. Microneedle fractional radiofrequency (RF) has shown effects for improving cutaneous aging. However, little is known about the effects of fractional RF on the epidermal HA and epidermal function. We investigated the effect of microneedle fractional RF on the expression of epidermal HA in young and aged mice epidermis. We performed fractional RF on the dorsal skin of 30 8-week-old (young) hairless mice and 15 47-week-old (aged) C57BL/6J mice. Skin samples were collected on day 1, 3, and 7. HA content was measured by ELISA. Gene expressions of CD 44, HABP4, and HAS3 were measured using real time RT-PCR. Immunohistochemistry for detection of HA, CD44, PCNA, and filaggrin were performed. HA content and the mRNA levels of HABP4, CD44, and HAS3 were upregulated in the epidermis of both young and aged mice after microneedle fractional RF treatment. The expression was increased from day 1 after treatment and increased expression persisted on day 7. Fractional RF treatment significantly increased PCNA and filaggrin expression only in the aged mice skin. Microneedle fractional RF increased epidermal HA and CD44 expression in both young and aged mice and reversed age-related epidermal dysfunction especially in aged mice, suggesting a new mechanism involved in the skin rejuvenation effect of microneedle fractional RF. © 2015 Wiley Periodicals, Inc.

  19. Optimal Therapeutic Strategy for Non-small Cell Lung Cancer with Mutated Epidermal Growth Factor Receptor

    Directory of Open Access Journals (Sweden)

    Zhong SHI

    2015-02-01

    Full Text Available Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs have been widely used in non-small cell lung cancer (NSCLC patients, it is still controversial about how to combine EGFR-TKI with chemotherapy and other targeted drugs. We have made a summary on the current therapeutic models of EGFR-TKI combined with chemotherapy/bevacizumab in this review and aimed to find the optimal therapeutic strategy for NSCLC patients with EGFR mutation.

  20. Oxygen dependency of epidermal growth factor receptor binding and DNA synthesis of rat hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Tetsuro; Terajima, Hiroaki; Yamauchi, Akira

    1997-01-01

    Background/Aims: Changes in oxygen availability modulate replicative responses in several cell types, but the effects on hepatocyte replication remain unclear. We have studied the effects of transient nonlethal hypoxia on epidermal growth factor receptor binding and epidermal growth factor-induced DNA synthesis of rat hepatocytes. Methods: Lactate dehydrogenase activity in culture supernatant, intracellular adenosine triphosphate content, 125 I-epidermal growth factor specific binding, epidermal growth factor receptor protein expression, and 3 H-thymidine incorporation were compared between hepatocytes cultured in hypoxia and normoxia. Results: Hypoxia up to 3 h caused no significant increase in lactate dehydrogenase activity in the culture supernatant, while intracellular adenosine triphosphate content decreased time-dependently and was restored to normoxic levels by reoxygenation (nonlethal hypoxia). Concomitantly, 125 I-epidermal growth factor specific binding to hepatocytes decreased time-dependently (to 54.1% of normoxia) and was restored to control levels by reoxygenation, although 125 I-insulin specific binding was not affected. The decrease in 125 I-epidermal growth factor specific binding was explained by the decrease in the number or available epidermal growth factor receptors (21.37±3.08 to 12.16±1.42 fmol/10 5 cells), while the dissociation constant of the receptor was not affected. The change in the number of available receptors was not considered to be due to receptor degradation-resynthesis, since immuno-detection of the epidermal growth factor receptor revealed that the receptor protein expression did not change during hypoxia and reoxygenation, and since neither actinomycin D nor cycloheximide affected the recovery of 125 I-epidermal growth factor binding by reoxygenation. Inhibition of epidermal growth factor-induced DNA synthesis after hypoxia (to 75.4% of normoxia by 3 h hypoxia) paralleled the decrease in 125 I-epidermal growth factor binding

  1. Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse orientation of microtubules on the outer tangential wall of epidermal cells

    KAUST Repository

    Sauret-Güeto, Susanna

    2011-11-25

    The phytohormone gibberellin (GA) promotes plant growth by stimulating cellular expansion. Whilst it is known that GA acts by opposing the growth-repressing effects of DELLA proteins, it is not known how these events promote cellular expansion. Here we present a time-lapse analysis of the effects of a single pulse of GA on the growth of Arabidopsis hypocotyls. Our analyses permit kinetic resolution of the transient growth effects of GA on expanding cells. We show that pulsed application of GA to the relatively slowly growing cells of the unexpanded light-grown Arabidopsis hypocotyl results in a transient burst of anisotropic cellular growth. This burst, and the subsequent restoration of initial cellular elongation rates, occurred respectively following the degradation and subsequent reappearance of a GFP-tagged DELLA (GFP-RGA). In addition, we used a GFP-tagged α-tubulin 6 (GFP-TUA6) to visualise the behaviour of microtubules (MTs) on the outer tangential wall (OTW) of epidermal cells. In contrast to some current hypotheses concerning the effect of GA on MTs, we show that the GA-induced boost of hypocotyl cell elongation rate is not dependent upon the maintenance of transverse orientation of the OTW MTs. This confirms that transverse alignment of outer face MTs is not necessary to maintain rapid elongation rates of light-grown hypocotyls. Together with future studies on MT dynamics in other faces of epidermal cells and in cells deeper within the hypocotyl, our observations advance understanding of the mechanisms by which GA promotes plant cell and organ growth. © 2011 Blackwell Publishing Ltd.

  2. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    International Nuclear Information System (INIS)

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-01-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol 125 I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function

  3. Cell type-specific responses to salinity - the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum.

    Science.gov (United States)

    Oh, Dong-Ha; Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar; Lee, Sang-Yeol; Bohnert, Hans J; Dassanayake, Maheshi

    2015-08-01

    Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.

  4. EPIDERMAL MORPHOLOGY OF WEST AFRICAN OKRA ...

    African Journals Online (AJOL)

    Administrator

    stem peels were obtained from a slight cut on the tenth internodes. Peels from fruit ... xia l su rfa ce. A b a xia l su rfa ce. Adaxial surface. Abaxial surface. L e n g th. (µ m. ) ..... Variations in epidermal cell shape of both adaxial and abaxial surfaces ...

  5. Immunohistochemical detection of cytochrome P450 isoenzymes in cultured human epidermal cells.

    Science.gov (United States)

    Van Pelt, F N; Meierink, Y J; Blaauboer, B J; Weterings, P J

    1990-12-01

    We used specific monoclonal antibodies (MAb) to human cytochrome P450 isoenzymes to determine the presence of these proteins in human epidermal cells. Two MAb (P450-5 and P450-8) recognize major forms of hepatic cytochrome P450 involved in biotransformation of xenobiotics. A third MAb, to cytochrome P450-9, is not fully characterized. The proteins were determined by the indirect immunoperoxidase technique after fixation with methanol and acetone. Biopsy materials for cultured keratinocytes, i.e., foreskin and hair follicles, contained the two major forms of cytochrome P450. In cultured keratinocytes derived from hair follicles the proteins were undetectable, whereas the keratinocytes derived from foreskin continued to express the two major forms of hepatic cytochrome P450. Cultured human fibroblasts and a human keratinocyte cell line (SVK14) showed staining similar to that of the foreskin keratinocytes. Cytochrome P450-9 was detectable only in human hepatocytes. The results indicate that, under the culture conditions applied, cultured human foreskin cells and the cell line SVK14 continue to express specific cytochrome P450 isoenzymes in culture, in contrast to hair follicle keratinocytes.

  6. Rho A Regulates Epidermal Growth Factor-Induced Human Osteosarcoma MG63 Cell Migration

    Directory of Open Access Journals (Sweden)

    Jinyang Wang

    2018-05-01

    Full Text Available Osteosarcoma, the most common primary bone tumor, occurs most frequently in children and adolescents and has a 5-year survival rate, which is unsatisfactory. As epidermal growth factor receptor (EGFR positively correlates with TNM (tumor-node-metastasis stage in osteosarcoma, EGFR may play an important role in its progression. The purpose of this study was to explore potential mechanisms underlying this correlation. We found that EGF promotes MG63 cell migration and invasion as well as stress fiber formation via Rho A activation and that these effects can be reversed by inhibiting Rho A expression. In addition, molecules downstream of Rho A, including ROCK1, LIMK2, and Cofilin, are activated by EGF in MG63 cells, leading to actin stress fiber formation and cell migration. Moreover, inhibition of ROCK1, LIMK2, or Cofilin in MG63 cells using known inhibitors or short hairpin RNA (shRNA prevents actin stress fiber formation and cell migration. Thus, we conclude that Rho A/ROCK1/LIMK2/Cofilin signaling mediates actin microfilament formation in MG63 cells upon EGFR activation. This novel pathway provides a promising target for preventing osteosarcoma progression and for treating this cancer.

  7. Herceptin Enhances the Antitumor Effect of Natural Killer Cells on Breast Cancer Cells Expressing Human Epidermal Growth Factor Receptor-2

    Directory of Open Access Journals (Sweden)

    Xiao Tian

    2017-10-01

    Full Text Available Optimal adoptive cell therapy (ACT should contribute to effective cancer treatment. The unique ability of natural killer (NK cells to kill cancer cells independent of major histocompatibility requirement makes them suitable as ACT tools. Herceptin, an antihuman epidermal growth factor receptor-2 (anti-HER2 monoclonal antibody, is used to treat HER2+ breast cancer. However, it has limited effectiveness and possible severe cardiotoxicity. Given that Herceptin may increase the cytotoxicity of lymphocytes, we explored the possible augmentation of NK cell cytotoxicity against HER2+ breast cancer cells by Herceptin. We demonstrated that Herceptin could interact with CD16 on NK cells to expand the cytotoxic NK (specifically, CD56dim cell population. Additionally, Herceptin increased NK cell migration and cytotoxicity against HER2+ breast cancer cells. In a pilot study, Herceptin-treated NK cells shrunk lung nodular metastasis in a woman with HER2+ breast cancer who could not tolerate the cardiotoxic side effects of Herceptin. Our findings support the therapeutic potential of Herceptin-treated NK cells in patients with HER2+ and Herceptin-intolerant breast cancer.

  8. Radiolabeled cetuximab: dose optimization for epidermal growth factor receptor imaging in a head-and-neck squamous cell carcinoma model

    NARCIS (Netherlands)

    Hoeben, B.A.W.; Molkenboer-Kuenen, J.D.M.; Oyen, W.J.G.; Peeters, W.J.M.; Kaanders, J.H.A.M.; Bussink, J.; Boerman, O.C.

    2011-01-01

    Noninvasive imaging of the epidermal growth factor receptor (EGFR) in head-and-neck squamous cell carcinoma could be of value to select patients for EGFR-targeted therapy. We assessed dose optimization of (111) Indium-DTPA-cetuximab ((111) In-cetuximab) for EGFR imaging in a head-and-neck squamous

  9. Embryonic maturation of epidermal Merkel cells is controlled by a redundant transcription factor network.

    Science.gov (United States)

    Perdigoto, Carolina N; Bardot, Evan S; Valdes, Victor J; Santoriello, Francis J; Ezhkova, Elena

    2014-12-01

    Merkel cell-neurite complexes are located in touch-sensitive areas of the mammalian skin and are involved in recognition of the texture and shape of objects. Merkel cells are essential for these tactile discriminations, as they generate action potentials in response to touch stimuli and induce the firing of innervating afferent nerves. It has been shown that Merkel cells originate from epidermal stem cells, but the cellular and molecular mechanisms of their development are largely unknown. In this study, we analyzed Merkel cell differentiation during development and found that it is a temporally regulated maturation process characterized by a sequential activation of Merkel cell-specific genes. We uncovered key transcription factors controlling this process and showed that the transcription factor Atoh1 is required for initial Merkel cell specification. The subsequent maturation steps of Merkel cell differentiation are controlled by cooperative function of the transcription factors Sox2 and Isl1, which physically interact and work to sustain Atoh1 expression. These findings reveal the presence of a robust transcriptional network required to produce functional Merkel cells that are required for tactile discrimination. © 2014. Published by The Company of Biologists Ltd.

  10. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Raymond, Carolyn

    2016-05-10

    Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. In this study, we carry out large-scale complementary quantitative proteomic studies using both a label (DIGE) and label-free (GeLC-MS) approach to identify salt-responsive proteins in the EBC extract. Additionally we perform an ionomics analysis (ICP-MS) to follow changes in the amounts of 27 different elements. Using these methods, we were able to identify 54 proteins and nine elements that showed statistically significant changes in the EBC from salt-treated plants. GO enrichment analysis identified a large number of transport proteins but also proteins involved in photosynthesis, primary metabolism and Crassulacean acid metabolism (CAM). Validation of results by western blot, confocal microscopy and enzyme analysis helped to strengthen findings and further our understanding into the role of these specialized cells. As expected EBC accumulated large quantities of sodium, however, the most abundant element was chloride suggesting the sequestration of this ion into the EBC vacuole is just as important for salt tolerance. This single-cell type omics approach shows that epidermal bladder cells of M. crystallinum are metabolically active modified trichomes, with primary metabolism supporting cell growth, ion accumulation, compatible solute synthesis and CAM. Data are available via ProteomeXchange with identifier PXD004045.

  11. The DP-1 transcription factor is required for keratinocyte growth and epidermal stratification.

    Science.gov (United States)

    Chang, Wing Y; Bryce, Dawn M; D'Souza, Sudhir J A; Dagnino, Lina

    2004-12-03

    The epidermis is a stratified epithelium constantly replenished through the ability of keratinocytes in its basal layer to proliferate and self-renew. The epidermis arises from a single-cell layer ectoderm during embryogenesis. Large proliferative capacity is central to ectodermal cell and basal keratinocyte function. DP-1, a heterodimeric partner of E2F transcription factors, is highly expressed in the ectoderm and all epidermal layers during embryogenesis. To investigate the role of DP-1 in epidermal morphogenesis, we inhibited DP-1 activity through exogenous expression of a dominant-negative mutant (dnDP-1). Expression of the dnDP-1 mutant interferes with binding of E2F/DP-1 heterodimers to DNA and inhibits DNA replication, as well as cyclin A mRNA and protein expression. Chromatin immunoprecipitation analysis demonstrated that the cyclin A promoter is predominantly bound in proliferating keratinocytes by complexes containing E2F-3 and E2F-4. Thus, the mechanisms of decreased expression of cyclin A in the presence of dnDP-1 seem to involve inactivation of DP-1 complexes containing E2F-3 and E2F-4. To assess the consequences on epidermal morphogenesis of inhibiting DP-1 activity, we expressed dnDP-1 in rat epithelial keratinocytes in organotypic culture and observed that DP-1 inhibition negatively affected stratification of these cells. Likewise, expression of dnDP-1 in embryonic ectoderm explants produced extensive disorganization of subsequently formed epidermal basal and suprabasal layers, interfering with normal epidermal formation. We conclude that DP-1 activity is required for normal epidermal morphogenesis and ectoderm-to-epidermis transition.

  12. Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before InfectionW⃞

    Science.gov (United States)

    Genre, Andrea; Chabaud, Mireille; Timmers, Ton; Bonfante, Paola; Barker, David G.

    2005-01-01

    The penetration of arbuscular mycorrhizal (AM) fungi through the outermost root tissues of the host plant is a critical step in root colonization, ultimately leading to the establishment of this ecologically important endosymbiotic association. To evaluate the role played by the host plant during AM infection, we have studied in vivo cellular dynamics within Medicago truncatula root epidermal cells using green fluorescent protein labeling of both the plant cytoskeleton and the endoplasmic reticulum. Targeting roots with Gigaspora hyphae has revealed that, before infection, the epidermal cell assembles a transient intracellular structure with a novel cytoskeletal organization. Real-time monitoring suggests that this structure, designated the prepenetration apparatus (PPA), plays a central role in the elaboration of the apoplastic interface compartment through which the fungus grows when it penetrates the cell lumen. The importance of the PPA is underlined by the fact that M. truncatula dmi (for doesn't make infections) mutants fail to assemble this structure. Furthermore, PPA formation in the epidermis can be correlated with DMI-dependent transcriptional activation of the Medicago early nodulin gene ENOD11. These findings demonstrate how the host plant prepares and organizes AM infection of the root, and both the plant–fungal signaling mechanisms involved and the mechanistic parallels with Rhizobium infection in legume root hairs are discussed. PMID:16284314

  13. Trafficking through COPII stabilises cell polarity and drives secretion during Drosophila epidermal differentiation.

    Directory of Open Access Journals (Sweden)

    Michaela Norum

    2010-05-01

    Full Text Available The differentiation of an extracellular matrix (ECM at the apical side of epithelial cells implies massive polarised secretion and membrane trafficking. An epithelial cell is hence engaged in coordinating secretion and cell polarity for a correct and efficient ECM formation.We are studying the molecular mechanisms that Drosophila tracheal and epidermal cells deploy to form their specific apical ECM during differentiation. In this work we demonstrate that the two genetically identified factors haunted and ghost are essential for polarity maintenance, membrane topology as well as for secretion of the tracheal luminal matrix and the cuticle. We show that they code for the Drosophila COPII vesicle-coating components Sec23 and Sec24, respectively, that organise vesicle transport from the ER to the Golgi apparatus.Taken together, epithelial differentiation during Drosophila embryogenesis is a concerted action of ECM formation, plasma membrane remodelling and maintenance of cell polarity that all three rely mainly, if not absolutely, on the canonical secretory pathway from the ER over the Golgi apparatus to the plasma membrane. Our results indicate that COPII vesicles constitute a central hub for these processes.

  14. Use of a collagen-elastin matrix as transport carrier system to transfer proliferating epidermal cells to human dermis in vitro.

    Science.gov (United States)

    Waaijman, Taco; Breetveld, Melanie; Ulrich, Magda; Middelkoop, Esther; Scheper, Rik J; Gibbs, Susan

    2010-01-01

    This in vitro study describes a novel cell culture, transport, and transfer protocol that may be highly suitable for delivering cultured proliferating keratinocytes and melanocytes to large open skin wounds (e.g., burns). We have taken into account previous limitations identified using other keratinocyte transfer techniques, such as regulatory issues, stability of keratinocytes during transport (single cell suspensions undergo terminal differentiation), ease of handling during application, and the degree of epidermal blistering resulting after transplantation (both related to transplanting keratinocyte sheets). Large numbers of proliferating epidermal cells (EC) (keratinocytes and melanocytes) were generated within 10-14 days and seeded onto a three-dimensional matrix composed of elastin and collagen types I, III, and V (Matriderm®), which enabled easy and stable transport of the EC for up to 24 h under ambient conditions. All culture conditions were in accordance with the regulations set by the Dutch Central Committee on Research Involving Human Subjects (CCMO). As an in vitro model system for clinical in vivo transfer, the EC were then transferred from Matriderm onto human acellular dermis during a period of 3 days. After transfer the EC maintained the ability to regenerate into a fully differentiated epidermis containing melanocytes on the human dermis. Proliferating keratinocytes were located in the basal layer and keratin-10 expression was located in differentiating suprabasal layers similar to that found in human epidermis. No blistering was observed (separation of the epidermis from the basement membrane). Keratin-6 expression was strongly upregulated in the regenerating epidermis similar to normal wound healing. In summary, we show that EC-Matriderm contains viable, metabolically active keratinocytes and melanocytes cultured in a manner that permits easy transportation and contains epidermal cells with the potential to form a pigmented reconstructed

  15. Nicotinic acid receptor abnormalities in human skin cancer: implications for a role in epidermal differentiation.

    Directory of Open Access Journals (Sweden)

    Yira Bermudez

    Full Text Available Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through G(i-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells.Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional G(i-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional.The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s of nicotinic acid receptors in human skin homeostasis.

  16. The Effect of Epidermal Structures on Leaf Spectral Signatures of Ice Plants (Aizoaceae

    Directory of Open Access Journals (Sweden)

    René Hans-Jürgen Heim

    2015-12-01

    Full Text Available Epidermal structures (ES of leaves are known to affect the functional properties and spectral responses. Spectral studies focused mostly on the effect of hairs or wax layers only. We studied a wider range of different ES and their impact on spectral properties. Additionally, we identified spectral regions that allow distinguishing different ES. We used a field spectrometer to measure ex situ leaf spectral responses from 350 nm–2500 nm. A spectral library for 25 species of the succulent family Aizoaceae was assembled. Five functional types were defined based on ES: flat epidermal cell surface, convex to papillary epidermal cell surface, bladder cells, hairs and wax cover. We tested the separability of ES using partial least squares discriminant analysis (PLS-DA based on the spectral data. Subsequently, variable importance (VIP was calculated to identify spectral regions relevant for discriminating our functional types (classes. Classification performance was high, with a kappa value of 0.9 indicating well-separable spectral classes. VIP calculations identified six spectral regions of increased importance for the classification. We confirmed and extended previous findings regarding the visible-near-infrared spectral region. Our experiments also confirmed that epidermal leaf traits can be classified due to clearly distinguishable spectral signatures across species and genera within the Aizoaceae.

  17. Epidermal Growth Factor and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Xiaopeng Tang

    2016-01-01

    Full Text Available Epidermal growth factor (EGF is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.

  18. Inflammatory linear verrucous epidermal naevus: Report of three ...

    African Journals Online (AJOL)

    Background: Epidermal naevi are congenital harmatomas that arise from embryonal ectodermal cells. The inflammatory linear verrucous variant is rare and presents with disturbing symptoms. In blacks the classical erythema is not common but pruritus and discharge are the commonest features. Methods and results: We ...

  19. Combination effects of epidermal growth factor and glial cell line-derived neurotrophic factor on the in vitro developmental potential of porcine oocytes

    DEFF Research Database (Denmark)

    Valleh, Mehdi Vafaye; Rasmussen, Mikkel Aabech; Hyttel, Poul

    2016-01-01

    of improving this issue, the single and combined effects of epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) on oocyte developmental competence were investigated. Porcine cumulus–oocyte cell complexes (COCs) were matured in serum-free medium supplemented with EGF (0, 10...... with the combination of EGF and GDNF was shown to significantly improve oocyte competence in terms of blastocyst formation, blastocyst cell number and blastocyst hatching rate (P

  20. BLIMP1 Is Required for Postnatal Epidermal Homeostasis but Does Not Define a Sebaceous Gland Progenitor under Steady-State Conditions

    Directory of Open Access Journals (Sweden)

    Kai Kretzschmar

    2014-10-01

    Full Text Available B-lymphocyte-induced nuclear maturation protein 1 (BLIMP1 was previously reported to define a sebaceous gland (SG progenitor population in the epidermis. However, the recent identification of multiple stem cell populations in the hair follicle junctional zone has led us to re-evaluate its function. We show, in agreement with previous studies, that BLIMP1 is expressed by postmitotic, terminally differentiated epidermal cells within the SG, interfollicular epidermis, and hair follicle. Epidermal overexpression of c-Myc results in loss of BLIMP1+ cells, an effect modulated by androgen signaling. Epidermal-specific deletion of Blimp1 causes multiple differentiation defects in the epidermis in addition to SG enlargement. In culture, BLIMP1+ sebocytes have no greater clonogenic potential than BLIMP1− sebocytes. Finally, lineage-tracing experiments reveal that, under steady-state conditions, BLIMP1-expressing cells do not divide. Thus, rather than defining a sebocyte progenitor population, BLIMP1 functions in terminally differentiated cells to maintain homeostasis in multiple epidermal compartments.

  1. Epidermal growth factor induces HCCR expression via PI3K/Akt/mTOR signaling in PANC-1 pancreatic cancer cells

    International Nuclear Information System (INIS)

    Xu, Zekuan; Zhang, Guoxin; Zhang, Yi; Jiang, Jiakai; Yang, Yang; Shi, Ruihua; Hao, Bo; Zhang, Zhihong; Huang, Zuhu; Kim, Jin W

    2010-01-01

    Human cervical cancer oncoprotein 1 (HCCR-1), reported as a negative regulator of p53, is over-expressed in a variety of human cancers. However, it is yet unknown whether HCCR-1 plays any role in pancreatic cancer development. The aim of this study was to investigate the effect of epidermal growth factor on the expression of HCCR in pancreatic cancer cells, and to explore if PI3K/Akt/mTOR signaling pathway mediated this expression. A polyclonal antibody against HCCR protein was raised by immunizing Balb/c mice with the purified recombinant protein pMBPc-HCCR. Tissue samples were constructed on a tissue chip, and the expression of HCCR was investigated by immunohistochemistry assay and Western blotting. Pancreatic cell line, PANC-1 cells were stably transfected with plasmids containing sense-HCCR-1 fragment and HCCR siRNA fragment. MTT and transwell assay were used to investigate the proliferation and invasion of stable tansfectants. The specific inhibitor of PI3K and mTOR was used to see if PI3K/mTOR signal transduction was involved in the induction of HCCR gene expression. A Luciferase assay was used to see if Akt can enhance the HCCR promoter activity. HCCR was up-regulated in pancreatic tumor tissues (mean Allred score 4.51 ± 1.549 vs. 2.87 ± 2.193, P < 0.01), especially with high expression in poorly differentiated pancreatic cancer. The growth of cells decreased in HCCR-1 siRNA transfected cells compared with vector transfectants. The number of invasion cells was significantly lower in HCCR-1 siRNA transfected cells (24.4 ± 9.9) than that in vector transfectants (49.1 ± 15.4). Treatment of PANC-1 cells with epidermal growth factor increased HCCR protein level in a dose- and time-dependent manner. However, application of LY294002 and rapamycin caused a dramatic reduction of epidermal growth factor-induced HCCR expression. Over-expression of exogenous constitutively active Akt increased the HCCR promoter activity; in contrast, dominant negative Akt decreased

  2. The regeneration of epidermal cells of Saintpaulia leaves as a new plant-tissue system for cellular radiation biology

    International Nuclear Information System (INIS)

    Engels, F.M.; Laan, F.M. van der; Leenhouts, H.P.; Chadwick, K.H.

    1980-01-01

    investigation of the nucleus of epidermal cells of the petioles of Saintpaulia leaves by cytofluorimetry revealed that all cells are in a non-cycling pre DNA synthesis phase. Cultivation of dissected leaves results in a synchronous regeneration process of a defined number of cells. Five days after onset of cultivation the cells reach the first mitosis. The nuclear development during the regeneration process is described. Irradiation of the leaves results in a directly visible inhibition of this regenerating capability which is used to quantify cell survival in a tissue. The data show that the radiation response has a similar shape to that of the survival of single cells in culture. This response can be observed before the first mitosis of the cells and its application as a new plant tissue system for cellular radiation research is discussed. (author)

  3. Phosphoproteomic fingerprinting of epidermal growth factor signaling and anticancer drug action in human tumor cells.

    Science.gov (United States)

    Lim, Yoon-Pin; Diong, Lang-Shi; Qi, Robert; Druker, Brian J; Epstein, Richard J

    2003-12-01

    Many proteins regulating cancer cell growth are tyrosine phosphorylated. Using antiphosphotyrosine affinity chromatography, thiourea protein solubilization, two-dimensional PAGE, and mass spectrometry, we report here the characterization of the epidermal growth factor (EGF)-induced phosphoproteome in A431 human epidermoid carcinoma cells. Using this approach, more than 50 distinct tyrosine phosphoproteins are identifiable within five main clusters-cytoskeletal proteins, signaling enzymes, SH2-containing adaptors, chaperones, and focal adhesion proteins. Comparison of the phosphoproteomes induced in vitro by transforming growth factor-alpha and platelet-derived growth factor demonstrates the pathway- and cell-specific nature of the phosphoproteomes induced. Elimination of both basal and ligand-dependent phosphoproteins by cell exposure to the EGF receptor catalytic inhibitor gefitinib (Iressa, ZD1839) suggests either an autocrine growth loop or the presence of a second inhibited kinase in A431 cells. By identifying distinct patterns of phosphorylation involving novel signaling substrates, and by clarifying the mechanism of action of anticancer drugs, these findings illustrate the potential of immunoaffinity-based phosphoproteomics for guiding the discovery of new drug targets and the rational utilization of pathway-specific chemotherapies.

  4. Epidermal characters of Tamarix L. (Tamaricaceae) from Northwest China and their taxonomic and palaeogeographic implications

    OpenAIRE

    Jian-Wei Zhang; Ashalata D'Rozario; Shi-Min Duan; Xi-Yong Wang; Xiao-Qing Liang; Bo-Rong Pan

    2018-01-01

    The taxonomical position of species of the genus Tamarix (Tamaricaceae) has been criticized because of their gross morphological similarities (such as slender, smooth and reddish–brown branches, grey–green foliage and scale leaves), and their systematic relationships remain unclear. In this paper, the leaf epidermal features of 17 species from China are studied based on the micro-morphological characters of the epidermal cells, stomata, salt glands, papillae and epidermal hairs. According to ...

  5. Clinical Studies on conformal radiotherapy combined with epidermal ...

    African Journals Online (AJOL)

    Purpose: To study the effect of conformal radiotherapy combined with epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) in the second-line treatment of non-small cell lung cancer (NSCLC). Methods: A total of 316 patients attending Shanghai Pulmonary Hospital affiliated to Tongji University, were divided ...

  6. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  7. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    International Nuclear Information System (INIS)

    Nagata, Yosuke; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-01-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  8. In vivo UVB irradiation induces clustering of Fas (CD95) on human epidermal cells

    DEFF Research Database (Denmark)

    Bang, Bo; Gniadecki, Robert; Larsen, Jørgen K

    2003-01-01

    In vitro studies with human cell lines have demonstrated that the death receptor Fas plays a role in ultraviolet (UV)-induced apoptosis. The purpose of the present study was to investigate the relation between Fas expression and apoptosis as well as clustering of Fas in human epidermis after...... a single dose of UVB irradiation. Normal healthy individuals were irradiated with three minimal erythema doses (MED) of UVB on forearm or buttock skin. Suction blisters from unirradiated and irradiated skin were raised, and Fas, FasL, and apoptosis of epidermal cells quantified by flow cytometry....... Clustering of Fas was from skin biopsied. Soluble FasL in suction blister fluid was quantified by ELISA. Flow cytometric analysis demonstrated increased expression intensity of Fas after irradiation, with 1.6-,2.2- and 2.7-fold increased median expression at 24, 48 and 72 h after irradiation, respectively (n...

  9. Cervi cornus Colla (deer antler glue) induce epidermal differentiation in the reconstruction of skin equivalents.

    Science.gov (United States)

    Choi, H-R; Nam, K-M; Kim, D-S; Huh, C-H; Na, J-I; Park, K-C

    2013-06-01

    In the reconstruction of skin equivalents (SEs), keratinocyte differentiation is important because epidermal differentiation is closely related with barrier function. The aim of this study was to investigate the effects of Cervi cornus Colla (CCC) on the stem cell activity and epidermal differentiation in the reconstruction of skin equivalent. Four different models were constructed according to different composition of dermal substitute. Results showed similar morphologic findings when hyaluronic acid (HA) and/or CCC was added. But, immunohistochemical staining showed that p63 was significantly increased by addition of HA and/or CCC. Increased staining of integrin α6 and β1 was variably observed when HA and/or CCC was added to make dermal substitute. These finding showed that addition of HA and/or CCC may affect the stem cell activity in the reconstruction of skin. Furthermore, filaggrin expression was much increased when CCC was added. It showed that epidermal differentiation was significantly improved by addition of CCC. In conclusion, simultaneous presence of HA and CCC contributed to the stem cell activity and epidermal differentiation in the reconstruction of SE. Legislation in the EU prohibits marketing cosmetics and personal care products that contain constituents that have been examined through animal experiments. To avoid these limitations, SEs can be used for testing the safety or the efficacy of cosmetic ingredients. Therefore, our results showed that combined use of HA and CCC can be helpful for the reconstruction of SE with good stem cell activity and epidermal differentiation. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  10. Immunohistochemical localization of epidermal growth factor in rat and man

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1986-01-01

    Epidermal growth factor (EGF) is a peptide which stimulates cell mitotic activity and differentiation, has a cytoprotective effect on the gastroduodenal mucosa, and inhibits gastric acid secretion. The immunohistochemical localization of EGF in the Brunner's glands and the submandibular glands is...... antisera against human urinary EGF worked in rat as well as man. EGF was found only in cells with an exocrine function.......Epidermal growth factor (EGF) is a peptide which stimulates cell mitotic activity and differentiation, has a cytoprotective effect on the gastroduodenal mucosa, and inhibits gastric acid secretion. The immunohistochemical localization of EGF in the Brunner's glands and the submandibular glands...... is well documented. The localization of EGF in other tissues is still unclarified. In the present study, the immunohistochemical localization of EGF in tissues from rat, man and a 20 week human fetus were investigated. In man and rat, immunoreaction was found in the submandibular glands, the serous glands...

  11. Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Manpreet S. Chahal

    2010-07-01

    Full Text Available Phospholipase D2 (PLD2 generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells.

  12. Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells.

    Science.gov (United States)

    Chahal, Manpreet S; Brauner, Daniel J; Meier, Kathryn E

    2010-07-02

    Phospholipase D2 (PLD2) generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR) can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells.

  13. Studies on the relationship between epidermal cell turnover kinetics and permeability of hairless mouse skin

    International Nuclear Information System (INIS)

    Han, S.R.

    1988-01-01

    The primary aim of this study was to develop non-invasive, physical means to quantitatively assess the epidermal turnover kinetics and barrier properties of the skin and relate these to the cutaneous irritation which results from ultraviolet light irradiation and mold thermal burns. After systematically injecting radiolabeled glycine, the appearance of radioactivity at the skin's surface indicated the transit time of radiolabeled cells through the skin. By plotting the data as the cumulative specific activity against time and then fitting them with a third order polynomial equation, it is possible to estimate the turnover time of the stratum corneum. The skin turnover was coordinated with non-invasive transepidermal water loss (TEWL) studies determined with an evaporimeter. In vitro diffusion studies of the permeability of hydrocortisone through UVB irradiated and thermally burned skin were also performed. The studies indicated that irritated skin offers a relatively low diffusional resistance to hydrocortisone. Depending on the severity of the trauma, the increases in hydrocortisone's permeability coefficient through irritated skin ranged from a low of about 2 times normal to a high of about 210 times normal. Trauma-induced changes in hydrocortisone permeability parallel changes in TEWL, proving that the barrier deficient state resulting from rapid epidermal turnover is a general phenomenon

  14. Relationship between the ability of sunscreens containing 2-ethylhexyl-4'-methoxycinnamate to protect against UVR-induced inflammation, depletion of epidermal Langerhans (Ia+) cells and suppression of alloactivating capacity of murine skin in vivo.

    Science.gov (United States)

    Walker, S L; Morris, J; Chu, A C; Young, A R

    1994-01-01

    The UVB sunscreen 2-ethylhexyl-4'-methoxycinnamate was evaluated in hairless albino mouse skin for its ability to inhibit UVR-induced (i) oedema, (ii) epidermal Langerhans cell (Ia+) depletion and (iii) suppression of the alloactivating capacity of epidermal cells (mixed epidermal cell-lymphocyte reaction, MECLR). The sunscreen, prepared at 9% in ethanol or a cosmetic lotion, was applied prior to UVB/UVA irradiation. In some experiments there was a second application halfway through the irradiation. Single applications in both vehicles gave varying degrees of protection from oedema and Langerhans cell depletion but afforded no protection from suppression of MECLR. When the sunscreens were applied twice there was improved protection from oedema and Langerhans cell depletion and complete protection was afforded from suppression of MECLR. There was a clear linear relationship between Langerhans cell numbers and oedema with and without sunscreen application. The relationship between Langerhans cell numbers and MECLR was more complex. These data confirm published discrepancies between protection from oedema (a model for human erythema) and endpoints with immunological significance, but show that 2-ethylhexyl-4'-methoxycinnamate can afford complete immunoprotection, although protection is dependent on the application rate and vehicle.

  15. Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells.

    Science.gov (United States)

    Alper, O; De Santis, M L; Stromberg, K; Hacker, N F; Cho-Chung, Y S; Salomon, D S

    2000-11-15

    Over-expression of epidermal growth factor receptor (EGFR) in ovarian cancer has been well documented. Human NIH:OVCAR-8 ovarian carcinoma cells were transfected with an expression vector containing the anti-sense orientation of truncated human EGFR cDNA. EGFR anti-sense over-expression resulted in decreased EGFR protein and mRNA expression, cell proliferation and tumor formation in nude mice. In accordance with the reduced levels of EGFR in EGFR anti-sense-expressing cells, tyrosine phosphorylation of EGFR was decreased compared to untransfected parental cells treated with EGF. In EGFR anti-sense-transfected cells, expression of erbB-3, but not erbB-2, was increased. In addition, basal and heregulin-beta 1-stimulated tyrosine phosphorylation of erbB-3 was higher in EGFR anti-sense vector-transfected cells. A morphological alteration in EGFR anti-sense gene-expressing cells was correlated with a decrease in the expression of E-cadherin, alpha-catenin and, to a lesser extent, beta-catenin. Changes in the expression of these proteins were associated with a reduction in complex formation among E-cadherin, beta-catenin and alpha-catenin and between beta-catenin and EGFR in EGFR anti-sense-expressing cells compared to sense-transfected control cells. These results demonstrate that EGFR expression in ovarian carcinoma cells regulates expression of cell adhesion proteins that may enhance cell growth and invasiveness. Copyright 2000 Wiley-Liss, Inc.

  16. Epidermal growth factor treatment of A431 cells alters the binding capacity and electrophoretic mobility of the cytoskeletally associated epidermal growth factor receptor

    International Nuclear Information System (INIS)

    Roy, L.M.; Gittinger, C.K.; Landreth, G.E.

    1991-01-01

    Epidermal growth factor receptor interacts with structural elements of A431 cells and remains associated with the cytoskeleton following extraction with nonionic detergents. Extraction of cells with 0.15% Triton X-100 resulted in detection of only approximately 40% of the EGF binding sites on the cytoskeleton. If the cells were exposed to EGF prior to extraction, approximately twofold higher levels of low-affinity EGF binding sites were detected. The difference in number of EGF binding sites was not a consequence of differences in numbers of EGF receptors associated with the cytoskeleton; equal amounts of 35S-labeled receptor were immunoprecipitated from the cytoskeletons of both control and EGF-treated cells. The effect of EGF pretreatment on binding activity was coincident with a change in the mobility of the receptor from a doublet of Mr approximately 160-180 kDa to a single sharp band at 180 kDa. The alteration in receptor mobility was not a simple consequence of receptor phosphorylation in that the alteration was not reversed by alkaline phosphatase treatment, nor was the shift produced by treatment of the cells with phorbol ester. The two EGF receptor species demonstrated differential susceptibility to V8 proteinase digestion. The EGF-induced 180 kDa species was preferentially digested by the proteinase relative to the 160 kDa species, indicating that EGF binding results in a conformational change in the receptor. The EGF-mediated preservation of binding activity and altered conformation may be related to receptor oligomerization

  17. Catalase reverses tumorigenicity in a malignant cell line by an epidermal growth factor receptor pathway.

    Science.gov (United States)

    Finch, Joanne S; Tome, Margaret E; Kwei, Kevin A; Bowden, G Tim

    2006-03-01

    We have used a keratinocyte in vivo/in vitro cell model to test the hypothesis that hydrogen peroxide acts as a signaling molecule, contributing to proliferation and tumorigenesis. A cell line, 6M90, that produces squamous cell carcinoma (SCC), has high levels of ROS and low levels of catalase. A new cell line, MTOC2, generated from parental 6M90 cells by introduction of a Tet-responsive catalase transgene, effectively expressed higher peroxisomal catalase. Increased catalase expression diminished constitutive ROS and enhanced viability after treatment with hydrogen peroxide. Protein tyrosine phosphatase activity was higher in the MTOC2 cells with high catalase, consistent with detection of a lower level of phosphorylation at tyrosine 1068 of the epidermal growth factor receptor (EGF-R). Transcription of downstream c-fos, AP-1 transactivation and cell proliferation were higher in the low catalase cells. An EGF-R inhibitor, AG1478, blocks the higher AP-1 transactivation and cell proliferation of the low catalase 6M90 cells. Tumorigenesis in SCID mice was greatly diminished in the high catalase cells. Our data suggest that hydrogen peroxide functions as a signaling molecule that can modulate activity of a protein tyrosine phosphatase/(s) resulting in phosphorylation of tryrosine/(s) on the EGF-R. Therefore, catalase acts as a tumor-suppressor gene in part by decreasing EGF-R signaling.

  18. Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib.

    Science.gov (United States)

    Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel

    2006-08-01

    Aberrant activation of the epidermal growth factor receptor is frequently observed in neoplasia, notably in tumors of epithelial origin. Attempts to treat such tumors with epidermal growth factor receptor antagonists resulted in remarkable success in recent studies. Little is known, however, about the efficacy of this therapy in biliary tract cancer. Protein expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 was assessed in seven human biliary tract cancer cell lines by immunoblotting. In addition, histological sections from 19 patients with extrahepatic cholangiocarcinoma were analyzed for epidermal growth factor receptor, ErbB-2 and vascular endothelial growth factor receptor-2 expression by immunohistochemistry. Moreover, we sequenced the cDNA products representing the entire epidermal growth factor receptor coding region of the seven cell lines, and searched for genomic epidermal growth factor receptor amplifications and polysomy by fluorescence in-situ hybridization. Cell growth inhibition by gefitinib erlotinib and NVP-AEE788 was studied in vitro by automated cell counting. In addition, the anti-tumoral effect of erlotinib and NVP-AEE788 was studied in a chimeric mouse model. The anti-tumoral drug mechanism in this model was assessed by MIB-1 antibody staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labelling assay, von Willebrand factor staining, and immunoblotting for p-p42/44 (p-Erk1/2, p-MAPK) and p-AKT. Immunoblotting revealed expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 in all biliary tract cancer cell lines. EGFR was detectable in six of 19 (32%) extrahepatic human cholangiocarcinoma tissue samples, ErbB-2 in 16 of 19 (84%), and vascular endothelial growth factor receptor-2 in nine of 19 (47%). Neither epidermal growth factor receptor mutations nor amplifications or polysomy were found in the seven biliary tract cancer

  19. HaCaT Keratinocytes and Primary Epidermal Keratinocytes Have Different Transcriptional Profiles of Cornified Envelope-Associated Genes to T Helper Cell Cytokines

    Science.gov (United States)

    Seo, Min-Duk; Kang, Tae Jin; Lee, Chang Hoon; Lee, Ai-Young; Noh, Minsoo

    2012-01-01

    HaCaT cells are the immortalized human keratinocytes and have been extensively used to study the epidermal homeostasis and its pathophysiology. T helper cells play a role in various chronic dermatological conditions and they can affect skin barrier homeostasis. To evaluate whether HaCaT cells can be used as a model cell system to study abnormal skin barrier development in various dermatologic diseases, we analyzed the gene expression profile of epidermal differentiation markers of HaCaT cells in response to major T helper (Th) cell cytokines, such as IFNγ, IL-4, IL-17A and IL-22. The gene transcriptional profile of cornified envelope-associated proteins, such as filaggrin, loricrin, involucrin and keratin 10 (KRT10), in HaCaT cells was generally different from that in normal human keratinocytes (NHKs). This suggests that HaCaT cells have a limitation as a model system to study the pathophysiological mechanism associated with the Th cell cytokine-dependent changes in cornified envelope-associated proteins which are essential for normal skin barrier development. In contrast, the gene transcription profile change of human β2-defensin (HBD2) in response to IFNγ, IL-4 or IL-17A in HaCaT cells was consistent with the expression pattern of NHKs. IFNγ also up-regulated transglutaminase 2 (TGM2) gene transcription in both HaCaT cells and NHKs. As an alternative cell culture system for NHKs, HaCaT cells can be used to study molecular mechanisms associated with abnormal HBD2 and TGM2 expression in response to IFNγ, IL-4 or IL-17A. PMID:24116291

  20. Modulation of Regorafenib effects on HCC cell lines by epidermal growth factor.

    Science.gov (United States)

    D'Alessandro, Rosalba; Refolo, Maria Grazia; Lippolis, Catia; Carella, Nicola; Messa, Caterina; Cavallini, Aldo; Carr, Brian Irving

    2015-06-01

    Blood platelet numbers are correlated to growth and aggressiveness of several tumor types, including hepatocellular carcinoma (HCC). We previously found that platelet lysates (hPLs) also stimulated growth and migration, and antagonized the growth-inhibitory and apoptotic effects of both Sorafenib and Regorafenib, two multikinase inhibitors, on three HCC cell lines. In this study, in vitro function of human epidermal growth factor (EGF) with and without Sorafenib or Regorafenib was investigated. An ELISA kit was used to evaluate the EGF concentrations in hPLs. In vitro function of EGF was assessed with proliferation MTT test. Apoptosis assay, scratch assays, and Transwell assays were performed for apoptosis, invasion, and migration, respectively. MAPK Activation Kit was used to explore MAPK phosphorylation. EGF antagonized the growth inhibition of Regorafenib on three HCC cell lines. Regorafenib-mediated growth inhibition was blocked by 70 % when the cells were pre-treated with EGF. EGF also blocked Regorafenib-induced apoptosis, as well as Regorafenib-induced decreases in cell migration and invasion. The EGF effects were in turn antagonized by concomitant addition to the cultures of EGF receptor antagonist Erlotinib, showing that the EGF receptor was involved in the mechanisms of EGF-mediated blocking of Regorafenib effects. Erlotinib also partially blocked the effects of hPLs in antagonizing Regorafenib-mediated growth inhibition, showing that EGF was an important component of hPL actions. All these results show that EGF antagonized Regorafenib-mediated growth and migration inhibition and apoptosis induction in HCC cells and reinforce the idea that microenvironment can influence cancer drug actions.

  1. Ultra-weak photon emission as a non-invasive tool for monitoring of oxidative processes in the epidermal cells of human skin: comparative study on the dorsal and the palm side of the hand.

    Science.gov (United States)

    Rastogi, Anshu; Pospísil, Pavel

    2010-08-01

    All living organisms emit spontaneous ultra-weak photon emission as a result of cellular metabolic processes. Exposure of living organisms to exogenous factors results in oxidative processes and enhancement in ultra-weak photon emission. Here, hydrogen peroxide (H(2)O(2)), as a strongly oxidizing molecule, was used to induce oxidative processes and enhance ultra-weak photon emission in human hand skin. The presented work intends to compare both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the dorsal and the palm side of the hand. A highly sensitive photomultiplier tube and a charge-coupled device camera were used to detect ultra-weak photon emission from human hand skin. Spontaneous ultra-weak photon emission from the epidermal cells on the dorsal side of the hand was 4 counts/s. Topical application of 500 mM H(2)O(2) to the dorsal side of the hand caused enhancement in ultra-weak photon emission to 40 counts/s. Interestingly, both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the palm side of the hand were observed to increase twice their values, i.e. 8 and 80 counts/s, respectively. Similarly, the two-dimensional image of ultra-weak photon emission observed after topical application of H(2)O(2) to human skin reveals that photon emission from the palm side exceeds the photon emission from the dorsal side of the hand. The results presented indicate that the ultra-weak photon emission originating from the epidermal cells on the dorsal and the palm side of the hand is related to the histological structure of the human hand skin. Ultra-weak photon emission is shown as a non-destructive technique for monitoring of oxidative processes in the epidermal cells of the human hand skin and as a diagnostic tool for skin diseases.

  2. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues

    Directory of Open Access Journals (Sweden)

    Hye-Sun Yu

    2016-02-01

    Full Text Available Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations.

  3. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues

    Science.gov (United States)

    Yu, Hye-Sun; Kim, Jung-Ju; Kim, Hae-Won; Lewis, Mark P; Wall, Ivan

    2016-01-01

    Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations. PMID:26977284

  4. PANC-1 pancreatic cancer cell growth inhibited by cucurmosin alone and in combination with an epidermal growth factor receptor-targeted drug.

    Science.gov (United States)

    Wang, Congfei; Yang, Aiqin; Zhang, Baoming; Yin, Qiang; Huang, Heguang; Chen, Minghuang; Xie, Jieming

    2014-03-01

    To investigate the inhibition of PANC-1 pancreatic cancer cell growth by cucurmosin (CUS) and its possible mechanism. We observed the inhibition of PANC-1 cell growth by sulforhodamine B and colony-forming experiments in vitro and established nonobese diabetic/severe combined immunodeficiency mouse subcutaneous tumor models in vivo. We used Western blot to analyze protein levels related to apoptosis and epidermal growth factor receptor (EGFR) signaling pathways after drug intervention, whereas the messenger RNA expression of EGFR was analyzed by quantitative real-time polymerase chain reaction. Sulforhodamine B and colony-forming experiments indicated that CUS inhibited PANC-1 cell proliferation in a dose- and time-dependent manner. A stronger inhibitory effect was observed when CUS was combined with gefitinib. The subcutaneous tumor growth was also inhibited. Western blot showed that all the examined proteins decreased, except for 4E-BP1 and the active fragments of caspase 3 and caspase 9 increased. Epidermal growth factor receptor expression did not change significantly in quantitative real-time polymerase chain reaction. Cucurmosin can strongly inhibit the growth of PANC-1 cells in vitro and in vivo. Cucurmosin can down-regulate EGFR protein expression, but not at the messenger RNA level. Cucurmosin can also inhibit the ras/raf and phosphatidylinositol 3-kinase/Akt downstream signaling pathways and enhance the sensitivity of the EGFR-targeted drug gefitinib.

  5. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    International Nuclear Information System (INIS)

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-01-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 μM triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure

  6. Degradation of Epidermal Growth Factor Receptor Mediates Dasatinib-Induced Apoptosis in Head and Neck Squamous Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chin Lin

    2012-06-01

    Full Text Available Epidermal growth factor receptor (EGFR is an important oncoprotein that promotes cell growth and proliferation. Dasatinib, a bcr-abl inhibitor, has been approved clinically for the treatment of chronic myeloid leukemia and demonstrated to be effective against solid tumors in vitro through Src inhibition. Here, we disclose that EGFR degradation mediated dasatinib-induced apoptosis in head and neck squamous cell carcinoma (HNSCC cells. HNSCC cells, including Ca9-22, FaDu, HSC3, SAS, SCC-25, and UMSCC1, were treated with dasatinib, and cell viability, apoptosis, and underlying signal transduction were evaluated. Dasatinib exhibited differential sensitivities against HNSCC cells. Growth inhibition and apoptosis were correlated with its inhibition on Akt, Erk, and Bcl-2, irrespective of Src inhibition. Accordingly, we found that down-regulation of EGFR was a determinant of dasatinib sensitivity. Lysosome inhibitor reversed dasatinib-induced EGFR down-regulation, and c-cbl activity was increased by dasatinib, indicating that dasatinib-induced EGFR down-regulation might be through c-cbl-mediated lysosome degradation. Increased EGFR activation by ligand administration rescued cells from dasatinib-induced apoptosis, whereas inhibition of EGFR enhanced its apoptotic effect. Estrogen receptor α (ERα was demonstrated to play a role in Bcl-2 expression, and dasatinib inhibited ERα at the pretranslational level. ERα was associated with EGFR in dasatinib-treated HNSCC cells. Furthermore, the xenograft model showed that dasatinib inhibited HSC3 tumor growth through in vivo down-regulation of EGFR and ERα. In conclusion, degradation of EGFR is a novel mechanism responsible for dasatinib-induced apoptosis in HNSCC cells.

  7. Protein kinase C is differentially regulated by thrombin, insulin, and epidermal growth factor in human mammary tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.L.; Tellez-Inon, M.T. (Instituto de Ingenieria Genetica y Biologia Molecular, Buenos Aires (Argentina)); Medrano, E.E.; Cafferatta, E.G.A. (Instituto de Investigaciones Bioquimicas Fundacion Campomar, Buenos Aires (Argentina))

    1988-03-01

    The exposure of serum-deprived mammary tumor cells MCF-7 and T-47D to insulin, thrombin, and epidermal growth factor (EGF) resulted in dramatic modifications in the activity and in the translocation capacity of protein kinase C from cytosol to membrane fractions. Insulin induces a 600% activation of the enzyme after 5 h of exposure to the hormone in MCF-7 cells; thrombin either activates (200% in MCF-7) or down-regulates (in T-47D), and EGF exerts only a moderate effect. Thus, the growth factors studied modulate differentially the protein kinase C activity in human mammary tumor cells. The physiological significance of the results obtained are discussed in terms of the growth response elicited by insulin, thrombin, and EGF.

  8. Epidermal Inclusion Cysts of The Breast

    Directory of Open Access Journals (Sweden)

    Amir R. Motabar

    2009-02-01

    Full Text Available Epidermal inclusion cysts are uncommon in the breast, but the consequences can besevere when these cysts occur in the breast parenchyma. Here,we report two suchcases. The patient in case 1 was an 37-year-old woman with a 3-cm palpable mass inthe right breast. Mammography revealed a round and smoothly outlined mass, whichindicated a benign tumor, and sonography showed an irregularly shaped and heterogeneoushypoechoic mass, fibroadenoma was suspected on the basis of clinical andimage findings, but excisional biopsy revealed an epidermal inclusion cyst. The patientin case 2 was a 50-year-old woman with a 2.5-cm lesion in the left breast. Mammographyrevealed a round, dense, smoothly outlined mass, and sonography showeda well-defined, central hyperechoic mass. . Breast cancer was suspected on the basisof the sonographic findings and the age of the patient, but the resected specimen revealedan epidermal inclusion cyst. Although epidermal inclusion cysts are benign,occasionally they may play a role in the origin of squamous carcinoma of the breast. .Mammographic and sonographic features of an epidermal cyst may mimic a malignantlesion. Malignant change appears to occur more frequently in epidermal inclusioncysts in the mammary gland, compared to common epidermal inclusion cysts,and this may be associated with origination of mammary epidermal inclusion cystsfrom squamous metaplasia of the mammary duct epithelium.Epidermmoid inclusion cyst of the breast is potentially serious, although such cystsare rare, and differentiation from a malignant or benign breast tumor is required. Excisionis probably the most appropriate treatment, and can eliminate the possible riskof malignant transformation.

  9. Anti-Epidermal Growth Factor Receptor Therapy in Head and Neck Squamous Cell Carcinoma: Focus on Potential Molecular Mechanisms of Drug Resistance

    OpenAIRE

    Boeckx, Carolien; Baay, Marc; Wouters, An; Specenier, Pol; Vermorken, Jan B.; Peeters, Marc; Lardon, Filip

    2013-01-01

    Targeted therapy against epidermal growth factor receptor (EGFR) is one of the most promising therapeutics for head and neck squamous cell carcinoma, and EGFR is overexpressed in a wide range of malignancies. An improved understanding of the resistance to EGFR inhibitors may provide new treatment options. This review summarizes some mechanisms and decribes strategies to overcome this resistance.

  10. Epidermal growth factor and insulin-like growth factor I upregulate the expression of the epidermal growth factor system in rat liver

    DEFF Research Database (Denmark)

    Bor, M V; Sørensen, B S; Vinter-Jensen, L

    2000-01-01

    BACKGROUND/AIM: Both epidermal growth factor and insulin-like growth factor I play a role in connection with the liver. In the present study, the possible interaction of these two growth factor systems was studied by investigating the effect of epidermal growth factor or insulin-like growth factor...... I treatment on the expression of the epidermal growth factor receptor, and its activating ligands, transforming growth factor-alpha and epidermal growth factor. METHODS: Fifty-five male rats received no treatment, human recombinant epidermal growth factor or human recombinant insulin-like growth.......8+/-1.6 fmol/mg protein epidermal growth factor and 144+/-22 fmol/mg protein transforming growth factor-alpha. Both epidermal growth factor and insulin-like growth factor I treatment increased the expression of mRNA for transforming growth factor-alpha and epidermal growth factor receptor, as well...

  11. Epidermal response of rainbow trout to Ichthyobodo necator

    DEFF Research Database (Denmark)

    Chettri, Jiwan Kumar; Kuhn, Jesper Andreas; Mohammad, Rezkar Jaafar

    2014-01-01

    Infections with the parasitic flagellate Ichthyobodo necator (Henneguy, 1883) cause severe skin and gill disease in rainbow trout Oncorhynchus mykiss (Walbaum, 1792) juveniles. The epidermal disturbances including hyperplasia and mucous cell exhaustion caused by parasitization are known, but no d...

  12. Epidermal characters of Tamarix L. (Tamaricaceae from Northwest China and their taxonomic and palaeogeographic implications

    Directory of Open Access Journals (Sweden)

    Jian-Wei Zhang

    2018-04-01

    Full Text Available The taxonomical position of species of the genus Tamarix (Tamaricaceae has been criticized because of their gross morphological similarities (such as slender, smooth and reddish–brown branches, grey–green foliage and scale leaves, and their systematic relationships remain unclear. In this paper, the leaf epidermal features of 17 species from China are studied based on the micro-morphological characters of the epidermal cells, stomata, salt glands, papillae and epidermal hairs. According to the studies, the leaf epidermal features, together with the character of the flower, are taxonomically clearly distinct. The establishment of Tamarix albiflonum is consolidated. Tamarix korolkowi and Tamarix ramosissima have minimal differences in epidermal characters, and the former is suggested to be a junior synonym. Tamarix ramosissima, Tamarix tarimensis, Tamarix arceuthoides and Tamarix hohenackeri are most similar with respect to their leaf epidermis; considering the common morphological features, habit, distribution and especially the hybridization, it is suggested that these four species are closely genetically related and that the variations among them are probably intraspecific. The new taxonomical evidence indicates the occurrence of 13 species and four variants in China. Presently, Tamarix is a typical plant of arid and semi-arid regions, but its Eocene ancestors lived in warm and humid climates in the coastal areas of the ancient Mediterranean Sea. Thus, the papillae or epidermal hairs, which are outgrowths of the outer epidermal cells facilitating the leaf to respond to water stress and commonly seen in the plants growing in arid or semi-arid areas rather than the plants in warm and humid climates, are of relatively recent origin in Tamarix. The primitive species lack papillae or epidermal hairs, while in evolved species these structures are abundant. Based on the ecological adaptations of the epidermal features, the palaeogeographic

  13. Homeobox A7 increases cell proliferation by up-regulation of epidermal growth factor receptor expression in human granulosa cells

    Directory of Open Access Journals (Sweden)

    Yanase Toshihiko

    2010-06-01

    Full Text Available Abstract Background Homeobox (HOX genes encode transcription factors, which regulate cell proliferation, differentiation, adhesion, and migration. The deregulation of HOX genes is frequently associated with human reproductive system disorders. However, knowledge regarding the role of HOX genes in human granulosa cells is limited. Methods To determine the role of HOXA7 in the regulation and associated mechanisms of cell proliferation in human granulosa cells, HOXA7 and epidermal growth factor receptor (EGFR expressions were examined in primary granulosa cells (hGCs, an immortalized human granulosa cell line, SVOG, and a granulosa tumor cell line, KGN, by real-time PCR and Western blotting. To manipulate the expression of HOXA7, the HOXA7 specific siRNA was used to knockdown HOXA7 in KGN. Conversely, HOXA7 was overexpressed in SVOG by transfection with the pcDNA3.1-HOAX7 vector. Cell proliferation was measured by the MTT assay. Results Our results show that HOXA7 and EGFR were overexpressed in KGN cells compared to hGCs and SVOG cells. Knockdown of HOXA7 in KGN cells significantly decreased cell proliferation and EGFR expression. Overexpression of HOXA7 in SVOG cells significantly promoted cell growth and EGFR expression. Moreover, the EGF-induced KGN proliferation was abrogated, and the activation of downstream signaling was diminished when HOXA7 was knocked down. Overexpression of HOXA7 in SVOG cells had an opposite effect. Conclusions Our present study reveals a novel mechanistic role for HOXA7 in modulating granulosa cell proliferation via the regulation of EGFR. This finding contributes to the knowledge of the pro-proliferation effect of HOXA7 in granulosa cell growth and differentiation.

  14. [Origins and selection of epidermal progenitors and stem cells: a challenge for tissue engineering].

    Science.gov (United States)

    Deshayes, Nathalie; Rathman-Josserand, Michelle

    2008-01-01

    The use of epidermal stem cells and their progeny for tissue engineering and cell therapy represents a source of hope and major interest in view of applications such as replacing the loss of functionality in failing tissues or obtaining physiologic skin equivalents for skin grafting. The use of such cells necessitates the isolation and purification of rare populations of keratinocytes and then increasing their numbers by mass culture. This is not currently possible since part of the specific phenotype of these cells is lost once the cells are placed in culture. Furthermore, few techniques are available to unequivocally detect the presence of skin stem cells and/or their progeny in culture and thus quantify them. Two different sources of stem cells are currently being studied for skin research and clinical applications: skin progenitors either obtained from embryonic stem cells (ESC) or from selection from adult skin tissue. It has been shown that "keratinocyte-like" cells can be derived from ESC; however, the culturing processes must still be optimized to allow for the mass culture of homogeneous populations at a controlled stage of differentiation. The functional characterization of such populations must also be more thoroughly achieved. In order to use stem cells from adult tissues, improvements must be made in order to obtain a satisfactory degree of purification and characterization of this rare population. Distinguishing stem cells from progenitor cells at the molecular level also remains a challenge. Furthermore, stem cell research inevitably requires cultivating these cells outside their physiological environment or niche. It will thus be necessary to better understand the impact of this specific environmental niche on the preservation of the cellular phenotypes of interest.

  15. Transforming growth factor alpha and epidermal growth factor in laryngeal carcinomas demonstrated by immunohistochemistry

    DEFF Research Database (Denmark)

    Christensen, M E; Therkildsen, M H; Poulsen, Steen Seier

    1993-01-01

    the basal cell layer. The present investigation and our previous results confirm the existence of EGF receptors, TGF-alpha and EGF in laryngeal carcinomas. In addition, we conclude that the conditions do exist for growth factors to act through an autocrine system in poorly differentiated tumours and through......Fifteen laryngeal squamous cell carcinomas were investigated for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF) using immunohistochemical methods. In a recent study the same material was characterized for epidermal growth factor receptors (EGF...... receptors) which were confined predominantly to the undifferentiated cells. The expression of this growth factor system in malignant cells may play a role in carcinogenesis and/or tumour growth. All carcinomas were positive for TGF-alpha and 12 were positive for EGF. In moderately-to-well differentiated...

  16. Carbon isotope ratios of epidermal and mesophyll tissues from leaves of C3 and CAM plants

    International Nuclear Information System (INIS)

    Nishida, K.; Roksandic, Z.; Osmond, B.

    1981-01-01

    The δ 13 C values for epidermal and mesophyll tissues of two C 3 plants, Commelina communis and Tulipa gesneriana, and a CAM plant, Kalanchoē daigremontiana, were measured. The values for the tissues of both C 3 plants were similar. In young leaves of Kalanchoē, the epidermis and the mesophyll showed S 13 C values which were nearly identical, and similar to those found in C 3 plants. However, markedly more negative values for epidermal compared to mesophyll tissue, were obtained in the mature Kalanchoē leaf. This is consistent with the facts that the epidermis in a CAM leaf is formed when leaves engage in C 3 photosynthesis and that subsequent dark CO 2 fixation in guard cells or mesophyll cells makes only a small contribution to total epidermal carbon

  17. Making Epidermal Bladder Cells Bigger: Developmental- and Salinity-Induced Endopolyploidy in a Model Halophyte.

    Science.gov (United States)

    Barkla, Bronwyn J; Rhodes, Timothy; Tran, Kieu-Nga T; Wijesinghege, Chathura; Larkin, John C; Dassanayake, Maheshi

    2018-06-01

    Endopolyploidy occurs when DNA replication takes place without subsequent mitotic nuclear division, resulting in cell-specific ploidy levels within tissues. In plants, endopolyploidy plays an important role in sustaining growth and development, but only a few studies have demonstrated a role in abiotic stress response. In this study, we investigated the function of ploidy level and nuclear and cell size in leaf expansion throughout development and tracked cell type-specific ploidy in the halophyte Mesembryanthemum crystallinum In addition to developmental endopolyploidy, we examined the effects of salinity stress on ploidy level. We focused specifically on epidermal bladder cells (EBC), which are modified balloon-like trichomes, due to their large size and role in salt accumulation. Our results demonstrate that ploidy increases as the leaves expand in a similar manner for each leaf type, and ploidy levels up to 512C were recorded for nuclei in EBC of leaves of adult plants. Salt treatment led to a significant increase in ploidy levels in the EBC, and these cells showed spatially related differences in their ploidy and nuclear and cell size depending on the positions on the leaf and stem surface. Transcriptome analysis highlighted salinity-induced changes in genes involved in DNA replication, cell cycle, endoreduplication, and trichome development in EBC. The increase in cell size and ploidy observed in M. crystallinum under salinity stress may contribute to salt tolerance by increasing the storage capacity for sodium sequestration brought about by higher metabolic activity driving rapid cell enlargement in the leaf tissue and EBC. © 2018 American Society of Plant Biologists. All rights reserved.

  18. Expression and significance of HMGB1, TLR4 and NF-κB p65 in human epidermal tumors

    International Nuclear Information System (INIS)

    Weng, Hui; Deng, Yunhua; Xie, Yuyan; Liu, Hongbo; Gong, Feili

    2013-01-01

    High mobility group protein box 1 (HMGB1) is a DNA binding protein located in nucleus. It is released into extracellular fluid where it acts as a novel proinflammatory cytokine which interacts with Toll like receptor 4 (TLR4) to activate nuclear factor-κB (NF-κB). This sequence of events is involved in tumor growth and progression. However, the effects of HMGB1, TLR4 and NF-κB on epidermal tumors remain unclear. Human epidermal tumor specimens were obtained from 96 patients. Immunohistochemistry was used to detect expression of HMGB1, TLR4 and NF-κB p65 in human epidermal tumor and normal skin specimens. Western blot analysis was used to detect the expression of NF-κB p65 in epithelial cell nuclei in human epidermal tumor and normal tissues. Immunohistochemistry and western blot analysis indicated a progressive but statistically significant increase in p65 expression in epithelial nuclei in benign seborrheic keratosis (SK), precancerous lesions (PCL), low malignancy basal cell carcinoma (BCC) and high malignancy squamous cell carcinoma (SCC) (P <0.01). The level of extracellular HMGB1 in SK was significantly higher than in normal skin (NS) (P <0.01), and was higher than in SCC but without statistical significance. The level of TLR4 on epithelial membranes of SCC cells was significantly higher than in SK, PCL, BCC and NS (P <0.01). There was a significant positive correlation between p65 expression in the epithelial nuclei and TLR4 expression on the epithelial cell membranes (r = 0.3212, P <0.01). These findings indicate that inflammation is intensified in parallel with increasing malignancy. They also indicate that the TLR4 signaling pathway, rather than HMGB1, may be the principal mediator of inflammation in high-grade malignant epidermal tumors. Combined detection of p65 in the epithelial nuclei and TLR4 on the epithelial membranes may assist the accurate diagnosis of malignant epidermal tumors

  19. Protective Effect of Liposome-Encapsulated Glutathione in a Human Epidermal Model Exposed to a Mustard Gas Analog

    Directory of Open Access Journals (Sweden)

    Victor Paromov

    2011-01-01

    Full Text Available Sulfur mustard or mustard gas (HD and its monofunctional analog, 2-chloroethyl ethyl sulfide (CEES, or “half-mustard gas,” are alkylating agents that induce DNA damage, oxidative stress, and inflammation. HD/CEES are rapidly absorbed in the skin causing extensive injury. We hypothesize that antioxidant liposomes that deliver both water-soluble and lipid-soluble antioxidants protect skin cells from immediate CEES-induced damage via attenuating oxidative stress. Liposomes containing water-soluble antioxidants and/or lipid-soluble antioxidants were evaluated using in vitro model systems. Initially, we found that liposomes containing encapsulated glutathione (GSH-liposomes increased cell viability and attenuated production of reactive oxygen species (ROS in HaCaT cells exposed to CEES. Next, GSH-liposomes were tested in a human epidermal model, EpiDerm. In the EpiDerm, GSH-liposomes administered simultaneously or 1 hour after CEES exposure (2.5 mM increased cell viability, inhibited CEES-induced loss of ATP and attenuated changes in cellular morphology, but did not reduce caspase-3 activity. These findings paralleled the previously described in vivo protective effect of antioxidant liposomes in the rat lung and established the effectiveness of GSH-liposomes in a human epidermal model. This study provides a rationale for use of antioxidant liposomes against HD toxicity in the skin considering further verification in animal models exposed to HD.

  20. DEVELOPMENT OF PRIMARY CELL CULTURE FROM TAIL EPIDERMAL TISSUE OF KOI CARP (Cyprinus carpio koi

    Directory of Open Access Journals (Sweden)

    Lila Gardenia

    2014-06-01

    Full Text Available Primary cell culture from tail epidermal tissue of koi carp (Cyprinus carpio koi was developed. Cells were grown in Leibovits-15 medium supplemented with 20% fetal bovine serum and antibiotics (Penicillin/Streptomycin and Kanamycin. Cell growth was observed in a range of incubation temperature (17oC±2oC, 22oC±2oC, 27oC±2oC, and 32oC±2oC in order to determine the optimum temperature. The cells were able to grow at a range of temperature between 17oC to 32oC with optimal growth at 22oC. Primary cells infected with koi herpes virus produced typical cytopathic effects characterized by severe vacuolation and deformation of nuclei, which is consistent with those of previous reports. Artificial injection experiment by using supernatant koi herpes virus SKBM-1 isolate revealed that it could cause 90% mortality in infected fish within two weeks. PCR test with Sph I-5 specific primers carried out with DNA template from supernatant virus, pellet cell, and gills of infected fish showed positive results in all samples (molecular weight of DNA target 290 bp. The cells were found to be susceptible to koi herpes virus and can be used for virus propagation.

  1. Cell wall accumulation of fluorescent proteins derived from a trans-Golgi cisternal membrane marker and paramural bodies in interdigitated Arabidopsis leaf epidermal cells.

    Science.gov (United States)

    Akita, Kae; Kobayashi, Megumi; Sato, Mayuko; Kutsuna, Natsumaro; Ueda, Takashi; Toyooka, Kiminori; Nagata, Noriko; Hasezawa, Seiichiro; Higaki, Takumi

    2017-01-01

    In most dicotyledonous plants, leaf epidermal pavement cells develop jigsaw puzzle-like shapes during cell expansion. The rapid growth and complicated cell shape of pavement cells is suggested to be achieved by targeted exocytosis that is coordinated with cytoskeletal rearrangement to provide plasma membrane and/or cell wall materials for lobe development during their morphogenesis. Therefore, visualization of membrane trafficking in leaf pavement cells should contribute an understanding of the mechanism of plant cell morphogenesis. To reveal membrane trafficking in pavement cells, we observed monomeric red fluorescent protein-tagged rat sialyl transferases, which are markers of trans-Golgi cisternal membranes, in the leaf epidermis of Arabidopsis thaliana. Quantitative fluorescence imaging techniques and immunoelectron microscopic observations revealed that accumulation of the red fluorescent protein occurred mostly in the curved regions of pavement cell borders and guard cell ends during leaf expansion. Transmission electron microscopy observations revealed that apoplastic vesicular membrane structures called paramural bodies were more frequent beneath the curved cell wall regions of interdigitated pavement cells and guard cell ends in young leaf epidermis. In addition, pharmacological studies showed that perturbations in membrane trafficking resulted in simple cell shapes. These results suggested possible heterogeneity of the curved regions of plasma membranes, implying a relationship with pavement cell morphogenesis.

  2. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    Science.gov (United States)

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  3. Compartmentalized Epidermal Activation of β-Catenin Differentially Affects Lineage Reprogramming and Underlies Tumor Heterogeneity

    Directory of Open Access Journals (Sweden)

    Kai Kretzschmar

    2016-01-01

    Full Text Available Wnt/β-catenin activation in adult epidermis can induce new hair follicle formation and tumor development. We used lineage tracing to uncover the relative contribution of different stem cell populations. LGR6+ and LRIG1+ stem cells contributed to ectopic hair follicles formed in the sebaceous gland upon β-catenin activation, whereas LGR5+ cells did not. Lgr6, but not Lrig1 or Lgr5, was expressed in a subpopulation of interfollicular epidermal cells that were competent to form new hair follicles. Oncogenic β-catenin expression in LGR5+ cells led to formation of pilomatricomas, while LRIG1+ cells formed trichoadenomas and LGR6+ cells formed dermatofibromas. Tumor formation was always accompanied by a local increase in dermal fibroblast density and transient extracellular matrix remodeling. However, each tumor had a distinct stromal signature in terms of immune cell infiltrate and expression of CD26 and CD44. We conclude that compartmentalization of epidermal stem cells underlies different responses to β-catenin and skin tumor heterogeneity.

  4. Pigmented epidermal cyst with dense collection of melanin: A rare entity - Report of a case with review of the literature.

    Science.gov (United States)

    Jayalakshmy, P S; Subitha, K; Priya, P V; Johnson, Gerald

    2012-05-01

    Epidermal cyst is a very common benign cystic lesion of the skin. It is usual to find ulceration of the lining epithelium, rupture of the cyst wall with chronic inflammation and foreign body giant cell reaction. But, it is very rare to see an epidermal cyst with marked accumulation of melanin pigment. Only a few cases of pigmented epidermal cyst with dense collection of melanin pigment have been published in the literature. Here, we are reporting a case of ruptured epidermal cyst with keratin granuloma formation and showing dense collection of melanin pigment.

  5. Eosinophil peroxidase signals via epidermal growth factor-2 to induce cell proliferation.

    LENUS (Irish Health Repository)

    Walsh, Marie-Therese

    2011-11-01

    Eosinophils exert many of their inflammatory effects in allergic disorders through the degranulation and release of intracellular mediators, including a set of cationic granule proteins that include eosinophil peroxidase. Studies suggest that eosinophils are involved in remodeling. In previous studies, we showed that eosinophil granule proteins activate mitogen-activated protein kinase signaling. In this study, we investigated the receptor mediating eosinophil peroxidase-induced signaling and downstream effects. Human cholinergic neuroblastoma IMR32 and murine melanoma B16.F10 cultures, real-time polymerase chain reaction, immunoprecipitations, and Western blotting were used in the study. We showed that eosinophil peroxidase caused a sustained increase in both the expression of epidermal growth factor-2 (HER2) and its phosphorylation at tyrosine 1248, with the consequent activation of extracellular-regulated kinase 1\\/2. This, in turn, promoted a focal adhesion kinase-dependent egress of the cyclin-dependent kinase inhibitor p27(kip) from the nucleus to the cytoplasm. Eosinophil peroxidase induced a HER2-dependent up-regulation of cell proliferation, indicated by an up-regulation of the nuclear proliferation marker Ki67. This study identifies HER2 as a novel mediator of eosinophil peroxidase signaling. The results show that eosinophil peroxidase, at noncytotoxic levels, can drive cell-cycle progression and proliferation, and contribute to tissue remodeling and cell turnover in airway disease. Because eosinophils are a feature of many cancers, these findings also suggest a role for eosinophils in tumorigenesis.

  6. Dermal matrix proteins initiate re-epithelialization but are not sufficient for coordinated epidermal outgrowth in a new fish skin culture model.

    Science.gov (United States)

    Matsumoto, Reiko; Sugimoto, Masazumi

    2007-02-01

    We have established a new culture system to study re-epithelialization during fish epidermal wound healing. In this culture system, fetal bovine serum (FBS) stimulates the epidermal outgrowth of multi-cellular layers from scale skin mounted on a coverslip, even when cell proliferation is blocked. The rate of outgrowth is about 0.4 mm/h, and at 3 h after incubation, the area occupied by the epidermal sheet is nine times larger than the area of the original scale skin. Cells at the bottom of the outgrowth show a migratory phenotype with lamellipodia, and "purse string"-like actin bundles have been found over the leading-edge cells with polarized lamellipodia. In the superficial cells, re-development of adherens junctions and microridges has been detected, together with the appearance and translocation of phosphorylated p38 MAPK into nuclear areas. Thus, this culture system provides an excellent model to study the mechanisms of epidermal outgrowth accompanied by migration and re-differentiation. We have also examined the role of extracellular matrix proteins in the outgrowth. Type I collagen or fibronectin stimulates moderate outgrowth in the absence of FBS, but development of microridges and the distribution of phosphorylated p38 MAPK are attenuated in the superficial cells. In addition, the leading-edge cells do not have apparent "purse string"-like actin bundles. The outgrowth stimulated by FBS is inhibited by laminin. These results suggest that dermal substrates such as type I collagen and fibronectin are able to initiate epidermal outgrowth but require other factors to enhance such outgrowth, together with coordinated alterations in cellular phenotype.

  7. Use of etanercept to treat toxic epidermal necrolysis in a human immunodeficiency virus-positive patient

    OpenAIRE

    Yung-Yi Lee; Jui-Hung Ko; Chia-Hung Wei; Wen-Hung Chung

    2013-01-01

    Toxic epidermal necrolysis (TEN) is an uncommon and severe cutaneous adverse drug reaction that causes disseminated necrosis of epidermal cells and mucocutaneous detachment. Here, we report the case of a 32-year-old man with human immunodeficiency virus infection who presented with generalized violaceous macules and blister formation 4 days after the administration of mefenamic acid and amoxicillin for a dental procedure. Additional symptoms included oral ulcers and conjunctivitis. Results of...

  8. Quantitative studies of the fate of epidermal Langerhans cells after X-irradiation of guinea-pig and mouse footpad skin

    Energy Technology Data Exchange (ETDEWEB)

    Cole, S.; Fairweather, J.M.; Townsend, K.M.S.

    1987-01-01

    Langerhans cell numbers, morphology and distribution were observed in cross sections of footpad epidermis from 1 to 28 days after exposure of the hind feed of CBA/H mice or albino guinea-pigs to a single absorbed dose of 20 Gy of X-rays. In mice, the number of Langerhans cells reactive with anti-macrophage F4/80 monoclonal antibody steadily declined by approximately 85% within 10 days after irradiation. Remaining Langerhans cells were exceptionally dendritic. Very few Birbeck granule-containing cells were found in murine popliteal lymph nodes before or after irradiation but damaged cells were present in superficial strata of irradiated epidermis. The morphology and number of epidermal F4/80-positive cells approached normal by 15 days after irradiation. In guinea-pigs, gradual suprabasal movement and loss of rounded, ATPase-positive Langerhans cells from the epidermis were detectable from 5 to 20 days after irradiation but the magnitude of the cell loss and redistribution was partially obscured by the simultaneous appearance of clusters of replacement Langerhans cells in the basal layer and by keratinocyte hyperplasia.

  9. Characterization of the epidermal growth factor receptor associated with cytoskeletons of A431 cells

    International Nuclear Information System (INIS)

    Roy, L.M.; Gittinger, C.K.; Landreth, G.E.

    1989-01-01

    Epidermal growth factor receptors (EGF-R) have been shown to be associated with the detergent-insoluble cytoskeleton of A431 cells, where they retained both a functional ligand-binding domain and tyrosine kinase activity. In the present study we have characterized the tyrosine kinase and ligand binding activities of this cytoskeletally associated EGF-R. The tyrosine kinase activity of the cytoskeletally associated EGF-R was stimulated by EGF treatment of intact cells as evidenced by increased autophosphorylation and phosphorylation of the exogenous substrate angiotensin II (AII). The kinetic behavior of the EGF-R associated with cytoskeletons of EGF-treated cells was similar to that of purified receptors. The stimulation of the receptor kinase activity required EGF treatment of intact cells prior to Triton extraction. If cytoskeletons were prepared from untreated cells and then incubated with EGF, there was no stimulation of the detergent-insoluble receptor kinase activity, indicating that the immobilized receptor was unable to undergo EGF-stimulated activation. Comparison of peptide maps from soluble and cytoskeletally associated EGF-R revealed qualitatively similar patterns; however, they are distinguished by a prominent 46 kD band in digests of the cytoskeletal EGF-R. Saturable binding of 125I-EGF to A431 cytoskeletons prepared from adherent and suspended cells demonstrated the presence of specific receptors on the cytoskeleton. High-affinity EGF-R were preferentially retained upon detergent extraction of adherent cells, whereas both low- and high-affinity receptors were solubilized from the cytoskeletons of suspended cells. Suspension of cells resulted in the solubilization of an additional 15% of the EGF-R to that solubilized in adherent cells, indicating that EGF-R can reversibly associate with the structural elements of the cell

  10. The nature of surround-induced depolarizing responses in goldfish cones

    NARCIS (Netherlands)

    Kraaij, D. A.; Spekreijse, H.; Kamermans, M.

    2000-01-01

    Cones in the vertebrate retina project to horizontal and bipolar cells and the horizontal cells feedback negatively to cones. This organization forms the basis for the center/surround organization of the bipolar cells, a fundamental step in the visual signal processing. Although the surround

  11. Responses of epidermal cell turgor pressure and photosynthetic activity of leaves of the atmospheric epiphyte Tillandsia usneoides (Bromeliaceae) after exposure to high humidity.

    Science.gov (United States)

    Martin, Craig E; Rux, Guido; Herppich, Werner B

    2013-01-01

    It has been well-established that many epiphytic bromeliads of the atmospheric-type morphology, i.e., with leaf surfaces completely covered by large, overlapping, multicellular trichomes, are capable of absorbing water vapor from the atmosphere when air humidity increases. It is much less clear, however, whether this absorption of water vapor can hydrate the living cells of the leaves and, as a consequence, enhance physiological processes in such cells. The goal of this research was to determine if the absorption of atmospheric water vapor by the atmospheric epiphyte Tillandsia usneoides results in an increase in turgor pressure in leaf epidermal cells that subtend the large trichomes, and, by using chlorophyll fluorescence techniques, to determine if the absorption of atmospheric water vapor by leaves of this epiphyte results in increased photosynthetic activity. Results of measurements on living cells of attached leaves of this epiphytic bromeliad, using a pressure probe and of whole-shoot fluorescence imaging analyses clearly illustrated that the turgor pressure of leaf epidermal cells did not increase, and the photosynthetic activity of leaves did not increase, following exposure of the leaves to high humidity air. These results experimentally demonstrate, for the first time, that the absorption of water vapor following increases in atmospheric humidity in atmospheric epiphytic bromeliads is mostly likely a physical phenomenon resulting from hydration of non-living leaf structures, e.g., trichomes, and has no physiological significance for the plant's living tissues. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Epidermal CYP2 family cytochromes P450

    International Nuclear Information System (INIS)

    Du Liping; Hoffman, Susan M.G.; Keeney, Diane S.

    2004-01-01

    Skin is the largest and most accessible drug-metabolizing organ. In mammals, it is the competent barrier that protects against exposure to harmful stimuli in the environment and in the systemic circulation. Skin expresses many cytochromes P450 that have critical roles in exogenous and endogenous substrate metabolism. Here, we review evidence for epidermal expression of genes from the large CYP2 gene family, many of which are expressed preferentially in extrahepatic tissues or specifically in epithelia at the environmental interface. At least 13 CYP2 genes (CYP2A6, 2A7, 2B6, 2C9, 2C18, 2C19, 2D6, 2E1, 2J2, 2R1, 2S1, 2U1, and 2W1) are expressed in skin from at least some human individuals, and the majority of these genes are expressed in epidermis or cultured keratinocytes. Where epidermal expression has been localized in situ by hybridization or immunocytochemistry, CYP2 transcripts and proteins are most often expressed in differentiated keratinocytes comprising the outer (suprabasal) cell layers of the epidermis and skin appendages. The tissue-specific transcriptional regulation of CYP2 genes in the epidermis, and in other epithelia that interface with the environment, suggests important roles for at least some CYP2 gene products in the production and disposition of molecules affecting competency of the epidermal barrier

  13. The Langerhans cell

    International Nuclear Information System (INIS)

    Wolff, K.; Stingl, G.

    1983-01-01

    Langerhans cells are the bone-marrow-derived immune cells of the epidermis; they express Ia antigens and receptors for the Fc portion of IgG and complement components and are required for epidermal-cell-induced antigen-specific, syngeneic and allogeneic T-cell activitation and the generation of epidermal-cell-induced cytotoxic T cells. Their presence within the epidermis and functional integrity determine whether topical application of haptens leads to specific sensitization or unresponsiveness, and in skin grafts of only I region disparate donors, they represent the cells responsible for the critical allosensitizing signal. UV radiation abrogates most of Langerhans cell functions in vitro; under certain conditions in vivo, it prevents contact sensitization favoring the development of specific unresponsiveness. UV radiation abrogates antigen-presenting capacities of epidermal cells by interfering both with the processing of antigen by Langerhans cells and the production of the epidermal-cell-derived thymocyte activating factor required for optimal T-cell responses

  14. Excision of pyrimidine dimers from epidermal DNA and nonsemiconservative epidermal DNA synthesis following ultraviolet irradiation of mouse skin

    International Nuclear Information System (INIS)

    Bowden, G.T.; Trosko, J.E.; Shapas, B.G.; Boutwell, R.K.

    1975-01-01

    Pyrimidine dimer production and excision in epidermal DNA were studied at five different dose levels of ultraviolet light in the skin of intact mice. Dimer production increased with dose up to 50,400 ergs/sq mm. Approximately 30 percent of the thymine-containing dimers were excised by 24 hr after irradiation at three lower dose levels of ultraviolet light. Nonsemiconservative DNA replication in ultraviolet-irradiated mouse skin was shown to continue for at least 18 hr. The rate of nonsemiconservative replication decreased with time, but did so slowly. The initial rates of nonsemiconservative replication increased with ultraviolet light dose levels up to about 4200 ergs/sq mm, after which the initial rates were decreased. Semiconservative epidermal DNA synthesis was shown to be inhibited by hydroxyurea, but hydroxyurea had no effect on ultraviolet light-induced nonsemiconservative DNA replication. The observed pyrimidine dimer excision and nonsemiconservative DNA replication suggest that in the intact mouse the cells of the epidermis are capable of DNA excision repair after ultraviolet irradiation of mouse skin

  15. Construction of multifunctional proteins for tissue engineering: epidermal growth factor with collagen binding and cell adhesive activities.

    Science.gov (United States)

    Hannachi Imen, Elloumi; Nakamura, Makiko; Mie, Masayasu; Kobatake, Eiry

    2009-01-01

    The development of different techniques based on natural and polymeric scaffolds are useful for the design of different biomimetic materials. These approaches, however, require supplementary steps for the chemical or physical modification of the biomaterial. To avoid such steps, in the present study, we constructed a new multifunctional protein that can be easily immobilized onto hydrophobic surfaces, and at the same time helps enhance specific cell adhesion and proliferation onto collagen substrates. A collagen binding domain was fused to a previously constructed protein, which had an epidermal growth factor fused to a hydrophobic peptide that allows for cell adhesion. The new fusion protein, designated fnCBD-ERE-EGF is produced in Escherichia coli, and its abilities to bind to collagen and promote cell proliferation were investigated. fnCBD-ERE-EGF was shown to keep both collagen binding and cell growth-promoting activities comparable to those of the corresponding unfused proteins. The results obtained in this study also suggest the use of a fnCBD-ERE-EGF as an alternative for the design of multifunctional ECM-bound growth factor based materials.

  16. Stimulation of prostaglandin E2 production by phorbol esters and epidermal growth factor in porcine thyroid cells

    International Nuclear Information System (INIS)

    Kasai, K.; Hiraiwa, M.; Emoto, T.; Akimoto, K.; Takaoka, T.; Shimoda, S.I.

    1987-01-01

    Effects of phorbol esters and epidermal growth factor (EGF) on prostaglandin E 2 production by cultured porcine thyroid cells were examined. Both phorbol 12-myristate 13-acetate (PMA) and EGF stimulated prostaglandin E 2 production by the cells in dose related fashion. PMA stimulated prostaglandin E 2 production over fifty-fold with the dose of 10 -7 M compared with control. EGF (10 -7 M) also stimulated it about ten-fold. The ED 50 values of PMA and EGF were respectively around 1 x 10 -9 M and 5 x 10 -10 M. Thyroid stimulating hormone (TSH), however, did not stimulate prostaglandin E 2 production from 1 to 24-h incubation. The release of radioactivity from [ 3 H]-arachidonic acid prelabeled cells was also stimulated by PMA and EGF, but not by TSH. These results indicate that both PMA and EGF are potent stimulators of prostaglandin E 2 production, associated with the activity to stimulate arachidonic acid release in porcine thyroid cells. 36 references, 2 figures, 1 table

  17. EGF–FGF2 stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs)

    International Nuclear Information System (INIS)

    Bressan, Raul Bardini; Melo, Fernanda Rosene; Almeida, Patricia Alves; Bittencourt, Denise Avani; Visoni, Silvia; Jeremias, Talita Silva; Costa, Ana Paula; Leal, Rodrigo Bainy; Trentin, Andrea Gonçalves

    2014-01-01

    Epidermal neural crest stem cells (EPI-NCSCs), which reside in the bulge of hair follicles, are attractive candidates for several applications in cell therapy, drug screening and tissue engineering. As suggested remnants of the embryonic neural crest (NC) in an adult location, EPI-NCSCs are able to generate a wide variety of cell types and are readily accessible by a minimally invasive procedure. Since the combination of epidermal growth factor (EGF) and fibroblast growth factor type 2 (FGF 2 ) is mitogenic and promotes the neuronal commitment of various stem cell populations, we examined its effects in the proliferation and neuronal potential of mouse EPI-NCSCs. By using a recognized culture protocol of bulge whiskers follicles, we were able to isolate a population of EPI-NCSCs, characterized by the migratory potential, cell morphology and expression of phenotypic markers of NC cells. EPI-NCSCs expressed neuronal, glial and smooth muscle markers and exhibited the NC-like fibroblastic morphology. The treatment with the combination EGF and FGF 2 , however, increased their proliferation rate and promoted the acquisition of a neuronal-like morphology accompanied by reorganization of neural cytoskeletal proteins βIII-tubulin and nestin, as well as upregulation of the pan neuronal marker βIII-tubulin and down regulation of the undifferentiated NC, glial and smooth muscle cell markers. Moreover, the treatment enhanced the response of EPI-NCSCs to neurogenic stimulation, as evidenced by induction of GAP43, and increased expression of Mash-1 in neuron-like cell, both neuronal-specific proteins. Together, the results suggest that the combination of EGF–FGF2 stimulates the proliferation and improves the neuronal potential of EPI-NCSCs similarly to embryonic NC cells, ES cells and neural progenitor/stem cells of the central nervous system and highlights the advantage of using EGF–FGF 2 in neuronal differentiation protocols. - Highlights: • EPI-NCSCs express

  18. Comparative SEM and LM foliar epidermal and palyno-morphological studies of Amaranthaceae and its taxonomic implications.

    Science.gov (United States)

    Hussain, Amara Noor; Zafar, Muhammad; Ahmad, Mushtaq; Khan, Raees; Yaseen, Ghulam; Khan, Muhammad Saleem; Nazir, Abdul; Khan, Amir Muhammad; Shaheen, Shabnum

    2018-05-01

    Palynological features as well as comparative foliar epidermal using light and scanning electron microscope (SEM) of 17 species (10genera) of Amaranthaceae have been studied for its taxonomic significance. Different foliar and palynological micro-morphological characters were examined to explain their value in resolving the difficulty in identification. All species were amphistomatic but stomata on abaxial surface were more abundant. Taxonomically significant epidermal character including stomata type, trichomes (unicellular, multicellular, and capitate) and epidermal cells shapes (polygonal and irregular) were also observed. Pollens of this family are Polypantoporate, pores large, spheroidal, mesoporous region is sparsely to scabrate, densely psilate, and spinulose. All these characters can be active at species level for identification purpose. This study indicates that at different taxonomic levels, LM and SEM pollen and epidermal morphology is explanatory and significant to identify species and genera. © 2018 Wiley Periodicals, Inc.

  19. Abnormalities of lymphocyte function and phenotypic pattern in a case of toxic epidermal necrolysis

    DEFF Research Database (Denmark)

    Hagdrup, H; Tønnesen, E; Clemmensen, O

    1992-01-01

    We examined the blood lymphocyte function and phenotypic pattern in a patient with toxic epidermal necrolysis after taking salazopyrin. We studied cell surface markers, natural killer cell activity and mitogen-induced lymphocyte transformation. Our results point to temporary immunosuppression...... as evidenced by lymphopenia with a large "null cell" population, reduced natural killer cell activity, and impaired lymphocyte response to mitogens....

  20. Irradiation of protoporphyric mice induces down-regulation of epidermal eicosanoid metabolism

    International Nuclear Information System (INIS)

    He, D.; Lim, H.W.

    1991-01-01

    This study investigated the effect of radiation on clinical and histologic changes, and on cutaneous eicosanoid metabolism, in Skh:HR-1 hairless albino mice rendered protoporphyric by the administration of collidine. At 0.1-18 h after exposure to 12 kJ/m2 of 396-406 nm irradiation, thicknesses of back skin and ears were measured, and histologic changes were evaluated by using hematoxylin and eosin (H-E) and Giemsa's stains. Activities of eicosanoid-metabolizing enzymes in epidermal and dermal homogenates were assessed by incubating the tissue homogenates with 3H-AA, followed by quantitation of the eicosanoids generated by radio-TLC. In irradiated protoporphyric mice, an increase of back-skin thickness was noted at 0.1 h, reaching a peak at 18 h, whereas maximal increase in ear thickness was observed at 12 h. Histologic changes included dermal edema, increased mast cell degranulation, and mononuclear cells in the dermis. In these irradiated protoporphyric animals, generations of 6 keto-PGF1a, PGF2a, PGE2, PGD2, and HETE by epidermal eicosanoid-metabolizing enzymes were markedly suppressed at all the timepoints studied. Dermal eicosanoid-metabolizing enzymes of irradiated protoporphyric mice generated increased amounts of PGE2 and HETE at 18 h, probably reflecting the presence of dermal cellular infiltrates. The suppression of the activities of epidermal eicosanoid-metabolizing enzymes was prevented by intraperitoneal injection of WR-2721, a sulfhydryl group generator, prior to irradiation, suggesting that the suppression was secondary to photo-oxidative damage of the enzymes during the in vivo phototoxic response. These results suggest that the effect of protoporphyrin and radiation on cutaneous eicosanoid metabolism in this animal model in vivo is that of a down regulation of the activities of epidermal eicosanoid-metabolizing enzymes

  1. Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes

    Science.gov (United States)

    Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes Nanoparticle uptake in cells may be an important determinant of their potential cytotoxic and inflammatory effects. Six commercial TiO2 NP (A=Alfa Aesar,10nm, A*=Alfa Aesar 32nm, B=P25 27...

  2. Flipped script for gefitinib: A reapproved tyrosine kinase inhibitor for first-line treatment of epidermal growth factor receptor mutation positive metastatic nonsmall cell lung cancer.

    Science.gov (United States)

    Bogdanowicz, Brian S; Hoch, Matthew A; Hartranft, Megan E

    2017-04-01

    Purpose The approval history, pharmacology, pharmacokinetics, clinical trials, efficacy, dosing recommendations, drug interactions, safety, place in therapy, and economic considerations of gefitinib are reviewed. Summary Lung cancer is one of the most commonly diagnosed cancers and is the leading cause of cancer death. Platinum-based chemotherapy and tyrosine kinase inhibitors, such as erlotinib and afatinib, are recommended therapies for nonsmall cell lung cancer. The European Medicines Association based their approval of gefitinib on the randomized, multicenter Iressa Pan-Asia Study (IPASS, NCT00322452) and a single-arm study showing effectiveness in Caucasians (IFUM, NCT01203917). Both studies were recently referenced by the United States Food & Drug Administration to reapprove gefitinib for the first-line treatment of advanced nonsmall cell lung cancer with epidermal growth factor receptor exon 19 deletions or exon 21 substitution. Diarrhea, acneiform rash, and interstitial lung disease are known side effects of gefitinib. Conclusion Use of gefitinib for the first-line therapy of metastatic nonsmall cell lung cancer with epidermal growth factor receptor exon 19 deletions (residues 747-750) or exon 21 substitution mutation (L858R) is well-documented and supported.

  3. Epidermal growth factor receptor: an independent predictor of survival in astrocytic tumors given definitive irradiation

    International Nuclear Information System (INIS)

    An Zhu; Shaeffer, James; Leslie, Susan; Kolm, Paul; El-Mahdi, Anas M.

    1996-01-01

    Purpose: To determine whether the expression of epidermal growth factor receptor (EGFR) protein was predictive of patient survival independently of other prognostic factors in astrocytic tumors. Methods and Materials: Epidermal growth factor receptor protein expression was investigated immunohistochemically in formalin-fixed, paraffin-embedded surgical specimens of 55 glioblastoma multiforme, 14 anaplastic astrocytoma, and 2 astrocytomas given definitive irradiation. We evaluated the relationship of EGFR protein expression and tumor grade, histologic features, age at diagnosis, sex, patient survival, and recurrence-free survival. Results: The percentage of tumor cells which were EGFR positive related to reduced survival by Cox regression analysis in both univariate (p = 0.0424) and multivariate analysis (p = 0.0016). Epidermal growth factor receptor positivity was the only 1 of 11 clinical and histological variables associated with decreased recurrence-free survival by either univariate (p = 0.0353) or multivariate (p = 0.0182) analysis. Epidermal growth factor receptor protein expression was not related to patient age, sex, or histologic features. Conclusion: Epidermal growth factor receptor positivity was a significant and independent prognostic indicator for overall survival and recurrence-free survival for irradiated patients with astrocytic gliomas

  4. Glucocorticoid receptor, but not mineralocorticoid receptor, mediates cortisol regulation of epidermal ionocyte development and ion transport in zebrafish (danio rerio.

    Directory of Open Access Journals (Sweden)

    Shelly Abad Cruz

    Full Text Available Cortisol is the major endogenous glucocorticoid (GC both in human and fish, mediated by corticosteroid receptors. Due to the absence of aldosterone production in teleost fish, cortisol is also traditionally accepted to function as mineralocorticoid (MC; but whether it acts through the glucocorticoid receptor (GR or the mineralocorticoid receptor (MR remains a subject of debate. Here, we used loss-of-function and rescue assays to determine whether cortisol affects zebrafish epidermal ionocyte development and function via the GR and/or the MR. GR knockdown morphants displayed a significant decrease in the major ionocytes, namely Na(+-K(+-ATPase-rich cells (NaRCs and H(+-ATPase-rich cells (HRCs, as well as other cells, including epidermal stem cells (ESCs, keratinocytes, and mucus cells; conversely, cell numbers were unaffected in MR knockdown morphants. In agreement, GR morphants, but not MR morphants, exhibited decreased NaRC-mediated Ca(2+ uptake and HRC-mediated H(+ secretion. Rescue via GR capped mRNA injection or exogenous cortisol incubation normalized the number of epidermal ionocytes in GR morphants. We also provide evidence for GR localization in epidermal cells. At the transcript level, GR mRNA is ubiquitously expressed in gill sections and present in both NaRCs and HRCs, supporting the knockdown and functional assay results in embryo. Altogether, we have provided solid molecular evidence that GR is indeed present on ionocytes, where it mediates the effects of cortisol on ionocyte development and function. Hence, cortisol-GR axis performs the roles of both GC and MC in zebrafish skin and gills.

  5. Frozen allogeneic human epidermal cultured sheets for the cure of complicated leg ulcers.

    Science.gov (United States)

    Bolívar-Flores, Y J; Kuri-Harcuch, W

    1999-08-01

    Skin ulcers due to venous stasis or diabetes are common among the elderly and are difficult to treat. Repeated applications of cell-based products have been reported to result in cure or improvement of leg ulcers of small size in a fraction of patients. To examine the effects of frozen human allogeneic epidermal cultures for the treatment of acute and chronic ulcers. We treated a series of 10 consecutive patients with leg ulcers of different etiology and duration with frozen human allogeneic epidermal cultures stored frozen and thawed for 5-10 minutes at room temperature before application. Three patients had ulcers with exposed Achilles or extensor tendon. The ulcers treated were as large as 160 cm2 in area and of up to 20-years' duration. After preliminary preparation of the wounds by debridement to remove necrotic tissue and application of silver sulfadiazine to control infection, thawed cultures were applied biweekly from 2 to 15 times depending on the size and complexity of the ulcer. All ulcers healed, including those with tendon exposure. After the first few applications, granulation tissue formed in the ulcer bed and on exposed tendons, and epidermal healing took place through proliferation and migration of cells from the margins of the wound. The time required for complete healing ranged from 1 to 31 weeks after the first application. The use of frozen human allogeneic epidermal cultures is a safe and effective treatment for venous or diabetic ulcers, even those with tendon exposure. It seems possible that any leg ulcer will be amenable to successful treatment by this method.

  6. Herbal medicines that benefit epidermal permeability barrier function

    Directory of Open Access Journals (Sweden)

    Lizhi Hu

    2015-06-01

    Full Text Available Epidermal permeability barrier function plays a critical role in regulating cutaneous functions. Hence, researchers have been searching for effective and affordable regimens to enhance epidermal permeability barrier function. In addition to topical stratum corneum lipids, peroxisome proliferator-activated receptor, and liver X receptor ligands, herbal medicines have been proven to benefit epidermal permeability barrier function in both normal and diseased skin, including atopic dermatitis, glucocorticoid-induced skin damage, and UVB-damaged skin. The potential mechanisms by which herbal medicines improve the permeability barrier include stimulation of epidermal differentiation, lipid production, antimicrobial peptide expression, and antioxidation. Therefore, utilization of herbal medicines could be a valuable alternative approach to enhance epidermal permeability barrier function in order to prevent and/or treat skin disorders associated with permeability barrier abnormalities.

  7. Andrographolide regulates epidermal growth factor receptor and transferrin receptor trafficking in epidermoid carcinoma (A-431) cells

    Science.gov (United States)

    Tan, Y; Chiow, KH; Huang, D; Wong, SH

    2010-01-01

    Background and purpose: Andrographolide is the active component of Andrographis paniculata, a plant used in both Indian and Chinese traditional medicine, and it has been demonstrated to induce apoptosis in different cancer cell lines. However, not much is known about how it may affect the key receptors implicated in cancer. Knowledge of how andrographolide affects receptor trafficking will allow us to better understand new mechanisms by which andrographolide may cause death in cancer cells. Experimental approach: We utilized the well-characterized epidermal growth factor receptor (EGFR) and transferrin receptor (TfR) expressed in epidermoid carcinoma (A-431) cells as a model to study the effect of andrographolide on receptor trafficking. Receptor distribution, the total number of receptors and surface receptors were analysed by immunofluorescence, Western blot as well as flow-cytometry respectively. Key results: Andrographolide treatment inhibited cell growth, down-regulated EGFRs on the cell surface and affected the degradation of EGFRs and TfRs. The EGFR was internalized into the cell at an increased rate, and accumulated in a compartment that co-localizes with the lysosomal-associated membrane protein in the late endosomes. Conclusion and implications: This study sheds light on how andrographolide may affect receptor trafficking by inhibiting receptor movement from the late endosomes to lysosomes. The down-regulation of EGFR from the cell surface also indicates a new mechanism by which andrographolide may induce cancer cell death. PMID:20233216

  8. Model-Based Analysis of Arabidopsis Leaf Epidermal Cells Reveals Distinct Division and Expansion Patterns for Pavement and Guard Cells1[W][OA

    Science.gov (United States)

    Asl, Leila Kheibarshekan; Dhondt, Stijn; Boudolf, Véronique; Beemster, Gerrit T.S.; Beeckman, Tom; Inzé, Dirk; Govaerts, Willy; De Veylder, Lieven

    2011-01-01

    To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery. PMID:21693673

  9. Micro–adhesion rings surrounding TCR microclusters are essential for T cell activation

    Science.gov (United States)

    Sakuma, Machie; Yokosuka, Tadashi

    2016-01-01

    The immunological synapse (IS) formed at the interface between T cells and antigen-presenting cells represents a hallmark of initiation of acquired immunity. T cell activation is initiated at T cell receptor (TCR) microclusters (MCs), in which TCRs and signaling molecules assemble at the interface before IS formation. We found that each TCR-MC was transiently bordered by a ring structure made of integrin and focal adhesion molecules in the early phase of activation, which is similar in structure to the IS in microscale. The micro–adhesion ring is composed of LFA-1, focal adhesion molecules paxillin and Pyk2, and myosin II (MyoII) and is supported by F-actin core and MyoII activity through LFA-1 outside-in signals. The formation of the micro–adhesion ring was transient but especially sustained upon weak TCR stimulation to recruit linker for activation of T cells (LAT) and SLP76. Perturbation of the micro–adhesion ring induced impairment of TCR-MC development and resulted in impaired cellular signaling and cell functions. Thus, the synapse-like structure composed of the core TCR-MC and surrounding micro–adhesion ring is a critical structure for initial T cell activation through integrin outside-in signals. PMID:27354546

  10. Effects of a new bifunctional psoralen, 4,4',5'-trimethylazapsoralen and ultraviolet-A radiation on murine dendritic epidermal cells.

    Science.gov (United States)

    Aubin, F; Alcalay, J; Dall'Acqua, F; Kripke, M L

    1990-06-01

    Although some psoralens are therapeutically active in the treatment of cutaneous hyperproliferative diseases when combined with UVA (320-400 nm) radiation, the toxic effects of these compounds have led physicians to seek new photochemotherapeutic agents. One such agent is 4,4',5'-trimethylazapsoralen (TMAP), a new bifunctional psoralen compound. We investigated the effects of repetitive treatments with TMAP plus UVA radiation on the number of dendritic immune cells in murine epidermis and on the induction of phototoxicity. Mice treated 3 times per week for 4 weeks with 129 microgram TMAP plus 10 kJ/m2 UVA radiation exhibited no gross or microscopic evidence of phototoxicity. During this treatment, the numbers of ATPase+, Ia+, and Thy-l+ dendritic epidermal cells were greatly reduced, and by the end of the treatment period, few dendritic immune cells could be detected. We conclude that morphological alterations of cutaneous immune cells can occur in the absence of overt phototoxicity, and that TMAP plus low-dose UVA radiation decreases the numbers of detectable Langerhans cells and Thy-1+ cells in murine skin.

  11. Faster DNA Repair of Ultraviolet-Induced Cyclobutane Pyrimidine Dimers and Lower Sensitivity to Apoptosis in Human Corneal Epithelial Cells than in Epidermal Keratinocytes.

    Directory of Open Access Journals (Sweden)

    Justin D Mallet

    Full Text Available Absorption of UV rays by DNA generates the formation of mutagenic cyclobutane pyrimidine dimers (CPD and pyrimidine (6-4 pyrimidone photoproducts (6-4PP. These damages are the major cause of skin cancer because in turn, they can lead to signature UV mutations. The eye is exposed to UV light, but the cornea is orders of magnitude less prone to UV-induced cancer. In an attempt to shed light on this paradox, we compared cells of the corneal epithelium and the epidermis for UVB-induced DNA damage frequency, repair and cell death sensitivity. We found similar CPD levels but a 4-time faster UVB-induced CPD, but not 6-4PP, repair and lower UV-induced apoptosis sensitivity in corneal epithelial cells than epidermal. We then investigated levels of DDB2, a UV-induced DNA damage recognition protein mostly impacting CPD repair, XPC, essential for the repair of both CPD and 6-4PP and p53 a protein upstream of the genotoxic stress response. We found more DDB2, XPC and p53 in corneal epithelial cells than in epidermal cells. According to our results analyzing the protein stability of DDB2 and XPC, the higher level of DDB2 and XPC in corneal epithelial cells is most likely due to an increased stability of the protein. Taken together, our results show that corneal epithelial cells have a better efficiency to repair UV-induced mutagenic CPD. On the other hand, they are less prone to UV-induced apoptosis, which could be related to the fact that since the repair is more efficient in the HCEC, the need to eliminate highly damaged cells by apoptosis is reduced.

  12. Epidermal growth factor prevents thallium(I)- and thallium(III)-mediated rat pheochromocytoma (PC12) cell apoptosis.

    Science.gov (United States)

    Pino, María Teresa Luján; Marotte, Clarisa; Verstraeten, Sandra Viviana

    2017-03-01

    We have reported recently that the proliferation of PC12 cells exposed to micromolar concentrations of Tl(I) or Tl(III) has different outcomes, depending on the absence (EGF - cells) or the presence (EGF + cells) of epidermal growth factor (EGF) added to the media. In the current work, we investigated whether EGF supplementation could also modulate the extent of Tl(I)- or Tl(III)-induced cell apoptosis. Tl(I) and Tl(III) (25-100 μM) decreased cell viability in EGF - but not in EGF + cells. In EGF - cells, Tl(I) decreased mitochondrial potential, enhanced H 2 O 2 generation, and activated mitochondrial-dependent apoptosis. In addition, Tl(III) increased nitric oxide production and caused a misbalance between the anti- and pro-apoptotic members of Bcl-2 family. Tl(I) increased ERK1/2, JNK, p38, and p53 phosphorylation in EGF - cells. In these cells, Tl(III) did not affect ERK1/2 and JNK phosphorylation but increased p53 phosphorylation that was related to the promotion of cell senescence. In addition, this cation significantly activated p38 in both EGF - and EGF + cells. The specific inhibition of ERK1/2, JNK, p38, or p53 abolished Tl(I)-mediated EGF - cell apoptosis. Only when p38 activity was inhibited, Tl(III)-mediated apoptosis was prevented in EGF - and EGF + cells. Together, current results indicate that EGF partially prevents the noxious effects of Tl by preventing the sustained activation of MAPKs signaling cascade that lead cells to apoptosis and point to p38 as a key mediator of Tl(III)-induced PC12 cell apoptosis.

  13. Alterations in epidermal growth factor receptors 1 and 2 in esophageal squamous cell carcinomas

    International Nuclear Information System (INIS)

    Gonzaga, Isabela Martins; Andreollo, Nelson Adami; Simão, Tatiana Almeida de; Pinto, Luis Felipe Ribeiro; Soares-Lima, Sheila Coelho; Santos, Paulo Thiago Souza de; Blanco, Tania Cristina Moita; Reis, Bruno Souza Bianchi de; Quintella, Danielle Carvalho; Oliveira, Ivanir Martins de; Faria, Paulo Antonio Silvestre de; Kruel, Cleber Dario Pinto

    2012-01-01

    Esophageal squamous cell carcinoma (ESCC) shows a 5-year survival rate below 10%, demonstrating the urgency in improving its treatment. Alterations in epidermal growth factor receptors are closely related to malignancy transformation in a number of tumors and recent successful targeted therapies have been directed to these molecules. Therefore, in this study, we analyzed the expression of EGFR and HER2 and evaluated EGFR mutation profile as well as the presence of mutations in hotspots of KRAS and BRAF in ESCC patients. We performed RT-qPCR, immunohistochemistry and Fluorescent in situ hybridization to determine EGFR and HER2 expression in ESCC patients, and direct sequencing and PCR-RFLP for mutations and polymorphism analysis. Our results showed an increased EGFR mRNA expression in tumors compared to surrounding tissue (p <0.05), with 11% of the cases presenting at least a four-fold difference between tumor and paired adjacent mucosa. EGFR protein overexpression was present only in 4% of the cases. The median expression of HER2 mRNA was not different between tumors and adjacent mucosa. Still, 7% of the tumors presented at least a 25-fold higher expression of this gene when compared to its paired counterpart. Immunohistochemical analysis revealed that 21% of the tumors were positive for HER2 (scores 2+ and 3+), although only 3+ tumors presented amplification of this gene. Mutation analysis for EGFR (exons 18-21), KRAS (codons 12 and 13) and BRAF (V600E) showed no mutations in any of the hotspots of these genes in almost 100 patients analyzed. EGFR presented synonymous polymorphisms at codon 836 (C>T) in 2.1% of the patients, and at codon 787 (G>A) in 79.2% of the cases. This last polymorphism was also evaluated in 304 healthy controls, which presented a similar frequency (73.7%) in comparison with ESCC patients. The absence of mutations of EGFR, KRAS and BRAF as well as the overexpression of EGFR and HER2 in less than 10% of the patients suggest that this

  14. Morphology and dynamics of tumor cell colonies propagating in epidermal growth factor supplemented media

    Science.gov (United States)

    Muzzio, N. E.; Carballido, M.; Pasquale, M. A.; González, P. H.; Azzaroni, O.; Arvia, A. J.

    2018-07-01

    The epidermal growth factor (EGF) plays a key role in physiological and pathological processes. This work reports on the influence of EGF concentration (c EGF) on the modulation of individual cell phenotype and cell colony kinetics with the aim of perturbing the colony front roughness fluctuations. For this purpose, HeLa cell colonies that remain confluent along the whole expansion process with initial quasi-radial geometry and different initial cell populations, as well as colonies with initial quasi-linear geometry and large cell population, are employed. Cell size and morphology as well as its adhesive characteristics depend on c EGF. Quasi-radial colonies (QRC) expansion kinetics in EGF-containing medium exhibits a complex behavior. Namely, at the first stages of growth, the average QRC radius evolution can be described by a t 1/2 diffusion term coupled with exponential growth kinetics up to a critical time, and afterwards a growth regime approaching constant velocity. The extension of each regime depends on c EGF and colony history. In the presence of EGF, the initial expansion of quasi-linear colonies (QLCs) also exhibits morphological changes at both the cell and the colony levels. In these cases, the cell density at the colony border region becomes smaller than in the absence of EGF and consequently, the extension of the effective rim where cell duplication and motility contribute to the colony expansion increases. QLC front displacement velocity increases with c EGF up to a maximum value in the 2–10 ng ml‑1 range. Individual cell velocity is increased by EGF, and an enhancement in both the persistence and the ballistic characteristics of cell trajectories can be distinguished. For an intermediate c EGF, collective cell displacements contribute to the roughening of the colony contours. This global dynamics becomes compatible with the standard Kardar–Parisi–Zhang growth model, although a faster colony roughness saturation in EGF-containing medium

  15. EGF–FGF{sub 2} stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bressan, Raul Bardini; Melo, Fernanda Rosene; Almeida, Patricia Alves; Bittencourt, Denise Avani; Visoni, Silvia; Jeremias, Talita Silva [Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil); Costa, Ana Paula; Leal, Rodrigo Bainy [Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil); Trentin, Andrea Gonçalves, E-mail: andrea.trentin@ufsc.br [Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil)

    2014-09-10

    Epidermal neural crest stem cells (EPI-NCSCs), which reside in the bulge of hair follicles, are attractive candidates for several applications in cell therapy, drug screening and tissue engineering. As suggested remnants of the embryonic neural crest (NC) in an adult location, EPI-NCSCs are able to generate a wide variety of cell types and are readily accessible by a minimally invasive procedure. Since the combination of epidermal growth factor (EGF) and fibroblast growth factor type 2 (FGF{sub 2}) is mitogenic and promotes the neuronal commitment of various stem cell populations, we examined its effects in the proliferation and neuronal potential of mouse EPI-NCSCs. By using a recognized culture protocol of bulge whiskers follicles, we were able to isolate a population of EPI-NCSCs, characterized by the migratory potential, cell morphology and expression of phenotypic markers of NC cells. EPI-NCSCs expressed neuronal, glial and smooth muscle markers and exhibited the NC-like fibroblastic morphology. The treatment with the combination EGF and FGF{sub 2}, however, increased their proliferation rate and promoted the acquisition of a neuronal-like morphology accompanied by reorganization of neural cytoskeletal proteins βIII-tubulin and nestin, as well as upregulation of the pan neuronal marker βIII-tubulin and down regulation of the undifferentiated NC, glial and smooth muscle cell markers. Moreover, the treatment enhanced the response of EPI-NCSCs to neurogenic stimulation, as evidenced by induction of GAP43, and increased expression of Mash-1 in neuron-like cell, both neuronal-specific proteins. Together, the results suggest that the combination of EGF–FGF2 stimulates the proliferation and improves the neuronal potential of EPI-NCSCs similarly to embryonic NC cells, ES cells and neural progenitor/stem cells of the central nervous system and highlights the advantage of using EGF–FGF{sub 2} in neuronal differentiation protocols. - Highlights: • EPI

  16. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Lee

    Full Text Available The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP-induced radicals on the epidermal growth factor receptor (EGFR, which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  17. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Lee, Jung-Hwan; Om, Ji-Yeon; Kim, Yong-Hee; Kim, Kwang-Mahn; Choi, Eun-Ha; Kim, Kyoung-Nam

    2016-01-01

    The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP)-induced radicals on the epidermal growth factor receptor (EGFR), which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  18. Essential contribution of tumor-derived perlecan to epidermal tumor growth and angiogenesis

    DEFF Research Database (Denmark)

    Jiang, Xinnong; Multhaupt, Hinke; Chan, En

    2004-01-01

    As a major heparan sulfate proteoglycan (PG) in basement membranes, perlecan has been linked to tumor invasion, metastasis, and angiogenesis. Here we produced epidermal tumors in immunocompromised rats by injection of mouse RT101 tumor cells. Tumor sections stained with species-specific perlecan...... factor. In vivo, antisense perlecan-transfected cells generated no tumors, whereas untransfected and vector-transfected cells formed tumors with obvious neovascularization, suggesting that tumor perlecan rather than host perlecan controls tumor growth and angiogenesis....

  19. High-pressure raman study on single crystalline methane hydrate surrounded by methane in a diamond anvil cell

    International Nuclear Information System (INIS)

    Ohno, Y; Sasaki, S; Kume, T; Shimizu, H

    2008-01-01

    High-pressure Raman measurements have been performed for single crystalline methane hydrate (MH) surrounded by fluid or solid methane in a diamond anvil cell. We successfully obtained the pure O-H stretching and lattice vibration spectra in MH-sI and MH-II phases. In these Raman spectra, there is no Raman band from water or ice-VI. The observed pressure of phase transformation from MH-sI to MH-II is 0.9 GPa, which is the same result as methane hydrate surrounded by water

  20. Dermal Contributions to Human Interfollicular Epidermal Architecture and Self-Renewal

    Directory of Open Access Journals (Sweden)

    Kynan T. Lawlor

    2015-11-01

    Full Text Available The human interfollicular epidermis is renewed throughout life by populations of proliferating basal keratinocytes. Though interfollicular keratinocyte stem cells have been identified, it is not known how self-renewal in this compartment is spatially organized. At the epidermal-dermal junction, keratinocytes sit atop a heterogeneous mix of dermal cells that may regulate keratinocyte self-renewal by influencing local tissue architecture and signalling microenvironments. Focusing on the rete ridges and complementary dermal papillae in human skin, we review the identity and organisation of abundant dermal cells types and present evidence for interactions between the dermal microenvironment and the interfollicular keratinocytes.

  1. Release of infectious cells from epidermal ulcers in Ichthyophonus sp.-infected Pacific herring (Clupea pallasii): evidence for multiple mechanisms of transmission.

    Science.gov (United States)

    Kocan, Richard M; Gregg, Jacob L; Hershberger, Paul K

    2010-04-01

    A common clinical sign of ichthyophoniasis in herring and trout is "sandpaper" skin, a roughening of the epidermis characterized by the appearance of small papules, followed by ulceration and sloughing of the epithelium; early investigators hypothesized that these ulcers might be a means of transmitting the parasite, Ichthyophonus sp., without the necessity of ingesting an infected host. We examined the cells associated with the epidermal lesions and confirmed that they were viable Ichthyophonus sp. cells that were readily released from the skin into the mucous layer and ultimately into the aquatic environment. The released cells were infectious when injected into the body cavity of specific-pathogen-free herring. Our hypothesis is that different mechanisms of transmission occur in carnivorous and planktivorous hosts: Planktonic feeders become infected by ingestion of ulcer-derived cells, while carnivores become infected by ingestion of whole infected fish.

  2. Interactions Between Epidermal Keratinocytes, Dendritic Epidermal T-Cells, and Hair Follicle Stem Cells.

    Science.gov (United States)

    Badarinath, Krithika; Dutta, Abhik; Hegde, Akshay; Pincha, Neha; Gund, Rupali; Jamora, Colin

    2018-06-13

    The interplay of immune cells and stem cells in maintaining skin homeostasis and repair is an exciting new frontier in cutaneous biology. With the growing appreciation of the importance of this new crosstalk comes the requirement of methods to interrogate the molecular underpinnings of these leukocyte-stem cell interactions. Here we describe how a combination of FACS, cellular coculture assays, and conditioned media treatments can be utilized to advance our understanding of this emerging area of intercellular communication between immune cells and stem cells.

  3. Scaffolding proteins in the development and maintenance of the epidermal permeability barrier.

    Science.gov (United States)

    Crawford, Melissa; Dagnino, Lina

    2017-10-02

    The skin of mammals and other terrestrial vertebrates protects the organism against the external environment, preventing heat, water and electrolyte loss, as well as entry of chemicals and pathogens. Impairments in the epidermal permeability barrier function are associated with the genesis and/or progression of a variety of pathological conditions, including genetic inflammatory diseases, microbial and viral infections, and photodamage induced by UV radiation. In mammals, the outside-in epidermal permeability barrier is provided by the joint action of the outermost cornified layer, together with assembled tight junctions in granular keratinocytes found in the layers underneath. Tight junctions serve as both outside-in and inside-out barriers, and impede paracellular movements of ions, water, macromolecules and microorganisms. At the molecular level, tight junctions consist of integral membrane proteins that form an extracellular seal between adjacent cells, and associate with cytoplasmic scaffold proteins that serve as links with the actin cytoskeleton. In this review, we address the roles that scaffold proteins play specifically in the establishment and maintenance of the epidermal permeability barrier, and how various pathologies alter or impair their functions.

  4. Extraction of high-quality epidermal RNA after ammonium thiocyanate-induced dermo-epidermal separation of 4 mm human skin biopsies

    DEFF Research Database (Denmark)

    Clemmensen, Anders; Thomassen, Mads; Clemmensen, Ole

    2009-01-01

    To obtain a separation of the epidermal and dermal compartments to examine compartment specific biological mechanisms in the skin, we incubated 4 mm human skin punch biopsies in ammonium thiocyanate. We wanted to test (i) the histological quality of the dermo-epidermal separation obtained...... by different incubation times; (ii) the amount and quality of extractable epidermal RNA and (iii) its impact on sample RNA expression profiles assessed by large-scale gene expression microarray analysis in both normal and inflamed skin. At 30-min incubation, the split between dermis and epidermis...... and almost completely separated from the dermis of 4 mm skin biopsies by 30 min incubation in 3.8% ammonium thiocyanate combined with curettage of the dermal surface, producing high-quality RNA suitable for transcriptional analysis. Our refined method of dermo-epidermal separation will undoubtedly prove...

  5. Human Papilloma Viral DNA Replicates as a Stable Episome in Cultured Epidermal Keratinocytes

    Science.gov (United States)

    Laporta, Robert F.; Taichman, Lorne B.

    1982-06-01

    Human papilloma virus (HPV) is poorly understood because systems for its growth in tissue culture have not been developed. We report here that cultured human epidermal keratinocytes could be infected with HPV from plantar warts and that the viral DNA persisted and replicated as a stable episome. There were 50-200 copies of viral DNA per cell and there was no evidence to indicate integration of viral DNA into the cellular genome. There was also no evidence to suggest that viral DNA underwent productive replication. We conclude that cultured human epidermal keratinocytes may be a model for the study of certain aspects of HPV biology.

  6. Skin-resident stem cells and wound healing.

    Science.gov (United States)

    Iwata, Yohei; Akamatsu, Hirohiko; Hasebe, Yuichi; Hasegawa, Seiji; Sugiura, Kazumitsu

    2017-01-01

    CD271 is common stem cell marker for the epidermis and dermis. We assessed a kinetic movement of epidermal and dermal CD271 + cells in the wound healing process to elucidate the possible involvement with chronic skin ulcers. Epidermal CD271 + cells were proliferated and migrated from 3 days after wounding. Purified epidermal CD271 + cells expressed higher TGFβ2 and VEGFα transcripts than CD271 - cells. Delayed wound healing was observed in the aged mice compared with young mice. During the wound healing process, the peak of dermal CD271 + cell accumulation was delayed in aged mice compared with young mice. The expression levels of collagen-1, -3, -5, F4-80, EGF, FGF2, TGFβ1, and IL-1α were significantly increased in young mice compared with aged mice. Furthermore, purified dermal CD271 + cells expressed higher FGF2, EGF, PDGFB, and TGFβ1 gene transcripts than CD271 - cells. These results suggested that epidermal and dermal CD271 + cells were closely associated with wound healing process by producing various growth factors. Epidermal and dermal CD271 + cells in chronic skin ulcer patients were significantly reduced compared with healthy controls. Thus, both epidermal and dermal stem cells can play an important role in wound healing process.

  7. Modulation of cultured porcine granulosa cell responsiveness to follicle stimulating hormone and epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Buck, P.A.

    1986-01-01

    Ovarian follicular development is dependent upon the coordinated growth and differentiation of the granulosa cells which line the follicle. Follicle stimulating hormone (FSH) induces granulosa cell differentiation both in vivo and in vitro. Epidermal growth factor (EGF) stimulates granulosa cell proliferation in vitro. The interaction of these two effectors upon selected parameters of growth and differentiation was examined in monolayer cultures of porcine granulose cells. Analysis of the EGF receptor by /sup 125/I-EGF binding revealed that the receptor was of high affinity with an apparent dissociation constant of 4-6 x 10/sup -10/ M. The average number of receptors per cell varied with the state of differentiation both in vivo and in vitro; highly differentiated cells bound two-fold less /sup 125/I-EGF and this effect was at least partially induced by FSH in vitro. EGF receptor function was examined by assessing EGF effects on cell number and /sup 3/H-thymidine incorporation. EGF stimulated thymidine incorporation in both serum-free and serum-supplemented culture, but only in serum-supplemented conditions was cell number increased. EGF receptor function was inversely related to the state of differentiation and was attenuated by FSH. The FSH receptor was examined by /sup 125/I-FSH binding. EGF increased FSH receptor number, and lowered the affinity of the receptor. The function of these receptors was assessed by /sup 125/I-hCG binding and progesterone radioimmunoassay. If EGF was present continuously in the cultures. FSH receptor function was attenuated regardless of FSH receptor number. A preliminary effort to examine the mechanism of this interaction was performed by analyzing hormonally controlled protein synthesis with /sup 35/S-methionine labeling, SDS polyacrylamide gel electrophoresis and fluorography. FSH promoted the expression of a 27,000 dalton protein. This effect was attenuated by EGF.

  8. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer: A systematic review and cost-effectiveness analysis

    NARCIS (Netherlands)

    M. Westwood (Marie); M.A. Joore (Manuela); P. Whiting (Penny); T. van Asselt (Thea); B.L.T. Ramaekers (Bram); N. Armstrong (Nigel); K. Misso (Kate); J.L. Severens (Hans); J. Kleijnen (Jos)

    2014-01-01

    markdownabstract__Abstract__ Background: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Some epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutations make tumours responsive to treatment with EGFR-TK inhibitors (EGFR-TKIs) but less responsive to treatment

  9. Microtubule heterogeneity of Ornithogalum umbellatum ovary epidermal cells: non-stable cortical microtubules and stable lipotubuloid microtubules.

    Science.gov (United States)

    Kwiatkowska, Maria; Stępiński, Dariusz; Polit, Justyna T; Popłońska, Katarzyna; Wojtczak, Agnieszka

    2011-01-01

    Lipotubuloids, structures containing lipid bodies and microtubules, are described in ovary epidermal cells of Ornithogalum umbellatum. Microtubules of lipotubuloids can be fixed in electron microscope fixative containing only buffered OsO(4) or in glutaraldehyde with OsO(4) post-fixation, or in a mixture of OsO(4) and glutaraldehyde. None of these substances fixes cortical microtubules of ovary epidermis of this plant which is characterized by dynamic longitudinal growth. However, cortical microtubules can be fixed with cold methanol according immunocytological methods with the use of β-tubulin antibodies and fluorescein. The existence of cortical microtubules has also been evidenced by EM observations solely after the use of taxol, microtubule stabilizer, and fixation in a glutaraldehyde/OsO(4) mixture. These microtubules mostly lie transversely, sometimes obliquely, and rarely parallel to the cell axis. Staining, using Ruthenium Red and silver hexamine, has revealed that lipotubuloid microtubules surface is covered with polysaccharides. The presumption has been made that the presence of a polysaccharide layer enhances the stability of lipotubuloid microtubules.

  10. Toxic epidermal necrolysis successfully treated with etanercept.

    Science.gov (United States)

    Gubinelli, Emanuela; Canzona, Flora; Tonanzi, Tiziano; Raskovic, Desanka; Didona, Biagio

    2009-03-01

    Toxic epidermal necrolysis (TEN) is a rare and acute severe adverse reaction to drugs, characterised by massive apoptosis and widespread epidermal and mucosal detachment. Although no gold standard therapy exists, human i.v. immunoglobulins have recently been described as an effective treatment for this disease. We report a case of phenobarbital-induced TEN in a 59-year-old white woman where the epidermal detachment stopped 48 h after beginning the etanercept treatment with complete healing after 20 days. To the best of our knowledge, this is only the second reported case of TEN successfully treated with etanercept.

  11. Limiting dilution analysis for precursor frequency of Con A-responsive mouse Thy-1+ dendritic epidermal cells

    International Nuclear Information System (INIS)

    Takashima, A.; Bergstresser, P.R.; Nixon-Fulton, J.L.; Tigelaar, R.E.

    1986-01-01

    The authors have recently demonstrated in vitro proliferation of mouse Thy-1 + dendritic epidermal cells (EC) to Con A and IL-2. The purpose of the present study was to utilize limiting dilution analysis to determine the precursor frequency (PF) of Con A-responsive cells within EC enriched by Isolymph centrifugation for Thy-1 + cells (IEC). AKR IEC were cultured in 96 well U-plates (25-75 cells/well) with 2 μg/ml Con A and 2 x 10 5 irradiated (1600 R) AKR spleen cells/well. Cultures were harvested after 7-21 days following 3 H-thymidine pulsing. Results indicated a PF within IEC of 1.5-4.5%. Inclusion of 10 U/ml IL-2 enhanced significantly the proliferation in positive wells but did not alter this PF. In AKR mice, monoclonal antibody 20-10-5S has been shown to react with Thy-1 + EC, but not with peripheral T cells. FACS purification of IEC using 20-10-5S indicated that Con A responsiveness resides exclusively within the 20-10-5S + population. The PF of Con A-responsive Thy-1 + EC was calculated by dividing the PF of IEC by the fraction of 20-10-5S + cells (13-30%) in the IEC suspension. A significant proportion of Thy-1 + EC (∼12%) were found to possess Con A proliferative capacity. These studies will facilitate analysis at a clonal level of possible functional and phenotypic heterogeneity within the Thy-1 + EC population

  12. Antibody-induced activation of the epidermal growth factor receptor tyrosine kinase requires the presence of detergent

    NARCIS (Netherlands)

    Spaargaren, M.; Defize, L. H.; de Laat, S. W.; Boonstra, J.

    1990-01-01

    Activation of the epidermal growth factor receptor (EGF-R) tyrosine kinase was investigated in membrane preparations as well as intact A431 cells, using anti-EGF-R antibodies directed against extra- and intracellular receptor domains. In vitro assay conditions were mimicked on whole cells by a mild

  13. Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms.

    Directory of Open Access Journals (Sweden)

    Madeline R Carins Murphy

    Full Text Available Producing leaves with closely spaced veins is a key innovation linked to high rates of photosynthesis in angiosperms. A close geometric link between veins and stomata in angiosperms ensures that investment in enhanced venous water transport provides the strongest net carbon return to the plant. This link is underpinned by "passive dilution" via expansion of surrounding cells. However, it is not known whether this 'passive dilution' mechanism is present in plant lineages other than angiosperms and is another key feature of the angiosperms' evolutionary success. Consequently, we sought to determine whether the 'passive dilution' mechanism is; (i exclusive to the angiosperms, (ii a conserved mechanism that evolved in the common ancestor of ferns and angiosperms, or (iii has evolved continuously over time. To do this we first we assessed the plasticity of vein and stomatal density and epidermal cell size in ferns in response to light environment. We then compared the relationships between these traits found among ferns with modelled relationships that assume vein and stomatal density respond passively to epidermal cell expansion, and with those previously observed in angiosperms. Vein density, stomatal density and epidermal cell size were linked in ferns with remarkably similar relationships to those observed in angiosperms, except that fern leaves had fewer veins per stomata. However, plasticity was limited in ferns and stomatal spacing was dependent on active stomatal differentiation as well as passive cell expansion. Thus, ferns (like angiosperms appear to coordinate vein and stomatal density with epidermal cell expansion to some extent to maintain a constant ratio between veins and stomata in the leaf. The different general relationships between vein density and stomatal density in ferns and angiosperms suggests the groups have different optimum balances between the production of vein tissue dedicated to water supply and stomatal tissue for gas

  14. 99m Tc-anti-epidermal growth factor receptor nanobody for tumor imaging.

    Science.gov (United States)

    Piramoon, Majid; Hosseinimehr, Seyed Jalal; Omidfar, Kobra; Noaparast, Zohreh; Abedi, Seyed Mohammad

    2017-04-01

    Nanobodies are important biomolecules for tumor targeting. In this study, we synthesized and labeled anti-epidermal growth factor receptor (EGFR) nanobody OA-cb6 with 99m Tc(CO) 3 + and evaluated its characteristics for targeting the EGFR in the A431 human epidermal carcinoma cell line. Nanobody radiolabeling was achieved with high yield and radiochemical purity, and the radioconjugate was stable. Biodistribution results in nude mice exhibited a favorable tumor-to-muscle ratio at 4-hr postinjection, and tumor location was visualized at 4 hr after injection of radiolabeled nanobody. Our result showed that the OA-cb6- 99m Tc-tricarbonyl radiolabeled nanobody is a promising radiolabeled biomolecule for tumor imaging in cancers with high EGFR overexpression. © 2016 John Wiley & Sons A/S.

  15. Analysis of E2F factors during epidermal differentiation.

    Science.gov (United States)

    Chang, Wing Y; Dagnino, Lina

    2005-01-01

    The multigene E2F family of transcription factors is central in the control of cell cycle progression. The expression and activity of E2F proteins is tightly regulated transcriptionally and posttranslationally as a function of the proliferation and differentiation status of the cell. In this chapter, we review protocols designed to determine E2F mRNA abundance in tissues by in situ hybridization techniques. The ability to culture primary epidermal keratinocytes and maintain them as either undifferentiated or terminally differentiated cells allows the biochemical and molecular characterization of changes in E2F expression and activity. Thus, we also discuss in detail methods to analyze E2F protein abundance by immunoblot and their ability to bind DNA in cultured cells using electrophoretic mobility shift assays.

  16. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer : a systematic review and cost-effectiveness analysis

    NARCIS (Netherlands)

    Westwood, Marie; Joore, Manuela; Whiting, Penny; van Asselt, Thea; Ramaekers, Bram; Armstrong, Nigel; Misso, Kate; Severens, Johan; Kleijnen, Jos

    BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Some epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutations make tumours responsive to treatment with EGFR-TK inhibitors (EGFR-TKIs) but less responsive to treatment with standard chemotherapy.

  17. Epidermal transglutaminase (TGase 3 is required for proper hair development, but not the formation of the epidermal barrier.

    Directory of Open Access Journals (Sweden)

    Susan John

    Full Text Available Transglutaminases (TGase, a family of cross-linking enzymes present in most cell types, are important in events as diverse as cell-signaling and matrix stabilization. Transglutaminase 1 is crucial in developing the epidermal barrier, however the skin also contains other family members, in particular TGase 3. This isoform is highly expressed in the cornified layer, where it is believed to stabilize the epidermis and its reduction is implicated in psoriasis. To understand the importance of TGase 3 in vivo we have generated and analyzed mice lacking this protein. Surprisingly, these animals display no obvious defect in skin development, no overt changes in barrier function or ability to heal wounds. In contrast, hair lacking TGase 3 is thinner, has major alterations in the cuticle cells and hair protein cross-linking is markedly decreased. Apparently, while TGase 3 is of unique functional importance in hair, in the epidermis loss of TGase 3 can be compensated for by other family members.

  18. Release of infectious cells from epidermal ulcers in Ichthyophonus sp.–infected Pacific Herring (Clupea pallasii): Evidence for multiple mechanisms of transmission

    Science.gov (United States)

    Hershberger, Paul K.; Gregg, Jacob L.; Kocan, R.M.

    2010-01-01

    A common clinical sign of ichthyophoniasis in herring and trout is “sandpaper” skin, a roughening of the epidermis characterized by the appearance of small papules, followed by ulceration and sloughing of the epithelium; early investigators hypothesized that these ulcers might be a means of transmitting the parasite, Ichthyophonus sp., without the necessity of ingesting an infected host. We examined the cells associated with the epidermal lesions and confirmed that they were viable Ichthyophonus sp. cells that were readily released from the skin into the mucous layer and ultimately into the aquatic environment. The released cells were infectious when injected into the body cavity of specific-pathogen-free herring. Our hypothesis is that different mechanisms of transmission occur in carnivorous and planktivorous hosts: Planktonic feeders become infected by ingestion of ulcer-derived cells, while carnivores become infected by ingestion of whole infected fish.

  19. Real-time three-dimensional imaging of epidermal splitting and removal by high-definition optical coherence tomography.

    Science.gov (United States)

    Boone, Marc; Draye, Jean Pierre; Verween, Gunther; Pirnay, Jean-Paul; Verbeken, Gilbert; De Vos, Daniel; Rose, Thomas; Jennes, Serge; Jemec, Gregor B E; Del Marmol, Véronique

    2014-10-01

    While real-time 3-D evaluation of human skin constructs is needed, only 2-D non-invasive imaging techniques are available. The aim of this paper is to evaluate the potential of high-definition optical coherence tomography (HD-OCT) for real-time 3-D assessment of the epidermal splitting and decellularization. Human skin samples were incubated with four different agents: Dispase II, NaCl 1 M, sodium dodecyl sulphate (SDS) and Triton X-100. Epidermal splitting, dermo-epidermal junction, acellularity and 3-D architecture of dermal matrices were evaluated by High-definition optical coherence tomography before and after incubation. Real-time 3-D HD-OCT assessment was compared with 2-D en face assessment by reflectance confocal microscopy (RCM). (Immuno) histopathology was used as control. HD-OCT imaging allowed real-time 3-D visualization of the impact of selected agents on epidermal splitting, dermo-epidermal junction, dermal architecture, vascular spaces and cellularity. RCM has a better resolution (1 μm) than HD-OCT (3 μm), permitting differentiation of different collagen fibres, but HD-OCT imaging has deeper penetration (570 μm) than RCM imaging (200 μm). Dispase II and NaCl treatments were found to be equally efficient in the removal of the epidermis from human split-thickness skin allografts. However, a different epidermal splitting level at the dermo-epidermal junction could be observed and confirmed by immunolabelling of collagen type IV and type VII. Epidermal splitting occurred at the level of the lamina densa with dispase II and above the lamina densa (in the lamina lucida) with NaCl. The 3-D architecture of dermal papillae and dermis was more affected by Dispase II on HD-OCT which corresponded with histopathologic (orcein staining) fragmentation of elastic fibres. With SDS treatment, the epidermal removal was incomplete as remnants of the epidermal basal cell layer remained attached to the basement membrane on the dermis. With Triton X-100 treatment

  20. Calcium-dependent depletion zones in the cortical microtubule array coincide with sites of, but do not regulate, wall ingrowth papillae deposition in epidermal transfer cells

    Science.gov (United States)

    Zhang, Hui-ming; Talbot, Mark J.; McCurdy, David W.; Patrick, John W.; Offler, Christina E.

    2015-01-01

    Trans-differentiation to a transfer-cell morphology is characterized by the localized deposition of wall ingrowth papillae that protrude into the cytosol. Whether the cortical microtubule array directs wall ingrowth papillae formation was investigated using a Vicia faba cotyledon culture system in which their adaxial epidermal cells were spontaneously induced to trans-differentiate to transfer cells. During deposition of wall ingrowth papillae, the aligned cortical microtubule arrays in precursor epidermal cells were reorganized into a randomized array characterized by circular depletion zones. Concurrence of the temporal appearance, spatial pattern, and size of depletion zones and wall ingrowth papillae was consistent with each papilla occupying a depletion zone. Surprisingly, microtubules appeared not to regulate construction of wall ingrowth papillae, as neither depolymerization nor stabilization of cortical microtubules changed their deposition pattern or morphology. Moreover, the size and spatial pattern of depletion zones was unaltered when the formation of wall ingrowth papillae was blocked by inhibiting cellulose biosynthesis. In contrast, the depletion zones were absent when the cytosolic calcium plumes, responsible for directing wall ingrowth papillae formation, were blocked or dissipated. Thus, we conclude that the depletion zones within the cortical microtubule array result from localized depolymerization of microtubules initiated by elevated cytosolic Ca2+ levels at loci where wall ingrowth papillae are deposited. The physiological significance of the depletion zones as a mechanism to accommodate the construction of wall ingrowth papillae without compromising maintenance of the plasma membrane–microtubule inter-relationship is discussed. PMID:26136268

  1. Integrative multicellular biological modeling: a case study of 3D epidermal development using GPU algorithms

    Directory of Open Access Journals (Sweden)

    Christley Scott

    2010-08-01

    Full Text Available Abstract Background Simulation of sophisticated biological models requires considerable computational power. These models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells, cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of programming for graphical processing units (GPU opens up the possibility of developing more integrative, detailed and predictive biological models while at the same time decreasing the computational cost to simulate those models. Results We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes significantly faster than sequential central processing unit (CPU code. We provide a parallel implementation of the subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently implemented on the GPU including memory layout of data structures and functional decomposition. We discuss various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to avoid common pitfalls as well as to extract performance from the GPU architecture. Conclusions We demonstrate that GPU algorithms represent a significant technological advance for the simulation of complex biological models. We further demonstrate with our epidermal model that the integration of multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and computationally tractable using this new technology. We hope that the provided algorithms and source code will be a

  2. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials

    DEFF Research Database (Denmark)

    Voldborg, B R; Damstrup, L; Spang-Thomsen, M

    1997-01-01

    The epidermal growth factor receptor (EGFR) is a growth factor receptor that induces cell differentiation and proliferation upon activation through the binding of one of its ligands. The receptor is located at the cell surface, where the binding of a ligand activates a tyrosine kinase in the intr...... aspects of therapeutic targeting of EGFR....

  3. Isolation, Culture, and Motility Measurements of Epidermal Melanocytes from GFP-Expressing Reporter Mice.

    Science.gov (United States)

    Dagnino, Lina; Crawford, Melissa

    2018-03-27

    In this article, we provide a method to isolate primary epidermal melanocytes from reporter mice, which also allow targeted gene inactivation. The mice from which these cells are isolated are bred into a Rosa26 mT/mG reporter background, which results in GFP expression in the targeted melanocytic cell population. These cells are isolated and cultured to >95% purity. The cells can be used for gene expression studies, clonogenic experiments, and biological assays, such as capacity for migration. Melanocytes are slow moving cells, and we also provide a method to measure motility using individual cell tracking and data analysis.

  4. Simplified non-cultured non-trypsinised epidermal cell graft technique followed by psoralen and ultraviolet a light therapy for stable vitiligo

    Directory of Open Access Journals (Sweden)

    Dilip Kachhawa

    2017-01-01

    Full Text Available Background and Aims: Stable vitiligo can be treated by various surgical procedures. Non-cultured melanocyte grafting techniques were developed to overcome the time-consuming process of culture while at the same time providing acceptable results. All the techniques using non-cultured melanocyte transfer involve trypsinisation as an integral step. Jodhpur technique used by the author is autologous, non-cultured, non-trypsinised, epidermal cell grafting. Settings and Design: The study was conducted on patients visiting the dermatology outpatient department of a tertiary health centre in Western Rajasthan. Materials and Methods: At the donor site, mupirocin ointment was applied and dermabrasion was done with the help of micromotor dermabrader till pinpoint bleeding was seen. The paste-like material obtained by this procedure containing melanocytes and keratinocytes admixed with the ointment base was harvested with spatula and was subsequently spread over the recipient area. Recipient site was prepared in the same manner by dermabrasion. After 10 days, dressing at both sites was removed taking utmost care at the recipient site as there was a theoretical risk of dislodging epidermal cells. Results: In a study of 437 vitiligo patches, more than 75% re-pigmentation (excellent improvement was seen in 41% of the patches. Lesions on thigh (100%, face (75% and trunk (50% showed maximal excellent improvement, whereas patches on joints and acral areas did not show much improvement. Conclusions: This technique is a simplified, cost effective, less time-consuming alternative to other techniques which involve tryspsinisation of melanocytes and at the same time provides satisfactory uniform pigmentation.

  5. Heavy metal-induced cytotoxicity to cultured human epidermal keratinocytes and effects of antioxidants.

    Science.gov (United States)

    Kappus, H; Reinhold, C

    1994-04-01

    Human epidermal keratinocytes which have been cultured were treated with the heavy metal ions of cadmium, mercury, copper and zinc. Cytotoxicity was measured either by protein estimation or by using the neutral red assay. Antioxidants were added in order to find out whether heavy metal-induced cytotoxicity is related to oxidative stress. All metals used showed considerable cytotoxic effects within 24 h in moderate concentrations. None of the antioxidants vitamin E (alpha-tocopherol), pyrogallol, propyl gallate, BHT or ebselen showed any protective or preventive effect. This indicates that oxidative stress may not be involved in the cytotoxicity induced by heavy metals in human epidermal keratinocytes. The cells used are, however, a valuable tool to study mechanisms of cytotoxicity.

  6. Epidermal growth factor receptor expression in urinary bladder cancer

    Directory of Open Access Journals (Sweden)

    Dayalu S.L. Naik

    2011-01-01

    Full Text Available Objective : To evaluate the expression pattern of epidermal growth factor receptor (EGFR in urinary bladder cancer and its association with human epidermal growth factor receptor 2 (HER2, epidermal growth factor (EGF, interleukin-6 (IL-6, and high risk human papilloma virus (HPV types 16 and 18. Materials and Methods : Thirty cases of urothelial carcinoma were analyzed. EGFR, HER2, EGF, and IL-6 expressions in the tissue were evaluated by immunohistochemical staining. For HPV, DNA from tissue samples was extracted and detection of HPV was done by PCR technique. Furthermore, evaluation of different intracellular molecules associated with EGFR signaling pathways was performed by the western blot method using lysates from various cells and tissues. Results : In this study, the frequencies of immunopositivity for EGFR, HER2, EGF, and IL-6 were 23%, 60%, 47%, and 80%, respectively. No cases were positive for HPV-18, whereas HPV-16 was detected in 10% cases. Overall, expression of EGFR did not show any statistically significant association with the studied parameters. However, among male patients, a significant association was found only between EGFR and HER2. Conclusions : Overexpression of EGFR and/or HER2, two important members of the same family of growth factor receptors, was observed in a considerable proportion of cases. Precise knowledge in this subject would be helpful to formulate a rational treatment strategy in patients with urinary bladder cancer.

  7. Tight junction regulates epidermal calcium ion gradient and differentiation

    International Nuclear Information System (INIS)

    Kurasawa, Masumi; Maeda, Tetsuo; Oba, Ai; Yamamoto, Takuya; Sasaki, Hiroyuki

    2011-01-01

    Research highlights: → We disrupted epidermal tight junction barrier in reconstructed epidermis. → It altered Ca 2+ distribution and consequentially differentiation state as well. → Tight junction should affect epidermal homeostasis by maintaining Ca 2+ gradient. -- Abstract: It is well known that calcium ions (Ca 2+ ) induce keratinocyte differentiation. Ca 2+ distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca 2+ gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca 2+ gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca 2+ flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca 2+ gradient.

  8. The prognostic value of epidermal growth factor receptor is related to tumor differentiation and the overall treatment time of radiotherapy in squamous cell carcinomas of the head and neck

    DEFF Research Database (Denmark)

    Eriksen, Jesper Grau; Steiniche, Torben; Askaa, Jon

    2004-01-01

    Accelerated repopulation in head-and-neck carcinomas might be related to the expression of proliferative factors such as epidermal growth factor receptor (EGFr). The present study focuses on the prognostic value of EGFr for T-site control and the relation to tumor cell differentiation and overall...

  9. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice

    Directory of Open Access Journals (Sweden)

    Takamitsu Sasaki

    2007-12-01

    Full Text Available The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR and vascular endothelial growth factor receptor (VEGFR signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α and vascular endothelial growth factor (VEGF but were negative for EGFR, human epidermal growth factor receptor 2 (HER2, VEGFR. Double immunofluorescence staining revealed that tumorassociated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR, phosphorylated VEGFR (pVEGFR. Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01; this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001. AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, increased the level of apoptosis in both tumorassociated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer.

  10. Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Mogensen, Klaus Bo; Guehlke, Marina

    2016-01-01

    We report fast and simple green synthesis of plasmonic silver nanoparticles in the epidermal cells of onions after incubation with AgNO3 solution. The biological environment supports the generation of silver nanostructures in two ways. The plant tissue delivers reducing chemicals for the initial...... for one-and two-photon-excited spectroscopy such as surface enhanced Raman scattering (SERS) and surface enhanced hyper-Raman scattering (SEHRS). Our studies demonstrate a templated green preparation of enhancing plasmonic nanoparticles and suggest a new route to deliver silver nanoparticles as basic...... building blocks of plasmonic nanosensors to plants by the uptake of solutions of metal salts....

  11. Carcinoma epidermóide oral em paciente jovem: relato de caso e revisão da literatura Oral squamous cell carcinoma in a young patient: case report and literature review

    Directory of Open Access Journals (Sweden)

    Silvio K. Hirota

    2006-06-01

    Full Text Available O carcinoma epidermóide constitui a neoplasia maligna mais comum da boca, afetando principalmente indivíduos com mais de 50 anos. Sua ocorrência em jovens, com idade inferior a 40 anos, é rara (1 a 6% dos casos. Descreve-se um caso de carcinoma epidermóide acometendo dorso e borda da língua, classificado como T2N1M0 (estádio III, em paciente do sexo feminino, leucoderma, 25 anos, não-fumante e não-etilista. A apresentação inicial do caso era de ulceração profunda com dor intensa. Fatores predisponentes locais e gerais, diagnóstico diferencial e prognóstico são discutidos, bem como a revisão da literatura referente a diversos aspectos do carcinoma epidermóide em jovens.Squamous cell carcinoma is the most common malignant neoplasm of the oral cavity, usually affecting individuals over 50 years of age. It rarely occurs in patients who are less than 40 years old (1 to 6%. This report describes a case of squamous cell carcinoma, staged T2N1M0 (stage III, involving the lateral border and dorsal surface of the tongue of a 25-year-old white female patient, with no smoking or drinking habits. Initial tumor presentation was of deep ulceration and intense pain. This report focuses on the etiological factors, differential diagnosis and prognosis related to the case. Additionally, a brief literature review regarding squamous cell carcinoma in young patients is also included.

  12. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    Science.gov (United States)

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-05-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.

  13. Nrf2 but not autophagy inhibition is associated with the survival of wild-type epidermal growth factor receptor non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Zhou, Yan; Li, Yuan; Ni, Hong-Min; Ding, Wen-Xing; Zhong, Hua

    2016-01-01

    Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. Icotinib and Gefitinib are two epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) that have been used to treat NSCLC. While it is well known that mutations of EGFR can affect the sensitivity of NSCLC to the EGFR-TKI, other mechanisms may also be adopted by lung cancer cells to develop resistance to EGFR-TKI treatment. Cancer cells can use multiple adaptive mechanisms such as activation of autophagy and Nrf2 to protect against various stresses and chemotherapeutic drugs. Whether autophagy or Nrf2 activation contributes to the resistance of NSCLC to EGFR-TKI treatment in wild-type EGFR NSCLC cells remains elusive. In the present study, we confirmed that Icotinib and Gefitinib induced apoptosis in EGFR mutant HCC827 but not in EGFR wild-type A549 NSCLC cells. Icotinib and Gefitinib did not induce autophagic flux or inhibit mTOR in A549 cells. Moreover, suppression of autophagy by chloroquine, a lysosomal inhibitor, did not affect Icotinib- or Gefitinib-induced cell death in A549 cells. In contrast, Brusatol, an Nrf2 inhibitor, significantly suppressed the cell survival of A549 cells. However, Brusatol did not further sensitize A549 cells to EGFR TKI-induced cell death. Results from this study suggest that inhibition of Nrf2 can decrease cell vitality of EGFR wild-type A549 cells independent of autophagy. - Highlights: • Cancer cells use adaptive mechanisms against chemotherapy. • Autophagy is not essential for the drug resistance of lung cancer A549 cells. • Inhibition of Nrf2 decreases cell survival of lung cancer A549 cells.

  14. Nrf2 but not autophagy inhibition is associated with the survival of wild-type epidermal growth factor receptor non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030 (China); Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160 (United States); Li, Yuan; Ni, Hong-Min; Ding, Wen-Xing [Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160 (United States); Zhong, Hua, E-mail: eddiedong8@hotmail.com [Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2016-11-01

    Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. Icotinib and Gefitinib are two epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) that have been used to treat NSCLC. While it is well known that mutations of EGFR can affect the sensitivity of NSCLC to the EGFR-TKI, other mechanisms may also be adopted by lung cancer cells to develop resistance to EGFR-TKI treatment. Cancer cells can use multiple adaptive mechanisms such as activation of autophagy and Nrf2 to protect against various stresses and chemotherapeutic drugs. Whether autophagy or Nrf2 activation contributes to the resistance of NSCLC to EGFR-TKI treatment in wild-type EGFR NSCLC cells remains elusive. In the present study, we confirmed that Icotinib and Gefitinib induced apoptosis in EGFR mutant HCC827 but not in EGFR wild-type A549 NSCLC cells. Icotinib and Gefitinib did not induce autophagic flux or inhibit mTOR in A549 cells. Moreover, suppression of autophagy by chloroquine, a lysosomal inhibitor, did not affect Icotinib- or Gefitinib-induced cell death in A549 cells. In contrast, Brusatol, an Nrf2 inhibitor, significantly suppressed the cell survival of A549 cells. However, Brusatol did not further sensitize A549 cells to EGFR TKI-induced cell death. Results from this study suggest that inhibition of Nrf2 can decrease cell vitality of EGFR wild-type A549 cells independent of autophagy. - Highlights: • Cancer cells use adaptive mechanisms against chemotherapy. • Autophagy is not essential for the drug resistance of lung cancer A549 cells. • Inhibition of Nrf2 decreases cell survival of lung cancer A549 cells.

  15. Epidermal growth factor receptor inhibition by anti-CD147 therapy in cutaneous squamous cell carcinoma.

    Science.gov (United States)

    Frederick, John W; Sweeny, Larissa; Hartman, Yolanda; Zhou, Tong; Rosenthal, Eben L

    2016-02-01

    Advanced cutaneous squamous cell carcinoma (SCC) is an uncommon and aggressive malignancy. As a result, there is limited understanding of its biology and pathogenesis. CD147 and epidermal growth factor receptor (EGFR) have been identified as oncologically important targets, but their relationship remains undefined in cutaneous SCC. Multiple cutaneous SCC cell lines (Colo-16, SRB-1, and SRB-12), were treated in vitro with a range of chimeric anti-CD147 monoclonal antibody (mAb) (0, 50, 100, and 200 µg/mL) or transfected with a small interfering RNA against CD147 (SiCD147). Cell proliferation, migration (scratch wound healing assay), and protein expression was then assessed. In vivo, Colo-16 flank xenografts were treated anti-CD147 mAb (150 µg i.p. triweekly). After treatment with anti-CD147 (200 µg/mL), there was a significant decrease in proliferation for all cell lines relative to controls (p CD147 (200 µg/mL) resulted in decreased cell migration for all cell lines, with an average of 43% reduction in closure compared to controls (p CD147 antibody therapy and siRNA mediated reduction in CD147 expression were both found to decrease protein expression of EGFR, which correlated with a reduction in downstream total and phosphorylated protein kinase B (pAKT). Tumor growth in vivo was reduced for both the anti-CD147 treatment group and the SiCD147 group relative to controls. Inhibition and downregulation of CD147 in cutaneous SCC resulted in suppression of the malignant phenotype in vitro and in vivo, which may be mediated in part by an alteration in EGFR expression. As a result, CD147 may serve as a potential therapeutic target for advanced cutaneous SCC. © 2014 Wiley Periodicals, Inc.

  16. Cellular processes involved in human epidermal cells exposed to extremely low frequency electric fields.

    Science.gov (United States)

    Collard, J-F; Hinsenkamp, M

    2015-05-01

    We observed on different tissues and organisms a biological response after exposure to pulsed low frequency and low amplitude electric or electromagnetic fields but the precise mechanism of cell response remains unknown. The aim of this publication is to understand, using bioinformatics, the biological relevance of processes involved in the modification of gene expression. The list of genes analyzed was obtained after microarray protocol realized on cultures of human epidermal explants growing on deepidermized human skin exposed to a pulsed low frequency electric field. The directed acyclic graph on a WebGestalt Gene Ontology module shows six categories under the biological process root: "biological regulation", "cellular process", "cell proliferation", "death", "metabolic process" and "response to stimulus". Enriched derived categories are coherent with the type of in vitro culture, the stimulation protocol or with the previous results showing a decrease of cell proliferation and an increase of differentiation. The Kegg module on WebGestalt has highlighted "cell cycle" and "p53 signaling pathway" as significantly involved. The Kegg website brings out interactions between FoxO, MAPK, JNK, p53, p38, PI3K/Akt, Wnt, mTor or NF-KappaB. Some genes expressed by the stimulation are known to have an exclusive function on these pathways. Analyses performed with Pathway Studio linked cell proliferation, cell differentiation, apoptosis, cell cycle, mitosis, cell death etc. with our microarrays results. Medline citation generated by the software and the fold change variation confirms a diminution of the proliferation, activation of the differentiation and a less well-defined role of apoptosis or wound healing. Wnt and DKK functional classes, DKK1, MACF1, ATF3, MME, TXNRD1, and BMP-2 genes proposed in previous publications after a manual analysis are also highlighted with other genes after Pathway Studio automatic procedure. Finally, an analysis conducted on a list of genes

  17. Non-small-cell lung cancer cells combat epidermal growth factor receptor tyrosine kinase inhibition through immediate adhesion-related responses

    Directory of Open Access Journals (Sweden)

    Wang HY

    2016-05-01

    Full Text Available Hsian-Yu Wang,1,2 Min-Kung Hsu,3,4 Kai-Hsuan Wang,1 Ching-Ping Tseng,2,4 Feng-Chi Chen,3,4 John T-A Hsu1,4 1Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes (NHRI, Zhunan, Miaoli County, 2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University (NCTU, Hsinchu, 3Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes (NHRI, Zhunan, Miaoli County, 4Department of Biological Science and Technology, National Chiao Tung University (NCTU, Hsinchu, Taiwan, Republic of China Background: Epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKIs, such as gefitinib, erlotinib, and afatinib, have greatly improved treatment efficacy in non-small cell lung cancer (NSCLC patients with drug-sensitive EGFR mutations. However, in some TKI responders, the benefits of such targeted therapies are limited by the rapid development of resistance, and strategies to overcome this resistance are urgently needed. Studies of drug resistance in cancer cells typically involve long term in vitro induction to obtain stably acquired drug-resistant cells followed by elucidation of resistance mechanisms, but the immediate responses of cancer cells upon drug treatment have been ignored. The aim of this study was to investigate the immediate responses of NSCLC cells upon treatment with EGFR TKIs.Results: Both NSCLC cells, ie, PC9 and H1975, showed immediate enhanced adhesion-related responses as an apoptosis-countering mechanism upon first-time TKI treatment. By gene expression and pathway analysis, adhesion-related pathways were enriched in gefitinib-treated PC9 cells. Pathway inhibition by small-hairpin RNAs or small-molecule drugs revealed that within hours of EGFR TKI treatment, NSCLC cells used adhesion-related responses to combat the drugs. Importantly, we show here that the Src family inhibitor, dasatinib, dramatically inhibits

  18. Effects of epidermal growth factor receptor kinase inhibition on radiation response in canine osteosarcoma cells.

    Science.gov (United States)

    Mantovani, Fernanda B; Morrison, Jodi A; Mutsaers, Anthony J

    2016-05-31

    Radiation therapy is a palliative treatment modality for canine osteosarcoma, with transient improvement in analgesia observed in many cases. However there is room for improvement in outcome for these patients. It is possible that the addition of sensitizing agents may increase tumor response to radiation therapy and prolong quality of life. Epidermal growth factor receptor (EGFR) expression has been documented in canine osteosarcoma and higher EGFR levels have been correlated to a worse prognosis. However, effects of EGFR inhibition on radiation responsiveness in canine osteosarcoma have not been previously characterized. This study examined the effects of the small molecule EGFR inhibitor erlotinib on canine osteosarcoma radiation responses, target and downstream protein expression in vitro. Additionally, to assess the potential impact of treatment on tumor angiogenesis, vascular endothelial growth factor (VEGF) levels in conditioned media were measured. Erlotinib as a single agent reduced clonogenic survival in two canine osteosarcoma cell lines and enhanced the impact of radiation in one out of three cell lines investigated. In cell viability assays, erlotinib enhanced radiation effects and demonstrated single agent effects. Erlotinib did not alter total levels of EGFR, nor inhibit downstream protein kinase B (PKB/Akt) activation. On the contrary, erlotinib treatment increased phosphorylated Akt in these osteosarcoma cell lines. VEGF levels in conditioned media increased after erlotinib treatment as a single agent and in combination with radiation in two out of three cell lines investigated. However, VEGF levels decreased with erlotinib treatment in the third cell line. Erlotinib treatment promoted modest enhancement of radiation effects in canine osteosarcoma cells, and possessed activity as a single agent in some cell lines, indicating a potential role for EGFR inhibition in the treatment of a subset of osteosarcoma patients. The relative radioresistance of

  19. Lack of upregulation of epidermal fatty acid binding protein in dithranol induced irritation.

    NARCIS (Netherlands)

    Kucharekova, M.; Vissers, W.H.P.M.; Schalkwijk, J.; Kerkhof, P.C.M. van de; Valk, P.G.M. van der

    2003-01-01

    The exact role of epidermal fatty acid binding protein (E-FABP) in skin is unknown. A restoration of the barrier function may be associated with an upregulation of E-FABP. Moreover, E-FABP is upregulated in a variety of cells in response to oxidative stress. A recent observation that dithranol

  20. Deregulation of epidermal stem cell niche contributes to pathogenesis of non-healing venous ulcers

    Science.gov (United States)

    Nusbaum, Aron G.; Vukelic, Sasa; Krzyzanowska, Agata; Tomic-Canic, Marjana

    2014-01-01

    The epidermis is maintained by epidermal stem cells (ESC) that reside in distinct niches and contribute to homeostasis and wound closure. Keratinocytes at the non-healing edges of venous ulcers (VUs) are healing-incompetent, hyper-proliferative and non-migratory suggesting deregulation of ESCs. To date genes which regulate ESC niches have been studied in mice only. Utilizing microarray analysis of VU non-healing edges, we identified changes in expression of genes harboring regulation of ESCs and their fate. In a prospective clinical study of ten VUs, we confirmed suppression of the bone morphogenetic protein receptor and GATA binding protein3 as well as inhibitors of DNA-binding proteins 2 and 4. We also found decreased levels of phosphorylated glycogen synthase kinase 3, nuclear presence of ß-catenin and overexpression of its transcriptional target, c-myc indicating activation of the Wnt pathway. Additionally, we found down-regulation of leucine-rich repeats and immunoglobulin-like domains protein 1, a gene important for maintaining ESCs in a quiescent state, and absence of keratin 15, a marker of the basal stem cell compartment suggesting local depletion of ESCs. Our study shows that loss of genes important for regulation of ESCs and their fate along with activation of ß-catenin and c-myc in the VU may contribute to ESC deprivation and a hyper-proliferative, non-migratory, healing incapable wound edge. PMID:24635172

  1. The influence of tethered epidermal growth factor on connective tissue progenitor colony formation

    OpenAIRE

    Marcantonio, Nicholas A.; Boehm, Cynthia A.; Rozic, Richard J.; Au, Ada; Wells, Alan; Muschler, George F.; Griffith, Linda G.

    2009-01-01

    Strategies to combine aspirated marrow cells with scaffolds to treat connective tissue defects are gaining increasing clinical attention and use. In situations such as large defects where initial survival and proliferation of transplanted connective tissue progenitors (CTPs) are limiting, therapeutic outcomes might be improved by using the scaffold to deliver growth factors that promote the early stages of cell function in the graft. Signaling by the epidermal growth factor receptor (EGFR) pl...

  2. M2 macrophages induce ovarian cancer cell proliferation via a heparin binding epidermal growth factor/matrix metalloproteinase 9 intercellular feedback loop.

    Science.gov (United States)

    Carroll, Molly J; Kapur, Arvinder; Felder, Mildred; Patankar, Manish S; Kreeger, Pamela K

    2016-12-27

    In ovarian cancer, a high ratio of anti-inflammatory M2 to pro-inflammatory M1 macrophages correlates with poor patient prognosis. The mechanisms driving poor tumor outcome as a result of the presence of M2 macrophages in the tumor microenvironment remain unclear and are challenging to study with current techniques. Therefore, in this study we utilized a micro-culture device previously developed by our lab to model concentrated paracrine signaling in order to address our hypothesis that interactions between M2 macrophages and ovarian cancer cells induce tumor cell proliferation. Using the micro-culture device, we determined that co-culture with M2-differentiated primary macrophages or THP-1 increased OVCA433 proliferation by 10-12%. This effect was eliminated with epidermal growth factor receptor (EGFR) or heparin-bound epidermal growth factor (HB-EGF) neutralizing antibodies and HBEGF expression in peripheral blood mononuclear cells from ovarian cancer patients was 9-fold higher than healthy individuals, suggesting a role for HB-EGF in tumor progression. However, addition of HB-EGF at levels secreted by macrophages or macrophage-conditioned media did not induce proliferation to the same extent, indicating a role for other factors in this process. Matrix metalloproteinase-9, MMP-9, which cleaves membrane-bound HB-EGF, was elevated in co-culture and its inhibition decreased proliferation. Utilizing inhibitors and siRNA against MMP9 in each population, we determined that macrophage-secreted MMP-9 released HB-EGF from macrophages, which increased MMP9 in OVCA433, resulting in a positive feedback loop to drive HB-EGF release and increase proliferation in co-culture. Identification of multi-cellular interactions such as this may provide insight into how to most effectively control ovarian cancer progression.

  3. Epidermal growth factor induction of front–rear polarity and migration in keratinocytes is mediated by integrin-linked kinase and ELMO2

    Science.gov (United States)

    Ho, Ernest; Dagnino, Lina

    2012-01-01

    Epidermal growth factor (EGF) is a potent chemotactic and mitogenic factor for epidermal keratinocytes, and these properties are central for normal epidermal regeneration after injury. The involvement of mitogen-activated protein kinases as mediators of the proliferative effects of EGF is well established. However, the molecular mechanisms that mediate motogenic responses to this growth factor are not clearly understood. An obligatory step for forward cell migration is the development of front–rear polarity and formation of lamellipodia at the leading edge. We show that stimulation of epidermal keratinocytes with EGF, but not with other growth factors, induces development of front–rear polarity and directional migration through a pathway that requires integrin-linked kinase (ILK), Engulfment and Cell Motility-2 (ELMO2), integrin β1, and Rac1. Furthermore, EGF induction of front–rear polarity and chemotaxis require the tyrosine kinase activity of the EGF receptor and are mediated by complexes containing active RhoG, ELMO2, and ILK. Our findings reveal a novel link between EGF receptor stimulation, ILK-containing complexes, and activation of small Rho GTPases necessary for acquisition of front–rear polarity and forward movement. PMID:22160594

  4. Epidermal growth factor induction of front-rear polarity and migration in keratinocytes is mediated by integrin-linked kinase and ELMO2.

    Science.gov (United States)

    Ho, Ernest; Dagnino, Lina

    2012-02-01

    Epidermal growth factor (EGF) is a potent chemotactic and mitogenic factor for epidermal keratinocytes, and these properties are central for normal epidermal regeneration after injury. The involvement of mitogen-activated protein kinases as mediators of the proliferative effects of EGF is well established. However, the molecular mechanisms that mediate motogenic responses to this growth factor are not clearly understood. An obligatory step for forward cell migration is the development of front-rear polarity and formation of lamellipodia at the leading edge. We show that stimulation of epidermal keratinocytes with EGF, but not with other growth factors, induces development of front-rear polarity and directional migration through a pathway that requires integrin-linked kinase (ILK), Engulfment and Cell Motility-2 (ELMO2), integrin β1, and Rac1. Furthermore, EGF induction of front-rear polarity and chemotaxis require the tyrosine kinase activity of the EGF receptor and are mediated by complexes containing active RhoG, ELMO2, and ILK. Our findings reveal a novel link between EGF receptor stimulation, ILK-containing complexes, and activation of small Rho GTPases necessary for acquisition of front-rear polarity and forward movement.

  5. Influence of epidermal growth factor on liver regeneration after partial hepatectomy in rats

    DEFF Research Database (Denmark)

    Olsen, Peter Skov; Boesby, S.; Kirkegaard, P.

    2013-01-01

    The role of epidermal growth factor on liver regeneration after partial hepatectomy in rats was investigated. After a 70% hepatectomy in rats, the concentration of epidermal growth factor in portal venous blood was unchanged compared with unoperated controls. However, small amounts of epidermal...... growth factor could be identified in portal venous blood after intestinal instillation of epidermal growth factor. Brunner's glands and the submandibular glands secrete epidermal growth factor. Extirpation of Brunner's glands decreased liver regeneration, whereas removal of the submandibular glands had...... no effect on liver regeneration. Epidermal growth factor antiserum reduced liver regeneration significantly. Oral or s.c. administration of epidermal growth factor had no effect on liver regeneration, whereas epidermal growth factor enhanced the effect of insulin and glucagon on liver regeneration...

  6. Epidermal and dermal integumentary structures of ankylosaurian dinosaurs.

    Science.gov (United States)

    Arbour, Victoria M; Burns, Michael E; Bell, Phil R; Currie, Philip J

    2014-01-01

    Ankylosaurian dinosaurs are most notable for their abundant and morphologically diverse osteoderms, which would have given them a spiky appearance in life. Isolated osteoderms are relatively common and provide important information about the structure of the ankylosaur dermis, but fossilized impressions of the soft-tissue epidermis of ankylosaurs are rare. Nevertheless, well-preserved integument exists on several ankylosaur fossils that shows osteoderms were covered by a single epidermal scale, but one or many millimeter-sized ossicles may be present under polygonal, basement epidermal scales. Evidence for the taxonomic utility of ankylosaurid epidermal scale architecture is presented for the first time. This study builds on previous osteological work that argues for a greater diversity of ankylosaurids in the Dinosaur Park Formation of Alberta than has been traditionally recognized and adds to the hypothesis that epidermal skin impressions are taxonomically relevant across diverse dinosaur clades. Copyright © 2013 Wiley Periodicals, Inc.

  7. Calcium-dependent depletion zones in the cortical microtubule array coincide with sites of, but do not regulate, wall ingrowth papillae deposition in epidermal transfer cells.

    Science.gov (United States)

    Zhang, Hui-ming; Talbot, Mark J; McCurdy, David W; Patrick, John W; Offler, Christina E

    2015-09-01

    Trans-differentiation to a transfer-cell morphology is characterized by the localized deposition of wall ingrowth papillae that protrude into the cytosol. Whether the cortical microtubule array directs wall ingrowth papillae formation was investigated using a Vicia faba cotyledon culture system in which their adaxial epidermal cells were spontaneously induced to trans-differentiate to transfer cells. During deposition of wall ingrowth papillae, the aligned cortical microtubule arrays in precursor epidermal cells were reorganized into a randomized array characterized by circular depletion zones. Concurrence of the temporal appearance, spatial pattern, and size of depletion zones and wall ingrowth papillae was consistent with each papilla occupying a depletion zone. Surprisingly, microtubules appeared not to regulate construction of wall ingrowth papillae, as neither depolymerization nor stabilization of cortical microtubules changed their deposition pattern or morphology. Moreover, the size and spatial pattern of depletion zones was unaltered when the formation of wall ingrowth papillae was blocked by inhibiting cellulose biosynthesis. In contrast, the depletion zones were absent when the cytosolic calcium plumes, responsible for directing wall ingrowth papillae formation, were blocked or dissipated. Thus, we conclude that the depletion zones within the cortical microtubule array result from localized depolymerization of microtubules initiated by elevated cytosolic Ca(2+) levels at loci where wall ingrowth papillae are deposited. The physiological significance of the depletion zones as a mechanism to accommodate the construction of wall ingrowth papillae without compromising maintenance of the plasma membrane-microtubule inter-relationship is discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Altered growth, differentiation, and responsiveness to epidermal growth factor of human embryonic mesenchymal cells of palate by persistent rubella virus infection

    International Nuclear Information System (INIS)

    Yoneda, T.; Urade, M.; Sakuda, M.; Miyazaki, T.

    1986-01-01

    We previously demonstrated that human embryonic mesenchymal cells derived from the palate (HEMP cells) retain alkaline phosphatase (ALP) content and capacity for collagen synthesis after long-term culture, and their growth is markedly stimulated by epidermal growth factor (EGF). There was a dramatic decrease in ALP content and capacity to synthesize collagen in HEMP cells (HEMP-RV cells) persistently infected with rubella virus (RV). EGF increased ALP activity and decreased collagen synthesis in HEMP cells, whereas EGF showed no effect on these activities in HEMP-RV cells. Growth of HEMP-RV cells was slightly reduced compared with that of HEMP cells. EGF stimulated growth of HEMP cells and to a lesser extent of HEMP-RV cells. Binding of 125 I-EGF to cell-surface receptors in HEMP-RV cells was, to our surprise, twice as much as that in HEMP cells. However, internalization of bound 125 I-EGF in HEMP-RV cells was profoundly diminished. Thus, persistent RV infection causes not only changes in HEMP cell growth and differentiation but a decrease in or loss of HEMP cell responsiveness to EGF. The effects of persistent RV infection on palatal cell differentiation as well as growth may be responsible for the pathogenesis of congenital rubella. Furthermore, since HEMP cells appear to be closely related to osteoblasts, these results suggest a mechanism for RV-induced osseous abnormalities manifested in congenital rubella patients

  9. H{sup +}/peptide transporter (PEPT2) is expressed in human epidermal keratinocytes and is involved in skin oligopeptide transport

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Michiko; Katayoshi, Takeshi; Kobayashi-Nakamura, Kumiko [DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025 (Japan); Akagawa, Mitsugu [Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Tsuji-Naito, Kentaro, E-mail: knaito@dhc.co.jp [DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025 (Japan)

    2016-07-08

    Peptide transporter 2 (PEPT2) is a member of the proton-coupled oligopeptide transporter family, which mediates the cellular uptake of oligopeptides and peptide-like drugs. Although PEPT2 is expressed in many tissues, its expression in epidermal keratinocytes remains unclear. We investigated PEPT2 expression profile and functional activity in keratinocytes. We confirmed PEPT2 mRNA expression in three keratinocyte lines (normal human epidermal keratinocytes (NHEKs), immortalized keratinocytes, and malignant keratinocytes) by reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. In contrast to PEPT1, PEPT2 expression in the three keratinocytes was similar or higher than that in HepG2 cells, used as PEPT2-positive cells. Immunolocalization analysis using human skin showed epidermal PEPT2 localization. We studied keratinocyte transport function by measuring the oligopeptide content using liquid chromatography/tandem mass spectrometry. Glycylsarcosine uptake in NHEKs was pH-dependent, suggesting that keratinocytes could absorb small peptides in the presence of an inward H{sup +} gradient. We also performed a skin-permeability test of several oligopeptides using skin substitute, suggesting that di- and tripeptides pass actively through the epidermis. In conclusion, PEPT2 is expressed in keratinocytes and involved in skin oligopeptide uptake. -- Highlights: •PEPT2 is expressed in keratinocytes, which are more common than other skin cells. •Immunolocalization analysis using human skin revealed epidermal PEPT2 localization. •Keratinocytes could absorb small peptides in the presence of an inward H{sup +} gradient. •Di- and tripeptide pass actively through the epidermis.

  10. Socializing makes thick-skinned individuals: on the density of epidermal alarm substance cells in cyprinid fish, the crucian carp (Carassius carassius).

    Science.gov (United States)

    Stabell, Ole B; Vegusdal, Anne

    2010-09-01

    In cyprinid fish, density of epidermal club cells (i.e. alarm substance cells) has been found to vary between lakes with different predator fauna. Because predators can be labelled with chemical cues from prey, we questioned if club cell density could be controlled indirectly by predators releasing prey cues. In particular, we suspected a possible feedback mechanism between chemical alarm signals and their cellular source. We raised crucian carp singly and in groups of four. For both rearing types, fish were exposed to skin extracts of either conspecifics or brown trout (without club cells), and provided either low or high food rations. Independent of rearing type, condition factor and club cell density increased with food ration size, but no change was found in club cell density following exposure to conspecific alarm signals. However, the density of club cells was found significantly higher for fish raised in groups than for fish raised alone. We conclude that an increased condition factor results in more club cells, but crucian carp may also possess an awareness of conspecific presence, given by higher club cell densities when raised in groups. This increase in club cell density may be induced by unknown chemical factors released by conspecifics.

  11. A cyclic peptide derived from alpha-fetoprotein inhibits the proliferative effects of the epidermal growth factor and estradiol in MCF7 cells.

    Science.gov (United States)

    Torres, Cristian; Antileo, Elmer; Epuñán, Maráa José; Pino, Ana María; Valladares, Luis Emilio; Sierralta, Walter Daniel

    2008-06-01

    A cyclic peptide derived from the active domain of alpha-fetoprotein (AFP) significantly inhibited the proliferation of MCF7 cells stimulated with the epidermal growth factor (EGF) or estradiol (E2). The action of these three agents on cell growth was independent of the presence of calf serum in the culture medium. Our results demonstrated that the cyclic peptide interfered markedly with the regulation of MAPK by activated c-erbB2. The cyclic peptide showed no effect on the E2-stimulated release of matrix metalloproteinases 2 and 9 nor on the shedding of heparin-binding EGF into the culture medium. We propose that the AFP-derived cyclic peptide represents a valuable novel antiproliferative agent for treating breast cancer.

  12. IDENTIFICATION AND AUTHENTICATION OF DRY SAMPLES OF SOME MEDICINAL PLANTS USING LEAF EPIDERMAL FEATURES AS MARKER

    Directory of Open Access Journals (Sweden)

    Abdullahi Alanamu ABDULRAHAMAN

    2016-06-01

    Full Text Available Herbal medicine is the oldest and still the most widely used system of medicine in the world today and they are made exclusively from plants. However, most of these medicines or drugs are adulterated due to lack of proper identification of the plant samples. Method of checking adulteration of drug plants is the main focus of this study. The identification and authentication of dry samples of some medicinal plants were carried out using anatomical features. Twenty-five (25 plants materials were collected in Ibadan and Ilorin, Nigeria. The plants studied include Azardiracta indica, Newboudia leavis, Polyalthia longifolia, Cymbopogon citratus, Anarcardium occidentalis, Nicotiana tobbaccum, Jatropha curcas, Chromoleana odorata, Mangifera indica, Terminalia catappa, Ocimum gratisimum, Morus messosygia, Morinda lucida, Psidium guajava, Vitellaria paradoxa, Annona senegalensis, Vernonia amygdalina, Gliricidium sepium, Ravoulvia vomitora, Telferia occindentalis Citrus aurantifolia, C. limon, C. paradisi and C. sinensis. Leaf epidermal anatomy of these selected plants showed no major variations in stomatal complex types, frequency, size and shape of stomatal cells, epidermal cell wall and trichomes between fresh and dry samples. The variations that occur were between different species but not within species. Leaf epidermal anatomy, therefore, proved to be a significant tool for resolution of taxonomic confusion of dried samples of these plants.

  13. Effect of X-ray irradiation on morphophysiological reactions of epidermal melanophor cells in the larvae of Rana temporaria L

    International Nuclear Information System (INIS)

    Popov, D.V.; Kalistratova, E.N.; Kaluzhina, A.V.

    1982-01-01

    Dynamics of physiological reactions of epidermal melanophors of larvae Rana temporaria L.. adapted to white and black backgrounds and irradiated with a dose of 700 R has been investigated. Ouring the first day after irradiation no day changes of melanophor index characteristic of intact tadpoles were discovered in whitebackground animals; melanophors preserve the aggregation state. Comparison of black background irradiated and control larvae didn't show confident differences in changes of their melanophor indices. Irradiation affects differently epidermal melanophors in the state of pigment dispersion and aggregation. It is suggested that pigment dispersion and aggregation in melanophor is realized at the expense of different cellular structures. It is shown that by the end of the experiment (21-st day) the amount of epidermal melanophor per surface unit is two times larger in black-ground larvae. General biological signaficance of revealed facts from the point of view of ontogenesis evolution is discussed

  14. Reptured Epidermal Inclusion Cyst in the Axilla: A Case Report

    International Nuclear Information System (INIS)

    Kim, Kyu Soon; Kim, Hak Hee; Shin, Hee Jeong; Yang, Hye Rin; Sohn, Jeong Hee; Kwon, Gui Young; Gong, Gyung Yub

    2006-01-01

    Epidermal inclusion cysts, the most common type of simple epithelial cyst, are typically well-encapsulated, subepidermal and mobile nodules. They may occur anywhere, but are mostly found on the scalp, face, neck, trunk, and back. Less than 10% of epidermal inclusion cysts occur on the extremities, and even fewer are found on the palms, soles, and breasts. If epidermal inclusion cysts rupture, foreign body reaction, granulomatous reaction or abscess formation could follow. We described here the sonographic findings of ruptured epidermal inclusion cyst of the right axilla in a 33-year-old woman who presented with a palpable axillary mass forming an inflammatory abscess

  15. Size-dependent effects of tungsten carbide-cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells

    International Nuclear Information System (INIS)

    Ding, M.; Kisin, E.R.; Zhao, J.; Bowman, L.; Lu, Y.; Jiang, B.; Leonard, S.; Vallyathan, V.; Castranova, V.; Murray, A.R.; Fadeel, B.; Shvedova, A.A.

    2009-01-01

    Hard metal or cemented carbide consists of a mixture of tungsten carbide (WC) (85%) and metallic cobalt (Co) (5-15%). WC-Co is considered to be potentially carcinogenic to humans. However, no comparison of the adverse effects of nano-sized WC-Co particles is available to date. In the present study, we compared the ability of nano- and fine-sized WC-Co particles to form free radicals and propensity to activate the transcription factors, AP-1 and NF-κB, along with stimulation of mitogen-activated protein kinase (MAPK) signaling pathways in a mouse epidermal cell line (JB6 P + ). Our results demonstrated that nano-WC-Co generated a higher level of hydroxyl radicals, induced greater oxidative stress, as evidenced by a decrease of GSH levels, and caused faster JB6 P + cell growth/proliferation than observed after exposure of cells to fine WC-Co. In addition, nano-WC-Co activated AP-1 and NF-κB more efficiently in JB6 +/+ cells as compared to fine WC-Co. Experiments using AP-1-luciferase reporter transgenic mice confirmed the activation of AP-1 by nano-WC-Co. Nano- and fine-sized WC-Co particles also stimulated MAPKs, including ERKs, p38, and JNKs with significantly higher potency of nano-WC-Co. Finally, co-incubation of the JB6 +/+ cells with N-acetyl-cysteine decreased AP-1 activation and phosphorylation of ERKs, p38 kinase, and JNKs, thus suggesting that oxidative stress is involved in WC-Co-induced toxicity and AP-1 activation.

  16. GEP100/Arf6 is required for epidermal growth factor-induced ERK/Rac1 signaling and cell migration in human hepatoma HepG2 cells.

    Directory of Open Access Journals (Sweden)

    ZhenZhen Hu

    Full Text Available BACKGROUND: Epidermal growth factor (EGF signaling is implicated in the invasion and metastasis of hepatoma cells. However, the signaling pathways for EGF-induced motility of hepatoma cells remain undefined. METHODOLOGY/PRINCIPAL FINDINGS: We found that EGF dose-dependently stimulated the migration of human hepatoma cells HepG2, with the maximal effect at 10 ng/mL. Additionally, EGF increased Arf6 activity, and ectopic expression of Arf6 T27N, a dominant negative Arf6 mutant, largely abolish EGF-induced cell migration. Blocking GEP100 with GEP100 siRNA or GEP100-△PH, a pleckstrin homology (PH domain deletion mutant of GEP100, blocked EGF-induced Arf6 activity and cell migration. EGF also increased ERK and Rac1 activity. Ectopic expression GEP100 siRNA, GEP100-△PH, or Arf6-T27N suppressed EGF-induced ERK and Rac1 activity. Furthermore, blocking ERK signaling with its inhibitor U0126 remarkably inhibited both EGF-induced Rac1 activation as well as cell migration, and ectopic expression of inactive mutant form of Rac1 (Rac1-T17N also largely abolished EGF-induced cell migration. CONCLUSIONS/SIGNIFICANCE: Taken together, this study highlights the function of the PH domain of GEP100 and its regulated Arf6/ERK/Rac1 signaling cascade in EGF-induced hepatoma cell migration. These findings could provide a rationale for designing new therapy based on inhibition of hepatoma metastasis.

  17. Ultrastructure of the fibrous matrix surrounding cells of Trypanosoma melophagium in the hind-gut of the sheep ked, Melophagus ovinus.

    Science.gov (United States)

    Heywood, P; Molyneux, D H

    1985-01-01

    A fibrous material surrounds cells of Trypanosoma (Megatrypanum) melophagium in the hind-gut of the sheep ked, Melophagus ovinus, and terminates just beyond the distal portions of the attached cells. The fibres of this extracellular matrix have a diameter of approximately 4 nm and are closely packed. Individual fibres have approximately the same orientation as adjacent fibres and usually lie parallel to the longitudinal axis of the parasite cells.

  18. Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Garibay-Hernández, Adriana; Melzer, Michael; Rupasinghe, Thusitha W T; Roessner, Ute

    2018-05-29

    Salt stress causes dramatic changes in the organization and dynamic properties of membranes, however, little is known about the underlying mechanisms involved. Modified trichomes, known as epidermal bladder cells (EBC), on the leaves and stems of the halophyte Mesembryanthemum crystallinum can be successfully exploited as a single-cell-type system to investigate salt-induced changes to cellular lipid composition. In this study alterations in key molecular species from different lipid classes highlighted an increase in phospholipid species, particularly those from phosphatidylcholine (PC) and phosphatidic acid (PA), where the latter is central to the synthesis of membrane lipids. Triacylglycerol (TG) species decreased during salinity, while there was little change in plastidic galactolipids. EBC transcriptomic and proteomic data mining revealed changes in genes and proteins involved in lipid metabolism and the upregulation of transcripts for PIPKIB, PI5PII, PIPKIII, and PLDδ, suggested the induction of signalling processes mediated by phosphoinositides and PA. TEM and flow cytometry showed the dynamic nature of lipid droplets in these cells under salt stress. Altogether, this work indicates the metabolism of TG might play an important role in EBC response to salinity as either an energy reserve for sodium accumulation and/or driving membrane biosynthesis for EBC expansion. This article is protected by copyright. All rights reserved.

  19. Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor α signalling and results in tamoxifen insensitive proliferation

    International Nuclear Information System (INIS)

    Moerkens, Marja; Zhang, Yinghui; Wester, Lynn; Water, Bob van de; Meerman, John HN

    2014-01-01

    Tamoxifen resistance is a major problem in the treatment of estrogen receptor (ER) α -positive breast cancer patients. Although the mechanisms behind tamoxifen resistance are still not completely understood, clinical data suggests that increased expression of receptor tyrosine kinases is involved. Here, we studied the estrogen and anti-estrogen sensitivity of human breast cancer MCF7 cells that have a moderate, retroviral-mediated, ectopic expression of epidermal growth factor receptor (MCF7-EGFR). Proliferation of MCF7-EGFR and parental cells was induced by 17β-estradiol (E2), epidermal growth factor (EGF) or a combination of these. Inhibition of proliferation under these conditions was investigated with 4-hydroxy-tamoxifen (TAM) or fulvestrant at 10 -12 to 10 -6 M. Cells were lysed at different time points to determine the phosphorylation status of EGFR, MAPK 1/3 , AKT and the expression of ERα. Knockdown of target genes was established using smartpool siRNAs. Transcriptomics analysis was done 6 hr after stimulation with growth factors using Affymetrix HG-U133 PM array plates. While proliferation of parental MCF7 cells could only be induced by E2, proliferation of MCF7-EGFR cells could be induced by either E2 or EGF. Treatment with TAM or fulvestrant did significantly inhibit proliferation of MCF7-EGFR cells stimulated with E2 alone. EGF treatment of E2/TAM treated cells led to a marked cell proliferation thereby overruling the anti-estrogen-mediated inhibition of cell proliferation. Under these conditions, TAM however did still inhibit ERα- mediated transcription. While siRNA-mediated knock-down of EGFR inhibited the EGF- driven proliferation under TAM/E2/EGF condition, knock down of ERα did not. The TAM resistant cell proliferation mediated by the conditional EGFR-signaling may be dependent on the PI3K/Akt pathway but not the MEK/MAPK pathway, since a MEK inhibitor (U0126), did not block the proliferation. Transcriptomic analysis under the various E2/TAM

  20. Establishment and characterization of a new cell line, FPS-1, derived from human undifferentiated pleomorphic sarcoma, overexpressing epidermal growth factor receptor and cyclooxygenase-2.

    Science.gov (United States)

    Hakozaki, Michiyuki; Hojo, Hiroshi; Sato, Michiko; Tajino, Takahiro; Yamada, Hitoshi; Kikuchi, Shinichi; Abe, Masafumi

    2006-01-01

    Undifferentiated pleomorphic sarcoma (UPS) is among the most common soft tissue sarcomas in adults. In order to improve its aggressive course or prognosis and establish new therapeutic methods, molecular genetic and biological characterizations of UPS are required. A new human UPS cell line (FPS-1) was established from UPS of the upper arm of a 79-year-old man. The cell line has been maintained for over 14 months with more than 60 passages. FPS-1 cells were characterized using molecular biological methods. FPS-1 cells showed the same morphological and immunophenotypical characteristics as the primary tumor. Cytogenetic and molecular analyses revealed a nonsense mutation in exon 6 of the p53 gene. Epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) were expressed in FPS-1 cells. FPS-1 cells might be useful for investigating biological behavior and developing new molecular targeting antitumor drugs for UPS with EGFR or COX-2 expression.

  1. Horse hooves and bird feathers: Two model systems for studying the structure and development of highly adapted integumentary accessory organs--the role of the dermo-epidermal interface for the micro-architecture of complex epidermal structures.

    Science.gov (United States)

    Bragulla, Hermann; Hirschberg, Ruth M

    2003-08-15

    Accessory organs of the integument are locally modified parts of the potentially feather-bearing skin in birds (e.g., the rhamphotheca, claws, or scales), and of the potentially hairy skin in mammals (e.g., the rhinarium, nails, claws, or hooves). These special parts of the integument are characterised by a modified structure of their epidermal, dermal and subcutaneous layers. The developmental processes of these various integumentary structures in birds and mammals show both similarities and differences. For example, the development of the specialised epidermal structures of both feathers and the hoof capsule is influenced by the local three-dimensional configuration of the dermis. However, in feathers, in contrast to hooves, the arrangement of the corneous cells is only partially a direct result of the particular arrangement and shape of the dermal surface of the papillary body. Whereas the diameter of the feather papilla, as well as the number, length, and width of dermal ridges on the surface of the feather papilla influence the three-dimensional architecture of the feather rami, there is no apparent direct correlation between the dermo-epidermal interface and the development of the highly ordered architecture of the radii and hamuli in the feather vane. In order to elucidate this morphogenic problem and the problem of locally different processes of keratinisation and cornification, the structure and development of feathers in birds are compared to those of the hoof capsule in horses. The equine hoof is the most complex mammalian integumentary structure, which is determined directly by the dermal surface of the papillary body. Perspectives for further research on the development of modified integumentary structures, such as the role of the dermal microangioarchitecture and the selective adhesion and various differentiation pathways of epidermal cells, are discussed. Copyright 2003 Wiley-Liss, Inc.

  2. Post-female-circumcision clitoral epidermal inclusion cyst: a case ...

    African Journals Online (AJOL)

    Keywords: complication, epidermal inclusion cyst, female circumcision. Pediatric Urology Division, Department of Urology, ... transplantation of the epidermis into the subcutaneous tissue with subsequent proliferation of epidermal ... The evolution of the practice of FGM, from being performed by traditional birth attendants to.

  3. Suppression of the epidermal growth factor receptor inhibits epithelial-mesenchymal transition in human pancreatic cancer PANC-1 cells.

    Science.gov (United States)

    Chang, Zhi-Gang; Wei, Jun-Min; Qin, Chang-Fu; Hao, Kun; Tian, Xiao-Dong; Xie, Kun; Xie, Xue-Hai; Yang, Yin-Mo

    2012-05-01

    Aberrant expression of epidermal growth factor receptor (EGFR) has been detected in pancreatic cancer; however, the mechanisms of EGFR in inducing pancreatic cancer development have not been adequately elucidated. The objective of this study was to determine the role of EGFR in mediating epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. Pancreatic cancer cell line PANC-1 was transfected with small interfering RNA of EGFR by use of a lentiviral expression vector to establish an EGFR-knockdown cell line (si-PANC-1). PANC-1 cells transfected with lentiviral vector expressing negative control sequence were used as negative control (NC-PANC-1). Scratch assay and transwell study were used to analyze cell migration and invasion. Real-time PCR and Western blotting were used to detect the expression of EMT markers E-cadherin, N-cadherin, vimentin, and fibronectin and transcription factors snail, slug, twist1, and sip1 in PANC-1, NC-PANC-1, and si-PANC-1 cells. Immunofluorescent staining with these antibodies and confocal microscopy were used to observe their cellular location and morphologic changes. After RNA interference of EGFR, the migration and invasion ability of si-PANC-1 cells decreased significantly. The expression of epithelial phenotype marker E-cadherin increased and the expression of mesenchymal phenotype markers N-cadherin, vimentin, and fibronectin decreased, indicating reversion of EMT. We also observed intracellular translocation of E-cadherin. Expression of transcription factors snail and slug in si-PANC-1 cells decreased significantly. Suppression of EGFR expression can significantly inhibit EMT of pancreatic cancer PANC-1 cells. The mechanism may be related with the down-regulation of the expression of transcription factors snail and slug.

  4. Upregulation of FOXM1 induces genomic instability in human epidermal keratinocytes

    Directory of Open Access Journals (Sweden)

    Philpott Michael P

    2010-02-01

    Full Text Available Abstract Background The human cell cycle transcription factor FOXM1 is known to play a key role in regulating timely mitotic progression and accurate chromosomal segregation during cell division. Deregulation of FOXM1 has been linked to a majority of human cancers. We previously showed that FOXM1 was upregulated in basal cell carcinoma and recently reported that upregulation of FOXM1 precedes malignancy in a number of solid human cancer types including oral, oesophagus, lung, breast, kidney, bladder and uterus. This indicates that upregulation of FOXM1 may be an early molecular signal required for aberrant cell cycle and cancer initiation. Results The present study investigated the putative early mechanism of UVB and FOXM1 in skin cancer initiation. We have demonstrated that UVB dose-dependently increased FOXM1 protein levels through protein stabilisation and accumulation rather than de novo mRNA expression in human epidermal keratinocytes. FOXM1 upregulation in primary human keratinocytes triggered pro-apoptotic/DNA-damage checkpoint response genes such as p21, p38 MAPK, p53 and PARP, however, without causing significant cell cycle arrest or cell death. Using a high-resolution Affymetrix genome-wide single nucleotide polymorphism (SNP mapping technique, we provided the evidence that FOXM1 upregulation in epidermal keratinocytes is sufficient to induce genomic instability, in the form of loss of heterozygosity (LOH and copy number variations (CNV. FOXM1-induced genomic instability was significantly enhanced and accumulated with increasing cell passage and this instability was increased even further upon exposure to UVB resulting in whole chromosomal gain (7p21.3-7q36.3 and segmental LOH (6q25.1-6q25.3. Conclusion We hypothesise that prolonged and repeated UVB exposure selects for skin cells bearing stable FOXM1 protein causes aberrant cell cycle checkpoint thereby allowing ectopic cell cycle entry and subsequent genomic instability. The aberrant

  5. Regulation of the ligand-dependent activation of the epidermal growth factor receptor by calmodulin

    DEFF Research Database (Denmark)

    Li, Hongbing; Panina, Svetlana; Kaur, Amandeep

    2012-01-01

    Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca2+/CaM complexes, which interact with and activate target proteins....... In the present study the role of Ca2+/CaM in the regulation of the ligand-dependent activation of the epidermal growth factor receptor (EGFR) has been examined in living cells. We show that addition of different cell permeable CaM antagonists to cultured cells or loading cells with a Ca2+ chelator inhibited...

  6. The Epidermal Growth Factor Receptor Responsive miR-125a Represses Mesenchymal Morphology in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Karen D. Cowden Dahl

    2009-11-01

    Full Text Available The epithelial-to-mesenchymal transition (EMT that occurs during embryonic development is recapitulated during tumor metastasis. Important regulators of this process include growth factors, transcription factors, and adhesion molecules. New evidence suggests that microRNA (miRNA activity contributes to metastatic progression and EMT; however, the mechanisms leading to altered miRNA expression during cancer progression remain poorly understood. Importantly, overexpression of the epidermal growth factor receptor (EGFR in ovarian cancer correlates with poor disease outcome and induces EMT in ovarian cancer cells. We report that EGFR signaling leads to transcriptional repression of the miRNA miR-125a through the ETS family transcription factor PEA3. Overexpression of miR-125a induces conversion of highly invasive ovarian cancer cells from a mesenchymal to an epithelial morphology, suggesting miR-125a is a negative regulator of EMT. We identify AT-rich interactive domain 3B (ARID3B as a target of miR-125a and demonstrate that ARID3B is overexpressed in human ovarian cancer. Repression of miR-125a through growth factor signaling represents a novel mechanism for regulating ovarian cancer invasive behavior.

  7. Specific receptors for epidermal growth factor in human bone tumour cells and its effect on synthesis of prostaglandin E2 by cultured osteosarcoma cell line

    International Nuclear Information System (INIS)

    Hirata, Y.; Uchihashi, M.; Nakashima, H.; Fujita, T.; Matsukura, S.; Matsui, K.

    1984-01-01

    Using tumour cell lines derived from human bone tumours, specific binding sites for epidermal growth factor (EGF), a potent growth stimulator in many tissues, and its effect on synthesis of prostaglandin (PG) E 2 , a potent bone-resorbing factor, by cultured osteosarcoma cell line were studied. Three tumour cell lines, one osteosarcoma (HOSO) and two giant cell tumours of the bone (G-1 and G-2), all possessed specific binding sites for 125 I-labelled EGF: the apparent dissociation constant was approximately 4-10 x 10 -10 M and the maximal binding capacity was 50 000-80 000 sites/cell. EGF had no mitogenic effect in these cell lines. However, these cell lines did not have specific binding sites for 125 I-labelled parathyroid hormone (PTH) or calcitonin. HOSO line produced and secreted PGE 2 into medium, while no significant amount of PGE 2 was demonstrated in G-1 or G-2 line. EGF significantly stimulated PGE 2 production in HOSO line in a dose-dependent manner (0.5-50 ng/ml); its stimulatory effect was completely abolished by indomethacin, an inhibitor of PG biosynthesis. Exogenous PGE 1 significantly stimulated cyclic AMP formation in HOSO line, whereas PGFsub(2α) PTH, calcitonin, or EGF had no effect. None of these calcium-regulating hormones affected cyclic AMP generation in either G-1 of G-2 line. These data indicate that human bone tumour cells have specific EGF receptors unrelated to cell growth, and suggest that EGF may be involved in bone resorption through a PGE 2 -mediated process in human osseous tissues. (author)

  8. "Cut-and-paste" manufacture of multiparametric epidermal electronic systems

    Science.gov (United States)

    Lu, Nanshu; Yang, Shixuan; Wang, Pulin

    2016-05-01

    Epidermal electronics is a class of noninvasive and unobstructive skin-mounted, tattoo-like sensors and electronics capable of vital sign monitoring and establishing human-machine interface. The high cost of manpower, materials, vacuum equipment, and photolithographic facilities associated with its manufacture greatly hinders the widespread use of disposable epidermal electronics. Here we report a cost and time effective, completely dry, benchtop "cut-and-paste" method for the freeform and portable manufacture of multiparametric epidermal sensor systems (ESS) within minutes. This versatile method works for all types of thin metal and polymeric sheets and is compatible with any tattoo adhesives or medical tapes. The resulting ESS are multimaterial and multifunctional and have been demonstrated to noninvasively but accurately measure electrophysiological signals, skin temperature, skin hydration, as well as respiratory rate. In addition, planar stretchable coils exploiting double-stranded serpentine design have been successfully applied as wireless, passive epidermal strain sensors.

  9. A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis.

    Science.gov (United States)

    Philippar, Ulrike; Roussos, Evanthia T; Oser, Matthew; Yamaguchi, Hideki; Kim, Hyung-Do; Giampieri, Silvia; Wang, Yarong; Goswami, Sumanta; Wyckoff, Jeffrey B; Lauffenburger, Douglas A; Sahai, Erik; Condeelis, John S; Gertler, Frank B

    2008-12-01

    The spread of cancer during metastatic disease requires that tumor cells subvert normal regulatory networks governing cell motility to invade surrounding tissues and migrate toward blood and lymphatic vessels. Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP) proteins regulate cell motility by controlling the geometry of assembling actin networks. Mena, an Ena/VASP protein, is upregulated in the invasive subpopulation of breast cancer cells. In addition, Mena is alternately spliced to produce an invasion isoform, Mena(INV). Here we show that Mena and Mena(INV) promote carcinoma cell motility and invasiveness in vivo and in vitro, and increase lung metastasis. Mena and Mena(INV) potentiate epidermal growth factor (EGF)-induced membrane protrusion and increase the matrix degradation activity of tumor cells. Interestingly, Mena(INV) is significantly more effective than Mena in driving metastases and sensitizing cells to EGF-dependent invasion and protrusion. Upregulation of Mena(INV) could therefore enable tumor cells to invade in response to otherwise benign EGF stimulus levels.

  10. Insulin binding properties of normal and transformed human epidermal cultured keratinocytes

    International Nuclear Information System (INIS)

    Verrando, P.; Ortonne, J.P.

    1985-01-01

    Insulin binding to its receptors was studied in cultured normal and transformed (A431 line) human epidermal keratinocytes. The specific binding was a temperature-dependent, saturable process. Normal keratinocytes possess a mean value of about 80,000 receptors per cell. Fifteen hours exposure of the cells to insulin lowered their receptor number (about 65% loss in available sites); these reappeared when the hormone was removed from the culture medium. In the A431 epidermoid carcinoma cell line, there is a net decrease in insulin binding (84% of the initial bound/free hormone ratio in comparison with normal cells) essentially related to a loss in receptor affinity for insulin. Thus, cultured human keratinocytes which express insulin receptors may be a useful tool in understanding skin pathology related to insulin disorders

  11. Aberrant Wound Healing in an Epidermal Interleukin-4 Transgenic Mouse Model of Atopic Dermatitis

    Science.gov (United States)

    Zhao, Yan; Bao, Lei; Chan, Lawrence S.; DiPietro, Luisa A.; Chen, Lin

    2016-01-01

    Wound healing in a pre-existing Th2-dominated skin milieu was assessed by using an epidermal specific interleukin-4 (IL-4) transgenic (Tg) mouse model, which develops a pruritic inflammatory skin condition resembling human atopic dermatitis. Our results demonstrated that IL-4 Tg mice had delayed wound closure and re-epithelialization even though these mice exhibited higher degrees of epithelial cell proliferation. Wounds in IL-4 Tg mice also showed a marked enhancement in expression of inflammatory cytokines/chemokines, elevated infiltration of inflammatory cells including neutrophils, macrophages, CD3+ lymphocytes, and epidermal dendritic T lymphocytes. In addition, these mice exhibited a significantly higher level of angiogenesis as compared to wild type mice. Furthermore, wounds in IL-4 Tg mice presented with larger amounts of granulation tissue, but had less expression and deposition of collagen. Taken together, an inflamed skin condition induced by IL-4 has a pronounced negative influence on the healing process. Understanding more about the pathogenesis of wound healing in a Th2- dominated environment may help investigators explore new potential therapeutic strategies. PMID:26752054

  12. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins.

    Science.gov (United States)

    Zenz, Rainer; Eferl, Robert; Kenner, Lukas; Florin, Lore; Hummerich, Lars; Mehic, Denis; Scheuch, Harald; Angel, Peter; Tschachler, Erwin; Wagner, Erwin F

    2005-09-15

    Psoriasis is a frequent, inflammatory disease of skin and joints with considerable morbidity. Here we report that in psoriatic lesions, epidermal keratinocytes have decreased expression of JunB, a gene localized in the psoriasis susceptibility region PSORS6. Likewise, inducible epidermal deletion of JunB and its functional companion c-Jun in adult mice leads (within two weeks) to a phenotype resembling the histological and molecular hallmarks of psoriasis, including arthritic lesions. In contrast to the skin phenotype, the development of arthritic lesions requires T and B cells and signalling through tumour necrosis factor receptor 1 (TNFR1). Prior to the disease onset, two chemotactic proteins (S100A8 and S100A9) previously mapped to the psoriasis susceptibility region PSORS4, are strongly induced in mutant keratinocytes in vivo and in vitro. We propose that the abrogation of JunB/activator protein 1 (AP-1) in keratinocytes triggers chemokine/cytokine expression, which recruits neutrophils and macrophages to the epidermis thereby contributing to the phenotypic changes observed in psoriasis. Thus, these data support the hypothesis that epidermal alterations are sufficient to initiate both skin lesions and arthritis in psoriasis.

  13. Modifications of center-surround, spot detection and dot-pattern selective operators

    NARCIS (Netherlands)

    Petkov, Nicolai; Visser, Wicher T.

    2005-01-01

    This paper describes modifications of the models of center-surround and dot-pattern selective cells proposed previously. These modifications concern mainly the normalization of the difference of Gaussians (DoG) function used to model center-surround receptive fields, the normalization of

  14. Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack.

    Science.gov (United States)

    Enomoto, Yukinori; Orihara, Kanami; Takamasu, Tetsuya; Matsuda, Akio; Gon, Yasuhiro; Saito, Hirohisa; Ra, Chisei; Okayama, Yoshimichi

    2009-11-01

    Epidermal growth factor receptor ligands, such as epidermal growth factor (EGF) and amphiregulin, may play key roles in tissue remodeling in asthma. However, the kinetics of EGF and amphiregulin secretion in the airway after an acute asthma attack and the effect of prolonged airway exposure to these ligands on airway remodeling are unknown. To measure the EGF and amphiregulin concentrations in sputa obtained from patients with asthma under various conditions, and to examine the effects of EGF and amphiregulin on the proliferation or differentiation of airway structural cells. Epidermal growth factor and amphiregulin levels were measured by ELISA in sputum specimens collected from 14 hospitalized children with asthma during an acute asthma attack, 13 stable outpatients with asthma, 8 healthy control children, and 7 children with respiratory tract infections. The effects of EGF and amphiregulin on the proliferation and/or differentiation of normal human bronchial epithelial cells (NHBE), bronchial smooth muscle cells (BSMC), and normal human lung fibroblasts (NHLF) were examined. The sputum levels of EGF were significantly higher for about a week after an acute asthma attack compared with the levels in stable subjects with asthma and control subjects. In contrast, upregulation of amphiregulin in the sputa of patients with asthma was observed only during the acute attack. EGF caused proliferation of NHBE, BSMC, and NHLF, whereas amphiregulin induced proliferation of only NHBE. Prolonged exposure of NHBE to EGF and amphiregulin induced mucous cell metaplasia in an IL-13-independent manner. Acute asthma attacks are associated with hypersecretion of EGF and amphiregulin in the airway. Recurrent acute attacks may aggravate airway remodeling.

  15. Altered secretion and processing of epidermal growth factor in adrenergic-induced growth of the rat submandibular gland

    DEFF Research Database (Denmark)

    Thulesen, Jesper; Bor, Mustafa Vakur; Thulesen, Stina

    2002-01-01

    The granular convoluted tubule (GCT) cells of the submandibular glands represent a major production site for epidermal growth factor (EGF). This study investigates EGF production in the submandibular glands in relation to beta-adrenergic stimulation. Rats were treated with isoproterenol (beta...

  16. Morphology and histochemistry of the aesthetasc-associated epidermal glands in terrestrial hermit crabs of the genus Coenobita (Decapoda: Paguroidea.

    Directory of Open Access Journals (Sweden)

    Oksana Tuchina

    Full Text Available Crustaceans have successfully adapted to a variety of environments including fresh- and saltwater as well as land. Transition from an aquatic to a terrestrial lifestyle required adaptations of the sensory equipment of an animal, particularly in olfaction, where the stimulus itself changes from hydrophilic to mainly hydrophobic, air-borne molecules. Hermit crabs Coenobita spp. (Anomura, Coenobitidae have adapted to a fully terrestrial lifestyle as adults and have been shown to rely on olfaction in order to detect distant food items. We observed that the specialized olfactory sensilla in Coenobita, named aesthetascs, are immersed in a layer of mucous-like substance. We hypothesized that the mucous is produced by antennal glands and affects functioning of the aesthetascs. Using various microscopic and histochemical techniques we proved that the mucous is produced by aesthetasc-associated epidermal glands, which we consider to be modified rosette-type aesthetasc tegumental glands known from aquatic decapods. These epidermal glands in Coenobita are multicellular exocrine organs of the recto-canal type with tubulo-acinar arrangement of the secretory cells. Two distinct populations of secretory cells were clearly distinguishable with light and electron microscopy. At least part of the secretory cells contains specific enzymes, CUB-serine proteases, which are likely to be secreted on the surface of the aesthetasc pad and take part in antimicrobial defense. Proteomic analysis of the glandular tissue corroborates the idea that the secretions of the aesthetasc-associated epidermal glands are involved in immune responses. We propose that the mucous covering the aesthetascs in Coenobita takes part in antimicrobial defense and at the same time provides the moisture essential for odor perception in terrestrial hermit crabs. We conclude that the morphological modifications of the aesthetasc-associated epidermal glands as well as the functional characteristics

  17. Topical Application of Glycolipids from Isochrysis galbana Prevents Epidermal Hyperplasia in Mice

    Directory of Open Access Journals (Sweden)

    Azahara Rodríguez-Luna

    2017-12-01

    Full Text Available Chronic inflammatory skin diseases such as psoriasis have a significant impact on society. Currently, the major topical treatments have many side effects, making their continued use in patients difficult. Microalgae have emerged as a source of bio-active molecules such as glycolipids with potent anti-inflammatory properties. We aimed to investigate the effects of a glycolipid (MGMG-A and a glycolipid fraction (MGDG obtained from the microalga Isochrysis galbana on a TPA-induced epidermal hyperplasia murine model. In a first set of experiments, we examined the preventive effects of MGMG-A and MGDG dissolved in acetone on TPA-induced hyperplasia model in mice. In a second step, we performed an in vivo permeability study by using rhodamine-containing cream, ointment, or gel to determinate the formulation that preserves the skin architecture and reaches deeper. The selected formulation was assayed to ensure the stability and enhanced permeation properties of the samples in an ex vivo experiment. Finally, MGDG-containing cream was assessed in the hyperplasia murine model. The results showed that pre-treatment with acetone-dissolved glycolipids reduced skin edema, epidermal thickness, and pro-inflammatory cytokine production (TNF-α, IL-1β, IL-6, IL-17 in epidermal tissue. The in vivo and ex vivo permeation studies showed that the cream formulation had the best permeability profile. In the same way, MGDG-cream formulation showed better permeation than acetone-dissolved preparation. MGDG-cream application attenuated TPA-induced skin edema, improved histopathological features, and showed a reduction of the inflammatory cell infiltrate. In addition, this formulation inhibited epidermal expression of COX-2 in a similar way to dexamethasone. Our results suggest that an MGDG-containing cream could be an emerging therapeutic strategy for the treatment of inflammatory skin pathologies such as psoriasis.

  18. Immunohistochemical detection of epidermal growth factor receptor in radiation-induced lung tumors in Beagle dogs

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, N A; Haley, P J; Hahn, F F

    1988-12-01

    Increased levels of epidermal growth factor receptor have been reported in a variety of tumors, including pulmonary squamous cell carcinomas in man. The purpose of this study was to determine if increased levels of epidermal growth factor (EGFR) were present in lung tumors from Beagle dogs that had been exposed to {sup 239}PuO{sub 2}- Using immunohistochemical techniques, sections from 17 lung tumors were examined for the presence of EGFR. Seven of the tumors were strongly positive for EGFR; the remainder of the tumors and the normal lung sections were negative. The positive immunostaining could not be correlated with the histologic phenotype of the tumors. Work is in progress to determine the level of EGFR in preneoplastic, proliferative epithelial foci in the Iung. (author)

  19. Use of etanercept to treat toxic epidermal necrolysis in a human immunodeficiency virus-positive patient

    Directory of Open Access Journals (Sweden)

    Yung-Yi Lee

    2013-06-01

    Full Text Available Toxic epidermal necrolysis (TEN is an uncommon and severe cutaneous adverse drug reaction that causes disseminated necrosis of epidermal cells and mucocutaneous detachment. Here, we report the case of a 32-year-old man with human immunodeficiency virus infection who presented with generalized violaceous macules and blister formation 4 days after the administration of mefenamic acid and amoxicillin for a dental procedure. Additional symptoms included oral ulcers and conjunctivitis. Results of skin biopsy were compatible with Stevens–Johnson syndrome (SJS. SJS progressed to TEN within 2 days. Etanercept treatment showed a dramatic improvement in the symptoms of mucocutaneous lesions. To our knowledge, this is the first report on the treatment of TEN using etanercept in a human immunodeficiency virus-positive patient.

  20. Targeting the Epidermal Growth Factor Receptor Can Counteract the Inhibition of Natural Killer Cell Function Exerted by Colorectal Tumor-Associated Fibroblasts

    Directory of Open Access Journals (Sweden)

    Delfina Costa

    2018-05-01

    Full Text Available Mesenchymal stromal cells (MSC present in the tumor microenvironment [usually named tumor-associated fibroblasts (TAF] can exert immunosuppressive effects on T and natural killer (NK lymphocytes, favoring tumor immune escape. We have analyzed this mechanism in colorectal carcinoma (CRC and found that co-culture of NK cells with TAF can prevent the IL-2-mediated NKG2D upregulation. This leads to the impairment of NKG2D-mediated recognition of CRC cells, sparing the NK cell activation through DNAM1 or FcγRIIIA (CD16. In situ, TAF express detectable levels of epidermal growth factor receptor (EGFR; thus, the therapeutic anti-EGFR humanized antibody cetuximab can trigger the antibody-dependent cellular cytotoxicity of TAF, through the engagement of FcγRIIIA on NK cells. Importantly, in the tumor, we found a lymphoid infiltrate containing NKp46+CD3− NK cells, enriched in CD16+ cells. This population, sorted and cultured with IL-2, could be triggered via CD16 and via NKG2D. Of note, ex vivo NKp46+CD3− cells were able to kill autologous TAF; in vivo, this might represent a control mechanism to reduce TAF-mediated regulatory effect on NK cell function. Altogether, these findings suggest that MSC from the neoplastic mucosa (TAF of CRC patients can downregulate the immune cell recognition of CRC tumor cells. This immunosuppression can be relieved by the anti-EGFR antibody used in CRC immunotherapy.

  1. Targeting the Epidermal Growth Factor Receptor Can Counteract the Inhibition of Natural Killer Cell Function Exerted by Colorectal Tumor-Associated Fibroblasts

    Science.gov (United States)

    Costa, Delfina; Venè, Roberta; Benelli, Roberto; Romairone, Emanuele; Scabini, Stefano; Catellani, Silvia; Rebesco, Barbara; Mastracci, Luca; Grillo, Federica; Minghelli, Simona; Loiacono, Fabrizio; Zocchi, Maria Raffaella; Poggi, Alessandro

    2018-01-01

    Mesenchymal stromal cells (MSC) present in the tumor microenvironment [usually named tumor-associated fibroblasts (TAF)] can exert immunosuppressive effects on T and natural killer (NK) lymphocytes, favoring tumor immune escape. We have analyzed this mechanism in colorectal carcinoma (CRC) and found that co-culture of NK cells with TAF can prevent the IL-2-mediated NKG2D upregulation. This leads to the impairment of NKG2D-mediated recognition of CRC cells, sparing the NK cell activation through DNAM1 or FcγRIIIA (CD16). In situ, TAF express detectable levels of epidermal growth factor receptor (EGFR); thus, the therapeutic anti-EGFR humanized antibody cetuximab can trigger the antibody-dependent cellular cytotoxicity of TAF, through the engagement of FcγRIIIA on NK cells. Importantly, in the tumor, we found a lymphoid infiltrate containing NKp46+CD3− NK cells, enriched in CD16+ cells. This population, sorted and cultured with IL-2, could be triggered via CD16 and via NKG2D. Of note, ex vivo NKp46+CD3− cells were able to kill autologous TAF; in vivo, this might represent a control mechanism to reduce TAF-mediated regulatory effect on NK cell function. Altogether, these findings suggest that MSC from the neoplastic mucosa (TAF) of CRC patients can downregulate the immune cell recognition of CRC tumor cells. This immunosuppression can be relieved by the anti-EGFR antibody used in CRC immunotherapy. PMID:29910806

  2. Thy-1+ dendritic cells in murine epidermis are bone marrow-derived

    International Nuclear Information System (INIS)

    Breathnach, S.M.; Katz, S.I.

    1984-01-01

    Thy-1+, Ly-5+ dendritic cells have recently been described as a resident cell population in murine epidermis, but their ontogeny and function are unknown. The origin and turnover of epidermal Thy-1+ cells utilizing chimeric mice were investigated. Lethally x-irradiated AKR/J (Thy-1.1+) and AKR/Cum (Thy-1.2+) mice were reconstituted with allogeneic bone marrow cells with or without thymocytes from congenic AKR/Cum or AKR/J mice, respectively. The density of residual indigenous Thy-1.1+ cells in AKR/J chimeras and Thy-1.2+ cells in AKR/Cum chimeras was substantially reduced following x-irradiation, as determined by immunofluorescence staining of epidermal sheets. Epidermal repopulation by allogeneic Thy-1+ dendritic epidermal cells was first observed at 5 weeks in AKR/J chimeras and at 7 weeks in AKR/Cum chimeras and progressed slowly. Repopulation was not enhanced by increasing the number of allogeneic bone marrow cells injected from 2 X 10(7) to 10(8) cells or by the addition of 8 X 10(7) allogeneic thymocytes to the donor inoculate. Epidermal repopulation by allogeneic Thy-1.2+ cells was not seen in AKR/J mice reconstituted with syngeneic bone marrow cells and allogeneic Thy-1.2+ AKR/Cum thymocytes. Taken together, these results indicate that Thy-1+ dendritic epidermal cells are derived from the bone marrow and suggest that they are not related to conventional peripheral T-lymphocytes

  3. Leptin regulates the pro-inflammatory response in human epidermal keratinocytes.

    Science.gov (United States)

    Lee, Moonyoung; Lee, Eunyoung; Jin, Sun Hee; Ahn, Sungjin; Kim, Sae On; Kim, Jungmin; Choi, Dalwoong; Lim, Kyung-Min; Lee, Seung-Taek; Noh, Minsoo

    2018-05-01

    The role of leptin in cutaneous wound healing process has been suggested in genetically obese mouse studies. However, the molecular and cellular effects of leptin on human epidermal keratinocytes are still unclear. In this study, the whole-genome-scale microarray analysis was performed to elucidate the effect of leptin on epidermal keratinocyte functions. In the leptin-treated normal human keratinocytes (NHKs), we identified the 151 upregulated and 53 downregulated differentially expressed genes (DEGs). The gene ontology (GO) enrichment analysis with the leptin-induced DEGs suggests that leptin regulates NHKs to promote pro-inflammatory responses, extracellular matrix organization, and angiogenesis. Among the DEGs, the protein expression of IL-8, MMP-1, fibronectin, and S100A7, which play roles in which is important in the regulation of cutaneous inflammation, was confirmed in the leptin-treated NHKs. The upregulation of the leptin-induced proteins is mainly regulated by the STAT3 signaling pathway in NHKs. Among the downregulated DEGs, the protein expression of nucleosome assembly-associated centromere protein A (CENPA) and CENPM was confirmed in the leptin-treated NHKs. However, the expression of CENPA and CENPM was not coupled with those of other chromosome passenger complex like Aurora A kinase, INCENP, and survivin. In cell growth kinetics analysis, leptin had no significant effect on the cell growth curves of NHKs in the normal growth factor-enriched condition. Therefore, leptin-dependent downregulation of CENPA and CENPM in NHKs may not be directly associated with mitotic regulation during inflammation.

  4. Quantifying Hydrostatic Pressure in Plant Cells by Using Indentation with an Atomic Force Microscope

    Science.gov (United States)

    Beauzamy, Léna; Derr, Julien; Boudaoud, Arezki

    2015-01-01

    Plant cell growth depends on a delicate balance between an inner drive—the hydrostatic pressure known as turgor—and an outer restraint—the polymeric wall that surrounds a cell. The classical technique to measure turgor in a single cell, the pressure probe, is intrusive and cannot be applied to small cells. In order to overcome these limitations, we developed a method that combines quantification of topography, nanoindentation force measurements, and an interpretation using a published mechanical model for the pointlike loading of thin elastic shells. We used atomic force microscopy to estimate the elastic properties of the cell wall and turgor pressure from a single force-depth curve. We applied this method to onion epidermal peels and quantified the response to changes in osmolality of the bathing solution. Overall our approach is accessible and enables a straightforward estimation of the hydrostatic pressure inside a walled cell. PMID:25992723

  5. Simultaneous screening of four epidermal growth factor receptor antagonists from Curcuma longa via cell membrane chromatography online coupled with HPLC-MS.

    Science.gov (United States)

    Sun, Meng; Ma, Wei-na; Guo, Ying; Hu, Zhi-gang; He, Lang-chong

    2013-07-01

    The epidermal growth factor receptors (EGFRs) are significant targets for screening active compounds. In this work, an analytical method was established for rapid screening, separation, and identification of EGFRs antagonists from Curcuma longa. Human embryonic kidney 293 cells with a steadily high expression of EGFRs were used to prepare the cell membrane stationary phase in a cell membrane chromatography model for screening active compounds. Separation and identification of the retention chromatographic peaks was achieved by HPLC-MS. The active sites, docking extents and inhibitory effects of the active compounds were also demonstrated. The screening result found that ar-turmerone, curcumin, demethoxycurcumin, and bisdemethoxycurcumin from Curcuma longa could be active components in a similar manner to gefitinib. Biological trials showed that all of four compounds can inhibit EGFRs protein secretion and cell growth in a dose-dependent manner, and downregulate the phosphorylation of EGFRs. This analytical method demonstrated fast and effective characteristics for screening, separation and identification of the active compounds from a complex system and should be useful for drug discovery with natural medicinal herbs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Topical retinoic acid changes the epidermal cell surface glycosylation pattern towards that of a mucosal epithelium

    DEFF Research Database (Denmark)

    Griffiths, C E; Dabelsteen, Erik; Voorhees, J J

    1996-01-01

    Topical all-trans retinoic acid (RA) produces a number of epidermal changes which are indistinguishable from those observed following treatment with a local irritant, namely sodium lauryl sulphate (SLS). This observation has led to criticism that the efficacy of RA in disorders such as photoageing...

  7. Regulation of epidermal growth factor receptor signaling and erlotinib sensitivity in head and neck cancer cells by miR-7.

    Directory of Open Access Journals (Sweden)

    Felicity C Kalinowski

    Full Text Available Elevated expression and activity of the epidermal growth factor receptor (EGFR/protein kinase B (Akt signaling pathway is associated with development, progression and treatment resistance of head and neck cancer (HNC. Several studies have demonstrated that microRNA-7 (miR-7 regulates EGFR expression and Akt activity in a range of cancer cell types via its specific interaction with the EGFR mRNA 3'-untranslated region (3'-UTR. In the present study, we found that miR-7 regulated EGFR expression and Akt activity in HNC cell lines, and that this was associated with reduced growth in vitro and in vivo of cells (HN5 that were sensitive to the EGFR tyrosine kinase inhibitor (TKI erlotinib (Tarceva. miR-7 acted synergistically with erlotinib to inhibit growth of erlotinib-resistant FaDu cells, an effect associated with increased inhibition of Akt activity. Microarray analysis of HN5 and FaDu cell lines transfected with miR-7 identified a common set of downregulated miR-7 target genes, providing insight into the tumor suppressor function of miR-7. Furthermore, we identified several target miR-7 mRNAs with a putative role in the sensitization of FaDu cells to erlotinib. Together, these data support the coordinate regulation of Akt signaling by miR-7 in HNC cells and suggest the therapeutic potential of miR-7 alone or in combination with EGFR TKIs in this disease.

  8. Leaf Epidermis of the Rheophyte Dyckia brevifolia Baker (Bromeliaceae

    Directory of Open Access Journals (Sweden)

    Ghislaine Maria Lobo

    2013-01-01

    Full Text Available Some species of Dyckia Schult. f., including Dyckia brevifolia Baker, are rheophytes that live in the fast-moving water currents of streams and rivers which are subject to frequent flooding, but also period of low water. This study aimed to analyze the leaf epidermis of D. brevifolia in the context of epidermal adaptation to this aquatic plant’s rheophytic habitat. The epidermis is uniseriate, and the cuticle is thickened. The inner periclinal and anticlinal walls of the epidermal cells are thickened and lignified. Stomata are tetracytic, located in the depressions in relation to the surrounding epidermal cells, and covered by peltate trichomes. While the epidermal characteristics of D. brevifolia are similar to those of Bromeliaceae species, this species has made particular adaptations of leaf epidermis in response to its rheophytic environment.

  9. Eradication of damaged keratinocytes in cutaneous lichen planus forms demonstrated by evaluation of epidermal and follicular expression of CK15, indices of apoptosis and regulatory protein S100.

    Science.gov (United States)

    Upeniece, Ilze; Groma, Valerie; Skuja, Sandra; Cauce, Vinita

    The study of cytoskeleton arrangement and its contribution to survival of cell-to-cell contacts appears to be essential for understanding of numerous cellular and tissue processes. Applying CK15, S100 labeling and TUNEL reaction to cutaneous lichen planus subtypes, we found CK15 expression in the outer and inner root sheath of hair follicles, the basal epidermal layer, and eccrine glands. Its follicular expression was decreased in nearby inflammatory infiltrates. The CK15 immunopositivity was mostly described as weak (92.3%) for lichen planus but equally subdivided into weak, moderate and strong in lichen planopilaris (2 = 32.514; df = 4; p lichen planopilaris involving the scalp: 81.2 ±10.7; 87.8 ±10.7 and 88.0 ±10.5 for the basal, spinous and upper epidermal layers, respectively. S100 positive epidermal and follicular cells did not differ in the lesions demonstrated in the study groups; still immunoreactivity was more pronounced in the scalp region of lichen planopilaris. Damage of cell-to-cell contacts was confirmed by electron microscopy. Apart from immunocyte-mediated keratinocyte death, cytoskeleton-based injury and loss of cell-to-cell and matrix contacts may be of great importance, leading to eradication of degrading cells and thus contributing to the pathogenesis of lichen planus.

  10. Human epidermal growth factor: molecular forms and application of radioimmunoassay and radioreceptor assay

    International Nuclear Information System (INIS)

    Hirata, Y.; Orth, D.N.

    1981-01-01

    Epidermal growth factor (EGF), a 53 amino acid polypeptide, was first isolated by Cohen. EGF's growth-promoting activity is not limited to epidermal cells, but is expressed on a wide variety of tissues derived from a number of different species. Human EGF (hEGF) was isolated and subsequently purified from human urine. Unexpectedly, a close structural relationship was recognized between mEGF and human β-urogastrone. The authors recently developed both an homologous hEGF radioimmunoassay (RIA) and a radioreceptor assay (RRA) using a human placental membrane fraction. Using these assays, the molecular size of hEGF in human body fluids and tissues was evaluated, and partial characterization of a high molecular weight form of hEGF isolated from human urine was carried out. The concentrations of immunoreactive hEGF were also determined in human tissues and plasma after extraction either with cationic exchange chromatography or with immunoaffinity chromatography. (Auth.)

  11. Synergistic effect of pacritinib with erlotinib on JAK2-mediated resistance in epidermal gowth factor receptor mutation-positive non-small cell lung Cancer.

    Science.gov (United States)

    Ochi, Nobuaki; Isozaki, Hideko; Takeyama, Masami; Singer, Jack W; Yamane, Hiromichi; Honda, Yoshihiro; Kiura, Katsuyuki; Takigawa, Nagio

    2016-06-10

    The combination effect of pacritinib, a novel JAK2/FLT3 inhibitor, with erlotinib, the epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), on non-small cell lung cancer cells with EGFR activating mutations was investigated. The combination showed synergistic effects on JAK2-mediated EGFR TKI-resistant PC-9/ER3 cells in some cases. The combination markedly suppressed pAKT and pERK although pSTAT3 expression was similar regardless of treatment with the pacritinib, pacritinib + erlotinib, or control in PC-9/ER3 cells. Receptor tyrosine kinase array profiling demonstrated that pacritinib suppressed MET in the PC-9/ER3 cells. The combined treatment of pacritinib and erlotinib in PC-9/ER3 xenografts showed more tumor shrinkage compared with each drug as monotherapy. Western blotting revealed that pMET in tumor samples was inhibited. These results suggest MET suppression by pacritinib may play a role in overcoming the EGFR-TKI resistance mediated by JAK2 in the PC-9/ER3 cells. In conclusion, pacritinib combined with EGFR-TKI might be a potent strategy against JAK2-mediated EGFR-TKI resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Impaired degradation followed by enhanced recycling of epidermal growth factor receptor caused by hypo-phosphorylation of tyrosine 1045 in RBE cells

    International Nuclear Information System (INIS)

    Gui, Anping; Kobayashi, Akira; Motoyama, Hiroaki; Kitazawa, Masato; Takeoka, Michiko; Miyagawa, Shinichi

    2012-01-01

    Since cholangiocarcinoma has a poor prognosis, several epidermal growth factor receptor (EGFR)-targeted therapies with antibody or small molecule inhibitor treatment have been proposed. However, their effect remains limited. The present study sought to understand the molecular genetic characteristics of cholangiocarcinoma related to EGFR, with emphasis on its degradation and recycling. We evaluated EGFR expression and colocalization by immunoblotting and immunofluorescence, cell surface EGFR expression by fluorescence-activated cell sorting (FACS), and EGFR ubiquitination and protein binding by immunoprecipitation in the human cholangiocarcinoma RBE and immortalized cholangiocyte MMNK-1 cell lines. Monensin treatment and Rab11a depletion by siRNA were adopted for inhibition of EGFR recycling. Upon stimulation with EGF, ligand-induced EGFR degradation was impaired and the expression of phospho-tyrosine 1068 and phospho-p44/42 MAPK was sustained in RBE cells as compared with MMNK-1 cells. In RBE cells, the process of EGFR sorting for lysosomal degradation was blocked at the early endosome stage, and non-degradated EGFR was recycled to the cell surface. A disrupted association between EGFR and the E3 ubiquitin ligase c-Cbl, as well as hypo-phosphorylation of EGFR at tyrosine 1045 (Tyr1045), were also observed in RBE cells. In RBE cells, up-regulation of EGFR Tyr1045 phosphorylation is a potentially useful molecular alteration in EGFR-targeted therapy. The combination of molecular-targeted therapy determined by the characteristics of individual EGFR phosphorylation events and EGFR recycling inhibition show promise in future treatments of cholangiocarcinoma

  13. CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness.

    Science.gov (United States)

    Grass, G Daniel; Tolliver, Lauren B; Bratoeva, Momka; Toole, Bryan P

    2013-09-06

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777-788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer.

  14. CD147, CD44, and the Epidermal Growth Factor Receptor (EGFR) Signaling Pathway Cooperate to Regulate Breast Epithelial Cell Invasiveness*

    Science.gov (United States)

    Grass, G. Daniel; Tolliver, Lauren B.; Bratoeva, Momka; Toole, Bryan P.

    2013-01-01

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777–788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer. PMID:23888049

  15. Toxic epidermal necrolysis.

    Science.gov (United States)

    Pereira, Frederick A; Mudgil, Adarsh Vijay; Rosmarin, David M

    2007-02-01

    Toxic epidermal necrolysis (TEN) is an unpredictable, life-threatening drug reaction associated with a 30% mortality. Massive keratinocyte apoptosis is the hallmark of TEN. Cytotoxic T lymphocytes appear to be the main effector cells and there is experimental evidence for involvement of both the Fas-Fas ligand and perforin/granzyme pathways. Optimal treatment for these patients remains to be clarified. Discontinuation of the offending drug and prompt referral to a burn unit are generally agreed upon steps. Beyond that, however, considerable controversy exists. Evidence both pro and con exists for the use of IVIG, systemic corticosteroid, and other measures. There is also evidence suggesting that combination therapies may be of value. All the clinical data, however, is anecdotal or based on observational or retrospective studies. Definitive answers are not yet available. Given the rarity of TEN and the large number of patients required for a study to be statistically meaningful, placebo controlled trials are logistically difficult to accomplish. The absence of an animal model further hampers research into this condition. This article reviews recent data concerning clinical presentation, pathogenesis and treatment of TEN. At the conclusion of this learning activity, participants should have acquired a more comprehensive knowledge of our current understanding of the classification, clinical presentation, etiology, pathophysiology, prognosis, and treatment of TEN.

  16. Superficial Dsg2 Expression Limits Epidermal Blister Formation Mediated by Pemphigus Foliaceus Antibodies and Exfoliative Toxins

    Directory of Open Access Journals (Sweden)

    Donna Brennan

    2010-01-01

    Full Text Available Cell-cell adhesion mediated by desmosomes is crucial for maintaining proper epidermal structure and function, as evidenced by several severe and potentially fatal skin disorders involving impairment of desmosomal proteins. Pemphigus foliaceus (PF and staphylococcal scalded skin syndrome (SSSS are subcorneal blistering diseases resulting from loss of function of the desmosomal cadherin, desmoglein 1 (Dsg1. To further study the pathomechanism of these diseases and to assess the adhesive properties of Dsg2, we employed a recently established transgenic (Tg mouse model expressing Dsg2 in the superficial epidermis. Neonatal Tg and wild type (WT mice were injected with purified ETA or PF Ig. We showed that ectopic expression of Dsg2 reduced the extent of blister formation in response to both ETA and PF Ig. In response to PF Ig, we observed either a dramatic loss or a reorganization of Dsg1-α, Dsg1-β, and, to a lesser extent, Dsg1-γ, in WT mice. The Inv-Dsg2 Tg mice showed enhanced retention of Dsg1 at the cell-cell border. Collectively, our data support the role for Dsg2 in cell adhesion and suggest that ectopic superficial expression of Dsg2 can increase membrane preservation of Dsg1 and limit epidermal blister formation mediated by PF antibodies and exfoliative toxins.

  17. Evolution of dinosaur epidermal structures.

    Science.gov (United States)

    Barrett, Paul M; Evans, David C; Campione, Nicolás E

    2015-06-01

    Spectacularly preserved non-avian dinosaurs with integumentary filaments/feathers have revolutionized dinosaur studies and fostered the suggestion that the dinosaur common ancestor possessed complex integumentary structures homologous to feathers. This hypothesis has major implications for interpreting dinosaur biology, but has not been tested rigorously. Using a comprehensive database of dinosaur skin traces, we apply maximum-likelihood methods to reconstruct the phylogenetic distribution of epidermal structures and interpret their evolutionary history. Most of these analyses find no compelling evidence for the appearance of protofeathers in the dinosaur common ancestor and scales are usually recovered as the plesiomorphic state, but results are sensitive to the outgroup condition in pterosaurs. Rare occurrences of ornithischian filamentous integument might represent independent acquisitions of novel epidermal structures that are not homologous with theropod feathers. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Donor-derived stem-cells and epithelial mesenchymal transition in squamous cell carcinoma in transplant recipients.

    Science.gov (United States)

    Verneuil, Laurence; Leboeuf, Christophe; Bousquet, Guilhem; Brugiere, Charlotte; Elbouchtaoui, Morad; Plassa, Louis-François; Peraldi, Marie-Noelle; Lebbé, Celeste; Ratajczak, Philippe; Janin, Anne

    2015-12-08

    Skin squamous-cell-carcinoma (SCC), is the main complication in long-term kidney-transplant recipients, and it can include donor-derived cells. Preclinical models demonstrated the involvement of epithelial mesenchymal transition (EMT) in the progression of skin SCC, and the role of Snail, an EMT transcription factor, in cancer stem-cell survival and expansion.Here, we studied stem-cells and EMT expression in SCCs and concomitant actinic keratoses (AK) in kidney-transplant recipients. In SCC and AK in 3 female recipients of male kidney-transplants, donor-derived Y chromosome in epidermal stem cells was assessed using combined XY-FISH/CD133 immunostaining, and digital-droplet-PCR on laser-microdissected CD133 expressing epidermal cells.For EMT study, double immunostainings of CD133 with vimentin or snail and slug, electron microscopy and immunostainings of keratinocytes junctions were performed. Digital droplet PCR was used to check CDH1 (E-cadherin) expression level in laser-microdissected cells co-expressing CD133 and vimentin or snail and slug.The numbers of Y-chromosome were assessed using digital droplet PCR in laser-microdissected cells co-expressing CD133 and vimentin, or snail and slug, and in CD133 positive cells not expressing any EMT maker. We identified donor-derived stem-cells in basal layers and invasive areas in all skin SCCs and in concomitant AKs, but not in surrounding normal skin.The donor-derived stem-cells expressed the EMT markers, vimentin, snail and slug in SCCs but not in AKs. The expression of the EMT transcription factor, SNAI1, was higher in stem-cells when they expressed vimentin. They were located in invasive areas of SCCs. In these areas, the expressions of claudin-1 and desmoglein 1 were reduced or absent, and within the basal layer there were features of basal membrane disappearance.Donor-derived stem cells were in larger numbers in stem cells co-expressing vimentin or snail and slug than in stem cells not expressing any EMT marker

  19. Establishment of EMab-134, a Sensitive and Specific Anti-Epidermal Growth Factor Receptor Monoclonal Antibody for Detecting Squamous Cell Carcinoma Cells of the Oral Cavity.

    Science.gov (United States)

    Itai, Shunsuke; Yamada, Shinji; Kaneko, Mika K; Chang, Yao-Wen; Harada, Hiroyuki; Kato, Yukinari

    2017-12-01

    Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, activates downstream signaling cascades in many tumors. In this study, we established novel anti-EGFR monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. We immunized mice with a combination of the extracellular domain of EGFR and EGFR-overexpressing LN229 glioblastoma cells (LN229/EGFR) and performed the first screening using enzyme-linked immunosorbent assay. Next, we selected mAbs using flow cytometry. Among 156 established clones, two mAbs, EMab-51 (IgG 1 , kappa) and EMab-134 (IgG 1 , kappa), reacted with EGFR in Western blot analysis; EMab-134 showed a much higher sensitivity compared with EMab-51. We compared the binding affinities of EMab-51 and EMab-134 using flow cytometry; the calculated K D values for EMab-51 and EMab-134 against SAS cells/HSC-2 cells were 9.2 × 10 -9 M/9.9 × 10 -9 M and 2.6 × 10 -9 M/8.3 × 10 -9 M, respectively, indicating that EMab-134 has a higher affinity to EGFR-expressing cells. Immunohistochemical analysis of EMab-51 and EMab-134 showed sensitive and specific reactions against oral cancer cells; EMab-134 demonstrated a much higher sensitivity (36/38 cases; 94.7%) to oral squamous cell carcinomas compared with EMab-51 (6/38 cases; 15.8%). This novel anti-EGFR mAb, EMab-134, could be advantageous for detecting EGFR in the pathological analysis of EGFR-expressing cancers.

  20. Europium-labeled epidermal growth factor and neurotensin: novel probes for receptor-binding studies.

    Science.gov (United States)

    Mazor, Ohad; Hillairet de Boisferon, Marc; Lombet, Alain; Gruaz-Guyon, Anne; Gayer, Batya; Skrzydelsky, Delphine; Kohen, Fortune; Forgez, Patricia; Scherz, Avigdor; Rostene, William; Salomon, Yoram

    2002-02-01

    We investigated the possibility of labeling two biologically active peptides, epidermal growth factor (EGF) and neurotensin (NT), with europium (Eu)-diethylenetriaminepentaacetic acid. More specifically, we tested them as probes in studying receptor binding using time-resolved fluorescence of Eu3+. The relatively simple synthesis yields ligands with acceptable binding characteristics similar to isotopically labeled derivatives. The binding affinity (Kd) of labeled Eu-EGF to human A431 epidermal carcinoid cells was 3.6 +/- 1.2 nM, similar to the reported Kd values of EGF, whereas the Kd of Eu-NT to human HT29 colon cancer cells (7.4 +/- 0.5 nM) or to Chinese hamster ovary (CHO) cells transfected with the high-affinity NT receptor (CHO-NT1) were about 10-fold higher than the Kd values of NT. The bioactivity of the Eu-labeled EGF as determined by stimulation of cultured murine D1 hematopoietic cell proliferation was nearly the same as that obtained with native EGF. The maximal stimulation of Ca2+ influx with NT and Eu-NT in CHO-NT1 cells was similar, but the respective K0.5 values were 20 pM and 1 nM, corresponding to differences in the binding affinities previously described. The results of these studies indicate that Eu labeling of peptide hormones and growth factor molecules ranging from 10(3) to 10(5) Da can be conveniently accomplished. Importantly, the Eu-labeled products are stable for approximately 2 years and are completely safe for laboratory use compared to the biohazardous radioligands. Thus, Eu-labeled peptides present an attractive alternative for commonly used radiolabeled ligands in biological studies in general and in receptor assays in particular.

  1. In Vitro Responsiveness of Glioma Cell Lines to Multimodality Treatment With Radiotherapy, Temozolomide, and Epidermal Growth Factor Receptor Inhibition With Cetuximab

    International Nuclear Information System (INIS)

    Combs, Stephanie E.; Schulz-Ertner, Daniela; Roth, Wilfried; Herold-Mende, Christel; Debus, Juergen; Weber, Klaus-Josef

    2007-01-01

    Background: The majority of glioblastoma multiforme (GBM) cells express the epidermal growth factor receptor (EGFR). The present study evaluates the combination of temozolomide (TMZ), EGFR inhibition, and radiotherapy (RT) in GBM cell lines. Methods and Materials: Human GBM cell lines U87, LN229, LN18, NCH 82, and NCH 89 were treated with various combinations of TMZ, RT, and the monoclonal EGFR antibody cetuximab. Responsiveness of glioma cells to the combination treatment was measured by clonogenic survival. Results: Overall, double and triple combinations of RT, TMZ, and cetuximab lead to additive cytotoxic effects (independent toxicity). A notable exception was observed for U87 and LN 18 cell lines, where the combination of TMZ and cetuximab showed substantial antagonism. Interestingly, in these two cell lines, the combination of RT with cetuximab resulted in a substantial increase in cell killing over that expected for independent toxicity. The triple combination with RT, cetuximab, and TMZ was nearly able to overcome the antagonism for the TMZ/cetuximab combination in U87, however only marginally in LN18, GBM cell lines. Conclusion: It appears that EGFR expression is not correlated with cytotoxic effects exerted by cetuximab. Combination treatment with TMZ, cetuximab and radiation resulted in independent toxicity in three out of five cell lines evaluated, the antagonistic effect of the TMZ/cetuximab combination in two cell lines could indicate that TMZ preferentially kills cetuximab-resistant cells, suggesting for some cross-talk between toxicity mechanisms. Expression of EGFR was no surrogate marker for responsiveness to cetuximab, alone or in combination with RT and TMZ

  2. A permeability barrier surrounds taste buds in lingual epithelia

    Science.gov (United States)

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa

    2014-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003–1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. PMID:25209263

  3. A permeability barrier surrounds taste buds in lingual epithelia.

    Science.gov (United States)

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2015-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003-1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. Copyright © 2015 the American Physiological Society.

  4. Epidermal growth factor and its receptors in human pancreatic carcinoma

    International Nuclear Information System (INIS)

    Chen, Y.F.; Pan, G.Z.; Hou, X.; Liu, T.H.; Chen, J.; Yanaihara, C.; Yanaihara, N.

    1990-01-01

    The role of epidermal growth factor (EGF) in oncogenesis and progression of malignant tumors is a subject of vast interest. In this study, radioimmunoassay and radioreceptor assay of EGF were established. EGF contents in malignant and benign pancreatic tumors, in normal pancreas tissue, and in culture media of a human pancreatic carcinoma cell line were determined. EGF receptor binding studies were performed. It was shown that EGF contents in pancreatic carcinomas were significantly higher than those in normal pancreas or benign pancreatic tumors. EGF was also detected in the culture medium of a pancreatic carcinoma cell line. The binding of 125I-EGF to the pancreatic carcinoma cells was time and temperature dependent, reversible, competitive, and specific. Scatchard analysis showed that the dissociation constant of EGF receptor was 2.1 X 10(-9) M, number of binding sites was 1.3 X 10(5) cell. These results indicate that there is an over-expression of EGF/EGF receptors in pancreatic carcinomas, and that an autocrine regulatory mechanism may exist in the growth-promoting effect of EGF on tumor cells

  5. Is epidermal growth factor involved in development of duodenal polyps in familial polyposis coli?

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1988-01-01

    Duodenal adenomas are a frequent extracolonic manifestation in patients with familial polyposis coli (FPC). Epidermal growth factor (EGF), a polypeptide that stimulates cellular growth and differentiation, is localized in Paneth cells in the small intestine. In two patients with FPC, we found EGF...... immunoreactivity in duodenal adenomas. Numerous EGF immunoreactive Paneth cells were localized, not as usually, in the bottom of the crypts, but scattered along the crypts alone or in clusters. We do not know whether EGF is involved in the development of duodenal polyps in FPC patients, or whether the present...

  6. Kinetics of growth and differentiation of cultured human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Albers, K.M.

    1985-01-01

    A study was made of the interrelationship between replication and differentiation in cultures of human epidermal keratinocytes. Measures of both parameters were made using newly developed methods to quantify the rate at which keratinocytes replicate and the rate at which they withdraw from the cell cycle. Keratinocyte replication was measured by determining the cell doubling time, labeling index, and cell cycle duration. Cell cycle length was measured using a double label assay that determines the length of time between two successive phases of DNA synthesis. The first DNA synthesis phase was marked by labeling keratinocytes with 14 C-thymidine. At the next round of DNA synthesis, cells were labeled with bromodeoxyuridine, a heavy analog of thymidine. The cell cycle length is given by the time required for the 14 C-labeled DNA to become double labeled. To measure keratinocyte differentiation, the rate at which cells withdraw from the cell cycle was determined. To measure withdrawal, the percentage of cells labeled by a pulse of 14 C-thymidine that failed to undergo a second cycle of DNA synthesis, as measured by bromodeoxyuridine incorporation, was determined. Cells which failed to undergo a second cycle of synthesis were considered to have differentiated and withdrawn from the cell cycle

  7. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    International Nuclear Information System (INIS)

    Zhang Dongyun; Li Jingxia; Gao Jimin; Huang Chuanshu

    2009-01-01

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cell transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure

  8. Epidermal growth factor protects squamous cell carcinoma against cisplatin-induced cytotoxicity through increased interleukin-1β expression.

    Directory of Open Access Journals (Sweden)

    Shian-Chin Ko

    Full Text Available The expression of cytokines, such as IL-1β, and the activation of the epidermal growth factor receptor (EGFR are crucial regulators in the process of carcinogenesis. The correlation between growth factor and activated cytokine signals in the control of tumor development is a critical issue to be clarified. In our study, we found that the IL-1β gene and protein expression were induced by EGF in squamous cell carcinoma. To clarify the mechanism involved in EGF-regulated IL-1β expression, we examined the transcriptional activity and mRNA stability of IL-1β in EGF-treated cells. We found that EGF induced the expression of IL-1β and was mediated through transcriptional activation, but not through mRNA stability. The involvement of Akt and NF-κB signaling pathways in the EGF-induced IL-1β gene expression was confirmed by knockdown of RelA and Akt in cells or treating cells with Akt and NF-κB inhibitors, LY294002 and parthenolide, respectively. The expression of dominant negative IκB also repressed the activation of NF-κB and inhibited EGF-induced IL-1β expression. Using immunofluorescence staining assay, the EGF-stimulated nuclear translocation of NF-κB (p65 was inhibited by pre-treating cells with LY294002 and parthenolide. Furthermore, EGF increased the binding of NF-κB to the NF-κB binding site of the IL-1β promoter through the activation of the Akt/NF-κB pathway, which resulted in activating IL-1β promoter activity. The expression and secretion of IL-1β induced by EGF considerably reduced chemotherapeutic drug cisplatin-induced cell death. These results showed that EGF enhanced the expression of IL-1β, which was mediated by the Akt/NF-κB pathway. The activation of EGF signaling and increase of IL-1β contributed to chemotherapeutic resistance of cancer cells, suggesting that the expression of IL-1β may be used as a biomarker to evaluate successful cancer treatment.

  9. Androgen and retinoic acid interaction in LNCaP cells, effects on cell proliferation and expression of retinoic acid receptors and epidermal growth factor receptor

    International Nuclear Information System (INIS)

    Li, Ming-tang; Richter, Frank; Chang, Chawnshang; Irwin, Robert J; Huang, Hosea FS

    2002-01-01

    Modulation of the expression of retinoic acid receptors (RAR) α and γ in adult rat prostate by testosterone (T) suggests that RAR signaling events might mediate some of the androgen effects on prostate cells. In this study, we examined the interactions between T and retinoic acid (RA) in cell growth of human prostate carcinoma cells, LNCaP, and their relationship with the expression of RAR and epidermal growth factor receptor (EGF-R). Both T and RA, when administered alone, stimulated 3 H-thymidine incorporation in LNCaP cells in a dose-dependent manner; the effect of each agent was reciprocally attenuated by the other agent. Testosterone treatment of LNCaP cells also resulted in dose dependent, biphasic increases in RAR α and γ mRNAs; increases paralleled that of 3 H-thymidine incorporation and were attenuated by the presence of 100 nM RA. These results suggest a link between RAR signaling and the effect of T on LNCaP cell growth. Gel electrophoretic mobility shift assays revealed the presence of putative androgen responsive element (ARE) in the promoter region of RAR α gene, suggesting that a direct AR-DNA interaction might mediate the effects of T on RAR α gene. Furthermore, treatment of LNCaP cells with 20 nM T resulted in an increase in EGF-R. In contrast, EGF-R was suppressed by 100 nM RA that also suppressed the effect of T. Current results demonstrate interactions between T and RA in the expression of RARs and cell growth in LNCaP cells. The presence of putative ARE in the promoter of the RAR α gene suggests that AR-DNA interaction might mediate the effects of T on RAR α gene. The opposite effects of T and RA on the expression of RAR and EGF-R suggest that signal events of these receptors might be involved in the interaction between T and RA in the control of LNCaP cell growth

  10. Androgen and retinoic acid interaction in LNCaP cells, effects on cell proliferation and expression of retinoic acid receptors and epidermal growth factor receptor

    Directory of Open Access Journals (Sweden)

    Irwin Robert J

    2002-06-01

    Full Text Available Abstract Background Modulation of the expression of retinoic acid receptors (RAR α and γ in adult rat prostate by testosterone (T suggests that RAR signaling events might mediate some of the androgen effects on prostate cells. Method In this study, we examined the interactions between T and retinoic acid (RA in cell growth of human prostate carcinoma cells, LNCaP, and their relationship with the expression of RAR and epidermal growth factor receptor (EGF-R. Results Both T and RA, when administered alone, stimulated 3H-thymidine incorporation in LNCaP cells in a dose-dependent manner; the effect of each agent was reciprocally attenuated by the other agent. Testosterone treatment of LNCaP cells also resulted in dose dependent, biphasic increases in RAR α and γ mRNAs; increases paralleled that of 3H-thymidine incorporation and were attenuated by the presence of 100 nM RA. These results suggest a link between RAR signaling and the effect of T on LNCaP cell growth. Gel electrophoretic mobility shift assays revealed the presence of putative androgen responsive element (ARE in the promoter region of RAR α gene, suggesting that a direct AR-DNA interaction might mediate the effects of T on RAR α gene. Furthermore, treatment of LNCaP cells with 20 nM T resulted in an increase in EGF-R. In contrast, EGF-R was suppressed by 100 nM RA that also suppressed the effect of T. Conclusions Current results demonstrate interactions between T and RA in the expression of RARs and cell growth in LNCaP cells. The presence of putative ARE in the promoter of the RAR α gene suggests that AR-DNA interaction might mediate the effects of T on RAR α gene. The opposite effects of T and RA on the expression of RAR and EGF-R suggest that signal events of these receptors might be involved in the interaction between T and RA in the control of LNCaP cell growth.

  11. Inhibition of Epidermal Growth Factor Receptor and PI3K/Akt Signaling Suppresses Cell Proliferation and Survival through Regulation of Stat3 Activation in Human Cutaneous Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    Bito, T.; Sumita, N.; Ashida, M.; Budiyanto, A.; Ueda, M.; Ichihashi, M.; Nishigori, C.; Tokura, Y.; Bito, T.

    2011-01-01

    Recent studies have emphasized the important role of Stat3 activation in a number of human tumors from the viewpoint of its oncogenic and anti apoptotic activity. In this study, we examined the role and related signaling molecules of Stat3 in the carcinogenesis of human cutaneous squamous cell carcinoma (SCC). In 35 human cutaneous SCC samples, 86% showed overexpression of phosphorylated (p)-Stat3, and most of those simultaneously over expressed p-EGFR or p-Akt. Constitutive activation of EGFR and Stat3 was observed in three SCC cell lines and four of five SCC tissues. AG1478, an inhibitor of the EGFR, down regulated Stat3 activation in HSC-1 human SCC cells. AG1478 inhibited cell proliferation and induced apoptosis of HSC-1 cells but did not inhibit the growth of normal human epidermal keratinocytes that did not show Stat3 activation. Furthermore, a PI3K inhibitor also suppressed Stat3 activation in HSC-1 cells to some degree. Combined treatment with the PI3K inhibitor and AG1478 strongly suppressed Stat3 activity and dramatically induced apoptosis of HSC-1 cells. These data suggest that Stat3 activation through EGFR and/or PI3K/Akt activation plays a critical role in the proliferation and survival of human cutaneous SCC.

  12. Epidermal changes following application of 7,12-dimethylbenz(a)anthracene and 12-O-tetradecanoylphorbol-13-acetate to human skin transplanted to nude mice studied with histological species markers

    International Nuclear Information System (INIS)

    Graem, N.

    1986-01-01

    Effects of the tumor initiator 7,12-dimethylbenz(a)anthracene (DMBA) and of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) on epidermis of human fetal and adult skin were studied in the nude mouse/human skin model. Human skin grafts on NC nude mice were exposed to two topical applications of 1 mg of DMBA in 50 microliter of acetone with an interval of 3 days and/or to applications of 10 micrograms of TPA in 50 microliter of acetone twice weekly. In some animals, it was attempted to augment the susceptibility of the grafts to the tumor-initiating effect of DMBA by pretreatment with TPA or ultraviolet light. The mice were sacrificed 8-32 wk after the initial treatment. Tumors did not appear in the central portions of any of the grafts, but epidermal tumors were seen at the graft border in 34.9% of the DMBA-treated animals. To identify human epidermis on the grafts and to determine the species origin of the induced tumors, two independently working histological marker methods were applied. (a) The first is detection of a human Blood Group B-like antigen present in mouse epidermis and in chemically induced murine epidermal tumors. This antigen cannot be demonstrated in human epidermis and in epidermal tumors of human patients. (b) The second is histological staining with the DNA-specific fluorochrome, bisbenzimide, displaying a characteristic pattern of 5-10 intranuclear fluorescent bodies in murine nonneoplastic epidermal cells and in murine epidermal tumor cells. Such a pattern is not seen in human epidermis and in epidermal tumors of human patients. The studies showed that TPA treatment resulted in epidermal hyperplasia in both the human epidermis and the adjacent mouse epidermis and that the induced tumors were derived from murine tissue

  13. Periostin contributes to epidermal hyperplasia in psoriasis common to atopic dermatitis

    Directory of Open Access Journals (Sweden)

    Kazuhiko Arima

    2015-01-01

    Conclusions: Periostin plays an important role during epidermal hyperplasia in IMQ-induced skin inflammation, independently of the IL-23–IL-17/IL-22 axis. Periostin appears to be a mediator for epidermal hyperplasia that is common to AD and psoriasis.

  14. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer: A systematic review and cost-effectiveness analysis

    OpenAIRE

    Westwood, Marie; Joore, Manuela; Whiting, Penny; Asselt, Thea; Ramaekers, Bram; Armstrong, Nigel; Misso, Kate; Severens, Hans; Kleijnen, Jos

    2014-01-01

    markdownabstract__Abstract__ Background: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Some epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutations make tumours responsive to treatment with EGFR-TK inhibitors (EGFR-TKIs) but less responsive to treatment with standard chemotherapy. Patients with NSCLC are therefore tested for EGFR-TK tumour gene mutations to inform treatment decisions. There are a variety of tests available to detect these mutations. T...

  15. Urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and epidermal growth factor receptor (EGFR)

    DEFF Research Database (Denmark)

    Christensen, Anders; Kiss, Katalin; Lelkaitis, Giedrius

    2017-01-01

    Background: Tumor-specific biomarkers are a prerequisite for the development of targeted imaging and therapy in oral squamous cell carcinoma (OSCC). urokinase-type Plasminogen Activator Receptor (uPAR), Tissue Factor (TF) and Epidermal Growth Factor Receptor (EGFR) are three biomarkers that exhib...... with a reduced survival. uPAR seems to be a prognostic biomarker in oral cancer....

  16. Quantitative proteomic analysis reveals effects of epidermal growth factor receptor (EGFR) on invasion-promoting proteins secreted by glioblastoma cells.

    Science.gov (United States)

    Sangar, Vineet; Funk, Cory C; Kusebauch, Ulrike; Campbell, David S; Moritz, Robert L; Price, Nathan D

    2014-10-01

    Glioblastoma multiforme is a highly invasive and aggressive brain tumor with an invariably poor prognosis. The overexpression of epidermal growth factor receptor (EGFR) is a primary influencer of invasion and proliferation in tumor cells and the constitutively active EGFRvIII mutant, found in 30-65% of Glioblastoma multiforme, confers more aggressive invasion. To better understand how EGFR contributes to tumor aggressiveness, we investigated the effect of EGFR on the secreted levels of 65 rationally selected proteins involved in invasion. We employed selected reaction monitoring targeted mass spectrometry using stable isotope labeled internal peptide standards to quantity proteins in the secretome from five GBM (U87) isogenic cell lines in which EGFR, EGFRvIII, and/or PTEN were expressed. Our results show that cell lines with EGFR overexpression and constitutive EGFRvIII expression differ remarkably in the expression profiles for both secreted and intracellular signaling proteins, and alterations in EGFR signaling result in reproducible changes in concentrations of secreted proteins. Furthermore, the EGFRvIII-expressing mutant cell line secretes the majority of the selected invasion-promoting proteins at higher levels than other cell lines tested. Additionally, the intracellular and extracellular protein measurements indicate elevated oxidative stress in the EGFRvIII-expressing cell line. In conclusion, the results of our study demonstrate that EGFR signaling has a significant effect on the levels of secreted invasion-promoting proteins, likely contributing to the aggressiveness of Glioblastoma multiforme. Further characterization of these proteins may provide candidates for new therapeutic strategies and targets as well as biomarkers for this aggressive disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Development of epidermal growth factor receptor targeted therapy in pancreatic cancer.

    Science.gov (United States)

    Qing, Liu; Qing, Wang

    2018-02-01

    The epidermal growth factor receptor (EGFR) family are a series of important cancer therapeutic targets involved in cancer biology. These genes play an important role in tumor biological characteristics including angiogenesis, cell survival, invasion and glucose metabolism. In recent years, progresses have been achieved upon the cellular and molecular biological characteristics of EGFR and its role in cancer development based on the study of tumor specimens and experimental animal model. EGFR(HER1/ErbB) is overexpressed in over sixty percent of triple-negative breast cancers and occurs in pancreatic, bladder, lung and head-and-neck cancers. Up to now, EGFR inhibitors have been applied in various of cancer, such as lung, breast, bladder and head and neck cancers etc., in which the combination of EGFR inhibitors plus chemotherapeutic agents is now seen as the standard of care for advanced/metastatic pancreatic cancer. For these reasons, EGFR inhibitors and their therapeutic effect for pancreatic cancer is becoming the focus in Laboratory and clinical research. In this paper, research progress of the development of epidermal growth factor receptor targeted therapy in pancreatic cancer is introduced.

  18. Blockade of epidermal growth factor receptors chemosensitizes breast cancer cells through up-regulation of Bnip3L

    NARCIS (Netherlands)

    Real, PJ; Benito, A; Cuevas, J; Berciano, MT; de Juan, A; Coffer, P; Gomez-Roman, J; Lafarga, M; Lopez-Vega, JM; Fernandez-Luna, JL

    2005-01-01

    Epidermal growth factor receptor-1 (EGFR) and EGFR-2 (HER2) have become major targets for cancer treatment. Blocking antibodies and small-molecule inhibitors are being used to silence the activity of these receptors in different tumors with varying efficacy. Thus, a better knowledge on the signaling

  19. In vitro dermal and epidermal cellular response to titanium alloy implants fabricated with electron beam melting.

    Science.gov (United States)

    Springer, Jessica Collins; Harrysson, Ola L A; Marcellin-Little, Denis J; Bernacki, Susan H

    2014-10-01

    Transdermal osseointegrated prostheses (TOPs) are emerging as an alternative to socket prostheses. Electron beam melting (EBM) is a promising additive manufacturing technology for manufacture of custom, freeform titanium alloy (Ti6Al4V) implants. Skin ongrowth for infection resistance and mechanical stability are critically important to the success of TOP, which can be influenced by material composition and surface characteristics. We assessed viability and proliferation of normal human epidermal keratinocytes (NHEK) and normal human dermal fibroblasts (NHDF) on several Ti6Al4V surfaces: solid polished commercial, solid polished EBM, solid unpolished EBM and porous unpolished EBM. Cell proliferation was evaluated at days 2 and 7 using alamarBlue(®) and cell viability was analyzed with a fluorescence-based live-dead assay after 1 week. NHDF and NHEK were viable and proliferated on all Ti6Al4V surfaces. NHDF proliferation was highest on commercial and EBM polished surfaces. NHEK was highest on commercial polished surfaces. All EBM Ti6Al4V discs exhibited an acceptable biocompatibility profile compared to solid Ti6Al4V discs from a commercial source for dermal and epidermal cells. EBM may be considered as an option for fabrication of custom transdermal implants. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Association of epidermal growth factor and epidermal growth factor receptor polymorphisms with the risk of hepatitis B virus-related hepatocellular carcinoma in the population of North China.

    Science.gov (United States)

    Wu, Jia; Zhang, Wei; Xu, Aiqiang; Zhang, Li; Yan, Tao; Li, Zhuo; Wu, Xiaopan; Zhu, Xilin; Ma, Juan; Li, Ke; Li, Hui; Liu, Ying

    2013-08-01

    Hepatocellular carcinoma (HCC) is a common solid malignant tumor occurring worldwide that leads to the third largest cause of death compared to other cancers. Genetic and environmental factors are involved in the pathogenesis of HCC. Epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR) can stimulate the proliferation of epidermal and epithelial cells. The EGF signal pathway has a relationship with the growth of the embryo, tissue repairing, and tumorigenesis. In this study, 416 patients with hepatitis B virus infection (HBV)-related HCC and 645 individuals who had never been infected with HBV of the Chinese Han population were enrolled. Eight single-nucleotide polymorphisms (SNPs), whose minor allele frequency >20% in the EGF and EGFR genes, were genotyped to examine their associations with hepatocarcinogenesis. Genotyping experiments were carried out using TaqMan. There were significant differences in genotype distributions (p=0.005) and allele frequencies (p=0.001, odds ratio [OR]=1.43, 95% confidence interval [CI]=1.15-1.79) of rs11569017 in the EGF gene between the HCC and control groups. After binary logistic regression to determine independent factors for susceptibility to HCC under an additive model, rs11569017 was still independently associated with the susceptibility to HCC (p=0.021, OR=1.48, 95% CI=1.06-2.07), but no significant differences in other SNPs were found. Additionally, the haplotype T-G constructed by rs11569017 and rs4444903 of the EGF gene might increase the risk of HBV-related HCC (p=0.002, OR=1.44, 95% CI=1.15-1.82). The rs11569017 T allele was associated with susceptibility to HBV-related HCC.

  1. An Immunohistochemical Study of Anaplastic Lymphoma Kinase and Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Carcinoma.

    Science.gov (United States)

    Verma, Sonal; Kumar, Madhu; Kumari, Malti; Mehrotra, Raj; Kushwaha, R A S; Goel, Madhumati; Kumar, Ashutosh; Kant, Surya

    2017-07-01

    Lung cancer is one of the leading causes of cancer related death. Targeted treatment for specific markers may help in reducing the cancer related morbidity and mortality. To study expression of Anaplastic Lymphoma Kinase (ALK)and Epidermal Growth Factor Receptor (EGFR) mutations in patients of Non-Small Cell Lung Cancer NSCLC, that are the targets for specific ALK inhibitors and EGFR tyrosine kinase inhibitors. Total 69 cases of histologically diagnosed NSCLC were examined retrospectively for immunohistochemical expression of EGFR and ALK, along with positive control of normal placental tissue and anaplastic large cell lymphoma respectively. Of the NSCLC, Squamous Cell Carcinoma (SCC) accounted for 71.0% and adenocarcinoma was 26.1%. ALK expression was seen in single case of 60-year-old female, non-smoker with adenocarcinoma histology. EGFR expression was seen in both SCC (59.18%) and adenocarcinoma in (77.78%) accounting for 63.77% of all cases. Both ALK and EGFR mutation were mutually exclusive. EGFR expression was seen in 63.77% of cases, highlighting the importance of its use in routine analysis, for targeted therapy and better treatment results. Although, ALK expression was seen in 1.45% of all cases, it is an important biomarker in targeted cancer therapy. Also, the mutually exclusive expression of these two markers need further studies to develop a diagnostic algorithm for NSCLC patients.

  2. Capacity of Human Dental Follicle Cells to Differentiate into Neural Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Shingo Kanao

    2017-01-01

    Full Text Available The dental follicle is an ectomesenchymal tissue surrounding the developing tooth germ. Human dental follicle cells (hDFCs have the capacity to commit to differentiation into multiple cell types. Here we investigated the capacity of hDFCs to differentiate into neural cells and the efficiency of a two-step strategy involving floating neurosphere-like bodies for neural differentiation. Undifferentiated hDFCs showed a spindle-like morphology and were positive for neural markers such as nestin, β-III-tubulin, and S100β. The cellular morphology of several cells was neuronal-like including branched dendrite-like processes and neurites. Next, hDFCs were used for neurosphere formation in serum-free medium containing basic fibroblast growth factor, epidermal growth factor, and B27 supplement. The number of cells with neuronal-like morphology and that were strongly positive for neural markers increased with sphere formation. Gene expression of neural markers also increased in hDFCs with sphere formation. Next, gene expression of neural markers was examined in hDFCs during neuronal differentiation after sphere formation. Expression of Musashi-1 and Musashi-2, MAP2, GFAP, MBP, and SOX10 was upregulated in hDFCs undergoing neuronal differentiation via neurospheres, whereas expression of nestin and β-III-tubulin was downregulated. In conclusion, hDFCs may be another optimal source of neural/glial cells for cell-based therapies to treat neurological diseases.

  3. Localized palmar-plantar epidermal hyperplasia: a previously undefined dermatologic toxicity to sorafenib.

    Science.gov (United States)

    Beldner, Matthew; Jacobson, Michael; Burges, Gene E; Dewaay, Deborah; Maize, John C; Chaudhary, Uzair B

    2007-10-01

    The development of multitargeted tyrosine kinase inhibitors has provided significant advances in the treatment of renal cell carcinoma. This case describes initial therapy for managing renal cell cancer with the administration of sorafenib, a multitargeted tyrosine kinase inhibitor. We report the development of localized palmar-plantar epidermal hyperplasia, a rare but significant cutaneous adverse event from sorafenib therapy. Mild-to-moderate dermatologic toxicity from sorafenib has been well described in the literature. We also review the current knowledge and the proposed hypothesis for the development of cutaneous events related to tyrosine kinase inhibitors. This particular case represents a unique form of dermatologic toxicity to sorafenib that has not previously been described in the literature.

  4. Optimal allocation of leaf epidermal area for gas exchange

    OpenAIRE

    de Boer, Hugo J.; Price, Charles A.; Wagner-Cremer, Friederike; Dekker, Stefan C.; Franks, Peter J.; Veneklaas, Erik J.

    2016-01-01

    Summary A long?standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of ...

  5. Identification of β-SiC surrounded by relatable surrounding diamond ...

    Indian Academy of Sciences (India)

    β-SiC is identified in the presence of a relatable surrounding diamond medium using subtle, but discernible Raman ... Change in the nature of the surrounding material structure and its .... intensity implies very low graphite content in thin film. In.

  6. Milk Fat Globule-Epidermal Growth Factor-8 Pretreatment Attenuates Apoptosis and Inflammation via the Integrin-β3 Pathway after Surgical Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Yicai Xiao

    2018-02-01

    Full Text Available Iatrogenic brain injury inevitably occurs in neurosurgical operations, leading to brain edema, ischemia, intracranial hematoma, and other postoperative complications, eventually worsening neurological outcomes of patients. If apoptotic cells are not rapidly eliminated by phagocytic engulfment, they may communicate with surrounding cells to undergo secondary necrosis and releasing toxic signals. Recent studies have shown that milk fat globule-epidermal growth factor-8 (MFGE8, which promotes phagocytosis and inhibits inflammation, is an endogenous protective factor in response to brain infarction, Alzheimer’s disease, subarachnoid hemorrhage, and prion disease. In the present study, we sought to investigate the different effects of both pretreated and posttreated recombinant milk fat globule-epidermal growth factor-8 (rhMFGE8 for the surgical brain injury (SBI rat model and potential involvement of its receptor integrin β3 for apoptosis and neuroinflammation after SBI. One hundred and sixty-seven male rats were employed in the preset study. Experiment 1 was performed to evaluate neurological scores and MFGE8, cleaved caspase-3 (CC3, and interleukine-1 beta (IL-1β levels at 3, 24, and 120 h after SBI. Experiment 2 was performed to evaluate the effects of rhMFGE8 pretreatment (10 min before SBI and rhMFGE8 posttreatment (6 h after SBI on brain edema at 24 and 72 h after SBI. Experiment 3 was performed to evaluate the potential anti-apoptotic and anti-inflammatory effects of rhMFGE8 pretreatment and posttreatment. Experiment 4 sought to investigate the involvement of the integrin-β3 signal in the effects of MFGE8 pretreatment. Our data showed rhMFGE8 pretreatment alleviated neurological deficits and decreased brain water content and apoptotic cells in the SBI model, which exhibited neurological dysfunction, apoptosis, and inflammation. Meanwhile, MFGE8 siRNA, which inhibited endogenous MFGE8 expression, significantly increased IL-1

  7. Effects of icotinib on early-stage non-small-cell lung cancer as neoadjuvant treatment with different epidermal growth factor receptor phenotypes

    Directory of Open Access Journals (Sweden)

    Wang T

    2016-03-01

    Full Text Available Tao Wang,1 Yang Liu,1 Bin Zhou,1 Zhi Wang,1 Naichao Liang,1 Yundong Zhang,1 Zhouhuan Dong,2 Jie Li2 1Department of Thoracic Surgery, 2Department of Pathology, People’s Liberation Army General Hospital, Beijing, People’s Republic of China Purpose: Epidermal growth factor receptor–tyrosine kinase inhibitors (EGFR–TKIs have demonstrated efficacy in treating advanced non-small-cell lung cancer (NSCLC. Preliminary findings suggested that EGFR–TKIs might also be beneficial in neoadjuvant therapy in treating NSCLC. Therefore, this study aimed to evaluate the efficacy and safety of neoadjuvant therapy with icotinib in patients with early-stage NSCLC.Patients and methods: We retrospectively reviewed the medical history of patients who were initially diagnosed with stage IA–IIIA NSCLC and were under icotinib administration before surgery between December 2011 and December 2014. Tumor assessment was conducted between the second and fourth week from initial icotinib treatment. The association between personal characteristics, smoking status, disease stage, EGFR mutation status, and clinical outcomes were investigated using multivariate logistic regression analysis.Results: A total of 67 patients with NSCLC were reviewed, and approximately half (38/67 of them were identified as having EGFR-mutant tumors. The overall response rate of all patients was 26.7% at 2–4 weeks’ assessment. Multivariate analysis showed that female sex (38.5% versus 10.7% in males, P=0.028 and EGFR mutation status (42.1% versus 6.9% in EGFR wild type, P=0.011 were independent predictive factors. The analysis also showed that the most common adverse effects were rash (43.3% and dry skin (34.4%, which were tolerable.Conclusion: Icotinib induced clinical response with minimal toxicity as neoadjuvant treatment in early NSCLC, especially in patients with common EGFR mutations. Further studies are warranted to confirm our findings. Keywords: non-small-cell lung cancer

  8. Within and between population variation in epidermal club cell investment in a freshwater prey fish: a cautionary tale for evolutionary ecologists.

    Directory of Open Access Journals (Sweden)

    Aditya K Manek

    Full Text Available Many prey fishes possess large club cells in their epidermis. The role of these cells has garnered considerable attention from evolutionary ecologists. These cells likely form part of the innate immune system of fishes, however, they also have an alarm function, releasing chemical cues that serve to warn nearby conspecifics of danger. Experiments aimed at understanding the selection pressures leading to the evolution of these cells have been hampered by a surprisingly large intraspecific variation in epidermal club cell (ECC investment. The goal of our current work was to explore the magnitude and nature of this variation in ECC investment. In a field survey, we documented large differences in ECC investment both within and between several populations of minnows. We then tested whether we could experimentally reduce variation in mean ECC number by raising fish under standard laboratory conditions for 4 weeks. Fish from different populations responded very differently to being held under standard laboratory conditions; some populations showed an increase in ECC investment while others remained unchanged. More importantly, we found some evidence that we could reduce within population variation in ECC investment through time, but could not reduce among-population variation in mean ECC investment. Given the large variation we observed in wild fish and our limited ability to converge mean cell number by holding the fish under standard conditions, we caution that future studies may be hard pressed to find subtle effects of various experimental manipulations; this will make elucidating the selection pressures leading to the evolution of the cells challenging.

  9. Sensing radiosensitivity of human epidermal stem cells

    International Nuclear Information System (INIS)

    Rachidi, Walid; Harfourche, Ghida; Lemaitre, Gilles; Amiot, Franck; Vaigot, Pierre; Martin, Michele T.

    2007-01-01

    Purpose: Radiosensitivity of stem cells is a matter of debate. For mouse somatic stem cells, both radiosensitive and radioresistant stem cells have been described. By contrast, the response of human stem cells to radiation has been poorly studied. As epidermis is a radiosensitive tissue, we evaluated in the present work the radiosensitivity of cell populations enriched for epithelial stem cells of human epidermis. Methods and materials: The total keratinocyte population was enzymatically isolated from normal human skin. We used flow cytometry and antibodies against cell surface markers to isolate basal cell populations from human foreskin. Cell survival was measured after a dose of 2 Gy with the XTT assay at 72 h after exposure and with a clonogenic assay at 2 weeks. Transcriptome analysis using oligonucleotide microarrays was performed to assess the genomic cell responses to radiation. Results: Cell sorting based on two membrane proteins, α6 integrin and the transferrin receptor CD71, allowed isolation of keratinocyte populations enriched for the two types of cells found in the basal layer of epidermis: stem cells and progenitors. Both the XTT assay and the clonogenic assay showed that the stem cells were radioresistant whereas the progenitors were radiosensitive. We made the hypothesis that upstream DNA damage signalling might be different in the stem cells and used microarray technology to test this hypothesis. The stem cells exhibited a much more reduced gene response to a dose of 2 Gy than the progenitors, as we found that 6% of the spotted genes were regulated in the stem cells and 20% in the progenitors. Using Ingenuity Pathway Analysis software, we found that radiation exposure induced very specific pathways in the stem cells. The most striking responses were the repression of a network of genes involved in apoptosis and the induction of a network of cytokines and growth factors. Conclusion: These results show for the first time that keratinocyte

  10. Possible autocrine loop of the epidermal growth factor system in patients with benign prostatic hyperplasia treated with finasteride: a placebo-controlled randomized study

    DEFF Research Database (Denmark)

    Tørring, N.; Møller-Ernst Jensen, K.; Lund, L.

    2002-01-01

    To analyse the expression of the epidermal growth factor (EGF) system in prostate tissue and secretions obtained from patients with benign prostatic hyperplasia (BPH) treated with or without finasteride (which primarily targets the androgen-sensitive secretory epithelial cells in the prostate......, with little effect on basal epithelial and stromal cells)....

  11. Expression of hypoxia-inducible factor-1 by trophectoderm cells in response to hypoxia and epidermal growth factor

    International Nuclear Information System (INIS)

    Jeong, Wooyoung; Bazer, Fuller W.; Song, Gwonhwa; Kim, Jinyoung

    2016-01-01

    The low oxygen environment in the uterine environment requires pre-implantation embryos to adapt to oxygen deficiency. Hypoxia-inducible factor (HIF)-1 is a master regulator whereby cells adapt to changes in oxygen concentrations. In addition to hypoxic conditions, non-hypoxic stimuli such as growth factors also activate expression of HIF-1. In this study, the mechanisms underlying low oxygen-dependent and epidermal growth factor (EGF)-dependent expression of HIF-1α were explored using porcine trophectoderm (pTr) cells. The results indicated that expression of HIF-1α and HIF-1β mRNAs was not affected by low concentrations of oxygen; however, hypoxic conditions markedly increased the abundance of HIF-1α protein, especially in nuclei of pTr cells. Even under normoxic conditions, the abundance of HIF-1α protein increased in response to EGF. This EGF-mediated increase in HIF-1α protein was blocked through inhibition of translation by cycloheximide. The inhibitors LY294002 (PI3K-AKT inhibitor), U0126 (inhibitor of ERK1/2) and rapamycin (mTOR inhibitor) also blocked the ability of EGF to increase HIF-1α protein and to phosphorylate AKT, ERK1/2 and mTOR proteins. Both hypoxia and EGF induced proliferation of pTr cells. This ability of EGF to stimulate proliferation of pTr cells was suppressed by EGFR siRNA, but not HIF-1α siRNA, but a significant decrease in EGF-induced HIF-1α protein occurred when pTr cells were transfected with HIF-1α siRNA. The results of the present study suggest that pTr cells adapt to oxygen deficiency and proliferate in response to an oxygen-dependent HIF-1 system, and that EGF at maternal–conceptus interface can increase the abundance of HIF-1α protein via translational regulation through AKT, ERK1/2 and mTOR signaling cascades. - Highlights: • HIF-1α expression is up-regulated in pTr cells under low oxygen concentrations. • EGF induces HIF-1α accumulation in pTr cells. • EGF-induced HIF-1α accumulation is blocked by de

  12. Expression of hypoxia-inducible factor-1 by trophectoderm cells in response to hypoxia and epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Wooyoung [Department of Animal Resources Science, Dankook University, Cheonan (Korea, Republic of); Bazer, Fuller W. [Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A& M University, College Station, TX (United States); Song, Gwonhwa, E-mail: ghsong@korea.ac.kr [Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul (Korea, Republic of); Kim, Jinyoung, E-mail: jinyoungkim@dankook.ac.kr [Department of Animal Resources Science, Dankook University, Cheonan (Korea, Republic of)

    2016-01-08

    The low oxygen environment in the uterine environment requires pre-implantation embryos to adapt to oxygen deficiency. Hypoxia-inducible factor (HIF)-1 is a master regulator whereby cells adapt to changes in oxygen concentrations. In addition to hypoxic conditions, non-hypoxic stimuli such as growth factors also activate expression of HIF-1. In this study, the mechanisms underlying low oxygen-dependent and epidermal growth factor (EGF)-dependent expression of HIF-1α were explored using porcine trophectoderm (pTr) cells. The results indicated that expression of HIF-1α and HIF-1β mRNAs was not affected by low concentrations of oxygen; however, hypoxic conditions markedly increased the abundance of HIF-1α protein, especially in nuclei of pTr cells. Even under normoxic conditions, the abundance of HIF-1α protein increased in response to EGF. This EGF-mediated increase in HIF-1α protein was blocked through inhibition of translation by cycloheximide. The inhibitors LY294002 (PI3K-AKT inhibitor), U0126 (inhibitor of ERK1/2) and rapamycin (mTOR inhibitor) also blocked the ability of EGF to increase HIF-1α protein and to phosphorylate AKT, ERK1/2 and mTOR proteins. Both hypoxia and EGF induced proliferation of pTr cells. This ability of EGF to stimulate proliferation of pTr cells was suppressed by EGFR siRNA, but not HIF-1α siRNA, but a significant decrease in EGF-induced HIF-1α protein occurred when pTr cells were transfected with HIF-1α siRNA. The results of the present study suggest that pTr cells adapt to oxygen deficiency and proliferate in response to an oxygen-dependent HIF-1 system, and that EGF at maternal–conceptus interface can increase the abundance of HIF-1α protein via translational regulation through AKT, ERK1/2 and mTOR signaling cascades. - Highlights: • HIF-1α expression is up-regulated in pTr cells under low oxygen concentrations. • EGF induces HIF-1α accumulation in pTr cells. • EGF-induced HIF-1α accumulation is blocked by de

  13. Possible role of epidermal keratinocytes in the construction of acupuncture meridians.

    Science.gov (United States)

    Denda, Mitsuhiro; Tsutsumi, Moe

    2014-04-01

    Acupuncture meridians consist of a network of acupuncture points on the skin, stimulation of which is well established to have a variety of physiological effects. We have previously demonstrated that epidermal keratinocytes contain multiple sensory systems for temperature, mechanical stimuli, electric potentials and other stimuli. These sensory systems generate changes in the calcium-ion concentration in the epidermis, so epidermal keratinocytes can generate spatially-localized electro-physiological patterns in the skin. We have previously demonstrated signaling between epidermal keratinocytes and peripheral nerve systems. Therefore, stimuli sensed by epidermal keratinocytes might be transferred to the unmyelinated nerve fibers that are known to exist in the epidermis and, thence, to the spinal cord and brain. We propose that epidermal keratinocytes form an information-gathering network in the skin and that this network plays a key role in whole-body homeostasis in response to the changing environment. We also hypothesize that this network corresponds to the acupuncture meridians. As supporting examples, we present some striking calcium propagation patterns observed in cultured human keratinocytes after adenosine-triphosphate (ATP) stimulation. These results support the ideas that keratinocytes can generate spatially-restricted signaling patterns after environmental stimulation and that the cultures might be in-vitro models of meridians as an information-gathering network in skin. Copyright © 2014. Published by Elsevier B.V.

  14. Keratinocyte-derived IL-24 plays a role in the positive feedback regulation of epidermal inflammation in response to environmental and endogenous toxic stressors.

    Science.gov (United States)

    Jin, Sun Hee; Choi, Dalwoong; Chun, Young-Jin; Noh, Minsoo

    2014-10-15

    Keratinocytes are the major cellular components of human epidermis and play a key role in the modulating cutaneous inflammation and toxic responses. In human chronic skin diseases, the common skin inflammatory phenotypes like skin barrier disruption and epidermal hyperplasia are manifested in epidermal keratinocytes by interactions with T helper (Th) cells. To find a common gene expression signature of human keratinocytes in chronic skin diseases, we performed a whole genome microarray analysis on normal human epidermal keratinocytes (NHKs) treated with IFNγ, IL-4, IL-17A or IL-22, major cytokines from Th1, Th2, Th17 or Th22 cells, respectively. The microarray results showed that the four genes, IL-24, PDZK1IP1, H19 and filaggrin, had common expression profiles in NHKs exposed to Th cell cytokines. In addition, the acute phase pro-inflammatory cytokines, IL-1β, IL-6 and TNFα, also change the gene transcriptional profile of IL-24, PDZK1IP1, H19, and filaggrin in NHKs as those of Th cytokines. Therefore, the signature gene set, consisting of IL-24, PDZK1IP1, H19, and filaggrin, provides essential insights for understanding the process of cutaneous inflammation and toxic responses. We demonstrate that environmental toxic stressors, such as chemical irritants and ultraviolet irradiation stimulate the production of IL-24 in NHKs. IL-24 stimulates the JAK1-STAT3 and MAPK pathways in NHKs, and promotes the secretion of pro-inflammatory mediators IL-8, PGE2, and MMP-1. These results suggest that keratinocyte-derived IL-24 participates in the positive feedback regulation of epidermal inflammation in response to both endogenous and environmental toxic stressors. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The Epidermal Growth Factor Receptor Is a Regulator of Epidermal Complement Component Expression and Complement Activation

    DEFF Research Database (Denmark)

    Abu-Humaidan, Anas H A; Ananthoju, Nageshwar; Mohanty, Tirthankar

    2014-01-01

    The complement system is activated in response to tissue injury. During wound healing, complement activation seems beneficial in acute wounds but may be detrimental in chronic wounds. We found that the epidermal expression of many complement components was only increased to a minor extent in skin...

  16. Immunohistochemical localisation of keratin and luminal epithelial antigen in myoepithelial and luminal epithelial cells of human mammary and salivary gland tumours.

    Science.gov (United States)

    Nathrath, W B; Wilson, P D; Trejdosiewicz, L K

    1982-01-01

    Rabbit antisera to human 40-63 000 MW epidermal keratin, one batch with restricted distribution of reactivity from an initial (aK1) and one with "broad spectrum" distribution of reactivity from a late bleeding (aK), and to "luminal epithelial antigen" (aLEA) were applied to formalin fixed paraffin embedded sections of human normal and neoplastic mammary and salivary glands using an indirect immunoperoxidase method. aK1 reacted with myoepithelial cells, aLEA with luminal epithelial cells and aK with both cell types in normal mammary and salivary gland. In breast carcinomas the majority of intraluminal and infiltrating carcinoma cells reacted with aLEA but not with aK1 which reacted only with surrounding myoepithelial cells. aK reacted with both myoepithelial cells and with intraluminal and infiltrating tumour cells. In the salivary gland adenomas the majority of cells reacted with aK, and those cells arranged in a tubular fashion reacted with aLEA.

  17. Effect of photo-immobilization of epidermal growth factor on the cellular behaviors

    International Nuclear Information System (INIS)

    Ogiwara, Kazutaka; Nagaoka, Masato; Cho, Chong-Su; Akaike, Toshihiro

    2006-01-01

    We constructed photo-reactive epidermal growth factor (EGF) bearing p-azido phenylalanine at the C-terminal (HEGFP) by genetic engineering to investigate the possibility of immobilized EGF as a novel artificial extracellular matrix (ECM). The constructed recombinant protein was immobilized to glass surface by ultraviolet irradiation. A431 cells adhered both to HEGFP-immobilized and collagen-coated surfaces. Interaction between immobilized HEGFP and EGF receptors in the A431 cells was independent of Mg 2+ although integrin-mediated cell adhesion to natural ECMs is dependent on Mg 2+ . Phosphorylation of EGF receptors in A431 cells was induced by immobilized HEGFP as same as soluble EGF. DNA uptake of hepatocytes decreased by immobilized HEGFP whereas it increased by soluble EGF. Liver-specific functions of hepatocytes were maintained for 3 days by immobilized HEGFP whereas they were not maintained by soluble EGF, indicating that immobilized HEGFP follows different signal transduction pathway from soluble EGF

  18. An evaluation of the effects of epidermal growth factor on irradiation lip mucosa damage in mice

    International Nuclear Information System (INIS)

    Feng Yan

    1994-01-01

    The effect of epidermal growth factor (EGF) on lip mucosa damage by irradiation was explored in mice. EGF was administered in doses of 100 μg/kg/day using different schedules. Mucosal damage was assessed. The metaphase arrest method with vinblastine was used to evaluate the diurnal rhythm of mitosis. EGF in regimens employed did not protect the mouse lip epithelial cells from irradiation induced damage, but it has a demonstrable stimulatory effect on cell proliferation in lip mucosa which is dependent on the schedules of administration. The reasons and mechanisms are discussed

  19. Amplification of the epidermal growth factor receptor gene in glioblastoma: an analysis of the relationship between genotype and phenotype by CISH method.

    Science.gov (United States)

    Miyanaga, Tomomi; Hirato, Junko; Nakazato, Yoichi

    2008-04-01

    We examined epidermal growth factor receptor (EGFR) overexpression and EGFR gene amplification using immunohistochemistry (IHC) and chromogenic in situ hybridization (CISH) in 109 glioblastomas, including 98 primary glioblastomas and 11 secondary glioblastomas. EGFR overexpression and EGFR gene amplification were found in 33% and 24% of glioblastoma, respectively, and all of those cases were primary glioblastoma. Large ischemic necrosis was significantly more frequent in primary glioblastomas than in secondary glioblastomas (54% vs. 18%), but pseudopalisading necrosis was not (65% vs. 54%). EGFR gene amplification was detected significantly more frequently in cases with both types of necrosis. Although glioblastomas with EGFR gene amplification invariably exhibited EGFR overexpression at the level of the whole tumor, tumor cells with EGFR gene amplification did not always show EGFR overexpression at the level of individual tumor cells. Cases of "strong" EGFR overexpression on IHC could be regarded as having EGFR gene amplification, and cases without EGFR overexpression could not. Cases of "weak" EGFR overexpression should be tested with CISH to confirm the presence of EGFR gene amplification. We found that 54% of glioblastomas with EGFR gene amplification were composed of areas with and without EGFR gene amplification; however, there were no obvious differences in morphology between tumor cells with and without EGFR gene amplification. Although small cell architecture might be associated with EGFR gene amplification at the level of the whole tumor, it did not always suggest amplification of the EGFR gene at the level of individual tumor cells. In one case, it seemed to suggest that a clone with EGFR gene amplification may arise in pre-existing tumor tissue and extend into the surrounding area. In cases of overall EGFR amplification, CISH would be a useful tool to decide the tumor border in areas infiltrated by tumor cells.

  20. Advanced glycosylation end product promotes forkhead box O1 and inhibits Wnt pathway to suppress capacities of epidermal stem cells.

    Science.gov (United States)

    Zhu, Jie; Wang, Peng; Yu, Zhimin; Lai, Wei; Cao, Yi; Huang, Pinbo; Xu, Qiaodong; Yu, Menglei; Xu, Junyao; Huang, Zitong; Zeng, Bing

    2016-01-01

    Diabetes mellitus is frequently accompanied by chronic complications like delayed wound healing, which is consider to be attributed to the accumulation of advanced glycosylation end product (AGE). However, the impacts of AGE on epidermal stem cells (ESCs) are largely unknown. This study aims to address the influence and mechanism of AGE on ESCs. ESCs isolated from rats were cultured in AGE-modified bovine serum albumin and transfected with small interfering RNA to knock down AGE-specific receptor (AGER). Expression of stem cell markers integrin β1 (ITGB1) and keratin 19 (KRT19), cell viability, apoptosis and reactive oxygen species (ROS) were examined. Wnt pathway-related factors Wnt family member 1 (WNT1), WNT3A, β-catenin, v-myc avian myelocytomatosis viral oncogene homolog (MYC), cyclin D1 (CCND1) and matrix metallopeptidase 7 (MMP7) were quantified. The interaction between forkhead box O1 (FOXO1) and β-catenin was assessed by co-immunoprecipitation. Results indicated that AGE down-regulated ITGB1 and KRT19 expression, suppressed ESC viability and promoted apoptosis, and ROS level ( P factor 1 to interact with β-catenin, which might help to elucidate the mechanism of AGE repressing ESCs. This study helps to understand the mechanism of accumulated AGE in affecting ESC capacities, and provides potential therapeutic targets to meliorate diabetic wound healing.

  1. Resveratrol modulates MED28 (Magicin/EG-1) expression and inhibits epidermal growth factor (EGF)-induced migration in MDA-MB-231 human breast cancer cells.

    Science.gov (United States)

    Lee, Ming-Fen; Pan, Min-Hsiung; Chiou, Yi-Siou; Cheng, An-Chin; Huang, Han

    2011-11-09

    Resveratrol and pterostilbene exhibit diverse biological activities. MED28, a subunit of the mammalian Mediator complex for transcription, was also identified as magicin, an actin cytoskeleton Grb2-associated protein, and as endothelial-derived gene (EG-1). Several tumors exhibit aberrant MED28 expression, whereas the underlying mechanism is unclear. Triple-negative breast cancers, often expressing epidermal growth factor (EGF) receptor (EGFR), are associated with metastasis and poor survival. The objective of this study is to compare the effect of resveratrol and pterostilbene and to investigate the role of MED28 in EGFR-overexpressing MDA-MB-231 breast cancer cells. Pretreatment of resveratrol, but not pterostlbene, suppressed EGF-mediated migration and expression of MED28 and matrix metalloproteinase (MMP)-9 in MDA-MB-231 cells. Moreover, overexpression of MED28 increased migration, and the addition of EGF further enhanced migration. Our data indicate that resveratrol modulates the effect of MED28 on cellular migration, presumably through the EGFR/phosphatidylinositol 3-kinase (PI3K) signaling pathway, in breast cancer cells.

  2. Perforator Flaps after Excision of Large Epidermal Cysts in the Buttocks

    Directory of Open Access Journals (Sweden)

    Sang Wha Kim

    2014-03-01

    Full Text Available Background Epidermal cysts are commonly occurring masses usually less than 5 cm in diameter, but in predisposed patients, epidermal cysts can grow relatively large due to chronic infection. Methods From June 2002 to July 2010, 17 patients received 19 regional perforator-based island flaps to cover defects due to the excision of large epidermal cysts (diameter >5 cm in the buttocks. Eight patients had diabetes, and seven had rheumatoid arthritis. The pedicles were not fully isolated to prevent spasms or twisting. Results All the flaps survived completely, except for one case with partial necrosis of the flap, which necessitated another perforator-based island flap for coverage. There were two cases of wound dehiscence, which were re-closed after meticulous debridement. There were no recurrences of the masses during follow-up periods of 8.1 months (range, 6-12 months. Conclusions In patients with large epidermal cysts and underlying medical disorders, regional perforator-based island flaps can be the solution to coverage of the defects after excision.

  3. Epidermal growth factor receptor in primary human lung cancer

    International Nuclear Information System (INIS)

    Yu Xueyan; Hu Guoqiang; Tian Keli; Wang Mingyun

    1996-01-01

    Cell membranes were prepared from 12 human lung cancers for the study of the expression of epidermal growth factor receptors (EGFR). EGFR concentration was estimated by ligand binding studies using 125 I-radiolabeled EGF. The dissociation constants of the high affinity sites were identical, 1.48 nmol and 1.1 nmol in cancer and normal lung tissues, the EGFR contents were higher in lung cancer tissues (range: 2.25 to 19.39 pmol·g -1 membrane protein) than that in normal tissues from the same patients (range: 0.72 to 7.43 pmol·g -1 membrane protein). These results suggest that EGF and its receptor may play a role in the regulatory mechanisms in the control of lung cellular growth and tumor promotion

  4. Commonly Employed African Neonatal Skin Care Products Compromise Epidermal Function in Mice.

    Science.gov (United States)

    Man, Mao-Qiang; Sun, Richard; Man, George; Lee, Dale; Hill, Zelee; Elias, Peter M

    2016-09-01

    Neonatal mortality is much higher in the developing world than in developed countries. Infections are a major cause of neonatal death, particularly in preterm infants, in whom defective epidermal permeability barrier function facilitates transcutaneous pathogen invasion. The objective was to determine whether neonatal skin care products commonly used in Africa benefit or compromise epidermal functions in murine skin. After twice-daily treatment of 6- to 8-week-old hairless mice with each skin care product for 3 days, epidermal permeability barrier function, skin surface pH, stratum corneum hydration, and barrier recovery were measured using a multiprobe adapter system physiology monitor. For products showing some benefits in these initial tests, the epidermal permeability barrier homeostasis was assessed 1 and 5 hours after a single application to acutely disrupted skin. All of the skin care products compromised basal permeability barrier function and barrier repair kinetics. Moreover, after 3 days of treatment, most of the products also reduced stratum corneum hydration while elevating skin surface pH to abnormal levels. Some neonatal skin care products that are widely used in Africa perturb important epidermal functions, including permeability barrier homeostasis in mice. Should these products have similar effects on newborn human skin, they could cause a defective epidermal permeability barrier, which can increase body fluid loss, impair thermoregulation, and contribute to the high rates of neonatal morbidity and mortality seen in Africa. Accordingly, alternative products that enhance permeability barrier function should be identified, particularly for use in preterm infants. © 2016 Wiley Periodicals, Inc.

  5. Notch-deficient skin induces a lethal systemic B-lymphoproliferative disorder by secreting TSLP, a sentinel for epidermal integrity.

    Directory of Open Access Journals (Sweden)

    Shadmehr Demehri

    2008-05-01

    Full Text Available Epidermal keratinocytes form a highly organized stratified epithelium and sustain a competent barrier function together with dermal and hematopoietic cells. The Notch signaling pathway is a critical regulator of epidermal integrity. Here, we show that keratinocyte-specific deletion of total Notch signaling triggered a severe systemic B-lymphoproliferative disorder, causing death. RBP-j is the DNA binding partner of Notch, but both RBP-j-dependent and independent Notch signaling were necessary for proper epidermal differentiation and lipid deposition. Loss of both pathways caused a persistent defect in skin differentiation/barrier formation. In response, high levels of thymic stromal lymphopoietin (TSLP were released into systemic circulation by Notch-deficient keratinocytes that failed to differentiate, starting in utero. Exposure to high TSLP levels during neonatal hematopoiesis resulted in drastic expansion of peripheral pre- and immature B-lymphocytes, causing B-lymphoproliferative disorder associated with major organ infiltration and subsequent death, a previously unappreciated systemic effect of TSLP. These observations demonstrate that local skin perturbations can drive a lethal systemic disease and have important implications for a wide range of humoral and autoimmune diseases with skin manifestations.

  6. Alterations of epidermal proliferation and cytokeratin expression in skin biopsies from heavy draught horses with chronic pastern dermatitis.

    Science.gov (United States)

    Geburek, Florian; Ohnesorge, Bernhard; Deegen, Eckehard; Doeleke, Renate; Hewicker-Trautwein, Marion

    2005-12-01

    We report the historical, clinical and histopathological characteristics of skin lesions in biopsies from 37 heavy draught horses with chronic pastern dermatitis. The skin lesions were divided into four macroscopic groups: scaling (group I, n=5), hyperkeratotic and hyperplastic plaque-like lesions (group II, n=14), nodular skin masses (group III, n=16) and verrucous skin lesions (group IV, n=2). The principal histological findings were hyperkeratosis and epidermal hyperplasia. There was a gradual increase in epidermal hyperplasia from groups I to IV, suggesting that the lesions represent different stages of disease. In all cases, there was perivascular dermatitis dominated by T lymphocytes with an increase in MHC class II-positive dendritic-like cells. Immunohistochemical labelling for cytokeratins CK5/6(4), CK10 and CK14 indicated a change in their expression pattern. This correlated with the degree of epidermal hyperplasia, indicating abnormal differentiation of keratinocytes. There was a statistically significant correlation between the severity of skin lesions and several other factors including increasing age, increasing cannon circumference, prominence of anatomical structures such as fetlock tufts of hairs, ergots and chestnuts, and bulges in the fetlock region.

  7. Epidermal Growth Factor Receptor targeting in non-small cell lung cancer: revisiting different strategies against the same target.

    Science.gov (United States)

    Castañón, Eduardo; Martín, Patricia; Rolfo, Christian; Fusco, Juan P; Ceniceros, Lucía; Legaspi, Jairo; Santisteban, Marta; Gil-Bazo, Ignacio

    2014-01-01

    Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) have changed the paradigm of treatment in non-small cell lung cancer (NSCLC). The molecular biology study of EGFR has led to clinical trials that select patients more accurately, regarding the presence of EGFR activating mutations. Nonetheless, a lack of response or a temporary condition of the response has been detected in patients on EGFR TKIs. This has urged to study potential resistance mechanisms underneath. The most important ones are the presence of secondary mutations in EGFR, such as T790M, or the overexpression of mesenchymal-epithelial transition factor (MET) that may explain why patients who initially respond to EGFR TKIs, may ultimately become refractory. Several approaches have been taken and new drugs both targeting EGFR resistance-mutation or MET are currently being developed. Here we review and update the EGFR biological pathway as well as the clinical data leading to approval of the EGFR TKIs currently in the market. New compounds under investigation targeting resistance mutations or dually targeting EGFR and other relevant receptors are also reviewed and discussed.

  8. 111In-cetuximab-F(ab')2 SPECT imaging for quantification of accessible epidermal growth factor receptors (EGFR) in HNSCC xenografts

    NARCIS (Netherlands)

    Dijk, L.K. van; Hoeben, B.A.W.; Stegeman, H.; Kaanders, J.H.A.M.; Franssen, G.M.; Boerman, O.C.; Bussink, J.

    2013-01-01

    BACKGROUND AND PURPOSE: Immunohistochemical epidermal growth factor receptor (EGFR) expression does not correlate with treatment response in head and neck squamous cell carcinomas (HNSCC). Aim was to apply the tracer (111)In-cetuximab-F(ab')2 for EGFR microSPECT imaging and to investigate if tracer

  9. Alteration in murine epidermal Langerhans cell population by various UV irradiations: quantitative and morphologic studies on the effects of various wavelengths of monochromatic radiation on Ia-bearing cells

    International Nuclear Information System (INIS)

    Obata, M.; Tagami, H.

    1985-01-01

    The present study was undertaken in order to clarify the exact mode of the Langerhans cell (LC) depleting process caused by UV irradiation. Following irradiation with a single dose of various wavelengths of monochromatic UV radiation (UVR), the number of Ia-positive cells were studied in mouse epidermal sheets quantitatively, particularly with regard to dose-response relationships, action spectrum, and time course change. In addition, morphologic alterations of these cells were studied using electron- and immunoelectron microscopy (EM and IEM). The authors obtained the following results after a single dose of UVB radiation (200 mJ/cm2 of 300 nm) or PUVA (1% of 8-methoxypsoralen (8-MOP) 20 microliter and 1 J/cm2 of 360 nm): (1) EM and IEM showed that while some LCs simply lost their Ia marker without any structural alterations, the majority of the LCs disappeared due to actual cell damage. (2) During an ''injury phase,'' the initial 48 h, and a ''recovery phase,'' lasting from 4-14 days after irradiation, enlargement of the size of remaining Ia-positive LCs occurred. The degree of enlargement was closely related to the degree of reduction in number, suggesting a process compensating for the loss of the LC population. (3) It was found that the recovery rate of LCs after irradiation damage was slower than that of keratinocytes, indicating different cell kinetics between these distinct cell populations in the epidermis, i.e., restoration of LCs after irradiation seems to be achieved at least partially through a repopulation process originating in the bone marrow

  10. Significance of epidermal growth factor receptor signaling for acquisition of meiotic and developmental competence in mammalian oocytes

    Czech Academy of Sciences Publication Activity Database

    Procházka, Radek; Blaha, Milan; Němcová, Lucie

    2017-01-01

    Roč. 97, č. 4 (2017), s. 537-549 ISSN 0006-3363 R&D Projects: GA MZe(CZ) QJ1510138; GA MŠk EF15_003/0000460 Institutional support: RVO:67985904 Keywords : amphiregulin * cumulus cells * epidermal growth factor receptor Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Reproductive biology (medical aspects to be 3) Impact factor: 3.432, year: 2016

  11. UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling.

    Science.gov (United States)

    Moore, Carlene; Cevikbas, Ferda; Pasolli, H Amalia; Chen, Yong; Kong, Wei; Kempkes, Cordula; Parekh, Puja; Lee, Suk Hee; Kontchou, Nelly-Ange; Yeh, Iwei; Ye, Iwei; Jokerst, Nan Marie; Fuchs, Elaine; Steinhoff, Martin; Liedtke, Wolfgang B

    2013-08-20

    At our body surface, the epidermis absorbs UV radiation. UV overexposure leads to sunburn with tissue injury and pain. To understand how, we focus on TRPV4, a nonselective cation channel highly expressed in epithelial skin cells and known to function in sensory transduction, a property shared with other transient receptor potential channels. We show that following UVB exposure mice with induced Trpv4 deletions, specifically in keratinocytes, are less sensitive to noxious thermal and mechanical stimuli than control animals. Exploring the mechanism, we find that epidermal TRPV4 orchestrates UVB-evoked skin tissue damage and increased expression of the proalgesic/algogenic mediator endothelin-1. In culture, UVB causes a direct, TRPV4-dependent Ca(2+) response in keratinocytes. In mice, topical treatment with a TRPV4-selective inhibitor decreases UVB-evoked pain behavior, epidermal tissue damage, and endothelin-1 expression. In humans, sunburn enhances epidermal expression of TRPV4 and endothelin-1, underscoring the potential of keratinocyte-derived TRPV4 as a therapeutic target for UVB-induced sunburn, in particular pain.

  12. The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in Caenorhabditis elegans.

    Science.gov (United States)

    Grants, Jennifer M; Ying, Lisa T L; Yoda, Akinori; You, Charlotte C; Okano, Hideyuki; Sawa, Hitoshi; Taubert, Stefan

    2016-02-01

    Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator's dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals. Copyright © 2016 by the Genetics Society of America.

  13. Genetic Markers and Danger Signals in Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis

    Directory of Open Access Journals (Sweden)

    Wen-Hung Chung

    2010-01-01

    Full Text Available Stevens-Johnson syndrome (SJS and toxic epidermal necrolysis (TEN are life-threatening adverse reactions, which could be induced by a variety of drugs. It was proposed that human leukocyte antigen (HLA-restricted presentation of antigens (drugs or their metabolites to T lymphocytes initiates the immune reactions of SJS/ TEN. However, the genetic susceptibility and the exact pathogenesis were not clear until the recent studies. We first identified that HLA-B*1502 is strongly associated with carbamazepine (CBZ-induced SJS/TEN and HLA-B*5801 with allopurinol-SJS/TEN in Han Chinese. The same associations had been validated across different human populations. For the downstream danger signals, Fas-Fas ligand (FasL and perforin/granzyme B had been advocated as cytotoxic mediators for keratinocyte death in SJS/TEN. However, expression levels of these cytotoxic proteins from the skin lesions were too low to explain the distinct and extensive epidermal necrosis. Our recent study identified that the granulysin, a cytotoxic protein released from cytotoxic T cells or natural killer (NK cells, is a key mediator for disseminated keratinocyte death in SJS/TEN. This article aims to provide an overview of both of the genomic and immunologic perspectives of SJS/TEN. These studies give us a better understanding of the immune mechanisms, biomarkers for disease prevention and early diagnosis, as well as providing the therapeutic targets for the treatments of SJS/TEN.

  14. Giant epidermal inclusion cyst in the male breast: A case report

    Energy Technology Data Exchange (ETDEWEB)

    KIm, Hyun Jin; Park, Woon Ju; KIm, Sang Wook; Paik, So Ya [Daejin Medical Center Bundang Jesaeng General Hospital, Seongnam (Korea, Republic of)

    2017-03-15

    Giant epidermal inclusion cyst is a rare disease entity, and the occurrence of this cyst in the male breast is extremely rare. We report a case of giant epidermal inclusion cyst in the breast, which presented as a palpable and painful right breast mass in a 63-year-old man. The sonographic and computed tomography (CT) features are described in-depth. Physical examination revealed a firm, well-defined mass in the upper central portion of the right breast. Ultrasonography showed a 5.2 cm sized, oval, circumscribed, and complex cystic and solid mass with posterior acoustic enhancement, and CT showed a well-defined homogeneous low density mass without enhancement in the right breast. Surgical excision was performed, and pathological examination revealed a giant epidermal inclusion cyst.

  15. Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    Dajani Olav

    2011-10-01

    Full Text Available Abstract Background Neurotensin has been found to promote colon carcinogenesis in rats and mice, and proliferation of human colon carcinoma cell lines, but the mechanisms involved are not clear. We have examined signalling pathways activated by neurotensin in colorectal and pancreatic carcinoma cells. Methods Colon carcinoma cell lines HCT116 and HT29 and pancreatic adenocarcinoma cell line Panc-1 were cultured and stimulated with neurotensin or epidermal growth factor (EGF. DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA. Levels and phosphorylation of proteins in signalling pathways were assessed by Western blotting. Results Neurotensin stimulated the phosphorylation of both extracellular signal-regulated kinase (ERK and Akt in all three cell lines, but apparently did so through different pathways. In Panc-1 cells, neurotensin-induced phosphorylation of ERK, but not Akt, was dependent on protein kinase C (PKC, whereas an inhibitor of the β-isoform of phosphoinositide 3-kinase (PI3K, TGX221, abolished neurotensin-induced Akt phosphorylation in these cells, and there was no evidence of EGF receptor (EGFR transactivation. In HT29 cells, in contrast, the EGFR tyrosine kinase inhibitor gefitinib blocked neurotensin-stimulated phosphorylation of both ERK and Akt, indicating transactivation of EGFR, independently of PKC. In HCT116 cells, neurotensin induced both a PKC-dependent phosphorylation of ERK and a metalloproteinase-mediated transactivation of EGFR that was associated with a gefitinib-sensitive phosphorylation of the downstream adaptor protein Shc. The activation of Akt was also inhibited by gefitinib, but only partly, suggesting a mechanism in addition to EGFR transactivation. Inhibition of PKC blocked neurotensin-induced DNA synthesis in HCT116 cells. Conclusions While acting predominantly through PKC in Panc-1 cells and via EGFR transactivation in HT29 cells, neurotensin used both these pathways in HCT116

  16. Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells

    International Nuclear Information System (INIS)

    Müller, Kristin M; Tveteraas, Ingun H; Aasrum, Monica; Ødegård, John; Dawood, Mona; Dajani, Olav; Christoffersen, Thoralf; Sandnes, Dagny L

    2011-01-01

    Neurotensin has been found to promote colon carcinogenesis in rats and mice, and proliferation of human colon carcinoma cell lines, but the mechanisms involved are not clear. We have examined signalling pathways activated by neurotensin in colorectal and pancreatic carcinoma cells. Colon carcinoma cell lines HCT116 and HT29 and pancreatic adenocarcinoma cell line Panc-1 were cultured and stimulated with neurotensin or epidermal growth factor (EGF). DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA. Levels and phosphorylation of proteins in signalling pathways were assessed by Western blotting. Neurotensin stimulated the phosphorylation of both extracellular signal-regulated kinase (ERK) and Akt in all three cell lines, but apparently did so through different pathways. In Panc-1 cells, neurotensin-induced phosphorylation of ERK, but not Akt, was dependent on protein kinase C (PKC), whereas an inhibitor of the β-isoform of phosphoinositide 3-kinase (PI3K), TGX221, abolished neurotensin-induced Akt phosphorylation in these cells, and there was no evidence of EGF receptor (EGFR) transactivation. In HT29 cells, in contrast, the EGFR tyrosine kinase inhibitor gefitinib blocked neurotensin-stimulated phosphorylation of both ERK and Akt, indicating transactivation of EGFR, independently of PKC. In HCT116 cells, neurotensin induced both a PKC-dependent phosphorylation of ERK and a metalloproteinase-mediated transactivation of EGFR that was associated with a gefitinib-sensitive phosphorylation of the downstream adaptor protein Shc. The activation of Akt was also inhibited by gefitinib, but only partly, suggesting a mechanism in addition to EGFR transactivation. Inhibition of PKC blocked neurotensin-induced DNA synthesis in HCT116 cells. While acting predominantly through PKC in Panc-1 cells and via EGFR transactivation in HT29 cells, neurotensin used both these pathways in HCT116 cells. In these cells, neurotensin-induced activation of ERK

  17. Immobilization of epidermal growth factor on titanium and stainless steel surfaces via dopamine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeonghwa [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo, 192-0397 Japan (Japan); Sakuragi, Makoto; Shibata, Aya; Abe, Hiroshi; Kitajima, Takashi; Tada, Seiichi [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Mizutani, Masayoshi; Ohmori, Hitoshi [Material Fabrication Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Ayame, Hirohito [Diagnostic Biochip Laboratory, RIKEN Center for Intellectual Property Strategies, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Son, Tae Il [Bioscience and Biotechnology, Chung-Ang University, 40-1 San, Nae-Ri, Daeduck-myun, Ansung-si, Kyungki-do, 456-756 (Korea, Republic of); Aigaki, Toshiro [Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo, 192-0397 Japan (Japan); Ito, Yoshihiro, E-mail: y-ito@riken.jp [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo, 192-0397 Japan (Japan); Diagnostic Biochip Laboratory, RIKEN Center for Intellectual Property Strategies, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan)

    2012-12-01

    Titanium and stainless steel were modified with dopamine for the immobilization of biomolecules, epidermal growth factor (EGF). First, the treatment of metal surfaces with a dopamine solution under different pH conditions was investigated. At higher pH, the dopamine solution turned brown and formed precipitates. Treatment of the metals with dopamine at pH 8.5 also resulted in the development of brown color at the surface of the metals. The hydrophobicity of the surfaces increased after treatment with dopamine, independently of pH. X-ray photoelectron spectroscopy revealed the formation of a significant amount of an organic layer on both surfaces at pH 8.5. According to ellipsometry measurements, the organic layer formed at pH 8.5 was about 1000 times as thick as that formed at pH 4.5. The amount of amino groups in the layer formed at pH 8.5 was also higher than that observed in the layer formed at pH 4.5. EGF molecules were immobilized onto the dopamine-treated surfaces via a coupling reaction using carbodiimide. A greater amount of EGF was immobilized on surfaces treated at pH 8.5 compared with pH 4.5. Significantly higher growth of rat fibroblast cells was observed on the two EGF-immobilized surfaces compared with non-immobilized surfaces in the presence of EGF. The present study demonstrated that metals can become bioactive via the surface immobilization of a growth factor and that the effect of the immobilized growth factor on metals was greater than that of soluble growth factor. - Highlights: Black-Right-Pointing-Pointer Epidermal growth factor was covalently immobilized on titan or stainless steel surfaces. Black-Right-Pointing-Pointer Amino groups were formed on the surfaces by the treatment and the growth factor was immobilized through amide bonds. Black-Right-Pointing-Pointer The immobilized epidermal growth factor accelerated cell proliferation more than soluble ones on the surfaces.

  18. Epidermal Growth Factor Receptor in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Oliveira-Cunha, Melissa; Newman, William G.; Siriwardena, Ajith K.

    2011-01-01

    Pancreatic cancer is the fourth leading cause of cancer related death. The difficulty in detecting pancreatic cancer at an early stage, aggressiveness and the lack of effective therapy all contribute to the high mortality. Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein, which is expressed in normal human tissues. It is a member of the tyrosine kinase family of growth factors receptors and is encoded by proto-oncogenes. Several studies have demonstrated that EGFR is over-expressed in pancreatic cancer. Over-expression correlates with more advanced disease, poor survival and the presence of metastases. Therefore, inhibition of the EGFR signaling pathway is an attractive therapeutic target. Although several combinations of EGFR inhibitors with chemotherapy demonstrate inhibition of tumor-induced angiogenesis, tumor cell apoptosis and regression in xenograft models, these benefits remain to be confirmed. Multimodality treatment incorporating EGFR-inhibition is emerging as a novel strategy in the treatment of pancreatic cancer

  19. Co-inhibition of epidermal growth factor receptor and insulin-like growth factor receptor 1 enhances radiosensitivity in human breast cancer cells

    International Nuclear Information System (INIS)

    Li, Ping; Veldwijk, Marlon R; Zhang, Qing; Li, Zhao-bin; Xu, Wen-cai; Fu, Shen

    2013-01-01

    Over-expression of epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor (IGF-1R) have been shown to closely correlate with radioresistance of breast cancer cells. This study aimed to investigate the impact of co-inhibition of EGFR and IGF-1R on the radiosensitivity of two breast cancer cells with different profiles of EGFR and IGF-1R expression. The MCF-7 (EGFR +/−, IGF-1R +++) and MDA-MB-468 (EGFR +++, IGF-1R +++) breast cancer cell lines were used. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle distribution were measured by flow cytometry. Phospho-Akt and phospho-Erk1/2 were quantified by western blot. In vivo studies were conducted using MDA-MB-468 cells xenografted in nu/nu mice. In MDA-MB-468 cells, the inhibition of IGF-1R upregulated the p-EGFR expression. Either EGFR (AG1478) or IGF-1R inhibitor (AG1024) radiosensitized MDA-MB-468 cells. In MCF-7 cells, radiosensitivity was enhanced by AG1024, but not by AG1478. Synergistical radiosensitizing effect was observed by co-inhibition of EGFR and IGF-1R only in MDA-MB-468 cells with a DMF 10% of 1.90. The co-inhibition plus irradiation significantly induced more apoptosis and arrested the cells at G0/G1 phase in MDA-MB-468 cells. Only co-inhibition of EGFR and IGF-1R synergistically diminished the expression of p-Akt and p-Erk1/2 in MDA-MB-468 cells. In vivo studies further verified the radiosensitizing effects by co-inhibition of both pathways in a MDA-MB-468 xenograft model. Our data suggested that co-inhibition of EGFR and IGF-1R synergistically radiosensitized breast cancer cells with both EGFR and IGF-1R high expression. The approach may have an important therapeutic implication in the treatment of breast cancer patients with high expression of EGFR and IGF-1R

  20. Compromised epidermal barrier stimulates Harderian gland activity and hypertrophy in ACBP-/- mice

    DEFF Research Database (Denmark)

    Sørensen, Signe Bek; Neess, Ditte; Dixen, Karen

    2015-01-01

    of the eye lid. We show that disruption of the Acbp gene leads to a significant enlargement of this gland with hypertrophy of the acinar cells and increased de novo synthesis of monoalkyl diacylglycerol, the main lipid species produced by the gland. Mice with conditional targeting of the Acbp gene......Acyl-CoA binding protein (ACBP) is a small, ubiquitously expressed intracellular protein that binds C14-C22 acyl-CoA esters with very high affinity and specificity. We have recently shown that targeted disruption of the Acbp gene leads to a compromised epidermal barrier and that this causes delayed...

  1. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering.

    Science.gov (United States)

    Huber, Birgit; Czaja, Alina Maria; Kluger, Petra Juliane

    2016-05-01

    The composition of vascularized adipose tissue is still an ongoing challenge as no culture medium is available to supply adipocytes and endothelial cells appropriately. Endothelial cell medium is typically supplemented with epidermal growth factor (EGF) as well as hydrocortisone (HC). The effect of EGF on adipocytes is discussed controversially. Some studies say it inhibits adipocyte differentiation while others reported of improved adipocyte lipogenesis. HC is known to have lipolytic activities, which might result in mature adipocyte dedifferentiation. In this study, we evaluated the influence of EGF and HC on the co-culture of endothelial cells and mature adipocytes regarding their cell morphology and functionality. We showed in mono-culture that high levels of HC promoted dedifferentiation and proliferation of mature adipocytes, whereas EGF seemed to have no negative influence. Endothelial cells kept their typical cobblestone morphology and showed a proliferation rate comparable to the control independent of EGF and HC concentration. In co-culture, HC promoted dedifferentiation of mature adipocytes, which was shown by a higher glycerol release. EGF had no negative impact on adipocyte morphology. No negative impact on endothelial cell morphology and functionality could be seen with reduced EGF and HC supplementation in co-culture with mature adipocytes. Taken together, our results demonstrate that reduced levels of HC are needed for co-culturing mature adipocytes and endothelial cells. In co-culture, EGF had no influence on mature adipocytes. Therefore, for the composition of vascularized adipose tissue constructs, the media with low levels of HC and high or low levels of EGF can be used. © 2016 International Federation for Cell Biology.

  2. Squamous cell cancer (image)

    Science.gov (United States)

    Squamous cell cancer involves cancerous changes to the cells of the middle portion of the epidermal skin layer. It is ... malignant tumor, and is more aggressive than basal cell cancer, but still may be relatively slow-growing. It ...

  3. Markedly diminished epidermal keratinocyte expression of intercellular adhesion molecule-1 (ICAM-1) in Sezary syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Nickoloff, B.J.; Griffiths, E.M.; Baadsgaard, O.; Voorhees, J.J.; Hanson, C.A.; Cooper, K.D. (Univ. of Michigan Medical Center, Ann Arbor (USA))

    1989-04-21

    In mucosis fungoides the malignant T cells express lymphocyte function-associated antigen-1, which allows them to bind to epidermal keratinocytes expressing the gamma interferon-inducible intercellular adhesion molecule-1. In this report, a patient with leukemic-stage mucosis fungoides (Sezary syndrome) had widespread erythematous dermal infiltrates containing malignant T cells, but without any epidermotropism. The authors discovered that the T cells expressed normal amounts of functional lymphocyte function-associated antigen-1, but the keratinocytes did not express significant levels of intercellular adhesion molecule-1, which was probably due to the inability of the malignant T cells to produce gamma interferon. These results support the concept that the inability of malignant T cells to enter the epidermis may contribute to emergence of more clinically aggressive T-cell clones that are no longer confined to the skin, but infiltrate the blood, lymph nodes, and viscera, as is seen in Sezary syndrome.

  4. A 1T Dynamic Random Access Memory Cell Based on Gated Thyristor with Surrounding Gate Structure for High Scalability.

    Science.gov (United States)

    Kim, Hyungjin; Kim, Sihyun; Kim, Hyun-Min; Lee, Kitae; Kim, Sangwan; Pak, Byung-Gook

    2018-09-01

    In this study, we investigate a one-transistor (1T) dynamic random access memory (DRAM) cell based on a gated-thyristor device utilizing voltage-driven bistability to enable high-speed operations. The structural feature of the surrounding gate using a sidewall provides high scalability with regard to constructing an array architecture of the proposed devices. In addition, the operation mechanism, I-V characteristics, DRAM operations, and bias dependence are analyzed using a commercial device simulator. Unlike conventional 1T DRAM cells utilizing the floating body effect, excess carriers which are required to be stored to make two different states are not generated but injected from the n+ cathode region, giving the device high-speed operation capabilities. The findings here indicate that the proposed DRAM cell offers distinct advantages in terms of scalability and high-speed operations.

  5. Automated measurement of epidermal thickness from optical coherence tomography images using line region growing

    Science.gov (United States)

    Delacruz, Jomer; Weissman, Jesse; Gossage, Kirk

    2010-02-01

    Optical Coherence Tomography (OCT) is a non-invasive imaging modality that acquires cross sectional images of tissue in-vivo. It accelerates skin diagnosis by eliminating invasive biopsy and laborious histology in the process. Dermatologists have widely used it for looking at morphology of skin diseases such as psoriasis, dermatitis, basal cell carcinoma etc. Skin scientists have also successfully used it for looking at differences in epidermal thickness and its underlying structure with respect to age, body sites, ethnicity, gender, and other related factors. Similar to other in-vivo imaging systems, OCT images suffer from a high degree of speckle and noise content, which hinders examination of tissue structures. Most of the previous work in OCT segmentation of skin was done manually. This compromised the quality of the results by limiting the analyses to a few frames per area. In this paper, we discuss a region growing method for automatic identification of the upper and lower boundaries of the epidermis in living human skin tissue. This image analysis method utilizes images obtained from a frequency-domain OCT. This system is high-resolution and high-speed, and thus capable of capturing volumetric images of the skin in short time. The three-dimensional (3D) data provides additional information that is used in the segmentation process to help compensate for the inherent noise in the images. This method not only provides a better estimation of the epidermal thickness, but also generates a 3D surface map of the epidermal-dermal junction, from which underlying topography can be visualized and further quantified.

  6. Dasatinib blocks cetuximab- and radiation-induced nuclear translocation of the epidermal growth factor receptor in head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Li Chunrong; Iida, Mari; Dunn, Emily F.; Wheeler, Deric L.

    2010-01-01

    Background and purpose: The aberrant expression of epidermal growth factor receptor (EGFR) has been linked to the etiology of head and neck squamous cell carcinoma (HNSCC). The first major phase III trial combining cetuximab with radiation confirmed a strong survival advantage. However, both cetuximab and radiation can promote EGFR translocation to the nucleus where it enhances resistance to both of these modalities. In this report we sought to determine how to block cetuximab- and radiation-induced translocation of EGFR to the nucleus in HNSCC cell lines. Material and methods: We utilized three established HNSCC cell lines, SCC1, SCC6 and SCC1483 and measured nuclear translocation of EGFR after treatment with cetuximab or radiation. We then utilized dasatinib (BMS-354825), a potent, orally bioavailable inhibitor of several tyrosine kinases, including the Src family kinases, to determine if SFKs blockade could abrogate cetuximab- and radiation-induced nuclear EGFR translocation. Results: Cetuximab and radiation treatment of all three HNSCC lines lead to translocation of the EGFR to the nucleus. Blockade of SFKs abrogated cetuximab- and radiation-induced EGFR translocation to the nucleus. Conclusions: The data presented in this report suggest that both cetuximab and radiation can promote EGFR translocation to the nucleus and dasatinib can inhibit this process. Collectively these findings may suggest that dasatinib can limit EGFR translocation to the nucleus and may enhance radiotherapy plus cetuximab in HNSCC.

  7. Silymarin protects epidermal keratinocytes from ultraviolet radiation-induced apoptosis and DNA damage by nucleotide excision repair mechanism.

    Directory of Open Access Journals (Sweden)

    Santosh K Katiyar

    Full Text Available Solar ultraviolet (UV radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum, inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells.

  8. Tc-99m-MDP scintigraphy in the evaluation of epidermal nevus syndrome

    International Nuclear Information System (INIS)

    Barbosa, M.N.S.; Cunha, M.O.; Severiche, A.F.A.; Ramos, C.D.; Etchebehere, E.C.S.C.; Belangero, W.; Camargo, E.E.

    1997-01-01

    Full text: Epidermal nevus syndrome has been described as a congenital neurocutaneous disorder in which epidermal nevi are associated with malformations of other organs, commonly the skeleton and central nervous system. Ocular, cardiac, and genitourinary system abnormalities, as well as other skin lesions, may also be seen. A 19 year old patient with epidermal nevus syndrome, presenting congenital facial epidermal nevi and bone deformity of the lower limbs (shortening of the left leg, left thigh varum, bilateral genu valgum, and multiple pathological fractures), as referred to the nuclear medicine laboratory to evaluate involvement of other sites of the skeleton. Whole body bone scintigraphy performed with MDP-Tc-99m showed multiple small focal areas of increased uptake in the skeleton, mainly in the upper and lower limbs, posterior ribs, right acetabulum, right sacroiliac joint, and right greater trochanter, interpreted as pathological fractures at different stages of remodeling. The range of skeletal findings in this condition is quite diverse. Many of these findings can be attributed to local tissue overgrowth with deformities and advanced bone age, associate with pathological fractures

  9. Synergistic Induction of Cyclooxygenase-2 by Transforming Growth Factor-β1 and Epidermal Growth Factor Inhibits Apoptosis in Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Debabrata Saha

    1999-12-01

    Full Text Available Increased expression of cyclooxygenase-2 (COX-2 expression has been observed in several human tumor types and in selected animal and cell culture models of carcinogenesis, including lung cancer. Increased expression of COX-2 and production of prostaglandins appear to provide a survival advantage to transformed cells through the inhibition of apoptosis, increased attachment to extracellular matrix, increased invasiveness, the stimulation of angiogenesis. In the present studies, we found that transforming growth factor β1 (TGF-β1 and epidermal growth factor (EGF synergistically induced the expression of COX-2 and prostaglandin E2 (PGE2 production in mink lung epithelial (Mvi Lu cells. EGF, but not PDGF or IGF-1, was able to inhibit TGF-β1-induced apoptosis in Mvi Lu cells and this effect was blocked by NS-398, a selective inhibitor of COX-2 activity, suggesting a possible role for COX-2 in the anti-apoptosic effect of EGF receptor ligands. The combination of TGF-β1 and EGF also significantly induced COX-2 expression in rat intestinal epithelial (RIE-1 cells and completely prevented sodium butyrate (NaBu-induced apoptosis. The synergistic induction of COX-2 by TGF-β1 and EGF was not observed in R1B-L17 cells, a line derived from Mvi Lu cells that lacks the TGF-β type-I receptor. AG1478, a selective inhibitor of EGF receptor tyrosine kinase activity, completely suppressed the induction of COX-2 expression by either EGF or TGF-β1+EGF. Also, PD98059, a specific inhibitor of MEK/ERK pathway, SB203580, a specific inhibitor of p38 MAPK activity, significantly inhibited the induction of COX-2 in response to combined EGF and TGF-β1. These results suggest an important collaborative interaction of TGF-β1 and EGF signaling in the induction of COX-2 and prostaglandin production in Mv1Lu cells.

  10. Ruptured Epidermal Inclusion Cysts in the Subareolar Area: Sonographic Findings in Two Cases

    Energy Technology Data Exchange (ETDEWEB)

    Whang, In Yong; Lee, Jae Hee; Kim, Jeong Soo; Kim, Ki Tae; Shin, Ok Ran [Uijongbu St. Mary' s Hospital, Catholic University College of Medicine, Seoul (Korea, Republic of)

    2007-08-15

    We report here on two cases of ruptured epidermal inclusion cysts in the subareolar area, which is a very unusual location for these cysts and these lesions can be mistaken for breast malignancies. Although the epidermal inclusion cyst is an uncommon finding in the breast, we can easily diagnosis this as a cyst. But when it is presented in an unusual subareolar location and with a ruptured state, it can be mistaken for breast malignancy. We present here two surgically confirmed cases of ruptured epidermal inclusion cyst in a subareolar location, and this has not been previously described in the English medical literature. In our cases, we first considered the possibility of breast malignancy because the masses presented as an irregular mass on the initial sonography, and the patients were over the age 40 and we didn't take the possibility of abscess from ruptured epidermal inclusion cyst into consideration due to its rare occurrence and the unusual lesion location. FNAB and follow up imaging study after medical treatment, or the recurrent feature were the ways to later narrow the differential diagnosis. In conclusion, when a subareolar lesion has findings on sonography that are suspicious of malignancy, the differential diagnosis should include a ruptured epidermal inclusion cyst, with or without evidence of inflammation.

  11. Ruptured Epidermal Inclusion Cysts in the Subareolar Area: Sonographic Findings in Two Cases

    International Nuclear Information System (INIS)

    Whang, In Yong; Lee, Jae Hee; Kim, Jeong Soo; Kim, Ki Tae; Shin, Ok Ran

    2007-01-01

    We report here on two cases of ruptured epidermal inclusion cysts in the subareolar area, which is a very unusual location for these cysts and these lesions can be mistaken for breast malignancies. Although the epidermal inclusion cyst is an uncommon finding in the breast, we can easily diagnosis this as a cyst. But when it is presented in an unusual subareolar location and with a ruptured state, it can be mistaken for breast malignancy. We present here two surgically confirmed cases of ruptured epidermal inclusion cyst in a subareolar location, and this has not been previously described in the English medical literature. In our cases, we first considered the possibility of breast malignancy because the masses presented as an irregular mass on the initial sonography, and the patients were over the age 40 and we didn't take the possibility of abscess from ruptured epidermal inclusion cyst into consideration due to its rare occurrence and the unusual lesion location. FNAB and follow up imaging study after medical treatment, or the recurrent feature were the ways to later narrow the differential diagnosis. In conclusion, when a subareolar lesion has findings on sonography that are suspicious of malignancy, the differential diagnosis should include a ruptured epidermal inclusion cyst, with or without evidence of inflammation

  12. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    Science.gov (United States)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-02-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  13. Keratinocyte-derived IL-24 plays a role in the positive feedback regulation of epidermal inflammation in response to environmental and endogenous toxic stressors

    International Nuclear Information System (INIS)

    Jin, Sun Hee; Choi, Dalwoong; Chun, Young-Jin; Noh, Minsoo

    2014-01-01

    Keratinocytes are the major cellular components of human epidermis and play a key role in the modulating cutaneous inflammation and toxic responses. In human chronic skin diseases, the common skin inflammatory phenotypes like skin barrier disruption and epidermal hyperplasia are manifested in epidermal keratinocytes by interactions with T helper (Th) cells. To find a common gene expression signature of human keratinocytes in chronic skin diseases, we performed a whole genome microarray analysis on normal human epidermal keratinocytes (NHKs) treated with IFNγ, IL-4, IL-17A or IL-22, major cytokines from Th1, Th2, Th17 or Th22 cells, respectively. The microarray results showed that the four genes, IL-24, PDZK1IP1, H19 and filaggrin, had common expression profiles in NHKs exposed to Th cell cytokines. In addition, the acute phase pro-inflammatory cytokines, IL-1β, IL-6 and TNFα, also change the gene transcriptional profile of IL-24, PDZK1IP1, H19, and filaggrin in NHKs as those of Th cytokines. Therefore, the signature gene set, consisting of IL-24, PDZK1IP1, H19, and filaggrin, provides essential insights for understanding the process of cutaneous inflammation and toxic responses. We demonstrate that environmental toxic stressors, such as chemical irritants and ultraviolet irradiation stimulate the production of IL-24 in NHKs. IL-24 stimulates the JAK1-STAT3 and MAPK pathways in NHKs, and promotes the secretion of pro-inflammatory mediators IL-8, PGE2, and MMP-1. These results suggest that keratinocyte-derived IL-24 participates in the positive feedback regulation of epidermal inflammation in response to both endogenous and environmental toxic stressors. - Highlights: • Cutaneous inflammatory gene signature consists of PDZK1IP1, IL-24, H19 and filaggrin. • Pro-inflammatory cytokines increase IL-24 production in human keratinocytes. • Environmental toxic stressors increase IL-24 production in human keratinocytes. • IL-24 stimulates human keratinocytes to

  14. Keratinocyte-derived IL-24 plays a role in the positive feedback regulation of epidermal inflammation in response to environmental and endogenous toxic stressors

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sun Hee [Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742 (Korea, Republic of); Choi, Dalwoong [Department of Public Health Science, Korea University, Seoul 136-701 (Korea, Republic of); Chun, Young-Jin [College of Pharmacy, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Noh, Minsoo, E-mail: minsoo@alum.mit.edu [Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-10-15

    Keratinocytes are the major cellular components of human epidermis and play a key role in the modulating cutaneous inflammation and toxic responses. In human chronic skin diseases, the common skin inflammatory phenotypes like skin barrier disruption and epidermal hyperplasia are manifested in epidermal keratinocytes by interactions with T helper (Th) cells. To find a common gene expression signature of human keratinocytes in chronic skin diseases, we performed a whole genome microarray analysis on normal human epidermal keratinocytes (NHKs) treated with IFNγ, IL-4, IL-17A or IL-22, major cytokines from Th1, Th2, Th17 or Th22 cells, respectively. The microarray results showed that the four genes, IL-24, PDZK1IP1, H19 and filaggrin, had common expression profiles in NHKs exposed to Th cell cytokines. In addition, the acute phase pro-inflammatory cytokines, IL-1β, IL-6 and TNFα, also change the gene transcriptional profile of IL-24, PDZK1IP1, H19, and filaggrin in NHKs as those of Th cytokines. Therefore, the signature gene set, consisting of IL-24, PDZK1IP1, H19, and filaggrin, provides essential insights for understanding the process of cutaneous inflammation and toxic responses. We demonstrate that environmental toxic stressors, such as chemical irritants and ultraviolet irradiation stimulate the production of IL-24 in NHKs. IL-24 stimulates the JAK1-STAT3 and MAPK pathways in NHKs, and promotes the secretion of pro-inflammatory mediators IL-8, PGE2, and MMP-1. These results suggest that keratinocyte-derived IL-24 participates in the positive feedback regulation of epidermal inflammation in response to both endogenous and environmental toxic stressors. - Highlights: • Cutaneous inflammatory gene signature consists of PDZK1IP1, IL-24, H19 and filaggrin. • Pro-inflammatory cytokines increase IL-24 production in human keratinocytes. • Environmental toxic stressors increase IL-24 production in human keratinocytes. • IL-24 stimulates human keratinocytes to

  15. Inhibition of cyclobutane pyrimidine dimer formation in epidermal p53 gene of UV-irradiated mice by alpha-tocopherol

    International Nuclear Information System (INIS)

    Chen, W.; Barthelman, M.; Martinez, J.; Alberts, D.; Gensler, H.L.

    1997-01-01

    Mutations or alterations in the p53 gene have been observed in 50-100% of ultraviolet light (UV)-induced squamous cell carcinoma in humans and animals. Most of the mutations occurred at dipyrimidine sequences, suggesting that pyrimidine dimers in the p53 gene play a role in the pathogenesis of cutaneous squamous cell carcinoma. We previously showed that topical alpha-tocopherol prevents UV-induced skin carcinogenesis in the mouse. In the present study we asked whether topical alpha-tocopherol reduces the level of UV-induced cyclobutane pyrimidine dimers in the murine epidermal p53 gene. Mice received six dorsal applications of 25 mg each of alpha-tocopherol, on alternate days, before exposure to 500 J/m2 of UV-B irradiation. Mice were killed at selected times after irradiation. The level of dimers in the epidermal p53 gene was measured using the T4 endonuclease V assay with quantitative Southern hybridization. Topical alpha-tocopherol caused a 55% reduction in the formation of cyclobutane pyrimidine dimers in the epidermal p53 gene. The rate of reduction of pyrimidine dimers between 1 and 10 hours after irradiation was similar in UV-irradiated mice, regardless of alpha-tocopherol treatment. Therefore, the lower level of cyclobutane pyrimidine dimers in UV-irradiated mice treated with alpha-tocopherol than in control UV-irradiated mice resulted from the prevention of formation of the dimers, and not from enhanced repair of these lesions. Our results indicate that alpha-tocopherol acts as an effective sunscreen in vivo, preventing the formation of premutagenic DNA lesions in a gene known to be important in skin carcinogenesis

  16. Toxic epidermal necrolysis and Stevens-Johnson syndrome

    Directory of Open Access Journals (Sweden)

    French Lars E

    2010-12-01

    Full Text Available Abstract Toxic epidermal necrolysis (TEN and Stevens Johnson Syndrome (SJS are severe adverse cutaneous drug reactions that predominantly involve the skin and mucous membranes. Both are rare, with TEN and SJS affecting approximately 1or 2/1,000,000 annually, and are considered medical emergencies as they are potentially fatal. They are characterized by mucocutaneous tenderness and typically hemorrhagic erosions, erythema and more or less severe epidermal detachment presenting as blisters and areas of denuded skin. Currently, TEN and SJS are considered to be two ends of a spectrum of severe epidermolytic adverse cutaneous drug reactions, differing only by their extent of skin detachment. Drugs are assumed or identified as the main cause of SJS/TEN in most cases, but Mycoplasma pneumoniae and Herpes simplex virus infections are well documented causes alongside rare cases in which the aetiology remains unknown. Several drugs are at "high" risk of inducing TEN/SJS including: Allopurinol, Trimethoprim-sulfamethoxazole and other sulfonamide-antibiotics, aminopenicillins, cephalosporins, quinolones, carbamazepine, phenytoin, phenobarbital and NSAID's of the oxicam-type. Genetic susceptibility to SJS and TEN is likely as exemplified by the strong association observed in Han Chinese between a genetic marker, the human leukocyte antigen HLA-B*1502, and SJS induced by carbamazepine. Diagnosis relies mainly on clinical signs together with the histological analysis of a skin biopsy showing typical full-thickness epidermal necrolysis due to extensive keratinocyte apoptosis. Differential diagnosis includes linear IgA dermatosis and paraneoplastic pemphigus, pemphigus vulgaris and bullous pemphigoid, acute generalized exanthematous pustulosis (AGEP, disseminated fixed bullous drug eruption and staphyloccocal scalded skin syndrome (SSSS. Due to the high risk of mortality, management of patients with SJS/TEN requires rapid diagnosis, evaluation of the prognosis

  17. The Effects of Epidermal Neural Crest Stem Cells on Local Inflammation Microenvironment in the Defected Sciatic Nerve of Rats

    Directory of Open Access Journals (Sweden)

    Yue Li

    2017-05-01

    Full Text Available Cell-based therapy is a promising strategy for the repair of peripheral nerve injuries (PNIs. epidermal neural crest stems cells (EPI-NCSCs are thought to be important donor cells for repairing PNI in different animal models. Following PNI, inflammatory response is important to regulate the repair process. However, the effects of EPI-NCSCs on regulation of local inflammation microenviroment have not been investigated extensively. In the present study, these effects were studied by using 10 mm defected sciatic nerve, which was bridged with 15 mm artificial nerve composed of EPI-NCSCs, extracellular matrix (ECM and poly (lactide-co-glycolide (PLGA. Then the expression of pro- and anti-inflammatory cytokines, polarization of macrophages, regulation of fibroblasts and shwann cells (SCs were assessed by western blot, immunohistochemistry, immunofluorescence staining at 1, 3, 7 and 21 days after bridging. The structure and the function of the bridged nerve were determined by observation under light microscope and by examination of right lateral foot retraction time (LFRT, sciatic function index (SFI, gastrocnemius wet weight and electrophysiology at 9 weeks. After bridging with EPI-NCSCs, the expression of anti-inflammatory cytokines (IL-4 and IL-13 was increased, but decreased for pro-inflammatory cytokines (IL-6 and TNF-α compared to the control bridging, which was consistent with increase of M2 macrophages and decrease of M1 macrophages at 7 days after transplantation. Likewise, myelin-formed SCs were significantly increased, but decreased for the activated fibroblasts in their number at 21 days. The recovery of structure and function of nerve bridged with EPI-NCSCs was significantly superior to that of DMEM. These results indicated that EPI-NCSCs could be able to regulate and provide more suitable inflammation microenvironment for the repair of defected sciatic nerve.

  18. A review of toxic epidermal necrolysis management in Japan

    Directory of Open Access Journals (Sweden)

    Yuri Kinoshita

    2017-01-01

    Full Text Available Toxic epidermal necrolysis (TEN is a severe adverse drug reaction characterized by necrosis of the epidermis. Its incidence is approximately 1 per million a year and average mortality rate is high at 25–50%. TEN has a flu-like prodrome, followed by atypical, targetoid erythematous or purpuric macules on the skin. These macules coalesce to form flaccid blisters that slough off as areas of epidermal necrosis. Drugs such as allopurinol, sulfonamides, and carbamazepine are the most common causes. The human leukocyte antigen (HLA-B*15:02 in Asians being administered carbamazepine and the HLA-B*58:01 antigen in patients of all ethnicities being administered allopurinol are known to be high-risk factors. Rapid diagnosis, discontinuation of the causative drug, and supportive treatment are essential for better prognosis and improvement of sequelae. Till now, systemic corticosteroids and intravenous immunoglobulins have been used as the most common active interventions; however, no gold standard has been established. In Japan, physicians follow a unique diagnostic criteria and treatment guideline to improve the diagnosis rate and streamline treatments. This may be a contributing factor for the lower mortality rate (14.3%. The efficacy of systemic corticosteroids, immunoglobulins, and plasmapheresis may have been beneficial as well. In Japan, TEN is defined as an epidermal detachment of over 10% of the body surface area (BSA, while the globally accepted definition established by Bastuji-Garin describes it as an epidermal detachment of over 30% of the BSA. In Japanese individuals, HLA-A*02:06, HLA-A*02:07, HLA-A*31:01 and HLA-B*51:01 may be linked to higher risks of TEN.

  19. Cytoplasmic movement profiles of mouse surrounding nucleolus and not-surrounding nucleolus antral oocytes during meiotic resumption.

    Science.gov (United States)

    Bui, Thi Thu Hien; Belli, Martina; Fassina, Lorenzo; Vigone, Giulia; Merico, Valeria; Garagna, Silvia; Zuccotti, Maurizio

    2017-05-01

    Full-grown mouse antral oocytes are classified as surrounding nucleolus (SN) or not-surrounding nucleolus (NSN), depending on the respective presence or absence of a ring of Hoechst-positive chromatin surrounding the nucleolus. In culture, both types of oocytes resume meiosis and reach the metaphase II (MII) stage, but following insemination, NSN oocytes arrest at the two-cell stage whereas SN oocytes may develop to term. By coupling time-lapse bright-field microscopy with image analysis based on particle image velocimetry, we provide the first systematic measure of the changes to the cytoplasmic movement velocity (CMV) occurring during the germinal vesicle-to-MII (GV-to-MII) transition of these two types of oocytes. Compared to SN oocytes, NSN oocytes display a delayed GV-to-MII transition, which can be mostly explained by retarded germinal vesicle break down and first polar body extrusion. SN and NSN oocytes also exhibit significantly different CMV profiles at four main time-lapse intervals, although this difference was not predictive of SN or NSN oocyte origin because of the high variability in CMV. When CMV profile was analyzed through a trained artificial neural network, however, each single SN or NSN oocyte was blindly identified with a probability of 92.2% and 88.7%, respectively. Thus, the CMV profile recorded during meiotic resumption may be exploited as a cytological signature for the non-invasive assessment of the oocyte developmental potential, and could be informative for the analysis of the GV-to-MII transition of oocytes of other species. © 2017 Wiley Periodicals, Inc.

  20. Repair of ultraviolet light damage to the DNA of cultured human epidermal keratinocytes and fibroblasts

    International Nuclear Information System (INIS)

    Taichman, L.B.; Setlow, R.B.

    1979-01-01

    Pure cultures of dermal fibroblasts and epidermal keroatinocytes have been obtained from a single biopsy of newborn foreskin. The cells were labeled, exposed to several doses of uv light, and allowed to repair in the dark for 16 h. The number of pyrimidine dimers before and after repair was assessed by measuring the numbers of sites in the DNA sensitive to a specific uv endonuclease. At all doses used, the extent of repair was similar in the cultured keratinocytes and cultured fibroblasts

  1. The plant membrane surrounding powdery mildew haustoria shares properties with the endoplasmic reticulum membrane

    DEFF Research Database (Denmark)

    Kwaaitaal, Mark Adrianus Cornelis J; Nielsen, Mads Eggert; Böhlenius, Henrik

    2017-01-01

    Many filamentous plant pathogens place specialized feeding structures, called haustoria, inside living host cells. As haustoria grow, they are believed to manipulate plant cells to generate a specialized, still enigmatic extrahaustorial membrane (EHM) around them. Here, we focused on revealing...... properties of the EHM. With the help of membranespecific dyes and transient expression of membrane-associated proteins fused to fluorescent tags, we studied the nature of the EHM generated by barley leaf epidermal cells around powdery mildew haustoria. Observations suggesting that endoplasmic reticulum (ER...... that it is not a continuum of the ER. Furthermore, GDP-locked Sar1 and a nucleotide-free RabD2a, which block ER to Golgi exit, did not hamper haustorium formation. These results indicated that the EHM shares features with the plant ER membrane, but that the EHM membrane is not dependent on conventional secretion...

  2. Stevens-Johnson Syndrome (SJS) and Toxic Epidermal Necrolysis ...

    African Journals Online (AJOL)

    REVIEW. Introduction. Stevens-Johnson syndrome (SJS) and toxic epidermal ... that affect the skin and mucous membranes. ... Open Access article distributed under the terms of the .... pathogenic components are removed from plasma. The.

  3. Amlexanox Blocks the Interaction between S100A4 and Epidermal Growth Factor and Inhibits Cell Proliferation.

    Directory of Open Access Journals (Sweden)

    Ching Chang Cho

    Full Text Available The human S100A4 protein binds calcium, resulting in a change in its conformation to promote the interaction with its target protein. Human epidermal growth factor (EGF is the target protein of S100A4 and a critical ligand of the receptor EGFR. The EGF/EGFR system promotes cell survival, differentiation, and growth by activating several signaling pathways. Amlexanox is an anti-inflammatory and anti-allergic drug that is used to treat recurrent aphthous ulcers. In the present study, we determined that amlexanox interacts with S100A4 using heteronuclear single quantum correlation titration. We elucidated the interactions of S100A4 with EGF and amlexanox using fluorescence and nuclear magnetic resonance spectroscopy. We generated two binary models (for the S100A4-EGF and S100A4-amlexanox complexes and observed that amlexanox and EGF share a similar binding region in mS100A4. We also used a WST-1 assay to investigate the bioactivity of S100A4, EGF, and amlexanox, and found that amlexanox blocks the binding between S100A4 and EGF, and is therefore useful for the development of new anti-proliferation drugs.

  4. Fisetin inhibits epidermal growth factor-induced migration of ARPE-19 cells by suppression of AKT activation and Sp1-dependent MMP-9 expression.

    Science.gov (United States)

    Lin, Hung-Yu; Chen, Yong-Syuan; Wang, Kai; Chien, Hsiang-Wen; Hsieh, Yi-Hsien; Yang, Shun-Fa

    2017-01-01

    Proliferative vitreoretinopathy (PVR) can result in abnormal migration of RPE cells. Fisetin is a naturally occurring compound that has been reported to have antitumor effects, but its effects on epidermal growth factor (EGF)-induced cell migration and the underlying mechanisms remain unclear. Effects of fisetin on EGF-induced cell viability and migration were examined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and in vitro migration assays. Reverse transcription-PCR (RT-PCR) and immunoblotting were performed to evaluate matrix metallopeptidase-9 (MMP-9) expression and activation of specificity protein-1 (Sp1) and protein kinase B (AKT) in ARPE-19 cells treated with EGF and with or without fisetin. Luciferase and chromatin immunoprecipitation (ChIP) assays were performed to examine Sp1 transcription activity and MMP-9 binding activity. Fisetin did not affect ARPE-19 cell viability and significantly inhibited the EGF-induced migration capacity of ARPE-19 cells. Furthermore, fisetin exerted an antimigratory effect and suppressed MMP-9 mRNA and protein expression. Treatment with EGF induced phosphorylation of AKT and expression of MMP-9 and Sp1. Fisetin combined with LY294002 (an inhibitor of AKT) prevented the EGF-induced migration involved in downregulation of Sp1 and MMP-9 expression. Luciferase and ChIP assays suggested that fisetin remarkably decreased the EGF-induced transcription activity of MMP-9 and Sp1 and inhibited EGF-mediated Sp1 from directly binding to the MMP-9 promoter in ARPE-19 cells. Fisetin inhibited EGF-induced cell migration via modulation of AKT/Sp1-dependent MMP-9 transcriptional activity. Therefore, fisetin may be a potential agent in the treatment of migratory PVR diseases.

  5. Epidermal growth factor enemas for induction of remission in left-sided ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Hugo Nodarse-Cuní

    2013-03-01

    Full Text Available Introduction: ulcerative colitis is a little known chronic inflammatory disease in colonic mucosa. The positive effect of epidermal growth factor was shown in a previous report, with enema use for treatment of mild to moderate left-sided manifestation of the disease. This evidence provided the basis for evaluating the efficacy and safety profile of a viscous solution of this product. Methods: thirty-one patients were randomized to three groups for daily medications during 14 days. Twelve received one 10 mg enema of epidermal growth factor dissolved in 100 mL of viscous solution whereas nine were treated with placebo enema; both groups also received 1.2 g of oral mesalamine per day. The other group included ten patients with 3 g / 100 mL of mesalamine enema. Primary end point was clinical responses after two weeks of treatment, defined as a decreased of, at least three points from baseline, the Disease Activity Index and endoscopic or histological evidences of improvement. Results: remission of disease was observed in all patients in the epidermal growth factor group, and six in both, mesalamine enema and placebo group. All the comparisons between groups showed statistically significant superiority for epidermal growth factor, the only product with significant reduction in disease activity index as well as the presence and intensity of digestive symptoms in patients after treatment. None adverse event was reported. Conclusions: the results agree with previous molecular and clinical evidences, indicating that the epidermal growth factor is effective to reduce disease activity and to induce remission. A new study involving more patients should be conducted to confirm the efficacy of the epidermal growth factor enemas.

  6. Tratamento endoscópico do câncer epidermóide do esôfago Endoscopic treatment of squamous cell esophageal cancer

    Directory of Open Access Journals (Sweden)

    Fauze Maluf-Filho

    2006-06-01

    Full Text Available OBJETIVOS: Procurou-se avaliar o papel atual dos procedimentos terapêuticos endoscópicos no manejo do pacientes com carcinoma epidermóide do esôfago. LEVANTAMENTO DE DADOS: Utilizando o banco de dados do PubMed (U.S. National Library of Medicine, analisaram-se as publicações sobre o tema nos últimos 10 anos, cotejando-as com a experiência desenvolvida no Serviço de Endoscopia Gastrointestinal do Departamento de Gastroenterologia da Faculdade de Medicina da Universidade de São Paulo. SÍNTESE DOS DADOS: Neste campo, destacam-se a ressecção endoscópica do câncer esofágico precoce e a tunelização do tumor avançado daquele órgão. A ressecção endoscópica da mucosa do câncer epidermóide precoce do esôfago é indicada quando a lesão é confinada ao epitélio (m1 ou à lamina própria (m2. A taxa de sobrevida conhecida de 5 anos após a ressecção endoscópica da mucosa do tumor epidermóide intramucoso do esôfago aproxima-se de 95%. CONCLUSÕES: Baseado nas evidências disponíveis, parece razoável indicar a ressecção endoscópica da mucosa como tratamento de primeira escolha para pacientes com carcinoma esofágico epidermóide intramucoso. Existem vários métodos endoscópicos paliativos para o alívio da disfagia em câncer esofágico avançado. A escolha variará de acordo com as características anatômicas e a localização do tumor, as preferências do paciente, a disponibilidade e a capacitação do centro assistencial. A taxa de sucesso técnico da colocação de próteses metálicas auto-expansíveis em estenose maligna praticamente atinge 100%. A taxa de efeito paliativo em longo prazo da disfagia aproxima-se de 80%, o que faz com que esta opção seja, até o momento, o tratamento paliativo de escolha para os sintomas de obstrução causados pelo câncer esofágico de células escamosas.OBJECTIVE: In this article, it was evaluated the role of endoscopic procedures for the management of squamous cell

  7. Th17 cell-mediated immune responses promote mast cell proliferation by triggering stem cell factor in keratinocytes

    International Nuclear Information System (INIS)

    Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee; Woo, So-Youn

    2017-01-01

    Although mast cells are traditionally thought to function as effector cells in allergic responses, they have increasingly been recognized as important regulators of various immune responses. Mast cells mature locally; thus, tissue-specific influences are important for promoting mast cell accumulation and survival in the skin and the gastrointestinal tract. In this study, we determined the effects of keratinocytes on mast cell accumulation during Th17-mediated skin inflammation. We observed increases in dermal mast cells in imiquimod-induced psoriatic dermatitis in mice accompanied by the expression of epidermal stem cell factor (SCF), a critical mast cell growth factor. Similar to mouse epidermal keratinocytes, SCF was highly expressed in the human HaCaT keratinocyte cell line following stimulation with IL−17. Further, keratinocytes promoted mast cell proliferation following stimulation with IL−17 in vitro. However, the effects of keratinocytes on mast cells were significantly diminished in the presence of anti−CD117 (stem cell factor receptor) blocking antibodies. Taken together, our results revealed that the Th17-mediated inflammatory environment promotes mast cell accumulation through keratinocyte-derived SCF. - Highlights: • Psoriasis-like skin inflammation increase dermal mast cells. • Keratinocyte produce stem cell factor in psoriasis-like skin inflammation. • Keratinocyte promote mast cell proliferation by stem cell factor dependent manner

  8. Effect and Mechanism of EGFL7 Downregulation in Human Osteosarcoma Cells on the Biological Function of Co-cultured HUVEC

    Directory of Open Access Journals (Sweden)

    Xia Li

    2018-03-01

    Full Text Available Background: Even though epidermal growth factor-like domain 7 is known to be overexpressed in osteosarcoma and is associated with poor clinical outcome, few reports are available regarding its mechanism. Aims: The objective of this study was to explore the effect and mechanism of downregulating epidermal growth factor-like domain 7 expression in a human osteosarcoma cell line on the biological function of co-cultured human umbilical vein endothelial cells. Study Design: Cell study. Methods: In the present study, human osteosarcoma cell lines U2OS, Saos-2, HOS, and MG63, and normal human osteoblasts were cultured in Dulbecco’s Modified Eagle Medium containing 10% fetal bovine serum and 1x antibiotics at 37 °C and 5% CO2 in an incubator. Of the four osteosarcoma cell lines, U2OS expresses the highest level of epidermal growth factor-like domain 7 mRNA as determined using quantitative reverse transcription polymerase chain reaction. With the knockdown of epidermal growth factor-like domain 7 in U2OS and human umbilical vein endothelial cells by lentivirus, the proliferation and apoptosis of U2OS and human umbilical vein endothelial cells were investigated using MTT and flow cytometry assays. After the co-culture of human umbilical vein endothelial cells and epidermal growth factor-like domain 7-knockdown U2OS, the in vitro effects on cell proliferation, apoptosis, adhesion, migration, and the angiogenic ability of human umbilical vein endothelial cells were detected using MTT, flow cytometry, Transwell, and tube formation assays, respectively. The expressions of phosphoinositide 3-kinase, phospho-Akt, total Akt, and vascular endothelial growth factor in human umbilical vein endothelial cells were detected using western blot assay. Results: Lentivirus with epidermal growth factor-like domain 7 shRNA could not significantly affect the proliferation and apoptosis of both U2OS and human umbilical vein endothelial cells, whereas the knockdown of

  9. Near Infrared Optical Visualization of Epidermal Growth Factor Receptors Levels in COLO205 Colorectal Cell Line, Orthotopic Tumor in Mice and Human Biopsies

    Directory of Open Access Journals (Sweden)

    Philip Lazarovici

    2013-07-01

    Full Text Available In this study, we present the applicability of imaging epidermal growth factor (EGF receptor levels in preclinical models of COLO205 carcinoma cells in vitro, mice with orthotopic tumors and ex vivo colorectal tumor biopsies, using EGF-labeled with IRDye800CW (EGF-NIR. The near infrared (NIR bio-imaging of COLO205 cultures indicated specific and selective binding, reflecting EGF receptors levels. In vivo imaging of tumors in mice showed that the highest signal/background ratio between tumor and adjacent tissue was achieved 48 hours post-injection. Dissected colorectal cancer tissues from different patients demonstrated ex vivo specific imaging using the NIR bio-imaging platform of the heterogeneous distributed EGF receptors. Moreover, in the adjacent gastrointestinal tissue of the same patients, which by Western blotting was demonstrated as EGF receptor negative, no labeling with EGF-NIR probe was detected. Present results support the concept of tumor imaging by measuring EGF receptor levels using EGF-NIR probe. This platform is advantageous for EGF receptor bio-imaging of the NCI-60 recommended panel of tumor cell lines including 6–9 colorectal cell lines, since it avoids radioactive probes and is appropriate for use in the clinical setting using NIR technologies in a real-time manner.

  10. Abca12-mediated lipid transport and Snap29-dependent trafficking of lamellar granules are crucial for epidermal morphogenesis in a zebrafish model of ichthyosis

    Directory of Open Access Journals (Sweden)

    Qiaoli Li

    2011-11-01

    Zebrafish (Danio rerio can serve as a model system to study heritable skin diseases. The skin is rapidly developed during the first 5–6 days of embryonic growth, accompanied by expression of skin-specific genes. Transmission electron microscopy (TEM of wild-type zebrafish at day 5 reveals a two-cell-layer epidermis separated from the underlying collagenous stroma by a basement membrane with fully developed hemidesmosomes. Scanning electron microscopy (SEM reveals an ordered surface contour of keratinocytes with discrete microridges. To gain insight into epidermal morphogenesis, we have employed morpholino-mediated knockdown of the abca12 and snap29 genes, which are crucial for secretion of lipids and intracellular trafficking of lamellar granules, respectively. Morpholinos, when placed on exon-intron junctions, were >90% effective in preventing the corresponding gene expression when injected into one- to four-cell-stage embryos. By day 3, TEM of abca12 morphants showed accumulation of lipid-containing electron-dense lamellar granules, whereas snap29 morphants showed the presence of apparently empty vesicles in the epidermis. Evaluation of epidermal morphogenesis by SEM revealed similar perturbations in both cases in the microridge architecture and the development of spicule-like protrusions on the surface of keratinocytes. These morphological findings are akin to epidermal changes in harlequin ichthyosis and CEDNIK syndrome, autosomal recessive keratinization disorders due to mutations in the ABCA12 and SNAP29 genes, respectively. The results indicate that interference of independent pathways involving lipid transport in the epidermis can result in phenotypically similar perturbations in epidermal morphogenesis, and that these fish mutants can serve as a model to study the pathomechanisms of these keratinization disorders.

  11. FOLIAR EPIDERMAL AND PHYTOCHEMICAL STUDIES OF THE ...

    African Journals Online (AJOL)

    Administrator

    alkaloid, saponin, inulin, cellulose, tannin and lignin; Eragrostis tremula tested negative for lignin and positive for cellulose, saponin and alkaloids while Axonopus compressus tested negative for lignin, but positive for alkaloid, saponin, inulin, cellulose and tannin respectively. Leaf epidermal studies help to determine ...

  12. Stevens Johnsons syndrom og toksisk epidermal nekrolyse

    DEFF Research Database (Denmark)

    Kaur-Knudsen, Diljit; Zachariae, Claus; Thomsen, Simon Francis

    2013-01-01

    Stevens-Johnson syndrome and toxic epidermal necrolysis are acute mucocutaneous diseases primarily due to drug intake. The diseases are characterised by the separation of epidermis from dermis which can be life-threatening. Mortality is often caused by sepsis and multiple organ failure. The most...

  13. Imaging of Epidermal Growth Factor Receptor Expression in Head and Neck Cancer with SPECT/CT and 111In-Labeled Cetuximab-F(ab')2

    NARCIS (Netherlands)

    Dijk, L.K. van; Hoeben, B.A.W.; Kaanders, J.H.A.M.; Franssen, G.M.; Boerman, O.C.; Bussink, J.

    2013-01-01

    Combined treatment of advanced head and neck squamous cell carcinomas (HNSCC) with radiotherapy and the epidermal growth factor receptor (EGFR) inhibitor cetuximab improves clinical outcome in comparison to radiotherapy alone but is effective only in a few cases. To select those patients most likely

  14. Emerging role of epidermal growth factor receptor inhibition in therapy for advanced malignancy: focus on NSCLC

    International Nuclear Information System (INIS)

    Langer, Corey J.

    2004-01-01

    Combination chemotherapy regimens have emerged as the standard approach in advanced non-small-cell lung cancer. Meta-analyses have demonstrated a 2-month increase in median survival after platinum-based therapy vs. best supportive care, and an absolute 10% improvement in the 1-year survival rate. Just as importantly, cytotoxic therapy has produced benefits in symptom control and quality of life. Newer agents, including the taxanes, vinorelbine, gemcitabine, and irinotecan, have expanded our therapeutic options in the treatment of advanced non-small-cell lung cancer. Despite their contributions, we have reached a therapeutic plateau, with response rates seldom exceeding 30-40% in cooperative group studies and 1-year survival rates stable between 30% and 40%. It is doubtful that substituting one agent for another in various combinations will lead to any further improvement in these rates. The thrust of current research has focused on targeted therapy, and epidermal growth factor receptor inhibition is one of the most promising clinical strategies. Epidermal growth factor receptor inhibitors currently under investigation include the small molecules gefitinib (Iressa, ZD1839) and erlotinib (Tarceva, OSI-774), as well as monoclonal antibodies such as cetuximab (IMC-225, Erbitux). Agents that have only begun to undergo clinical evaluation include CI-1033, an irreversible pan-erbB tyrosine kinase inhibitor, and PKI166 and GW572016, both examples of dual kinase inhibitors (inhibiting epidermal growth factor receptor and Her2). Preclinical models have demonstrated synergy for all these agents in combination with either chemotherapy or radiotherapy, leading to great enthusiasm regarding their ultimate contribution to lung cancer therapy. However, serious clinical challenges persist. These include the identification of the optimal dose(s); the proper integration of these agents into popular, established cytotoxic regimens; and the selection of the optimal setting(s) in which

  15. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function

    Directory of Open Access Journals (Sweden)

    Magdalena Boer

    2016-02-01

    Full Text Available The complex structure of human skin and its physicochemical properties turn it into an efficient outermost defence line against exogenous factors, and help maintain homeostasis of the human body. This role is played by the epidermal barrier with its major part – stratum corneum. The condition of the epidermal barrier depends on individual and environmental factors. The most important biophysical parameters characterizing the status of this barrier are the skin pH, epidermal hydration, transepidermal water loss and sebum excretion. The knowledge of biophysical skin processes may be useful for the implementation of prophylactic actions whose aim is to restore the barrier function.

  16. Anti-Epidermal Growth Factor Receptor Therapy in Head and Neck Squamous Cell Carcinoma: Focus on Potential Molecular Mechanisms of Drug Resistance

    Science.gov (United States)

    Baay, Marc; Wouters, An; Specenier, Pol; Vermorken, Jan B.; Peeters, Marc; Lardon, Filip

    2013-01-01

    Targeted therapy against the epidermal growth factor receptor (EGFR) is one of the most promising molecular therapeutics for head and neck squamous cell carcinoma (HNSCC). EGFR is overexpressed in a wide range of malignancies, including HNSCC, and initiates important signal transduction pathways in HNSCC carcinogenesis. However, primary and acquired resistance are serious problems and are responsible for low single-agent response rate and tumor recurrence. Therefore, an improved understanding of the molecular mechanisms of resistance to EGFR inhibitors may provide valuable indications to identify biomarkers that can be used clinically to predict response to EGFR blockade and to establish new treatment options to overcome resistance. To date, no predictive biomarker for HNSCC is available in the clinic. Therapeutic resistance to anti-EGFR therapy may arise from mechanisms that can compensate for reduced EGFR signaling and/or mechanisms that can modulate EGFR-dependent signaling. In this review, we will summarize some of these molecular mechanisms and describe strategies to overcome that resistance. PMID:23821327

  17. Wnt signalling via the epidermal growth factor receptor: a role in breast cancer?

    International Nuclear Information System (INIS)

    Musgrove, Elizabeth A

    2004-01-01

    Recent data have suggested the epidermal-growth-factor receptor (EGFR) as a point of convergence for several different classes of receptor. Civenni and colleagues have now demonstrated crosstalk between Wnt signalling and the EGFR, showing that in breast epithelial cells Wnts activate downstream targets of the EGFR, including cyclin D1. Given the role of members of these pathways in the aetiology of breast cancer and as markers of outcome and potential therapeutic targets in breast cancer, this observation has a number of potential implications important for both the basic biology of breast cancer and the clinical management of the disease

  18. Endothelin B Receptors on Primary Chicken Müller Cells and the Human MIO-M1 Müller Cell Line Activate ERK Signaling via Transactivation of Epidermal Growth Factor Receptors.

    Directory of Open Access Journals (Sweden)

    Mohammad Harun-Or-Rashid

    Full Text Available Injury to the eye or retina triggers Müller cells, the major glia cell of the retina, to dedifferentiate and proliferate. In some species they attain retinal progenitor properties and have the capacity to generate new neurons. The epidermal growth factor receptor (EGFR system and extracellular signal-regulated kinase (ERK signaling are key regulators of these processes in Müller cells. The extracellular signals that modulate and control these processes are not fully understood. In this work we studied whether endothelin receptor signaling can activate EGFR and ERK signaling in Müller cells. Endothelin expression is robustly upregulated at retinal injury and endothelin receptors have been shown to transactivate EGFRs in other cell types. We analyzed the endothelin signaling system in chicken retina and cultured primary chicken Müller cells as well as the human Müller cell line MIO-M1. The Müller cells were stimulated with receptor agonists and treated with specific blockers to key enzymes in the signaling pathway or with siRNAs. We focused on endothelin receptor mediated transactivation of EGFRs by using western blot analysis, quantitative reverse transcriptase PCR and immunocytochemistry. The results showed that chicken Müller cells and the human Müller cell line MIO-M1 express endothelin receptor B. Stimulation by the endothelin receptor B agonist IRL1620 triggered phosphorylation of ERK1/2 and autophosphorylation of (Y1173 EGFR. The effects could be blocked by Src-kinase inhibitors (PP1, PP2, EGFR-inhibitor (AG1478, EGFR-siRNA and by inhibitors to extracellular matrix metalloproteinases (GM6001, consistent with a Src-kinase mediated endothelin receptor response that engage ligand-dependent and ligand-independent EGFR activation. Our data suggest a mechanism for how injury-induced endothelins, produced in the retina, may modulate the Müller cell responses by Src-mediated transactivation of EGFRs. The data give support to a view in

  19. Analysis of Epidermal Growth Factor Receptor Related Gene Expression Changes in a Cellular and Animal Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    In-Su Kim

    2017-02-01

    Full Text Available We employed transcriptome analysis of epidermal growth factor receptor related gene expression changes in cellular and animal models of Parkinson’s disease (PD. We used a well-known Parkinsonian toxin 1-methyl-4-phenylpyridine (MPP+ to induce neuronal apoptosis in the human neuroblastoma SH-SY5Y cell line. The MPP+-treatment of SH-SY5Y cells was capable of inducing neuro-apoptosis, but it remains unclear what kinds of transcriptional genes are affected by MPP+ toxicity. Therefore the pathways that were significantly perturbed in MPP+ treated human neuroblastoma SH-SY5Y cells were identified based on genome-wide gene expression data at two time points (24 and 48 h. We found that the Epidermal Growth Factor Receptor (EGFR pathway-related genes showed significantly differential expression at all time points. The EGFR pathway has been linked to diverse cellular events such as proliferation, differentiation, and apoptosis. Further, to evaluate the functional significance of the altered EGFR related gene expression observed in MPP+-treated SH-SY5Y cells, the EGFR related GJB2 (Cx26 gene expression was analyzed in an MPP+-intoxicated animal PD model. Our findings identify that the EGFR signaling pathway and its related genes, such as Cx26, might play a significant role in dopaminergic (DAergic neuronal cell death during the process of neuro-apoptosis and therefore can be focused on as potential targets for therapeutic intervention.

  20. Protective Effect of HemoHIM on Epidermal Melanocytes in Ultraviolet-B irradiated Mice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae June [Korea Institute of Radiological and Medical Science, Seoul (Korea, Republic of); Kim, Jong Choon; Moon, Chang Jong; Kim, Sung Ho [Chonnam National University, Gwangju (Korea, Republic of); Jung, U Hee; Park, Hae Ran; Jo, Sung Kee [Jeongeup Campus of Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Jang, Jong Sik; Kim, Tae Hwan [Kyungpook National University, Daegu (Korea, Republic of)

    2011-06-15

    We induced the activation of melanocytes in the epidermis of C57BL/6 mice by ultraviolet-B (UV-B) irradiation, and observed the effect of an herbal preparation (HemoHIM, HH) on the formation, and decrease of UV-B-induced epidermal melanocytes. C57BL/6 mice were irradiated by UV-B 80 mJ:cm{sup -2} (0.5 mW:sec{sup -1}) daily for 7 days, and HH was intraperitoneally, orally or topically applied pre- or post-irradiation. For the estimation of change of epidermal melanocytes, light microscopic observation with dihydroxyphenylalanine (DOPA) stain was performed. Split epidermal sheets prepared from the ear of untreated mice exhibited 13∼15 melanocytes:mm{sup -2}, and one week after UV irradiation, the applied areas showed an increased number of strongly DOPA-positive melanocytes with stout dendrites. But intraperitoneal, oral or topical treatment with HH before each irradiation interrupted UV-B-induced pigmentation and resulted in a marked reduction in the number of epidermal melanocytes as compared to the number found in UV-B-irradiated, untreated control skin. The number and size of DOPA-positive epidermal melanocytes were also significantly decreased in intraperitoneally injected or topically applicated group after irradiation with HH at 3rd and 6th weeks after irradiation. The present study suggests the HH as inhibitor of UV-B-induced pigmentation, and depigmenting agent.

  1. Multiple roles of integrin-linked kinase in epidermal development, maturation and pigmentation revealed by molecular profiling.

    Directory of Open Access Journals (Sweden)

    David Judah

    Full Text Available Integrin-linked kinase (ILK is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function.

  2. Multiple roles of integrin-linked kinase in epidermal development, maturation and pigmentation revealed by molecular profiling.

    Science.gov (United States)

    Judah, David; Rudkouskaya, Alena; Wilson, Ryan; Carter, David E; Dagnino, Lina

    2012-01-01

    Integrin-linked kinase (ILK) is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function.

  3. Standardized method to obtain dermo-epidermal junction samples from bovine hoof

    Directory of Open Access Journals (Sweden)

    H.M.F. Mendes

    2015-04-01

    Full Text Available As afecções podais em bovinos causam importante impacto econômico negativo na bovinocultura. Pesquisas têm sido realizadas com o objetivo de avançar no entendimento dos processos ocorridos na junção derme-epiderme do casco de bovinos com laminite e nos demais tecidos moles durante as lesões infecciosas. Apesar disso, não foram encontrados na literatura consultada estudos que descrevessem um método padronizado para a obtenção de amostras do tecido laminar do casco. Nesse contexto, foi necessário criar e estabelecer um método viável para a colheita de amostras da junção derme-epiderme, de modo a viabilizar o estudo de pós-graduação que originou esta comunicação. O objetivo é relatar um método padronizado, testado e bem-sucedido para obtenção de amostras da junção derme-epiderme do casco de bovinos em suas regiões solear, axial e dorsal. Foram obtidos fragmentos transversais das unhas de vacas abatidas em frigorífico. A espessura desses fragmentos foi de 1,5cm, aproximadamente, e contemplava as regiões solear, axial e dorsal do casco. De forma sistematizada, amostras da junção derme-epiderme de cada uma dessas regiões foram removidas, fixadas em formol, processadas e incluídas em parafina. A análise usando microscopia de luz demonstrou cortes histológicos íntegros e sem artefatos, que permitiram ampla avaliação das estruturas tanto da derme quanto da epiderme. Concluiu-se que o método proposto viabiliza a obtenção de amostras de padrão e qualidade adequados ao estudo do tecido laminar do casco bovino.

  4. Effects of topical application of aqueous solutions of hexoses on epidermal permeability barrier recovery rate after barrier disruption.

    Science.gov (United States)

    Denda, Mitsuhiro

    2011-11-01

    Previous studies have suggested that hexose molecules influence the stability of phospholipid bilayers. Therefore, the effects of topical application of all 12 stereoisomers of dextro-hexose on the epidermal barrier recovery rate after barrier disruption were evaluated. Immediately after tape stripping, 0.1 m aqueous solution of each hexose was applied on hairless mouse skin. Among the eight dextro-aldohexoses, topical application of altose, idose, mannose and talose accelerated the barrier recovery, while allose, galactose, glucose and gulose had no effect. Among the four dextro-ketohexoses, psicose, fructose, sorbose and tagatose all accelerated the barrier recovery. As the effects of hexoses on the barrier recovery rate appeared within 1 h, the mechanism is unlikely to be genomic. Instead, these hexoses may influence phase transition of the lipid bilayers of lamellar bodies and cell membrane, a crucial step in epidermal permeability barrier homeostasis. © 2011 John Wiley & Sons A/S.

  5. Epidermal cell-shape regulation and subpopulation kinetics during butyrate-induced terminal maturation of normal and SV40-transformed human keratinocytes: epithelial models of differentiation therapy.

    Science.gov (United States)

    Staiano-Coico, L; Steinberg, M; Higgins, P J

    1990-10-15

    Recent data indicate that malignant human epidermal cells may be appropriate targets for sodium butyrate (NaB)-mediated differentiation therapy. The response of pre- and post-crisis populations of SV40-transformed human keratinocytes (SVKs) to this differentiation-inducing agent was assessed, therefore, within the framework of NaB-directed normal human keratinocyte (NHK) maturation. NaB augmented cornified envelope (CE) production in NHK and pre-crisis SVK cultures; the time-course and efficiency of induced maturation were similar in the 2 cell systems. In NHKs, the percentage of amplifying ("B" substate) cells decreased with time in NaB correlating with increases in both "C" stage keratinocytes and CEs. The latter formed over one or 2 layers of nucleated basal-like cells. Inductions were accompanied by immediate cell cycle blocks (in both the G1 and G2/M phases), reorganization within the actin cytoskeleton, and transient early increases in cellular actin content. Increased NHK and pre-crisis SVK cytoskeletal-associated actin reached a maximum approximately 48 hr after NaB addition and preceded development of CEs. The CE precursors, thus, probably reside in the "B" substate. Post-crisis SVKs, in contrast, were refractive to NaB-induced terminal maturation or cell-cycle perturbation, failed to initiate actin filament rearrangements, and retained a basal cell-like phenotype. Stable transformation of human SVKs in post-crisis phase, therefore, appears to be associated with loss of maturation "competence" within the "B" keratinocyte subpopulation.

  6. Improvement of arbutin trans-epidermal delivery using ...

    African Journals Online (AJOL)

    Purpose: To assess the ability of radiofrequency (RF) microporation to promote trans-epidermal delivery of arbutin. Methods: To investigate the enhancing effect of RF microchannels on skin permeation of arbutin, in vitro skin permeability studies were performed with RF microporation-treated Hartley albino guinea pig skin ...

  7. Burn injury suppresses human dermal dendritic cell and Langerhans cell function

    NARCIS (Netherlands)

    van den Berg, Linda M.; de Jong, Marein A. W. P.; Witte, Lot de; Ulrich, Magda M. W.; Geijtenbeek, Teunis B. H.

    2011-01-01

    Human skin contains epidermal Langerhans cells (LCs) and dermal dendritic cells (DCs) that are key players in induction of adaptive immunity upon infection. After major burn injury, suppressed adaptive immunity has been observed in patients. Here we demonstrate that burn injury affects adaptive

  8. Hybrid Enhanced Epidermal SpaceSuit Design Approaches

    Science.gov (United States)

    Jessup, Joseph M.

    A Space suit that does not rely on gas pressurization is a multi-faceted problem that requires major stability controls to be incorporated during design and construction. The concept of Hybrid Epidermal Enhancement space suit integrates evolved human anthropomorphic and physiological adaptations into its functionality, using commercially available bio-medical technologies to address shortcomings of conventional gas pressure suits, and the impracticalities of MCP suits. The prototype HEE Space Suit explored integumentary homeostasis, thermal control and mobility using advanced bio-medical materials technology and construction concepts. The goal was a space suit that functions as an enhanced, multi-functional bio-mimic of the human epidermal layer that works in attunement with the wearer rather than as a separate system. In addressing human physiological requirements for design and construction of the HEE suit, testing regimes were devised and integrated into the prototype which was then subject to a series of detailed tests using both anatomical reproduction methods and human subject.

  9. Grhl3 and Lmo4 play coordinate roles in epidermal migration.

    Science.gov (United States)

    Hislop, Nikki R; Caddy, Jacinta; Ting, Stephen B; Auden, Alana; Vasudevan, Sumitha; King, Sarah L; Lindeman, Geoffrey J; Visvader, Jane E; Cunningham, John M; Jane, Stephen M

    2008-09-01

    In addition to its role in formation of the epidermal barrier, the mammalian transcription factor Grainy head-like 3 (Grhl3) is also essential for neural tube closure and wound repair, processes that are dependent in part on epidermal migration. Here, we demonstrate that the LIM-only domain protein, LMO4 serves as a functional partner of GRHL3 in its established roles, and define a new cooperative role for these factors in another developmental epidermal migration event, eyelid fusion. GRHL3 and LMO4 interact biochemically and genetically, with mutant mice exhibiting fully penetrant exencephaly, thoraco-lumbo-sacral spina bifida, defective skin barrier formation, and a co-incident eyes-open-at-birth (EOB) phenotype, which is not observed in the original individual null lines. The two genes are co-expressed in the surface ectoderm of the migrating eyelid root, and electron microscopy of Grhl3/Lmo4-null eyes reveals a failure in epithelial extension and a lack of peridermal clump formation at the eyelid margins. Accumulation of actin fibers is also absent in the circumference of these eyelids, and ERK1/2 phosphorylation is lost in the epidermis and eyelids of Grhl3(-/-)/Lmo4(-/-) embryos. Keratinocytes from mutant mice fail to "heal" in in vitro scratch assays, consistent with a general epidermal migratory defect that is dependent on ERK activation and actin cable formation.

  10. Relationship between serum carcinoembryonic antigen level and epidermal growth factor receptor mutations with the influence on the prognosis of non-small-cell lung cancer patients

    Directory of Open Access Journals (Sweden)

    Cai ZX

    2016-06-01

    Full Text Available Zuxun Cai Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou City, People’s Republic of China Objective: To investigate the relationship between serum carcinoembryonic antigen (CEA level and epidermal growth factor receptor (EGFR gene mutations in non-small-cell lung cancer (NSCLC patients and to analyze the influence of CEA level on postoperative survival time in lung cancer patients. Methods: A total of 296 patients who were treated in Thoracic Surgery Department of Henan Provincial Chest Hospital from September 2011 to September 2013 were recruited. The level of tumor markers, such as CEA, was determined before the surgery, and EGFR gene mutations were detected after surgery. Thereby, the relationship between tumor makers, including CEA, and EGFR mutation and its influence on prognosis could be investigated. Results: Among 296 patients, the positive rate of EGFR gene mutation was 37.84% (112/296; the mutation occurred more frequently in nonsmokers, adenocarcinoma patients, women, and patients aged <60 years (P<0.05. Both tumor markers and chemosensitivity indicators were related to the profile of EGFR mutations. Elevated squamous cell carcinoma and Cyfra21-1 as well as positively expressed ERCC1 were more common in patients with wild-type EGFR (P<0.05, whereas increased CEA level was observed more frequently in patients with EGFR gene mutation (P=0.012. The positive rate of EGFR gene mutations was higher as the serum CEA level increased, that is, the positive rate in patients with serum CEA level <5, 5–20, and >20 µg/L was 39.81%, 45.32%, and 65.47%, respectively (P=0.004. Logistic regression analysis showed that CEA level was an independent factor in predicting EGFR gene mutations, and serum CEA level was also an independent factor in affecting the prognosis of NSCLC patients, as the overall 2-year survival rate was 73.86% in elevated CEA group and 86.43% in normal group (P<0.01. Conclusion: The prognosis of

  11. Von Hippel-Lindau tumor suppressor gene loss in renal cell carcinoma promotes oncogenic epidermal growth factor receptor signaling via Akt-1 and MEK-1.

    Science.gov (United States)

    Lee, S Justin; Lattouf, Jean-Baptiste; Xanthopoulos, Julie; Linehan, W Marston; Bottaro, Donald P; Vasselli, James R

    2008-10-01

    Clear-cell renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is frequently associated with loss of von Hippel-Lindau (VHL) gene function, resulting in the aberrant transcriptional activation of genes that contribute to tumor growth and metastasis, including transforming growth factor-alpha (TGF-alpha), a ligand of the epidermal growth factor receptor (EGFR) tyrosine kinase. To determine the functional impact of EGFR activation on RCC, we suppressed critical components of this pathway: EGFR, Akt-1, and MEK-1. Stable transfection of RCC cells with plasmids bearing shRNA directed against each of these genes was used to individually suppress their expression. Transfectants were characterized for growth and invasiveness in vitro and tumorigenesis in vivo. RCC cell transfectants displayed significantly reduced growth rate and matrix invasion in vitro and RCC tumor xenograft growth rate in vivo. Analysis of tumor cells that emerged after extended periods in each model showed that significant EGFR suppression was sustained, whereas Akt-1 and MEK-1 knock-down cells had escaped shRNA suppression. EGFR, Akt-1, and MEK-1 are individually critical for RCC cell invasiveness in vitro and tumorigenicity in vivo, and even partial suppression of each can have a significant impact on tumor progression. The emergence of transfectants that had escaped Akt-1 and MEK-1 suppression during tumorigenicity experiments suggests that these effectors may each be more critical than EGFR for RCC tumorigenesis, consistent with results from clinical trials of EGFR inhibitors for RCC, where durable clinical responses have not been seen.

  12. Von Hippel-Lindau Tumor Suppressor Gene Loss in Renal Cell Carcinoma Promotes Oncogenic Epidermal Growth Factor Receptor Signaling via Akt-1 and MEK1

    Science.gov (United States)

    Lee, S. Justin; Lattouf, Jean-Baptiste; Xanthopoulos, Julie; Linehan, W. Marston; Bottaro, Donald P.; Vasselli, James R.

    2008-01-01

    Objectives Clear-cell renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is frequently associated with loss of von Hippel-Lindau (VHL) gene function, resulting in the aberrant transcriptional activation of genes that contribute to tumor growth and metastasis, including transforming growth factor-α (TGF-α), a ligand of the epidermal growth factor receptor (EGFR) tyrosine kinase. To determine the functional impact of EGFR activation on RCC, we suppressed critical components of this pathway: EGFR, Akt-1, and MEK-1. Methods Stable transfection of RCC cells with plasmids bearing shRNA directed against each of these genes was used to individually suppress their expression. Transfectants were characterized for growth and invasiveness in vitro and tumorigenesis in vivo. Results RCC cell transfectants displayed significantly reduced growth rate and matrix invasion in vitro and RCC tumor xenograft growth rate in vivo. Analysis of tumor cells that emerged after extended periods in each model showed that significant EGFR suppression was sustained, whereas Akt-1 and MEK-1 knockdown cells had escaped shRNA suppression. Conclusions EGFR, Akt-1, and MEK-1 are individually critical for RCC cell invasiveness in vitro and tumorigenicity in vivo, and even partial suppression of each can have a significant impact on tumor progression. The emergence of transfectants that had escaped Akt-1 and MEK-1 suppression during tumorigenicity experiments suggests that these effectors may each be more critical than EGFR for RCC tumorigenesis, consistent with results from clinical trials of EGFR inhibitors for RCC, where durable clinical responses have not been seen. PMID:18243508

  13. AZD9291 in epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer.

    Science.gov (United States)

    Stinchcombe, Thomas E

    2016-02-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in advanced EGFR mutant non-small cell lung cancer have an objective response rate (ORR) of approximately 60-70% and a median progression free-survival (PFS) of approximately 10-13 months. Studies of tumor biopsies performed after progression on EGFR TKI revealed that 50-60% of EGFR mutant NSCLC developed an EGFR exon 20 T790M mutation as a mechanism of acquired resistance. AZD9291 is a third generation irreversible EGFR TKI with activity against the activating EGFR mutation, the T790M acquired resistance mutation, and relative sparing of the wild-type EGFR. AZD9291 was investigated in a phase I trial with expansion cohorts in patients with disease progression after EGFR TKI. Patients with and without detectable T790M mutations were enrolled in the trial. The ORR in patients with centrally confirmed and without detectable T790M mutations was 61% (95% CI, 52-70%) and 21% (95% CI, 12-34%), respectively. The PFS observed in patients with centrally confirmed and without detectable T790M mutations was 9.6 months (95% CI, 8.3 to not reached) and 2.8 months (95% CI, 2.1-4.3 months), respectively. At the dose for further investigation, 80 mg daily, the rate of all grade 3-5 drug related adverse events was 11%, and the rates of grade 3 diarrhea and rash were 1% and 0%, respectively. The identification of the T790M resistance mutation and the subsequent development of an agent against the mechanism of resistance provide a template for future drug development for acquired resistance to targeted therapy.

  14. Development of EMab-51, a Sensitive and Specific Anti-Epidermal Growth Factor Receptor Monoclonal Antibody in Flow Cytometry, Western Blot, and Immunohistochemistry.

    Science.gov (United States)

    Itai, Shunsuke; Kaneko, Mika K; Fujii, Yuki; Yamada, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Handa, Saori; Chang, Yao-Wen; Suzuki, Hiroyoshi; Harada, Hiroyuki; Kato, Yukinari

    2017-10-01

    The epidermal growth factor receptor (EGFR) is a member of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases and is involved in cell growth and differentiation. EGFR homodimers or heterodimers with other HER members, such as HER2 and HER3, activate downstream signaling cascades in many cancers. In this study, we developed novel anti-EGFR monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. First, we expressed the full-length or ectodomain of EGFR in LN229 glioblastoma cells and then immunized mice with LN229/EGFR or ectodomain of EGFR, and performed the first screening using enzyme-linked immunosorbent assays. Subsequently, we selected mAbs according to their efficacy in flow cytometry (second screening), Western blot (third screening), and immunohistochemical (fourth screening) analyses. Among 100 mAbs, only one clone EMab-51 (IgG 1 , kappa) reacted with EGFR in Western blot analysis. Finally, immunohistochemical analyses with EMab-51 showed sensitive and specific reactions against oral cancer cells, warranting the use of EMab-51 to detect EGFR in pathological analyses of EGFR-expressing cancers.

  15. Sendai viroplexes for epidermal growth factor receptor-directed delivery of interleukin-12 and salmosin genes to cancer cells.

    Science.gov (United States)

    Kim, Jung Seok; Kim, Min Woo; Jeong, Hwa Yeon; Kang, Seong Jae; Park, Sang Il; Lee, Yeon Kyung; Kim, Hong Sung; Kim, Keun Sik; Park, Yong Serk

    2016-07-01

    The effective delivery of therapeutic genes to target cells has been a fundamental goal in cancer gene therapy because of its advantages with respect to both safety and transfection efficiency. In the present, study we describe a tumor-directed gene delivery system that demonstrates remarkable efficacy in gene delivery and minimizes the off-target effects of gene transfection. The system consists of a well-verified cationic O,O'-dimyristyl-N-lysyl glutamate (DMKE), Sendai virus fusion (F) protein and hemagglutinin-neuraminidase (HN) protein, referred to as cationic Sendai F/HN virosomes. To achieve tumor-specific recognition, anti-epidermal growth factor (EGF) receptor antibody was coupled to the surface of the virosomes containing interleukin-12 (IL-12) and/or salmosin genes that have potent anti-angiogenetic functions. Among the virosomal formulations, the anti-EGF receptor (EGFR) viroplexes, prepared via complexation of plasmid DNA (pDNA) with cationic DMKE lipid, exhibited more efficient gene transfection to tumor cells over-expressing EGF receptors compared to the neutrally-charged anti-EGFR virosomes encapsulating pDNA. In addition, the anti-EGFR viroplexes with IL-12 and salmosin genes exhibited the most effective therapeutic efficacy in a mouse tumor model. Especially when combined with doxorubicin, transfection of the two genes via the anti-EGFR viroplexes exhibited an enhanced inhibitory effect on tumor growth and metastasis in lungs. The results of the present study suggest that anti-EGFR viroplexes can be utilized as an effective strategy for tumor-directed gene delivery. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Fractional sunburn threshold UVR doses generate equivalent vitamin D and DNA damage in skin types I-VI, but with epidermal DNA damage gradient correlated to skin darkness.

    Science.gov (United States)

    Shih, Barbara B; Farrar, Mark D; Cooke, Marcus S; Osman, Joanne; Langton, Abigail K; Kift, Richard; Webb, Ann R; Berry, Jacqueline L; Watson, Rachel E B; Vail, Andy; de Gruijl, Frank R; Rhodes, Lesley E

    2018-05-03

    Public health guidance recommends limiting sun-exposure to sub-sunburn levels, but it's unknown whether these can gain vitamin D (for musculoskeletal health) whilst avoiding epidermal DNA damage (initiates skin cancer). Well-characterised healthy humans of all skin types (I-VI; lightest to darkest skin) were exposed to a low dose-series of solar simulated UVR of 20-80% their individual sunburn threshold dose (minimal erythemal dose, MED). Significant UVR dose-responses were seen for serum 25(OH)D and whole epidermal CPD, with as little as 0.2 MED concurrently producing 25(OH)D and CPD. Notably, fractional MEDs generated equivalent levels of whole epidermal CPD and 25(OH)D across all skin types. Crucially, we demonstrated an epidermal gradient of CPD formation strongly correlated with skin darkness (r=0.74; Pskin types, ranging from darkest skin, where high CPD levels occurred superficially with none in the germinative basal layer, through to lightest skin where CPD were induced evenly across the epidermal depth. Darker skin people can be encouraged to utilise sub-sunburn UVR-exposure to enhance their vitamin D. In lighter skin people, basal cell damage occurs concurrent with vitamin D synthesis at exquisitely low UVR levels, providing an explanation for their high skin cancer incidence; greater caution is required. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Altered [125I]epidermal growth factor binding and receptor distribution in psoriasis

    International Nuclear Information System (INIS)

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.; King, L.E. Jr.

    1986-01-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normal epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that [ 125 I]EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers

  18. Integrin-Linked Kinase Is Indispensable for Keratinocyte Differentiation and Epidermal Barrier Function.

    Science.gov (United States)

    Sayedyahossein, Samar; Rudkouskaya, Alena; Leclerc, Valerie; Dagnino, Lina

    2016-02-01

    A functional permeability barrier is essential to prevent the passage of water and electrolytes, macromolecules, and pathogens through the epidermis. This is accomplished in terminally differentiated keratinocytes through formation of a cornified envelope and the assembly of tight intercellular junctions. Integrin-linked kinase (ILK) is a scaffold protein essential for hair follicle morphogenesis and epidermal attachment to the basement membrane. However, the biological functions of ILK in differentiated keratinocytes remain poorly understood. Furthermore, whether ILK is implicated in keratinocyte differentiation and intercellular junction formation has remained an unresolved issue. Here we describe a pivotal role for ILK in keratinocyte differentiation responses to increased extracellular Ca(2+), regulation of adherens and tight junction assembly, and the formation of an outside-in permeability barrier toward macromolecules. In the absence of ILK, the calcium sensing receptor, E-cadherin, and ZO-1 fail to translocate to the cell membrane, through mechanisms that involve abnormalities in microtubules and in RhoA activation. In situ, ILK-deficient epidermis exhibits reduced tight junction formation and increased outside-in permeability to a dextran tracer, indicating reduced barrier properties toward macromolecules. Therefore, ILK is an essential component of keratinocyte differentiation programs that contribute to epidermal integrity and the establishment of its barrier properties. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Fisetin inhibits epidermal growth factor–induced migration of ARPE-19 cells by suppression of AKT activation and Sp1-dependent MMP-9 expression

    Science.gov (United States)

    Lin, Hung-Yu; Chen, Yong-Syuan; Wang, Kai; Chien, Hsiang-Wen

    2017-01-01

    Purpose Proliferative vitreoretinopathy (PVR) can result in abnormal migration of RPE cells. Fisetin is a naturally occurring compound that has been reported to have antitumor effects, but its effects on epidermal growth factor (EGF)–induced cell migration and the underlying mechanisms remain unclear. Methods Effects of fisetin on EGF-induced cell viability and migration were examined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and in vitro migration assays. Reverse transcription–PCR (RT–PCR) and immunoblotting were performed to evaluate matrix metallopeptidase-9 (MMP-9) expression and activation of specificity protein-1 (Sp1) and protein kinase B (AKT) in ARPE-19 cells treated with EGF and with or without fisetin. Luciferase and chromatin immunoprecipitation (ChIP) assays were performed to examine Sp1 transcription activity and MMP-9 binding activity. Results Fisetin did not affect ARPE-19 cell viability and significantly inhibited the EGF-induced migration capacity of ARPE-19 cells. Furthermore, fisetin exerted an antimigratory effect and suppressed MMP-9 mRNA and protein expression. Treatment with EGF induced phosphorylation of AKT and expression of MMP-9 and Sp1. Fisetin combined with LY294002 (an inhibitor of AKT) prevented the EGF-induced migration involved in downregulation of Sp1 and MMP-9 expression. Luciferase and ChIP assays suggested that fisetin remarkably decreased the EGF-induced transcription activity of MMP-9 and Sp1 and inhibited EGF-mediated Sp1 from directly binding to the MMP-9 promoter in ARPE-19 cells. Conclusions Fisetin inhibited EGF-induced cell migration via modulation of AKT/Sp1–dependent MMP-9 transcriptional activity. Therefore, fisetin may be a potential agent in the treatment of migratory PVR diseases. PMID:29296070

  20. Stevens–Johnson syndrome/toxic epidermal necrolysis caused by cefadroxil in a cat

    Directory of Open Access Journals (Sweden)

    Roberta Sartori

    2016-06-01

    Full Text Available Case summary A 5-year-old, spayed female, indoor-only domestic shorthair cat was referred with an acute history of multifocal cutaneous and mucocutaneous erosive-ulcerative lesions and skin detachment. The lesions occurred on the seventh day of therapy with cefadroxil. Erosive-ulcerative and occasionally crusted lesions were apparent on the medial and lateral canthus of both eyes, ventral neck, abdomen, perivulvar region, periungual skin and medial aspect of the front and hindlimbs. Diffuse and severe exfoliation was present on the dorsum and tail base and in both external ear canals. The cat was also dehydrated, tachycardic and febrile. Histopathological examination revealed extensive epidermal ulceration, interface dermatitis with vacuolar degeneration, apoptosis at multiple epidermal levels and basal, suprabasal and spinous dermoepidermal detachment. The histopathological diagnosis was consistent with Stevens–Johnson syndrome/toxic epidermal necrolysis (SJS/TEN. The recently reported Algorithm of Drug Causality in Epidermal Necrolysis (ALDEN, currently used in human medicine, was applied and a score of +6 was calculated; this supported the view that SJS/TEN in this cat was very likely to be associated with cefadroxil administration. Relevance and novel information This clinical communication reports cefadroxil as a very probable cause of SJS/TEN in a cat; the ALDEN was applied in this case and supported diagnosis.

  1. Punicalagin and (-)-Epigallocatechin-3-Gallate Rescue Cell Viability and Attenuate Inflammatory Responses of Human Epidermal Keratinocytes Exposed to Airborne Particulate Matter PM10.

    Science.gov (United States)

    Seok, Jin Kyung; Lee, Jeong-Won; Kim, Young Mi; Boo, Yong Chool

    2018-01-01

    Airborne particulate matter with a diameter of < 10 µm (PM10) causes oxidative damage, inflammation, and premature skin aging. In this study, we evaluated whether polyphenolic antioxidants attenuate the inflammatory responses of PM10-exposed keratinocytes. Primary human epidermal keratinocytes were exposed in vitro to PM10 in the absence or presence of punicalagin and (-)-epigallocatechin-3-gallate (EGCG), which are the major polyphenolic antioxidants found in pomegranate and green tea, respectively. Assays were performed to determine cell viability, production of reactive oxygen species (ROS), and expression of NADPH oxidases (NOX), proinflammatory cytokines, and matrix metalloproteinase (MMP)-1. PM10 decreased cell viability and increased ROS production in a dose-dependent manner. It also increased the expression levels of NOX-1, NOX-2, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-8, and MMP-1. Punicalagin was not cytotoxic up to 300 μM, and (-)-EGCG was cytotoxic above 30 μM, respectively. Further, punicalagin (3-30 μM) and EGCG (3-10 μM) rescued the viability of PM10-exposed cells. They also attenuated ROS production and the expression of NOX-1, NOX-2, TNF-α, IL-1β, IL-6, IL-8, and MMP-1 stimulated by PM10. This study demonstrates that polyphenolic antioxidants, such as punicalagin and (-)-EGCG, rescue keratinocyte viability and attenuate the inflammatory responses of these cells due to airborne particles. © 2018 S. Karger AG, Basel.

  2. Anti-proliferative effect of 20-hydroxyecdysone in a lepidopteran cell line.

    Science.gov (United States)

    Auzoux-Bordenave, Stéphanie; Hatt, Philippe-Jacques; Porcheron, Patrick

    2002-02-01

    Ecdysteroids are steroid hormones involved in the epidermal growth of arthropods, controlling cell proliferation and further differentiation of target cells. The epidermal cell line IAL-PID2, established from imaginal discs of the Indian meal moth Plodia interpunctella kept its sensitivity to ecdysteroids in vitro, cells being able to respond to them by cytological and biochemical changes. When added to the culture medium, 20-hydroxyecdysone (20E) stopped cell proliferation and induced formation of epithelial-like aggregates. In order to better understand the cellular sequence of ecdysteroids signalling in epidermal cells we used the IAL-PID2 cell line for in vitro investigations of cytological events induced by the moulting hormone. After a 40 h serum deprivation, formazan assay (XTT) was routinely used to evaluate anti-proliferative effects of 20E during cell cycle. We established a more precise timing of the period of cell sensitivity to the hormone during the cell cycle, by the use of the mitotic index and the BrdU incorporation test. These in vitro assays were performed in parallel with the description of some hormone dependant cytological events, using immunofluorescent labelling with anti-beta tubulin/FITC antibodies and DNA staining.

  3. Heterogeneity and plasticity of epidermal stem cells

    DEFF Research Database (Denmark)

    Schepeler, Troels; Page, Mahalia E; Jensen, Kim Bak

    2014-01-01

    The epidermis is an integral part of our largest organ, the skin, and protects us against the hostile environment. It is a highly dynamic tissue that, during normal steady-state conditions, undergoes constant turnover. Multiple stem cell populations residing in autonomously maintained compartments...... facilitate this task. In this Review, we discuss stem cell behaviour during normal tissue homeostasis, regeneration and disease within the pilosebaceous unit, an integral structure of the epidermis that is responsible for hair growth and lubrication of the epithelium. We provide an up-to-date view...... of the pilosebaceous unit, encompassing the heterogeneity and plasticity of multiple discrete stem cell populations that are strongly influenced by external cues to maintain their identity and function....

  4. Conformational stability of the epidermal growth factor (EGF) receptor as influenced by glycosylation, dimerization and EGF hormone binding.

    Science.gov (United States)

    Taylor, Eric S; Pol-Fachin, Laercio; Lins, Roberto D; Lower, Steven K

    2017-04-01

    The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N-glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF-EGFR binding takes place through a large-scale induced-fitting mechanism. Proteins 2017; 85:561-570. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Titanium Implant Impairment and Surrounding Muscle Cell Death Following High-Salt Diet: An In Vivo Study.

    Directory of Open Access Journals (Sweden)

    Mathieu Lecocq

    Full Text Available High-salt consumption has been widely described as a risk factor for cardiovascular, renal and bone functions. In the present study, the extent to which high-salt diet could influence Ti6Al4V implant surface characteristic, its adhesion to rat tibial crest, and could modify muscle cell viability of two surrounding muscles, was investigated in vivo. These parameters have also been assessed following a NMES (neuro-myoelectrostimulation program similar to that currently used in human care following arthroplasty.After a three-week diet, a harmful effect on titanium implant surface and muscle cell viability was noted. This is probably due to salt corrosive effect on metal and then release of toxic substance around biologic tissue. Moreover, if the use of NMES with high-salt diet induced muscles damages, the latter were higher when implant was added. Unexpectedly, higher implant-to-bone adhesion was found for implanted animals receiving salt supplementation.Our in vivo study highlights the potential dangerous effect of high-salt diet in arthroplasty based on titanium prosthesis. This effect appears to be more important when high-salt diet is combined with NMES.

  6. Flow cytometry of human primary epidermal and follicular keratinocytes.

    Science.gov (United States)

    Gragnani, Alfredo; Ipolito, Michelle Zampieri; Sobral, Christiane S; Brunialti, Milena Karina Coló; Salomão, Reinaldo; Ferreira, Lydia Masako

    2008-02-19

    The aim of this study was to characterize using flow cytometry cultured human primary keratinocytes isolated from the epidermis and hair follicles by different methods. Human keratinocytes derived from discarded fragments of total skin and scalp hair follicles from patients who underwent plastic surgery in the Plastic Surgery Division at UNIFESP were used. The epidermal keratinocytes were isolated by using 3 different methods: the standard method, upon exposure to trypsin for 30 minutes; the second, by treatment with dispase for 18 hours and with trypsin for 10 minutes; and the third, by treatment with dispase for 18 hours and with trypsin for 30 minutes. Follicular keratinocytes were isolated using the standard method. On comparing the group treated with dispase for 18 hours and with trypsin for 10 minutes with the group treated with dispase for 18 hours and with trypsin for 30 minutes, it was observed that the first group presented the largest number of viable cells, the smallest number of cells in late apoptosis and necrosis with statistical significance, and no difference in apoptosis. When we compared the group treated with dispase for 18 hours and with trypsin for 10 minutes with the group treated with trypsin, the first group presented the largest number of viable cells, the smallest number of cells in apoptosis with statistical significance, and no difference in late apoptosis and necrosis. When we compared the results of the group treated with dispase for 18 hours and with trypsin for 10 minutes with the results for follical isolation, there was a statistical difference in apoptosis and viable cells. The isolation method of treatment with dispase for 18 hours and with trypsin for 10 minutes produced the largest number of viable cells and the smallest number of cells in apoptosis/necrosis.

  7. Inhibitors of the epidermal growth factor receptor in apple juice extract.

    Science.gov (United States)

    Kern, Melanie; Tjaden, Zeina; Ngiewih, Yufanyi; Puppel, Nicole; Will, Frank; Dietrich, Helmut; Pahlke, Gudrun; Marko, Doris

    2005-04-01

    The polyphenol-rich extract of a consumer-relevant apple juice blend was found to potently inhibit the growth of the human colon cancer cell line HT29 in vitro. The epidermal growth factor receptor (EGFR) and its subsequent signaling cascade play an important role in the regulation of cell proliferation in HT29 cells. The protein tyrosine kinase activity of an EGFR preparation was effectively inhibited by the polyphenol-rich apple juice extract. Treatment of intact cells with this extract resulted in the suppression of the subsequent mitogen-activated protein kinase cascade. Amongst the so far identified apple juice constituents, the proanthocyanidins B1 and B2 as well as quercetin-3-glc (isoquercitrin) and quercetin-3-gal (hyperoside) were found to possess substantial EGFR-inhibitory properties. However, as to be expected from the final concentration of these potential EGFR inhibitors in the original polyphenol-rich extract, a synthetic mixture of the apple juice constituents identified and available so far, including both proanthocyanidins and the quercetin glycosides, showed only marginal inhibitory effects on the EGFR. These results permit the assumption that yet unknown constituents contribute substantially to the potent EGFR-inhibitory properties of polyphenol-rich apple juice extract. In summary, the polyphenol composition of apple juice possesses promising growth-inhibitory properties, affecting proliferation-associated signaling cascades in colon tumor cells.

  8. Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds

    DEFF Research Database (Denmark)

    Cvitanich, Cristina; Przybylowicz, Wojciech J; Urbanski, Dorian Fabian

    2010-01-01

    and will assist in the production of staples with increased bioavailable iron. Results Here we reveal the distribution of iron in seeds of three Phaseolus species including thirteen genotypes of P. vulgaris, P. coccineus, and P. lunatus. We showed that high concentrations of iron accumulate in cells surrounding...... the provascular tissue of P. vulgaris and P. coccineus seeds. Using the Perls' Prussian blue method, we were able to detect iron in the cytoplasm of epidermal cells, cells near the epidermis, and cells surrounding the provascular tissue. In contrast, the protein ferritin that has been suggested as the major iron...... to P. vulgaris and P. coccineus, we did not observe iron accumulation in the cells surrounding the provascular tissues of P. lunatus cotyledons. A novel iron-rich genotype, NUA35, with a high concentration of iron both in the seed coat and cotyledons was bred from a cross between an Andean...

  9. Histological transformation after acquired resistance to epidermal growth factor tyrosine kinase inhibitors.

    Science.gov (United States)

    Shao, Yi; Zhong, Dian-Sheng

    2018-04-01

    Non-small-cell lung cancer patients with sensitive epidermal growth factor receptor mutations generally respond well to tyrosine kinase inhibitors (TKIs). However, acquired resistance will eventually develop place after 8-16 months. Several mechanisms contribute to the resistance including T790M mutation, c-Met amplification, epithelial mesenchymal transformation and PIK3CA mutation; however, histological transformation is a rare mechanism. The patterns and mechanisms underlying histological transformation need to be explored. We searched PubMed, EMBASE and search engines Google Scholar, Medical Matrix for literature related to histological transformation. Case reports, cases series, and clinical and basic medical research articles were reviewed. Sixty-one articles were included in this review. Cases of transformation to small-cell lung cancer, squamous cell carcinoma, large-cell neuroendocrine carcinoma and sarcoma after TKI resistance have all been reported. As the clinical course differed dramatically between cases, a new treatment scheme needs to be recruited. The mechanisms underlying histological transformation have not been fully elucidated and probably relate to cancer stem cells, driver genetic alterations under selective pressure or the heterogeneity of the tumor. When TKI resistance develops, we recommend that patients undergo a second biopsy to determine the reason, guide the next treatment and predict the prognosis.

  10. Epidermis–dermis junction as a novel location for bone marrow-derived cells to reside in response to ionizing radiation

    International Nuclear Information System (INIS)

    Okano, Junko; Kojima, Hideto; Katagi, Miwako; Nakae, Yuki; Terashima, Tomoya; Nakagawa, Takahiko; Kurakane, Takeshi; Okamoto, Naoki; Morohashi, Keita; Maegawa, Hiroshi; Udagawa, Jun

    2015-01-01

    Bone marrow-derived cells (BMDCs) can migrate into the various organs in the mice irradiated by ionizing radiation (IR). However, it may not be the case in the skin. While IR is used for bone marrow (BM) transplantation, studying with the epidermal sheets demonstrated that the BMDC recruitment is extraordinarily rare in epidermis in the mouse. Herein, using the chimera mice with BM from green fluorescent protein (GFP) transgenic mice, we simply examined if BMDCs migrate into any layers in the total skin, as opposed to the epidermal sheets, in response to IR. Interestingly, we identified the presence of GFP-positive (GFP + ) cells in the epidermis-dermis junction in the total skin sections although the epidermal cell sheets failed to have any GFP cells. To examine a possibility that the cells in the junction could be mechanically dissociated during separating epidermal sheets, we then salvaged such dissociated cells and examined its characteristics. Surprisingly, some GFP + cells were found in the salvaged cells, indicating that these cells could be derived from BM. In addition, such BMDCs were also associated with inflammation in the junction. In conclusion, BMDCs can migrate to and reside in the epidermis-dermis junction after IR. - Highlights: • Bone marrow-derived cells (BMDCs) migrate in the epidermis due to ionizing radiation (IR). • BMDCs dissociate from the epidermis-dermis junction in preparing epidermal sheets. • The doses of IR determine the location and the number of migrating BMDCs in the skin

  11. Epidermis–dermis junction as a novel location for bone marrow-derived cells to reside in response to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Junko, E-mail: jokano@belle.shiga-med.ac.jp [Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga (Japan); Kojima, Hideto; Katagi, Miwako [Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga (Japan); Nakae, Yuki [Department of Internal Medicine, Shiga University of Medical Science, Shiga (Japan); Terashima, Tomoya [Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga (Japan); Nakagawa, Takahiko [TMK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto (Japan); Kurakane, Takeshi; Okamoto, Naoki; Morohashi, Keita [Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga (Japan); Maegawa, Hiroshi [Department of Internal Medicine, Shiga University of Medical Science, Shiga (Japan); Udagawa, Jun [Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga (Japan)

    2015-06-12

    Bone marrow-derived cells (BMDCs) can migrate into the various organs in the mice irradiated by ionizing radiation (IR). However, it may not be the case in the skin. While IR is used for bone marrow (BM) transplantation, studying with the epidermal sheets demonstrated that the BMDC recruitment is extraordinarily rare in epidermis in the mouse. Herein, using the chimera mice with BM from green fluorescent protein (GFP) transgenic mice, we simply examined if BMDCs migrate into any layers in the total skin, as opposed to the epidermal sheets, in response to IR. Interestingly, we identified the presence of GFP-positive (GFP{sup +}) cells in the epidermis-dermis junction in the total skin sections although the epidermal cell sheets failed to have any GFP cells. To examine a possibility that the cells in the junction could be mechanically dissociated during separating epidermal sheets, we then salvaged such dissociated cells and examined its characteristics. Surprisingly, some GFP{sup +} cells were found in the salvaged cells, indicating that these cells could be derived from BM. In addition, such BMDCs were also associated with inflammation in the junction. In conclusion, BMDCs can migrate to and reside in the epidermis-dermis junction after IR. - Highlights: • Bone marrow-derived cells (BMDCs) migrate in the epidermis due to ionizing radiation (IR). • BMDCs dissociate from the epidermis-dermis junction in preparing epidermal sheets. • The doses of IR determine the location and the number of migrating BMDCs in the skin.

  12. Relative radiation sensitivity of the integumentary system: Dose response of the epidermal, microvascular, and dermal populations

    International Nuclear Information System (INIS)

    Archambeau, J.O.

    1987-01-01

    This presentation lists gross and histologic changes produced by irradiation of the skin that have been quantified. It examines available cell kinetic radiobiological and morphological variables to identify interactions that occur between component populations. The dose response data of the hair and epidermal, fibrocytic, and endothelial cell populations are examined and a rank ordering is attempted. The contribution of the radiosensitivity of these populations to defining the dose tolerance of the skin is discussed. Future clinical needs are considered. The intent is to quantify or define tissue population changes in the irradiated skin so that the data may serve as guidelines to aid the radiation therapist to select therapy schedules that preserve skin function while improving cancer control

  13. Antimicrobial peptides and pro-inflammatory cytokines are differentially regulated across epidermal layers following bacterial stimuli.

    Science.gov (United States)

    Percoco, Giuseppe; Merle, Chloé; Jaouen, Thomas; Ramdani, Yasmina; Bénard, Magalie; Hillion, Mélanie; Mijouin, Lily; Lati, Elian; Feuilloley, Marc; Lefeuvre, Luc; Driouich, Azeddine; Follet-Gueye, Marie-Laure

    2013-12-01

    The skin is a natural barrier between the body and the environment and is colonised by a large number of microorganisms. Here, we report a complete analysis of the response of human skin explants to microbial stimuli. Using this ex vivo model, we analysed at both the gene and protein level the response of epidermal cells to Staphylococcus epidermidis (S. epidermidis) and Pseudomonas fluorescens (P. fluorescens), which are present in the cutaneous microbiota. We showed that both bacterial species affect the structure of skin explants without penetrating the living epidermis. We showed by real-time quantitative polymerase chain reaction (qPCR) that S. epidermidis and P. fluorescens increased the levels of transcripts that encode antimicrobial peptides (AMPs), including human β defensin (hBD)2 and hBD3, and the pro-inflammatory cytokines interleukin (IL)-1α and (IL)-1-β, as well as IL-6. In addition, we analysed the effects of bacterial stimuli on the expression profiles of genes related to innate immunity and the inflammatory response across the epidermal layers, using laser capture microdissection (LCM) coupled to qPCR. We showed that AMP transcripts were principally upregulated in suprabasal keratinocytes. Conversely, the expression of pro-inflammatory cytokines was upregulated in the lower epidermis. These findings were confirmed by protein localisation using specific antibodies coupled to optical or electron microscopy. This work underscores the potential value of further studies that use LCM on human skin explants model to study the roles and effects of the epidermal microbiota on human skin physiology. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Skin Stem Cell Hypotheses and Long Term Clone Survival - Explored Using Agent-based Modelling

    OpenAIRE

    Li, X.; Upadhyay, A.K.; Bullock, A.J.; Dicolandrea, T.; Xu, J.; Binder, R.L.; Robinson, M.K.; Finlay, D.R.; Mills, K.J.; Bascom, C.C.; Kelling, C.K.; Isfort, R.J.; Haycock, J.W.; MacNeil, S.; Smallwood, R.H.

    2013-01-01

    Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epiderm...

  15. Strain differences in the expression of an H-2K/sup k/ gene product by epidermal and spleen cells

    International Nuclear Information System (INIS)

    Hadley, G.A.; Steinmuller, D.

    1986-01-01

    Cytotoxic T lymphocytes (CTL) directed against Epa-1, a non-H-2 alloantigen expressed by epidermal cells (EC) but no lymphoid cells, lyse EC of different H-2/sup k/, Epa-1 + strains at different levels. For example, the mean percent lysis values for EC of strains CBA, AKR, C58, and RF are 60, 46, 41, and 35 respectively. Since the CTL used to obtain these values recognize Epa-1 only in the context of H-2K/sup k/, the different levels of lysis could reflect differences in either Epa-1 or K/sup k/ antigens. The goal of this investigation was to test the second alternative. For this purpose, the authors obtained hybridoma 16-1-11N that secretes a K/sup k/-specific MoAb. They first demonstrated the capacity of MoAb 16-1-11N to block the lysis of CBA EC by Epa-1-specific CTL. They then utilized it as the probe in a cellar RIA, with 125 I-protein A as the second reagent, to quantitate the expression of K/sup k/ antigens on EC of strains CBA, AKR, C58, and RF. They found that C58 and RF EC bound significantly less of the K/sup k/ MoAb than CBA EC. Although AKR EC also bound less of the MoAb than CBA EC, the difference was not significant. Nonetheless, these data support the hypothesis that the differential susceptibility of the strains to lysis by Epa-1-specific CTL is due to differences in the expression of the H-2 restricting element. The authors also tested spleen cells (SC) of the four strains in the RIA described above and found that SC of RF, but not of C58 or AKR, express reduced levels of K/sup k/ antigens compared to CBA SC

  16. Heat stress effects on the cumulus cells surrounding the bovine oocyte during maturation: altered matrix metallopeptidase 9 and progesterone production.

    Science.gov (United States)

    Rispoli, L A; Payton, R R; Gondro, C; Saxton, A M; Nagle, K A; Jenkins, B W; Schrick, F N; Edwards, J L

    2013-08-01

    When the effects of heat stress are detrimental during maturation, cumulus cells are intimately associated with the oocyte. To determine the extent to which heat stress affects these cells, in this study, transcriptome profiles of the cumulus that surrounded control and heat-stressed oocytes (41 °C during the first 12 h only and then shifted back to 38.5 °C) during in vitro maturation (IVM) were compared using Affymetrix bovine microarrays. The comparison of cumulus-derived profiles revealed a number of transcripts whose levels were increased (n=11) or decreased (n=13) ≥ twofold after heat stress exposure (P1.7-fold decrease in the protein levels of latent matrix metallopeptidase 9 (proMMP9). Heat-induced reductions in transcript levels were noted at 6 h IVM with reductions in proMMP9 protein levels at 18 h IVM (P=0.0002). Independent of temperature, proMMP9 levels at 24 h IVM were positively correlated with the development rate of blastocysts (R²=0.36; P=0.002). The production of progesterone increased during maturation; heat-induced increases were evident by 12 h IVM (P=0.002). Both MMP9 and progesterone are associated with the developmental competence of the oocyte; thus, it seems plausible for some of the negative consequences of heat stress on the cumulus-oocyte complex to be mediated through heat-induced perturbations occurring in the surrounding cumulus.

  17. The cell-penetrating peptide domain from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) has anti-inflammatory activity in vitro and in vivo

    International Nuclear Information System (INIS)

    Lee, Jue-Yeon; Seo, Yoo-Na; Park, Hyun-Jung; Park, Yoon-Jeong; Chung, Chong-Pyoung

    2012-01-01

    Highlights: ► HBP sequence identified from HB-EGF has cell penetration activity. ► HBP inhibits the NF-κB dependent inflammatory responses. ► HBP directly blocks phosphorylation and degradation of IκBα. ► HBP inhibits nuclear translocation of NF-κB p65 subunit. -- Abstract: A heparin-binding peptide (HBP) sequence from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified and was shown to exhibit cell penetration activity. This cell penetration induced an anti-inflammatory reaction in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. HBP penetrated the cell membrane during the 10 min treatment and reduced the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cytokines (TNF-α and IL-6) in a concentration-dependent manner. Additionally, HBP inhibited the LPS-induced upregulation of cytokines, including TNF-α and IL-6, and decreased the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. HBP inhibited NF-κB-dependent inflammatory responses by directly blocking the phosphorylation and degradation of IκBα and by subsequently inhibiting the nuclear translocation of the p65 subunit of NF-κB. Taken together, this novel HBP may be potentially useful candidate for anti-inflammatory treatments and can be combined with other drugs of interest to transport attached molecules into cells.

  18. Optimal allocation of leaf epidermal area for gas exchange.

    Science.gov (United States)

    de Boer, Hugo J; Price, Charles A; Wagner-Cremer, Friederike; Dekker, Stefan C; Franks, Peter J; Veneklaas, Erik J

    2016-06-01

    A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes. © 2016 The Authors New Phytologist © 2016 New Phytologist Trust.

  19. The Study of Anatomical Structure and Karyotype of West Sumatran Dioscorea bulbifora L

    Directory of Open Access Journals (Sweden)

    Sjahridal Dahlan

    2007-04-01

    Full Text Available Had been done from March 2005 to January 2006 in plant Structure and Development Laboratory of Biology Department, Faculty of Mathematic and Natural Science, Andalas University. In present study were used descriptives and quantitatives method by preparing semi-permanent and permanent slide. Anatomycal structures of green aerial stem were consisting of epidermal, cortex with endodermoid cells and sclerechima tissue centripetally. Vascular bundle can be rocognized in three distinct rings with amphycribal type. Transverse section of leave anatomical composed by both a layer epidermal on upper and lower leaf surface, palysade parechima, and spons parenchyma (dorsiventral type. The stomata were anomocytic type on both upper and lower surface of leaf (amphystomatic type. Idioblast of cell raphides crystals and tannin containing founded in leaf structure. In transverse section each of eight individual bundle surrounded by sclerenchyma. The root anatomical structures consist of epidermal, cortex, endodermal (U shape wall thickening, pericycle and pith (with three ring of vascular bundles centripetally. The air tuber lacking of starch grains containing of parenchyma cells. Idioblast cell expected contain of HCN distributed over all of tuber tissue. The somatic cell chromosome were diploid 2n=20 with basic chromosome number were x=10.

  20. Mast cells are dispensable in a genetic mouse model of chronic dermatitis.

    Science.gov (United States)

    Sulcova, Jitka; Meyer, Michael; Guiducci, Eva; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Werner, Sabine

    2015-06-01

    Chronic inflammatory skin diseases, such as atopic dermatitis, affect a large percentage of the population, but the role of different immune cells in the pathogenesis of these disorders is largely unknown. Recently, we found that mice lacking fibroblast growth factor receptor 1 (Fgfr1) and Fgfr2 (K5-R1/R2 mice) in the epidermis have a severe impairment in the epidermal barrier, which leads to the development of a chronic inflammatory skin disease that shares many features with human atopic dermatitis. Using Fgfr1-/Fgfr2-deficient mice, we analyzed the consequences of the loss of mast cells. Mast cells accumulated and degranulated in the skin of young Fgfr1-/Fgfr2-deficient mice, most likely as a consequence of increased expression of the mast cell chemokine Ccl2. The increase in mast cells occurred before the development of histological abnormalities, indicating a functional role of these cells in the inflammatory skin phenotype. To test this hypothesis, we mated the Fgfr1-/Fgfr2-deficient mice with mast cell-deficient CreMaster mice. Surprisingly, loss of mast cells did not or only mildly affect keratinocyte proliferation, epidermal thickness, epidermal barrier function, accumulation and activation of different immune cells, or expression of different proinflammatory cytokines in the skin. These results reveal that mast cells are dispensable for the development of chronic inflammation in response to a defect in the epidermal barrier. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Characterization of Fetal Keratinocytes, Showing Enhanced Stem Cell-Like Properties: A Potential Source of Cells for Skin Reconstruction

    Directory of Open Access Journals (Sweden)

    Kenneth K.B. Tan

    2014-08-01

    Full Text Available Epidermal stem cells have been in clinical application as a source of culture-generated grafts. Although applications for such cells are increasing due to aging populations and the greater incidence of diabetes, current keratinocyte grafting technology is limited by immunological barriers and the time needed for culture amplification. We studied the feasibility of using human fetal skin cells for allogeneic transplantation and showed that fetal keratinocytes have faster expansion times, longer telomeres, lower immunogenicity indicators, and greater clonogenicity with more stem cell indicators than adult keratinocytes. The fetal cells did not induce proliferation of T cells in coculture and were able to suppress the proliferation of stimulated T cells. Nevertheless, fetal keratinocytes could stratify normally in vitro. Experimental transplantation of fetal keratinocytes in vivo seeded on an engineered plasma scaffold yielded a well-stratified epidermal architecture and showed stable skin regeneration. These results support the possibility of using fetal skin cells for cell-based therapeutic grafting.

  2. Etanercept therapy for toxic epidermal necrolysis.

    Science.gov (United States)

    Paradisi, Andrea; Abeni, Damiano; Bergamo, Fabio; Ricci, Francesco; Didona, Dario; Didona, Biagio

    2014-08-01

    Toxic epidermal necrolysis (TEN) is a severe and potentially lethal drug reaction for which no standard treatment is available. To describe a case series of patients with TEN treated with a single dose of etanercept. We observed 10 consecutive patients with TEN. For each patient, we recorded the presence of comorbidities and all the drugs recently started (ie, in the last month). In all cases, 50 mg of etanercept was administered in a single subcutaneous injection. The clinical severity of disease was computed using the SCORe of Toxic Epidermal Necrosis (SCORTEN) scale. Using the probabilities of death linked to each level of SCORTEN score, we calculated the expected probability of death in our patients. Healing was defined as complete reepithelialization, and a time to healing curve was then obtained using the Kaplan-Meier method. All patients promptly responded to treatment, reaching complete reepithelialization without complications or side effects. The median time to healing was 8.5 days. This is a small, uncontrolled case series. These preliminary results suggest the possibility that tumor necrosis factor-alfa may be an effective target for control of TEN, a dangerous skin condition for which no effective cure has yet been found. Copyright © 2014 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  3. Inductive differentiation of two neural lineages reconstituted in a microculture system from Xenopus early gastrula cells.

    Science.gov (United States)

    Mitani, S; Okamoto, H

    1991-05-01

    Neural induction of ectoderm cells has been reconstituted and examined in a microculture system derived from dissociated early gastrula cells of Xenopus laevis. We have used monoclonal antibodies as specific markers to monitor cellular differentiation from three distinct ectoderm lineages in culture (N1 for CNS neurons from neural tube, Me1 for melanophores from neural crest and E3 for skin epidermal cells from epidermal lineages). CNS neurons and melanophores differentiate when deep layer cells of the ventral ectoderm (VE, prospective epidermis region; 150 cells/culture) and an appropriate region of the marginal zone (MZ, prospective mesoderm region; 5-150 cells/culture) are co-cultured, but not in cultures of either cell type on their own; VE cells cultured alone yield epidermal cells as we have previously reported. The extent of inductive neural differentiation in the co-culture system strongly depends on the origin and number of MZ cells initially added to culture wells. The potency to induce CNS neurons is highest for dorsal MZ cells and sharply decreases as more ventrally located cells are used. The same dorsoventral distribution of potency is seen in the ability of MZ cells to inhibit epidermal differentiation. In contrast, the ability of MZ cells to induce melanophores shows the reverse polarity, ventral to dorsal. These data indicate that separate developmental mechanisms are used for the induction of neural tube and neural crest lineages. Co-differentiation of CNS neurons or melanophores with epidermal cells can be obtained in a single well of co-cultures of VE cells (150) and a wide range of numbers of MZ cells (5 to 100). Further, reproducible differentiation of both neural lineages requires intimate association between cells from the two gastrula regions; virtually no differentiation is obtained when cells from the VE and MZ are separated in a culture well. These results indicate that the inducing signals from MZ cells for both neural tube and neural

  4. Computed Tomography-Guided Core-Needle Biopsy Specimens Demonstrate Epidermal Growth Factor Receptor Mutations in Patients with Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Chen, C.M.; Chang, J.W.C.; Cheung, Y.C.; Lin, G.; Hsieh, J.J.; Hsu, T.; Huang, S.F.

    2008-01-01

    Background: Target therapy with a new class of epidermal growth factor receptor (EGFR) inhibitors shows improved clinical response in EGFR gene-mutated lung cancers. Purpose: To evaluate the use of computed tomography (CT)-guided core-needle biopsy specimens for the assessment of EGFR gene mutation in non-small-cell lung cancer (NSCLC). Material and Methods: Seventeen (nine males, eight females) patients with advanced NSCLC were enrolled in this study. All patients underwent CT-guided core-needle biopsy of the lung tumor prior to treatment with the EGFR inhibitor gefitinib. There were no life-threatening complications of biopsy. The specimens were sent fresh-frozen for EGFR mutation analysis and histopathological study. Results: There were 12 (70.6%) EGFR gene mutants and five (29.4%) nonmutants. The objective response rate to gefitinib therapy was 73.3% (11 of 15 patients), with 91.7% (11 of 12 mutants) for the mutant group and 0% for the nonmutant group. Conclusion: CT-guided core-needle biopsy of advanced NSCLC enables the acquisition of sufficient tissue for EGFR gene mutation analysis

  5. Steroid hormone and epidermal growth factor receptors in meningiomas.

    Science.gov (United States)

    Horsfall, D J; Goldsmith, K G; Ricciardelli, C; Skinner, J M; Tilley, W D; Marshall, V R

    1989-11-01

    A prospective study of steroid hormone and epidermal growth factor receptor expression in 57 meningiomas is presented. Scatchard analysis of radioligand binding identified 20% of meningiomas as expressing classical oestrogen receptors (ER) at levels below that normally accepted for positivity, the remainder being negative. ER could not be visualized in any meningioma using immunocytochemistry. Alternatively, 74% of meningiomas demonstrated the presence of progesterone receptors (PR) by Scatchard analysis, the specificity of which could not be attributed to glucocorticoid or androgen receptors. Confirmation of classical PR presence was determined by immunocytochemical staining. The presence of epidermal growth factor receptor (EGFR) was demonstrated in 100% of meningiomas using immunocytochemical staining. These data are reviewed in the context of previously reported results and are discussed in relation to the potential for medical therapy as an adjunct to surgery.

  6. T-cell receptor gamma delta bearing cells in normal human skin

    NARCIS (Netherlands)

    Bos, J. D.; Teunissen, M. B.; Cairo, I.; Krieg, S. R.; Kapsenberg, M. L.; Das, P. K.; Borst, J.

    1990-01-01

    T-cell antigen receptors (TCR) are divided into common alpha beta and less common gamma delta types. In the murine skin, TCR gamma delta+ cells have been reported to form the great majority of epidermal T lymphocytes. We have examined the relative contribution of TCR alpha beta+ and TCR gamma delta+

  7. Deletion of epidermal Rac1 inhibits HPV-8 induced skin papilloma formation and facilitates HPV-8- and UV-light induced skin carcinogenesis.

    Science.gov (United States)

    Deshmukh, Jayesh; Pofahl, Ruth; Pfister, Herbert; Haase, Ingo

    2016-09-06

    Overexpression and increased activity of the small Rho GTPase Rac1 has been linked to squamous cell carcinoma of the epidermis and mucosa in humans. Targeted deletion of Rac1 or inhibition of Rac1 activity in epidermal keratinocytes reduced papilloma formation in a chemical skin carcinogenesis mouse model. However, a potential role of Rac1 in HPV- and UV-light induced skin carcinogenesis has not been investigated so far, solar UV radiation being an important carcinogen to the skin.To investigate this, we deleted Rac1 or modulated its activity in mice with transgenic expression of Human papilloma virus type-8 (HPV-8) in epidermal keratinocytes. Our data show that inhibition or deletion of Rac1 results in reduced papilloma formation upon UV-irradiation with a single dose, whereas constitutive activation of Rac1 strongly increases papilloma frequency in these mice. Surprisingly, we observed that, upon chronic UV-irradiation, the majority of mice with transgenic expression of HPV-8 and epidermis specific Rac1 deletion developed squamous cell carcinomas. Taken together, our data show that Rac1 exerts a dual role in skin carcinogenesis: its activation is, on one hand, required for HPV-8- and UV-light induced papilloma formation but, on the other, suppresses the development of squamous cell carcinomas.

  8. Suppression of the Epidermal Growth Factor-like Domain 7 and Inhibition of Migration and Epithelial-Mesenchymal Transition in Human Pancreatic Cancer PANC-1 Cells.

    Science.gov (United States)

    Wang, Yun-Liang; Dong, Feng-Lin; Yang, Jian; Li, Zhi; Zhi, Qiao-Ming; Zhao, Xin; Yang, Yong; Li, De-Chun; Shen, Xiao-Chun; Zhou, Jin

    2015-01-01

    Epidermal growth factor-like domain multiple 7 (EGFL7), a secreted protein specifically expressed by endothelial cells during embryogenesis, recently was identified as a critical gene in tumor metastasis. Epithelial-mesenchymal transition (EMT) was found to be closely related with tumor progression. Accordingly, it is important to investigate the migration and EMT change after knock-down of EGFL7 gene expression in human pancreatic cancer cells. EGFL7 expression was firstly testified in 4 pancreatic cancer cell lines by real-time polymerase chain reaction (Real-time PCR) and western blot, and the highest expression of EGFL7 was found in PANC-1 cell line. Then, PANC-1 cells transfected with small interference RNA (siRNA) of EGFL7 using plasmid vector were named si-PANC-1, while transfected with negative control plasmid vector were called NC-PANC-1. Transwell assay was used to analyze the migration of PANC-1 cells. Real-time PCR and western blotting were used to detect the expression change of EGFL7 gene, EMT markers like E-Cadherin, N-Cadherin, Vimentin, Fibronectin and transcription factors like snail, slug in PANC-1, NC- PANC-1, and si-PANC-1 cells, respectively. After successful plasmid transfection, EGFL7 gene were dramatically knock-down by RNA interference in si-PANC-1 group. Meanwhile, migration ability decreased significantly, compared with PANC-1 and NC-PANC-1 group. Meanwhile, the expression of epithelial phenotype marker E-Cadherin increased and that of mesenchymal phenotype markers N-Cadherin, Vimentin, Fibronectin dramatically decreased in si-PANC-1 group, indicating a reversion of EMT. Also, transcription factors snail and slug decreased significantly after RNA interference. Current study suggested that highly-expressed EGFL7 promotes migration of PANC-1 cells and acts through transcription factors snail and slug to induce EMT, and further study is needed to confirm this issue.

  9. Localization of calcium in the sensory cells of the Dionaea trigger hair by laser micro-mass analysis (LAMMA)

    International Nuclear Information System (INIS)

    Buchen, B.; Schröder, W.H.

    1986-01-01

    In Dionaea, mechanical bending of the trigger hair induces action potentials which spread over the trap lobes to the motor cells (review Bentrup 1979). The perception of the stimulus and its transformation into a physiological signal occurs in a ring of specialized epidermal cells in the indentation zone of the trigger hair. These sensory cells (Haberlandt 1906) are characterized by a highly evolved ER complex at the apical and the basal cell pole. The ER surrounds several vacuoles containing poly phenols (Buchen et al. 1983). In order to study the function of these cell structures in sensory transduction, we examined the development of the trigger hair (Casser et al. 1985). During its development, a change in the membrane potential could be measured for the first time when the structural polarity of the sensory cell was established. Yet the short action potentials which are necessary for trap closure were fired only if the typical ER complex in the cell poles was visible. Since membrane potential changes are mediated by ions, we tried to identify and to localize ions possibly involved in these processes. Here we present the first results

  10. Epidermal growth factor and lung development in the offspring of the diabetic rat

    DEFF Research Database (Denmark)

    Thulesen, J; Poulsen, Steen Seier; Nexø, Ebba

    2000-01-01

    Fetuses of diabetic mothers who were exposed to excessive glucose show delayed maturation. Under these conditions, altered growth factor expression or signaling may have important regulatory influences. We examined the role of epidermal growth factor (EGF) in lung development and maternal diabetes...... in the rat. In order to evaluate the possible role of glucose for the expression of EGF and the growth of lung tissue, we performed in vitro studies with organotypic cultures of fetal alveolar cells obtained from control rats. Compared to pups of normal rats, the newborn rats of untreated diabetic rats had...... and was associated with a reduced intensity of surfactant protein A-IR. The only difference observed between pups of treated diabetic rats and controls was a decrease in the lung weight:body weight ratio. In organotypic cultures, the presence of 13 mmol/L glucose in the cell media increased immunoreactive staining...

  11. Smart Surroundings

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Jansen, P.G.; Lijding, M.E.M.; Scholten, Johan

    2004-01-01

    Ambient systems are networked embedded systems integrated with everyday environments and supporting people in their activities. These systems will create a Smart Surrounding for people to facilitate and enrich daily life and increase productivity at work. Such systems will be quite different from

  12. Dynamic changes in nicotinamide pyridine dinucleotide content in normal human epidermal keratinocytes and their effect on retinoic acid biosynthesis

    International Nuclear Information System (INIS)

    Pinkas-Sarafova, Adriana; Markova, N.G.; Simon, M.

    2005-01-01

    The function of many enzymes that regulate metabolism and transcription depends critically on the nicotinamide pyridine dinucleotides. To understand the role of NAD(P)(H) in physiology and pathophysiology, it is imperative to estimate both their amount and ratios in a given cell type. In human epidermis and in cultured epidermal keratinocytes, we found that the total dinucleotide content is in the low millimolar range. The dinucleotide pattern changes during proliferation and maturation of keratinocytes in culture. Differences in the concentrations of NAD(P)(H) of 1.5- to 12-fold were observed. This resulted in alteration of the NAD(P)H/NAD(P) ratio, which could impact the differential regulation of both transcriptional and metabolic processes. In support of this notion, we provide evidence that the two-step oxidation of retinol to retinoic acid, a nuclear hormone critical for epidermal homeostasis, can be regulated by the relative physiological amounts of the pyridine dinucleotides

  13. Regeneration of the epidermis and basement membrane of the planarian Dugesia japonica after total-body x irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hori, I.

    1979-03-01

    Fresh-water planarians were studied to examine effects of x rays on regeneration of the epidermis and basement membrane. During early stages of regeneration, free rhabdite-forming cells were associated with the wound epidermis and recruited it. In later stages, however, a gradual degeneration occurred in the epidermis and cells undergoing epithelization decreased in number. Eventually epidermal cells on the wound surface appeared necrotic as evidenced by pyknotic nuclei and vacuolized dense cytoplasm. The entire basement membrane could not be reconstituted in any stage after wounding though its precursor-like material was secreted in the interspace between epidermis and parenchyma. Morphological changes in extracellular products and in the cells surrounding the products suggest that epidermal cells which have covered the wound surface synthesize precursors of the basement membrane. Possible factors of a characteristic perturbation in epithelization and basement membrane formation after total-body irradiation are discussed.

  14. Regeneration of the epidermis and basement membrane of the planarian Dugesia japonica after total-body x irradiation

    International Nuclear Information System (INIS)

    Hori, I.

    1979-01-01

    Fresh-water planarians were studied to examine effects of x rays on regeneration of the epidermis and basement membrane. During early stages of regeneration, free rhabdite-forming cells were associated with the wound epidermis and recruited it. In later stages, however, a gradual degeneration occurred in the epidermis and cells undergoing epithelization decreased in number. Eventually epidermal cells on the wound surface appeared necrotic as evidenced by pyknotic nuclei and vacuolized dense cytoplasm. The entire basement membrane could not be reconstituted in any stage after wounding though its precursor-like material was secreted in the interspace between epidermis and parenchyma. Morphological changes in extracellular products and in the cells surrounding the products suggest that epidermal cells which have covered the wound surface synthesize precursors of the basement membrane. Possible factors of a characteristic perturbation in epithelization and basement membrane formation after total-body irradiation are discussed

  15. Differential Downregulation of E-Cadherin and Desmoglein by Epidermal Growth Factor

    Directory of Open Access Journals (Sweden)

    Miquella G. Chavez

    2012-01-01

    Full Text Available Modulation of cell : cell junctions is a key event in cutaneous wound repair. In this study we report that activation of the epidermal growth factor (EGF receptor disrupts cel : cell adhesion, but with different kinetics and fates for the desmosomal cadherin desmoglein and for E-cadherin. Downregulation of desmoglein preceded that of E-cadherin in vivo and in an EGF-stimulated in vitro wound reepithelialization model. Dual immunofluorescence staining revealed that neither E-cadherin nor desmoglein-2 internalized with the EGF receptor, or with one another. In response to EGF, desmoglein-2 entered a recycling compartment based on predominant colocalization with the recycling marker Rab11. In contrast, E-cadherin downregulation was accompanied by cleavage of the extracellular domain. A broad-spectrum matrix metalloproteinase inhibitor protected E-cadherin but not the desmosomal cadherin, desmoglein-2, from EGF-stimulated disruption. These findings demonstrate that although activation of the EGF receptor regulates adherens junction and desmosomal components, this stimulus downregulates associated cadherins through different mechanisms.

  16. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors.

    Science.gov (United States)

    Taniguchi, Hirokazu; Takeuchi, Shinji; Fukuda, Koji; Nakagawa, Takayuki; Arai, Sachiko; Nanjo, Shigeki; Yamada, Tadaaki; Yamaguchi, Hiroyuki; Mukae, Hiroshi; Yano, Seiji

    2017-01-01

    Crizotinib, a first-generation anaplastic lymphoma kinase (ALK) tyrosine-kinase inhibitor, is known to be effective against echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive non-small cell lung cancers. Nonetheless, the tumors subsequently become resistant to crizotinib and recur in almost every case. The mechanism of the acquired resistance needs to be deciphered. In this study, we established crizotinib-resistant cells (A925LPE3-CR) via long-term administration of crizotinib to a mouse model of pleural carcinomatous effusions; this model involved implantation of the A925LPE3 cell line, which harbors the EML4-ALK gene rearrangement. The resistant cells did not have the secondary ALK mutations frequently occurring in crizotinib-resistant cells, and these cells were cross-resistant to alectinib and ceritinib as well. In cell clone #2, which is one of the clones of A925LPE3-CR, crizotinib sensitivity was restored via the inhibition of epidermal growth factor receptor (EGFR) by means of an EGFR tyrosine-kinase inhibitor (erlotinib) or an anti-EGFR antibody (cetuximab) in vitro and in the murine xenograft model. Cell clone #2 did not have an EGFR mutation, but the expression of amphiregulin (AREG), one of EGFR ligands, was significantly increased. A knockdown of AREG with small interfering RNAs restored the sensitivity to crizotinib. These data suggest that overexpression of EGFR ligands such as AREG can cause resistance to crizotinib, and that inhibition of EGFR signaling may be a promising strategy to overcome crizotinib resistance in EML4-ALK lung cancer. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  17. Epidermal Overexpression of Xenobiotic Receptor PXR Impairs the Epidermal Barrier and Triggers Th2 Immune Response.

    Science.gov (United States)

    Elentner, Andreas; Schmuth, Matthias; Yannoutsos, Nikolaos; Eichmann, Thomas O; Gruber, Robert; Radner, Franz P W; Hermann, Martin; Del Frari, Barbara; Dubrac, Sandrine

    2018-01-01

    The skin is in daily contact with environmental pollutants, but the long-term effects of such exposure remain underinvestigated. Many of these toxins bind and activate the pregnane X receptor (PXR), a ligand-activated transcription factor that regulates genes central to xenobiotic metabolism. The objective of this work was to investigate the effect of constitutive activation of PXR in the basal layer of the skin to mimic repeated skin exposure to noxious molecules. We designed a transgenic mouse model that overexpresses the human PXR gene linked to the herpes simplex VP16 domain under the control of the keratin 14 promoter. We show that transgenic mice display increased transepidermal water loss and elevated skin pH, abnormal stratum corneum lipids, focal epidermal hyperplasia, activated keratinocytes expressing more thymic stromal lymphopoietin, a T helper type 2/T helper type 17 skin immune response, and increased serum IgE. Furthermore, the cutaneous barrier dysfunction precedes development of the T helper type 2/T helper type 17 inflammation in transgenic mice, thereby mirroring the time course of atopic dermatitis development in humans. Moreover, further experiments suggest increased PXR signaling in the skin of patients with atopic dermatitis when compared with healthy skin. Thus, PXR activation by environmental pollutants may compromise epidermal barrier function and favor an immune response resembling atopic dermatitis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. The epidermal biosynthesis of cholecalciferol (vitamin D3)

    International Nuclear Information System (INIS)

    Beadle, P.C.

    1977-01-01

    An attempt has been made to calculate the rate of ultraviolet absorption by 7-dehydrocholesterol, provitamin D 3 , in the epidermis as a function of latitude, season and skin type, in the hope that it will provide an upper-limit estimate of the epidermal vitamin production. The results indicate that a significant fraction of the total epidermal production may occur in the stratum corneum with figures of 15 and 31% being found for non-pigmented and pigmented epidermises, respectively. Total production in negroid epidermis is predicted to be about 40% of that in the caucasian one and the latitudinal variation is greater than the seasonal variation, in agreement with the behaviour of the available solar ultraviolet. Overall production rates were sufficiently high for it to be unnecessary to invoke an enhanced absorption mechanism for the provitamin, although the results do indicate that there may be a risk of deficient production above about 40 0 N. (author)

  19. Genetics Home Reference: Stevens-Johnson syndrome/toxic epidermal necrolysis

    Science.gov (United States)

    ... Hung SI. Recent advances in the genetics and immunology of Stevens-Johnson syndrome and toxic epidermal necrosis. ... 2012 May 29. Citation on PubMed or Free article on PubMed Central More from Genetics Home Reference ...

  20. Acetogenic and Sulfate-Reducing Bacteria Inhabiting the Rhizoplane and Deep Cortex Cells of the Sea Grass Halodule wrightii†

    Science.gov (United States)

    Küsel, Kirsten; Pinkart, Holly C.; Drake, Harold L.; Devereux, Richard

    1999-01-01

    Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizospheres that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacteria and clostridia were enriched in sediments colonized by the sea grasses Halodule wrightii and Thalassia testudinum compared to an adjacent unvegetated sediment. Most-probable-number analyses found that in contrast to butyrate-producing clostridia, acetogens and acetate-utilizing sulfate reducers were enriched by an order of magnitude in rhizosphere sediments. Although sea grass roots are oxygenated in the daytime, colorimetric root incubation studies demonstrated that acetogenic O-demethylation and sulfidogenic iron precipitation activities were tightly associated with washed, sediment-free H. wrightii roots. This suggests that the associated anaerobes are able to tolerate exposure to oxygen. To localize and quantify the anaerobic microbial colonization, root thin sections were hybridized with newly developed 33P-labeled probes that targeted (i) low-G+C-content gram-positive bacteria, (ii) cluster I species of clostridia, (iii) species of Acetobacterium, and (iv) species of Desulfovibrio. Microautoradiography revealed intercellular colonization of the roots by Acetobacterium and Desulfovibrio species. Acetogenic bacteria occurred mostly in the rhizoplane and outermost cortex cell layers, and high numbers of sulfate reducers were detected on all epidermal cells and inward, colonizing some 60% of the deepest cortex cells. Approximately 30% of epidermal cells were colonized by bacteria that hybridized with an archaeal probe, strongly suggesting the presence of methanogens. Obligate anaerobes within the roots might contribute to the vitality of sea grasses and other aquatic plants and to the biogeochemistry of the surrounding sediment. PMID:10543830