WorldWideScience

Sample records for surrounding brain tissue

  1. Severe blood-brain barrier disruption and surrounding tissue injury.

    Science.gov (United States)

    Chen, Bo; Friedman, Beth; Cheng, Qun; Tsai, Phil; Schim, Erica; Kleinfeld, David; Lyden, Patrick D

    2009-12-01

    Blood-brain barrier opening during ischemia follows a biphasic time course, may be partially reversible, and allows plasma constituents to enter brain and possibly damage cells. In contrast, severe vascular disruption after ischemia is unlikely to be reversible and allows even further extravasation of potentially harmful plasma constituents. We sought to use simple fluorescent tracers to allow wide-scale visualization of severely damaged vessels and determine whether such vascular disruption colocalized with regions of severe parenchymal injury. Severe vascular disruption and ischemic injury was produced in adult Sprague Dawley rats by transient occlusion of the middle cerebral artery for 1, 2, 4, or 8 hours, followed by 30 minutes of reperfusion. Fluorescein isothiocyanate-dextran (2 MDa) was injected intravenously before occlusion. After perfusion-fixation, brain sections were processed for ultrastructure or fluorescence imaging. We identified early evidence of tissue damage with Fluoro-Jade staining of dying cells. With increasing ischemia duration, greater quantities of high molecular weight dextran-fluorescein isothiocyanate invaded and marked ischemic regions in a characteristic pattern, appearing first in the medial striatum, spreading to the lateral striatum, and finally involving cortex; maximal injury was seen in the mid-parietal areas, consistent with the known ischemic zone in this model. The regional distribution of the severe vascular disruption correlated with the distribution of 24-hour 2,3,5-triphenyltetrazolium chloride pallor (r=0.75; P<0.05) and the cell death marker Fluoro-Jade (r=0.86; P<0.05). Ultrastructural examination showed significantly increased areas of swollen astrocytic foot process and swollen mitochondria in regions of high compared to low leakage, and compared to contralateral homologous regions (ANOVA P<0.01). Dextran extravasation into the basement membrane and surrounding tissue increased significantly from 2 to 8 hours of

  2. Effect of decimeter waves on brain and surrounding tissue temperature (experimental study)

    Energy Technology Data Exchange (ETDEWEB)

    Malikova, S.N.; Malyshev, V.L.; Balakyreva, V.N.; Gorban' , L.G.

    Temperature changes in brain and surrounding tissue evoked by decimeter waves (DMW) were studied on phantoms (wood shavings wetted with physiological solution), rabbits and dogs under light nembutal anesthesia and on animal cadavers. The data obtained showed that living organisms, in contrast to phantoms, exhibited a response to heat generation of DMW; this was manifested by maintenance of the temperature at certain level or by a tendency to lower it after about a 10 min exposure to DMW. Thus it was shown that there is a functional cooling system in living organisms: increased local blood flow and a specialized cooling system for the brain. Rabbits showed considerably higher brain temperature elevation than the experimental dogs. Overall, the brain temperature upon exposure to DMW depended on the intensity and duration of DMW action as well as on the state of circulating cooling system of the animals. 4 references, 4 figures.

  3. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    Science.gov (United States)

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  4. Placental vascular responses are dependent on surrounding tissue

    DEFF Research Database (Denmark)

    Brøgger, Torbjørn Halle

    -depth understanding of the mechanism regulating blood flow and perfusion is necessary if we are to come up with new ideas for intervention and treatment. Method: From fresh born placentas stem villi arteries were carefully dissected. The artery branches were divided. The surrounding tissue was removed from one end...... and was left untouched in the other end. Then using wire myography they were investigated in terms of contractility and sensitivity to physiological relevant human-like agonists. Results: Sensitivity to PGF2α, Tx-analog, 5-HT and endothelin-1 was significantly lower in arteries with intact surrounding tissue...... compared to arteries stripped of the tissue. The maximal force development was also significantly lower in arteries with surrounding tissue, when they were depolarized high extracellular [K+] or stimulated with PGF2α or endotheline-1. Conclusion: The perivascular tissue significantly alters stem villi...

  5. Placental vascular responses are dependent on surrounding tissue

    DEFF Research Database (Denmark)

    Brøgger, Torbjørn Halle

    . Materials and methods. From fresh born placentas, stem villi arteries were carefully dissected. The artery branches were divided. The surrounding tissue was removed from one end and was left untouched in the other end.Then, using wire myography, they were investigated in terms of contractility...... and sensitivity to physiological relevant human-like agonists. Results. Sensitivity to PGF2α, Tx-analog, 5-HT and endothelin-1 was significantly lower in arteries with intact surrounding tissue compared to arteries stripped of the tissue. The maximal force development was also significantly lower in arteries...... with surrounding tissue when they were depolarized high extracellular [K+] or stimulated with PGF2α or endotheline-1. Conclusion. The perivascular tissue significantly alters stem villi arteries' sensitivity and force development in a suppressive way. This implicates a new aspect of blood flow regulation...

  6. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  7. Three-dimensional assessment of brain tissue morphology

    Science.gov (United States)

    Müller, Bert; Germann, Marco; Jeanmonod, Daniel; Morel, Anne

    2006-08-01

    The microstructure of brain tissues becomes visible using different types of optical microscopy after the tissue sectioning. This preparation procedure introduces stress and strain in the anisotropic and inhomogeneous soft tissue slices, which are several 10 μm thick. Consequently, the three-dimensional dataset, generated out of the two-dimensional images with lateral submicrometer resolution, needs algorithms to correct the deformations, which can be significant for mellow tissue such as brain segments. The spatial resolution perpendicular to the slices is much worse with respect to the lateral sub-micrometer resolution. Therefore, we propose as complementary method the synchrotron-radiation-based micro computed tomography (SRμCT), which avoids any kind of preparation artifacts due to sectioning and histological processing and yields true micrometer resolution in the three orthogonal directions. The visualization of soft matter by the use of SRμCT, however, is often based on elaborate staining protocols, since the tissue exhibits (almost) the same x-ray absorption as the surrounding medium. Therefore, it is unexpected that human tissue from the pons and the medulla oblongata in phosphate buffer show several features such as the blood vessels and the inferior olivary nucleus without staining. The value of these tomograms lies especially in the precise non-rigid registration of the different sets of histological slices. Applications of this method to larger pieces of brain tissue, such as the human thalamus are planned in the context of stereotactic functional neurosurgery.

  8. Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity.

    Science.gov (United States)

    Unhavaithaya, Yingdee; Orr-Weaver, Terry L

    2012-01-01

    Proper development requires coordination in growth of the cell types composing an organ. Many plant and animal cells are polyploid, but how these polyploid tissues contribute to organ growth is not well understood. We found the Drosophila melanogaster subperineurial glia (SPG) to be polyploid, and ploidy is coordinated with brain mass. Inhibition of SPG polyploidy caused rupture of the septate junctions necessary for the blood-brain barrier. Thus, the increased SPG cell size resulting from polyploidization is required to maintain the SPG envelope surrounding the growing brain. Polyploidization likely is a conserved strategy to coordinate tissue growth during organogenesis, with potential vertebrate examples.

  9. Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python.

    Science.gov (United States)

    Rey-Villamizar, Nicolas; Somasundar, Vinay; Megjhani, Murad; Xu, Yan; Lu, Yanbin; Padmanabhan, Raghav; Trett, Kristen; Shain, William; Roysam, Badri

    2014-01-01

    In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.

  10. Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python

    Directory of Open Access Journals (Sweden)

    Nicolas eRey-Villamizar

    2014-04-01

    Full Text Available In this article, we describe use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis task, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral brain tissue images surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels, 6,000$times$10,000$times$500 voxels with 16 bits/voxel, implying image sizes exceeding 250GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analytics for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment consisting. Our Python script enables efficient data storage and movement between compute and storage servers, logging all processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.

  11. Tissue reaction surrounding miniscrews for orthodontic anchorage: An animal experiment

    Directory of Open Access Journals (Sweden)

    Stephanie Shih-Hsuan Chen

    2012-03-01

    Results and conclusions: (1 Tissue surrounding roots damaged by a miniscrew showed a significant inflammatory response. (2 Root resorption was occasionally observed after 3 weeks following insertion of a miniscrew even if the miniscrew was not in direct contact with the root. (3 Root repair was noted with a cementoblast lining along the resorption surface at as early as 3 weeks after miniscrew insertion. Alveolar bone filled in the lesion when the root damage was large so that the contour of the alveolar bone followed that of the damaged root, with the width of the periodontal ligament space being maintained. (4 Stable miniscrews were mainly those which did not contact adjacent roots, and for which the surrounding tissue showed only a small inflammatory response with some extent of direct bone contact around the miniscrew. On the contrary, most of the failed miniscrews were those which had direct contact with adjacent roots, and which exhibited severe tissue inflammation and were covered by thick layers of soft tissue. Failure was detected 3 weeks after insertion. Surprisingly, the epithelial lining surrounding the miniscrews might not have spontaneously resolved 6 weeks after screw removal. Persistent infection in the sinus tract was noted, and this would require attention.

  12. Quantitative Susceptibility Mapping of Human Brain Reflects Spatial Variation in Tissue Composition

    Science.gov (United States)

    Li, Wei; Wu, Bing; Liu, Chunlei

    2011-01-01

    Image phase from gradient echo MRI provides a unique contrast that reflects brain tissue composition variations, such as iron and myelin distribution. Phase imaging is emerging as a powerful tool for the investigation of functional brain anatomy and disease diagnosis. However, the quantitative value of phase is compromised by its nonlocal and orientation dependent properties. There is an increasing need for reliable quantification of magnetic susceptibility, the intrinsic property of tissue. In this study, we developed a novel and accurate susceptibility mapping method that is also phase-wrap insensitive. The proposed susceptibility mapping method utilized two complementary equations: (1) the Fourier relationship of phase and magnetic susceptibility; and (2) the first-order partial derivative of the first equation in the spatial frequency domain. In numerical simulation, this method reconstructed the susceptibility map almost free of streaking artifact. Further, the iterative implementation of this method allowed for high quality reconstruction of susceptibility maps of human brain in vivo. The reconstructed susceptibility map provided excellent contrast of iron-rich deep nuclei and white matter bundles from surrounding tissues. Further, it also revealed anisotropic magnetic susceptibility in brain white matter. Hence, the proposed susceptibility mapping method may provide a powerful tool for the study of brain physiology and pathophysiology. Further elucidation of anisotropic magnetic susceptibility in vivo may allow us to gain more insight into the white matter microarchitectures. PMID:21224002

  13. Histopathological investigation of radiation necrosis. Coagulation necrosis in the irradiated and non-irradiated brain tumors and in the normal brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, N [Niigata Univ. (Japan). Brain Research Inst.

    1977-01-01

    Eighty four irradiated tumors (including 59 gliomas) and the surrounding brain tissue were analyzed. In 'normal' brain tissue, typical coagulation necrosis attributable to irradiation was observed in the cerebral white matter, presenting a whitish-yellow color but no remarkable changes in volume. Histologically there was complete desintegration of myelin and axon. Vascular changes included hyalinous thickening, concentric cleavage, fibrinoid degeneration, adventitial fibrosis and edema of small arteries, fibrin thrombi or occlusion of arterioles and capillaries, and telangiectasia of small veins and venules. While other tumors showed hyalinous or fibrous scar tissue and decrease in volume, the gliomas maintained their original volume without residual tumor cells. Massive coagulation necrosis was occasionally found even in full volume, non-irradiated gliomas (controls), although the changes were fewer and not so varied as in typical radiation necrosis. With small dosages, it was difficult to judge whether the necrosis was caused by irradiation or occurred spontaneously. Coagulation necrosis in tumor tissue was found in 25 of 59 cases (42%) of irradiated gliomas, but in only 2 of 49 cases (4%) of the nonirradiated gliomas. In 49 cases no coagulation necrosis of the surrounding tissue was found. Although histopathological judgement is difficult, it is suggested that there is a significant correlation between coagulation necrosis and irradiation. Discussion of the relationship between coagulation necrosis and NSD (nominal standard dose) led to the conclusion that coagulation necrosis will not be caused by irradiation of less than 1400 rets in NSD.

  14. Migration of metallic ions from screwposts into dentin and surrounding tissues

    International Nuclear Information System (INIS)

    Arvidson, K.; Wroblewski, R.

    1978-01-01

    Previous investigations have shown that corrosion and other electrochemical processes occur when different alloys or metals are found together in the same mouth. In the present report, when teeth were restored using non-noble metallic posts, the metals diffused out to surrounding hard and soft connective tissues. The material consisted of extracted teeth with screwposts and surrounding discolored connective tissues. The screwposts had been cemented to the teeth 3-10 years earlier. The distribution of metal ion was determined by means of energy-dispersive X-ray microanalysis. Copper and zinc were found in both hard and soft tissues. Relatively high concentrations of copper ions were identified in areas of the teeth with blue-green discolorations. Zinc ions were detected in the dentin; they most probably originated from the screwposts and the cement, but zinc is also found in normal human dentin. Copper, zinc, silver and iron were found in the dark discolorations of the gingiva adjacent to the extracted teeth. (author)

  15. CT after gastrectomy for gastric carcinoma : significance of soft tissue surrounding the celiac axis

    International Nuclear Information System (INIS)

    Baek, Seung Yon; Kim, Hae Young; Choi, Hye Young; Lee, Sun Wha; Ko, Eun Joo; Lee, Myung Sook

    1997-01-01

    To evaluate whether soft tissue surrounding the celiac axis, as seen on abdominal CT imaging after gastrectomy for gastric carcinoma, should be considered as the recurrence of carcinoma or postoperative change. One hundred and forty-one abdominal CT examinations of 71 patients who had undergone subtotal or total gastrectomy for gastric carcinoma were included in our study. Conventional CT scans were obtained with 1cm thickness and interval from the diaphragm to the kidneys after contrast enhancement. It was considered that carcinoma had not recurred if findings were negative on UGI series, endoscopy with biopsy and a normal level of carcinoembryonic antigen except for soft tissue surrounding the celiac axis on abdominal CT. We then divided subjects into a recurrence group(N=20) and normal group(N=51) and on initial follow-up CT(FU-CT), analyzed the incidence, margin, shape, extent, degree and pattern of attenuation of the soft tissue surrounding the celiac axis in both groups. Since the second FU-CT examination, we observed changes in the soft tissue surrounding the celiac axis. On initial follow-up CT, at mean 308 days after surgery, fifty-five percent(39/71) of total patients (70%(14/20) of the recurrence group and 49%(25/51) of the normal group) showed soft tissue surrounding the celiac axis. The margin was distinct in 12(86%) of the recurrence group and indistinct in 21(84%) of the normal group(p<0.001). Twelve (86%) of the recurrence group showed a nodular or confluent nodular shape and 21(84%) of the normal group showed a permeative shape (p<0.001). Extent was unilateral in eight (57%) of the recurrence group and bilateral in 16(64%) of the normal group. Attenuation was similar to that of the spleen and muscle in seven(50%) of the recurrence group and was similar to that of muscle in 18(72%) of the normal group. The pattern of attenuation was homogeneous in 13(93%) of the recurrence group and 21(84%) of the normal group. There was no significant difference in

  16. Position of probe determines prognostic information of brain tissue PO2 in severe traumatic brain injury.

    Science.gov (United States)

    Ponce, Lucido L; Pillai, Shibu; Cruz, Jovany; Li, Xiaoqi; Julia, H; Gopinath, Shankar; Robertson, Claudia S

    2012-06-01

    Monitoring brain tissue PO2 (PbtO2) is part of multimodality monitoring of patients with traumatic brain injury (TBI). However, PbtO2 measurement is a sampling of only a small area of tissue surrounding the sensor tip. To examine the effect of catheter location on the relationship between PbtO2 and neurological outcome. A total of 405 patients who had PbtO2 monitoring as part of standard management of severe traumatic brain injury were studied. The relationships between probe location and resulting PbtO2 and outcome were examined. When the probe was located in normal brain, PbtO2 averaged 30.8 ± 18.2 compared with 25.6 ± 14.8 mm Hg when placed in abnormal brain (P < .001). Factors related to neurological outcome in the best-fit logistic regression model were age, PbtO2 probe position, postresuscitation motor Glasgow Coma Scale score, and PbtO2 trend pattern. Although average PbtO2 was significantly related to outcome in univariate analyses, it was not significant in the final logistic model. However, the interaction between PbtO2 and probe position was statistically significant. When the PbtO2 probe was placed in abnormal brain, the average PbtO2 was higher in those with a favorable outcome, 28.8 ± 12.0 mm Hg, compared with those with an unfavorable outcome, 19.5 ± 13.7 mm Hg (P = .01). PbtO2 and outcome were not related when the probe was placed in normal-appearing brain. These results suggest that the location of the PbtO2 probe determines the PbtO2 values and the relationship of PbtO2 to neurological outcome.

  17. Combined Bisulfite Restriction Analysis for brain tissue identification.

    Science.gov (United States)

    Samsuwan, Jarunya; Muangsub, Tachapol; Yanatatsaneejit, Pattamawadee; Mutirangura, Apiwat; Kitkumthorn, Nakarin

    2018-05-01

    According to the tissue-specific methylation database (doi: 10.1016/j.gene.2014.09.060), methylation at CpG locus cg03096975 in EML2 has been preliminarily proven to be specific to brain tissue. In this study, we enlarged sample size and developed a technique for identifying brain tissue in aged samples. Combined Bisulfite Restriction Analysis-for EML2 (COBRA-EML2) technique was established and validated in various organ samples obtained from 108 autopsies. In addition, this technique was also tested for its reliability, minimal DNA concentration detected, and use in aged samples and in samples obtained from specific brain compartments and spinal cord. COBRA-EML2 displayed 100% sensitivity and specificity for distinguishing brain tissue from other tissues, showed high reliability, was capable of detecting minimal DNA concentration (0.015ng/μl), could be used for identifying brain tissue in aged samples. In summary, COBRA-EML2 is a technique to identify brain tissue. This analysis is useful in criminal cases since it can identify the vital organ tissues from small samples acquired from criminal scenes. The results from this analysis can be counted as a medical and forensic marker supporting criminal investigations, and as one of the evidences in court rulings. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. The adult brain tissue response to hollow fiber membranes of varying surface architecture with or without cotransplanted cells

    Science.gov (United States)

    Zhang, Ning

    A variety of biomaterials have been chronically implanted into the central nervous system (CNS) for repair or therapeutic purposes. Regardless of the application, chronic implantation of materials into the CNS induces injury and elicits a wound healing response, eventually leading to the formation of a dense extracellular matrix (ECM)-rich scar tissue that is associated with the segregation of implanted materials from the surrounding normal tissue. Often this reaction results in impaired performance of indwelling CNS devices. In order to enhance the performance of biomaterial-based implantable devices in the CNS, this thesis investigated whether adult brain tissue response to implanted biomaterials could be manipulated by changing biomaterial surface properties or further by utilizing the biology of co-transplanted cells. Specifically, the adult rat brain tissue response to chronically implanted poly(acrylonitrile-vinylchloride) (PAN-PVC) hollow fiber membranes (HFMs) of varying surface architecture were examined temporally at 2, 4, and 12 weeks postimplantation. Significant differences were discovered in the brain tissue response to the PAN-PVC HFMs of varying surface architecture at 4 and 12 weeks. To extend this work, whether the soluble factors derived from a co-transplanted cellular component further affect the brain tissue response to an implanted HFM in a significant way was critically exploited. The cells used were astrocytes, whose ability to influence scar formation process following CNS injury by physical contact with the host tissue had been documented in the literature. Data indicated for the first time that astrocyte-derived soluble factors ameliorate the adult brain tissue reactivity toward HFM implants in an age-dependent manner. While immature astrocytes secreted soluble factors that suppressed the brain tissue reactivity around the implants, mature astrocytes secreted factors that enhanced the gliotic response. These findings prove the feasibility

  19. Blood flow and vascular reactivity in collaterally perfused brain tissue. Evidence of an ischemic penumbra in patients with acute stroke

    DEFF Research Database (Denmark)

    Olsen, T S; Larsen, B; Herning, M

    1983-01-01

    ). Autoregulation was impaired in all of the collaterally perfused areas while the CO2-response always was preserved. Steal phenomena were not seen. In the surrounding brain tissue, autoregulation was normal in 5 patients and impaired in 3 while the CO2-response seemed to be normal. The results confirm...

  20. Effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    WANG Qiong; LI Ai-lin; ZHI Da-shi; HUANG Hui-ling

    2007-01-01

    Objective:To study the effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury (STBI) using clinical microdialysis.Methods: Thirty-one patients with STBI ( GCS ≤8) were randomly divided into hypothermic group (Group A) and control group (Group B). Microdialysis catheters were inserted into the cerebral cortex of perilesional and normal brain tissue. All samples were analyzed using CMA microdialysis analyzer.Results: In comparison with the control group, lactate/glucose ratio ( L/G) , lactate/pyruvate ratio ( L/P) and glycerol (Gly) in perilensional tissue were significantly decreased; L/P in normal brain tissue was significantly decreased. In control group, L/G, L/P and Gly in perilensional tissue were higher than that in normal brain tissue. In the hypothermic group, L/P in perilensional tissue was higher than that in relative normal brain.Conclusions: Mild hypothermia protects brain tissues by decreasing L/G, L/P and Gly in perilensional tissue and L/P in "normal brain" tissues. The energy crisis and membrane phospholipid degradation in perilensional tissue are easier to happen after traumatic brain injury, and mild hypothermia protects brain better in perilensional tissue than in normal brain tissue.

  1. In Silico Neuro-Oncology: Brownian Motion-Based Mathematical Treatment as a Potential Platform for Modeling the Infiltration of Glioma Cells into Normal Brain Tissue

    Science.gov (United States)

    Antonopoulos, Markos; Stamatakos, Georgios

    2015-01-01

    Intensive glioma tumor infiltration into the surrounding normal brain tissues is one of the most critical causes of glioma treatment failure. To quantitatively understand and mathematically simulate this phenomenon, several diffusion-based mathematical models have appeared in the literature. The majority of them ignore the anisotropic character of diffusion of glioma cells since availability of pertinent truly exploitable tomographic imaging data is limited. Aiming at enriching the anisotropy-enhanced glioma model weaponry so as to increase the potential of exploiting available tomographic imaging data, we propose a Brownian motion-based mathematical analysis that could serve as the basis for a simulation model estimating the infiltration of glioblastoma cells into the surrounding brain tissue. The analysis is based on clinical observations and exploits diffusion tensor imaging (DTI) data. Numerical simulations and suggestions for further elaboration are provided. PMID:26309390

  2. A family of hyperelastic models for human brain tissue

    Science.gov (United States)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  3. Computational analysis of transcranial magnetic stimulation in the presence of deep brain stimulation probes

    Science.gov (United States)

    Syeda, F.; Holloway, K.; El-Gendy, A. A.; Hadimani, R. L.

    2017-05-01

    Transcranial Magnetic Stimulation is an emerging non-invasive treatment for depression, Parkinson's disease, and a variety of other neurological disorders. Many Parkinson's patients receive the treatment known as Deep Brain Stimulation, but often require additional therapy for speech and swallowing impairment. Transcranial Magnetic Stimulation has been explored as a possible treatment by stimulating the mouth motor area of the brain. We have calculated induced electric field, magnetic field, and temperature distributions in the brain using finite element analysis and anatomically realistic heterogeneous head models fitted with Deep Brain Stimulation leads. A Figure of 8 coil, current of 5000 A, and frequency of 2.5 kHz are used as simulation parameters. Results suggest that Deep Brain Stimulation leads cause surrounding tissues to experience slightly increased E-field (Δ Emax =30 V/m), but not exceeding the nominal values induced in brain tissue by Transcranial Magnetic Stimulation without leads (215 V/m). The maximum temperature in the brain tissues surrounding leads did not change significantly from the normal human body temperature of 37 °C. Therefore, we ascertain that Transcranial Magnetic Stimulation in the mouth motor area may stimulate brain tissue surrounding Deep Brain Stimulation leads, but will not cause tissue damage.

  4. NMR imaging of cell phone radiation absorption in brain tissue

    Science.gov (United States)

    Gultekin, David H.; Moeller, Lothar

    2013-01-01

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry. PMID:23248293

  5. State-of-the-Art Methods for Brain Tissue Segmentation: A Review.

    Science.gov (United States)

    Dora, Lingraj; Agrawal, Sanjay; Panda, Rutuparna; Abraham, Ajith

    2017-01-01

    Brain tissue segmentation is one of the most sought after research areas in medical image processing. It provides detailed quantitative brain analysis for accurate disease diagnosis, detection, and classification of abnormalities. It plays an essential role in discriminating healthy tissues from lesion tissues. Therefore, accurate disease diagnosis and treatment planning depend merely on the performance of the segmentation method used. In this review, we have studied the recent advances in brain tissue segmentation methods and their state-of-the-art in neuroscience research. The review also highlights the major challenges faced during tissue segmentation of the brain. An effective comparison is made among state-of-the-art brain tissue segmentation methods. Moreover, a study of some of the validation measures to evaluate different segmentation methods is also discussed. The brain tissue segmentation, content in terms of methodologies, and experiments presented in this review are encouraging enough to attract researchers working in this field.

  6. Brain Perfusion Changes in Intracerebral Hemorrhage

    International Nuclear Information System (INIS)

    Mititelu, R.; Mazilu, C.; Ghita, S.; Rimbu, A.; Marinescu, G.; Codorean, I.; Bajenaru, O.

    2006-01-01

    Full text: Purpose: Despite the latest advances in medical treatment and neuro critical care, patients suffering spontaneous intracerebral hemorrhage (SICH) still have a very poor prognosis, with a greater mortality and larger neurological deficits at the survivors than for ischemic stroke. Many authors have shown that there are many mechanisms involved in the pathology of SICH: edema, ischemia, inflammation, apoptosis. All of these factors are affecting brain tissue surrounding hematoma and are responsible of the progressive neurological deterioration; most of these damages are not revealed by anatomical imaging techniques. The aim of our study was to asses the role of brain perfusion SPECT in demonstrating perfusion changes in SICH patients. Method: 17 SICH pts were studied. All pts underwent same day CT and brain SPECT with 99mTcHMPAO, 24h-5d from onset of stroke. Results: 14/17 pts showed a larger perfusion defect than expected after CT. In 2 pts hematoma diameter was comparable on CT and SPECT; 1pt had quasinormal aspect of SPECT study. In pts with larger defects, SPECT revealed a large cold spot with similar size compared with CT, and a surrounding hypo perfused area. 6/17 pts revealed cortical hyper perfusion adjacent to hypo perfused area and corresponding to a normal-appearing brain tissue on CT. In 3 pts we found crossed cerebellar diaskisis.In 2 pts we found cortical hypo perfused area in the contralateral cortex, with normal appearing brain tissue on CT. Conclusions: Brain perfusion SPECT revealed different types of perfusion changes in the brain tissue surrounding hematoma. These areas contain viable brain tissue that may be a target for future ne uroprotective strategies. Further studies are definitely required to demonstrate prognostic significance of these changes, but we can conclude that brain perfusion SPECT can play an important role in SICH, by early demonstrating functional changes responsible of clinical deterioration, thus allowing prompt

  7. PIXE characterization of tissues surrounding metallic prostheses coated with biological glasses

    International Nuclear Information System (INIS)

    Barbotteau, Y.; Irigaray, J.L.; Moretto, Ph.

    2004-01-01

    Biological glasses can be used as coatings for metallic prostheses in order to prevent corrosion. According to their composition, these glasses have different properties. We studied, in vivo, two glasses referred to as BVA and BVH. They are used as coatings of Ti6Al4V metallic implant. BVA glass disappears after 3 months of implantation and is replaced by bone. Prostheses initially coated by this glass have a larger osseous contact perimeter compared to the uncoated prostheses. This ensures a better anchoring of the implant and limits the micro-motions which cause wear debris. BVH glass keeps a constant composition during implantation and it is used like a layer which isolates metal implant from biological environment. In order to characterize the bony environment surrounding implants, we have used PIXE and RBS methods. This paper shows results of the behavior of bony tissue under micro-beam, the quality tests of new bone which replaces the BVA glass coating and the evaluation of corrosion effects. Titanium release in bony tissues begins when the metal surface of the prosthesis is exposed to biological fluids. After a few months of implantation, the titanium contamination is stabilized and remains localized within the first tens of micrometers of surrounding bone

  8. The surrounding tissue modifies the placental stem villous vascular responses

    DEFF Research Database (Denmark)

    Brøgger, Torbjørn; Forman, Axel; Aalkjær, Christian

    2014-01-01

    is available. In-depth understanding of the mechanisms involved in control of placental vascular tone are needed to develop new tissue targets for therapeutic intervention. Method: From fresh born placentas segments of stem villous arteries were carefully dissected. The artery branches were divided....... The surrounding trophoblast was removed from one end and left intact in the other, and the segment was divided to give two ring preparations, with or without trophoblast. The preparations were mounted in wire myographs and responses to vasoactive agents were compared. Results: pD2values for PGF2α, Tx-analog U...... or endotheline-1. These differences partly disappeared in the presence of L-NAME. Conclusion: The perivascular tissue significantly reduces sensitivity and force development of stem villous arteries, partly due to release of NO This represents a new mechanism for control of human stem villous artery tone....

  9. Photon Entanglement Through Brain Tissue.

    Science.gov (United States)

    Shi, Lingyan; Galvez, Enrique J; Alfano, Robert R

    2016-12-20

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  10. Injury Response of Resected Human Brain Tissue In Vitro

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Sluiter, Arja A.; Balesar, Rawien A.; Baaijen, Johannes C.; de Witt Hamer, Philip C.; Speijer, Dave; Li, Yichen; Swaab, Dick F.

    2015-01-01

    Brain injury affects a significant number of people each year. Organotypic cultures from resected normal neocortical tissue provide unique opportunities to study the cellular and neuropathological consequences of severe injury of adult human brain tissue in vitro. The in vitro injuries caused by

  11. Aluminium in brain tissue in familial Alzheimer's disease.

    Science.gov (United States)

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2017-03-01

    The genetic predispositions which describe a diagnosis of familial Alzheimer's disease can be considered as cornerstones of the amyloid cascade hypothesis. Essentially they place the expression and metabolism of the amyloid precursor protein as the main tenet of disease aetiology. However, we do not know the cause of Alzheimer's disease and environmental factors may yet be shown to contribute towards its onset and progression. One such environmental factor is human exposure to aluminium and aluminium has been shown to be present in brain tissue in sporadic Alzheimer's disease. We have made the first ever measurements of aluminium in brain tissue from 12 donors diagnosed with familial Alzheimer's disease. The concentrations of aluminium were extremely high, for example, there were values in excess of 10μg/g tissue dry wt. in 5 of the 12 individuals. Overall, the concentrations were higher than all previous measurements of brain aluminium except cases of known aluminium-induced encephalopathy. We have supported our quantitative analyses using a novel method of aluminium-selective fluorescence microscopy to visualise aluminium in all lobes of every brain investigated. The unique quantitative data and the stunning images of aluminium in familial Alzheimer's disease brain tissue raise the spectre of aluminium's role in this devastating disease. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  12. Determination of friction coefficient in unconfined compression of brain tissue.

    Science.gov (United States)

    Rashid, Badar; Destrade, Michel; Gilchrist, Michael D

    2012-10-01

    Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient μ of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that μ was equal to 0.09±0.03, 0.18±0.04, 0.18±0.04 and 0.20±0.02 at strain rates of 1, 30, 60 and 90/s, respectively. Additional tests were also performed to analyze brain tissue under lubricated and bonded conditions, with and without initial contact of the top platen with the brain tissue, with different specimen aspect ratios and with different lubricants (Phosphate Buffer Saline (PBS), Polytetrafluoroethylene (PTFE) and Silicone). The test conditions (lubricant used, biological tissue, loading velocity) adopted in this study were similar to the studies conducted by other research groups. This study will help to understand the amount of friction generated during unconfined compression of brain tissue for strain rates of up to 90/s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Fiber-based tissue identification for electrode placement in deep brain stimulation neurosurgery (Conference Presentation)

    Science.gov (United States)

    DePaoli, Damon T.; Lapointe, Nicolas; Goetz, Laurent; Parent, Martin; Prudhomme, Michel; Cantin, Léo.; Galstian, Tigran; Messaddeq, Younès.; Côté, Daniel C.

    2016-03-01

    Deep brain stimulation's effectiveness relies on the ability of the stimulating electrode to be properly placed within a specific target area of the brain. Optical guidance techniques that can increase the accuracy of the procedure, without causing any additional harm, are therefore of great interest. We have designed a cheap optical fiber-based device that is small enough to be placed within commercially available DBS stimulating electrodes' hollow cores and that is capable of sensing biological information from the surrounding tissue, using low power white light. With this probe we have shown the ability to distinguish white and grey matter as well as blood vessels, in vitro, in human brain samples and in vivo, in rats. We have also repeated the in vitro procedure with the probe inserted in a DBS stimulating electrode and found the results were in good agreement. We are currently validating a second fiber optic device, with micro-optical components, that will result in label free, molecular level sensing capabilities, using CARS spectroscopy. The final objective will be to use this data in real time, during deep brain stimulation neurosurgery, to increase the safety and accuracy of the procedure.

  14. Progression of thanatophagy in cadaver brain and heart tissues

    Directory of Open Access Journals (Sweden)

    Gulnaz T. Javan

    2016-03-01

    Full Text Available Autophagy is an evolutionarily conserved catabolic process for maintaining cellular homeostasis during both normal and stress conditions. Metabolic reprogramming in tissues of dead bodies is inevitable due to chronic ischemia and nutrient deprivation, which are well-known features that stimulate autophagy. Currently, it is not fully elucidated whether postmortem autophagy, also known as thanatophagy, occurs in dead bodies is a function of the time of death. In this study, we tested the hypothesis that thanatophagy would increase in proportion to time elapsed since death for tissues collected from cadavers. Brain and heart tissue from corpses at different time intervals after death were analyzed by Western blot. Densitometry analysis demonstrated that thanatophagy occurred in a manner that was dependent on the time of death. The autophagy-associated proteins, LC3 II, p62, Beclin-1 and Atg7, increased in a time-dependent manner in heart tissues. A potent inducer of autophagy, BNIP3, decreased in the heart tissues as time of death increased, whereas the protein levels increased in brain tissues. However, there was no expression of BNIP3 at extended postmortem intervals in both brain and heart samples. Collectively, the present study demonstrates for the first time that thanatophagy occurs in brain and heart tissues of cadavers in a time-dependent manner. Further, our data suggest that cerebral thanatophagy may occur in a Beclin-1- independent manner. This unprecedented study provides potential insight into thanatophagy as a novel method for the estimation of the time of death in criminal investigationsAbstract: Autophagy is an evolutionarily conserved catabolic process for maintaining cellular homeostasis during both normal and stress conditions. Metabolic reprogramming in tissues of dead bodies is inevitable due to chronic ischemia and nutrient deprivation, which are well-known features that stimulate autophagy. Currently, it is not fully

  15. Multiscale biomechanics of brain tumours favours cancer invasion by cell softening and tissue stiffening

    Science.gov (United States)

    Kas, Josef; Fritsch, Anatol; Grosser, Steffen; Friebe, Sabrina; Reiss-Zimmermann, Martin; Müller, Wolf; Hoffmann, Karl-Titus; Sack, Ingolf

    Cancer progression needs two contradictory mechanical prerequisites. For metastasis individual cancer cells or small clusters have to flow through the microenvironment by overcoming the yield stress exerted by the surrounding. On the other hand a tumour has to behave as a solid to permit cell proliferation and spreading of the tumour mass against its surrounding. We determine that the high mechanical adaptability of cancer cells and the scale controlled viscoelastic properties of tissues reconcile both conflicting properties, fluid and solid, simultaneously in brain tumours. We resolve why different techniques that assess cell and tissue mechanics have produced apparently conflicting results by our finding that tumours generate different viscoelastic behaviours on different length scales, which are in concert optimal for tumour spreading and metastasis. Single cancer cells become very soft in their elastic behavior which promotes cell unjamming. On the level of direct cell-to-cell interactions cells feel their micro-environment as rigid elastic substrate that stimulates cancer on the molecular level. All over a tumour has predominately a stiff elastic character in terms of viscoelastic behaviour caused by a solid backbone. Simultaneously, the tumour mass is characterized by a large local variability in the storage and loss modulus that is caused by areas of a more fluid nature.

  16. Blood BDNF concentrations reflect brain-tissue BDNF levels across species

    DEFF Research Database (Denmark)

    Klein, Anders B; Williamson, Rebecca; Santini, Martin A

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in synaptic plasticity, neuronal differentiation and survival of neurons. Observations of decreased serum BDNF levels in patients with neuropsychiatric disorders have highlighted the potential of BDNF as a biomarker, but so far there have been...... no studies directly comparing blood BDNF levels to brain BDNF levels in different species. We examined blood, serum, plasma and brain-tissue BDNF levels in three different mammalian species: rat, pig, and mouse, using an ELISA method. As a control, we included an analysis of blood and brain tissue from...... conditional BDNF knockout mice and their wild-type littermates. Whereas BDNF could readily be measured in rat blood, plasma and brain tissue, it was undetectable in mouse blood. In pigs, whole-blood levels of BDNF could not be measured with a commercially available ELISA kit, but pig plasma BDNF levels (mean...

  17. Blood BDNF concentrations reflect brain-tissue BDNF levels across species

    DEFF Research Database (Denmark)

    Klein, Anders B; Williamson, Rebecca; Santini, Martin A

    2011-01-01

    no studies directly comparing blood BDNF levels to brain BDNF levels in different species. We examined blood, serum, plasma and brain-tissue BDNF levels in three different mammalian species: rat, pig, and mouse, using an ELISA method. As a control, we included an analysis of blood and brain tissue from......Brain-derived neurotrophic factor (BDNF) is involved in synaptic plasticity, neuronal differentiation and survival of neurons. Observations of decreased serum BDNF levels in patients with neuropsychiatric disorders have highlighted the potential of BDNF as a biomarker, but so far there have been...... conditional BDNF knockout mice and their wild-type littermates. Whereas BDNF could readily be measured in rat blood, plasma and brain tissue, it was undetectable in mouse blood. In pigs, whole-blood levels of BDNF could not be measured with a commercially available ELISA kit, but pig plasma BDNF levels (mean...

  18. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age.

    Science.gov (United States)

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539). Copyright © 2013 by the Research Society on Alcoholism.

  19. Blood brain barrier and brain tissue injury by Gd-DTPA in uremia-induced rabbits

    International Nuclear Information System (INIS)

    Choi, Sun Seob; Huh, Ki Yeong; Han, Jin Yeong; Lee, Yong Chul; Eun, Choong Gi; Yang, Yeong Il

    1996-01-01

    An experimental study was carried out to evaluate the morphological changes in the blood brain barrier and neighbouring brain tissue caused by Gd-DTPA in uremia-induced rabbits. Bilateral renal arteries and veins of ten rabbits were ligated. Gd-DTPA(0.2mmol/kg) was intravenously injected into seven rabbits immediately after ligation. After MRI, they were sacrificed 2 or 3 days after ligation in order to observe light and electron microscopic changes in the blood brain barrier and brain tissue. MRI findings were normal, except for enhancement of the superior and inferior sagittal sinuses on T1 weighted images in uremia-induced rabbits injected with Gd-DTPA. On light microscopic examination, these rabbits showed perivascular edema and glial fibrillary acidic protein expression: electron microscopic examination showed separation of tight junctions of endothelial cells, duplication/rarefaction of basal lamina, increased lysosomes of neurons with neuronal death, demyelination of myelin, and extravasation of red blood cells. Uremia-induced rabbits injected with Gd-DTPA showed more severe changes than those without Gd-DTPA injection. Injuries to the blood brain barrier and neighbouring brain tissue were aggravated by Gd-DTPA administration in uremia-induced rabbits. These findings appear to be associated with the neurotoxicity of Gd-DTPA

  20. Expression and relevant research of MGMT and XRCC1 gene in differentgrades of brain glioma and normal brain tissues

    Institute of Scientific and Technical Information of China (English)

    Ya-Fei Zhang

    2015-01-01

    Objective: To explore and analyze expression and relevant research of MGMT and XRCC1 gene in different grades of brain glioma and normal brain tissues. Methods: 52 cases of patients with brain glioma treated in our hospital from December 2013 to December 2014, and 50 cases of normal brain-tissue patients with intracranial hypertension were selected, and proceeding test to the surgical resection of brain tissue of the above patients to determine its MGMT and XRCC1 protein content, sequentially to record the expression of MGMT and XRCC1 of both groups. Grading of tumors to brain glioma after operation was carried out, and the expression of MGMT and XRCC1 gene in brain tissues of different patients was analyzed and compared;finally the contingency tables of X2 test was used to analyze the correlation of XRCC1and MGMT. Results:Positive rate of MGMT expression in normal brain tissue was 2%,while positive rate of MGMT expression in brain glioma was 46.2%,which was obviously higher than that in normal brain tissues (χ2=26.85, P0.05), which had no statistical significance. There were 12 cases of patients whose MGMT protein expression was positive and XRCC1 protein expression was positive; there were 18 cases of patients whose MGMT protein expression was negative and XRCC1 protein expression was negative. Contingency tables of X2 test was used to analyze the correlation of XRCC1 and MGMT, which indicated that the expression of XRCCI and MGMT in brain glioma had no correlation (r=0.9%, P=0.353), relevancy of both was r=0.9%. Conclusions: Positive rate of the expression of MGMT and XRCC1 in brain glioma was obviously higher than that in normal brain tissues, but the distribution of different grades of brain glioma had no obvious difference, and MGMT and XRCC1 expression had no obvious correlation, which needed further research.

  1. Investigation of elemental changes in brain tissues following excitotoxic injury

    International Nuclear Information System (INIS)

    Siegele, Rainer; Howell, Nicholas R.; Callaghan, Paul D.; Pastuovic, Zeljko

    2013-01-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca +2 cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca +2 cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma

  2. Investigation of elemental changes in brain tissues following excitotoxic injury

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, Rainer, E-mail: rns@ansto.gov.au [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Howell, Nicholas R.; Callaghan, Paul D. [Life Sciences, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Pastuovic, Zeljko [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2013-07-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca{sup +2} cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca{sup +2} cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma.

  3. Pediatric brain tumors of neuroepithelial tissue

    International Nuclear Information System (INIS)

    Papanagiotou, P.; Politi, M.; Bergmann, M.; Pekrun, A.; Juergens, K.U.

    2014-01-01

    Tumors of neuroepithelial tissue represent the largest group of pediatric brain tumors by far and has therefore been divided into several discrete tumor subtypes each corresponding to a specific component of the neuropil. The neuropil contains several subtypes of glial cells, including astrocytes, oligodendrocytes, ependymal cells and modified ependymal cells that form the choroid plexus. This review discusses the imaging aspects of the most common pediatric tumors of neuroepithelial tissue. (orig.) [de

  4. The national DBS brain tissue network pilot study: need for more tissue and more standardization.

    Science.gov (United States)

    Vedam-Mai, V; Krock, N; Ullman, M; Foote, K D; Shain, W; Smith, K; Yachnis, A T; Steindler, D; Reynolds, B; Merritt, S; Pagan, F; Marjama-Lyons, J; Hogarth, P; Resnick, A S; Zeilman, P; Okun, M S

    2011-08-01

    Over 70,000 DBS devices have been implanted worldwide; however, there remains a paucity of well-characterized post-mortem DBS brains available to researchers. We propose that the overall understanding of DBS can be improved through the establishment of a Deep Brain Stimulation-Brain Tissue Network (DBS-BTN), which will further our understanding of DBS and brain function. The objectives of the tissue bank are twofold: (a) to provide a complete (clinical, imaging and pathological) database for DBS brain tissue samples, and (b) to make available DBS tissue samples to researchers, which will help our understanding of disease and underlying brain circuitry. Standard operating procedures for processing DBS brains were developed as part of the pilot project. Complete data files were created for individual patients and included demographic information, clinical information, imaging data, pathology, and DBS lead locations/settings. 19 DBS brains were collected from 11 geographically dispersed centers from across the U.S. The average age at the time of death was 69.3 years (51-92, with a standard deviation or SD of 10.13). The male:female ratio was almost 3:1. Average post-mortem interval from death to brain collection was 10.6 h (SD of 7.17). The DBS targets included: subthalamic nucleus, globus pallidus interna, and ventralis intermedius nucleus of the thalamus. In 16.7% of cases the clinical diagnosis failed to match the pathological diagnosis. We provide neuropathological findings from the cohort, and perilead responses to DBS. One of the most important observations made in this pilot study was the missing data, which was approximately 25% of all available data fields. Preliminary results demonstrated the feasibility and utility of creating a National DBS-BTN resource for the scientific community. We plan to improve our techniques to remedy omitted clinical/research data, and expand the Network to include a larger donor pool. We will enhance sample preparation to

  5. Effect of glucose level on brain FDG-PET images

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Young; Lee, Yong Ki; Ahn, Sung Min [Dept. of Radiological Science, Gachon University, Seongnam (Korea, Republic of)

    2017-06-15

    In addition to tumors, normal tissues, such as the brain and myocardium can intake {sup 18}F-FDG, and the amount of {sup 18}F-FDG intake by normal tissues can be altered by the surrounding environment. Therefore, a process is necessary during which the contrasts of the tumor and normal tissues can be enhanced. Thus, this study examines the effects of glucose levels on FDG PET images of brain tissues, which features high glucose activity at all times, in small animals. Micro PET scan was performed on fourteen mice after injecting {sup 18}F-FDG. The images were compared in relation to fasting. The findings showed that the mean SUV value w as 0 .84 higher in fasted mice than in non-fasted mice. During observation, the images from non-fasted mice showed high accumulation in organs other than the brain with increased surrounding noise. In addition, compared to the non-fasted mice, the fasted mice showed higher early intake and curve increase. The findings of this study suggest that fasting is important in assessing brain functions in brain PET using {sup 18}F-FDG. Additional studies to investigate whether caffeine levels and other preprocessing items have an impact on the acquired images would contribute to reducing radiation exposure in patients.

  6. Effect of glucose level on brain FDG-PET images

    International Nuclear Information System (INIS)

    Kim, In Young; Lee, Yong Ki; Ahn, Sung Min

    2017-01-01

    In addition to tumors, normal tissues, such as the brain and myocardium can intake 18 F-FDG, and the amount of 18 F-FDG intake by normal tissues can be altered by the surrounding environment. Therefore, a process is necessary during which the contrasts of the tumor and normal tissues can be enhanced. Thus, this study examines the effects of glucose levels on FDG PET images of brain tissues, which features high glucose activity at all times, in small animals. Micro PET scan was performed on fourteen mice after injecting 18 F-FDG. The images were compared in relation to fasting. The findings showed that the mean SUV value w as 0 .84 higher in fasted mice than in non-fasted mice. During observation, the images from non-fasted mice showed high accumulation in organs other than the brain with increased surrounding noise. In addition, compared to the non-fasted mice, the fasted mice showed higher early intake and curve increase. The findings of this study suggest that fasting is important in assessing brain functions in brain PET using 18 F-FDG. Additional studies to investigate whether caffeine levels and other preprocessing items have an impact on the acquired images would contribute to reducing radiation exposure in patients

  7. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues

    Directory of Open Access Journals (Sweden)

    Hye-Sun Yu

    2016-02-01

    Full Text Available Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations.

  8. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues

    Science.gov (United States)

    Yu, Hye-Sun; Kim, Jung-Ju; Kim, Hae-Won; Lewis, Mark P; Wall, Ivan

    2016-01-01

    Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations. PMID:26977284

  9. Coronaviruses in brain tissue from patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Dessau, R B; Lisby, G; Frederiksen, J L

    2001-01-01

    Brain tissue from 25 patients with clinically definite multiple sclerosis (MS) and as controls brain tissue from 36 patients without neurological disease was tested for the presence of human coronaviral RNA. Four PCR assays with primers specific for N-protein of human coronavirus strain 229E...... and three PCR assays with primers specific for the nucleocapsid protein of human coronavirus strain OC43 were performed. Sporadic positive PCR assays were observed in both patients and controls in some of the PCR assays. However, these results were not reproducible and there was no difference...... in the proportion of positive signals from the MS patients compared to controls. Evidence for a chronic infection with the human coronaviruses strain 229E or OC43 in brain tissue from patients with MS or controls has not been found in this study....

  10. Mechanical properties of brain tissue by indentation : interregional variation

    NARCIS (Netherlands)

    Dommelen, van J.A.W.; Sande, van der T.P.J.; Hrapko, M.; Peters, G.W.M.

    2010-01-01

    Although many studies on the mechanical properties of brain tissue exist, some controversy concerning the possible differences in mechanical properties of white and gray matter tissue remains. Indentation experiments are conducted on white and gray matter tissue of various regions of the cerebrum

  11. Effects of acupuncture on tissue oxygenation of the rat brain.

    Science.gov (United States)

    Chen, G S; Erdmann, W

    1978-04-01

    Acupuncture has been claimed to be effective in restoring consciousness in some comatose patients. Possible mechanisms to explain alleged acupuncture-induced arousal may include vasodilatory effects caused by smypathetic stimulation which leads to an augmentation of cerebral microcirculation and thereby improves oxygen supply to the brain tissue. Experiments were performed in ten albino rats (Wistar) employing PO2 microelectrodes which were inserted into the cortex through small burholes. Brain tissue PO2 was continuously recorded before, during, and after acupuncture. Stimulation of certain acupuncture points (Go-26) resulted in immediate increase of PO2 in the frontal cortex of the rat brain. This effect was reproducible and was comparable to that obtained with increase of inspiratory CO2 known to induce arterial vasodilatation and thus capillary perfusion pressure. The effect was more significant as compared to tissue PO2 increases obtained after increase in inspiratory oxygen concentration from 21% to 100%. It appears that acupuncture causes increased brain tissue perfusion which may be, at least in part, responsible for arousal of unconscious patients.

  12. Spatial cluster analysis of nanoscopically mapped serotonin receptors for classification of fixed brain tissue

    Science.gov (United States)

    Sams, Michael; Silye, Rene; Göhring, Janett; Muresan, Leila; Schilcher, Kurt; Jacak, Jaroslaw

    2014-01-01

    We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue samples are usually treated postmortem via standard fixation protocols, which are established in clinical laboratories. Therefore, our localization microscopy-based method was adapted to characterize protein density and protein cluster localization in samples fixed using different protocols followed by common fluorescent immunohistochemistry techniques. The localization microscopy allows nanoscopic mapping of serotonin 5-HT1A receptor groups within a two-dimensional image of a brain tissue slice. These nanoscopically mapped proteins can be confined to clusters by applying the proposed statistical spatial analysis. Selected features of such clusters were subsequently used to characterize and classify the tissue. Samples were obtained from different types of patients, fixed with different preparation methods, and finally stored in a human tissue bank. To verify the proposed method, samples of a cryopreserved healthy brain have been compared with epitope-retrieved and paraffin-fixed tissues. Furthermore, samples of healthy brain tissues were compared with data obtained from patients suffering from mental illnesses (e.g., major depressive disorder). Our work demonstrates the applicability of localization microscopy and image analysis methods for comparison and classification of human brain tissues at a nanoscopic level. Furthermore, the presented workflow marks a unique technological advance in the characterization of protein distributions in brain tissue sections.

  13. Effects of acupuncture on tissue-oxygenation of the rat brain.

    Science.gov (United States)

    Chen, G S; Erdmann, W

    1977-01-01

    Acupuncture has been claimed to be effective in restoring consciousness in some comatose patients. Possible mechanisms to explain alleged acupuncture-induced arousal may include vasodilatory effects caused by sympathetic stimulation which leads to an augmentation of cerebral microcirculation and thereby improves oxygen supply to the brain tissue. Experiments were performed in ten albino rats (Wistar) employing PO2 microelectrodes which were inserted into the cortex of the animals through small burholes. Brain tissue PO2 was continuously recorded before, during, and after acupuncture. Stimulation of certain acupuncture loci (Go-26) resulted in immediate increase of PO2 in the frontal cortex of the rat brain. This effect was reproducible. The effect was comparable to that obtained with increase of inspiratory CO2 known to induce arterial vasodilatation and thus capillary perfusion pressure. The effect was more significant as compared to tissue PO2 increases obtained after increase of inspiratory oxygen concentration from 21% to 100%. It appears that acupuncture causes an increase of brain tissue perfusion which may be, at least in part, responsible for arousal of unconscious patients. Dilatation of cerebral vascular vessels and improvement of autoregulation in the brain by acupuncture stimulation may also explain the effectiveness of acupuncture in the treatment of migraine headache.

  14. Metabolomics studies in brain tissue: A review.

    Science.gov (United States)

    Gonzalez-Riano, Carolina; Garcia, Antonia; Barbas, Coral

    2016-10-25

    Brain is still an organ with a composition to be discovered but beyond that, mental disorders and especially all diseases that curse with dementia are devastating for the patient, the family and the society. Metabolomics can offer an alternative tool for unveiling new insights in the discovery of new treatments and biomarkers of mental disorders. Until now, most of metabolomic studies have been based on biofluids: serum/plasma or urine, because brain tissue accessibility is limited to animal models or post mortem studies, but even so it is crucial for understanding the pathological processes. Metabolomics studies of brain tissue imply several challenges due to sample extraction, along with brain heterogeneity, sample storage, and sample treatment for a wide coverage of metabolites with a wide range of concentrations of many lipophilic and some polar compounds. In this review, the current analytical practices for target and non-targeted metabolomics are described and discussed with emphasis on critical aspects: sample treatment (quenching, homogenization, filtration, centrifugation and extraction), analytical methods, as well as findings considering the used strategies. Besides that, the altered analytes in the different brain regions have been associated with their corresponding pathways to obtain a global overview of their dysregulation, trying to establish the link between altered biological pathways and pathophysiological conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Individual Assessment of Brain Tissue Changes in MS and the Effect of Focal Lesions on Short-Term Focal Atrophy Development in MS: A Voxel-Guided Morphometry Study

    Directory of Open Access Journals (Sweden)

    Jan Fox

    2016-04-01

    Full Text Available We performed voxel-guided morphometry (VGM investigating the mechanisms of brain atrophy in multiple sclerosis (MS related to focal lesions. VGM maps detect regional brain changes when comparing 2 time points on high resolution T1-weighted (T1w magnetic resonace imaging (MRI. Two T1w MR datasets from 92 relapsing-remitting MS patients obtained 12 months apart were analysed with VGM. New lesions and volume changes of focal MS lesions as well as in the surrounding tissue were identified by visual inspection on colour coded VGM maps. Lesions were dichotomized in active and inactive lesions. Active lesions, defined by either new lesions (NL (volume increase > 5% in VGM, chronic enlarging lesions (CEL (pre-existent T1w lesions with volume increase > 5%, or chronic shrinking lesions (CSL (pre-existent T1w lesions with volume reduction > 5% in VGM, were accompanied by tissue shrinkage in surrounding and/or functionally related regions. Volume loss within the corpus callosum was highly correlated with the number of lesions in its close proximity. Volume loss in the lateral geniculate nucleus was correlated with lesions along the optic radiation. VGM analysis provides strong evidence that all active lesion types (NL, CEL, and CSL contribute to brain volume reduction in the vicinity of lesions and/or in anatomically and functionally related areas of the brain.

  16. Proton MRS of the peritumoral brain.

    Science.gov (United States)

    Chernov, Mikhail F; Kubo, Osami; Hayashi, Motohiro; Izawa, Masahiro; Maruyama, Takashi; Usukura, Masao; Ono, Yuko; Hori, Tomokatsu; Takakura, Kintomo

    2005-02-15

    Long-echo (TR: 2000 ms, TE: 136 ms) proton MRS of the cerebral tissue in the vicinity to intracranial lesion was done in 15 patients, mainly with parenchymal brain tumors. Significant decrease of N-acetylaspartate (NAA) (Plactate (Plactate in the lesion (Plactate in the lesion compared to perilesional brain (Plactate in the lesion is associated with lower relative NAA content in the perilesional brain tissue, independently on the presence or absence of any other factor, including brain edema (Plactate diffused from the tumor, or other metabolites secreted by lactate-producing neoplasm, should be considered as important contributors to the neuronal dysfunction in the surrounding brain. Decrease of NAA in the vicinity to intracranial lesions may reflect neuronal alteration responsible for associated epilepsy.

  17. Ultrastructural study of tissues surrounding replanted teeth and dental implants.

    Science.gov (United States)

    Shioya, Kazuhiro; Sawada, Takashi; Miake, Yasuo; Inoue, Sadayuki; Yanagisawa, Takaaki

    2009-03-01

    The aim of this study was to describe the ultrastructure of the dentogingival border at replanted teeth and implants. Wistar rats (8 weeks old) were divided into groups for replantation and implantation experiments. In the former, the upper right first molars were extracted and then immediately replanted. In the latter, pure titanium implants were used. All tissues were fixed, demineralized and embedded in epoxy resin for ultrastructural observations. One week after replantation, the junctional epithelium was lost, and the oral sulcular epithelium covered the enamel surface. The amount of the epithelium increased in 2 weeks, and resembled the junctional epithelium, and the internal basal lamina and hemidesmosomes were formed in 4 weeks. One week after implantation, peri-implant epithelium was formed, and in 2 and 4 weeks, this epithelium with aggregated connective tissue cells were observed. In 8 weeks, the peri-implant epithelium receded, and aligned special cells with surrounding elongated fibroblasts and bundles of collagen fibers appeared to seal the implant interface. In replantation of the tooth, the internal basal lamina remained at the surface of the enamel of the replanted tooth, which is likely to be related to regeneration of the junctional epithelium and the attachment apparatus at the epithelium-tooth interface. Following implantation, a layer of cells with characteristics of connective tissue cells, but no junctional epithelium and attachment apparatus, was formed to seal the site of the implant.

  18. Bone morphogenetic protein 2 and decorin expression in old fracture fragments and surrounding tissues.

    Science.gov (United States)

    Han, X G; Wang, D K; Gao, F; Liu, R H; Bi, Z G

    2015-09-21

    Bone morphogenetic protein 2 (BMP-2) can promote fracture healing. Although the complex role BMP-2 in bone formation is increasingly understood, the role of endogenous BMP-2 in nonunion remains unclear. Decorin (DCN) can promote the formation of bone matrix and calcium deposition to control bone morphogenesis. In this study, tissue composition and expression of BMP-2 and DCN were detected in different parts of old fracture zones to explore inherent anti-fibrotic ability and osteogenesis. Twenty-three patients were selected, including eight cases of delayed union and 15 cases of nonunion. Average duration of delayed union or nonunion was 15 months. Fracture fragments and surrounding tissues, including bone grafts, marrow cavity contents, and sticking scars, were categorically sampled during surgery. Through observation and histological testing, component comparisons were made between fracture fragments and surrounding tissue. The expression levels of DCN and BMP-2 in different tissues were detected by immunohistochemical staining and real-time polymerase chain reaction. The expression of DCN and BMP- 2 in different parts of the nonunion area showed that, compared with bone graft and marrow cavity contents, sticking scars had the highest expression of BMP-2. Compared with the marrow cavity contents and sticking scars, bone grafts had the highest expression of DCN. The low antifibrotic and osteogenic activity of the nonunion area was associated with non-co-expression of BMP-2 and DCN. Therefore, the co-injection of osteogenic factor BMP and DCN into the nonunion area can improve the induction of bone formation and enhance the conversion of the old scar, thereby achieving better nonunion treatment.

  19. Astrocyte calcium signal and gliotransmission in human brain tissue.

    Science.gov (United States)

    Navarrete, Marta; Perea, Gertrudis; Maglio, Laura; Pastor, Jesús; García de Sola, Rafael; Araque, Alfonso

    2013-05-01

    Brain function is recognized to rely on neuronal activity and signaling processes between neurons, whereas astrocytes are generally considered to play supportive roles for proper neuronal function. However, accumulating evidence indicates that astrocytes sense and control neuronal and synaptic activity, indicating that neuron and astrocytes reciprocally communicate. While this evidence has been obtained in experimental animal models, whether this bidirectional signaling between astrocytes and neurons occurs in human brain remains unknown. We have investigated the existence of astrocyte-neuron communication in human brain tissue, using electrophysiological and Ca(2+) imaging techniques in slices of the cortex and hippocampus obtained from biopsies from epileptic patients. Cortical and hippocampal human astrocytes displayed spontaneous Ca(2+) elevations that were independent of neuronal activity. Local application of transmitter receptor agonists or nerve electrical stimulation transiently elevated Ca(2+) in astrocytes, indicating that human astrocytes detect synaptic activity and respond to synaptically released neurotransmitters, suggesting the existence of neuron-to-astrocyte communication in human brain tissue. Electrophysiological recordings in neurons revealed the presence of slow inward currents (SICs) mediated by NMDA receptor activation. The frequency of SICs increased after local application of ATP that elevated astrocyte Ca(2+). Therefore, human astrocytes are able to release the gliotransmitter glutamate, which affect neuronal excitability through activation of NMDA receptors in neurons. These results reveal the existence of reciprocal signaling between neurons and astrocytes in human brain tissue, indicating that astrocytes are relevant in human neurophysiology and are involved in human brain function.

  20. Real-time changes in brain tissue oxygen during endovascular treatment of cerebral vasospasm

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Bache, Søren; Stavngaard, Trine

    2015-01-01

    pressure (PtiO₂) in target parenchyma. However, during the intervention, dangerously low levels of brain tissue oxygen, leading to cerebral infarction, may occur. Thus, no clinical improvement was seen in two of the patients and a dramatic worsening was observed in the third patient. Because the decrease...... minute-by-minute changes in brain tissue oxygen during balloon angioplasty and intraarterial administration of vasodilators in three patients.Our results confirm that endovascular intervention is capable of not only resolving angiographic vasospasm, but also of normalizing values of brain tissue oxygen...... in brain tissue oxygen was seen after administration of vasopressor agents, this may be a contributing factor....

  1. Effect of dexmedetomidine combined with propofol on brain tissue damage in brain glioma resection

    Institute of Scientific and Technical Information of China (English)

    2017-01-01

    Objective:To study the effect of dexmedetomidine combined with propofol on brain tissue damage in brain glioma resection.Methods: A total of 74 patients who received brain glioma resection in our hospital between May 2014 and December 2016 were selected and randomly divided into Dex group and control group who received dexmedetomidine intervention and saline intervention before induction respectively. Serum brain tissue damage marker, PI3K/AKT/iNOS and oxidation reaction molecule contents as well as cerebral oxygen metabolism index levels were determined before anesthesia (T0), at dura mater incision (T1), immediately after recovery (T2) and 24 h after operation (T3).Results: Serum NSE, S100B, MBP, GFAP, PI3K, AKT, iNOS and MDA contents as well as AVDO2 and CERO2 levels of both groups at T2 and T3 were significantly higher than those at T0 and T1 while serum SOD and CAT contents as well as SjvO2levels were significantly lower than those at T0 and T1, and serum NSE, S100B, MBP, GFAP, PI3K, AKT, iNOS and MDA contents as well as AVDO2 and CERO2 levels of Dex group at T2 and T3 were significantly lower than those of control group while serum SOD and CAT contents as well as SjvO2 levels were significantly higher than those of control group.Conclusions: Dexmedetomidine combined with propofol can reduce the brain tissue damage in brain glioma resection.

  2. Investigation of metalloproteins distributions in cytosol of hepatocellular carcinoma and its surrounding tissues by using synchrotron radiation X-ray fluorescence

    International Nuclear Information System (INIS)

    Gao Yuxi; Chen Chunying; Li Bai; Chai Zhifang; Huang Yuying; He Wei; Deng Guilong; Liu Yingbin

    2004-01-01

    Synchrotron radiation X-ray fluorescence (SRXRF) spectroscopy is an advanced quantitative multielemental analytical technique with space resolution of several μm and sensitivities in the μ g/g range. It can be used for keeping track of trace elements in biological samples after an electrophoretic separation. In this paper, proteins in cytosol of human hepatocellular carcinoma and the surrounding 'normal' tissue were separated with thin layer isoelectric focusing (IEF). The contents of metal ions in protein bands were determined by SRXRF. The results showed that the metal-containing proteins detected in the two samples were very much alike, but their distribution patterns were easily distinguishable. The contents of iron, zinc, and copper in bands from the surrounding 'normal' tissue were generally higher than that from hepatoma tissue, especially in Fe-containing proteins with pIs of 6.5, 7.7, 8.0 and less than 3.5, Cu-containing proteins with PIs of 3.2, 4.9, 5.5, 5.9 and 6.5, as well as Zn-containing proteins with pI of 5.5 and 6.5. However, Fe contents in Fe-containing proteins of 4.0, and 7.0 from the hepatoma tissue were slight higher than that from the surrounding 'normal' tissue. Further studies are necessary to validate the universality and the biological meaning of the pattern. (authors)

  3. Zika Virus RNA Replication and Persistence in Brain and Placental Tissue

    Science.gov (United States)

    Rabeneck, Demi B.; Martines, Roosecelis B.; Reagan-Steiner, Sarah; Ermias, Yokabed; Estetter, Lindsey B.C.; Suzuki, Tadaki; Ritter, Jana; Keating, M. Kelly; Hale, Gillian; Gary, Joy; Muehlenbachs, Atis; Lambert, Amy; Lanciotti, Robert; Oduyebo, Titilope; Meaney-Delman, Dana; Bolaños, Fernando; Saad, Edgar Alberto Parra; Shieh, Wun-Ju; Zaki, Sherif R.

    2017-01-01

    Zika virus is causally linked with congenital microcephaly and may be associated with pregnancy loss. However, the mechanisms of Zika virus intrauterine transmission and replication and its tropism and persistence in tissues are poorly understood. We tested tissues from 52 case-patients: 8 infants with microcephaly who died and 44 women suspected of being infected with Zika virus during pregnancy. By reverse transcription PCR, tissues from 32 (62%) case-patients (brains from 8 infants with microcephaly and placental/fetal tissues from 24 women) were positive for Zika virus. In situ hybridization localized replicative Zika virus RNA in brains of 7 infants and in placentas of 9 women who had pregnancy losses during the first or second trimester. These findings demonstrate that Zika virus replicates and persists in fetal brains and placentas, providing direct evidence of its association with microcephaly. Tissue-based reverse transcription PCR extends the time frame of Zika virus detection in congenital and pregnancy-associated infections. PMID:27959260

  4. New aspects of fenestrated vasculature and tissue dynamics in the sensory circumventricular organs of adult brains

    Directory of Open Access Journals (Sweden)

    Seiji eMiyata

    2015-10-01

    Full Text Available The blood–brain barrier (BBB generally consists of endothelial tight junction barriers that prevent the free entry of blood-derived substances, thereby maintaining the extracellular environment of the brain. However, the circumventricular organs (CVOs, which are located along the midlines of the brain ventricles, lack these endothelial barriers and have fenestrated capillaries; therefore, they have a number of essential functions, including the transduction of information between the blood circulation and brain. Previous studies have demonstrated the extensive contribution of the CVOs to body fluid and thermal homeostasis, energy balance, the chemoreception of blood-derived substances, and neuroinflammation. In this review, recent advances have been discussed in fenestrated capillary characterization and dynamic tissue reconstruction accompanied by angiogenesis and neurogliogenesis in the sensory CVOs of adult brains. The sensory CVOs, including the organum vasculosum of the lamina terminalis (OVLT, subfornical organ (SFO, and area postrema (AP, have size-selective and heterogeneous vascular permeabilities. Astrocyte-/tanycyte-like neural stem cells (NSCs sense blood- and cerebrospinal fluid-derived information through the transient receptor potential vanilloid 1, a mechanical/osmotic receptor, Toll-like receptor 4, a lipopolysaccharide receptor, and Nax, a Na-sensing Na channel. They also express tight junction proteins and densely and tightly surround mature neurons to protect them from blood-derived neurotoxic substances, indicating that the NSCs of the CVOs perform BBB functions while maintaining the capacity to differentiate into new neurons and glial cells. In addition to neurogliogenesis, the density of fenestrated capillaries is regulated by angiogenesis, which is accompanied by the active proliferation and sprouting of endothelial cells. Vascular endothelial growth factor (VEGF signaling may be involved in angiogenesis and

  5. Brain tissue stiffness is a sensitive marker for acidosis.

    Science.gov (United States)

    Holtzmann, Kathrin; Gautier, Hélène O B; Christ, Andreas F; Guck, Jochen; Káradóttir, Ragnhildur Thóra; Franze, Kristian

    2016-09-15

    Carbon dioxide overdose is frequently used to cull rodents for tissue harvesting. However, this treatment may lead to respiratory acidosis, which potentially could change the properties of the investigated tissue. Mechanical tissue properties often change in pathological conditions and may thus offer a sensitive generic readout for changes in biological tissues with clinical relevance. In this study, we performed force-indentation measurements with an atomic force microscope on acute cerebellar slices from adult rats to test if brain tissue undergoes changes following overexposure to CO2 compared to other methods of euthanasia. The pH significantly decreased in brain tissue of animals exposed to CO2. Concomitant with the drop in pH, cerebellar grey matter significantly stiffened. Tissue stiffening was reproduced by incubation of acute cerebellar slices in acidic medium. Tissue stiffness provides an early, generic indicator for pathophysiological changes in the CNS. Atomic force microscopy offers unprecedented high spatial resolution to detect such changes. Our results indicate that the stiffness particularly of grey matter strongly correlates with changes of the pH in the cerebellum. Furthermore, the method of tissue harvesting and preparation may not only change tissue stiffness but very likely also other physiologically relevant parameters, highlighting the importance of appropriate sample preparation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Effect of MgSO4 on the contents of Ca2+ in brain cell and NO in brain tissue of rats with radiation-induced acute brain injury

    International Nuclear Information System (INIS)

    Yuan Wenjia; Cui Fengmei; Liu Ping; He Chao; Tu Yu; Wang Lili

    2009-01-01

    The work is to explore the protection of magnesium sulfate(MgSO 4 ) on radiation-induced acute brain injury. Thirty six mature Sprague-Dawley(SD) rats were randomly divided into 3 groups of control, experimental control and experimental therapy group. The whole brains of SD rats of experimental control and experimental therapy group were irradiated with a dose of 20 Gy using 6 MeV electron beam. MgSO 4 was injected into the abdomen of experimental therapy rats group 1 day before, immediately and continue for 5 days after irradiation respectively. The brain tissues were taken on 3, 10, 17 and 24 d after irradiation. Ca 2+ content in brain cell was measured by laser scanning confocal microscopy, and the NO content in brain tissue was detected by the method of nitric acid reductase. Compared with the blank control group, the contents of Ca 2+ in brain cell and NO in brain tissue of the experimental control group increase (P 4 used in early stage can inhibit the contents of Ca 2+ in brain cell and NO in brain tissue after radiation-induced acute brain injury. It means that MgSO 4 has a protective effect on radiation-induced acute brain injury. (authors)

  7. Mary Jane Hogue (1883-1962): A pioneer in human brain tissue culture.

    Science.gov (United States)

    Zottoli, Steven J; Seyfarth, Ernst-August

    2018-05-16

    The ability to maintain human brain explants in tissue culture was a critical step in the use of these cells for the study of central nervous system disorders. Ross G. Harrison (1870-1959) was the first to successfully maintain frog medullary tissue in culture in 1907, but it took another 38 years before successful culture of human brain tissue was accomplished. One of the pioneers in this achievement was Mary Jane Hogue (1883-1962). Hogue was born into a Quaker family in 1883 in West Chester, Pennsylvania, and received her undergraduate degree from Goucher College in Baltimore, Maryland. Research with the developmental biologist Theodor Boveri (1862-1915) in Würzburg, Germany, resulted in her Ph.D. (1909). Hogue transitioned from studying protozoa to the culture of human brain tissue in the 1940s and 1950s, when she was one of the first to culture cells from human fetal, infant, and adult brain explants. We review Hogue's pioneering contributions to the study of human brain cells in culture, her putative identification of progenitor neuroblast and/or glioblast cells, and her use of the cultures to study the cytopathogenic effects of poliovirus. We also put Hogue's work in perspective by discussing how other women pioneers in tissue culture influenced Hogue and her research.

  8. Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation

    Directory of Open Access Journals (Sweden)

    Richard eBeare

    2016-03-01

    Full Text Available Measuring the distribution of brain tissue types (tissue classification in neonates is necessary for studying typical and atypical brain development, such as that associated with preterm birth, and may provide biomarkers for neurodevelopmental outcomes. Compared with magnetic resonance images of adults, neonatal images present specific challenges that require the development of specialized, population-specific methods. This paper introduces MANTiS (Morphologically Adaptive Neonatal Tissue Segmentation, which extends the unified segmentation approach to tissue classification implemented in Statistical Parametric Mapping (SPM software to neonates. MANTiS utilizes a combination of unified segmentation, template adaptation via morphological segmentation tools and topological filtering, to segment the neonatal brain into eight tissue classes: cortical gray matter, white matter, deep nuclear gray matter, cerebellum, brainstem, cerebrospinal fluid (CSF, hippocampus and amygdala. We evaluated the performance of MANTiS using two independent datasets. The first dataset, provided by the NeoBrainS12 challenge, consisted of coronal T2-weighted images of preterm infants (born ≤30 weeks’ gestation acquired at 30 weeks’ corrected gestational age (n= 5, coronal T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5 and axial T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5. The second dataset, provided by the Washington University NeuroDevelopmental Research (WUNDeR group, consisted of T2-weighted images of preterm infants (born <30 weeks’ gestation acquired shortly after birth (n= 12, preterm infants acquired at term-equivalent age (n= 12, and healthy term-born infants (born ≥38 weeks’ gestation acquired within the first nine days of life (n= 12. For the NeoBrainS12 dataset, mean Dice scores comparing MANTiS with manual segmentations were all above 0.7, except for

  9. Development of an experimental model of brain tissue heterotopia in the lung

    Science.gov (United States)

    Quemelo, Paulo Roberto Veiga; Sbragia, Lourenço; Peres, Luiz Cesar

    2007-01-01

    Summary The presence of heterotopic brain tissue in the lung is a rare abnormality. The cases reported thus far are usually associated with neural tube defects (NTD). As there are no reports of experimental models of NTD that present this abnormality, the objective of the present study was to develop a surgical method of brain tissue heterotopia in the lung. We used 24 pregnant Swiss mice divided into two groups of 12 animals each, denoted 17GD and 18GD according to the gestational day (GD) when caesarean section was performed to collect the fetuses. Surgery was performed on the 15th GD, one fetus was removed by hysterectomy and its brain tissue was cut into small fragments and implanted in the lung of its litter mates. Thirty-four live fetuses were obtained from the 17GD group. Of these, eight (23.5%) were used as control (C), eight (23.5%) were sham operated (S) and 18 (52.9%) were used for pulmonary brain tissue implantation (PBI). Thirty live fetuses were obtained from the females of the 18GD group. Of these, eight (26.6%) were C, eight (26.6%) S and 14 (46.6%) were used for PBI. Histological examination of the fetal trunks showed implantation of GFAP-positive brain tissue in 85% of the fetuses of the 17GD group and in 100% of those of the 18GD group, with no significant difference between groups for any of the parameters analysed. The experimental model proved to be efficient and of relatively simple execution, showing complete integration of the brain tissue with pulmonary and pleural tissue and thus representing a model that will permit the study of different aspects of cell implantation and interaction. PMID:17877535

  10. Discovery of Undescribed Brain Tissue Changes Around Implanted Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Himanshi Desai

    2012-01-01

    Full Text Available Brain-implantable microelectrode arrays are devicesdesigned to record or electrically stimulate the activity ofneurons in the brain. These devices hold the potential tohelp treat epilepsy, paralysis, blindness, and deafness, andalso provide researchers with insights into a varietyof neural processes, such as memory formation.While these devices have a very promising future,researchers are discovering that their long-termfunctionality is greatly limited by the brain’s naturalimmune response to foreign objects. To improve thefunctional lifetime of these devices, one solution lies infully characterizing and understanding this tissue response.Roles for microglia and astrocytes in this biologicalresponse have been characterized. However, changesto oligodendrocytes, cells that myelinate axons, remainpoorly understood. These cells provide insulationto the axons, which is required for proper neuralfunctioning. Here we report on the changes that occurwith oligodendrocyte processes in tissue aroundmicroelectrode implants in the brain.Six rats were surgically implanted with microelectrodearrays and allowed to recover for 1, 2, or 4 weeks.Subjects were then sacrificed and the brain tissue wasprocessed using our recently developed method, Device-Capture Histology. Immunohistochemistry and confocalmicroscopy was employed to assess the responsearound the device. Results indicated a decrease inoligodendrocyte density and a loss in typical directionalorientation of oligodendrocyte processes in tissue near thedevice. These results suggest alterations in the underlyingneuronal networks around these devices, which maygreatly impact the current functional utility of thesepromising devices.

  11. The importance of surrounding tissues and window settings for contouring of moving targets

    Energy Technology Data Exchange (ETDEWEB)

    Borm, Kai Joachim [Technische Universitaet Muenchen, Medical School, Munich (Germany); Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Radiation Oncology, Munich (Germany); Oechsner, Markus; Berndt, Johannes; Combs, Stephanie Elisabeth; Molls, Michael; Duma, Marciana Nona [Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Radiation Oncology, Munich (Germany)

    2015-09-15

    The aim of the study was to assess the importance of surrounding tissues for the delineation of moving targets in tissue-specific phantoms and to find optimal settings for lung, soft tissue, and liver tumors. Tumor movement was simulated by a water-filled table tennis ball (target volume, TV). Three phantoms were created: corkboards to simulate lung tissue (lung phantom, LunPh), animal fat as fatty soft tissue (fatty tissue phantom, FatPh), and water enhanced with contrast medium as the liver tissue (liver phantom, LivPh). Slow planning three-dimensional compute tomography images (3D-CTs) were acquired with and without phantom movements. One-dimensional tumor movement (1D), three-dimensional tumor movement (3D), as well as a real patient's tumor trajectories were simulated. The TV was contoured using two lung window settings, two soft-tissue window settings, and one liver window setting. The volumes were compared to mathematical calculated values. TVs were underestimated in all phantoms due to movement. The use of soft-tissue windows in the LivPh led to a significantunderestimation of the TV (70.8 % of calculated TV). When common window settings [LunPh + 200 HU/-1,000 HU (upper window/lower window threshold); FatPh: + 240 HU/-120 HU; LivPh: + 175 HU/+ 50 HU] were used, the contoured TVs were: LivPh, 84.0 %; LunPh, 93.2 %, and FatPh, 92.8 %. The lower window threshold had a significant impact on the size of the delineated TV, whereas changes of the upper threshold led only to small differences. The decisive factor for window settings is the lower window threshold (for adequate TV delineation in the lung and fatty-soft tissue it should be lower than density values of surrounding tissue). The use of a liver window should be considered. (orig.) [German] Das Ziel dieser Arbeit war es, den Einfluss des umgebenden Gewebes auf die Konturierung bewegter Objekte zu untersuchen. Um die optimalen CT-Fensterungen fuer Lungen-, Weichteil- und Lebertumoren zu bestimmen

  12. Changes in Lecithin Concentration in the Human Brain Tissue in Some Neurodegenerative Conditions

    International Nuclear Information System (INIS)

    Ajanovic, A.; Mihaljevic, M.; Hasanbasic, D.; Rukavina, D.; Sofic, E.

    2011-01-01

    As a consequence of a possible increase in oxidative stress or deterioration of nerve cells during aging, in some states neurodegeneration was demonstrated by multiple biochemical deficiency, especially deficiency of cholesterol and lecithin in brain regions. The aim of this study was to determine the changes in the concentration of lecithin in different regions of brain tissue (MC - motor cortex, NC - nucleus caudates, GT - temporal gyrus) dissected postmortem from people with senile dementia of Alzheimer's type (SDAT), and persons with Parkinson's disease (PD) as compared to people who died without these diseases (C). Spectrophotometric determination of lecithin in 18 postmortem brain tissue regions collected from of 12 persons with SDAT, in 11 postmortem brain tissue regions of 8 persons with PD and in 18 postmortem brain tissue regions of 8 control persons, was performed by enzymatic method. The content of lecithin in MC: 14.4 mg/g fresh tissue (f.t.) and GT: 13.1 mg/g (f.t.) for SDAT was significantly reduced (p < 0.01) by about 30 %, compared to control where there was: 21.6 mg/g (f.t.) in MC and 18.3 mg/g (f.t.) in the GT estimated. In all regions of the brain of PD patients, the content of lecithin was decreased by about 12 % compared to control, but without statistical significance. These results suggest that changes in the content of lecithin in these regions of brain tissue might affect the changes in the membrane potential and cell degeneration. (author)

  13. Mechanical properties of porcine brain tissue in vivo and ex vivo estimated by MR elastography.

    Science.gov (United States)

    Guertler, Charlotte A; Okamoto, Ruth J; Schmidt, John L; Badachhape, Andrew A; Johnson, Curtis L; Bayly, Philip V

    2018-03-01

    The mechanical properties of brain tissue in vivo determine the response of the brain to rapid skull acceleration. These properties are thus of great interest to the developers of mathematical models of traumatic brain injury (TBI) or neurosurgical simulations. Animal models provide valuable insight that can improve TBI modeling. In this study we compare estimates of mechanical properties of the Yucatan mini-pig brain in vivo and ex vivo using magnetic resonance elastography (MRE) at multiple frequencies. MRE allows estimations of properties in soft tissue, either in vivo or ex vivo, by imaging harmonic shear wave propagation. Most direct measurements of brain mechanical properties have been performed using samples of brain tissue ex vivo. It has been observed that direct estimates of brain mechanical properties depend on the frequency and amplitude of loading, as well as the time post-mortem and condition of the sample. Using MRE in the same animals at overlapping frequencies, we observe that porcine brain tissue in vivo appears stiffer than porcine brain tissue samples ex vivo at frequencies of 100 Hz and 125 Hz, but measurements show closer agreement at lower frequencies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Carnosine supplementation protects rat brain tissue against ethanol-induced oxidative stress.

    Science.gov (United States)

    Ozel Turkcu, Ummuhani; Bilgihan, Ayşe; Biberoglu, Gursel; Mertoglu Caglar, Oznur

    2010-06-01

    Ethanol causes oxidative stress and tissue damage. The aim of this study was to investigate the effect of antioxidant carnosine on the oxidative stress induced by ethanol in the rat brain tissue. Forty male rats were divided equally into four groups as control, carnosine (CAR), ethanol (EtOH), and ethanol plus carnosine (EtOH + CAR). Rats in the control group (n = 10) were injected intraperitoneally (i.p.) with 0.9% saline; EtOH group (n = 10) with 2 g/kg/day ethanol, CAR group (n = 10) received carnosine at a dose of 1 mg/kg/day and EtOH + CAR group (n = 10) received carnosine (orally) and ethanol (i.p.). All animals were sacrificed using ketamine and brain tissues were removed. Malondialdehyde (MDA), protein carbonyl (PCO) and tissue carnosine levels, and superoxide dismutase (SOD) activities were measured. Endogenous CAR levels in the rat brain tissue specimens were significantly increased in the CAR and EtOH groups when compared to the control animals. MDA and PCO levels in the EtOH group were significantly increased as compared to the other groups (P < 0.05). CAR treatment also decreased MDA levels in the CAR group as compared to the control group. Increased SOD activities were obtained in the EtOH + CAR group as compared to the control (P < 0.05). CAR levels in the rat brain were significantly increased in the CAR, EtOH and CAR + EtOH groups when compared to the control animals. These findings indicated that carnosine may appear as a protective agent against ethanol-induced brain damage.

  15. Trace element determinations in brain tissues from normal and clinically demented individuals

    International Nuclear Information System (INIS)

    Saiki, Mitiko; Genezini, Frederico A.; Leite, Renata E.P.; Grinberg, Lea T.; Ferretti, Renata E.L.; Suemoto, Claudia; Pasqualucci, Carlos A.; Jacob-Filho, Wilson

    2013-01-01

    Studies on trace element levels in human brains under normal and pathological conditions have indicated a possible correlation between some trace element concentrations and neurodegenerative diseases. In this study, analysis of brain tissues was carried out to investigate if there are any differences in elemental concentrations between brain tissues from a normal population above 50 years of age presenting Clinical Dementia Rating (CDR) equal to zero (CDR=0) and that cognitively affected population ( CDR=3). The tissues were dissected, ground, freeze-dried and then analyzed by instrumental neutron activation analysis. Samples and elemental standards were irradiated in a neutron flux at the IEA-R1 nuclear research reactor for Br, Fe, K, Na, Rb, Se and Zn determinations. The induced gamma ray activities were measured using a hyperpure Ge detector coupled to a gamma ray spectrometer. The one-way ANOVA test (p< 0.05) was used to compare the results. All the elements determined in the hippocampus brain region presented differences between the groups presenting CDR=0 and CDR=3. In the case of frontal region only the elements Na, Rb and Zn showed differences between these two groups. These findings proved the correlation between elemental levels present in brain tissues neurodegenerative diseases. Biological standard reference materials SRM 1566b Oyster Tissue and SRM 1577b Bovine Liver analyzed for quality control indicated good accuracy and precision of the results. (author)

  16. Electromagnetic effects on the biological tissue surrounding a transcutaneous transformer for an artificial anal sphincter system*

    Science.gov (United States)

    Zan, Peng; Yang, Bang-hua; Shao, Yong; Yan, Guo-zheng; Liu, Hua

    2010-01-01

    This paper reports on the electromagnetic effects on the biological tissue surrounding a transcutaneous transformer for an artificial anal sphincter. The coupling coils and human tissues, including the skin, fat, muscle, liver, and blood, were considered. Specific absorption rate (SAR) and current density were analyzed by a finite-length solenoid model. First, SAR and current density as a function of frequency (10–107 Hz) for an emission current of 1.5 A were calculated under different tissue thickness. Then relations between SAR, current density, and five types of tissues under each frequency were deduced. As a result, both the SAR and current density were below the basic restrictions of the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The results show that the analysis of these data is very important for developing the artificial anal sphincter system. PMID:21121071

  17. The Identification of Aluminum in Human Brain Tissue Using Lumogallion and Fluorescence Microscopy

    Science.gov (United States)

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2016-01-01

    Aluminum in human brain tissue is implicated in the etiologies of neurodegenerative diseases including Alzheimer’s disease. While methods for the accurate and precise measurement of aluminum in human brain tissue are widely acknowledged, the same cannot be said for the visualization of aluminum. Herein we have used transversely-heated graphite furnace atomic absorption spectrometry to measure aluminum in the brain of a donor with Alzheimer’s disease, and we have developed and validated fluorescence microscopy and the fluor lumogallion to show the presence of aluminum in the same tissue. Aluminum is observed as characteristic orange fluorescence that is neither reproduced by other metals nor explained by autofluorescence. This new and relatively simple method to visualize aluminum in human brain tissue should enable more rigorous testing of the aluminum hypothesis of Alzheimer’s disease (and other neurological conditions) in the future. PMID:27472886

  18. The dorsal skinfold chamber: window into the dynamic interaction of biomaterials with their surrounding host tissue

    Directory of Open Access Journals (Sweden)

    MW Laschke

    2011-09-01

    Full Text Available The implantation of biomaterials into the human body has become an indispensable part of almost all fields of modern medicine. Accordingly, there is an increasing need for appropriate approaches, which can be used to evaluate the suitability of different biomaterials for distinct clinical indications. The dorsal skinfold chamber is a sophisticated experimental model, which has been proven to be extremely valuable for the systematic in vivo analysis of the dynamic interaction of small biomaterial implants with the surrounding host tissue in rats, hamsters and mice. By means of intravital fluorescence microscopy, this chronic model allows for repeated analyses of various cellular, molecular and microvascular mechanisms, which are involved in the early inflammatory and angiogenic host tissue response to biomaterials during the initial 2-3 weeks after implantation. Therefore, the dorsal skinfold chamber has been broadly used during the last two decades to assess the in vivo performance of prosthetic vascular grafts, metallic implants, surgical meshes, bone substitutes, scaffolds for tissue engineering, as well as for locally or systemically applied drug delivery systems. These studies have contributed to identify basic material properties determining the biocompatibility of the implants and vascular ingrowth into their surface or internal structures. Thus, the dorsal skinfold chamber model does not only provide deep insights into the complex interactions of biomaterials with the surrounding soft tissues of the host but also represents an important tool for the future development of novel biomaterials aiming at an optimisation of their biofunctionality in clinical practice.

  19. MRI-induced heating of deep brain stimulation leads

    International Nuclear Information System (INIS)

    Mohsin, Syed A; Sheikh, Noor M; Saeed, Usman

    2008-01-01

    The radiofrequency (RF) field used in magnetic resonance imaging is scattered by medical implants. The scattered field of a deep brain stimulation lead can be very intense near the electrodes stimulating the brain. The effect is more pronounced if the lead behaves as a resonant antenna. In this paper, we examine the resonant length effect. We also use the finite element method to compute the near field for (i) the lead immersed in inhomogeneous tissue (fat, muscle, and brain tissues) and (ii) the lead connected to an implantable pulse generator. Electric field, specific absorption rate and induced temperature rise distributions have been obtained in the brain tissue surrounding the electrodes. The worst-case scenario has been evaluated by neglecting the effect of blood perfusion. The computed values are in good agreement with in vitro measurements made in the laboratory.

  20. Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, E H; Bayly, P V [Department of Mechanical Engineering and Materials Science, Washington University in St Louis, 1 Brookings Drive, Campus Box 1185, Saint Louis, MO 63130 (United States); Garbow, J R, E-mail: clayton@wustl.edu, E-mail: garbow@wustl.edu, E-mail: pvb@wustl.edu [Biomedical Magnetic Resonance Laboratory, Department of Radiology, Washington University in St Louis, 4525 Scott Avenue, Campus Box 8227, Saint Louis, MO 63110 (United States)

    2011-04-21

    Viscoelastic properties of mouse brain tissue were estimated non-invasively, in vivo, using magnetic resonance elastography (MRE) at 4.7 T to measure the dispersive properties of induced shear waves. Key features of this study include (i) the development and application of a novel MR-compatible actuation system which transmits vibratory motion into the brain through an incisor bar, and (ii) the investigation of the mechanical properties of brain tissue over a 1200 Hz bandwidth from 600-1800 Hz. Displacement fields due to propagating shear waves were measured during continuous, harmonic excitation of the skull. This protocol enabled characterization of the true steady-state patterns of shear wave propagation. Analysis of displacement fields obtained at different frequencies indicates that the viscoelastic properties of mouse brain tissue depend strongly on frequency. The average storage modulus (G') increased from approximately 1.6 to 8 kPa over this range; average loss modulus (G'') increased from approximately 1 to 3 kPa. Both moduli were well approximated by a power-law relationship over this frequency range. MRE may be a valuable addition to studies of disease in murine models, and to pre-clinical evaluations of therapies. Quantitative measurements of the viscoelastic parameters of brain tissue at high frequencies are also valuable for modeling and simulation of traumatic brain injury.

  1. Gene expression profiles help identify the Tissue of Origin for metastatic brain cancers

    Directory of Open Access Journals (Sweden)

    VandenBerg Scott R

    2010-04-01

    Full Text Available Abstract Background Metastatic brain cancers are the most common intracranial tumor and occur in about 15% of all cancer patients. In up to 10% of these patients, the primary tumor tissue remains unknown, even after a time consuming and costly workup. The Pathwork® Tissue of Origin Test (Pathwork Diagnostics, Redwood City, CA, USA is a gene expression test to aid in the diagnosis of metastatic, poorly differentiated and undifferentiated tumors. It measures the expression pattern of 1,550 genes in these tumors and compares it to the expression pattern of a panel of 15 known tumor types. The purpose of this study was to evaluate the performance of the Tissue of Origin Test in the diagnosis of primary sites for metastatic brain cancer patients. Methods Fifteen fresh-frozen metastatic brain tumor specimens of known origins met specimen requirements. These specimens were entered into the study and processed using the Tissue of Origin Test. Results were compared to the known primary site and the agreement between the two results was assessed. Results Fourteen of the fifteen specimens produced microarray data files that passed all quality metrics. One originated from a tissue type that was off-panel. Among the remaining 13 cases, the Tissue of Origin Test accurately predicted the available diagnosis in 12/13 (92.3% cases. Discussion This study demonstrates the accuracy of the Tissue of Origin Test when applied to predict the tissue of origin of metastatic brain tumors. This test could be a very useful tool for pathologists as they classify metastatic brain cancers.

  2. Assessment of brain metastases by means of dynamic susceptibility contrast enhanced MRI

    International Nuclear Information System (INIS)

    Knopp, M.; Wenz, F.; Debus, J.; Hentrich, H.R.

    2002-01-01

    Full text: To assess if pre therapeutic measurements of regional cerebral blood flow (rCBF) and volume (rCVB) are able to predict the response of brain metastases to radiation therapy and to assess the influence of radiosurgery on rCBF and rCBV on brain metastases and normal surrounding tissue. We examined 25 patients with brain metastases prior to high dose radiosurgery with conventional T1 and T2 weighted MRI and dynamic susceptibility contrast enhanced MRI (DSC MRI). For DSC MRI 55 T2*w GE images of two sections were acquired after bolus administration of 0.1 mmol/kg gadoteridol (ProHance) for the simultaneous measurement of brain feeding arteries and brain tissue. This allowed an absolute quantification of rCBF and rCBV. Follow-up examinations were performed 6 weeks and 3 months after radiotherapy and the acquired perfusion data were related to a 3 point scale of treatment outcome. Radiosurgery was performed by a linear accelerator with a 80% isodose of 18-20 Gv. For treatment planning the heads of the patients were immobilized by a cask mask to avoid head movement. DSC MRI was able to assess perfusion data in all patients. Higher pre therapeutic rCBV seems to predict a poor treatment outcome. After radiosurgery patients with tumor remission and stable disease presented a decrease of rCBV over time regardless of temporary tumor volume increase. Patients with tumor progression at the 3 month followup presented an increase of rCBV. Effects on normal surrounding tissue could not be observed. DSC MRI using Gadoteridol allows the non-invasive assessment of rCBV and rCBF of brain metastases and its changes due to radiosurgery. The method may also be able to predict treatment outcome. Furthermore radiofrequency effects on surrounding unaffected tissue can be monitored. Copyright (2002) Blackwell Science Pty Ltd

  3. Metabolism of [14C] testosterone by human foetal and brain tissue

    International Nuclear Information System (INIS)

    Jenkins, J.S.; Hall, C.J.

    1977-01-01

    The metabolism of [ 14 C] testosterone in vitro by various areas of the human foetal brain has been studied and compared with that of an adult brain. The predominant metabolites were 5α-dihydrotestosterone and 5α-androstane-3α,17β-diol, and also androstenedione, and all areas of the foetal brain showed similar activity. In the foetal pituitary gland, the activity of 5α-reductase was less prominent than that of 17β-hydroxysteroid-dehydrogenase. Small quantities of oestradiol-17 β were produced from testosterone by the hypothalamus, temporal lobe and amygdala only, and no aromatization could be detected in the pituitary gland. 5α-Reductase activity was much lower in adult brain tissues and no oestradiol was identified in adult temporal lobe tissue. (author)

  4. Evaluation of tissue-equivalent materials to be used as human brain tissue substitute in dosimetry for diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C.C., E-mail: cassio.c.ferreira@gmail.co [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Ximenes Filho, R.E.M., E-mail: raimundoximenes@hotmail.co [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Vieira, J.W., E-mail: jwvieira@br.inter.ne [Centro Federal de Educacao Tecnologica de Pernambuco (CEFET-PE), Av. Professor Luiz Freire, 500 Curado, CEP 50740-540, Recife (Brazil); Escola Politecnica de Pernambuco, Universidade de Pernambuco (EPP/UPE), Rua Benfica, 455, Madalena, CEP 50720-001, Recife (Brazil); Tomal, A., E-mail: alessandratomal@pg.ffclrp.usp.b [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto-SP 14040-90 (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.b [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto-SP 14040-90 (Brazil); Garcia, C.A.B., E-mail: cgarcia@ufs.b [Departamento de Quimica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Maia, A.F., E-mail: afmaia@ufs.b [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil)

    2010-08-15

    Tissue-equivalent materials to be used as substitutes for human brain tissue in dosimetry for diagnostic radiology have been investigated in terms of calculated total mass attenuation coefficient ({mu}/{rho}), calculated mass energy-absorption coefficient ({mu}{sub en}/{rho}) and absorbed dose. Measured linear attenuation coefficients ({mu}) have been used for benchmarking the calculated total mass attenuation coefficient ({mu}/{rho}). The materials examined were bolus, nylon (registered) , orange articulation wax, red articulation wax, PMMA (polymethylmethacrylate), bees wax, paraffin I, paraffin II, pitch and water. The results show that water is the best substitute for brain among the materials investigated. The average percentage differences between the calculated {mu}/{rho} and {mu}{sub en}/{rho} coefficients for water and those for brain were 1.0% and 2.5%, respectively. Absorbed doses determined by Monte Carlo methods confirm water as being the best brain substitute to be used in dosimetry for diagnostic radiology, showing maximum difference of 0.01%. Additionally this study showed that PMMA, a material often used for the manufacturing of head phantoms for computed tomography, cannot be considered to be a suitable substitute for human brain tissue in dosimetry.

  5. Gene expression changes with age in skin, adipose tissue, blood and brain.

    Science.gov (United States)

    Glass, Daniel; Viñuela, Ana; Davies, Matthew N; Ramasamy, Adaikalavan; Parts, Leopold; Knowles, David; Brown, Andrew A; Hedman, Asa K; Small, Kerrin S; Buil, Alfonso; Grundberg, Elin; Nica, Alexandra C; Di Meglio, Paola; Nestle, Frank O; Ryten, Mina; Durbin, Richard; McCarthy, Mark I; Deloukas, Panagiotis; Dermitzakis, Emmanouil T; Weale, Michael E; Bataille, Veronique; Spector, Tim D

    2013-07-26

    Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age. Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues. Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.

  6. Extracting morphologies from third harmonic generation images of structurally normal human brain tissue

    NARCIS (Netherlands)

    Zhang, Zhiqing; Kuzmin, Nikolay V.; Groot, Marie Louise; de Munck, Jan C.

    2017-01-01

    Motivation: The morphologies contained in 3D third harmonic generation (THG) images of human brain tissue can report on the pathological state of the tissue. However, the complexity of THG brain images makes the usage of modern image processing tools, especially those of image filtering,

  7. The characteristics of cerebral meningiomas and surrounding tissues on dynamic CT

    International Nuclear Information System (INIS)

    Jinkins, J.R.; Sener, R.N.

    1991-01-01

    Dynamic CT was utilized to evaluate 11 patients with histologically benign meningiomas. While it was found that all demonstrated macroscopic neovascularity, subtle differences in the dynamic perfusion curves were identified both between different meningiomas and from region to region within the same tumor. Other than basic anatomic differences, these changes may reflect intratumoral ischemia and hypothetically herald cystic/necrotic alteration within the neoplasm. The dynamic calculations over the surrounding brain showed areas of gross hyper- and hypoperfused cerebral cortex, and hypoperfused white matter in regions of peritumoral edema. These latter findings are of uncertain clinical importance. The dynamic examination also confirmed cases of dural venous sinus invasion and calvarial permeation by tumor. In addition, the dynamic series showed macroscopic neovascularity in one case with a completely negative selective cerebral arteriogram. It is felt that certain cases which have previously been evaluated by static CT may benefit from further study utilizing the dynamic method. (orig.)

  8. The Neuroprotective Effect of Cornus mas on Brain Tissue of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Renata Francik

    2014-01-01

    Full Text Available Cornelian cherry (Cornus mas is a valuable source of phenolic antioxidants. Flavonoid derivatives as nonenzymatic antioxidants are important in the pathophysiology of many diseases including neurological disorders (e.g., Alzheimer’s disease or heart disease. In this study, we examined the effect of an addition of freeze-dried fruit of cornelian cherry on three types of diets: control diet, fructose diet, and diet enriched in fats (high-fat diet. This effect was studied by determining the following antioxidant parameters in both brain tissue and plasma in rats: catalase, ferric reducing ability of plasma, paraoxonase, protein carbonyl groups, and free thiol groups. Results indicate that both fructose diet and high-fat diet affect the antioxidant capacity of the organism. Furthermore, an addition of cornelian cherry resulted in increased activity of catalase in brain tissue, while in plasma it caused the opposite effect. In turn, with regard to paraoxonase activity in both brain tissue and plasma, it had a stimulating effect. Adding cornelian cherry to the tested diets increased the activity of PON in both tested tissues. Moreover, protective effect of fruits of this plant was observed in the process of oxidation of proteins by decreasing levels of protein carbonyl groups and thiol groups in brain tissue as well as in plasma.

  9. Further Controversies About Brain Tissue Oxygenation Pressure-Reactivity After Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Andresen, Morten; Donnelly, Joseph; Aries, Marcel

    2018-01-01

    arterial pressure and intracranial pressure. A new ORx index based on brain tissue oxygenation and cerebral perfusion pressure (CPP) has been proposed that similarly allows for evaluation of cerebrovascular reactivity. Conflicting results exist concerning its clinical utility. METHODS: Retrospective......BACKGROUND: Continuous monitoring of cerebral autoregulation is considered clinically useful due to its ability to warn against brain ischemic insults, which may translate to a relationship with adverse outcome. It is typically performed using the pressure reactivity index (PRx) based on mean...... analysis was performed in 85 patients with traumatic brain injury (TBI). ORx was calculated using three time windows of 5, 20, and 60 min. Correlation coefficients and individual "optimal CPP" (CPPopt) were calculated using both PRx and ORx, and relation to patient outcome investigated. RESULTS...

  10. Expression of SRY-related HMG Box Transcription Factors (Sox) 2 and 9 in Craniopharyngioma Subtypes and Surrounding Brain Tissue.

    Science.gov (United States)

    Thimsen, Vivian; John, Nora; Buchfelder, Michael; Flitsch, Jörg; Fahlbusch, Rudolf; Stefanits, Harald; Knosp, Engelbert; Losa, Marco; Buslei, Rolf; Hölsken, Annett

    2017-11-20

    Stem cells have been discovered as key players in the genesis of different neoplasms including craniopharyngioma (CP), a rare tumour entity in the sellar region. Sox2 and Sox9 are well-known stem cell markers involved in pituitary development. In this study we analysed the expression of both transcription factors using immunohistochemistry in a large cohort of 64 adamantinomatous (aCP) and 9 papillary CP (pCP) and quantitative PCR in 26 aCP and 7 pCP. Whereas immunohistochemically Sox2+ cells were verifiable in only five aCP (7.8%) and in 39.1% of the respective surrounding cerebral tissue, pCP specimens appeared always negative. In contrast, Sox9 was detectable in all tumours with a significantly higher expression in aCP compared to pCP (protein, p < 0.0001; mRNA p = 0.0484) This was also true for the respective tumour adjacent CNS where 63 aCP (98.4%) and six pCP (66.7%) showed Sox9+ cells. We further confirmed absence of Sox9 expression in nuclear β-catenin accumulating cells of aCP. Our results point to the conclusion that Sox2 and Sox9, seem to play essential roles not only in the specific formation of aCP, but also in processes involving the cerebral tumour environment, which needs to be illuminated in the future.

  11. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    Science.gov (United States)

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  12. Determination of trace elements in human brain tissues using neutron activation analysis

    International Nuclear Information System (INIS)

    Leite, R.E.P.; Jacob-Filho, W.; Grinberg, L.T.; Ferretti, R.E.L.

    2008-01-01

    Neutron activation analysis was applied to assess trace element concentrations in brain tissues from normal (n = 21) and demented individuals (n = 21) of both genders aged more than 50 years. Concentrations of the elements Br, Fe, K, Na, Rb, Se and Zn were determined. Comparisons were made between the results obtained for the hippocampus and frontal cortex tissues, as well as, those obtained in brains of normal and demented individuals. Certified reference materials, NIST 1566b Oyster Tissue and NIST 1577b Bovine Liver were analyzed for quality of the analytical results. (author)

  13. Analyses of the eustachian tube and its surrounding tissues with cross sectional images by high-resolution computed tomography (HR-CT)

    International Nuclear Information System (INIS)

    Yoshida, Haruo; Kobayashi, Toshimitsu; Takasaki, Kenji; Kanda, Yukihiko; Nakao, Yoshiaki; Morikawa, Minoru; Ishimaru, Hideki; Hayashi, Kuniaki

    2000-01-01

    We attempted to image the eustachian tube (ET) and its surrounding tissues by high-resolution computed tomography (HR-CT). Twenty-two normal subjects (44 ears) without middle ear problems were studied, and a patient with severe patulous ET was also studied as an abnormal case. In our device of multiplanar reconstruction technique, we were able to obtain the clear reconstructed images of the ET lumen as well as of its surrounding tissues (bone, ET cartilage, tensor veli palatini muscle, levator veli palatini muscle, Ostmann's fat tissue, tensor tympani muscle, internal carotid artery) at any desired portion, either parallel or perpendicular to the long axis of the ET. However, the exact borders between the ET cartilage and the muscles, Ostmann's fat tissue and the tubal gland were not clearly identified. In the severe case of patulous ET, the ET lumen was widely opened at each cross-sectional image from the pharyngeal orifice to the tympanic orifice, in contrast with its being closed at the cartilaginous portion in the normal cases. In addition, the fat tissue and glands around the ET lumen were not clearly identified in this case. We suggest that this method will lead to better understanding of the ET-related diseases such as patulous ET. (author)

  14. Analyses of the eustachian tube and its surrounding tissues with cross sectional images by high-resolution computed tomography (HR-CT)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Haruo; Kobayashi, Toshimitsu; Takasaki, Kenji; Kanda, Yukihiko; Nakao, Yoshiaki; Morikawa, Minoru; Ishimaru, Hideki; Hayashi, Kuniaki [Nagasaki Univ. (Japan). School of Medicine

    2000-07-01

    We attempted to image the eustachian tube (ET) and its surrounding tissues by high-resolution computed tomography (HR-CT). Twenty-two normal subjects (44 ears) without middle ear problems were studied, and a patient with severe patulous ET was also studied as an abnormal case. In our device of multiplanar reconstruction technique, we were able to obtain the clear reconstructed images of the ET lumen as well as of its surrounding tissues (bone, ET cartilage, tensor veli palatini muscle, levator veli palatini muscle, Ostmann's fat tissue, tensor tympani muscle, internal carotid artery) at any desired portion, either parallel or perpendicular to the long axis of the ET. However, the exact borders between the ET cartilage and the muscles, Ostmann's fat tissue and the tubal gland were not clearly identified. In the severe case of patulous ET, the ET lumen was widely opened at each cross-sectional image from the pharyngeal orifice to the tympanic orifice, in contrast with its being closed at the cartilaginous portion in the normal cases. In addition, the fat tissue and glands around the ET lumen were not clearly identified in this case. We suggest that this method will lead to better understanding of the ET-related diseases such as patulous ET. (author)

  15. Cerebral oxygenation in contusioned vs. nonlesioned brain tissue: monitoring of PtiO2 with Licox and Paratrend.

    Science.gov (United States)

    Sarrafzadeh, A S; Kiening, K L; Bardt, T F; Schneider, G H; Unterberg, A W; Lanksch, W R

    1998-01-01

    Brain tissue PO2 in severely head injured patients was monitored in parallel with two different PO2-microsensors (Licox and Paratrend). Three different locations of sensor placement were chosen: (1) both catheters into non lesioned tissue (n = 3), (2) both catheters into contusioned tissue (n = 2), and (3) one catheter (Licox) into pericontusional versus one catheter (Paratrend) into non lesioned brain tissue (n = 2). Mean duration of PtiO2-monitoring with both microsensors in parallel was 68.1 hours. Brain tissue PO2 varied when measured in lesioned and nonlesioned tissue. In non lesioned tissue both catheters closely correlated (delta Licox/Paratrend: mean PtiO2 delta lesioned/non lesioned: mean PtiO2: 10.3 mm Hg). In contusioned brain tissue PtiO2 was always below the "hypoxic threshold" of 10 mm Hg, independent of the type of microsensor used. During a critical reduction in cerebral perfusion pressure (PO2, only increased PtiO2 when measured in pericontusional and nonlesioned brain. To recognize critical episodes of hypoxia or ischemia, PtiO2-monitoring of cerebral oxygenation is recommended in nonlesioned brain tissue.

  16. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Emin, David, E-mail: emin@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Akhtari, Massoud [Semple Institutes for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Ellingson, B. M. [Department of Radiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Mathern, G. W. [Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2015-08-15

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  17. Cells in human postmortem brain tissue slices remain alive for several weeks in culture

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Hermens, Wim T. J. M. C.; Dijkhuizen, PaulaA; ter Brake, Olivier; Baker, Robert E.; Salehi, Ahmad; Sluiter, Arja A.; Kok, Marloes J. M.; Muller, Linda J.; Verhaagen, Joost; Swaab, Dick F.

    2002-01-01

    Animal models for human neurological and psychiatric diseases only partially mimic the underlying pathogenic processes. Therefore, we investigated the potential use of cultured postmortem brain tissue from adult neurological patients and controls. The present study shows that human brain tissue

  18. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: past, current and future developments

    Science.gov (United States)

    Giannoni, Luca; Lange, Frédéric; Tachtsidis, Ilias

    2018-04-01

    Hyperspectral imaging (HSI) technologies have been used extensively in medical research, targeting various biological phenomena and multiple tissue types. Their high spectral resolution over a wide range of wavelengths enables acquisition of spatial information corresponding to different light-interacting biological compounds. This review focuses on the application of HSI to monitor brain tissue metabolism and hemodynamics in life sciences. Different approaches involving HSI have been investigated to assess and quantify cerebral activity, mainly focusing on: (1) mapping tissue oxygen delivery through measurement of changes in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin; and (2) the assessment of the cerebral metabolic rate of oxygen (CMRO2) to estimate oxygen consumption by brain tissue. Finally, we introduce future perspectives of HSI of brain metabolism, including its potential use for imaging optical signals from molecules directly involved in cellular energy production. HSI solutions can provide remarkable insight in understanding cerebral tissue metabolism and oxygenation, aiding investigation on brain tissue physiological processes.

  19. Diagnostic radiopharmaceuticals for localization in target tissues exhibiting a regional pH shift relative to surrounding tissues

    International Nuclear Information System (INIS)

    Blau, M.; Kung, H.F.

    1985-01-01

    Diagnostic radiopharmaceutical compounds are provided which are capable of entering a target tissue or a target organ by passive diffusion through cell walls and which are effectively accumulated and retained within the target tissue or organ due to a regional pH shift. Such compounds are desirably readily accessible synthetically using readily available radionuclides. The compound comprises a radioactive isotope of an element in chemical combination with at least one amine group and preferably with at least two secondary or tertiary amine groups. The radioactive element is an element other than iodine emitting gamma ray, x-ray or positron radiation. When the element is a gamma ray emitting isotope, at least 75 percent of the number of emissions is emitted at energies of between 80 and 400 keV. The half-life of the isotope is usually between two minutes and 15 days. The compound has acid-base characteristics such that the state of ionization of the compound at the pH of the body is significantly different and usually less than its state of ionization at the intracellular pH of the target tissue. The compound has such lipid solubility characteristics that it is capable of ready penetration through cell walls, but within cells its lipid solubility is substantially decreased, whereby the ability of the compound to leave the target tissue is substantially diminished. Specific data relevant to di-beta-(piperidinoethyl)-selenide and di-beta-(morpholinoethyl)-selenide in rat brains are presented

  20. Digital tissue and what it may reveal about the brain.

    Science.gov (United States)

    Morgan, Josh L; Lichtman, Jeff W

    2017-10-30

    Imaging as a means of scientific data storage has evolved rapidly over the past century from hand drawings, to photography, to digital images. Only recently can sufficiently large datasets be acquired, stored, and processed such that tissue digitization can actually reveal more than direct observation of tissue. One field where this transformation is occurring is connectomics: the mapping of neural connections in large volumes of digitized brain tissue.

  1. A Hybrid Hierarchical Approach for Brain Tissue Segmentation by Combining Brain Atlas and Least Square Support Vector Machine

    Science.gov (United States)

    Kasiri, Keyvan; Kazemi, Kamran; Dehghani, Mohammad Javad; Helfroush, Mohammad Sadegh

    2013-01-01

    In this paper, we present a new semi-automatic brain tissue segmentation method based on a hybrid hierarchical approach that combines a brain atlas as a priori information and a least-square support vector machine (LS-SVM). The method consists of three steps. In the first two steps, the skull is removed and the cerebrospinal fluid (CSF) is extracted. These two steps are performed using the toolbox FMRIB's automated segmentation tool integrated in the FSL software (FSL-FAST) developed in Oxford Centre for functional MRI of the brain (FMRIB). Then, in the third step, the LS-SVM is used to segment grey matter (GM) and white matter (WM). The training samples for LS-SVM are selected from the registered brain atlas. The voxel intensities and spatial positions are selected as the two feature groups for training and test. SVM as a powerful discriminator is able to handle nonlinear classification problems; however, it cannot provide posterior probability. Thus, we use a sigmoid function to map the SVM output into probabilities. The proposed method is used to segment CSF, GM and WM from the simulated magnetic resonance imaging (MRI) using Brainweb MRI simulator and real data provided by Internet Brain Segmentation Repository. The semi-automatically segmented brain tissues were evaluated by comparing to the corresponding ground truth. The Dice and Jaccard similarity coefficients, sensitivity and specificity were calculated for the quantitative validation of the results. The quantitative results show that the proposed method segments brain tissues accurately with respect to corresponding ground truth. PMID:24696800

  2. Efficient Cargo Delivery into Adult Brain Tissue Using Short Cell-Penetrating Peptides.

    Directory of Open Access Journals (Sweden)

    Caghan Kizil

    Full Text Available Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI, RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs and identified two- polyR and Trans - that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael's addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues.

  3. HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues.

    Science.gov (United States)

    Lamers, Susanna L; Gray, Rebecca R; Salemi, Marco; Huysentruyt, Leanne C; McGrath, Michael S

    2011-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that (1) HIV-1 is clearly capable of migrating out of the brain, (2) the meninges are the most likely primary transport tissues, and (3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Frequency dependence of complex moduli of brain tissue using a fractional Zener model

    International Nuclear Information System (INIS)

    Kohandel, M; Sivaloganathan, S; Tenti, G; Darvish, K

    2005-01-01

    Brain tissue exhibits viscoelastic behaviour. If loading times are substantially short, static tests are not sufficient to determine the complete viscoelastic behaviour of the material, and dynamic test methods are more appropriate. The concept of complex modulus of elasticity is a powerful tool for characterizing the frequency domain behaviour of viscoelastic materials. On the other hand, it is well known that classical viscoelastic models can be generalized by means of fractional calculus to describe more complex viscoelastic behaviour of materials. In this paper, the fractional Zener model is investigated in order to describe the dynamic behaviour of brain tissue. The model is fitted to experimental data of oscillatory shear tests of bovine brain tissue to verify its behaviour and to obtain the material parameters

  5. Proliferation zones in the axolotl brain and regeneration of the telencephalon

    Directory of Open Access Journals (Sweden)

    Maden Malcolm

    2013-01-01

    Full Text Available Abstract Background Although the brains of lower vertebrates are known to exhibit somewhat limited regeneration after incisional or stab wounds, the Urodele brain exhibits extensive regeneration after massive tissue removal. Discovering whether and how neural progenitor cells that reside in the ventricular zones of Urodeles proliferate to mediate tissue repair in response to injury may produce novel leads for regenerative strategies. Here we show that endogenous neural progenitor cells resident to the ventricular zone of Urodeles spontaneously proliferate, producing progeny that migrate throughout the telencephalon before terminally differentiating into neurons. These progenitor cells appear to be responsible for telencephalon regeneration after tissue removal and their activity may be up-regulated by injury through an olfactory cue. Results There is extensive proliferation of endogenous neural progenitor cells throughout the ventricular zone of the adult axolotl brain. The highest levels are observed in the telencephalon, especially the dorsolateral aspect, and cerebellum. Lower levels are observed in the mesencephalon and rhombencephalon. New cells produced in the ventricular zone migrate laterally, dorsally and ventrally into the surrounding neuronal layer. After migrating from the ventricular zone, the new cells primarily express markers of neuronal differentiative fates. Large-scale telencephalic tissue removal stimulates progenitor cell proliferation in the ventricular zone of the damaged region, followed by proliferation in the tissue that surrounds the healing edges of the wound until the telencephalon has completed regeneration. The proliferative stimulus appears to reside in the olfactory system, because telencephalic regeneration does not occur in the brains of olfactory bulbectomized animals in which the damaged neural tissue simply heals over. Conclusion There is a continual generation of neuronal cells from neural progenitor cells

  6. Is human blood a good surrogate for brain tissue in transcriptional studies?

    Directory of Open Access Journals (Sweden)

    van den Berg Leonard H

    2010-10-01

    Full Text Available Abstract Background Since human brain tissue is often unavailable for transcriptional profiling studies, blood expression data is frequently used as a substitute. The underlying hypothesis in such studies is that genes expressed in brain tissue leave a transcriptional footprint in blood. We tested this hypothesis by relating three human brain expression data sets (from cortex, cerebellum and caudate nucleus to two large human blood expression data sets (comprised of 1463 individuals. Results We found mean expression levels were weakly correlated between the brain and blood data (r range: [0.24,0.32]. Further, we tested whether co-expression relationships were preserved between the three brain regions and blood. Only a handful of brain co-expression modules showed strong evidence of preservation and these modules could be combined into a single large blood module. We also identified highly connected intramodular "hub" genes inside preserved modules. These preserved intramodular hub genes had the following properties: first, their expression levels tended to be significantly more heritable than those from non-preserved intramodular hub genes (p -90; second, they had highly significant positive correlations with the following cluster of differentiation genes: CD58, CD47, CD48, CD53 and CD164; third, a significant number of them were known to be involved in infection mechanisms, post-transcriptional and post-translational modification and other basic processes. Conclusions Overall, we find transcriptome organization is poorly preserved between brain and blood. However, the subset of preserved co-expression relationships characterized here may aid future efforts to identify blood biomarkers for neurological and neuropsychiatric diseases when brain tissue samples are unavailable.

  7. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    International Nuclear Information System (INIS)

    Diniz, P.R.B.; Brum, D.G.; Santos, A. C.; Murta-Junior, L.O.; Araujo, D.B. de

    2010-01-01

    The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously. (author)

  8. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, P.R.B.; Brum, D.G. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Santos, A. C. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Clinica Medica; Murta-Junior, L.O.; Araujo, D.B. de, E-mail: murta@usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2010-01-15

    The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously. (author)

  9. A Dirichlet process mixture model for brain MRI tissue classification.

    Science.gov (United States)

    Ferreira da Silva, Adelino R

    2007-04-01

    Accurate classification of magnetic resonance images according to tissue type or region of interest has become a critical requirement in diagnosis, treatment planning, and cognitive neuroscience. Several authors have shown that finite mixture models give excellent results in the automated segmentation of MR images of the human normal brain. However, performance and robustness of finite mixture models deteriorate when the models have to deal with a variety of anatomical structures. In this paper, we propose a nonparametric Bayesian model for tissue classification of MR images of the brain. The model, known as Dirichlet process mixture model, uses Dirichlet process priors to overcome the limitations of current parametric finite mixture models. To validate the accuracy and robustness of our method we present the results of experiments carried out on simulated MR brain scans, as well as on real MR image data. The results are compared with similar results from other well-known MRI segmentation methods.

  10. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats.

    Science.gov (United States)

    Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon

    2017-01-01

    Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P hydrocephalus is complex and is not solely dependent on brain tissue deformation. Further studies on the interactions between brain tissue stiffness, deformation, tissue oedema and neural damage are necessary before MRE can be used as a tool to track changes in brain biomechanics in hydrocephalus.

  11. Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue.

    Science.gov (United States)

    Tedford, Clark E; DeLapp, Scott; Jacques, Steven; Anders, Juanita

    2015-04-01

    Photobiomodulation (PBM) also known as low-level light therapy has been used successfully for the treatment of injury and disease of the nervous system. The use of PBM to treat injury and diseases of the brain requires an in-depth understanding of light propagation through tissues including scalp, skull, meninges, and brain. This study investigated the light penetration gradients in the human cadaver brain using a Transcranial Laser System with a 30 mm diameter beam of 808 nm wavelength light. In addition, the wavelength-dependence of light scatter and absorbance in intraparenchymal brain tissue using 660, 808, and 940 nm wavelengths was investigated. Intact human cadaver heads (n = 8) were obtained for measurement of light propagation through the scalp/skull/meninges and into brain tissue. The cadaver heads were sectioned in either the transverse or mid-sagittal. The sectioned head was mounted into a cranial fixture with an 808 nm wavelength laser system illuminating the head from beneath with either pulsed-wave (PW) or continuous-wave (CW) laser light. A linear array of nine isotropic optical fibers on a 5 mm pitch was inserted into the brain tissue along the optical axis of the beam. Light collected from each fiber was delivered to a multichannel power meter. As the array was lowered into the tissue, the power from each probe was recorded at 5 mm increments until the inner aspect of the dura mater was reached. Intraparenchymal light penetration measurements were made by delivering a series of wavelengths (660, 808, and 940 nm) through a separate optical fiber within the array, which was offset from the array line by 5 mm. Local light penetration was determined and compared across the selected wavelengths. Unfixed cadaver brains provide good anatomical localization and reliable measurements of light scatter and penetration in the CNS tissues. Transcranial application of 808 nm wavelength light penetrated the scalp, skull, meninges, and brain

  12. Evaluating temperature changes of brain tissue due to induced heating of cell phone waves

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2018-01-01

    Full Text Available Background: Worries have recently been increased in the absorption of radiofrequency waves and their destructing effects on human health by increasing use of cell phones (mobile phones. This study performed to determine the thermal changes due to mobile phone radio frequency waves in gray and white brain tissue. Methods: This study is an empirical study, where the thermal changes of electromagnetic waves resulted from cell phones (900 MHZ, specific absorption rate for head 1.18 w/kg on the 15 brain tissue of a cow were analyzed in a compartment with three different thickness of 2 mm, 12 mm, and 22 mm, for 15 min. The Lutron thermometer (model: MT-917 with 0.01°C precision was used for measuring the tissue temperature. For each thickness was measured three times. Data analysis is done by Lutron and MATLAB software packages. Results: In confronting of the tissue with the cell phone, the temperature was increased by 0.53°C in the 2 mm thickness that is the gray matter of the brain, increased by 0.99°C in the 12 mm thickness, and also increased by 0.92°C in the 22 mm thickness. Brain temperature showed higher rates than the base temperature after 15 min of confrontation with cell phone waves in all the three thicknesses. Conclusions: Cell phone radiated radio frequency waves were effective on increasing brain tissue temperature, and this temperature increase has cumulative effect on the tissue, being higher, for some time after the confrontation than the time with no confrontation.

  13. Immunological Detection of Rabies Virus in Brain Tissues of Infected Dogs by Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Nyoman Mantik Astawa

    2010-12-01

    Full Text Available In order to establish an immunological detection of rabies virus in tissues of infected dogs, monoclonalantibodies (mAbs against rabies virus (RV were produced. The mAbs were produced by fusion of mielomacells with the lymphocytes of mice immunized with RV. The mAbs produced were then characterized andused for the detection of rabies virus in brain tissues of infected dogs. Six mAbs designated CC6, EG4,DG10, BB12, CA9 dan EB5 were used in this study. In Western blotting test, some mAbs reacted with 66KDa which is the glycoprotein of the virus. In immunoperoxidase, 2 mAbs (CC6 and DG10 detected RVin the brain of infected dogs. By direct immunoflourescence, flourescence isotyocyanate (FITC labelledDG10 mAbs detected RV in fresh and formaldehyde fixed brain tissues. RV was detected in 12 infecteddogs but not in normal uninfected dogs. In this study it was confirmed that rabies virus can be detected inthe brain tissues of infected dogs by monoclonal antibodies.

  14. Brain slice on a chip: opportunities and challenges of applying microfluidic technology to intact tissues.

    Science.gov (United States)

    Huang, Yu; Williams, Justin C; Johnson, Stephen M

    2012-06-21

    Isolated brain tissue, especially brain slices, are valuable experimental tools for studying neuronal function at the network, cellular, synaptic, and single channel levels. Neuroscientists have refined the methods for preserving brain slice viability and function and converged on principles that strongly resemble the approach taken by engineers in developing microfluidic devices. With respect to brain slices, microfluidic technology may 1) overcome the traditional limitations of conventional interface and submerged slice chambers and improve oxygen/nutrient penetration into slices, 2) provide better spatiotemporal control over solution flow/drug delivery to specific slice regions, and 3) permit successful integration with modern optical and electrophysiological techniques. In this review, we highlight the unique advantages of microfluidic devices for in vitro brain slice research, describe recent advances in the integration of microfluidic devices with optical and electrophysiological instrumentation, and discuss clinical applications of microfluidic technology as applied to brain slices and other non-neuronal tissues. We hope that this review will serve as an interdisciplinary guide for both neuroscientists studying brain tissue in vitro and engineers as they further develop microfluidic chamber technology for neuroscience research.

  15. Comparison of the dynamic behaviour of brain tissue and two model materials

    NARCIS (Netherlands)

    Brands, D.W.A.; Bovendeerd, P.H.M.; Peters, G.W.M.; Wismans, J.S.H.M.; Paas, M.H.J.W.; Bree, van J.L.M.J.; Brands, D.W.A.

    1999-01-01

    Linear viscoelastic material parameters of porcine brain tissue and two brain substitute/ materials for use in mechanical head models (edible bone gelatin and dielectric silicone gel) were determined in small deformation, oscillatory shear experiments. Frequencies to 1000 Hertz could be obtained

  16. Protection of cortex by overlying meninges tissue during dynamic indentation of the adolescent brain.

    Science.gov (United States)

    MacManus, David B; Pierrat, Baptiste; Murphy, Jeremiah G; Gilchrist, Michael D

    2017-07-15

    Traumatic brain injury (TBI) has become a recent focus of biomedical research with a growing international effort targeting material characterization of brain tissue and simulations of trauma using computer models of the head and brain to try to elucidate the mechanisms and pathogenesis of TBI. The meninges, a collagenous protective tri-layer, which encloses the entire brain and spinal cord has been largely overlooked in these material characterization studies. This has resulted in a lack of accurate constitutive data for the cranial meninges, particularly under dynamic conditions such as those experienced during head impacts. The work presented here addresses this lack of data by providing for the first time, in situ large deformation material properties of the porcine dura-arachnoid mater composite under dynamic indentation. It is demonstrated that this tissue is substantially stiffer (shear modulus, μ=19.10±8.55kPa) and relaxes at a slower rate (τ 1 =0.034±0.008s, τ 2 =0.336±0.077s) than the underlying brain tissue (μ=6.97±2.26kPa, τ 1 =0.021±0.007s, τ 2 =0.199±0.036s), reducing the magnitudes of stress by 250% and 65% for strains that arise during indentation-type deformations in adolescent brains. We present the first mechanical analysis of the protective capacity of the cranial meninges using in situ micro-indentation techniques. Force-relaxation tests are performed on in situ meninges and cortex tissue, under large strain dynamic micro-indentation. A quasi-linear viscoelastic model is used subsequently, providing time-dependent mechanical properties of these neural tissues under loading conditions comparable to what is experienced in TBI. The reported data highlights the large differences in mechanical properties between these two tissues. Finite element simulations of the indentation experiments are also performed to investigate the protective capacity of the meninges. These simulations show that the meninges protect the underlying brain tissue

  17. Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Zangong Zhou; Xiangyu Ji; Li Song; Jianfang Song; Shiduan Wang; Yanwei Yin

    2006-01-01

    BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats.OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal trial.SETTING: Department of Anesthesiology, the Medical School Hospital of Qingdao University.MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents:homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd.,Wuhan).METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal

  18. Microwave reflection, transmission, and absorption by human brain tissue

    Science.gov (United States)

    Ansari, M. A.; Akhlaghipour, N.; Zarei, M.; Niknam, A. R.

    2018-04-01

    These days, the biological effects of electromagnetic (EM) radiations on the brain, especially in the frequency range of mobile communications, have caught the attention of many scientists. Therefore, in this paper, the propagation of mobile phone electromagnetic waves in the brain tissues is investigated analytically and numerically. The brain is modeled by three layers consisting of skull, grey and white matter. First, we have analytically calculated the microwave reflection, transmission, and absorption coefficients using signal flow graph technique. The effect of microwave frequency and variations in the thickness of layers on the propagation of microwave through brain are studied. Then, the penetration of microwave in the layers is numerically investigated by Monte Carlo method. It is shown that the analytical results are in good agreement with those obtained by Monte Carlo method. Our results indicate the absorbed microwave energy depends on microwave frequency and thickness of brain layers, and the absorption coefficient is optimized at a number of frequencies. These findings can be used for comparing the microwave absorbed energy in a child's and adult's brain.

  19. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Directory of Open Access Journals (Sweden)

    P.R.B. Diniz

    2010-01-01

    Full Text Available The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously.

  20. An analytical model for nanoparticles concentration resulting from infusion into poroelastic brain tissue.

    Science.gov (United States)

    Pizzichelli, G; Di Michele, F; Sinibaldi, E

    2016-02-01

    We consider the infusion of a diluted suspension of nanoparticles (NPs) into poroelastic brain tissue, in view of relevant biomedical applications such as intratumoral thermotherapy. Indeed, the high impact of the related pathologies motivates the development of advanced therapeutic approaches, whose design also benefits from theoretical models. This study provides an analytical expression for the time-dependent NPs concentration during the infusion into poroelastic brain tissue, which also accounts for particle binding onto cells (by recalling relevant results from the colloid filtration theory). Our model is computationally inexpensive and, compared to fully numerical approaches, permits to explicitly elucidate the role of the involved physical aspects (tissue poroelasticity, infusion parameters, NPs physico-chemical properties, NP-tissue interactions underlying binding). We also present illustrative results based on parameters taken from the literature, by considering clinically relevant ranges for the infusion parameters. Moreover, we thoroughly assess the model working assumptions besides discussing its limitations. While not laying any claims of generality, our model can be used to support the development of more ambitious numerical approaches, towards the preliminary design of novel therapies based on NPs infusion into brain tissue. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Piezosurgery prevents brain tissue damage: an experimental study on a new rat model.

    Science.gov (United States)

    Pavlíková, G; Foltán, R; Burian, M; Horká, E; Adámek, S; Hejčl, A; Hanzelka, T; Sedý, J

    2011-08-01

    Piezosurgery is a promising meticulous system for bone cutting, based on ultrasound microvibrations. It is thought that the impact of piezosurgery on the integrity of soft tissue is generally low, but it has not been examined critically. The authors undertook an experimental study to evaluate the brain tissue response to skull bone removal using piezosurgery compared with a conventional drilling method. In Wistar male rats, a circular bone window was drilled to the parietal bone using piezosurgery on one side and a conventional bone drill on the other side. The behavioural performance of animals was evaluated using the motor BBB test and sensory plantar test. The brains of animals were evaluated by magnetic resonance imaging (MRI) and histology. The results of MRI showed significantly increased depth and width of the brain lesion in the region of conventional drilling compared with the region where piezosurgery was used. Cresylviolet and NF 160 staining confirmed these findings. There was no significant difference in any of the behavioural tests between the two groups. In conclusion, piezosurgery is a safe method for the performance of osteotomy in close relation to soft tissue, including an extremely injury-sensitive tissue such as brain. Copyright © 2011 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue.

    Science.gov (United States)

    Spühler, Isabelle A; Conley, Gaurasundar M; Scheffold, Frank; Sprecher, Simon G

    2016-01-01

    Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation.

  3. The average baboon brain: MRI templates and tissue probability maps from 89 individuals.

    Science.gov (United States)

    Love, Scott A; Marie, Damien; Roth, Muriel; Lacoste, Romain; Nazarian, Bruno; Bertello, Alice; Coulon, Olivier; Anton, Jean-Luc; Meguerditchian, Adrien

    2016-05-15

    The baboon (Papio) brain is a remarkable model for investigating the brain. The current work aimed at creating a population-average baboon (Papio anubis) brain template and its left/right hemisphere symmetric version from a large sample of T1-weighted magnetic resonance images collected from 89 individuals. Averaging the prior probability maps output during the segmentation of each individual also produced the first baboon brain tissue probability maps for gray matter, white matter and cerebrospinal fluid. The templates and the tissue probability maps were created using state-of-the-art, freely available software tools and are being made freely and publicly available: http://www.nitrc.org/projects/haiko89/ or http://lpc.univ-amu.fr/spip.php?article589. It is hoped that these images will aid neuroimaging research of the baboon by, for example, providing a modern, high quality normalization target and accompanying standardized coordinate system as well as probabilistic priors that can be used during tissue segmentation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Purification of cells from fresh human brain tissue: primary human glial cells.

    NARCIS (Netherlands)

    Mizee, Mark R; van der Poel, Marlijn; Huitinga, I.; Huitinga, I.; Webster, M.J.

    2018-01-01

    In order to translate the findings obtained from postmortem brain tissue samples to functional biologic mechanisms of central nervous system disease, it will be necessary to understand how these findings affect the different cell populations in the brain. The acute isolation and analysis of pure

  5. Can fruits and vegetables be used as substitute phantoms for normal human brain tissues in magnetic resonance imaging?

    International Nuclear Information System (INIS)

    Teramoto, Daisuke; Ushioda, Yuichi; Sasaki, Ayaka; Sakurai Yuki; Nagahama, Hiroshi; Nakamura, Manami; Sugimori, Hiroyuki; Sakata, Motomichi

    2013-01-01

    Various custom-made phantoms designed to optimize magnetic resonance imaging (MRI) sequences have been created and subsequently reported in Japanese Society of Radiological Technology (JSRT). However, custom-made phantoms that correctly match the T 1 -value and T 2 -values of human brain tissue (gray matter and white matter) cannot be made easily or quickly. The aim of this project was to search for alternative materials, such as fruits and vegetables, for optimizing MRI sequences. The following eight fruits and vegetables were investigated: apple, tomato, melon, apple mango (Mangifera indica), banana, avocado, peach, and eggplant. Their potential was studied for use in modeling phantoms of normal human brain tissues. MRI (T 1 - and T 2 -weighted sequences) was performed on the human brain and the fruits and vegetables using various concentrations of contrast medium (gadolinium) in the same size tubes as the custom-made phantom. The authors compared the signal intensity (SI) in human brain tissue (gray matter and white matter) with that of the fruits and the custom-made phantom. The T 1 and T 2 values were measured for banana tissue and compared with those for human brain tissue in the literature. Our results indicated that banana tissue is similar to human brain tissue (both gray matter and white matter). Banana tissue can thus be employed as an alternative phantom for the human brain for the purpose of MRI. (author)

  6. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder

    Directory of Open Access Journals (Sweden)

    Guangjun Zhao

    2016-01-01

    Full Text Available Cryosection brain images in Chinese Visible Human (CVH dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel. Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.

  7. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues

    Science.gov (United States)

    2013-01-01

    Background Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. Results In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed “sleep specific” changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Conclusion Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific

  8. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues.

    Science.gov (United States)

    Anafi, Ron C; Pellegrino, Renata; Shockley, Keith R; Romer, Micah; Tufik, Sergio; Pack, Allan I

    2013-05-30

    Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed "sleep specific" changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific molecular functions and that it has a

  9. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  10. FDTD analysis of a noninvasive hyperthermia system for brain tumors.

    Science.gov (United States)

    Yacoob, Sulafa M; Hassan, Noha S

    2012-08-14

    Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40-45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD) method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  11. The importance of brain banks for molecular neuropathological research: The New South Wales Tissue Resource Centre experience.

    Science.gov (United States)

    Dedova, Irina; Harding, Antony; Sheedy, Donna; Garrick, Therese; Sundqvist, Nina; Hunt, Clare; Gillies, Juliette; Harper, Clive G

    2009-01-01

    New developments in molecular neuropathology have evoked increased demands for postmortem human brain tissue. The New South Wales Tissue Resource Centre (TRC) at The University of Sydney has grown from a small tissue collection into one of the leading international brain banking facilities, which operates with best practice and quality control protocols. The focus of this tissue collection is on schizophrenia and allied disorders, alcohol use disorders and controls. This review highlights changes in TRC operational procedures dictated by modern neuroscience, and provides examples of applications of modern molecular techniques to study the neuropathogenesis of many different brain disorders.

  12. Utilization of 14C-tyrosine in brain and peripheral tissues of developmentally protein malnourished rats

    International Nuclear Information System (INIS)

    Miller, M.; Leahy, J.P.; McConville, F.; Morgane, P.J.; Resnick, O.

    1978-01-01

    Prior studies of developmentally protein malnourished rats have reported substantial changes in brain and peripheral utilization of 14 C-leucine, 14 C-phenylalanine, and 14 C-tryptophan. In the present study rats born to dams fed a low protein diet (8% casein) compared to the offspring of control rats fed a normal diet (25% casein) showed few significant differences in the uptake and incorporation of 14 C-tyrosine into brain and peripheral tissues from birth to age 21 days. At birth, the 8% casein pups exhibited significant decreases in brain and peripheral tissue incorporation of tracer only at short post-injection times (10 and 20 min), but not at longer intervals (90 and 180 min). During ontogenetic development (Days 5-21), the 8% casein rats showed significant increases in uptake of 14 C-tyrosine into the brain and peripheral tissues on Day 11 and a significantly higher percent incorporation of tracer into brain protein on Day 21 as compared to the 25% casein rats. For the most part, there were no significant changes in incorporation of radioactivity in peripheral tissues for the 2 diet groups on these post-birth days. Overall, the data indicates that developmental protein malnutrition causes relatively fewer changes in brain and peripheral utilization of the semi-essential amino acid tyrosine than those observed in previous studies with essential amino acids

  13. Brain tumor radiosurgery. Current status and strategies to enhance the effect of radiosurgery

    International Nuclear Information System (INIS)

    Niranjan, A.; Lunsford, L.D.; Gobbel, G.T.; Kondziolka, D.; Maitz, A.; Flickinger, J.C.

    2000-01-01

    First, the current status of brain tumor radiosurgery is reviewed, and radiosurgery for brain tumors, including benign tumors, malignant tumors, primary glial tumors, and metastatic tumors, is described. Rapid developments in neuroimaging, stereotactic techniques, and robotic technology in the last decade have contributed to improved results and wider applications of radiosurgery. Radiosurgery has become the preferred management modality for many intracranial tumors, including schwannomas, meningiomas, and metastatic tumors. Although radiosurgery provides survival benefits in patients with diffuse malignant brain tumors, cure is still not possible. Microscopic tumor infiltration into surrounding normal tissue is the main cause of recurrence. Additional strategies are needed to specifically target tumor cells. Next, strategies to enhance the effect of radiosurgery are reviewed. Whereas the long-term clinical results of radiosurgery have established its role in the treatment of benign tumors, additional strategies are needed to improve cell killing in malignant brain tumors and to protect normal surrounding brain. The first strategy included the use of various agents to protect normal brain while delivering a high dose to the tumor cells, but finding an effective radioprotective agent has been problematic. Pentobarbital and 21-aminosteroid (21-AS) are presented as examples. The second strategy for radiation protection aimed at the repair of radiation-induced damage to the normal brain. The cause of radiation-induced breakdown of normal tissue is unclear. The white matter and the cerebral vasculature appear to be particularly susceptible to radiation. Oligodendrocytes and endothelial cells may be critical targets of radiation. The authors hypothesize that radiation-induced damage to these cell types can be repaired by neural stem cells. They also describe the use of tumor necrosis factor alpha (TNF-alpha) and neural stem cells as a means of enhancing the effect of

  14. An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-07-01

    There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.

  15. Super resolution imaging of genetically labelled synapses in Drosophila brain tissue

    Directory of Open Access Journals (Sweden)

    Isabelle Ayumi Spühler

    2016-05-01

    Full Text Available Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labelled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation

  16. Characterizing the optical properties of human brain tissue with high numerical aperture optical coherence tomography.

    Science.gov (United States)

    Wang, Hui; Magnain, Caroline; Sakadžić, Sava; Fischl, Bruce; Boas, David A

    2017-12-01

    Quantification of tissue optical properties with optical coherence tomography (OCT) has proven to be useful in evaluating structural characteristics and pathological changes. Previous studies primarily used an exponential model to analyze low numerical aperture (NA) OCT measurements and obtain the total attenuation coefficient for biological tissue. In this study, we develop a systematic method that includes the confocal parameter for modeling the depth profiles of high NA OCT, when the confocal parameter cannot be ignored. This approach enables us to quantify tissue optical properties with higher lateral resolution. The model parameter predictions for the scattering coefficients were tested with calibrated microsphere phantoms. The application of the model to human brain tissue demonstrates that the scattering and back-scattering coefficients each provide unique information, allowing us to differentially identify laminar structures in primary visual cortex and distinguish various nuclei in the midbrain. The combination of the two optical properties greatly enhances the power of OCT to distinguish intricate structures in the human brain beyond what is achievable with measured OCT intensity information alone, and therefore has the potential to enable objective evaluation of normal brain structure as well as pathological conditions in brain diseases. These results represent a promising step for enabling the quantification of tissue optical properties from high NA OCT.

  17. Characterization of a sequential pipeline approach to automatic tissue segmentation from brain MR Images

    International Nuclear Information System (INIS)

    Hou, Zujun; Huang, Su

    2008-01-01

    Quantitative analysis of gray matter and white matter in brain magnetic resonance imaging (MRI) is valuable for neuroradiology and clinical practice. Submission of large collections of MRI scans to pipeline processing is increasingly important. We characterized this process and suggest several improvements. To investigate tissue segmentation from brain MR images through a sequential approach, a pipeline that consecutively executes denoising, skull/scalp removal, intensity inhomogeneity correction and intensity-based classification was developed. The denoising phase employs a 3D-extension of the Bayes-Shrink method. The inhomogeneity is corrected by an improvement of the Dawant et al.'s method with automatic generation of reference points. The N3 method has also been evaluated. Subsequently the brain tissue is segmented into cerebrospinal fluid, gray matter and white matter by a generalized Otsu thresholding technique. Intensive comparisons with other sequential or iterative methods have been carried out using simulated and real images. The sequential approach with judicious selection on the algorithm selection in each stage is not only advantageous in speed, but also can attain at least as accurate segmentation as iterative methods under a variety of noise or inhomogeneity levels. A sequential approach to tissue segmentation, which consecutively executes the wavelet shrinkage denoising, scalp/skull removal, inhomogeneity correction and intensity-based classification was developed to automatically segment the brain tissue into CSF, GM and WM from brain MR images. This approach is advantageous in several common applications, compared with other pipeline methods. (orig.)

  18. Proteomics analyses for the global proteins in the brain tissues of different human prion diseases.

    Science.gov (United States)

    Shi, Qi; Chen, Li-Na; Zhang, Bao-Yun; Xiao, Kang; Zhou, Wei; Chen, Cao; Zhang, Xiao-Mei; Tian, Chan; Gao, Chen; Wang, Jing; Han, Jun; Dong, Xiao-Ping

    2015-04-01

    Proteomics changes of brain tissues have been described in different neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. However, the brain proteomics of human prion disease remains less understood. In the study, the proteomics patterns of cortex and cerebellum of brain tissues of sporadic Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD were analyzed with isobaric tags for relative and absolute quantitation combined with multidimensional liquid chromatography and MS analysis, with the brains from three normal individuals as controls. Global protein profiling, significant pathway, and functional categories were analyzed. In total, 2287 proteins were identified with quantitative information both in cortex and cerebellum regions. Cerebellum tissues appeared to contain more up- and down-regulated proteins (727 proteins) than cortex regions (312 proteins) of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD. Viral myocarditis, Parkinson's disease, Alzheimer's disease, lysosome, oxidative phosphorylation, protein export, and drug metabolism-cytochrome P450 were the most commonly affected pathways of the three kinds of diseases. Almost coincident biological functions were identified in the brain tissues of the three diseases. In all, data here demonstrate that the brain tissues of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD have obvious proteomics changes at their terminal stages, which show the similarities not only among human prion diseases but also with other neurodegeneration diseases. This is the first study to provide a reference proteome map for human prion diseases and will be helpful for future studies focused on potential biomarkers for the diagnosis and therapy of human prion diseases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues

    OpenAIRE

    Anafi, Ron C; Pellegrino, Renata; Shockley, Keith R; Romer, Micah; Tufik, Sergio; Pack, Allan I

    2013-01-01

    Background Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. Results In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the...

  20. [Correlation between RNA Expression Level and Early PMI in Human Brain Tissue].

    Science.gov (United States)

    Lü, Y H; Ma, K J; Li, Z H; Gu, J; Bao, J Y; Yang, Z F; Gao, J; Zeng, Y; Tao, L; Chen, L

    2016-08-01

    To explore the correlation between the expression levels of several RNA markers in human brain tissue and early postmortem interval (PMI). Twelve individuals with known PMI (range from 4.3 to 22.5 h) were selected and total RNA was extracted from brain tissue. Eight commonly used RNA markers were chosen including β -actin, GAPDH, RPS29, 18S rRNA, 5S rRNA, U6 snRNA, miRNA-9 and miRNA-125b, and the expression levels were detected in brain tissue by real-time fluorescent quantitative PCR. The internal reference markers with stable expression in early PMI were screened using geNorm software and the relationship between its expression level and some relevant factors such as age, gender and cause of death were analyzed. RNA markers normalized by internal reference were inserted into the mathematic model established by previous research for PMI estimation using R software. Model quality was judged by the error rate calculated with estimated PMI. 5S rRNA, miRNA-9 and miRNA-125b showed quite stable expression and their expression levels had no relation with age, gender and cause of death. The error rate of estimated PMI using β -actin was 24.6%, while GAPDH was 41.0%. 5S rRNA, miRNA-9 and miRNA-125b are suitable as internal reference markers of human brain tissue owing to their stable expression in early PMI. The expression level of β -actin correlates well with PMI, which can be used as an additional index for early PMI estimation. Copyright© by the Editorial Department of Journal of Forensic Medicine

  1. Contrast enhancement in EIT imaging of the brain

    International Nuclear Information System (INIS)

    Nissinen, A; Kaipio, J P; Vauhkonen, M; Kolehmainen, V

    2016-01-01

    We consider electrical impedance tomography (EIT) imaging of the brain. The brain is surrounded by the poorly conducting skull which has low conductivity compared to the brain. The skull layer causes a partial shielding effect which leads to weak sensitivity for the imaging of the brain tissue. In this paper we propose an approach based on the Bayesian approximation error approach, to enhance the contrast in brain imaging. With this approach, both the (uninteresting) geometry and the conductivity of the skull are embedded in the approximation error statistics, which leads to a computationally efficient algorithm that is able to detect features such as internal haemorrhage with significantly increased sensitivity and specificity. We evaluate the approach with simulations and phantom data. (paper)

  2. Contrast enhancement in EIT imaging of the brain.

    Science.gov (United States)

    Nissinen, A; Kaipio, J P; Vauhkonen, M; Kolehmainen, V

    2016-01-01

    We consider electrical impedance tomography (EIT) imaging of the brain. The brain is surrounded by the poorly conducting skull which has low conductivity compared to the brain. The skull layer causes a partial shielding effect which leads to weak sensitivity for the imaging of the brain tissue. In this paper we propose an approach based on the Bayesian approximation error approach, to enhance the contrast in brain imaging. With this approach, both the (uninteresting) geometry and the conductivity of the skull are embedded in the approximation error statistics, which leads to a computationally efficient algorithm that is able to detect features such as internal haemorrhage with significantly increased sensitivity and specificity. We evaluate the approach with simulations and phantom data.

  3. FLAIR images of brain diseases

    International Nuclear Information System (INIS)

    Segawa, Fuminori; Kinoshita, Masao; Kishibayashi, Jun; Kamada, Kazuhiko; Sunohara, Nobuhiko.

    1994-01-01

    The present study was designed to assess the usefulness of fluid-attenuated inversion recovery (FLAIR) images in diagnosing brain diseases. The subjects were 20 patients with multiple cerebral infarction, multiple sclerosis, temporal epilepsy, or brain trauma, and 20 other healthy adults. FLAIR images, with a long repetitive time of 6000 msec and a long inversion time of 1400-1600 msec, showed low signal intensity in the cerebrospinal fluid in the lateral ventricles and the cerebral sulci, and high signal intensity in brain tissues. Signal intensity on FLAIR images correlated well with T2 relaxation times under 100 msec. For multiple sclerosis and cerebral infarction, cystic lesions, which were shown on T2-weighted images with long relaxation times over 100 msec, appeared as low-signal areas; and the lesions surrounding the cystic lesions appeared as high-signal areas. For temporal lobe epilepsy, the hippocampus was visualized as a high-signal area. Hippocampal lesions were demonstrated better with FLAIR images than with conventional T2-weighted and proton-density images. In a patient with cerebral trauma, FLAIR images revealed the lobulated structure with the residual cortex shown as a high signal area. The lesions surrounding the cystic change were imaged as high signal areas. These structural changes were demonstrated better with FLAIR images than with conventional T2-weighted sequences. FLAIR images were useful in detecting white matter lesions surrounding the lateral ventricles and cortical and subcortical lesions near the brain surface, which were unclear on conventional T2-weighted and proton-density images. (N.K.)

  4. Fetal brain extracellular matrix boosts neuronal network formation in 3D bioengineered model of cortical brain tissue.

    Science.gov (United States)

    Sood, Disha; Chwalek, Karolina; Stuntz, Emily; Pouli, Dimitra; Du, Chuang; Tang-Schomer, Min; Georgakoudi, Irene; Black, Lauren D; Kaplan, David L

    2016-01-01

    The extracellular matrix (ECM) constituting up to 20% of the organ volume is a significant component of the brain due to its instructive role in the compartmentalization of functional microdomains in every brain structure. The composition, quantity and structure of ECM changes dramatically during the development of an organism greatly contributing to the remarkably sophisticated architecture and function of the brain. Since fetal brain is highly plastic, we hypothesize that the fetal brain ECM may contain cues promoting neural growth and differentiation, highly desired in regenerative medicine. Thus, we studied the effect of brain-derived fetal and adult ECM complemented with matricellular proteins on cortical neurons using in vitro 3D bioengineered model of cortical brain tissue. The tested parameters included neuronal network density, cell viability, calcium signaling and electrophysiology. Both, adult and fetal brain ECM as well as matricellular proteins significantly improved neural network formation as compared to single component, collagen I matrix. Additionally, the brain ECM improved cell viability and lowered glutamate release. The fetal brain ECM induced superior neural network formation, calcium signaling and spontaneous spiking activity over adult brain ECM. This study highlights the difference in the neuroinductive properties of fetal and adult brain ECM and suggests that delineating the basis for this divergence may have implications for regenerative medicine.

  5. Brain cancer treatment

    International Nuclear Information System (INIS)

    Gruszow, S.

    1998-01-01

    As soon as 1936 an American physicist proposed to treat certain forms of cancer by using the nuclear reaction: n + 10 B → 7 Li + 4 He where the alpha particles produced could destroy the DNA of surrounding cells. From 1951 to 1961 62 patients underwent this treatment for brain cancer. The results were unsatisfactory: the neutrons were not energetic enough to enter brain tissues deeply and were accompanied by strongly damaging gamma radiation. In Netherlands an installation using the high flux reactor of Petten has been set up. A highly focused neutron beam of about 10 keV with reduced gamma radiation is produced. The first step is to determine the limit exposure and the maximal permissible concentration of boron. (A.C.)

  6. MR imaging of brain tissue changes in acute and chronic solvent intoxication

    International Nuclear Information System (INIS)

    Rinck, P.A.; Nilsen, G.; Kvaerness, J.

    1988-01-01

    Acute and chronic intoxication with solvents is found both as an occupational hazard and as self-inflicted in addicts to solvent. Objective demonstration of such brain tissue changes is difficult with conventional imaging methods, and in most cases findings are negative. In a preliminary study, the brains of eight patients (aged 28-62 years) exposed to aggressive solvents for 1-27 years were examined with magnetic resonance imaging. All of the patients showed brain atrophy of varying extent, and seven of eight patients (all except the youngest and least exposed) had brain lesions that somewhat resembled dymyelinating changes (focal and confluent periventricular and deep white matter lesions, brain stem and cerebellar lesions); one patient showed cloudy, poorly defined lesions

  7. Characterisation of new monoclonal antibodies reacting with prions from both human and animal brain tissues

    DEFF Research Database (Denmark)

    Hvass, Henriette Cordes; Bergström, Ann-Louise; Ohm, Jakob

    2008-01-01

    spongiform encephalopathy (bovine brain), scrapie (ovine brain) and experimental scrapie in hamster and in mice. The antibodies were also used for PET-blotting in which PrPSc blotted from brain tissue sections onto a nitrocellulose membrane is visualized with antibodies after protease and denaturant...

  8. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering.

    Science.gov (United States)

    Cheng, Tzu-Yun; Chen, Ming-Hong; Chang, Wen-Han; Huang, Ming-Yuan; Wang, Tzu-Wei

    2013-03-01

    Brain injury is almost irreparable due to the poor regenerative capability of neural tissue. Nowadays, new therapeutic strategies have been focused on stem cell therapy and supplying an appropriate three dimensional (3D) matrix for the repair of injured brain tissue. In this study, we specifically linked laminin-derived IKVAV motif on the C-terminal to enrich self-assembling peptide RADA(16) as a functional peptide-based scaffold. Our purpose is providing a functional self-assembling peptide 3D hydrogel with encapsulated neural stem cells to enhance the reconstruction of the injured brain. The physiochemical properties reported that RADA(16)-IKVAV can self-assemble into nanofibrous morphology with bilayer β-sheet structure and become gelationed hydrogel with mechanical stiffness similar to brain tissue. The in vitro results showed that the extended IKVAV sequence can serve as a signal or guiding cue to direct the encapsulated neural stem cells (NSCs) adhesion and then towards neuronal differentiation. Animal study was conducted in a rat brain surgery model to demonstrate the damage in cerebral neocortex/neopallium loss. The results showed that the injected peptide solution immediately in situ formed the 3D hydrogel filling up the cavity and bridging the gaps. The histological analyses revealed the RADA(16)-IKVAV self-assembling peptide hydrogel not only enhanced survival of encapsulated NSCs but also reduced the formation of glial astrocytes. The peptide hydrogel with IKVAV extended motifs also showed the support of encapsulated NSCs in neuronal differentiation and the improvement in brain tissue regeneration after 6 weeks post-transplantation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. The cerebrovascular structure and brain tissue volume: a comparative study between beagle dogs and mongrel dogs

    International Nuclear Information System (INIS)

    Liu Sheng; Shi Haibin; Hu Weixing; Zu Qingquan; Lu Shanshan; Xu Xiaoquan; Sun Lei; Li Linsun

    2011-01-01

    Objective: To compare the differences of cerebrovascular structure and brain tissue volume between beagle and mongrel dogs by using angiography and MR scanning. Methods: A total of 40 dogs, including 20 beagle dogs (beagle group) and 20 mongrel dogs (mongrel group), were enrolled in this study. Under general anesthesia, all dogs were examined with cerebral angiography and MR scanning. The cerebrovascular structure was evaluated with angiography via selective catheterization of aortic arch, bilateral external cerebral arteries (ECA), maxillary arteries, internal cerebral arteries (ICA) and vertebral arteries separately. The diameters of the ICA, middle cerebral artery (MCA), rostral cerebral artery (RCA), the anastomosis channel ICA and ECA, and basilar artery (BA) were measured at the similar point of each dog. Meanwhile the volumes of the brain tissue were calculated in coronal T2 view of MR scanning. The statistical analysis was performed among the weight of dogs, the diameter of arteries and the volume of brain tissue. The differences in the diameters and brain tissue volume were compared between the two groups. Results: No obvious variations in the cerebrovascular structure and brain tissue volume were found in these dogs. One mongrel dog was excluded from this study because of the severe stenosis of ICA. The mean weight of 20 beagle dogs and 19 mongrel dogs was (12.81±1.29) kg and (12.85±1.12) kg, respectively. The diameters of the ICA, MCA, RCA, the anastomosis channel between ICA and ECA and BA in beagle group were (1.26±0.07) mm, (0.90±0.05) mm, (0.58±0.07) mm, (0.55±0.07) mm and (0.95±0.06) mm, respectively. These parameters in mongrel group were (1.27±0.07) mm, (0.92±0.05) mm, (0.59±0.06) mm, (0.67±0.07) mm and (0.94±0.05) mm, respectively. The volume of brain in two groups was (76232.33±5018.51) mm 3 and (71863.96±4626.87) mm 3 , respectively. There were no obvious correlation among the body weight, the cerebrovascular diameters and brain

  10. Raman molecular imaging of brain frozen tissue sections.

    Science.gov (United States)

    Kast, Rachel E; Auner, Gregory W; Rosenblum, Mark L; Mikkelsen, Tom; Yurgelevic, Sally M; Raghunathan, Aditya; Poisson, Laila M; Kalkanis, Steven N

    2014-10-01

    Raman spectroscopy provides a molecular signature of the region being studied. It is ideal for neurosurgical applications because it is non-destructive, label-free, not impacted by water concentration, and can map an entire region of tissue. The objective of this paper is to demonstrate the meaningful spatial molecular information provided by Raman spectroscopy for identification of regions of normal brain, necrosis, diffusely infiltrating glioma and solid glioblastoma (GBM). Five frozen section tissues (1 normal, 1 necrotic, 1 GBM, and 2 infiltrating glioma) were mapped in their entirety using a 300-µm-square step size. Smaller regions of interest were also mapped using a 25-µm step size. The relative concentrations of relevant biomolecules were mapped across all tissues and compared with adjacent hematoxylin and eosin-stained sections, allowing identification of normal, GBM, and necrotic regions. Raman peaks and peak ratios mapped included 1003, 1313, 1431, 1585, and 1659 cm(-1). Tissue maps identified boundaries of grey and white matter, necrosis, GBM, and infiltrating tumor. Complementary information, including relative concentration of lipids, protein, nucleic acid, and hemoglobin, was presented in a manner which can be easily adapted for in vivo tissue mapping. Raman spectroscopy can successfully provide label-free imaging of tissue characteristics with high accuracy. It can be translated to a surgical or laboratory tool for rapid, non-destructive imaging of tumor margins.

  11. Aluminium and Gamma Irradiation Induced Oxidative Damage in Brain Tissue of Male Rats - Protective Role of Ferulic Acid

    International Nuclear Information System (INIS)

    Mansour, S.Z.; Hanafi, N.; Noaman, E.

    2011-01-01

    The current study was carried out to investigate the potential role of ferulic acid (FA) against Aluminium chloride (AlCl 3 ), γ- radiation either alone or combination induced oxidative stress in brain tissue of Wistar rats. The period of the experiment was eight weeks. Animals were administrated by aluminium chloride at a dose of 8.5 mg/kg/day and exposed to a single dose (4 Gy) of γ-radiation. FA was administered orally (50 mg/Kg body weight)/day. Histopathological observations and myeloid protein distribution were recorded in brain tissue. Induction of oxidative stress was recorded after all exposures. Brain tissue of AlCl 3 and γ- irradiation treatments either alone or combined revealed many altered changes and myeloid protein distribution. Also a decrease in serotonin concentration was recorded. An increase in Malonaldialdahyde (MDA) and acetylcholinesterase activity and percentage of saturated fatty acids in plasma and brain tissue was recorded. Reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) in blood and brain showed a significant decrease. Treatment of AlCl 3 loaded animals by FA showed simple atrophy as shrunken morphology saw in amyotrophic lateral sclerosis and a decrease in myeloid protein deposition. FA treatment of AlCl 3 loaded or irradiated animals represented a significant increase in serotonin concentration and ameliorated affects on oxidative stress markers, acetylcholinesterase activity and percentage of saturated fatty acids in plasma and brain tissue. In conclusion FA has a role in reducing the oxidative stress of AlCl 3 and γ- irradiation on brain tissue of rats

  12. Photothermal effect of infrared lasers on ex vivo lamb brain tissues

    Science.gov (United States)

    Özgürün, Baturay; Gülsoy, Murat

    2018-02-01

    Here, the most suitable infrared laser for a neurosurgery operation is suggested, among 1940-nm thulium fiber, 1470-nm diode, 1070-nm ytterbium fiber and 980-nm diode lasers. Cortical and subcortical ex-vivo lamb brain tissues are exposed to the laser light with the combinations of some laser parameters such as output power, energy density, operation mode (continuous and pulsed-modulated) and operation time. In this way, the greatest ablation efficiency associated with the best neurosurgical laser type can be defined. The research can be divided into two parts; pre-dosimetry and dosimetry studies. The former is used to determine safe operation zones for the dosimetry study by defining coagulation and carbonization onset times for each of the brain tissues. The latter is the main part of this research, and both tissues are exposed to laser irradiation with various energy density levels associated with the output power and operation time. In addition, photo-thermal effects are compared for two laser operation modes, and then coagulation and ablation diameters to calculate the ablation efficiency are measured under a light microscope. Consequently, results are compared graphically and statistically, and it is found that thulium and 1470-nm diode lasers can be utilized as subcortical and cortical tissue ablator devices, respectively.

  13. Effects of tissue susceptibility on brain temperature mapping.

    Science.gov (United States)

    Maudsley, Andrew A; Goryawala, Mohammed Z; Sheriff, Sulaiman

    2017-02-01

    A method for mapping of temperature over a large volume of the brain using volumetric proton MR spectroscopic imaging has been implemented and applied to 150 normal subjects. Magnetic susceptibility-induced frequency shifts in gray- and white-matter regions were measured and included as a correction in the temperature mapping calculation. Additional sources of magnetic susceptibility variations of the individual metabolite resonance frequencies were also observed that reflect the cellular-level organization of the brain metabolites, with the most notable differences being attributed to changes of the N-Acetylaspartate resonance frequency that reflect the intra-axonal distribution and orientation of the white-matter tracts with respect to the applied magnetic field. These metabolite-specific susceptibility effects are also shown to change with age. Results indicate no change of apparent brain temperature with age from 18 to 84 years old, with a trend for increased brain temperature throughout the cerebrum in females relative for males on the order of 0.1°C; slightly increased temperatures in the left hemisphere relative to the right; and a lower temperature of 0.3°C in the cerebellum relative to that of cerebral white-matter. This study presents a novel acquisition method for noninvasive measurement of brain temperature that is of potential value for diagnostic purposes and treatment monitoring, while also demonstrating limitations of the measurement due to the confounding effects of tissue susceptibility variations. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Prompt gamma-ray spectrometry for measurement of B-10 concentration in brain tissue and blood

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Kitamura, Katsuji; Kobayashi, Toru; Matsumoto, Keizo; Hatanaka, Hiroshi.

    1993-01-01

    Boron-10 (B-10) concentration in the brain tissue and blood was measured continuously for 24 hours after injection of the B-10 compound in live rabbits using prompt gamma-ray spectrometry. Following injection of B-10 compound (Na 2 B 12 H 11 SH, 50mg/kg) dissolved in physiological saline, B-10 concentration was continuously measured in the brain tissue. Intermittently the concentration of B-10 in blood and cerebro-spinal fluid (CSF) was also measured. In 10 minutes after the injection of B-10 compound, the level of B-10 concentration reached the peak of 400-500 ppm in blood and 20-30 ppm in the normal brain tissue. In 60 minutes the level of B-10 concentration rapidly decreased and then a gradual decline was observed. The value was 15-30 ppm at 3 hours after injection, 5-10 ppm at 6 hours and 2-5 ppm at 24 hours in the blood. The concentration in the brain tissue was 3-8 ppm at 3 hours, 2-5 ppm at 6 hours and below 1.5 ppm at 24 hours. B-10 concentration in cerebro-spinal fluid was below 1 ppm. B-10 concentration was also measured in the brain tumor and blood in the human cases at boron neutron capture therapy (BNCT). These data studied by prompt gamma-ray spectrometry are very important and useful to decide the irradiation time. (author)

  15. Effects of different concentrations of pollen extract on brain tissues of Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Mehmet Fuat Gulhan

    2014-03-01

    Full Text Available Objective: To determine the antioxidant capacities of pollen extract applied at different concentrations on biochemical parameters in brain tissues of rainbow trouts. Methods: The effective concentration of pollen was determined with some biochemical parameters in brain tissues of fish treated at various concentrations of the pollen extract (0.5, 2.5, 5, 10, 20 and 30 mg/L for 96 h. The malondialdehyde levels, total antioxidant status, total oxidant status, oxidative stress index and amounts of total free sulfhydryl groups were analyzed in fish brain. Results: The malondialdehyde levels decreased in groups of 0.5, 2.5, 5, 10, 20 and 30 mg/L pollen-treated compared to control group (P<0.05. The highest level of total antioxidant status (P<0.05 and the lowest value (P<0.05 of the total oxidant status was 10 mg/L concentration of pollen. Oxidative stress index and level of sulfhydryl groups showed lowest values (P<0.05 in 10 mg/L pollen treated group compared with control group. Conclusions: To apply the pollen to fish reduces the detrimental effects and modulates oxidative status via activating antioxidant defense systems at brain tissue. As a result, pollen can be added up to 10 mg/L to the medium of rainbow trout to improve health of fish.

  16. Effects of the Variation in Brain Tissue Mechanical Properties on the Intracranial Response of a 6-Year-Old Child.

    Science.gov (United States)

    Cui, Shihai; Li, Haiyan; Li, Xiangnan; Ruan, Jesse

    2015-01-01

    Brain tissue mechanical properties are of importance to investigate child head injury using finite element (FE) method. However, these properties used in child head FE model normally vary in a large range in published literatures because of the insufficient child cadaver experiments. In this work, a head FE model with detailed anatomical structures is developed from the computed tomography (CT) data of a 6-year-old healthy child head. The effects of brain tissue mechanical properties on traumatic brain response are also analyzed by reconstruction of a head impact on engine hood according to Euro-NCAP testing regulation using FE method. The result showed that the variations of brain tissue mechanical parameters in linear viscoelastic constitutive model had different influences on the intracranial response. Furthermore, the opposite trend was obtained in the predicted shear stress and shear strain of brain tissues caused by the variations of mentioned parameters.

  17. Effects of the Variation in Brain Tissue Mechanical Properties on the Intracranial Response of a 6-Year-Old Child

    Directory of Open Access Journals (Sweden)

    Shihai Cui

    2015-01-01

    Full Text Available Brain tissue mechanical properties are of importance to investigate child head injury using finite element (FE method. However, these properties used in child head FE model normally vary in a large range in published literatures because of the insufficient child cadaver experiments. In this work, a head FE model with detailed anatomical structures is developed from the computed tomography (CT data of a 6-year-old healthy child head. The effects of brain tissue mechanical properties on traumatic brain response are also analyzed by reconstruction of a head impact on engine hood according to Euro-NCAP testing regulation using FE method. The result showed that the variations of brain tissue mechanical parameters in linear viscoelastic constitutive model had different influences on the intracranial response. Furthermore, the opposite trend was obtained in the predicted shear stress and shear strain of brain tissues caused by the variations of mentioned parameters.

  18. A simple method for measuring glucose utilization of insulin-sensitive tissues by using the brain as a reference

    International Nuclear Information System (INIS)

    Namba, Hiroki; Nakagawa, Keiichi; Iyo, Masaomi; Fukushi, Kiyoshi; Irie, Toshiaki

    1994-01-01

    A simple method, without measurement of the plasma input function, to obtain semiquantitative values of glucose utilization in tissues other than the brain with radioactive deoxyglucose is reported. The brain, in which glucose utilization is essentially insensitive to plasma glucose and insulin concentrations, was used as an internal reference. The effects of graded doses of oral glucose loading (0.5, 1 and 2 mg/g body weight) on insulin-sensitive tissues (heart, muscle and fat tissue) were studied in the rat. By using the brain-reference method, dose-dependent increases in glucose utilization were clearly shown in all the insulin-sensitive tissues examined. The method seems to be of value for measurement of glucose utilization using radioactive deoxyglucose and positron emission tomography in the heart or other insulin-sensitive tissues, especially during glucose loading. (orig.)

  19. FDTD analysis of a noninvasive hyperthermia system for brain tumors

    Directory of Open Access Journals (Sweden)

    Yacoob Sulafa M

    2012-08-01

    Full Text Available Abstract Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  20. Characterization and localization of 3H-arginine8-vasopressin binding to rat kidney and brain tissue

    International Nuclear Information System (INIS)

    Dorsa, D.M.; Majumdar, L.A.; Petracca, F.M.; Baskin, D.G.; Cornett, L.E.

    1983-01-01

    Anatomic, behavioral and pharmacologic evidence suggests that arginine8-vasopressin (AVP) serves as a CNS neurotransmitter or neuromodulator. AVP binding to membrane and tissue slice preparations from brain and kidney was characterized, and the anatomical distribution of these binding sites was examined. Conditions for the binding assay were optimized using kidney medullary tissue. Binding of 3 H-AVP (S.A. . 30-51 Ci/mmol, NEN) to brain and kidney membranes and tissue slices was saturable, temperature dependent, linearly related to protein concentration (or number of tissue slices), reversible, and specific since the ability of cold AVP to displace 3 H-AVP from binding was greater than oxytocin and other related peptide fragments. Autoradiographic localization of 3 H-AVP binding was restricted to kidney medullary tissue. In brain tissue, 3 H-AVP binding was found to occur in concentrated foci. Brainstem areas such as the nucleus tractus solitarius (NTS) showed a high density of AVP binding sites. Since local injections of AVP into the NTS have been shown to influence blood pressure, the present study presents the first anatomical evidence for the presence of AVP specific binding sites which might mediate this effect

  1. Decomposing the Hounsfield unit: probabilistic segmentation of brain tissue in computed tomography.

    Science.gov (United States)

    Kemmling, A; Wersching, H; Berger, K; Knecht, S; Groden, C; Nölte, I

    2012-03-01

    The aim of this study was to present and evaluate a standardized technique for brain segmentation of cranial computed tomography (CT) using probabilistic partial volume tissue maps based on a database of high resolution T1 magnetic resonance images (MRI). Probabilistic tissue maps of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) were derived from 600 normal brain MRIs (3.0 Tesla, T1-3D-turbo-field-echo) of 2 large community-based population studies (BiDirect and SEARCH Health studies). After partial tissue segmentation (FAST 4.0), MR images were linearly registered to MNI-152 standard space (FLIRT 5.5) with non-linear refinement (FNIRT 1.0) to obtain non-binary probabilistic volume images for each tissue class which were subsequently used for CT segmentation. From 150 normal cerebral CT scans a customized reference image in standard space was constructed with iterative non-linear registration to MNI-152 space. The inverse warp of tissue-specific probability maps to CT space (MNI-152 to individual CT) was used to decompose a CT image into tissue specific components (GM, WM, CSF). Potential benefits and utility of this novel approach with regard to unsupervised quantification of CT images and possible visual enhancement are addressed. Illustrative examples of tissue segmentation in different pathological cases including perfusion CT are presented. Automated tissue segmentation of cranial CT images using highly refined tissue probability maps derived from high resolution MR images is feasible. Potential applications include automated quantification of WM in leukoaraiosis, CSF in hydrocephalic patients, GM in neurodegeneration and ischemia and perfusion maps with separate assessment of GM and WM.

  2. Brain tissues volume measurements from 2D MRI using parametric approach

    Science.gov (United States)

    L'vov, A. A.; Toropova, O. A.; Litovka, Yu. V.

    2018-04-01

    The purpose of the paper is to propose a fully automated method of volume assessment of structures within human brain. Our statistical approach uses maximum interdependency principle for decision making process of measurements consistency and unequal observations. Detecting outliers performed using maximum normalized residual test. We propose a statistical model which utilizes knowledge of tissues distribution in human brain and applies partial data restoration for precision improvement. The approach proposes completed computationally efficient and independent from segmentation algorithm used in the application.

  3. Analysis of sports related mTBI injuries caused by elastic wave propagation through brain tissue

    Directory of Open Access Journals (Sweden)

    D Case

    2016-10-01

    Full Text Available Repetitive concussions and sub-concussions suffered by athletes have been linked to a series of sequelae ranging from traumatic encephalopathy to dementia pugilistica. A detailed finite element model of the human head was developed based on standard libraries of medical imaging. The model includes realistic material properties for the brain tissue, bone, soft tissue, and CSF, as well as the structure and properties of a protective helmet. Various impact scenarios were studied, with a focus on the strains/stresses and pressure gradients and concentrations created in the brain tissue due to propagation of waves produced by the impact through the complex internal structure of the human head. This approach has the potential to expand our understanding of the mechanism of brain injury, and to better assess the risk of delayed neurological disorders for tens of thousands of young athletes throughout the world.

  4. Do spotty high intensity regions found in basal ganglia on MRI T2-weighted brain images of elderly subjects indicate gliosis? Comparison of brain MRI T2-weighted images of elderly subjects and necropsy brain

    International Nuclear Information System (INIS)

    Murai, Hiroshi; Hattori, Hideyuki; Matsumoto, Masayuki

    2001-01-01

    Spotty high intensity regions are frequently found on the MRI T2-weighted brain images (T2WI) of elderly people. High intensity regions with a diameter of 3 mm or less have been considered as expanded perivascular space with no pathological implications on radiological diagnosis. However, its morphometrical basis is not clear. We examined the character of the spotty regions using brain MRI of brain screening subjects, and studied morphometrically arteriolosclerosis and perivascular tissue damage using necropsy brains of subjects aged 65 years and over. The size, number and location of the spotty high intensity regions were examined using the brain MRI of 109 T2WI which is used for brain screening at Kanazawa Medical University Hospital. The frontal lobe, temporal lobe, parietal lobe, hippocampus, midbrain and basal ganglia were sampled from 15 subjects aged 65 years and over, and the tissue sections were processed for HE stain, Elastica van Gieson stain and immunostaining with GFAP. We took photographs of brain arterioli and surrounding parenchyma with a digital telescope camera and the degree of arterioscleosis and tissue damage were assessed by measurements with an image analyzer. Spotty high intensity regions on T2WI with a diameter of 3 mm or less were observed in 95.5% subjects aged 65 years and over. 69.4% spotty region was observed in basal ganglia. There was a significant correlation between age and size. In morphometrical examination, at the basal ganglia, the density of GFAP-positive astrocytes in the perivascular tissue had a significant positive correlation with the proportional thickness of the adventitia, which is an index of arteriosclerosis, and a significant negative correlation with the size of the perivascular space. The results suggested that the spotty regions in the brain MRI of elderly people do not represent dilatations of the perivascular space, but is mild brain damage caused by arteriosclerosis. (author)

  5. 2D correlation Raman microspectroscopy of chosen parts of rat's brain tissue

    Science.gov (United States)

    Zięba-Palus, J.; Wesełucha-Birczyńska, A.; Sacharz, J.; Lewandowski, M. H.; Palus, K.; Chrobok, Ł.; Kowalski, R.; Moskal, P.; Birczyńska, M.; Sozańska, Agnieszka

    2017-11-01

    Raman spectra of two areas of Wistar rat brain tissue, tissue that are linked functionally to one another -the somatosensory cortex (Sc) and the dorsolateral geniculate nucleus of the thalamus (DLG)- excited with 442 nm, 514.5 nm, 785 nm and 1064 nm laser lines- were studied. No fixation method was used to preserve samples taken from the precisely defined anatomical areas of the brain. The brain slides were kept in artificial cerebrospinal fluid during the measurements. Averaged spectra were analyzed using the 2D correlation method. The varying wavelength/energy of the excitation laser was regarded as an external stimulus. 2D correlation analysis resolved differences between Sc and DLG in the range of 1800-1000 cm-1 and also in the hetero-spectral regions of about 1800-1200 cm-1 and 3100-2500 cm-1. Auto-peaks at 1659 cm-1 and 1666 cm-1 characterize the phase of the constituent lipid clusters with proteins and cholesterol in Sc and cholesterol in DLG, respectively. Appearing cross-peaks indicate the correlations with different phospholipids structures and protein bands and also cholesterol for Sc and DLG, respectively. Asynchronous spectra distinguish between areas of the brain due to the presence of neurotransmitters.

  6. Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea

    Directory of Open Access Journals (Sweden)

    Torres Marta

    2010-01-01

    Full Text Available Abstract Background Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA and is usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation (SpO2 during repetitive apneas translate into oxygen partial pressure (PtO2 in brain tissue has not been studied. The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring interruption of O2 supply during recurrent swings in arterial SpO2 in an animal model of OSA. Methods Twenty-four male Sprague-Dawley rats (300-350 g were used. Sixteen rats were anesthetized and non-invasively subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fast-response oxygen microelectrode. SpO2 was measured by pulse oximetry. The time dependence of arterial SpO2 and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA. Results Arterial SpO2 showed a stable periodic pattern (no significant changes in maximum [95.5 ± 0.5%; m ± SE] and minimum values [83.9 ± 1.3%]. By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial SpO2. The minimum cerebral cortex PtO2 computed during the first apnea (29.6 ± 2.4 mmHg was significantly lower than baseline PtO2 (39.7 ± 2.9 mmHg; p = 0.011. In contrast to SpO2, the minimum and maximum values of PtO2 gradually increased (p 2 were significantly greater relative to baseline and the first apnea dip, respectively. Conclusions These data suggest that the cerebral cortex is partially protected from intermittently occurring interruption of

  7. Assessment of Autophagy in Neurons and Brain Tissue

    Science.gov (United States)

    Benito-Cuesta, Irene; Diez, Héctor; Ordoñez, Lara; Wandosell, Francisco

    2017-01-01

    Autophagy is a complex process that controls the transport of cytoplasmic components into lysosomes for degradation. This highly conserved proteolytic system involves dynamic and complex processes, using similar molecular elements and machinery from yeast to humans. Moreover, autophagic dysfunction may contribute to a broad spectrum of mammalian diseases. Indeed, in adult tissues, where the capacity for regeneration or cell division is low or absent (e.g., in the mammalian brain), the accumulation of proteins/peptides that would otherwise be recycled or destroyed may have pathological implications. Indeed, such changes are hallmarks of pathologies, like Alzheimer’s, Prion or Parkinson’s disease, known as proteinopathies. However, it is still unclear whether such dysfunction is a cause or an effect in these conditions. One advantage when analysing autophagy in the mammalian brain is that almost all the markers described in different cell lineages and systems appear to be present in the brain, and even in neurons. By contrast, the mixture of cell types present in the brain and the differentiation stage of such neurons, when compared with neurons in culture, make translating basic research to the clinic less straightforward. Thus, the purpose of this review is to describe and discuss the methods available to monitor autophagy in neurons and in the mammalian brain, a process that is not yet fully understood, focusing primarily on mammalian macroautophagy. We will describe some general features of neuronal autophagy that point to our focus on neuropathologies in which macroautophagy may be altered. Indeed, we centre this review around the hypothesis that enhanced autophagy may be able to provide therapeutic benefits in some brain pathologies, like Alzheimer’s disease, considering this pathology as one of the most prevalent proteinopathies. PMID:28832529

  8. Detection of Rabies Antigen in the Brain Tissues of Apparetly ...

    African Journals Online (AJOL)

    Rabies is a serious public health hazard and recently outbreaks of the disease have been reported in three local government areas in Cross River State. Detection of rabies antigen in the brain tissues of apparently healthy dogs indicates the presence of rabies virus and this is a significant factor in the transmission and ...

  9. Application of Quantitative MRI for Brain Tissue Segmentation at 1.5 T and 3.0 T Field Strengths

    Science.gov (United States)

    West, Janne; Blystad, Ida; Engström, Maria; Warntjes, Jan B. M.; Lundberg, Peter

    2013-01-01

    Background Brain tissue segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) are important in neuroradiological applications. Quantitative Mri (qMRI) allows segmentation based on physical tissue properties, and the dependencies on MR scanner settings are removed. Brain tissue groups into clusters in the three dimensional space formed by the qMRI parameters R1, R2 and PD, and partial volume voxels are intermediate in this space. The qMRI parameters, however, depend on the main magnetic field strength. Therefore, longitudinal studies can be seriously limited by system upgrades. The aim of this work was to apply one recently described brain tissue segmentation method, based on qMRI, at both 1.5 T and 3.0 T field strengths, and to investigate similarities and differences. Methods In vivo qMRI measurements were performed on 10 healthy subjects using both 1.5 T and 3.0 T MR scanners. The brain tissue segmentation method was applied for both 1.5 T and 3.0 T and volumes of WM, GM, CSF and brain parenchymal fraction (BPF) were calculated on both field strengths. Repeatability was calculated for each scanner and a General Linear Model was used to examine the effect of field strength. Voxel-wise t-tests were also performed to evaluate regional differences. Results Statistically significant differences were found between 1.5 T and 3.0 T for WM, GM, CSF and BPF (p3.0 T. The mean differences between 1.5 T and 3.0 T were -66 mL WM, 40 mL GM, 29 mL CSF and -1.99% BPF. Voxel-wise t-tests revealed regional differences of WM and GM in deep brain structures, cerebellum and brain stem. Conclusions Most of the brain was identically classified at the two field strengths, although some regional differences were observed. PMID:24066153

  10. Improvement of Brain Tissue Oxygenation by Inhalation of Carbogen

    DEFF Research Database (Denmark)

    Ashkanian, M.; Borghammer, P.; Gjedde, A.

    2008-01-01

    tomography (PET) to measure CBF and cerebral metabolic rate of oxygen (CMRO(2)) during inhalation of test gases (O(2), CO(2), carbogen and atmospheric air) in 10 healthy volunteers. Arterial blood gases were recorded during administration of each gas. The data were analyzed with volume-of-interest and voxel...... is sufficient for optimal oxygenation of healthy brain tissue, whereas carbogen induces concomitant increases of CBF and Sa(O2)....

  11. Optical clearing and fluorescence deep-tissue imaging for 3D quantitative analysis of the brain tumor microenvironment

    NARCIS (Netherlands)

    Lagerweij, Tonny; Dusoswa, Sophie A.; Negrean, Adrian; Hendrikx, Esther M.L.; de Vries, Helga E.; Kole, Jeroen; Garcia-Vallejo, Juan J.; Mansvelder, Huibert D; Vandertop, W. Peter; Noske, David P.; Tannous, Bakhos A.; Musters, René J P; van Kooyk, Yvette; Wesseling, Pieter; Zhao, Xi Wen; Wurdinger, Thomas

    2017-01-01

    Background: Three-dimensional visualization of the brain vasculature and its interactions with surrounding cells may shed light on diseases where aberrant microvascular organization is involved, including glioblastoma (GBM). Intravital confocal imaging allows 3D visualization of microvascular

  12. Tumor sterilization dose and radiation induced change of the brain tissue in radiotherapy of brain tumors

    International Nuclear Information System (INIS)

    Yoshii, Yoshihiko; Maki, Yutaka; Takano, Shingo

    1987-01-01

    Ninety-seven patients with brain tumors (38 gliomas, 26 brain metastases, 18 sellar tumors, 15 others) were treated by cobalt gamma ray or proton radiotherapy. In this study, normal brain injury due to radiation was analysed in terms of time-dose-fractionation (TDF), nominal standard dose (NSD) by the Ellis formula and NeuNSD by a modification in which the N exponent was -0.44 and the T exponent was -0.06. Their calculated doses were analysed in relationship to the normal brain radiation induced change (RIC) and the tumor sterilization dose. All brain tumors with an exception of many patients with brain metastases were received a surgical extirpation subtotally or partially prior to radiotherapy. And all patients with glioma and brain metastasis received also immuno-chemotherapy in the usual manner during radiotherapy. The calculated dose expressed by NeuNSD and TDF showed a significant relationship between a therapeutic dose and a postradiation time in terms of the appearance of RIC. It was suggested that RIC was caused by a dose over 800 in NeuNSD and a dose over 70 in TDF. Furthermore, it was suggested that an aged patient and a patient who had the vulnerable brain tissue to radiation exposure in the irradiated field had the high risk of RIC. On the other hand, our results suggested that the tumor sterilization dose should be over 1,536 NeuNSD and the irradiated method should be further considered in addition to the radiobiological concepts for various brain tumors. (author)

  13. Soft-tissue reactions following irradiation of primary brain and pituitary tumors

    International Nuclear Information System (INIS)

    Baglan, R.J.; Marks, J.E.

    1981-01-01

    One hundred and ninety-nine patients who received radiation therapy for a primary brain or pituitary tumor were studied for radiation-induced soft-tissue reactions of the cranium, scalp, ears and jaw. The frequency of these reactions was studied as a function of: the radiation dose 5 mm below the skin surface, dose distribution, field size and fraction size. Forty percent of patients had complete and permanent epilation, while 21% had some other soft-tissue complication, including: scalp swelling-6%, external otitis-6%, otitis media-5%, ear swelling-4%, etc. The frequency of soft-tissue reactions correlates directly with the radiation dose at 5 mm below the skin surface. Patients treated with small portals ( 2 ) had few soft-tissue reactions. The dose to superficial tissues, and hence the frequency of soft-tissue reactions can be reduced by: (1) using high-energy megavoltage beams; (2) using equal loading of beams; and (3) possibly avoiding the use of electron beams

  14. Vascular Gene Expression in Nonneoplastic and Malignant Brain

    Science.gov (United States)

    Madden, Stephen L.; Cook, Brian P.; Nacht, Mariana; Weber, William D.; Callahan, Michelle R.; Jiang, Yide; Dufault, Michael R.; Zhang, Xiaoming; Zhang, Wen; Walter-Yohrling, Jennifer; Rouleau, Cecile; Akmaev, Viatcheslav R.; Wang, Clarence J.; Cao, Xiaohong; St. Martin, Thia B.; Roberts, Bruce L.; Teicher, Beverly A.; Klinger, Katherine W.; Stan, Radu-Virgil; Lucey, Brenden; Carson-Walter, Eleanor B.; Laterra, John; Walter, Kevin A.

    2004-01-01

    Malignant gliomas are uniformly lethal tumors whose morbidity is mediated in large part by the angiogenic response of the brain to the invading tumor. This profound angiogenic response leads to aggressive tumor invasion and destruction of surrounding brain tissue as well as blood-brain barrier breakdown and life-threatening cerebral edema. To investigate the molecular mechanisms governing the proliferation of abnormal microvasculature in malignant brain tumor patients, we have undertaken a cell-specific transcriptome analysis from surgically harvested nonneoplastic and tumor-associated endothelial cells. SAGE-derived endothelial cell gene expression patterns from glioma and nonneoplastic brain tissue reveal distinct gene expression patterns and consistent up-regulation of certain glioma endothelial marker genes across patient samples. We define the G-protein-coupled receptor RDC1 as a tumor endothelial marker whose expression is distinctly induced in tumor endothelial cells of both brain and peripheral vasculature. Further, we demonstrate that the glioma-induced gene, PV1, shows expression both restricted to endothelial cells and coincident with endothelial cell tube formation. As PV1 provides a framework for endothelial cell caveolar diaphragms, this protein may serve to enhance glioma-induced disruption of the blood-brain barrier and transendothelial exchange. Additional characterization of this extensive brain endothelial cell gene expression database will provide unique molecular insights into vascular gene expression. PMID:15277233

  15. The expression and significance of tyrosine hydroxylase in the brain tissue of Parkinsons disease rats

    OpenAIRE

    Chen, Yuan; Lian, Yajun; Ma, Yunqing; Wu, Chuanjie; Zheng, Yake; Xie, Nanchang

    2017-01-01

    The expression and significance of tyrosine hydroxylase (TH) in brain tissue of rats with Parkinson's disease (PD) were explored and analyzed. A total of 120 clean-grade and healthy adult Wistar rats weighing 180–240 g were randomly divided equally into four groups according to the random number table method. Rats were sacrificed before and after the model establishment for 3, 6 or 8 weeks. The number of revolutions in rats was observed and the relative expression of TH mRNA in brain tissue w...

  16. Three-dimensional visualization of functional brain tissue and functional magnetic resonance imaging-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex

    International Nuclear Information System (INIS)

    Han Tong; Cui Shimin; Tong Xiaoguang; Liu Li; Xue Kai; Liu Meili; Liang Siquan; Zhang Yunting; Zhi Dashi

    2011-01-01

    Objective: To assess the value of three -dimensional visualization of functional brain tissue and the functional magnetic resonance imaging (fMRI)-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex. Method: Sixty patients with tumor located in the central sulcus were enrolled. Thirty patients were randomly assigned to function group and 30 to control group. Patients in function group underwent fMRI to localize the functional brain tissues. Then the function information was transferred to the neurosurgical navigator. The patients in control group underwent surgery with navigation without function information. The therapeutic effect, excision rate. improvement of motor function, and survival quality during follow-up were analyzed. Result: All patients in function group were accomplished visualization of functional brain tissues and fMRI-integrated neuronavigation. The locations of tumors, central sulcus and motor cortex were marked during the operation. The fMRI -integrated information played a great role in both pre- and post-operation. Pre-operation: designing the location of the skin flap and window bone, determining the relationship between the tumor and motor cortex, and designing the pathway for the resection. Post- operation: real-time navigation of relationship between the tumor and motor cortex, assisting to localize the motor cortex using interoperation ultra-sound for correcting the displacement by the CSF outflow and collapsing tumor. The patients in the function group had better results than the patients in the control group in therapeutic effect (u=2.646, P=0.008), excision rate (χ = 7.200, P<0.01), improvement of motor function (u=2.231, P=0.026), and survival quality (KPS u c = 2.664, P=0.008; Zubrod -ECOG -WHO u c =2.135, P=0.033). Conclusions: Using preoperative three -dimensional visualization of cerebral function tissue and the fMRI-integrated neuronavigation technology, combining intraoperative accurate

  17. Optical clearing and fluorescence deep-tissue imaging for 3D quantitative analysis of the brain tumor microenvironment

    NARCIS (Netherlands)

    Lagerweij, Tonny; Dusoswa, Sophie A.; Negrean, Adrian; Hendrikx, Esther M. L.; de Vries, Helga E.; Kole, Jeroen; Garcia-Vallejo, Juan J.; Mansvelder, Huibert D.; Vandertop, W. Peter; Noske, David P.; Tannous, Bakhos A.; Musters, René J. P.; van Kooyk, Yvette; Wesseling, Pieter; Zhao, Xi Wen; Wurdinger, Thomas

    2017-01-01

    Three-dimensional visualization of the brain vasculature and its interactions with surrounding cells may shed light on diseases where aberrant microvascular organization is involved, including glioblastoma (GBM). Intravital confocal imaging allows 3D visualization of microvascular structures and

  18. Innovative Therapeutic Strategies in the Treatment of Brain Metastases

    Directory of Open Access Journals (Sweden)

    Francesco Tomasello

    2013-01-01

    Full Text Available Brain metastases (BM are the most common intracranial tumors and their incidence is increasing. Untreated brain metastases are associated with a poor prognosis and a poor performance status. Metastasis development involves the migration of a cancer cell from the bulk tumor into the surrounding tissue, extravasation from the blood into tissue elsewhere in the body, and formation of a secondary tumor. In the recent past, important results have been obtained in the management of patients affected by BM, using surgery, radiation therapy, or both. Conventional chemotherapies have generally produced disappointing results, possibly due to their limited ability to penetrate the blood–brain barrier. The advent of new technologies has led to the discovery of novel molecules and pathways that have better depicted the metastatic process. Targeted therapies such as bevacizumab, erlotinib, gefitinib, sunitinib and sorafenib, are all licensed and have demonstrated improved survival in patients with metastatic disease. In this review, we will report current data on targeted therapies. A brief review about brain metastatic process will be also presented.

  19. Optical histology: a method to visualize microvasculature in thick tissue sections of mouse brain.

    Directory of Open Access Journals (Sweden)

    Austin J Moy

    Full Text Available The microvasculature is the network of blood vessels involved in delivering nutrients and gases necessary for tissue survival. Study of the microvasculature often involves immunohistological methods. While useful for visualizing microvasculature at the µm scale in specific regions of interest, immunohistology is not well suited to visualize the global microvascular architecture in an organ. Hence, use of immunohistology precludes visualization of the entire microvasculature of an organ, and thus impedes study of global changes in the microvasculature that occur in concert with changes in tissue due to various disease states. Therefore, there is a critical need for a simple, relatively rapid technique that will facilitate visualization of the microvascular network of an entire tissue.The systemic vasculature of a mouse is stained with the fluorescent lipophilic dye DiI using a method called "vessel painting". The brain, or other organ of interest, is harvested and fixed in 4% paraformaldehyde. The organ is then sliced into 1 mm sections and optically cleared, or made transparent, using FocusClear, a proprietary optical clearing agent. After optical clearing, the DiI-labeled tissue microvasculature is imaged using confocal fluorescence microscopy and adjacent image stacks tiled together to produce a depth-encoded map of the microvasculature in the tissue slice. We demonstrated that the use of optical clearing enhances both the tissue imaging depth and the estimate of the vascular density. Using our "optical histology" technique, we visualized microvasculature in the mouse brain to a depth of 850 µm.Presented here are maps of the microvasculature in 1 mm thick slices of mouse brain. Using combined optical clearing and optical imaging techniques, we devised a methodology to enhance the visualization of the microvasculature in thick tissues. We believe this technique could potentially be used to generate a three-dimensional map of the

  20. Characterisation by PIXE RBS of metallic contamination of tissues surrounding a metallic prosthesis on a knee

    Science.gov (United States)

    Guibert, G.; Irigaray, J. L.; Moretto, Ph.; Sauvage, T.; Kemeny, J. L.; Cazenave, A.; Jallot, E.

    2006-09-01

    Implants used as biomaterials have to fulfill conditions of functionality, compatibility and sometimes bioactivity. There are four main families of biomaterials: metals and metal alloys, polymers, bioceramics and natural materials. Because of corrosion and friction in the human body, implants generate debris. This debris may develop toxicity, inflammation and prosthetic unsealing by osseous dissolution. Nature, size, morphology and amount of debris are the parameters influencing the tissue responses. In this paper, we characterised metallic contamination produced by knee prosthesis, composed with TiAl 6V 4 or Co-Cr-Mo alloys, into surrounding capsular tissue by depth migration, in vivo behaviour, content, size and nature of debris by PIXE (Particle Induced X-ray Emission) method associated with RBS (Rutherford Backscattering Spectroscopy). Debris distribution in the whole articulation is very heterogeneous. Debris migrates several thousand micrometers in tissues, with a characteristic decrease. Solid metallic particles of about micrometer size are found in the most polluted samples, in both alloys TiAl 6V 4 and Cr-Co-Mo. In the mean volume analysed by PIXE, the concentration mass ratios [Ti]/[V] and [Co]/[Cr] confirm the chemical stability of TiAl 6V 4 debris and show the chemical evolution of Cr-Co-Mo debris. Development of a protocol to prepare thin targets permits us to correlate PIXE and histological analysis in the same zone. The fibrous tissue (collagen fibres, fibroblasts) and macrophage cells are observed with optical microscope in polluted areas. This protocol could locate other pathologies in ppm contamination range, thanks to the great sensitivity of the PIXE method.

  1. Methylenetetrahydrofolate reductase deficiency alters levels of glutamate and γ-aminobutyric acid in brain tissue

    Directory of Open Access Journals (Sweden)

    N.M. Jadavji

    2015-06-01

    Full Text Available Methylenetetrahydrofolate reductase (MTHFR is an enzyme key regulator in folate metabolism. Deficiencies in MTHFR result in increased levels of homocysteine, which leads to reduced levels of S-adenosylmethionine (SAM. In the brain, SAM donates methyl groups to catechol-O-methyltransferase (COMT, which is involved in neurotransmitter analysis. Using the MTHFR-deficient mouse model the purpose of this study was to investigate levels of monoamine neurotransmitters and amino acid levels in brain tissue. MTHFR deficiency affected levels of both glutamate and γ-aminobutyric acid in within the cerebellum and hippocampus. Mthfr−/− mice had reduced levels of glutamate in the amygdala and γ-aminobutyric acid in the thalamus. The excitatory mechanisms of homocysteine through activation of the N-methyl-d-aspartate receptor in brain tissue might alter levels of glutamate and γ-aminobutyric acid.

  2. Cellular characterization of the peritumoral edema zone in malignant brain tumors

    International Nuclear Information System (INIS)

    Engelhorn, T.; Schwarz, M.A.; Savaskan, N.E.

    2009-01-01

    Brain edema is a hallmark of human malignant brain tumors and contributes to the clinical course and outcome of brain tumor patients. The so-called perifocal edema or brain swelling imposes in T2-weighted MR scans as high intensity areas surrounding the bulk tumor mass. The mechanisms of this increased fluid attraction and the cellular composition of the microenvironment are only partially understood. In this study, we focus on imaging perifocal edema in orthotopically implanted gliomas in rodents and correlate perifocal edema with immunohistochemical markers. We identified that areas of perifocal edema not only include the tumor invasion zone, but also are associated with increased glial fibrillary acidic protein (GFAP) and aquaporin-4 expression surrounding the bulk tumor mass. Moreover, a high number of activated microglial cells expressing CD11b and macrophage migration inhibitory factor (MIF) accumulate at the tumor border. Thus, the area of perifocal edema is mainly dominated by reactive changes of vital brain tissue. These data corroborate that perifocal edema identified in T2-weighted MR scans are characterized with alterations in glial cell distribution and marker expression forming an inflammatory tumor microenvironment. (author)

  3. Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice

    Directory of Open Access Journals (Sweden)

    Kenne Ellinor

    2012-01-01

    Full Text Available Abstract Background Brain edema as a result of secondary injury following traumatic brain injury (TBI is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear. Methods In this study we used controlled cortical impact (CCI as a model for TBI and investigated the role of neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1 antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-brain barrier function was assessed by Evan's blue dye extravasation, and analysis of brain water content was used as a measurement of brain edema formation (24 and 48 hours after CCI. Lesion volume was measured 7 and 14 days after CCI. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24 hours after injury, and microglial/macrophage activation 7 days after CCI. Data were analyzed using Mann-Whitney test for non-parametric data. Results Neutrophil depletion did not significantly affect Evan's blue extravasation at any time-point after CCI. However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCI indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and 14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/macrophages 7 days after CCI, and of cleaved caspase-3 positive cells 24 h after injury. Conclusion Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of large proteins, as well as contributing to cell death and tissue loss following TBI in mice.

  4. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    International Nuclear Information System (INIS)

    Weaver, John; Yang, Yirong; Purvis, Rebecca; Weatherwax, Theodore; Rosen, Gerald M.; Liu, Ke Jian

    2014-01-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O 2 may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O 2 is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO 2 in vivo remains largely uncharacterized. This study investigated striatal tissue pO 2 changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO 2 in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO 2 was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO 2 to 64%. More importantly, pO 2 did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO 2 indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO 2 , which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO 2 in vivo after METH administration by EPR oximetry. • pO 2 was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO 2 did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO 2 may be associated with a decrease in CBF. • Administration of methamphetamine may lead to hypoxic

  5. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, John, E-mail: jmweaver@salud.unm.edu [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Yang, Yirong [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Purvis, Rebecca [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Weatherwax, Theodore [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Rosen, Gerald M. [Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 21201 (United States); Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201 (United States); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States); Liu, Ke Jian [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-03-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O{sub 2} may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O{sub 2} is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO{sub 2}in vivo remains largely uncharacterized. This study investigated striatal tissue pO{sub 2} changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO{sub 2}in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO{sub 2} was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO{sub 2} to 64%. More importantly, pO{sub 2} did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO{sub 2} indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO{sub 2}, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO{sub 2}in vivo after METH administration by EPR oximetry. • pO{sub 2} was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO{sub 2} did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO{sub 2} may be associated with a decrease in

  6. Respiratory difficulty caused by an ectopic brain tissue mass in the neck of a two-month-old baby: a case report

    Directory of Open Access Journals (Sweden)

    Aboud Mohammed J

    2011-06-01

    Full Text Available Abstract Introduction Neuroglial heterotopia, heterotopic brain tissue, or differentiated neural tissue outside the cranial vault is uncommon, and these anomalies most commonly occur in the nasal cavity. Case presentation We report a case of rare pure cystic heterotopic brain tissue in a two-month-old Caucasian baby girl that presented as a large cystic neck mass and was confused with a cystic hygroma. Her mother reported a progressive increase in the size of this swelling and mild respiratory difficulty when the girl was sleeping. A computed tomography scan of the brain and neck showed a large heterogeneous mass extending from the base of the skull to the left submandibular region; a cystic component was also noted. Our patient under went total excision of the cystic mass and prevention of airway obstruction by a left submandibular approach. The final gross pathology diagnosis was heterotopic brain tissue. Conclusions Pure cystic neck heterotopic brain tissue lesions are very uncommon, and a preoperative diagnosis of this lesion is difficult. Brain heterotopia is a rare, benign condition that should be considered in the differential diagnosis of the neonatal head and neck mass.

  7. Effects of variation in cerebral haemodynamics during aneurysm surgery on brain tissue oxygen and metabolism.

    Science.gov (United States)

    Kett-White, R; Hutchinson, P J; Czosnyka, M; al-Rawi, P; Gupta, A; Pickard, J D; Kirkpatrick, P J

    2002-01-01

    This study explores the sensitivities of multiparameter tissue gas sensors and microdialysis to variations in blood pressure, CSF drainage and to well-defined periods of ischaemia accompanying aneurysm surgery, and their predictive value for infarction. A Neurotrend sensor [brain tissue partial pressure of oxygen (PBO2), carbon dioxide (PBCO2), brain pH (pHB) and temperature] and microdialysis catheter were inserted into the appropriate vascular territory prior to craniotomy. Baseline data showed a clear correlation between PBO2 and mean arterial pressure (MAP) below a threshold of 80 mmHg. PBO2 improved with CSF drainage in 20 out of 28 (Wilcoxon: P sensors can be sensitive to acute ischaemia. Microdialysis shows potential in the detection of metabolic changes during tissue hypoxia.

  8. Effects of Nd:YAG and CO2 lasers on cerebral microvasculature. Study in normal rabbit brain.

    Science.gov (United States)

    Kuroiwa, T; Tsuyumu, M; Takei, H; Inaba, Y

    1986-01-01

    The effect of Nd:YAG and CO2 laser beams on cerebral microvasculature was examined in experimental animals. Soft x-ray microangiography and histological examination of the brain after Nd:YAG laser exposure revealed broad avascular or oligovascular zones in the irradiated and the surrounding edematous tissue, in which the surviving vessels were narrowed and tapered without significant leakage of blood. After CO2 laser exposure, a wedge-shaped tissue defect surrounded by layers of charring, coagulation, and edema was observed. The main finding in the surrounding coagulation and edematous layers was dilatation of the vessels. Hemorrhage was sometimes observed, mainly in the edematous layer. These findings seem to explain the effective hemostatic capability of the Nd:YAG laser and the occasional hemorrhage following CO2 laser exposure, especially at high energy output.

  9. Chronic Expanding Hematoma in the Extremities: A Clinical Problem of Adhesion to the Surrounding Tissues

    Science.gov (United States)

    Okamoto, Takeshi; Matsuda, Shuichi

    2017-01-01

    Chronic expanding hematoma is characterized by continuous growth of a blood collection. We analyzed the clinical features of 7 patients with chronic expanding hematomas in the extremities, with an average age of 65.6 years. All lesions occurred in the lower extremities, with 4 seen in the thigh and 3 in the knee region. Six patients had subcutaneous hematomas, while 1 was deep-seated in the thigh. The magnetic resonance features of the lesion were compatible with those of a standard hematoma. A low signal intensity on T1- and T2-weighted imaging at the pseudocapsule was also characteristic. Cystic features were seen in 5 of 7 patients. All lesions were resected together with their pseudocapsule. In the subcutaneous lesions, it was necessary to resect adherent fascia, with or without involved skin. In the deep-seated thigh lesion, the common peroneal nerve was completely adherent to the pseudocapsule, a phenomenon from absence of the common peroneal nerve which appeared after resection. Chronic expanding hematomas of the extremities are predominantly located in the subcutaneous tissue of the lower extremity. The surrounding pseudocapsule is adherent to the adjacent tissues, and clinicians must be aware of this, especially when resecting a deep-seated lesion. PMID:28642872

  10. Chronic Expanding Hematoma in the Extremities: A Clinical Problem of Adhesion to the Surrounding Tissues

    Directory of Open Access Journals (Sweden)

    Akio Sakamoto

    2017-01-01

    Full Text Available Chronic expanding hematoma is characterized by continuous growth of a blood collection. We analyzed the clinical features of 7 patients with chronic expanding hematomas in the extremities, with an average age of 65.6 years. All lesions occurred in the lower extremities, with 4 seen in the thigh and 3 in the knee region. Six patients had subcutaneous hematomas, while 1 was deep-seated in the thigh. The magnetic resonance features of the lesion were compatible with those of a standard hematoma. A low signal intensity on T1- and T2-weighted imaging at the pseudocapsule was also characteristic. Cystic features were seen in 5 of 7 patients. All lesions were resected together with their pseudocapsule. In the subcutaneous lesions, it was necessary to resect adherent fascia, with or without involved skin. In the deep-seated thigh lesion, the common peroneal nerve was completely adherent to the pseudocapsule, a phenomenon from absence of the common peroneal nerve which appeared after resection. Chronic expanding hematomas of the extremities are predominantly located in the subcutaneous tissue of the lower extremity. The surrounding pseudocapsule is adherent to the adjacent tissues, and clinicians must be aware of this, especially when resecting a deep-seated lesion.

  11. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain

    Science.gov (United States)

    Harris, J. P.; Struzyna, L. A.; Murphy, P. L.; Adewole, D. O.; Kuo, E.; Cullen, D. K.

    2016-02-01

    Objective. Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. Approach. We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. Main results. The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter—white matter in the brain. Additionally, micro-columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. Significance. Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain

  12. Contribution Of Brain Tissue Oxidative Damage In Hypothyroidism-associated Learning and Memory Impairments

    Directory of Open Access Journals (Sweden)

    Yousef Baghcheghi

    2017-01-01

    Full Text Available The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.

  13. Research on terahertz properties of rat brain tissue sections during dehydration

    Science.gov (United States)

    Cui, Gangqiang; Liang, Jianfeng; Zhao, Hongwei; Zhao, Xianghui; Chang, Chao

    2018-01-01

    Biological tissue sections are always kept in a system purged with dry nitrogen for the measurement of terahertz spectrum. However, the injected nitrogen will cause dehydration of tissue sections, which will affect the accuracy of spectrum measurement. In this paper, terahertz time-domain spectrometer is used to measure the terahertz spectra of rat brain tissue sections during dehydration. The changes of terahertz properties, including terahertz transmittance, refractive index and extinction coefficient during dehydration are also analyzed. The amplitudes of terahertz time-domain spectra increase gradually during the dehydration process. Besides, the terahertz properties show obvious changes during the dehydration process. All the results indicate that the injected dry nitrogen has a significant effect on the terahertz spectra and properties of tissue sections. This study contributes to further research and application of terahertz technology in biomedical field.

  14. Regular aerobic exercise correlates with reduced anxiety and incresed levels of irisin in brain and white adipose tissue.

    Science.gov (United States)

    Uysal, Nazan; Yuksel, Oguz; Kizildag, Servet; Yuce, Zeynep; Gumus, Hikmet; Karakilic, Aslı; Guvendi, Guven; Koc, Basar; Kandis, Sevim; Ates, Mehmet

    2018-05-29

    We have recently shown that regular voluntary aerobic exercised rats have low levels of anxiety. Irisin is an exercise-induced myokine that is produced by many tissues; and the role it plays in anxiolytic behavior is unknown. In this study we aimed to investigate the correlation between anxiety like behavior and irisin levels following regular voluntary aerobic exercise in male mice. We've have shown that anxiety levels decreased in exercised mice, while irisin levels increased in the brain, brown adipose tissue, white adipose tissue, kidney, and pancreas tissues. No significant difference of irisin levels in the liver, muscle and serum were detected in the exercise group, when compared to controls. In addition, there was a strong positive correlation between brain irisin levels and activity in middle area of open field test and in the open arms of elevated plus maze test; both which are indicators of low anxiety levels. Our results suggest that decrease in anxiolytic behavior due to regular voluntary exercise may be associated with locally produced brain irisin. White adipose tissue irisin levels also correlated very strongly with low anxiety. However, no serum irisin increase was detected, ruling out the possibility of increased peripheral irisin levels affecting the brain via the bloodstream. Further research is necessary to explain the mechanisms of which peripheral and central irisin effects anxiety and the brain region affected. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. CT-stereotactic interstitial Curie-therapy using iodine-125 seeds in inoperable brain tumours

    International Nuclear Information System (INIS)

    Mundinger, F.

    1985-01-01

    Iodine-125 seeds are a new radio-drug featuring favourable physical, biological and radiation protection characteristics and available for interstitial (local) irradiation (Curie-therapy) of non-resectable brain tumours as such (cerebral tumours) or of tumours of the interior of the neuro-cranium (extracerebral tumours). Emitters are inserted right into the tumour or tumour recurrence by means of computerized-tomography stereotaxy either permanently or temporarily with dose release being largely restricted to the tumour and the surrounding brain tissue being spared. (orig.) [de

  16. Elemental analysis of the frontal lobe of 'normal' brain tissue and that affected by Alzheimer's disease

    International Nuclear Information System (INIS)

    Stedman, J.D.; Spyrou, N.M.

    1997-01-01

    'Normal' brain tissue and brain tissue affected by Alzheimer's disease has been taken from the frontal lobe of both hemispheres and their elemental compositions in terms of major, minor and trace elements compared. Brain samples were obtained from the MRC Alzheimer's Disease Brain Bank, London. 25 samples were taken from 18 individuals (5 males and 13 females) of mean age 79.9 ± 7.3 years with pathologically confirmed Alzheimer's disease and 26 samples from 15 individuals (8 males and 7 females) of mean age 71.8 ± 13.0 years with no pathological sings of Alzheimer's disease ('normals'). The elemental concentration of the samples were determined by the techniques of Rutherford backscattering (RBS) analysis, particle induced X-ray emission (PIXE) analysis and instrumental neutron activation analysis (INAA). Na, Mg, Al, Cl, K, Sc, Fe, Zn, Se, Br, Rb and Cs were detected by INAA and significant differences in concentrations were found between concentrations in normal and Alzheimer tissue for the elements. Na, Cl, K, Se, Br and Rb, P, S, Cl, K, Ca, Fe, Zn and Cd were detected by PIXE analysis and significant differences found for the elements P, S, Cl, K and Ca. (author)

  17. External Beam Radiotherapy of Recurrent Glioma: Radiation Tolerance of the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Sminia, Peter, E-mail: p.sminia@vumc.nl [Department of Radiation Oncology, Radiobiology Section, VU University Medical Center, De Boelelaan 1117, P.O. Box 7057, Amsterdam (Netherlands); Mayer, Ramona [EBG MedAustron GmbH., Viktor Kaplan-Strasse 2, A-2700, Wiener Neustadt (Austria)

    2012-04-05

    Malignant gliomas relapse in close proximity to the resection site, which is the postoperatively irradiated volume. Studies on re-irradiation of glioma were examined regarding radiation-induced late adverse effects (i.e., brain tissue necrosis), to obtain information on the tolerance dose and treatment volume of normal human brain tissue. The studies were analyzed using the linear-quadratic model to express the re-irradiation tolerance in cumulative equivalent total doses when applied in 2 Gy fractions (EQD2{sub cumulative}). Analysis shows that the EQD2{sub cumulative} increases from conventional re-irradiation series to fractionated stereotactic radiotherapy (FSRT) to LINAC-based stereotactic radiosurgery (SRS). The mean time interval between primary radiotherapy and the re-irradiation course was shortened from 30 months for conventional re-irradiation to 17 and 10 months for FSRT and SRS, respectively. Following conventional re-irradiation, radiation-induced normal brain tissue necrosis occurred beyond an EQD2{sub cumulative} around 100 Gy. With increasing conformality of therapy, the smaller the treatment volume is, the higher the radiation dose that can be tolerated. Despite the dose escalation, no increase in late normal tissue toxicity was reported. On basis of our analysis, the use of particle therapy in the treatment of recurrent gliomas, because of the optimized physical dose distribution in the tumour and surrounding healthy brain tissue, should be considered for future clinical trials.

  18. External Beam Radiotherapy of Recurrent Glioma: Radiation Tolerance of the Human Brain

    Directory of Open Access Journals (Sweden)

    Peter Sminia

    2012-04-01

    Full Text Available Malignant gliomas relapse in close proximity to the resection site, which is the postoperatively irradiated volume. Studies on re-irradiation of glioma were examined regarding radiation-induced late adverse effects (i.e., brain tissue necrosis, to obtain information on the tolerance dose and treatment volume of normal human brain tissue. The studies were analyzed using the linear-quadratic model to express the re-irradiation tolerance in cumulative equivalent total doses when applied in 2 Gy fractions (EQD2cumulative. Analysis shows that the EQD2cumulative increases from conventional re-irradiation series to fractionated stereotactic radiotherapy (FSRT to LINAC-based stereotactic radiosurgery (SRS. The mean time interval between primary radiotherapy and the re-irradiation course was shortened from 30 months for conventional re-irradiation to 17 and 10 months for FSRT and SRS, respectively. Following conventional re-irradiation, radiation-induced normal brain tissue necrosis occurred beyond an EQD2cumulative around 100 Gy. With increasing conformality of therapy, the smaller the treatment volume is, the higher the radiation dose that can be tolerated. Despite the dose escalation, no increase in late normal tissue toxicity was reported. On basis of our analysis, the use of particle therapy in the treatment of recurrent gliomas, because of the optimized physical dose distribution in the tumour and surrounding healthy brain tissue, should be considered for future clinical trials.

  19. Characterisation by PIXE-RBS of metallic contamination of tissues surrounding a metallic prosthesis on a knee

    Energy Technology Data Exchange (ETDEWEB)

    Guibert, G. [Laboratoire de Physique Corpusculaire de Clermont-Ferrand, IN2P3/CNRS UMR 6533, Universite Blaise Pascal, 63177 Aubiere Cedex (France)]. E-mail: geoffroy.guibert@he-arc.ch; Irigaray, J.L. [Laboratoire de Physique Corpusculaire de Clermont-Ferrand, IN2P3/CNRS UMR 6533, Universite Blaise Pascal, 63177 Aubiere Cedex (France); Moretto, Ph. [Centre d' Etudes Nucleaires de Bordeaux-Gradignan, IN2P3/CNRS UMR 5797, Le Haut Vigneau, BP 120, 33175 Gradignan Cedex (France); Sauvage, T. [Centre d' Etudes et de Recherches par Irradiation, CNRS Orleans France, 3A rue de la ferollerie, 45071 Orleans Cedex 2 (France); Kemeny, J.L. [CHU, Service d' Anatomie et de Cytologie Pathologiques, Universite d' Auvergne, 63100 Clermont-Ferrand (France); Cazenave, A. [Institut Calot, 62608 Berck sur Mer Cedex (France); Jallot, E. [Laboratoire de Physique Corpusculaire de Clermont-Ferrand, IN2P3/CNRS UMR 6533, Universite Blaise Pascal, 63177 Aubiere Cedex (France)

    2006-09-15

    Implants used as biomaterials have to fulfill conditions of functionality, compatibility and sometimes bioactivity. There are four main families of biomaterials: metals and metal alloys, polymers, bioceramics and natural materials. Because of corrosion and friction in the human body, implants generate debris. This debris may develop toxicity, inflammation and prosthetic unsealing by osseous dissolution. Nature, size, morphology and amount of debris are the parameters influencing the tissue responses. In this paper, we characterised metallic contamination produced by knee prosthesis, composed with TiAl{sub 6}V{sub 4} or Co-Cr-Mo alloys, into surrounding capsular tissue by depth migration, in vivo behaviour, content, size and nature of debris by PIXE (Particle Induced X-ray Emission) method associated with RBS (Rutherford Backscattering Spectroscopy). Debris distribution in the whole articulation is very heterogeneous. Debris migrates several thousand micrometers in tissues, with a characteristic decrease. Solid metallic particles of about micrometer size are found in the most polluted samples, in both alloys TiAl{sub 6}V{sub 4} and Cr-Co-Mo. In the mean volume analysed by PIXE, the concentration mass ratios [Ti]/[V] and [Co]/[Cr] confirm the chemical stability of TiAl{sub 6}V{sub 4} debris and show the chemical evolution of Cr-Co-Mo debris. Development of a protocol to prepare thin targets permits us to correlate PIXE and histological analysis in the same zone. The fibrous tissue (collagen fibres, fibroblasts) and macrophage cells are observed with optical microscope in polluted areas. This protocol could locate other pathologies in ppm contamination range, thanks to the great sensitivity of the PIXE method.

  20. Are brain and heart tissue prone to the development of thiamine deficiency?

    NARCIS (Netherlands)

    Klooster, Astrid; Larkin, James R.; Wiersema-Buist, Janneke; Gans, Reinold O. B.; Thornalley, Paul J.; Navis, Gerjan; van Goor, Harry; Leuvenink, Henri G. D.; Bakker, Stephan J. L.

    Thiamine deficiency is a continuing problem leading to beriberi and Wernicke's encephalopathy. The symptoms of thiamine deficiency develop in the heart, brain and neuronal tissue. Yet, it is unclear how rapid thiamine deficiency develops and which organs are prone to development of thiamine

  1. Distribution of soya-saponin in brain and peripheral tissue after peritoneal injection

    International Nuclear Information System (INIS)

    Zhu Shigong; Wang Jianchun; Zhang Peiyin

    1997-01-01

    125 I-soya-saponin was prepared to study the distribution of soya-saponin in body of rat, as well as in different areas of brain when peritoneal injection. The results showed that the peak value of radioactive soya-saponin in all tissue appeared at 30 min after peritoneal injection. There were higher radioactivities in brain and suprarene comparing with other organs. The highest radioactivity was seen in hypothalamus among the every brain areas. It is a first report that soyasaponin can pass through the blood brain barrier when peripheral injection. The result also supported the opinion that soyasaponin might act on the hypothalamus and central regulation of cardiovascular system. Another finding was that soyasaponin also showed a higher affinity with adrenal gland, which indicated that the soyasaponin might possess of peripheral effect for regulation of cardiovascular system as well

  2. The post-synaptic density of human postmortem brain tissues: an experimental study paradigm for neuropsychiatric illnesses.

    Directory of Open Access Journals (Sweden)

    Chang-Gyu Hahn

    Full Text Available Recent molecular genetics studies have suggested various trans-synaptic processes for pathophysiologic mechanisms of neuropsychiatric illnesses. Examination of pre- and post-synaptic scaffolds in the brains of patients would greatly aid further investigation, yet such an approach in human postmortem tissue has yet to be tested. We have examined three methods using density gradient based purification of synaptosomes followed by detergent extraction (Method 1 and the pH based differential extraction of synaptic membranes (Methods 2 and 3. All three methods separated fractions from human postmortem brains that were highly enriched in typical PSD proteins, almost to the exclusion of pre-synaptic proteins. We examined these fractions using electron microscopy (EM and verified the integrity of the synaptic membrane and PSD fractions derived from human postmortem brain tissues. We analyzed protein composition of the PSD fractions using two dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS and observed known PSD proteins by mass spectrometry. Immunoprecipitation and immunoblot studies revealed that expected protein-protein interactions and certain posttranscriptional modulations were maintained in PSD fractions. Our results demonstrate that PSD fractions can be isolated from human postmortem brain tissues with a reasonable degree of integrity. This approach may foster novel postmortem brain research paradigms in which the stoichiometry and protein composition of specific microdomains are examined.

  3. Identification of Multipotent Stem Cells in Human Brain Tissue Following Stroke.

    Science.gov (United States)

    Tatebayashi, Kotaro; Tanaka, Yasue; Nakano-Doi, Akiko; Sakuma, Rika; Kamachi, Saeko; Shirakawa, Manabu; Uchida, Kazutaka; Kageyama, Hiroto; Takagi, Toshinori; Yoshimura, Shinichi; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-06-01

    Perivascular regions of the brain harbor multipotent stem cells. We previously demonstrated that brain pericytes near blood vessels also develop multipotency following experimental ischemia in mice and these ischemia-induced multipotent stem cells (iSCs) can contribute to neurogenesis. However, it is essential to understand the traits of iSCs in the poststroke human brain for possible applications in stem cell-based therapies for stroke patients. In this study, we report for the first time that iSCs can be isolated from the poststroke human brain. Putative iSCs were derived from poststroke brain tissue obtained from elderly stroke patients requiring decompressive craniectomy and partial lobectomy for diffuse cerebral infarction. Immunohistochemistry showed that these iSCs were localized near blood vessels within poststroke areas containing apoptotic/necrotic neurons and expressed both the stem cell marker nestin and several pericytic markers. Isolated iSCs expressed these same markers and demonstrated high proliferative potential without loss of stemness. Furthermore, isolated iSCs expressed other stem cell markers, such as Sox2, c-myc, and Klf4, and differentiated into multiple cells in vitro, including neurons. These results show that iSCs, which are likely brain pericyte derivatives, are present within the poststroke human brain. This study suggests that iSCs can contribute to neural repair in patients with stroke.

  4. Suitable reference tissues for quantitative susceptibility mapping of the brain.

    Science.gov (United States)

    Straub, Sina; Schneider, Till M; Emmerich, Julian; Freitag, Martin T; Ziener, Christian H; Schlemmer, Heinz-Peter; Ladd, Mark E; Laun, Frederik B

    2017-07-01

    Since quantitative susceptibility mapping (QSM) quantifies magnetic susceptibility relative to a reference value, a suitable reference tissue has to be available to compare different subjects and stages of disease. To find such a suitable reference tissue for QSM of the brain, melanoma patients with and without brain metastases were measured. Twelve reference regions were chosen and assessed for stability of susceptibility values with respect to multiple intra-individual and inter-individual measurements, age, and stage of disease. Cerebrospinal fluid (CSF), the internal capsule and one region in the splenium of the corpus callosum are the regions with the smallest standard deviations of the mean susceptibility value. The mean susceptibility is 0.010 ± 0.014 ppm for CSF in the atrium of the lateral ventricles (csf post ), -0.060 ± 0.019 ppm for the posterior limb of the internal capsule (ci2), and -0.008 ± 0.019 ppm for the splenium of the corpus callosum. csf post and ci2 show nearly no dependence on age or stage of disease, whereas some other regions, e.g., the red nucleus, show moderate dependence on age or disease. The internal capsule and CSF appear to be the most suitable reference regions for QSM of the brain in the melanoma patients studied. Both showed virtually no dependence on age or disease and small variations among patients. Magn Reson Med 78:204-214, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  5. A Hybrid DE-RGSO-ELM for Brain Tumor Tissue Categorization in 3D Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    K. Kothavari

    2014-01-01

    Full Text Available Medical diagnostics, a technique used for visualizing the internal structures and functions of human body, serves as a scientific tool to assist physicians and involves direct use of digital imaging system analysis. In this scenario, identification of brain tumors is complex in the diagnostic process. Magnetic resonance imaging (MRI technique is noted to best assist tissue contrast for anatomical details and also carries out mechanisms for investigating the brain by functional imaging in tumor predictions. Considering 3D MRI model, analyzing the anatomy features and tissue characteristics of brain tumor is complex in nature. Henceforth, in this work, feature extraction is carried out by computing 3D gray-level cooccurence matrix (3D GLCM and run-length matrix (RLM and feature subselection for dimensionality reduction is performed with basic differential evolution (DE algorithm. Classification is performed using proposed extreme learning machine (ELM, with refined group search optimizer (RGSO technique, to select the best parameters for better simplification and training of the classifier for brain tissue and tumor characterization as white matter (WM, gray matter (GM, cerebrospinal fluid (CSF, and tumor. Extreme learning machine outperforms the standard binary linear SVM and BPN for medical image classifier and proves better in classifying healthy and tumor tissues. The comparison between the algorithms proves that the mean and standard deviation produced by volumetric feature extraction analysis are higher than the other approaches. The proposed work is designed for pathological brain tumor classification and for 3D MRI tumor image segmentation. The proposed approaches are applied for real time datasets and benchmark datasets taken from dataset repositories.

  6. Myoglobin Expression in Chelonia mydas Brain, Heart and Liver Tissues

    Directory of Open Access Journals (Sweden)

    RINI PUSPITANINGRUM

    2010-09-01

    Full Text Available An understanding of the underpinning physiology and biochemistry of animals is essential to properly understand the impact of anthropogenic changes and natural catastrophes upon the conservation of endangered species. An observation on the tissue location of the key respiratory protein, myoglobin, now opens up new opportunities for understanding how hypoxia tolerance impacts on diving lifestyle in turtles. The respiratory protein, myoglobin has functions other than oxygen binding which are involved in hypoxia tolerance, including metabolism of reactive oxygen species and of the vascular function by metabolism of nitric oxide. Our work aims to determine whether myoglobin expression in the green turtle exists in multiple non muscle tissues and to confirm the hypothesis that reptiles also have a distributed myoglobin expression which is linked to the hypoxiatolerant trait. This initial work in turtle hatch Chelonia mydas confirms the presence of myoglobin transcriptin brain, heart and liver tissues. Furthermore, it will serve as a tool for completing the sequence and generating an in situ hybridization probe for verifying of cell location in expressing tissues.

  7. Myoglobin Expression in Chelonia mydas Brain, Heart and Liver Tissues

    Directory of Open Access Journals (Sweden)

    RINI PUSPITANINGRUM

    2010-09-01

    Full Text Available An understanding of the underpinning physiology and biochemistry of animals is essential to properly understand the impact of anthropogenic changes and natural catastrophes upon the conservation of endangered species. An observation on the tissue location of the key respiratory protein, myoglobin, now opens up new opportunities for understanding how hypoxia tolerance impacts on diving lifestyle in turtles. The respiratory protein, myoglobin has functions other than oxygen binding which are involved in hypoxia tolerance, including metabolism of reactive oxygen species and of the vascular function by metabolism of nitric oxide. Our work aims to determine whether myoglobin expression in the green turtle exists in multiple non muscle tissues and to confirm the hypothesis that reptiles also have a distributed myoglobin expression which is linked to the hypoxia-tolerant trait. This initial work in turtle hatch Chelonia mydas confirms the presence of myoglobin transcriptin brain, heart and liver tissues. Furthermore, it will serve as a tool for completing the sequence and generating an in situ hybridization probe for verifying of cell location in expressing tissues.

  8. Tissue classification and diagnostics using a fiber probe for combined Raman and fluorescence spectroscopy

    Science.gov (United States)

    Cicchi, Riccardo; Anand, Suresh; Crisci, Alfonso; Giordano, Flavio; Rossari, Susanna; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2015-07-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  9. Anomalous frequency-dependent ionic conductivity of lesion-laden human-brain tissue

    Science.gov (United States)

    Emin, David; Akhtari, Massoud; Fallah, Aria; Vinters, Harry V.; Mathern, Gary W.

    2017-10-01

    We study the effect of lesions on our four-electrode measurements of the ionic conductivity of (˜1 cm3) samples of human brain excised from patients undergoing pediatric epilepsy surgery. For most (˜94%) samples, the low-frequency ionic conductivity rises upon increasing the applied frequency. We attributed this behavior to the long-range (˜0.4 mm) diffusion of solvated sodium cations before encountering intrinsic impenetrable blockages such as cell membranes, blood vessels, and cell walls. By contrast, the low-frequency ionic conductivity of some (˜6%) brain-tissue samples falls with increasing applied frequency. We attribute this unusual frequency-dependence to the electric-field induced liberation of sodium cations from traps introduced by the unusually severe pathology observed in samples from these patients. Thus, the anomalous frequency-dependence of the ionic conductivity indicates trap-producing brain lesions.

  10. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf.

    Science.gov (United States)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  11. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.

    Science.gov (United States)

    Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping

    2015-10-01

    We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.

  12. Imaging Nicotine in Rat Brain Tissue by Use of Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Thomas, Mathew; Carson, James P.; Smith, Jordan N.; Timchalk, Charles; Laskin, Julia

    2013-01-15

    Imaging mass spectrometry offers simultaneous detection of drugs, drug metabolites and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nicotine is an addictive drug and its action in the brain is of high interest. Here we use nanospray desorption electrospray ionization, nano-DESI, imaging to discover the localization of nicotine in rat brain tissue after in vivo administration of nicotine. Nano-DESI is a new ambient technique that enables spatially-resolved analysis of tissue samples without special sample pretreatment. We demonstrate high sensitivity of nano-DESI imaging that enables detection of only 0.7 fmole nicotine per pixel in the complex brain matrix. Furthermore, by adding deuterated nicotine to the solvent, we examined how matrix effects, ion suppression, and normalization affect the observed nicotine distribution. Finally, we provide preliminary results suggesting that nicotine localizes to the hippocampal substructure called dentate gyrus.

  13. Effect of alternate energy substrates on mammalian brain metabolism during ischemic events.

    Science.gov (United States)

    Koppaka, S S; Puchowicz; LaManna, J C; Gatica, J E

    2008-01-01

    Regulation of brain metabolism and cerebral blood flow involves complex control systems with several interacting variables at both cellular and organ levels. Quantitative understanding of the spatially and temporally heterogeneous brain control mechanisms during internal and external stimuli requires the development and validation of a computational (mathematical) model of metabolic processes in brain. This paper describes a computational model of cellular metabolism in blood-perfused brain tissue, which considers the astrocyte-neuron lactate-shuttle (ANLS) hypothesis. The model structure consists of neurons, astrocytes, extra-cellular space, and a surrounding capillary network. Each cell is further compartmentalized into cytosol and mitochondria. Inter-compartment interaction is accounted in the form of passive and carrier-mediated transport. Our model was validated against experimental data reported by Crumrine and LaManna, who studied the effect of ischemia and its recovery on various intra-cellular tissue substrates under standard diet conditions. The effect of ketone bodies on brain metabolism was also examined under ischemic conditions following cardiac resuscitation through our model simulations. The influence of ketone bodies on lactate dynamics on mammalian brain following ischemia is studied incorporating experimental data.

  14. A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction

    International Nuclear Information System (INIS)

    Wels, Michael; Hornegger, Joachim; Zheng Yefeng; Comaniciu, Dorin; Huber, Martin

    2011-01-01

    We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average

  15. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes

    Directory of Open Access Journals (Sweden)

    Björn eNitzsche

    2015-06-01

    Full Text Available Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams were acquired on a 1.5T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight, age and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM and white (WM matter as well as cerebrospinal fluid (CSF classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM. Overall, a positive correlation of GM volume and body weight explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.

  16. Effect of naturally mouldy wheat or fungi administration on metallothioneins level in brain tissues of rats.

    Science.gov (United States)

    Vasatkova, Anna; Krizova, Sarka; Krystofova, Olga; Adam, Vojtech; Zeman, Ladislav; Beklova, Miroslava; Kizek, Rene

    2009-01-01

    The aim of this study is to determine level of metallothioneins (MTs) in brain tissues of rats administered by feed mixtures with different content of mouldy wheat or fungi. Selected male laboratory rats of Wistar albino at age of 28 days were used in our experiments. The rats were administered by feed mixtures with different content of vitamins, naturally mouldy wheat or fungi for 28 days. At the very end of the experiment, the animals were put to death and brains were sampled. MT level was determined by differential pulse voltammetry Brdicka reaction. We found that MTs' level in brain tissues from rats administered by standard feed mixtures was significantly higher compared to the level of MTs in rats supplemented by vitamins. Further we studied the effect of supplementation of naturally mouldy wheat on MTs level in rats. In mouldy wheat we detected the presence of following fungi species: Mucor spp., Absidia spp., Penicillium spp., Aspergillus spp. and Fusarium spp. Moreover we also identified and quantified following mycotoxins - deoxynivalenol, zearalenone, T2-toxin and aflatoxins. Level of MTs determined in rats treated with 33 or 66% of mouldy wheat was significantly lower compared to control ones. On the other hand rats treated with 100% of mouldy wheat had less MTs but not significantly. Supplementation of vitamins to rats fed by mouldy wheat had adverse effect on MTs level compared to rats with no other supplementation by vitamins. Moreover vitamins supplementation has no effect on MTs level in brain tissues of rats treated or non-treated with Ganoderma lucidum L. Both mycotoxins and vitamins have considerable effect on level of MTs in brain tissues. It can be assumed that the administered substances markedly influence redox metabolism, which could negatively influence numerous biochemical pathways including those closely related with MTs.

  17. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    Science.gov (United States)

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment

    Directory of Open Access Journals (Sweden)

    Sun H

    2016-08-01

    Full Text Available Hongtao Sun,1,* Maohua Zheng,2,* Yanmin Wang,1 Yunfeng Diao,1 Wanyong Zhao,1 Zhengjun Wei1 1Sixth Department of Neurosurgery, Affiliated Hospital of Logistics University of People’s Armed Police Force, Tianjin, 2Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China *These authors contributed equally to this work Objective: The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2 in the course of mild hypothermia treatment (MHT for treating severe traumatic brain injury (sTBI. Methods: There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP, jugular venous oxygen saturation (SjvO2, and cerebral perfusion pressure (CPP were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Results: Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Conclusion: Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome. Keywords: severe traumatic brain injury, hypothermia, brain tissue partial pressure of oxygen, therapy

  19. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    Science.gov (United States)

    Weaver, John; Yang, Yirong; Purvis, Rebecca; Weatherwax, Theodore; Rosen, Gerald M.; Liu, Ke Jian

    2014-01-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O2 may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O2 is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO2 in vivo remains largely uncharacterized. This study investigated striatal tissue pO2 changes in male C57BL/6 mice (16–20g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO2 in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO2 was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO2 to 64%. More importantly, pO2 did not recover fully to control levels even 24 hrs after administration of a single dose of METH. and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO2 indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO2, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. PMID:24412707

  20. Gadolinium Deposition in Human Brain Tissues after Contrast-enhanced MR Imaging in Adult Patients without Intracranial Abnormalities.

    Science.gov (United States)

    McDonald, Robert J; McDonald, Jennifer S; Kallmes, David F; Jentoft, Mark E; Paolini, Michael A; Murray, David L; Williamson, Eric E; Eckel, Laurence J

    2017-11-01

    Purpose To determine whether gadolinium deposits in neural tissues of patients with intracranial abnormalities following intravenous gadolinium-based contrast agent (GBCA) exposure might be related to blood-brain barrier integrity by studying adult patients with normal brain pathologic characteristics. Materials and Methods After obtaining antemortem consent and institutional review board approval, the authors compared postmortem neuronal tissue samples from five patients who had undergone four to 18 gadolinium-enhanced magnetic resonance (MR) examinations between 2005 and 2014 (contrast group) with samples from 10 gadolinium-naive patients who had undergone at least one MR examination during their lifetime (control group). All patients in the contrast group had received gadodiamide. Neuronal tissues from the dentate nuclei, pons, globus pallidus, and thalamus were harvested and analyzed with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy with energy-dispersive x-ray spectroscopy, and light microscopy to quantify, localize, and assess the effects of gadolinium deposition. Results Tissues from the four neuroanatomic regions of gadodiamide-exposed patients contained 0.1-19.4 μg of gadolinium per gram of tissue in a statistically significant dose-dependent relationship (globus pallidus: ρ = 0.90, P = .04). In contradistinction, patients in the control group had undetectable levels of gadolinium with ICP-MS. All patients had normal brain pathologic characteristics at autopsy. Three patients in the contrast group had borderline renal function (estimated glomerular filtration rate the contrast group was localized to the capillary endothelium and neuronal interstitium and, in two cases, within the nucleus of the cell. Conclusion Gadolinium deposition in neural tissues after GBCA administration occurs in the absence of intracranial abnormalities that might affect the permeability of the blood-brain barrier. These findings

  1. Aggregation is a critical cause of poor transfer into the brain tissue of intravenously administered cationic PAMAM dendrimer nanoparticles

    Science.gov (United States)

    Kurokawa, Yoshika; Sone, Hideko; Win-Shwe, Tin-Tin; Zeng, Yang; Kimura, Hiroyuki; Koyama, Yosuke; Yagi, Yusuke; Matsui, Yasuto; Yamazaki, Masashi; Hirano, Seishiro

    2017-01-01

    Dendrimers have been expected as excellent nanodevices for brain medication. An amine-terminated polyamidoamine dendrimer (PD), an unmodified plain type of PD, has the obvious disadvantage of cytotoxicity, but still serves as an attractive molecule because it easily adheres to the cell surface, facilitating easy cellular uptake. Single-photon emission computed tomographic imaging of a mouse following intravenous injection of a radiolabeled PD failed to reveal any signal in the intracranial region. Furthermore, examination of the permeability of PD particles across the blood–brain barrier (BBB) in vitro using a commercially available kit revealed poor permeability of the nanoparticles, which was suppressed by an inhibitor of caveolae-mediated endocytosis, but not by an inhibitor of macropinocytosis. Physicochemical analysis of the PD revealed that cationic PDs are likely to aggregate promptly upon mixing with body fluids and that this prompt aggregation is probably driven by non-Derjaguin–Landau– Verwey–Overbeek attractive forces originating from the surrounding divalent ions. Atomic force microscopy observation of a freshly cleaved mica plate soaked in dendrimer suspension (culture media) confirmed prompt aggregation. Our study revealed poor transfer of intravenously administered cationic PDs into the intracranial nervous tissue, and the results of our analysis suggested that this was largely attributable to the reduced BBB permeability arising from the propensity of the particles to promptly aggregate upon mixing with body fluids. PMID:28579780

  2. Relationship between Concentrations of Lutein and StARD3 among Pediatric and Geriatric Human Brain Tissue.

    Directory of Open Access Journals (Sweden)

    Jirayu Tanprasertsuk

    Full Text Available Lutein, a dietary carotenoid, selectively accumulates in human retina and brain. While many epidemiological studies show evidence of a relationship between lutein status and cognitive health, lutein's selective uptake in human brain tissue and its potential function in early neural development and cognitive health have been poorly evaluated at a molecular level. The objective of this study was to evaluate the cross-sectional relationship between concentrations of brain lutein and StARD3 (identified as its binding protein in retinal tissue among three age groups: infants (1-4 months, n = 10, older adults (55-86 years, n = 8, and centenarians (98-105 years, n = 10. Brain lutein concentrations were analyzed by high-performance liquid chromatography and StARD3 levels were analyzed by Western Blot analysis. The strong relationship in infant brains (r = 0.75, P 0.05, seven of whom had mild cognitive impairment (MCI or dementia. These exploratory findings suggest an age-related decrease or abnormality of StARD3 activity in human brain. Given that StARD3 is also involved in cholesterol transportation, a process that is aberrant in neurodegenerative diseases, the potential protective function of lutein against these diseases remains to be explored.

  3. A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: the effect of acute and chronic hypoxia on brain tissue PO(2).

    Science.gov (United States)

    Ortiz-Prado, E; Natah, Siraj; Srinivasan, Sathyanarayanan; Dunn, Jeff F

    2010-11-30

    The level of tissue oxygenation provides information related to the balance between oxygen delivery, oxygen utilization, tissue reactivity and morphology during physiological conditions. Tissue partial pressure of oxygen (PtO(2)) is influenced by the use of anesthesia or restraint. These factors may impact the absolute level of PtO(2). In this study we present a novel fiber optic method to measure brain PtO(2). This method can be used in unanesthetized, unrestrained animals, provides absolute values for PO(2), has a stable calibration, does not consume oxygen and is MRI compatible. Brain PtO(2) was studied during acute hypoxia, as well as before and after 28 days of high altitude acclimatization. A sensor was chronically implanted in the frontal cortex of eight Wistar rats. It is comprised of a fiber optic probe with a tip containing material that fluoresces with an oxygen dependent lifetime. Brain PtO(2) declines by 80% and 76% pre- and post-acclimatization, respectively, when the fraction of inspired oxygen declines from 0.21 to 0.08. In addition, a linear relationship between brain PtO(2) and inspired O(2) levels was demonstrated r(2)=0.98 and r(2)=0.99 (pre- and post-acclimatization). Hypoxia acclimatization resulted in an increase in the overall brain PtO(2) by approximately 35%. This paper demonstrates the use of a novel chronically implanted fiber optic based sensor for measuring absolute PtO(2). It shows a very strong linear relationship in awake animals between inspired O(2) and tissue O(2), and shows that there is a proportional increase in PtO(2) over a range of inspired values after exposure to chronic hypoxia. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. The Influence of Adipose Tissue on Brain Development, Cognition, and Risk of Neurodegenerative Disorders.

    Science.gov (United States)

    Letra, Liliana; Santana, Isabel

    2017-01-01

    The brain is a highly metabolic organ and thus especially vulnerable to changes in peripheral metabolism, including those induced by obesity-associated adipose tissue dysfunction. In this context, it is likely that the development and maturation of neurocognitive circuits may also be affected and modulated by metabolic environmental factors, beginning in utero. It is currently recognized that maternal obesity, either pre-gestational or gestational, negatively influences fetal brain development and elevates the risk of cognitive impairment and neuropsychiatric disorders in the offspring. During infancy and adolescence, obesity remains a limiting factor for healthy neurodevelopment, especially affecting executive functions but also attention, visuospatial ability, and motor skills. In middle age, obesity seems to induce an accelerated brain aging and thus may increase the risk of age-related neurodegenerative diseases such as Alzheimer's disease. In this chapter we review and discuss experimental and clinical evidence focusing on the influence of adipose tissue dysfunction on neurodevelopment and cognition across lifespan, as well as some possible mechanistic links, namely the role of the most well studied adipokines.

  5. Radiation treatment of brain tumors: Concepts and strategies

    International Nuclear Information System (INIS)

    Marks, J.E.

    1989-01-01

    Ionizing radiation has demonstrated clinical value for a multitude of CNS tumors. Application of the different physical modalities available has made it possible for the radiotherapist to concentrate the radiation in the region of the tumor with relative sparing of the surrounding normal tissues. Correlation of radiation dose with effect on cranial soft tissues, normal brain, and tumor has shown increasing effect with increasing dose. By using different physical modalities to alter the distribution of radiation dose, it is possible to increase the dose to the tumor and reduce the dose to the normal tissues. Alteration of the volume irradiated and the dose delivered to cranial soft tissues, normal brain, and tumor are strategies that have been effective in improving survival and decreasing complications. The quest for therapeutic gain using hyperbaric oxygen, neutrons, radiation sensitizers, chemotherapeutic agents, and BNCT has met with limited success. Both neoplastic and normal cells are affected simultaneously by all modalities of treatment, including ionizing radiation. Consequently, one is unable to totally depopulate a tumor without irreversibly damaging the normal tissues. In the case of radiation, it is the brain that limits delivery of curative doses, and in the case of chemical additives, it is other organ systems, such as bone marrow, liver, lung, kidneys, and peripheral nerves. Thus, the major obstacle in the treatment of malignant gliomas is our inability to preferentially affect the tumor with the modalities available. Until it is possible to directly target the neoplastic cell without affecting so many of the adjacent normal cells, the quest for therapeutic gain will go unrealized.72 references

  6. Age dependence of dielectric properties of bovine brain and ocular tissues in the frequency range of 400 MHz to 18 GHz

    International Nuclear Information System (INIS)

    Schmid, Gernot; Ueberbacher, Richard

    2005-01-01

    In order to identify possible age-dependent dielectric properties of brain and eye tissues in the frequency range of 400 MHz to 18 GHz, measurements on bovine grey and white matter as well as on cornea, lens (cortical) and the vitreous body were performed using a commercially available open-ended coaxial probe and a computer-controlled vector network analyser. Freshly excised tissues of 52 animals of two age groups (42 adult animals, i.e. 16-24 month old and 10 young animals, i.e. 4-6 month old calves) were examined within 8 min (brain tissue) and 15 min (eye tissue), respectively, of the animals' death. Tissue temperatures for the measurements were 32 ± 1 0 C and 25 ± 1 0 C for brain and eye tissues, respectively. Statistical analysis of the measured data revealed significant differences in the dielectric properties of white matter and cortical lens tissue between the adult and the young group. In the case of white matter the mean values of conductivity and permittivity of young tissue were 15%-22% and 12%-15%, respectively, higher compared to the adult tissue in the considered frequency range. Similarly, young cortical lens tissue was 25%-76% higher in conductivity and 27%-39% higher in permittivity than adult cortical lens tissue

  7. Increasing pro-survival factors within whole brain tissue of Sprague Dawley rats via intracerebral administration of modified valproic acid

    Directory of Open Access Journals (Sweden)

    Ryan C. Bates

    2015-08-01

    Full Text Available Neural tissue exposure to valproic acid (VPA increases several pro-survival phospho-proteins that can be used as biomarkers for indicating a beneficial drug response (pAktSer473, pGSK3βSer9, pErk1/2Thr202/Tyr204. Unfortunately, targeting VPA to neural tissue is a problem due to severe asymmetrical distribution, wherein the drug tends to remain in peripheral blood rather than localizing within the brain. Intracerebral delivery of an amide-linked VPA–PEG conjugate could address these issues by enhancing retention and promoting cerebro-global increases in pro-survival phospho-proteins. It is necessary to assay for the retained bioactivity of a PEGylated valproic acid molecule, along with locating an intracranial cannula placement that optimizes the increase of a known downstream biomarker for chronic VPA exposure. Here we show an acute injection of VPA–PEG conjugate within brain tissue increased virtually all of the assayed phospho-proteins, including well-known pro-survival factors. In contrast, an acute injection of VPA expectedly decreased signaling throughout the hour. Needle penetration into whole brain tissue is the intentional cause of trauma in this procedure. The trauma to brain tissue was observed to overcome known phospho-protein increases for unmodified VPA in the injected solution, while VPA–PEG conjugate appeared to induce significant increases in pro-survival phospho-proteins, despite the procedural trauma.

  8. Colorization and automated segmentation of human T2 MR brain images for characterization of soft tissues.

    Directory of Open Access Journals (Sweden)

    Muhammad Attique

    Full Text Available Characterization of tissues like brain by using magnetic resonance (MR images and colorization of the gray scale image has been reported in the literature, along with the advantages and drawbacks. Here, we present two independent methods; (i a novel colorization method to underscore the variability in brain MR images, indicative of the underlying physical density of bio tissue, (ii a segmentation method (both hard and soft segmentation to characterize gray brain MR images. The segmented images are then transformed into color using the above-mentioned colorization method, yielding promising results for manual tracing. Our color transformation incorporates the voxel classification by matching the luminance of voxels of the source MR image and provided color image by measuring the distance between them. The segmentation method is based on single-phase clustering for 2D and 3D image segmentation with a new auto centroid selection method, which divides the image into three distinct regions (gray matter (GM, white matter (WM, and cerebrospinal fluid (CSF using prior anatomical knowledge. Results have been successfully validated on human T2-weighted (T2 brain MR images. The proposed method can be potentially applied to gray-scale images from other imaging modalities, in bringing out additional diagnostic tissue information contained in the colorized image processing approach as described.

  9. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... models then use the directions of greatest diffusion as estimates of white matter fibre orientation. Several fibre tracking algorithms have emerged in the last few years that provide reproducible visualizations of three-dimensional fibre bundles. One class of these algorithms is probabilistic...... the possibility of using high-field experimental MR scanners and long scanning times, thereby significantly improving the signal-to-noise ratio (SNR) and anatomical resolution. Moreover, many of the degrading effects observed in vivo, such as physiological noise, are no longer present. However, the post mortem...

  10. Brief Communication: Tissue-engineered Microenvironment Systems for Modeling Human Vasculature

    Science.gov (United States)

    Tourovskaia, Anna; Fauver, Mark; Kramer, Gregory; Simonson, Sara; Neumann, Thomas

    2015-01-01

    The high attrition rate of drug candidates late in the development process has led to an increasing demand for test assays that predict clinical outcome better than conventional 2D cell culture systems and animal models. Government agencies, the military, and the pharmaceutical industry have started initiatives for the development of novel in-vitro systems that recapitulate functional units of human tissues and organs. There is growing evidence that 3D cell arrangement, co-culture of different cell types, and physico-chemical cues lead to improved predictive power. A key element of all tissue microenvironments is the vasculature. Beyond transporting blood the microvasculature assumes important organ-specific functions. It is also involved in pathologic conditions, such as inflammation, tumor growth, metastasis, and degenerative diseases. To provide a tool for modeling this important feature of human tissue microenvironments, we developed a microfluidic chip for creating tissue-engineered microenvironment systems (TEMS) composed of tubular cell structures. Our chip design encompasses a small chamber that is filled with an extracellular matrix (ECM) surrounding one or more tubular channels. Endothelial cells seeded into the channels adhere to the ECM walls and grow into perfusable tubular tissue structures that are fluidically connected to upstream and downstream fluid channels in the chip. Using these chips we created models of angiogenesis, the blood-brain-barrier (BBB), and tumor-cell extravasation. Our angiogenesis model recapitulates true angiogenesis, in which sprouting occurs from a “parent” vessel in response to a gradient of growth factors. Our BBB model is composed of a microvessel generated from brain-specific endothelial cells (ECs) within an ECM populated with astrocytes and pericytes. Our tumor-cell extravasation model can be utilized to visualize and measure tumor-cell migration through vessel walls into the surrounding matrix. The described

  11. Brain Tissue PO2 Measurement During Normoxia and Hypoxia Using Two-Photon Phosphorescence Lifetime Microscopy.

    Science.gov (United States)

    Xu, Kui; Boas, David A; Sakadžić, Sava; LaManna, Joseph C

    2017-01-01

    Key to the understanding of the principles of physiological and structural acclimatization to changes in the balance between energy supply (represented by substrate and oxygen delivery, and mitochondrial oxidative phosphorylation) and energy demand (initiated by neuronal activity) is to determine the controlling variables, how they are sensed and the mechanisms initiated to maintain the balance. The mammalian brain depends completely on continuous delivery of oxygen to maintain its function. We hypothesized that tissue oxygen is the primary sensed variable. In this study two-photon phosphorescence lifetime microscopy (2PLM) was used to determine and define the tissue oxygen tension field within the cerebral cortex of mice to a cortical depth of between 200-250 μm under normoxia and acute hypoxia (FiO 2  = 0.10). High-resolution images can provide quantitative distributions of oxygen and intercapillary oxygen gradients. The data are best appreciated by quantifying the distribution histogram that can then be used for analysis. For example, in the brain cortex of a mouse, at a depth of 200 μm, tissue oxygen tension was mapped and the distribution histogram was compared under normoxic and mild hypoxic conditions. This powerful method can provide for the first time a description of the delivery and availability of brain oxygen in vivo.

  12. Diagnostic value of MRS-quantified brain tissue lactate level in identifying children with mitochondrial disorders

    International Nuclear Information System (INIS)

    Lunsing, Roelineke J.; Strating, Kim; Koning, Tom J. de; Sijens, Paul E.

    2017-01-01

    Magnetic resonance spectroscopy (MRS) of children with or without neurometabolic disease is used for the first time for quantitative assessment of brain tissue lactate signals, to elaborate on previous suggestions of MRS-detected lactate as a marker of mitochondrial disease. Multivoxel MRS of a transverse plane of brain tissue cranial to the ventricles was performed in 88 children suspected of having neurometabolic disease, divided into 'definite' (n = 17, ≥1 major criteria), 'probable' (n = 10, ≥2 minor criteria), 'possible' (n = 17, 1 minor criterion) and 'unlikely' mitochondrial disease (n = 44, none of the criteria). Lactate levels, expressed in standardized arbitrary units or relative to creatine, were derived from summed signals from all voxels. Ten 'unlikely' children with a normal neurological exam served as the MRS reference subgroup. For 61 of 88 children, CSF lactate values were obtained. MRS lactate level (>12 arbitrary units) and the lactate-to-creatine ratio (L/Cr >0.22) differed significantly between the definite and the unlikely group (p = 0.015 and p = 0.001, respectively). MRS L/Cr also differentiated between the probable and the MRS reference subgroup (p = 0.03). No significant group differences were found for CSF lactate. MRS-quantified brain tissue lactate levels can serve as diagnostic marker for identifying mitochondrial disease in children. (orig.)

  13. Epileptic rat brain tissue analyzed by 2D correlation Raman spectroscopy

    Science.gov (United States)

    Sacharz, Julia; Wesełucha-Birczyńska, Aleksandra; Zięba-Palus, Janina; Lewandowski, Marian H.; Kowalski, Rafał; Palus, Katarzyna; Chrobok, Łukasz; Moskal, Paulina; Birczyńska, Malwina; Sozańska, Agnieszka

    2018-01-01

    Absence epilepsy is the neurological disorder characterized by the pathological spike-and wave discharges present in the electroencephalogram, accompanying a sudden loss of consciousness. Experiments were performed on brain slices obtained from young male WAG/Rij rats (2-3 weeks old), so that they were sampled before the appearance of brain-damaging seizures symptoms. Two differing brain areas of the rats' brain tissue were studied: the somatosensory cortex (Sc) and the dorsal lateral geniculate nucleus of the thalamus (DLG). The Raman spectra of the fresh brain scraps, kept during measurements in artificial cerebrospinal fluid, were collected using as an excitation source 442 nm, 514.5 nm, 785 nm and 1064 nm laser line. The average spectra were analyzed by 2D correlation method regarding laser line as an external perturbation. In 2D synchronous spectra positive auto-peaks corresponding to the Cdbnd C stretching and amide I band vibrations show maxima at 1660 cm- 1 and 1662 cm- 1 for Sc and DLG, respectively. The prominent auto-peak at 2937 cm- 1, originated from the CH3 mode in DLG brain area, seems to indicate the importance of methylation, considered to be significant in epileptogenesis. Synchronous and asynchronous correlations peaks, glutamic acid and gamma-aminobutyric acid (GABA), appear in Sc and DLG, respectively. In the 1730-1600 cm- 1 range occur cross-peaks which appearance might be triggered by glial fibrillary acidic protein (GFAP) activation.

  14. Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry.

    Science.gov (United States)

    Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán

    2011-10-15

    Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue. © 2011 American Chemical Society

  15. Some growth factors in neoplastic tissues of brain tumors of different histological structure

    Directory of Open Access Journals (Sweden)

    O. I. Kit

    2016-01-01

    Full Text Available Introduction. Pathologic angiogenesis is typical for angiogenic diseases including tumor growth. Vascular endothelial growth factor (VEGF, fibroblast growth factor (FGF, transforming growth factor alpha and beta (which are also known as “triggers” of angiogenesis, and other factors (Gacche, Meshram, 2013; Nijaguna et al., 2015 play a special role in its development. Evaluation of the important mechanisms of angiogenesis in physiological and pathological conditions remains to be a subject of heightened interest for the past 30 years. It is known that VEGF A is the main trigger of growing blood vessels into the tumor tissue. This is specific mitogen signal for endothelial cells that triggers the mechanisms of cell division and migration. VEGF-induced tumor vasculature has a number of structural and functional features that provide growth and progression of tumors, including increased permeability of blood vessels and their chaotic arrangement.Objective: to study in comparative aspect the level of certain growth factors in the following tissues: glioblastomas, brain metastasis of the breast cancer, meningiomas as well as corresponding peritumoral areas.Materials and methods. Tissue samples were obtained from 56 patients admitted to the surgical treatment in Rostov Research Institute of Oncology: 24 patients had glioblastomas, 19 patients had brain metastasis of the breast cancer, 13 patients with meningiomas without peritumoral edema. Histological control was carried out in all cases. Age of patients ranged from 35 to 72 years. The level of growth factor was detected in the samples of tumor tissue and regions immediately adjacent to the tumor foci (peritumoral area by the method of immunoassay and using standard test systems. The following growth factor were detected: VEGF-A and its receptors VEGF-R1 (BenderMedSystem, Austria, VEGF-C and its receptor VEGF-R3 (BenderMedSystem, Austria, EGF (Biosource, USA, IFR-1 and IFR-2 (Mediagnost, USA, TGF

  16. BIOLOGICAL EFFECTS OF MICROWAVE RADIATION ON BRAIN TISSUE IN RATS

    Directory of Open Access Journals (Sweden)

    Boris Đinđić

    2003-04-01

    Full Text Available Exposure to microwave radiation induces multiple organ dysfunctions, especially in CNS.The aim of this work was investigation of biological effects of microwave radiation on rats' brain and determination of increased oxidative stress as a possible pathogenetic's mechanism.Wis tar rats 3 months old were divided in experimental (4 female and 4 male animal and control group (5 female and 4 male. This experimental group was constantly exposed to a magnetic field of 5 mG. We simulated using of mobile phones 30 min every day. The source of NIR emitted MF that was similar to mobile phones at 900 MHz. The rats were killed after 2 months. Biological effects were determined by observation of individual and collective behavior and body mass changes. Lipid per oxidation was determined by measuring quantity of malondialdehyde (MDA in brain homogenate.The animals in experimental group exposed to EMF showed les weight gain. The most important observations were changing of basic behavior models and expression of aggressive or panic behavior. The content of MDA in brain tissue is singificantly higher (1.42 times in rats exposed to electromagnetic fields (3,82±0.65 vs. control 2.69±0.42 nmol/mg proteins, p<0.01.Increased oxidative stress and lipid peroxidation after exposition in EM fields induced disorders of function and structure of brain.

  17. Tissue Classification

    DEFF Research Database (Denmark)

    Van Leemput, Koen; Puonti, Oula

    2015-01-01

    Computational methods for automatically segmenting magnetic resonance images of the brain have seen tremendous advances in recent years. So-called tissue classification techniques, aimed at extracting the three main brain tissue classes (white matter, gray matter, and cerebrospinal fluid), are now...... well established. In their simplest form, these methods classify voxels independently based on their intensity alone, although much more sophisticated models are typically used in practice. This article aims to give an overview of often-used computational techniques for brain tissue classification...

  18. Sex-specific differences in transcriptome profiles of brain and muscle tissue of the tropical gar.

    Science.gov (United States)

    Cribbin, Kayla M; Quackenbush, Corey R; Taylor, Kyle; Arias-Rodriguez, Lenin; Kelley, Joanna L

    2017-04-07

    The tropical gar (Atractosteus tropicus) is the southernmost species of the seven extant species of gar fishes in the world. In Mexico and Central America, the species is an important food source due to its nutritional quality and low price. Despite its regional importance and increasing concerns about overexploitation and habitat degradation, basic genetic information on the tropical gar is lacking. Determining genetic information on the tropical gar is important for the sustainable management of wild populations, implementation of best practices in aquaculture settings, evolutionary studies of ancient lineages, and an understanding of sex-specific gene expression. In this study, the transcriptome of the tropical gar was sequenced and assembled de novo using tissues from three males and three females using Illumina sequencing technology. Sex-specific and highly differentially expressed transcripts in brain and muscle tissues between adult males and females were subsequently identified. The transcriptome was assembled de novo resulting in 80,611 transcripts with a contig N50 of 3,355 base pairs and over 168 kilobases in total length. Male muscle, brain, and gonad as well as female muscle and brain were included in the assembly. The assembled transcriptome was annotated to identify the putative function of expressed transcripts using Trinotate and SwissProt, a database of well-annotated proteins. The brain and muscle datasets were then aligned to the assembled transcriptome to identify transcripts that were differentially expressed between males and females. The contrast between male and female brain identified 109 transcripts from 106 genes that were significantly differentially expressed. In the muscle comparison, 82 transcripts from 80 genes were identified with evidence for significant differential expression. Almost all genes identified as differentially expressed were sex-specific. The differentially expressed transcripts were enriched for genes involved in

  19. The role of glutamine transport in metabolism in the brain cortical tissue slice

    International Nuclear Information System (INIS)

    Hare, N.; Bubb, W.A.; Rae, C.; Broeer, S.

    2001-01-01

    The widely accepted 'glutamate/glutamine cycle' holds that glutamate released as a neurotransmitter in the brain is taken up by surrounding astrocytes, converted to neuro-inactive glutamine and transported back to neurons for reconversion to glutamate. Little, however, is known about the role of glutamine transport in this process. The situation is complicated by the fact that glutamine is transported by a variety of general amino-acid transporters of low specificity. The role of these transporters in flux of glutamine through the glutamate/glutamine cycle was investigated by 13 C NMR monitoring of the flux of C from [3- 13 C]L-lactate in guinea pig cortical tissue slices in the presence of competitive inhibitors of the A-type(α-(methylamino)isobutyrate; MeAIB) and N-type (histidine) transporters. The presence of each inhibitor (10 mM) produced no significant decrease in total metabolite pool size but resulted in a significant decrease in flux of [ 13 C] into the neurotransmitters glutamate and GABA and also into glutamine and alanine. The factional enrichment of glutamate and GABA was also significantly lower. By contrast there was no effect on the amount of [ 13 C] incorporated into aspartate isotopomers which may represent a predominantly astrocyte-labelled pool. These results are consistent with involvement of glutamine transporters in the recycling of synaptic glutamate by demonstrating partial blockage of incorporation of [ 13 C] label into neuronal metabolites

  20. Brain insulin controls adipose tissue lipolysis and lipogenesis

    Science.gov (United States)

    Scherer, Thomas; O’Hare, James; Diggs-Andrews, Kelly; Schweiger, Martina; Cheng, Bob; Lindtner, Claudia; Zielinski, Elizabeth; Vempati, Prashant; Su, Kai; Dighe, Shveta; Milsom, Thomas; Puchowicz, Michelle; Scheja, Ludger; Zechner, Rudolf; Fisher, Simon J.; Previs, Stephen F.; Buettner, Christoph

    2011-01-01

    SUMMARY White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin sensitizing fatty acid species like palmitoleate. Here we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague Dawley rats increases WAT lipogenic protein expression, and inactivates hormone sensitive lipase (Hsl) and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and in particular hypothalamic insulin action play a pivotal role in WAT functionality. PMID:21284985

  1. Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II: A Phase II Randomized Trial.

    Science.gov (United States)

    Okonkwo, David O; Shutter, Lori A; Moore, Carol; Temkin, Nancy R; Puccio, Ava M; Madden, Christopher J; Andaluz, Norberto; Chesnut, Randall M; Bullock, M Ross; Grant, Gerald A; McGregor, John; Weaver, Michael; Jallo, Jack; LeRoux, Peter D; Moberg, Dick; Barber, Jason; Lazaridis, Christos; Diaz-Arrastia, Ramon R

    2017-11-01

    A relationship between reduced brain tissue oxygenation and poor outcome following severe traumatic brain injury has been reported in observational studies. We designed a Phase II trial to assess whether a neurocritical care management protocol could improve brain tissue oxygenation levels in patients with severe traumatic brain injury and the feasibility of a Phase III efficacy study. Randomized prospective clinical trial. Ten ICUs in the United States. One hundred nineteen severe traumatic brain injury patients. Patients were randomized to treatment protocol based on intracranial pressure plus brain tissue oxygenation monitoring versus intracranial pressure monitoring alone. Brain tissue oxygenation data were recorded in the intracranial pressure -only group in blinded fashion. Tiered interventions in each arm were specified and impact on intracranial pressure and brain tissue oxygenation measured. Monitors were removed if values were normal for 48 hours consecutively, or after 5 days. Outcome was measured at 6 months using the Glasgow Outcome Scale-Extended. A management protocol based on brain tissue oxygenation and intracranial pressure monitoring reduced the proportion of time with brain tissue hypoxia after severe traumatic brain injury (0.45 in intracranial pressure-only group and 0.16 in intracranial pressure plus brain tissue oxygenation group; p injury after severe traumatic brain injury based on brain tissue oxygenation and intracranial pressure values was consistent with reduced mortality and increased proportions of patients with good recovery compared with intracranial pressure-only management; however, the study was not powered for clinical efficacy. Management of severe traumatic brain injury informed by multimodal intracranial pressure and brain tissue oxygenation monitoring reduced brain tissue hypoxia with a trend toward lower mortality and more favorable outcomes than intracranial pressure-only treatment. A Phase III randomized trial to assess

  2. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators

    International Nuclear Information System (INIS)

    Lamba, Vishal; Yasuda, Kazuto; Lamba, Jatinder K.; Assem, Mahfoud; Davila, Julio; Strom, Stephen; Schuetz, Erin G.

    2004-01-01

    To gain insight on the expression of pregnane X receptor (PXR), we analyzed PXR.1 and PXR alternatively spliced transcripts in a panel of 36 human tissues. PXR.1 was expressed in many more tissues than previously determined, including human bone marrow and select regions of the human brain. In each of these tissues, we observed alternative splicing of various exons of PXR that generated multiple distinct PXR isoforms. The most abundant PXR alternative mRNA transcripts lacked 111 nucleotides, deleting 37 amino acids from the PXR LBD (PXR.2), or lacked 123 nt, deleting 41 amino acids from the PXR LBD (PXR.3). CYP3A4, a gene transcriptionally regulated by PXR, showed incomplete overlap with PXR in its tissue distribution. Quantitation of PXR mRNAs in human liver demonstrated that PXR.2 and PXR.3 represented 6.7% and 0.32% of total PXR mRNA transcripts. Brain expression of PXR prompted analysis of whether some brain acting chemicals were PXR ligands. The neurosteroids allopregnanolone and pregnanolone activated PXR and induced transcription of a CYP3A4-luciferase reporter. Nicotine, the psychoactive and addictive chemical in cigarettes, and a known inducer of brain CYP2B6, was an efficacious activator of PXR and inducer of CYP3A4 transcription. Because nicotine activation of PXR will enhance metabolism of nicotine to the non-psychoactive cotinine, these results provide one molecular mechanism for the development of tolerance to nicotine. Moreover, the identification of PXR in many human tissues, such as brain, and activation by tissue specific ligands (such as neurosteroids) suggests additional biological roles for this receptor in these tissues

  3. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators.

    Science.gov (United States)

    Lamba, Vishal; Yasuda, Kazuto; Lamba, Jatinder K; Assem, Mahfoud; Davila, Julio; Strom, Stephen; Schuetz, Erin G

    2004-09-15

    To gain insight on the expression of pregnane X receptor (PXR), we analyzed PXR.1 and PXR alternatively spliced transcripts in a panel of 36 human tissues. PXR.1 was expressed in many more tissues than previously determined, including human bone marrow and select regions of the human brain. In each of these tissues, we observed alternative splicing of various exons of PXR that generated multiple distinct PXR isoforms. The most abundant PXR alternative mRNA transcripts lacked 111 nucleotides, deleting 37 amino acids from the PXR LBD (PXR.2), or lacked 123 nt, deleting 41 amino acids from the PXR LBD (PXR.3). CYP3A4, a gene transcriptionally regulated by PXR, showed incomplete overlap with PXR in its tissue distribution. Quantitation of PXR mRNAs in human liver demonstrated that PXR.2 and PXR.3 represented 6.7% and 0.32% of total PXR mRNA transcripts. Brain expression of PXR prompted analysis of whether some brain acting chemicals were PXR ligands. The neurosteroids allopregnanolone and pregnanolone activated PXR and induced transcription of a CYP3A4-luciferase reporter. Nicotine, the psychoactive and addictive chemical in cigarettes, and a known inducer of brain CYP2B6, was an efficacious activator of PXR and inducer of CYP3A4 transcription. Because nicotine activation of PXR will enhance metabolism of nicotine to the non-psychoactive cotinine, these results provide one molecular mechanism for the development of tolerance to nicotine. Moreover, the identification of PXR in many human tissues, such as brain, and activation by tissue specific ligands (such as neurosteroids) suggests additional biological roles for this receptor in these tissues.

  4. Extraction, separation, and detections of 14C-diazepam and 14C-metabolites from brain tissue of mature and old rats

    International Nuclear Information System (INIS)

    Komiskey, H.L.; Rahman, A.; Weisenburger, W.P.; Hayton, W.L.; Zobrist, R.H.; Silvius, W.

    1985-01-01

    A rapid method for simultaneous determination of brain concentrations of diazepan and each of its three major metabolites in brain tissue by a reverse isotope dilution procedure is presented. Radiolabeled diazepam and metabolites were extracted from brain tissue of mature and senescent rats with ethyl ether. After the ether was evaporated the benzodiazepines were separated from the residue by passing the water soluble portion through C-18 bonded-phase extraction columns. High pressure liquid chromatography (HPLC) was used to separate the benzodiazepines from each other. Reverse isotope dilution analysis was used to quantify diazepam and its metabolites. The percent recovery of diazepam and its metabolites from the brain of mature or senescent rats did not vary significantly

  5. ICG-assisted blood vessel detection during stereotactic neurosurgery: simulation study on excitation power limitations due to thermal effects in human brain tissue.

    Science.gov (United States)

    Rühm, Adrian; Göbel, Werner; Sroka, Ronald; Stepp, Herbert

    2014-09-01

    Intraoperative blood vessel detection based on intraluminal indocyanin-green (ICG) would allow to minimize the risk of blood vessel perforation during stereotactic brain tumor biopsy. For a fiber-based approach compatible with clinical conditions, the maximum tolerable excitation light power was derived from simulations of the thermal heat load on the tissue. Using the simulation software LITCIT, the temperature distribution in human brain tissue was calculated as a function of time for realistic single-fiber probes (0.72mm active diameter, numerical aperture 0.35, optional focusing to 0.29mm diameter) and for the optimum ICG excitation wavelength of 785nm. The asymptotic maximum temperature in the simulated tissue region was derived for different radiant fluxes at the distal fiber end. Worst case values were assumed for all other parameters. In addition to homogeneous (normal and tumor) brain tissue with homogeneous blood perfusion, models with localized extra blood vessels incorporated ahead of the distal fiber end were investigated. If one demands that destruction of normal brain tissue must be excluded by limiting the tissue heating to 42°C, then the radiant flux at the distal fiber end must be limited to 33mW with and 43mW without focusing. When considering extra blood vessels of 0.1mm diameter incorporated into homogeneously perfused brain tissue, the tolerable radiant flux is reduced to 22mW with and 32mW without focusing. The threshold value according to legal laser safety regulations for human skin tissue is 28.5mW. For the envisaged modality of blood vessel detection, light power limits for an application-relevant fiber configuration were determined and found to be roughly consistent with present legal regulations for skin tissue. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Differential Temporal Evolution Patterns in Brain Temperature in Different Ischemic Tissues in a Monkey Model of Middle Cerebral Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Zhihua Sun

    2012-01-01

    Full Text Available Brain temperature is elevated in acute ischemic stroke, especially in the ischemic penumbra (IP. We attempted to investigate the dynamic evolution of brain temperature in different ischemic regions in a monkey model of middle cerebral artery occlusion. The brain temperature of different ischemic regions was measured with proton magnetic resonance spectroscopy (1H MRS, and the evolution processes of brain temperature were compared among different ischemic regions. We found that the normal (baseline brain temperature of the monkey brain was 37.16°C. In the artery occlusion stage, the mean brain temperature of ischemic tissue was 1.16°C higher than the baseline; however, this increase was region dependent, with 1.72°C in the IP, 1.08°C in the infarct core, and 0.62°C in the oligemic region. After recanalization, the brain temperature of the infarct core showed a pattern of an initial decrease accompanied by a subsequent increase. However, the brain temperature of the IP and oligemic region showed a monotonously and slowly decreased pattern. Our study suggests that in vivo measurement of brain temperature could help to identify whether ischemic tissue survives.

  7. Diagnostic value of MRS-quantified brain tissue lactate level in identifying children with mitochondrial disorders

    Energy Technology Data Exchange (ETDEWEB)

    Lunsing, Roelineke J.; Strating, Kim [University Medical Centre Groningen, University of Groningen, Department of Child Neurology, Groningen (Netherlands); Koning, Tom J. de [University Medical Centre Groningen, University of Groningen, Department of Pediatric Metabolic Diseases, Groningen (Netherlands); Sijens, Paul E. [University Medical Centre Groningen, University of Groningen, Department of Radiology, Groningen (Netherlands)

    2017-03-15

    Magnetic resonance spectroscopy (MRS) of children with or without neurometabolic disease is used for the first time for quantitative assessment of brain tissue lactate signals, to elaborate on previous suggestions of MRS-detected lactate as a marker of mitochondrial disease. Multivoxel MRS of a transverse plane of brain tissue cranial to the ventricles was performed in 88 children suspected of having neurometabolic disease, divided into 'definite' (n = 17, ≥1 major criteria), 'probable' (n = 10, ≥2 minor criteria), 'possible' (n = 17, 1 minor criterion) and 'unlikely' mitochondrial disease (n = 44, none of the criteria). Lactate levels, expressed in standardized arbitrary units or relative to creatine, were derived from summed signals from all voxels. Ten 'unlikely' children with a normal neurological exam served as the MRS reference subgroup. For 61 of 88 children, CSF lactate values were obtained. MRS lactate level (>12 arbitrary units) and the lactate-to-creatine ratio (L/Cr >0.22) differed significantly between the definite and the unlikely group (p = 0.015 and p = 0.001, respectively). MRS L/Cr also differentiated between the probable and the MRS reference subgroup (p = 0.03). No significant group differences were found for CSF lactate. MRS-quantified brain tissue lactate levels can serve as diagnostic marker for identifying mitochondrial disease in children. (orig.)

  8. Gestational age dependent changes of the fetal brain, liver and adipose tissue fatty acid compositions in a population with high fish intakes

    NARCIS (Netherlands)

    Kuipers, Remko S.; Luxwolda, Martine F.; Offringa, Pieter J.; Boersma, E. Rudy; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2012-01-01

    Introduction: There are no data on the intrauterine fatty acid (FA) compositions of brain, liver and adipose tissue of infants born to women with high fish intakes. Subjects and methods: We analyzed the brain (n = 18), liver (n = 14) and adipose tissue (n = 11) FA compositions of 20 stillborn

  9. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion.

    Science.gov (United States)

    Lo, Meng-chen; Wang, Shuwu; Singh, Sagar; Damodaran, Vinod B; Kaplan, Hilton M; Kohn, Joachim; Shreiber, David I; Zahn, Jeffrey D

    2015-04-01

    We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings.

  10. Effects of Lead+Selenium Interaction on Acetylcholinesterase Activity in Brain and Accumulation of Metal in Tissues of Oreochromis niloticus (L., 1758

    Directory of Open Access Journals (Sweden)

    Gülsemin Şen

    2017-06-01

    Full Text Available The potential accumulation of lead in different tissues of Oreochromis niloticus and the effects of selenium in AChE inhibition caused by lead in brain were investigated. Juvenile O. niloticus samples were exposed to combination of 1 mg L-1 and 2 mg L-1 lead and 1mg L-1 lead+2mg L-1 selenium and 2mg L-1 lead+4mg L-1 selenium for 1, 7 and 15 days respectively. The accumulation of lead in gill, brain, liver and muscle tissues was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS as well as brain acetylcholinesterase (AChE, E.C.3.1.1.7 enzyme activity was also analyzed by spectrophotometric method. No mortality was observed during lead exposure in relation to time period and exposed concentrations. Lead accumulation was occurred in all tissues in relation to time. Maximum lead accumulation occurred in brain tissue, followed by the liver, gills and muscle tissues in relation to time period. Selenium caused decrease accumulation of lead in tissues (all selenium mixtures in muscle tissue on the first day, 1mg L-1 Pb+2mg L-1 selenium in gill tissue on the seventh day, in liver tissue on the seventh day except 2mg L-1 Pb+4mg L-1 selenium mixtures at the end of each of all three test periods. Inhibition of AChE activity was caused by the highest concentration and by the short-term effect of lead. Such effect of lead was eliminated by selenium mixture. Lead and selenium mixture were resulted an increase in activity on 15th day at the highest concentration. Selenium led to decrease in the accumulation of lead in the tissues and caused to improvement in the loss of AChE activity.

  11. The effects of vitamin E on brain derived neurotrophic factor, tissues oxidative damage and learning and memory of juvenile hypothyroid rats.

    Science.gov (United States)

    Baghcheghi, Yousef; Beheshti, Farimah; Shafei, Mohammad Naser; Salmani, Hossein; Sadeghnia, Hamid Reza; Soukhtanloo, Mohammad; Anaeigoudari, Akbar; Hosseini, Mahmoud

    2018-06-01

    The effects of vitamin E (Vit E) on brain derived neurotrophic factor (BDNF) and brain tissues oxidative damage as well as on learning and memory impairments in juvenile hypothyroid rats were examined. The rats were grouped as: (1) Control; (2) Propylthiouracil (PTU); (3) PTU-Vit E and (4) Vit E. PTU was added to their drinking water (0.05%) during 6 weeks. Vit E (20 mg/kg) was daily injected (IP). Morris water maze (MWM) and passive avoidance (PA) were carried out. The animals were deeply anesthetized and the brain tissues were removed for biochemical measurements. PTU increased the escape latency and traveled path in MWM (P E (P E improved BDNF, thiol, SOD and CAT while diminished MDA. The results of the present study showed that Vit E improved BDNF and prevented from brain tissues oxidative damage as well as learning and memory impairments in juvenile hypothyroid rats.

  12. White matter segmentation by estimating tissue optical attenuation from volumetric OCT massive histology of whole rodent brains

    Science.gov (United States)

    Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric

    2017-02-01

    A whole rodent brain was imaged using an automated massive histology setup and an Optical Coherence Tomography (OCT) microscope. Thousands of OCT volumetric tiles were acquired, each covering a size of about 2.5x2.5x0.8 mm3 with a sampling resolution of 4.9x4.9x6.5 microns. This paper shows the techniques for reconstruction, attenuation compensation and segmentation of the sliced brains. The tile positions within the mosaic were evaluated using a displacement model of the motorized stage and pairwise coregistration. Volume blending was then performed by solving the 3D Laplace equation, and consecutive slices were assembled using the cross-correlation of their 2D image gradient. This reconstruction algorithm resulted in a 3D map of optical reflectivity for the whole brain at micrometric resolution. OCT tissue slices were then used to estimate the local attenuation coefficient based on a single scattering photon model. The attenuation map obtained exhibits a high contrast for all white matter fibres, regardless of their orientation. The tissue optical attenuation from the intrinsic OCT reflectivity contributes to better white matter tissue segmentation. The combined 3D maps of reflectivity and attenuation is a step toward the study of white matter at a microscopic scale for the whole brain in small animals.

  13. Neuroprotective effect of Quince leaf hydroalcoholic extract on intracerebroventricular streptozotocin-induced oxidative stress in cortical tissue of rat brain

    Directory of Open Access Journals (Sweden)

    A Hajizadeh Moghaddam

    2015-12-01

    Full Text Available Background & aim: Oxidative stress is a result of the imbalance between free radicals and the antioxidant system of the body. Increased oxidative stress in brain causes dysfunction of brain activities, destruction of neurons, and disease such as Alzheimer. Antioxidants, for example vitamins, phenolic compounds and flavonoids have been extensively investigated as potential therapeutic agents in vitro and in vivo for prevention of neurodegenerative diseases. In the present experimental study, the neuro-protective effect of quince leaf hydroalcoholic extract (QLHE on intracerebroventricular streptozotocin (icv-STZ-induced oxidative stress in cortical tissue of rat brain was examined. Methods: In the present experimental research, forty-two Wistar rats were randomly divided into control, sham, icv-STZ and icv-STZ treated with QLHE groups. The ICV-STZ group rats were injected unilaterally with ICV-STZ (3 mg/kg using a stereotactic device and QLHE (50, 100 and 150 mg/kg/day were administered for 6 weeks starting from 3 weeks before of ICV-STZ injection. The rats were killed at the end of the study and their brain cortical tissue superoxide dismutase and catalase activity were measured. The assay of catalase and superoxide dismutase was performed by following the Genet method. The amount of protein was determined according to the Bradford method.The statistical analysis was performed using one way ANOVA. Data were expressed as mean±SD and  P<0.05 was considered significant. Results: The present study indicated that in the ICV-STZ group showed significant decrease (P<0.001 in enzymatic antioxidants superoxide dismutase and catalase in the cortical tissue of the brain. Treatment of different doses of QLHE significantly increased superoxide dismutase and catalase activity compared to icv-STZ group (P<0.001 in cortical tissue of the brain. Conclusion: The study demonstrated the effectiveness of quince leaf hydroalcoholic extract as a powerful antioxidant

  14. Hemodynamic measurements in deep brain tissues of humans by near-infrared time-resolved spectroscopy

    Science.gov (United States)

    Suzuki, Hiroaki; Oda, Motoki; Yamaki, Etsuko; Suzuki, Toshihiko; Yamashita, Daisuke; Yoshimoto, Kenji; Homma, Shu; Yamashita, Yutaka

    2014-03-01

    Using near-infrared time-resolved spectroscopy (TRS), we measured the human head in transmittance mode to obtain the optical properties, tissue oxygenation, and hemodynamics of deep brain tissues in 50 healthy adult volunteers. The right ear canal was irradiated with 3-wavelengths of pulsed light (760, 795, and 835nm), and the photons passing through the human head were collected at the left ear canal. Optical signals with sufficient intensity could be obtained from 46 of the 50 volunteers. By analyzing the temporal profiles based on the photon diffusion theory, we successfully obtained absorption coefficients for each wavelength. The levels of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), total hemoglobin (tHb), and tissue oxygen saturation (SO2) were then determined by referring to the hemoglobin spectroscopic data. Compared with the SO2 values for the forehead measurements in reflectance mode, the SO2 values of the transmittance measurements of the human head were approximately 10% lower, and tHb values of the transmittance measurements were always lower than those of the forehead reflectance measurements. Moreover, the level of hemoglobin and the SO2 were strongly correlated between the human head measurements in transmittance mode and the forehead measurements in the reflectance mode, respectively. These results demonstrated a potential application of this TRS system in examining deep brain tissues of humans.

  15. 3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set.

    Science.gov (United States)

    Popuri, Karteek; Cobzas, Dana; Murtha, Albert; Jägersand, Martin

    2012-07-01

    Brain tumor segmentation is a required step before any radiation treatment or surgery. When performed manually, segmentation is time consuming and prone to human errors. Therefore, there have been significant efforts to automate the process. But, automatic tumor segmentation from MRI data is a particularly challenging task. Tumors have a large diversity in shape and appearance with intensities overlapping the normal brain tissues. In addition, an expanding tumor can also deflect and deform nearby tissue. In our work, we propose an automatic brain tumor segmentation method that addresses these last two difficult problems. We use the available MRI modalities (T1, T1c, T2) and their texture characteristics to construct a multidimensional feature set. Then, we extract clusters which provide a compact representation of the essential information in these features. The main idea in this work is to incorporate these clustered features into the 3D variational segmentation framework. In contrast to previous variational approaches, we propose a segmentation method that evolves the contour in a supervised fashion. The segmentation boundary is driven by the learned region statistics in the cluster space. We incorporate prior knowledge about the normal brain tissue appearance during the estimation of these region statistics. In particular, we use a Dirichlet prior that discourages the clusters from the normal brain region to be in the tumor region. This leads to a better disambiguation of the tumor from brain tissue. We evaluated the performance of our automatic segmentation method on 15 real MRI scans of brain tumor patients, with tumors that are inhomogeneous in appearance, small in size and in proximity to the major structures in the brain. Validation with the expert segmentation labels yielded encouraging results: Jaccard (58%), Precision (81%), Recall (67%), Hausdorff distance (24 mm). Using priors on the brain/tumor appearance, our proposed automatic 3D variational

  16. Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue.

    Science.gov (United States)

    Tamashiro, Tami T; Dalgard, Clifton Lee; Byrnes, Kimberly R

    2012-08-15

    Microglia account for approximately 12% of the total cellular population in the mammalian brain. While neurons and astrocytes are considered the major cell types of the nervous system, microglia play a significant role in normal brain physiology by monitoring tissue for debris and pathogens and maintaining homeostasis in the parenchyma via phagocytic activity. Microglia are activated during a number of injury and disease conditions, including neurodegenerative disease, traumatic brain injury, and nervous system infection. Under these activating conditions, microglia increase their phagocytic activity, undergo morpohological and proliferative change, and actively secrete reactive oxygen and nitrogen species, pro-inflammatory chemokines and cytokines, often activating a paracrine or autocrine loop. As these microglial responses contribute to disease pathogenesis in neurological conditions, research focused on microglia is warranted. Due to the cellular heterogeneity of the brain, it is technically difficult to obtain sufficient microglial sample material with high purity during in vivo experiments. Current research on the neuroprotective and neurotoxic functions of microglia require a routine technical method to consistently generate pure and healthy microglia with sufficient yield for study. We present, in text and video, a protocol to isolate pure primary microglia from mixed glia cultures for a variety of downstream applications. Briefly, this technique utilizes dissociated brain tissue from neonatal rat pups to produce mixed glial cell cultures. After the mixed glial cultures reach confluency, primary microglia are mechanically isolated from the culture by a brief duration of shaking. The microglia are then plated at high purity for experimental study. The principle and protocol of this methodology have been described in the literature. Additionally, alternate methodologies to isolate primary microglia are well described. Homogenized brain tissue may be separated

  17. Study on Material Parameters Identification of Brain Tissue Considering Uncertainty of Friction Coefficient

    Science.gov (United States)

    Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu; Zhu, Feng

    2017-10-01

    Accurate material parameters are critical to construct the high biofidelity finite element (FE) models. However, it is hard to obtain the brain tissue parameters accurately because of the effects of irregular geometry and uncertain boundary conditions. Considering the complexity of material test and the uncertainty of friction coefficient, a computational inverse method for viscoelastic material parameters identification of brain tissue is presented based on the interval analysis method. Firstly, the intervals are used to quantify the friction coefficient in the boundary condition. And then the inverse problem of material parameters identification under uncertain friction coefficient is transformed into two types of deterministic inverse problem. Finally the intelligent optimization algorithm is used to solve the two types of deterministic inverse problems quickly and accurately, and the range of material parameters can be easily acquired with no need of a variety of samples. The efficiency and convergence of this method are demonstrated by the material parameters identification of thalamus. The proposed method provides a potential effective tool for building high biofidelity human finite element model in the study of traffic accident injury.

  18. A two-stage model for in vivo assessment of brain tumor perfusion and abnormal vascular structure using arterial spin labeling.

    Directory of Open Access Journals (Sweden)

    Patrick W Hales

    Full Text Available The ability to assess brain tumor perfusion and abnormalities in the vascular structure in vivo could provide significant benefits in terms of lesion diagnosis and assessment of treatment response. Arterial spin labeling (ASL has emerged as an increasingly viable methodology for non-invasive assessment of perfusion. Although kinetic models have been developed to describe perfusion in healthy tissue, the dynamic behaviour of the ASL signal in the brain tumor environment has not been extensively studied. We show here that dynamic ASL data acquired in brain tumors displays an increased level of 'biphasic' behaviour, compared to that seen in healthy tissue. A new two-stage model is presented which more accurately describes this behaviour, and provides measurements of perfusion, pre-capillary blood volume fraction and transit time, and capillary bolus arrival time. These biomarkers offer a novel contrast in the tumor and surrounding tissue, and provide a means for measuring tumor perfusion and vascular structural abnormalities in a fully non-invasive manner.

  19. Ageing and chronic intermittent hypoxia mimicking sleep apnea do not modify local brain tissue stiffness in healthy mice.

    Science.gov (United States)

    Jorba, Ignasi; Menal, Maria José; Torres, Marta; Gozal, David; Piñol-Ripoll, Gerard; Colell, Anna; Montserrat, Josep M; Navajas, Daniel; Farré, Ramon; Almendros, Isaac

    2017-07-01

    Recent evidence suggests that obstructive sleep apnea (OSA) may increase the risk of Alzheimer´s disease (AD), with the latter promoting alterations in brain tissue stiffness, a feature of ageing. Here, we assessed the effects of age and intermittent hypoxia (IH) on brain tissue stiffness in a mouse model of OSA. Two-month-old and 18-month-old mice (N=10 each) were subjected to IH (20% O 2 40s - 6% O 2 20s) for 8 weeks (6h/day). Corresponding control groups for each age were kept under normoxic conditions in room air (RA). After sacrifice, the brain was excised and 200-micron coronal slices were cut with a vibratome. Local stiffness of the cortex and hippocampus were assessed in brain slices placed in an Atomic Force Microscope. For both brain regions, the Young's modulus (E) in each animal was computed as the average values from 9 force-indentation curves. Cortex E mean (±SE) values were 442±122Pa (RA) and 455±120 (IH) for young mice and 433±44 (RA) and 405±101 (IH) for old mice. Hippocampal E values were 376±62 (RA) and 474±94 (IH) for young mice and 486±93 (RA) and 521±210 (IH) for old mice. For both cortex and hippocampus, 2-way ANOVA indicated no statistically significant effects of age or challenge (IH vs. RA) on E values. Thus, neither chronic IH mimicking OSA nor ageing up to late middle age appear to modify local brain tissue stiffness in otherwise healthy mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Immunocytochemistry of formalin-fixed human brain tissues: microwave irradiation of free-floating sections.

    Science.gov (United States)

    Shiurba, R A; Spooner, E T; Ishiguro, K; Takahashi, M; Yoshida, R; Wheelock, T R; Imahori, K; Cataldo, A M; Nixon, R A

    1998-01-01

    Formalin fixation, the chemical process in which formaldehyde binds to cells and tissues, is widely used to preserve human brain specimens from autolytic decomposition. Ultrastructure of cellular and mitochondrial membranes is markedly altered by vesiculation, but this does not interfere with diagnostic evaluation of neurohistology by light microscopy. Serious difficulties are encountered, however, when immunocytochemical staining is attempted. Antigens that are immunoreactive in unfixed frozen sections and protein extracts appear to be concealed or destroyed in formalin-fixed tissues. In dilute aqueous solution, formaldehyde is in equilibrium with methylene glycol and its polymeric hydrates, the balance by far in favor of methylene glyco. Carbonylic formaldehyde is a reactive electrophilic species well known for crosslinking functional groups in tissue proteins, nucleic acids, and polysaccharides. Some of its methylene crosslinks are readily hydrolyzed. Others are stable and irreversible. During immunostaining reactions, intra- and inter-molecular links between macromolecules limit antibody permeation of tissue sections, alter protein secondary structure, and reduce accessibility of antigenic determinants . Accordingly, immunoreactivity is diminished for many antigens. Tissues are rapidly penetrated by methylene glycol, but formaldehyde binding to cellular constituents is relatively slow, increasing progressively until equilibrium is reached. In addition, prolonged storage in formalin may result in acidification of human brain specimens. Low pH favors dissociation of methylene glycol into formaldehyde, further reducing both classical staining and antigen detectability. Various procedures have been devised to counter the antigen masking effects of formaldehyde. Examples include pretreatment of tissue sections with proteases, formic acid, or ultrasound. Recently, heating of mounted sections in ionic salt solution by microwave energy was found to restore many

  1. Effects of compression injury on brain mitochondrial and tissue viability evaluated by a multiparametric monitoring system

    Science.gov (United States)

    Barbiro-Michaely, Efrat; Bachbut, Galit; Mayevsky, Avraham

    2008-02-01

    Neurosurgical procedures involve brain compression created by retractors. Although it is clear that retractors are causing damage to the brain tissue, the pathophysiology of the retraction was not investigated in details. In the present study we used the multiparametric monitoring approach for real time evaluation of mitochondrial function, hemodynamic, ionic and electrical activities monitored contralaterally to the retractor placement on the brain. The aims of the study were to test the effects of retractor size and severity of the compression on the degree of damage to the cerebral tissue. A special probe was lowered towards the cerebral cortex, (2mm and 4mm in depth) using a micromanipulator. Compression lasted for 30 minutes, than the retractor was elevated back to its initial position and monitoring continued for two hours. Additionally, two sizes of retractors were used 6mm and 3mm in diameter, the 3mm retractor included an intracranial pressure (ICP) probe. The results show that the combination of a large retractor with the depth of 4mm yielded high mortality rate (62%) of the rats while the use of a smaller retractor decreased significantly the percentage of mortality. Also, compression to the depth of 4mm increased tissue injury as compared to 2mm depth. In conclusion, the present study raises the importance and significance of multiparametric monitoring, and not only ICP and cerebral blood flow of the areas nearby the retractor position and not only the retraction site, as well as the effect of the retractor size on the damage induced to the cerebral tissue.

  2. Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain.

    Science.gov (United States)

    Iwashita, Misato; Kataoka, Noriyuki; Toida, Kazunori; Kosodo, Yoichi

    2014-10-01

    Accumulating evidence implicates the significance of the physical properties of the niche in influencing the behavior, growth and differentiation of stem cells. Among the physical properties, extracellular stiffness has been shown to have direct effects on fate determination in several cell types in vitro. However, little evidence exists concerning whether shifts in stiffness occur in vivo during tissue development. To address this question, we present a systematic strategy to evaluate the shift in stiffness in a developing tissue using the mouse embryonic cerebral cortex as an experimental model. We combined atomic force microscopy measurements of tissue and cellular stiffness with immunostaining of specific markers of neural differentiation to correlate the value of stiffness with the characteristic features of tissues and cells in the developing brain. We found that the stiffness of the ventricular and subventricular zones increases gradually during development. Furthermore, a peak in tissue stiffness appeared in the intermediate zone at E16.5. The stiffness of the cortical plate showed an initial increase but decreased at E18.5, although the cellular stiffness of neurons monotonically increased in association with the maturation of the microtubule cytoskeleton. These results indicate that tissue stiffness cannot be solely determined by the stiffness of the cells that constitute the tissue. Taken together, our method profiles the stiffness of living tissue and cells with defined characteristics and can therefore be utilized to further understand the role of stiffness as a physical factor that determines cell fate during the formation of the cerebral cortex and other tissues. © 2014. Published by The Company of Biologists Ltd.

  3. Brain Metastasis in Bone and Soft Tissue Cancers: A Review of Incidence, Interventions, and Outcomes

    Directory of Open Access Journals (Sweden)

    Faris Shweikeh

    2014-01-01

    Full Text Available Bone and soft tissue malignancies account for a small portion of brain metastases. In this review, we characterize their incidence, treatments, and prognosis. Most of the data in the literature is based on case reports and small case series. Less than 5% of brain metastases are from bone and soft tissue sarcomas, occurring most commonly in Ewing’s sarcoma, malignant fibrous tumors, and osteosarcoma. Mean interval from initial cancer diagnosis to brain metastasis is in the range of 20–30 months, with most being detected before 24 months (osteosarcoma, Ewing sarcoma, chordoma, angiosarcoma, and rhabdomyosarcoma, some at 24–36 months (malignant fibrous tumors, malignant peripheral nerve sheath tumors, and alveolar soft part sarcoma, and a few after 36 months (chondrosarcoma and liposarcoma. Overall mean survival ranges between 7 and 16 months, with the majority surviving < 12 months (Ewing’s sarcoma, liposarcoma, malignant fibrous tumors, malignant peripheral nerve sheath tumors, angiosarcoma and chordomas. Management is heterogeneous involving surgery, radiosurgery, radiotherapy, and chemotherapy. While a survival advantage may exist for those given aggressive treatment involving surgical resection, such patients tended to have a favorable preoperative performance status and minimal systemic disease.

  4. Mercury speciation in brain tissue of polar bears (Ursus maritimus) from the Canadian Arctic.

    Science.gov (United States)

    Krey, Anke; Kwan, Michael; Chan, Hing Man

    2012-04-01

    Methylmercury (MeHg) is a neurotoxicant that has been found at elevated concentrations in the Arctic ecosystem. Little is known about its internal dose in wildlife such as polar bears. We measured concentrations of mercury (Hg) in three different brain regions (cerebellum, frontal lobe and brain stem) of 24 polar bears collected from the Nunavik, Canada between 2000 and 2003. Speciation of Hg was measured by High Performance Liquid Chromatography coupled to Inductively Coupled Plasma Mass Spectroscopy (HPLC-ICP-MS). Concentrations of mean total Hg in brain tissue were up to 625 times lower (0.28 ± 0.07 mg kg(-1) dry weight (dw) in frontal lobe, 0.23 ± 0.07 mg kg(-1) dw in cerebellum and 0.12 ± 0.0 3mg kg(-1) dw in brain stem) than the mean total Hg concentration previously reported in polar bear liver collected from Eastern Baffin Island. Methylmercury (MeHg) accounted for 100% of the Hg found in all three brain regions analyzed. These results suggest that polar bear might reduce the toxic effects of Hg by limiting the uptake into the brain and/or decrease the rate of demethylation so that Hg can be excreted from the brain more easily. The toxicokinetics and the blood-brain-barrier mechanisms of polar bears are still unknown and further research is required. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Delayed brain radiation necrosis: pathological review and new molecular targets for treatment.

    Science.gov (United States)

    Furuse, Motomasa; Nonoguchi, Naosuke; Kawabata, Shinji; Miyatake, Shin-Ichi; Kuroiwa, Toshihiko

    2015-12-01

    Delayed radiation necrosis is a well-known adverse event following radiotherapy for brain diseases and has been studied since the 1930s. The primary pathogenesis is thought to be the direct damage to endothelial and glial cells, particularly oligodendrocytes, which causes vascular hyalinization and demyelination. This primary pathology leads to tissue inflammation and ischemia, inducing various tissue protective responses including angiogenesis. Macrophages and lymphocytes then infiltrate the surrounding areas of necrosis, releasing inflammatory cytokines such as interleukin (IL)-1α, IL-6, and tumor necrosis factor (TNF)-α. Microglia also express these inflammatory cytokines. Reactive astrocytes play an important role in angiogenesis, expressing vascular endothelial growth factor (VEGF). Some chemokine networks, like the CXCL12/CXCR4 axis, are upregulated by tissue inflammation. Hypoxia may mediate the cell-cell interactions among reactive astrocytes, macrophages, and microglial cells around the necrotic core. Recently, bevacizumab, an anti-VEGF antibody, has demonstrated promising results as an alternative treatment for radiation necrosis. The importance of VEGF in the pathophysiology of brain radiation necrosis is being recognized. The discovery of new molecular targets could facilitate novel treatments for radiation necrosis. This literature review will focus on recent work characterizing delayed radiation necrosis in the brain.

  6. Distribution of dearomatised white spirit in brain, blood, and fat tissue after repeated exposure of rats

    DEFF Research Database (Denmark)

    Lof, A.; Lam, Henrik Rye; Gullstrand, E.

    1999-01-01

    Petroleum products with low content of aromatics have been increasingly used during the past years. This study investigates tissue disposition of dearomatised white spirit. In addition, brain neurotransmitter concentrations were measured. Male rats were exposed by inhalation to 0, 400 (2.29 mg....../l), or 800 p.p.m. (4.58 mg/l) of dearomatised white spirit, 6 hr/day, 5 days/week up to 3 weeks. Five rats from each group were sacrificed immediately after the exposure for 1, 2, or 3 weeks and 2, 4, 6, or 24 hr after the end of 3 weeks' exposure. After 3 weeks of exposure the concentration of total white...... spirit was 1.5 and 5.6 mg/kg in blood; 7.1 and 17.1 mg/kg in brain; 432 and 1452 mg/kg in fat tissue at the exposure levels of 400 and 800 p.p.m., respectively. The concentrations of n-nonane, n-decane, n-undecane, and total white spirit in blood and brain were not affected by the duration of exposure...

  7. Fluoride Alteration of [3H]Glucose Uptake in Wistar Rat Brain and Peripheral Tissues.

    Science.gov (United States)

    Rogalska, Anna; Kuter, Katarzyna; Żelazko, Aleksandra; Głogowska-Gruszka, Anna; Świętochowska, Elżbieta; Nowak, Przemysław

    2017-04-01

    The present study was designed to investigate the role of postnatal fluoride intake on [3H]glucose uptake and transport in rat brain and peripheral tissues. Sodium fluoride (NaF) in a concentration of 10 or 50 ppm was added to the drinking water of adult Wistar rats. The control group received distilled water. After 4 weeks, respective plasma fluoride levels were 0.0541 ± 0.0135 μg/ml (control), 0.0596 ± 0.0202 μg/ml (10 ppm), and 0.0823 ± 0.0199 μg/ml (50 ppm). Although plasma glucose levels were not altered in any group, the plasma insulin level in the fluoride (50 ppm) group was elevated (0.72 ± 0.13 μg/ml) versus the control group (0.48 ± 0.24 μg/ml) and fluoride (10 ppm) group. In rats receiving fluoride for 4 weeks at 10 ppm in drinking water, [3H]glucose uptake was unaltered in all tested parts of the brain. However, in rats receiving fluoride at 50 ppm, [3H]glucose uptake in cerebral cortex, hippocampus, and thalamus with hypothalamus was elevated, versus the saline group. Fluoride intake had a negligible effect on [3H]glucose uptake by peripheral tissues (liver, pancreas, stomach, small intestine, atrium, aorta, kidney, visceral tissue, lung, skin, oral mucosa, tongue, salivary gland, incisor, molars, and jawbone). In neither fluoride group was glucose transporter proteins 1 (GLUT 1) or 3 (GLUT 3) altered in frontal cortex and striatum versus control. On the assumption that increased glucose uptake (by neural tissue) reasonably reflects neuronal activity, it appears that fluoride damage to the brain results in a compensatory increase in glucose uptake and utilization without changes in GLUT 1 and GLUT 3 expression.

  8. Global Proteomic Analysis of Brain Tissues in Transient Ischemia Brain Damage in Rats

    Directory of Open Access Journals (Sweden)

    Jiann-Hwa Chen

    2015-05-01

    Full Text Available Ischemia-reperfusion injury resulting from arterial occlusion or hypotension in patients leads to tissue hypoxia with glucose deprivation, which causes endoplasmic reticulum (ER stress and neuronal death. A proteomic approach was used to identify the differentially expressed proteins in the brain of rats following a global ischemic stroke. The mechanisms involved the action in apoptotic and ER stress pathways. Rats were treated with ischemia-reperfusion brain injuries by the bilateral occlusion of the common carotid artery. The cortical neuron proteins from the stroke animal model (SAM and the control rats were separated using two-dimensional gel electrophoresis (2-DE to purify and identify the protein profiles. Our results demonstrated that the SAM rats experienced brain cell death in the ischemic core. Fifteen proteins were expressed differentially between the SAM rats and control rats, which were assayed and validated in vivo and in vitro. Interestingly, the set of differentially expressed, down-regulated proteins included catechol O-methyltransferase (COMT and cathepsin D (CATD, which are implicated in oxidative stress, inflammatory response and apoptosis. After an ischemic stroke, one protein spot, namely the calretinin (CALB2 protein, showed increased expression. It mediated the effects of SAM administration on the apoptotic and ER stress pathways. Our results demonstrate that the ischemic injury of neuronal cells increased cell cytoxicity and apoptosis, which were accompanied by sustained activation of the IRE1-alpha/TRAF2, JNK1/2, and p38 MAPK pathways. Proteomic analysis suggested that the differential expression of CALB2 during a global ischemic stroke could be involved in the mechanisms of ER stress-induced neuronal cell apoptosis, which occurred via IRE1-alpha/TRAF2 complex formation, with activation of JNK1/2 and p38 MAPK. Based on these results, we also provide the molecular evidence supporting the ischemia

  9. Elemental composition of 'normal' and Alzheimer brain tissue by INA and PIXE analyses

    International Nuclear Information System (INIS)

    Stedman, J.D.; Spyrou, N.M.

    1997-01-01

    Instrumental methods based on the nuclear and atomic properties of the elements have been used for many years to determine elemental concentrations in a variety of materials for biomedical, industrial and environmental applications. These methods offer high sensitivity for accurate trace element measurements, suffer few interfering or competing effects. Present no blank problems and are convenient for both research and routine analyses. The present article describes the use of two trace element techniques. Firstly the use of activation of stable nuclei irradiated by neutrons in the core of a low power research reactor as a means of detection of elements through the resulting gamma-rays emitted. Secondly, the observations of the interactions of energetic ion beams with the material in order to identify elemental species. Over recent years there has been some interest in determining the elemental composition of 'normal' and Alzheimer affected brain tissue, however literature findings are inconsistent. Possible reasons for discrepancies need to be identified for further progress to be made. Here, post-mortem tissue samples, provided by the Alzheimer's Disease Brain Bank, Institute of Psychiatry, London, were taken from the frontal, occipital, parietal and temporal lobes of both hemispheres of brains from 13 'normal' and 19 Alzheimer subjects. The elemental composition of the samples was determined using the analytical techniques of INAA (instrumental neutron activation analysis), RBS (Rutherford back-scattering) and PIXE (particle induced x-ray emission). The principal findings are summarised here. (author)

  10. In vivo imaging of cerebral hemodynamics and tissue scattering in rat brain using a surgical microscope camera system

    Science.gov (United States)

    Nishidate, Izumi; Kanie, Takuya; Mustari, Afrina; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu; Kokubo, Yasuaki

    2018-02-01

    We investigated a rapid imaging method to monitor the spatial distribution of total hemoglobin concentration (CHbT), the tissue oxygen saturation (StO2), and the scattering power b in the expression of musp=a(lambda)^-b as the scattering parameters in cerebral cortex using a digital red-green-blue camera. In the method, Monte Carlo simulation (MCS) for light transport in brain tissue is used to specify a relation among the RGB-values and the concentration of oxygenated hemoglobin (CHbO), that of deoxygenated hemoglobin (CHbR), and the scattering power b. In the present study, we performed sequential recordings of RGB images of in vivo exposed brain of rats while changing the fraction of inspired oxygen (FiO2), using a surgical microscope camera system. The time courses of CHbO, CHbR, CHbT, and StO2 indicated the well-known physiological responses in cerebral cortex. On the other hand, a fast decrease in the scattering power b was observed immediately after the respiratory arrest, which is similar to the negative deflection of the extracellular DC potential so-called anoxic depolarization. It is said that the DC shift coincident with a rise in extracellular potassium and can evoke cell deformation generated by water movement between intracellular and extracellular compartments, and hence the light scattering by tissue. Therefore, the decrease in the scattering power b after the respiratory arrest is indicative of changes in light scattering by tissue. The results in this study indicate potential of the method to evaluate the pathophysiological conditions and loss of tissue viability in brain tissue.

  11. Application of single- and dual-energy CT brain tissue segmentation to PET monitoring of proton therapy

    Science.gov (United States)

    Berndt, Bianca; Landry, Guillaume; Schwarz, Florian; Tessonnier, Thomas; Kamp, Florian; Dedes, George; Thieke, Christian; Würl, Matthias; Kurz, Christopher; Ganswindt, Ute; Verhaegen, Frank; Debus, Jürgen; Belka, Claus; Sommer, Wieland; Reiser, Maximilian; Bauer, Julia; Parodi, Katia

    2017-03-01

    The purpose of this work was to evaluate the ability of single and dual energy computed tomography (SECT, DECT) to estimate tissue composition and density for usage in Monte Carlo (MC) simulations of irradiation induced β + activity distributions. This was done to assess the impact on positron emission tomography (PET) range verification in proton therapy. A DECT-based brain tissue segmentation method was developed for white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF). The elemental composition of reference tissues was assigned to closest CT numbers in DECT space (DECTdist). The method was also applied to SECT data (SECTdist). In a validation experiment, the proton irradiation induced PET activity of three brain equivalent solutions (BES) was compared to simulations based on different tissue segmentations. Five patients scanned with a dual source DECT scanner were analyzed to compare the different segmentation methods. A single magnetic resonance (MR) scan was used for comparison with an established segmentation toolkit. Additionally, one patient with SECT and post-treatment PET scans was investigated. For BES, DECTdist and SECTdist reduced differences to the reference simulation by up to 62% when compared to the conventional stoichiometric segmentation (SECTSchneider). In comparison to MR brain segmentation, Dice similarity coefficients for WM, GM and CSF were 0.61, 0.67 and 0.66 for DECTdist and 0.54, 0.41 and 0.66 for SECTdist. MC simulations of PET treatment verification in patients showed important differences between DECTdist/SECTdist and SECTSchneider for patients with large CSF areas within the treatment field but not in WM and GM. Differences could be misinterpreted as PET derived range shifts of up to 4 mm. DECTdist and SECTdist yielded comparable activity distributions, and comparison of SECTdist to a measured patient PET scan showed improved agreement when compared to SECTSchneider. The agreement between predicted and measured PET

  12. Antioxidant Role of Pomegranates on Liver and Brain Tissues of Rats Exposed to an Organophosphorus Insecticide

    International Nuclear Information System (INIS)

    Abd Elmonem, H.A.

    2014-01-01

    Toxicities of organophosphorus insecticides cause oxidative damage on many organs such as the liver and brain due to generation of reactive oxygen species. Pomegranate is among the richest fruit in poly - phenols. The aim of this study was to compare between the antioxidant strength of pomegranate juice (PJ) and pomegranate molasses (PM) and their effects on alanine transferase (ALT), aspartate aminotransferase (AST), Alkaline phosphatase (ALP) and total protein (TP) in liver and levels of malondialdehyde (MAD), reduced glutathione (GSH) and nitric oxide (NO) in rat liver and brain tissues exposed to 1/10 LD 50 diazinon (DI). Six groups each of 6 male albino rats were used comprising control, DI, PJ, PM, PJ + DI and PM + DI for 15 days. The activities of ALT, AST, and TP concentration in liver have been increased due to treatment of rats with DI. These increases restored to normalcy when rats were supplemented with PJ or PM with DI. The results demonstrate that treatment with DI induced significant increase in MDA and NO concentrations and significant decrease in GSH levels of liver and brain tissues. The administration of PJ or PM along with DI significant decrease in MDA and NO levels and significant increase in GSH level compared to DI-group. The present study suggest that PJ or PM has a potential protective effect as it can elevate antioxidant defense system, lessens induced oxidative dam - ages and protect the brain and liver tissue against DI-induced toxicity. In addition, comaring PJ with PM it was noticed that PJ had higher antioxidant activity as evidenced by increased GSH content and decreased NO level in the liver by greater extend than PM.

  13. Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling

    Directory of Open Access Journals (Sweden)

    Sergi Valverde

    2015-01-01

    Full Text Available Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple Sclerosis (MS lesions on automatic brain tissue segmentation. However, a study of fully automated pipelines incorporating lesion segmentation and lesion filling on tissue volume analysis has not yet been performed. Here, we analyzed the % of error introduced by automating the lesion segmentation and filling processes in the tissue segmentation of 70 clinically isolated syndrome patient images. First of all, images were processed using the LST and SLS toolkits with different pipeline combinations that differed in either automated or manual lesion segmentation, and lesion filling or masking out lesions. Then, images processed following each of the pipelines were segmented into gray matter (GM and white matter (WM using SPM8, and compared with the same images where expert lesion annotations were filled before segmentation. Our results showed that fully automated lesion segmentation and filling pipelines reduced significantly the % of error in GM and WM volume on images of MS patients, and performed similarly to the images where expert lesion annotations were masked before segmentation. In all the pipelines, the amount of misclassified lesion voxels was the main cause in the observed error in GM and WM volume. However, the % of error was significantly lower when automatically estimated lesions were filled and not masked before segmentation. These results are relevant and suggest that LST and SLS toolboxes allow the performance of accurate brain tissue volume measurements without any kind of manual intervention, which can be convenient not only in terms of time and economic costs, but also to avoid the inherent intra/inter variability between manual annotations.

  14. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    International Nuclear Information System (INIS)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M.

    1990-01-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures

  15. Age and haplotype variations within FADS1 interact and associate with alterations in fatty acid composition in human male cortical brain tissue.

    Directory of Open Access Journals (Sweden)

    Erika Freemantle

    Full Text Available Fatty acids (FA play an integral role in brain function and alterations have been implicated in a variety of complex neurological disorders. Several recent genomic studies have highlighted genetic variability in the fatty acid desaturase (FADS1/2/3 gene cluster as an important contributor to FA alterations in serum lipids as well as measures of FA desaturase index estimated by ratios of relevant FAs. The contribution to alterations of FAs within the brain by local synthesis is still a matter of debate. Thus, the impact of genetic variants in FADS genes on gene expression and brain FA levels is an important avenue to investigate.Analyses were performed on brain tissue from prefrontal cortex Brodmann area 47 (BA47 of 61 male subjects of French Canadian ancestry ranging in age from young adulthood to middle age (18-58 years old, with the exception of one teenager (15 years old. Haplotype tagging SNPs were selected using the publicly available HapMap genotyping dataset in conjunction with Haploview. DNA sequencing was performed by the Sanger method and gene expression was measured by quantitative real-time PCR. FAs in brain tissue were analysed by gas chromatography. Variants in the FADS1 gene region were sequenced and analyzed for their influence on both FADS gene expression and FAs in brain tissue.Our results suggest an association of the minor haplotype with alteration in estimated fatty acid desaturase activity. Analysis of the impact of DNA variants on expression and alternative transcripts of FADS1 and FADS2, however, showed no differences. Furthermore, there was a significant interaction between haplotype and age on certain brain FA levels.This study suggests that genetic variability in the FADS genes cluster, previously shown to be implicated in alterations in peripheral FA levels, may also affect FA composition in brain tissue, but not likely by local synthesis.

  16. Synchrotron radiation x-ray fluorescence (SRXRF) elemental distribution analysis of brain tissue in a rat model of transient focal ischemia

    International Nuclear Information System (INIS)

    Wang Xuxia; He Rui; Qian Junchao; Lei Hao; Liu Nianqing; Huang Yuying; He Wei

    2005-01-01

    It is shown recently that transient focal ischemia with a duration of 15 minutes in rat leads to delayed neurodegeneration in striatum, as evidenced by shortened T 1 relaxation time in this brain region. The mechanism underlying such T 1 change has been proposed to be deposition of paramagnetic metal ions, such as manganese, in the ischemic brain tissue. To further investigate the characteristics of metal ion deposition in the ischemic brain tissue, elemental (i.e., Ca, Mn, Fe and Zn) distribution was measured in rat brain sections 2 weeks after a 15-min middle cerebral artery occlusion (MCAO) using synchrotron radiation X-Ray fluorescence analysis (SRXRF). The right middle cerebral arteries of 4 Wistar rats weighting 200-250 g were occluded under mild anesthesia (1-1.5% isoflurane) for 15 minutes by inserting a silicon-coated nylon thread from the external carotid artery into the internal carotid artery. Two weeks later the rats were decapitated and the brain was immediately removed, frozen in liquid nitrogen, cut into 100 m sections at the level of striatum with a microtome, and put onto polycarbonate films specially designed for SRXRF examination. All SRXRF spectra obtained with a beam spot size of 100 m x 100 m were normalized to the acquisition time and the counting of the ion chambers, and the contribution from the supporting polycarbonate film was subtracted. The X-ray peak area for each element (A) and the Compton scattering intensity (B) for the whole brain section were obtained. The relative content for each element was taken as the ratio of A to B. The results show that, compared to those in the contralateral striatum (i.e., left hemisphere), the relative contents of Ca and Mn in the ipsilateral striatum (i.e., right hemisphere) increased 1300.3±500.3% and 39±23%, respectively. The relative contents of Fe and Zn in the ischemic striatum showed no obvious changes as compared to control, contrasted to the results reported by Danielisova et al who showed

  17. Increased expression of vascular endothelial growth factor attenuates contusion necrosis without influencing contusion edema after traumatic brain injury in rats.

    Science.gov (United States)

    Tado, Masahiro; Mori, Tatsuro; Fukushima, Masamichi; Oshima, Hideki; Maeda, Takeshi; Yoshino, Atsuo; Aizawa, Shin; Katayama, Yoichi

    2014-04-01

    To clarify the role of vascular endothelial growth factor (VEGF) in the formation of contusion edema and necrosis after traumatic brain injury, we examined the time course of changes in the VEGF expression (enzyme-linked immunosorbent assay), cerebrovascular permeability (extravasation of Evans blue), and water content (dry-wet weight method) of the contused brain tissue in a cortical impact injury model using rats. In addition, we tested the effects of administration of bevacizumab (VEGF monoclonal antibody) on changes in the cerebrovascular permeability and water content of the contused brain tissue, as well as the neurological deficits (rota rod test) and volume of contusion necrosis. Increased VEGF expression was maximal at 72 h after injury (pnecrosis at 21 days (pnecrosis. This is probably because of an increased angiogenesis and improved microcirculation in the areas surrounding the core of contusion.

  18. Effect of pheniramine maleate on reperfusion injury in brain tissue.

    Science.gov (United States)

    Yürekli, Ismail; Gökalp, Orhan; Kiray, Müge; Gökalp, Gamze; Ergüneş, Kazım; Salman, Ebru; Yürekli, Banu Sarer; Satoğlu, Ismail Safa; Beşir, Yüksel; Cakır, Habib; Gürbüz, Ali

    2013-12-06

    The aim of this study was to investigate the protective effects of methylprednisolone (Pn), which is a potent anti-inflammatory agent, and pheniramine maleate (Ph), which is an antihistaminic with some anti-inflammatory effects, on reperfusion injury in brain developing after ischemia of the left lower extremity of rats. Twenty-eight randomly selected male Sprague-Dawley rats were divided into 4 groups: Group 1 was the control group, Group 2 was the sham group (I/R), Rats in Group 3 were subjected to I/R and given Ph, and rats in Group 4 were subjected to I/R and given Pn. A tourniquet was applied at the level of left groin region of subjects in the I/R group after induction of anesthesia. One h of ischemia was performed with no drug administration. In the Ph group, half of a total dose of 10 mg/kg Ph was administered intraperitoneally before ischemia and the remaining half before reperfusion. In the Pn group, subjects received a single dose of 50 mg/kg Pn intraperitoneally at the 30th min of ischemia. Brains of all subjects were removed after 24 h for examination. Malondialdehyde (MDA) levels of the prefrontal cortex were significantly lower in the Ph group than in the I/R group (p<0.05). Superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities were found to be significantly higher in the Ph group than in the I/R group (p<0.05). Histological examination demonstrated that Ph had protective effects against I/R injury developing in the brain tissue. Ph has a protective effect against ischemia/reperfusion injury created experimentally in rat brains.

  19. Musculoskeletal Application of Ultrasound Elastography: Soft Tissue Lipoma

    International Nuclear Information System (INIS)

    Choi, Ja Young; Hong, Sung Hwan; Yoo, Hye Jin; Kim, Su Jin

    2010-01-01

    Real-time freehand elastography. Conventional ultrasonography (US) and real-time freehand US elastography were performed in nine patients (M:F = 4:5: mean age, 53 years: 29-64 years) with soft-tissue lipoma confirmed by surgical resection. The elastogram was color-coded by 256 scales according to the degree of strain induced by light compression. The relative strains for lipoma and surrounding soft tissue were measured and mean strains were examined by using a Wilcoxon signed rank test. The elastograms showed red to sky-blue color in all lipomas and predominantly black in surrounding soft tissue. The mean relative strain (±standard deviation) was 67.9±28.5, 77.1±25.3, 63.3±31.2, and 15.7±18.3 for total, intramuscular, and subcutaneous lipoma, and surrounding soft tissue, respectively. The mean strain of the lipoma was significantly higher than one of surrounding soft tissue (p = .008, Wilcoxon signed rank test). Real-time elastography yields characteristic elastographic features of soft tissue lipoma distinguishing from those of adjacent soft tissues

  20. Caffeine and Cannabis Effects on Vital Neurotransmitters and Enzymes in the Brain Tissue of Juvenile Experimental Rats.

    Science.gov (United States)

    Owolabi, J O; Olatunji, S Y; Olanrewaju, A J

    2017-05-01

    Caffeine and cannabis are globally consumed and abused psychoactive substances. While caffeine is legally used in various forms, including in tea and coffee as beverages, it is also consumed in soda and energy drinks as additives. Cannabis, on the other hand, is considered illegal in most countries; albeit, it is being consumed globally particularly by adolescents. The adolescent stage marks a critical stage of brain development and maturation. Influences of agents on the brain at this stage may affect neuronal structural and functional attributes. To this end, the current experiment considered the effects of cannabis and caffeine on selected key neurotransmitters and enzymes in the brain tissues after regimented caffeine and cannabis treatment for 21 days. A total of 72 juvenile Wistar rats that were approximately 40 days old were divided into 6 groups A-F. The group A served as the control. Other groups were administered various dosages of caffeine or cannabis in distilled water, using oral gavages as follows: group B animals received 100 mg/kg body weight of caffeine, group C animals received 50 mg/kg body weight of caffeine, group D animals received 500 mg/kg body weight of cannabis, group E animals received 200 mg/kg body weight of cannabis, and group F received a low dose of cannabis (200 mg/kg body weight) plus a low dose of caffeine (50 mg/kg body weight). The animals were killed by cervical dislocation 24 h after the last administration. The brain tissues were excised and homogenized. The enzymes cytochrome C oxidase and glucose-6-phosphate dehydrogenase were assayed to observe tissue energy metabolism while the neurotransmitters gamma-amino butyric acid (GABA), glutamate, and dopamine were assayed to observe the effects of the psychoactive substances on their activities relative to mental activities. GABA, glutamate, and dopamine were generally higher in the treated groups of animals. The levels of G-6-PDH were higher in all treated animals' brains

  1. Bevacizumab Inhibits Breast Cancer-Induced Osteolysis, Surrounding Soft Tissue Metastasis, and Angiogenesis in Rats as Visualized by VCT and MRI

    Directory of Open Access Journals (Sweden)

    Tobias Bäuerle

    2008-05-01

    Full Text Available The aim of this study was to evaluate the effect of an antiangiogenic treatment with the vascular endothelial growth factor antibody bevacizumab in an experimental model of breast cancer bone metastasis and to monitor osteolysis, soft tissue tumor, and angiogenesis in bone metastasis noninvasively by volumetric computed tomography (VCT and magnetic resonance imaging (MRI. After inoculation of MDA-MB-231 human breast cancer cells into nude rats, bone metastasis was monitored with contrast-enhanced VCT and MRI from day 30 to day 70 after tumor cell inoculation, respectively. Thereby, animals of the treatment group (10 mg/kg bevacizumab IV weekly, n = 15 were compared with sham-treated animals (n = 17. Treatment with bevacizumab resulted in a significant difference versus control in osteolytic as well as soft tissue lesion sizes (days 50 to 70 and 40 to 70 after tumor cell inoculation, respectively; P < .05. This observation was paralleled with significantly reduced vascularization in the treatment group as shown by reduced increase in relative signal intensity in dynamic contrast-enhanced MRI from days 40 to 70 (P < .05. Contrast-enhanced VCT and histology confirmed decreased angiogenesis as well as new bone formation after application of bevacizumab. In conclusion, bevacizumab significantly inhibited osteolysis, surrounding soft tissue tumor growth, and angiogenesis in an experimental model of breast cancer bone metastasis as visualized by VCT and MRI.

  2. The National NeuroAIDS Tissue Consortium brain gene array: two types of HIV-associated neurocognitive impairment.

    Directory of Open Access Journals (Sweden)

    Benjamin B Gelman

    Full Text Available The National NeuroAIDS Tissue Consortium (NNTC performed a brain gene expression array to elucidate pathophysiologies of Human Immunodeficiency Virus type 1 (HIV-1-associated neurocognitive disorders.Twenty-four human subjects in four groups were examined A Uninfected controls; B HIV-1 infected subjects with no substantial neurocognitive impairment (NCI; C Infected with substantial NCI without HIV encephalitis (HIVE; D Infected with substantial NCI and HIVE. RNA from neocortex, white matter, and neostriatum was processed with the Affymetrix® array platform.With HIVE the HIV-1 RNA load in brain tissue was three log(10 units higher than other groups and over 1,900 gene probes were regulated. Interferon response genes (IFRGs, antigen presentation, complement components and CD163 antigen were strongly upregulated. In frontal neocortex downregulated neuronal pathways strongly dominated in HIVE, including GABA receptors, glutamate signaling, synaptic potentiation, axon guidance, clathrin-mediated endocytosis and 14-3-3 protein. Expression was completely different in neuropsychologically impaired subjects without HIVE. They had low brain HIV-1 loads, weak brain immune responses, lacked neuronally expressed changes in neocortex and exhibited upregulation of endothelial cell type transcripts. HIV-1-infected subjects with normal neuropsychological test results had upregulation of neuronal transcripts involved in synaptic transmission of neostriatal circuits.Two patterns of brain gene expression suggest that more than one pathophysiological process occurs in HIV-1-associated neurocognitive impairment. Expression in HIVE suggests that lowering brain HIV-1 replication might improve NCI, whereas NCI without HIVE may not respond in kind; array results suggest that modulation of transvascular signaling is a potentially promising approach. Striking brain regional differences highlighted the likely importance of circuit level disturbances in HIV/AIDS. In

  3. A novel liquid chromatography/mass spectrometry method for determination of neurotransmitters in brain tissue: Application to human tauopathies.

    Science.gov (United States)

    Forgacsova, Andrea; Galba, Jaroslav; Garruto, Ralph M; Majerova, Petra; Katina, Stanislav; Kovac, Andrej

    2018-01-15

    Neurotransmitters, small molecules widely distributed in the central nervous system are essential in transmitting electrical signals across neurons via chemical communication. Dysregulation of these chemical signaling molecules is linked to numerous neurological diseases including tauopathies. In this study, a precise and reliable liquid chromatography method was established with tandem mass spectrometry detection for the simultaneous determination of aspartic acid, asparagine, glutamic acid, glutamine, γ-aminobutyric acid, N-acetyl-l-aspartic acid, pyroglutamic acid, acetylcholine and choline in human brain tissue. The method was successfully applied to the analysis of human brain tissues from three different tauopathies; corticobasal degeneration, progressive supranuclear palsy and parkinsonism-dementia complex of Guam. Neurotransmitters were analyzed on ultra-high performance chromatography (UHPLC) using an ethylene bridged hybrid amide column coupled with tandem mass spectrometry (MS/MS). Identification and quantification of neurotransmitters was carried out by ESI+ mass spectrometry detection. We optimized sample preparation to achieve simple and fast extraction of all nine analytes. Our method exhibited an excellent linearity for all analytes (all coefficients of determination >0.99), with inter-day and intra-day precision yielding relative standard deviations 3.2%-11.2% and an accuracy was in range of 92.6%-104.3%. The present study, using the above method, is the first to demonstrate significant alterations of brain neurotransmitters caused by pathological processes in the brain tissues of patient with three different tauopathies. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Magnetic resonance imaging-three-dimensional printing technology fabricates customized scaffolds for brain tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Feng Fu; Chong Chen; Sai Zhang; Ming-liang Zhao; Xiao-hong Li; Zhe Qin; Chao Xu; Xu-yi Chen; Rui-xin Li; Li-na Wang; Ding-wei Peng; Hong-tao Sun; Yue Tu

    2017-01-01

    Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer- aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine.

  5. Characterization of the Distance Relationship Between Localized Serotonin Receptors and Glia Cells on Fluorescence Microscopy Images of Brain Tissue.

    Science.gov (United States)

    Jacak, Jaroslaw; Schaller, Susanne; Borgmann, Daniela; Winkler, Stephan M

    2015-08-01

    We here present two new methods for the characterization of fluorescent localization microscopy images obtained from immunostained brain tissue sections. Direct stochastic optical reconstruction microscopy images of 5-HT1A serotonin receptors and glial fibrillary acidic proteins in healthy cryopreserved brain tissues are analyzed. In detail, we here present two image processing methods for characterizing differences in receptor distribution on glial cells and their distribution on neural cells: One variant relies on skeleton extraction and adaptive thresholding, the other on k-means based discrete layer segmentation. Experimental results show that both methods can be applied for distinguishing classes of images with respect to serotonin receptor distribution. Quantification of nanoscopic changes in relative protein expression on particular cell types can be used to analyze degeneration in tissues caused by diseases or medical treatment.

  6. Determination of nitrosourea compounds in brain tissue by gas chromatography and electron capture detection.

    Science.gov (United States)

    Hassenbusch, S J; Colvin, O M; Anderson, J H

    1995-07-01

    A relatively simple, high-sensitivity gas chromatographic assay is described for nitrosourea compounds, such as BCNU [1,3-bis(2-chloroethyl)-1-nitrosourea] and MeCCNU [1-(2-chloroethyl)-3-(trans-4-methylcyclohexyl)-1-nitrosourea], in small biopsy samples of brain and other tissues. After extraction with ethyl acetate, secondary amines in BCNU and MeCCNU are derivatized with trifluoroacetic anhydride. Compounds are separated and quantitated by gas chromatography using a capillary column with temperature programming and an electron capture detector. Standard curves of BCNU indicate a coefficient of variance of 0.066 +/- 0.018, a correlation coefficient of 0.929, and an extraction efficiency from whole brain of 68% with a minimum detectable amount of 20 ng in 5-10 mg samples. The assay has been facile and sensitive in over 1000 brain biopsy specimens after intravenous and intraarterial infusions of BCNU.

  7. Area-specific migration and recruitment of new neurons in the adult songbird brain

    DEFF Research Database (Denmark)

    Vellema, Michiel; Van der Linden, Annemie; Gahr, Manfred

    2010-01-01

    sensitive to plastic changes, such as nucleus higher vocal center (HVC) and area X, recruited similar numbers of new neurons as their surrounding brain tissues, employing no specific directional mechanisms. The distribution pattern in and around HVC could best be described by a random displacement model......Neuron recruitment has been implicated in morphological and functional plasticity in the adult brain. Whereas mammals restrict neuron recruitment specifically to two regions of known plasticity, the hippocampus and olfactory bulb, newborn neurons are found throughout the forebrain of adult...... songbirds. In order to study the area-specificity of the widespread proliferation and recruitment in the songbird brain, six adult male canaries received repetitive intraperitoneal injections of the mitotic marker BrdU (5-bromo-2-deoxyuridine) and were sacrificed after 24 hours to study proliferation...

  8. Automated brain tissue and myelin volumetry based on quantitative MR imaging with various in-plane resolutions.

    Science.gov (United States)

    Andica, C; Hagiwara, A; Hori, M; Nakazawa, M; Goto, M; Koshino, S; Kamagata, K; Kumamaru, K K; Aoki, S

    2018-05-01

    Segmented brain tissue and myelin volumes can now be automatically calculated using dedicated software (SyMRI), which is based on quantification of R 1 and R 2 relaxation rates and proton density. The aim of this study was to determine the validity of SyMRI brain tissue and myelin volumetry using various in-plane resolutions. We scanned 10 healthy subjects on a 1.5T MR scanner with in-plane resolutions of 0.8, 2.0 and 3.0mm. Two scans were performed for each resolution. The acquisition time was 7-min and 24-sec for 0.8mm, 3-min and 9-sec for 2.0mm and 1-min and 56-sec for 3.0mm resolutions. The volumes of white matter (WM), gray matter (GM), cerebrospinal fluid (CSF), non-WM/GM/CSF (NoN), brain parenchymal volume (BPV), intracranial volume (ICV) and myelin were compared between in-plane resolutions. Repeatability for each resolution was then analyzed. No significant differences in volumes measured were found between the different in-plane resolutions, except for NoN between 0.8mm and 2.0mm and between 2.0mm and 3.0mm. The repeatability error value for the WM, GM, CSF, NoN, BPV and myelin volumes relative to ICV was 0.97%, 1.01%, 0.65%, 0.86%, 1.06% and 0.25% in 0.8mm; 1.22%, 1.36%, 0.73%, 0.37%, 1.18% and 0.35% in 2.0mm and 1.18%, 1.02%, 0.96%, 0.45%, 1.36%, and 0.28% in 3.0mm resolutions. SyMRI brain tissue and myelin volumetry with low in-plane resolution and short acquisition times is robust and has a good repeatability so could be useful for follow-up studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Spectroscopic method for determination of the absorption coefficient in brain tissue

    Science.gov (United States)

    Johansson, Johannes D.

    2010-09-01

    I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.

  10. Altered expression of BDNF, BDNF pro-peptide and their precursor proBDNF in brain and liver tissues from psychiatric disorders: rethinking the brain?liver axis

    OpenAIRE

    Yang, B; Ren, Q; Zhang, J-c; Chen, Q-X; Hashimoto, K

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) has a role in the pathophysiology of psychiatric disorders. The precursor proBDNF is converted to mature BDNF and BDNF pro-peptide, the N-terminal fragment of proBDNF; however, the precise function of these proteins in psychiatric disorders is unknown. We sought to determine whether expression of these proteins is altered in the brain and peripheral tissues from patients with psychiatric disorders. We measured protein expression of proBDNF, mature BDNF...

  11. Increased CD147 (EMMPRIN) expression in the rat brain following traumatic brain injury.

    Science.gov (United States)

    Wei, Ming; Li, Hong; Shang, Yanguo; Zhou, Ziwei; Zhang, Jianning

    2014-10-17

    The extracellular matrix metalloproteinase inducer (EMMPRIN), or CD147, has been known to play a key regulatory role in vascular permeability and leukocyte activation by inducing the expression of matrix metalloproteinases (MMPs). The effects of traumatic brain injury on the expression of EMMPRIN remain poorly understood. In this study, we investigated changes in EMMPRIN expression in a rat model of fluid percussion injury (FPI) and examined the potential association between EMMPRIN and MMP-9 expression. Adult male rats were subjected to FPI. EMMPRIN expression was markedly up-regulated in the brain tissue surrounding the injured region 6-48 h after TBI, as measured by immunoblot and immunohistochemistry. EMMPRIN expression was localized to inflammatory cells. The increase in EMMPRIN expression was temporally correlated with an increase in MMP-9 levels. These data demonstrate, for the first time, changes in CD147 and MMP-9 expression following TBI. These data also suggest that CD147 and MMP-9 may play a role in vascular injuries after TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Pediatric brain tumors of neuroepithelial tissue; Hirntumoren des neuroepithelialen Gewebes im Kindesalter

    Energy Technology Data Exchange (ETDEWEB)

    Papanagiotou, P.; Politi, M. [Klinikum Bremen-Mitte/Bremen-Ost, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Bremen (Germany); Bergmann, M. [Klinikum Bremen-Mitte, Institut fuer Klinische Neuropathologie, Bremen (Germany); Pekrun, A. [Klinikum Bremen-Mitte, Klinik fuer Kinder- und Jugendmedizin, paed. Haematologie/Onkologie, Neonatologie, Bremen (Germany); Juergens, K.U. [Klinikum Bremen-Mitte, ZEMODI-Zentrum fuer moderne Diagnostik, MRT, Nuklearmedizin und PET-CT, Bremen (Germany)

    2014-08-15

    Tumors of neuroepithelial tissue represent the largest group of pediatric brain tumors by far and has therefore been divided into several discrete tumor subtypes each corresponding to a specific component of the neuropil. The neuropil contains several subtypes of glial cells, including astrocytes, oligodendrocytes, ependymal cells and modified ependymal cells that form the choroid plexus. This review discusses the imaging aspects of the most common pediatric tumors of neuroepithelial tissue. (orig.) [German] Tumoren des neuroepithelialen Gewebes stellen die mit Abstand groesste Gruppe der paediatrischen Hirntumoren dar und werden je nach deren Ursprung in diversen Subtypen unterteilt. Das Neuropil beinhaltet diverse Subtypen von Gliazellen: Astrozyten, Oligodendrozyten, ependymale Zellen und modifizierte ependymale Zellen, die den Plexus choroideus formen. In diesem Review werden die bildgebenden Aspekte mittels CT und MRT der haeufigsten Tumoren des neuroepithelialen Gewebes diskutiert. (orig.)

  13. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus

    Science.gov (United States)

    Jugé, Lauriane; Pong, Alice C.; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E.; Cheng, Shaokoon

    2016-01-01

    Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P hydrocephalus development. PMID:26848844

  14. Multimodal Raman-fluorescence spectroscopy of formalin fixed samples is able to discriminate brain tumors from dysplastic tissue

    Science.gov (United States)

    Anand, Suresh; Cicchi, Riccardo; Giordano, Flavio; Buccoliero, Anna Maria; Pavone, Francesco Saverio

    2014-05-01

    In the recent years, there has been a considerable surge in the application of spectroscopy for disease diagnosis. Raman and fluorescence spectra provide characteristic spectral profile related to biochemical and morphological changes when tissues progress from normal state towards malignancy. Spectroscopic techniques offer the advantage of being minimally invasive compared to traditional histopathology, real time and quantitative. In biomedical optical diagnostics, freshly excised specimens are preferred for making ex-vivo spectroscopic measurements. With regard to fresh tissues, if the lab is located far away from the clinic it could pose a problem as spectral measurements have to be performed immediately after dissection. Tissue samples are usually placed in a fixative agent such as 4% formaldehyde to preserve the samples before processing them for routine histopathological studies. Fixation prevents the tissues from decomposition by arresting autolysis. In the present study, we intend to investigate the possibility of using formalin fixed samples for discrimination of brain tumours from dysplastic tissue using Raman and fluorescence spectroscopy. Formalin fixed samples were washed with phosphate buffered saline for about 5 minutes in order to remove the effects of formalin during spectroscopic measurements. In case of fluorescence spectroscopy, changes in spectral profile have been observed in the region between 550-670 nm between dysplastic and tumor samples. For Raman measurements, we found significant differences in the spectral profiles between dysplasia and tumor. In conclusion, formalin fixed samples can be potentially used for the spectroscopic discrimination of tumor against dysplastic tissue in brain samples.

  15. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D [M.D. Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.

  16. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    International Nuclear Information System (INIS)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D

    2015-01-01

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted

  17. Piezosurgery prevents brain tissue damage: an experimental study on a new rat model

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, G.; Foltán, R.; Burian, M.; Horká, E.; Adámek, S.; Hejčl, Aleš; Hanzelka, T.; Šedý, Jiří

    2011-01-01

    Roč. 40, č. 8 (2011), s. 840-844 ISSN 0901-5027 R&D Projects: GA MŠk(CZ) LC554; GA ČR GAP304/10/0320 Grant - others:GA MŠk(CZ) 1M0538 Program:1M Institutional research plan: CEZ:AV0Z50390703 Keywords : piezosurgery * brain * tissue damage Subject RIV: FJ - Surgery incl. Transplants; FH - Neurology (UEM-P) Impact factor: 1.506, year: 2011

  18. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  19. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Jost, Gregor; Frenzel, Thomas; Lohrke, Jessica; Pietsch, Hubertus [MR and CT Contrast Media Research, Bayer Pharma AG, Berlin (Germany); Lenhard, Diana Constanze [Charite, Institute of Vegetative Physiology, Berlin (Germany); Naganawa, Shinji [Nagoya University Graduate School of Medicine, Department of Radiology, Nagoya (Japan)

    2017-07-15

    Signal hyperintensity on unenhanced MRI in certain brain regions has been reported after multiple administrations of some, but not all, gadolinium-based contrast agents (GBCAs). One potential initial pathway of GBCA entry into the brain, infiltration from blood into the cerebrospinal fluid (CSF), was systematically evaluated in this preclinical study. GBCA infiltration and distribution in the CSF were investigated in healthy rats using repeated fluid-attenuated MRI up to 4 h after high-dose (1.8 mmol/kg) administration of six marketed and one experimental GBCA. Additionally, gadolinium measurements in CSF, blood and brain tissue samples (after 24 h) were performed using inductively coupled plasma mass spectrometry. Enhanced MRI signals in the CSF spaces with similar distribution kinetics were observed for all GBCAs. No substantial differences in the gadolinium concentrations among the marketed GBCAs were found in the CSF, blood or brain tissue. After 4.5 h, the concentration in the CSF was clearly higher than in blood but was almost completely cleared and lower than the brain tissue concentration after 24 h. In contrast to the brain signal hyperintensities, no differences in penetration and distribution into the CSF of healthy rats exist among the marketed GBCAs. (orig.)

  20. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue

    International Nuclear Information System (INIS)

    Jost, Gregor; Frenzel, Thomas; Lohrke, Jessica; Pietsch, Hubertus; Lenhard, Diana Constanze; Naganawa, Shinji

    2017-01-01

    Signal hyperintensity on unenhanced MRI in certain brain regions has been reported after multiple administrations of some, but not all, gadolinium-based contrast agents (GBCAs). One potential initial pathway of GBCA entry into the brain, infiltration from blood into the cerebrospinal fluid (CSF), was systematically evaluated in this preclinical study. GBCA infiltration and distribution in the CSF were investigated in healthy rats using repeated fluid-attenuated MRI up to 4 h after high-dose (1.8 mmol/kg) administration of six marketed and one experimental GBCA. Additionally, gadolinium measurements in CSF, blood and brain tissue samples (after 24 h) were performed using inductively coupled plasma mass spectrometry. Enhanced MRI signals in the CSF spaces with similar distribution kinetics were observed for all GBCAs. No substantial differences in the gadolinium concentrations among the marketed GBCAs were found in the CSF, blood or brain tissue. After 4.5 h, the concentration in the CSF was clearly higher than in blood but was almost completely cleared and lower than the brain tissue concentration after 24 h. In contrast to the brain signal hyperintensities, no differences in penetration and distribution into the CSF of healthy rats exist among the marketed GBCAs. (orig.)

  1. Effects of isomers of apomorphines on dopamine receptors in striatal and limbic tissue of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Kula, N.S.; Baldessarini, R.J.; Bromley, S.; Neumeyer, J.L.

    1985-09-16

    The optical isomers of apomorphine (APO) and N-propylnorapomorphine (NPA) were interacted with three biochemical indices of dopamine (Da) receptors in extrapyramidal and limbic preparations of rat brain tissues. There were consistent isomeric preferences for the R(-) configuration of both DA analogs in stimulation adenylate cyclase (D-1 sites) and in competing for high affinity binding of /sup 3/H-spiroperidol (D-2 sites) and of /sup 3/H-ADTN (DA agonist binding sites) in striatal tissue, with lesser isomeric differences in the limbic tissue. The S(+) apomorphines did not inhibit stimulation of adenylate cyclase by DA. The tendency for greater activity of higher apparent affinity of R(-) apomorphines in striatum may reflect the evidently greater abundance of receptor sites in that region. There were only small regional differences in interactions of the apomorphine isomers with all three receptor sites, except for a strong preference of (-)NPA for striatal D-2 sites. These results do not parallel our recent observations indicating potent and selective antidopaminergic actions of S(+) apomorphines in the rat limbic system. They suggest caution in assuming close parallels between current biochemical functional, especially behavioral, methods of evaluating dopamine receptors of mammalian brain.

  2. Amyloid Precursor Protein and Proinflammatory Changes Are Regulated in Brain and Adipose Tissue in a Murine Model of High Fat Diet-Induced Obesity

    Science.gov (United States)

    Puig, Kendra L.; Floden, Angela M.; Adhikari, Ramchandra; Golovko, Mikhail Y.; Combs, Colin K.

    2012-01-01

    Background Middle age obesity is recognized as a risk factor for Alzheimer's disease (AD) although a mechanistic linkage remains unclear. Based upon the fact that obese adipose tissue and AD brains are both areas of proinflammatory change, a possible common event is chronic inflammation. Since an autosomal dominant form of AD is associated with mutations in the gene coding for the ubiquitously expressed transmembrane protein, amyloid precursor protein (APP) and recent evidence demonstrates increased APP levels in adipose tissue during obesity it is feasible that APP serves some function in both disease conditions. Methodology/Principal Findings To determine whether diet-induced obesity produced proinflammatory changes and altered APP expression in brain versus adipose tissue, 6 week old C57BL6/J mice were maintained on a control or high fat diet for 22 weeks. Protein levels and cell-specific APP expression along with markers of inflammation and immune cell activation were compared between hippocampus, abdominal subcutaneous fat and visceral pericardial fat. APP stimulation-dependent changes in macrophage and adipocyte culture phenotype were examined for comparison to the in vivo changes. Conclusions/Significance Adipose tissue and brain from high fat diet fed animals demonstrated increased TNF-α and microglial and macrophage activation. Both brains and adipose tissue also had elevated APP levels localizing to neurons and macrophage/adipocytes, respectively. APP agonist antibody stimulation of macrophage cultures increased specific cytokine secretion with no obvious effects on adipocyte culture phenotype. These data support the hypothesis that high fat diet-dependent obesity results in concomitant pro-inflammatory changes in brain and adipose tissue that is characterized, in part, by increased levels of APP that may be contributing specifically to inflammatory changes that occur. PMID:22276186

  3. Polychlorinated biphenyls in adipose tissue, liver, and brain from nine stillborns of varying gestational ages

    NARCIS (Netherlands)

    Huisman, M; Muskiet, FAJ; Van Der Paauw, CG; Essed, CE; Boersma, ER

    We analyzed polychlorinated biphenyls (PCBs) in s.c. adipose tissue, liver, and brain of nine fetuses who died in utero. Their median (range) gestational ages and birth weights were 34 (17-40) wk and 2050 (162-3225) g. Three fetuses were small for gestational age. The levels of PCB congener nos.

  4. Radiopharmaceuticals for localization in target tissues exhibiting a regional pH shift relative to surrounding tissues

    International Nuclear Information System (INIS)

    Blau, M.; Kung, H.F.

    1981-01-01

    This patent relates to the preparation and use of radiopharmaceutical chemical compounds comprising a radioactive isotope, other than an isotope of iodine, in chemical combination with at least one primary, secondary or tertiary amino group. The compounds have a lipophilicity sufficiently high at a pH of 7.6 to permit passage of the compound from the blood of a mammal into a target organ or tissue and sufficiently low at a pH of 6.6 to prevent rapid return of the compound from the target organ or tissue to the blood. The compounds have a percent protein binding of less than ninety percent. These compounds may be selectively deposited in at least one target tissue or organ of a mammal, the tissue or organ of which has a significantly different intracellular pH than the blood of the mammal, by introducing the compound of the invention into the bloodstream of the mammal. A plurality of selenide compounds containing Se-75 isotope are claimed in relation to the patent. (U.K.)

  5. Macrophage entry mediated by HIV Envs from brain and lymphoid tissues is determined by the capacity to use low CD4 levels and overall efficiency of fusion

    International Nuclear Information System (INIS)

    Thomas, Elaine R.; Dunfee, Rebecca L.; Stanton, Jennifer; Bogdan, Derek; Taylor, Joann; Kunstman, Kevin; Bell, Jeanne E.; Wolinsky, Steven M.; Gabuzda, Dana

    2007-01-01

    HIV infects macrophages and microglia in the central nervous system (CNS), which express lower levels of CD4 than CD4+ T cells in peripheral blood. To investigate mechanisms of HIV neurotropism, full-length env genes were cloned from autopsy brain and lymphoid tissues from 4 AIDS patients with HIV-associated dementia (HAD). Characterization of 55 functional Env clones demonstrated that Envs with reduced dependence on CD4 for fusion and viral entry are more frequent in brain compared to lymphoid tissue. Envs that mediated efficient entry into macrophages were frequent in brain but were also present in lymphoid tissue. For most Envs, entry into macrophages correlated with overall fusion activity at all levels of CD4 and CCR5. gp160 nucleotide sequences were compartmentalized in brain versus lymphoid tissue within each patient. Proline at position 308 in the V3 loop of gp120 was associated with brain compartmentalization in 3 patients, but mutagenesis studies suggested that P308 alone does not contribute to reduced CD4 dependence or macrophage-tropism. These results suggest that HIV adaptation to replicate in the CNS selects for Envs with reduced CD4 dependence and increased fusion activity. Macrophage-tropic Envs are frequent in brain but are also present in lymphoid tissues of AIDS patients with HAD, and entry into macrophages in the CNS and other tissues is dependent on the ability to use low receptor levels and overall efficiency of fusion

  6. Effects of cadmium and copper on sialic acid levels in blood and brain tissues of Cyprinus carpio L.

    Directory of Open Access Journals (Sweden)

    Utku Güner

    2014-09-01

    Full Text Available Objective: To investigate the effects of cadmium (Cd and copper (Cu on sialic acid levels of brain and blood tissues of Cyprinus carpio. Methods: Adult carps were exposed to 0.1, 0.5 mg/L Cu, 0.1, 0.5 and 1.0 mg/L Cd and 0.1 mg/ L Cu+0.1 mg/L Cd under static experiment conditions for 1 week. At the end of exposure period, heavy metal accumulations and sialic acid levels in blood and brain tissues of the test animals were analyzed. Results: Cu and Cd accumulated in tissues in a dramatically increasing dose-dependent manner. Sialic acids level of the fish exposed to 0.1, 0.5 and 1.0 mg/L Cu and Cd and control grups for 1 week were 0.834, 1.427, 0.672, 0.934, 2.968, 4.714 mg/mL respectively. The results also showed that Cu has an antagonistic effect on tissue sialic acid level. Conclusions: We propose that Cd and Cu make a complex with sialic acids of membranes in the tissues researched. This complex between metal ions and sialic acid migth account for the cellular toxicity based on Cu and Cd.

  7. Oxygen Mapping within Healthy and Acutely Infarcted Brain Tissue in Humans Using the NMR Relaxation of Lipids: A Proof-Of-Concept Translational Study.

    Science.gov (United States)

    Colliez, Florence; Safronova, Marta M; Magat, Julie; Joudiou, Nicolas; Peeters, André P; Jordan, Bénédicte F; Gallez, Bernard; Duprez, Thierry

    2015-01-01

    The clinical applicability of brain oxygenation mapping using the MOBILE (Mapping of Oxygen By Imaging Lipids relaxation Enhancement) magnetic resonance (MR) technique was assessed in the clinical setting of normal brain and of acute cerebral ischemia as a founding proof-of-concept translational study. Changes in the oxygenation level within healthy brain tissue can be detected by analyzing the spin-lattice proton relaxation ('Global T1' combining water and lipid protons) because of the paramagnetic properties of molecular oxygen. It was hypothesized that selective measurement of the relaxation of the lipid protons ('Lipids T1') would result in enhanced sensitivity of pO2 mapping because of higher solubility of oxygen in lipids than in water, and this was demonstrated in pre-clinical models using the MOBILE technique. In the present study, 12 healthy volunteers and eight patients with acute (48-72 hours) brain infarction were examined with the same clinical 3T MR system. Both Lipids R1 (R1 = 1/T1) and Global R1 were significantly different in the infarcted area and the contralateral unaffected brain tissue, with a higher statistical significance for Lipids R1 (median difference: 0.408 s-1; pbrain tissue of stroke patients were not significantly different from the R1 values calculated in the brain tissue of healthy volunteers. The main limitations of the present prototypic version of the MOBILE sequence are the long acquisition time (4 min), hampering robustness of data in uncooperative patients, and a 2 mm slice thickness precluding accurate measurements in small infarcts because of partial volume averaging effects.

  8. Technical pitfalls in a porcine brain retraction model. The impact of brain spatula on the retracted brain tissue in a porcine model: a feasibility study and its technical pitfalls

    Energy Technology Data Exchange (ETDEWEB)

    Thiex, R.; Hans, F.J.; Gilsbach, J.M. [Aachen University, Department of Neurosurgery, Aachen (Germany); Krings, T. [Aachen University, Department of Neuroradiology, Aachen (Germany); Sellhaus, B. [Aachen University, Department of Neuropathology, Aachen (Germany)

    2005-10-01

    We describe technical pitfalls of a porcine brain injury model for identifying primary and secondary pathological sequelae following brain retraction by brain spatula. In 16 anaesthetised male pigs, the right frontal brain was retracted in the interhemispheric fissure by a brain spatulum with varying pressures applied by the gravitational force of weights from 10 to 70 g for a duration of 30 min. The retracted brain tissue was monitored for changes in intracranial pressure and perfusion of the cortex using a Laser Doppler Perfusion Imager (MoorLDI). To evaluate the extent of oedema and cortical contusions, MRI was performed 30 min and 72 h after brain retraction. Following the MR scan, the retracted brain areas were histopathologically assessed using H and E and Fluoro-Jade B staining for neuronal damage. Sinus occlusion occurred in four animals, resulting in bilateral cortical contusions and extensive brain oedema. Retracting the brain with weights of 70 g (n=4) caused extensive oedema on FLAIR images that correlated clinically with a hemiparesis in three animals. Morphologically, an increased number of Fluoro-Jade B-positive neurons were found. A sequential decrease in weights prevented functional deficits in animals. A retraction pressure applied by 10-g weights (n=7) caused a mean rise in intracranial pressure to 4.0{+-}3.1 mm Hg, and a decrement in mean cortical perfusion from 740.8{+-}41.5 to 693.8{+-}72.4 PU/cm2, (P<0.24). A meticulous dissection of the interhemispheric fissure and a reduction of weights to 10 g were found to be mandatory to study the cortical impact caused by brain spatula reproducibly. (orig.)

  9. Technical pitfalls in a porcine brain retraction model. The impact of brain spatula on the retracted brain tissue in a porcine model: a feasibility study and its technical pitfalls

    International Nuclear Information System (INIS)

    Thiex, R.; Hans, F.J.; Gilsbach, J.M.; Krings, T.; Sellhaus, B.

    2005-01-01

    We describe technical pitfalls of a porcine brain injury model for identifying primary and secondary pathological sequelae following brain retraction by brain spatula. In 16 anaesthetised male pigs, the right frontal brain was retracted in the interhemispheric fissure by a brain spatulum with varying pressures applied by the gravitational force of weights from 10 to 70 g for a duration of 30 min. The retracted brain tissue was monitored for changes in intracranial pressure and perfusion of the cortex using a Laser Doppler Perfusion Imager (MoorLDI). To evaluate the extent of oedema and cortical contusions, MRI was performed 30 min and 72 h after brain retraction. Following the MR scan, the retracted brain areas were histopathologically assessed using H and E and Fluoro-Jade B staining for neuronal damage. Sinus occlusion occurred in four animals, resulting in bilateral cortical contusions and extensive brain oedema. Retracting the brain with weights of 70 g (n=4) caused extensive oedema on FLAIR images that correlated clinically with a hemiparesis in three animals. Morphologically, an increased number of Fluoro-Jade B-positive neurons were found. A sequential decrease in weights prevented functional deficits in animals. A retraction pressure applied by 10-g weights (n=7) caused a mean rise in intracranial pressure to 4.0±3.1 mm Hg, and a decrement in mean cortical perfusion from 740.8±41.5 to 693.8±72.4 PU/cm2, (P<0.24). A meticulous dissection of the interhemispheric fissure and a reduction of weights to 10 g were found to be mandatory to study the cortical impact caused by brain spatula reproducibly. (orig.)

  10. Brain tissues atrophy is not always the best structural biomarker of physiological aging: A multimodal cross-sectional study.

    Science.gov (United States)

    Cherubini, Andrea; Caligiuri, Maria Eugenia; Péran, Patrice; Sabatini, Umberto; Cosentino, Carlo; Amato, Francesco

    2015-01-01

    This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2* relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. These findings highlight the importance of a combined evaluation of multimodal biomarkers for the study of aging and point to a number of novel applications for the method described.

  11. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  12. Cell Membrane Tracking in Living Brain Tissue Using Differential Interference Contrast Microscopy.

    Science.gov (United States)

    Lee, John; Kolb, Ilya; Forest, Craig R; Rozell, Christopher J

    2018-04-01

    Differential interference contrast (DIC) microscopy is widely used for observing unstained biological samples that are otherwise optically transparent. Combining this optical technique with machine vision could enable the automation of many life science experiments; however, identifying relevant features under DIC is challenging. In particular, precise tracking of cell boundaries in a thick ( ) slice of tissue has not previously been accomplished. We present a novel deconvolution algorithm that achieves the state-of-the-art performance at identifying and tracking these membrane locations. Our proposed algorithm is formulated as a regularized least squares optimization that incorporates a filtering mechanism to handle organic tissue interference and a robust edge-sparsity regularizer that integrates dynamic edge tracking capabilities. As a secondary contribution, this paper also describes new community infrastructure in the form of a MATLAB toolbox for accurately simulating DIC microscopy images of in vitro brain slices. Building on existing DIC optics modeling, our simulation framework additionally contributes an accurate representation of interference from organic tissue, neuronal cell-shapes, and tissue motion due to the action of the pipette. This simulator allows us to better understand the image statistics (to improve algorithms), as well as quantitatively test cell segmentation and tracking algorithms in scenarios, where ground truth data is fully known.

  13. MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue

    DEFF Research Database (Denmark)

    Hanrieder, Jørg; Wicher, Grzegorz; Bergquist, Jonas

    2011-01-01

    . Complementary proteomic experiments revealed the identity of these signature proteins that were predominantly expressed in the different glial cell types, including histone H4 for oligodendrocytes and S100-A10 for astrocytes. MALDI imaging MS was performed, and signature masses were employed as molecular...... tracers for prediction of oligodendroglial and astroglial localization in brain tissue. The different cell type specific protein distributions in tissue were validated using immunohistochemistry. ICMS of intact neuroglia is a simple and straightforward approach for characterization and discrimination...

  14. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI.

    Science.gov (United States)

    Moeskops, Pim; de Bresser, Jeroen; Kuijf, Hugo J; Mendrik, Adriënne M; Biessels, Geert Jan; Pluim, Josien P W; Išgum, Ivana

    2018-01-01

    Automatic segmentation of brain tissues and white matter hyperintensities of presumed vascular origin (WMH) in MRI of older patients is widely described in the literature. Although brain abnormalities and motion artefacts are common in this age group, most segmentation methods are not evaluated in a setting that includes these items. In the present study, our tissue segmentation method for brain MRI was extended and evaluated for additional WMH segmentation. Furthermore, our method was evaluated in two large cohorts with a realistic variation in brain abnormalities and motion artefacts. The method uses a multi-scale convolutional neural network with a T 1 -weighted image, a T 2 -weighted fluid attenuated inversion recovery (FLAIR) image and a T 1 -weighted inversion recovery (IR) image as input. The method automatically segments white matter (WM), cortical grey matter (cGM), basal ganglia and thalami (BGT), cerebellum (CB), brain stem (BS), lateral ventricular cerebrospinal fluid (lvCSF), peripheral cerebrospinal fluid (pCSF), and WMH. Our method was evaluated quantitatively with images publicly available from the MRBrainS13 challenge ( n  = 20), quantitatively and qualitatively in relatively healthy older subjects ( n  = 96), and qualitatively in patients from a memory clinic ( n  = 110). The method can accurately segment WMH (Overall Dice coefficient in the MRBrainS13 data of 0.67) without compromising performance for tissue segmentations (Overall Dice coefficients in the MRBrainS13 data of 0.87 for WM, 0.85 for cGM, 0.82 for BGT, 0.93 for CB, 0.92 for BS, 0.93 for lvCSF, 0.76 for pCSF). Furthermore, the automatic WMH volumes showed a high correlation with manual WMH volumes (Spearman's ρ  = 0.83 for relatively healthy older subjects). In both cohorts, our method produced reliable segmentations (as determined by a human observer) in most images (relatively healthy/memory clinic: tissues 88%/77% reliable, WMH 85%/84% reliable) despite various degrees of

  15. Determination of the neuropharmacological drug nodakenin in rat plasma and brain tissues by liquid chromatography tandem mass spectrometry: Application to pharmacokinetic studies.

    Science.gov (United States)

    Song, Yingshi; Yan, Huiyu; Xu, Jingbo; Ma, Hongxi

    2017-09-01

    A rapid and sensitive liquid chromatography tandem mass spectrometry detection using selected reaction monitoring in positive ionization mode was developed and validated for the quantification of nodakenin in rat plasma and brain. Pareruptorin A was used as internal standard. A single step liquid-liquid extraction was used for plasma and brain sample preparation. The method was validated with respect to selectivity, precision, accuracy, linearity, limit of quantification, recovery, matrix effect and stability. Lower limit of quantification of nodakenin was 2.0 ng/mL in plasma and brain tissue homogenates. Linear calibration curves were obtained over concentration ranges of 2.0-1000 ng/mL in plasma and brain tissue homogenates for nodakenin. Intra-day and inter-day precisions (relative standard deviation, RSD) were <15% in both biological media. This assay was successfully applied to plasma and brain pharmacokinetic studies of nodakenin in rats after intravenous administration. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Macro- and microelements in the rat liver, kidneys, and brain tissues; sex differences and effect of blood removal by perfusion in vivo.

    Science.gov (United States)

    Orct, Tatjana; Jurasović, Jasna; Micek, Vedran; Karaica, Dean; Sabolić, Ivan

    2017-03-01

    Concentrations of macro- and microelements in animal organs indicate the animal health status and represent reference data for animal experiments. Their levels in blood and tissues could be different between sexes, and could be different with and without blood in tissues. To test these hypotheses, in adult female and male rats the concentrations of various elements were measured in whole blood, blood plasma, and tissues from blood-containing (nonperfused) and blood-free liver, kidneys, and brain (perfused in vivo with an elements-free buffer). In these samples, 6 macroelements (Na, Mg, P, S, K, Ca) and 14 microelements (Fe, Mn, Co, Cu, Zn, Se, I, As, Cd, Hg, Pb, Li, B, Sr) were determined by inductively coupled plasma mass spectrometry following nitric acid digestion. In blood and plasma, female- or male-dominant sex differences were observed for 6 and 5 elements, respectively. In nonperfused organs, sex differences were observed for 3 (liver, brain) or 9 (kidneys) elements, whereas in perfused organs, similar differences were detected for 9 elements in the liver, 5 in the kidneys, and none in the brain. In females, perfused organs had significantly lower concentrations of 4, 5, and 2, and higher concentrations of 10, 4, and 7 elements, respectively, in the liver, kidneys, and brain. In males, perfusion caused lower concentrations of 4, 7, and 2, and higher concentrations of 1, 1, and 7 elements, respectively, in the liver, kidneys, and brain. Therefore, the residual blood in organs can significantly influence tissue concentrations of various elements and their sex-dependency. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. High affinity, ligand specific uptake of complexed copper-67 by brain tissue incubated in vitro

    International Nuclear Information System (INIS)

    Barnea, A.; Hartter, D.E.

    1987-01-01

    Copper is an essential metal that is highly concentrated in the brain. The blood, the sole source of tissue Cu, contains 16-20 μM Cu, of which >95% is complexed to proteins and 2 was 10 times greater than that of CuAlbumin or Cu(II). Within the range of 0.2-150μM Cu, multiple uptake sites for CuHis were apparent. Increasing the molar ratio of His:Cu had a differential effect on Cu uptake: enhancing uptake at [Cu] 1 μM. Thus, using a His:Cu ratio of 1000, they observed a high affinity process exhibiting saturating and half saturating values of 5 μM and 1.5 μM Cu, respectively; using a His:Cu ratio of 2, they observed a low affinity process exhibiting saturating and half-saturating values of 100 μM and 40 μM Cu, respectively. Both processes required thermic but not metabolic energy, suggestive of facilitated diffusion. Considering the blood brain barrier for proteins, CuHis appears to be the major substrate for Cu uptake by neuronal tissue. They demonstrate the existence of a ligand specific, high affinity (apparent Km about 1.5 μM Cu) uptake process for CuHis in the brain, operative at the physiological concentration range of CuHis and histidine

  18. Aggregation is a critical cause of poor transfer into the brain tissue of intravenously administered cationic PAMAM dendrimer nanoparticles

    Directory of Open Access Journals (Sweden)

    Kurokawa Y

    2017-05-01

    Full Text Available Yoshika Kurokawa,1 Hideko Sone,1 Tin-Tin Win-Shwe,1 Yang Zeng,1 Hiroyuki Kimura,2 Yosuke Koyama,1 Yusuke Yagi,2 Yasuto Matsui,3 Masashi Yamazaki,4 Seishiro Hirano1 1Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, 2Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 3Department of Environmental Engineering, Kyoto University Graduate School of Engineering, Kyoto, 4TIA Center Office, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan Abstract: Dendrimers have been expected as excellent nanodevices for brain medication. An amine-terminated polyamidoamine dendrimer (PD, an unmodified plain type of PD, has the obvious disadvantage of cytotoxicity, but still serves as an attractive molecule because it easily adheres to the cell surface, facilitating easy cellular uptake. Single-photon emission computed tomographic imaging of a mouse following intravenous injection of a radiolabeled PD failed to reveal any signal in the intracranial region. Furthermore, examination of the permeability of PD particles across the blood–brain barrier (BBB in vitro using a commercially available kit revealed poor permeability of the nanoparticles, which was suppressed by an inhibitor of caveolae-mediated endocytosis, but not by an inhibitor of macropinocytosis. Physicochemical analysis of the PD revealed that cationic PDs are likely to aggregate promptly upon mixing with body fluids and that this prompt aggregation is probably driven by non-Derjaguin–Landau–Verwey–Overbeek attractive forces originating from the surrounding divalent ions. Atomic force microscopy observation of a freshly cleaved mica plate soaked in dendrimer suspension (culture media confirmed prompt aggregation. Our study revealed poor transfer of intravenously administered cationic PDs into the intracranial nervous tissue, and the results of our analysis

  19. MR brain scan tissues and structures segmentation: local cooperative Markovian agents and Bayesian formulation

    International Nuclear Information System (INIS)

    Scherrer, B.

    2008-12-01

    Accurate magnetic resonance brain scan segmentation is critical in a number of clinical and neuroscience applications. This task is challenging due to artifacts, low contrast between tissues and inter-individual variability that inhibit the introduction of a priori knowledge. In this thesis, we propose a new MR brain scan segmentation approach. Unique features of this approach include (1) the coupling of tissue segmentation, structure segmentation and prior knowledge construction, and (2) the consideration of local image properties. Locality is modeled through a multi-agent framework: agents are distributed into the volume and perform a local Markovian segmentation. As an initial approach (LOCUS, Local Cooperative Unified Segmentation), intuitive cooperation and coupling mechanisms are proposed to ensure the consistency of local models. Structures are segmented via the introduction of spatial localization constraints based on fuzzy spatial relations between structures. In a second approach, (LOCUS-B, LOCUS in a Bayesian framework) we consider the introduction of a statistical atlas to describe structures. The problem is reformulated in a Bayesian framework, allowing a statistical formalization of coupling and cooperation. Tissue segmentation, local model regularization, structure segmentation and local affine atlas registration are then coupled in an EM framework and mutually improve. The evaluation on simulated and real images shows good results, and in particular, a robustness to non-uniformity and noise with low computational cost. Local distributed and cooperative MRF models then appear as a powerful and promising approach for medical image segmentation. (author)

  20. Multimodality instrument for tissue characterization

    Science.gov (United States)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2004-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration. The use of this system will make surgical procedures safer, more accurate, and more efficient. Other applications of this system include the detection, prognosis and treatment of breast cancer, prostate cancer, spinal diseases, and use in general exploratory surgery.

  1. Nicotine affects hydrogen sulfide concentrations in mouse kidney and heart but not in brain and liver tissues.

    Science.gov (United States)

    Wiliński, Jerzy; Wiliński, Bogdan; Somogyi, Eugeniusz; Piotrowska, Joanna; Kameczura, Tomasz; Zygmunt, Małgorzata

    2017-01-01

    Nicotine, a potent parasympathomimetic alkaloid with stimulant effects, is contributing to addictive properties of tobacco smoking and is though used in the smoking cessation therapy. Hydrogen sulfide (H2S) is involved in physiology and pathophysiology of various systems in mammals. The interactions between nicotine and H2S are not fully recognized. The aim of the study is to assess the influence of nicotine on the H2S tissue concentrations in different mouse organs. Adult CBA male mice were administered intraperitoneally 1.5 mg/kg b.w. per day of nicotine (group D1, n = 10) or 3 mg/ kg b.w. per day of nicotine (group D2, n = 10). The control group (n = 10) received physiological saline. The measurements of the free and acid-labile H2S tissue concentrations were performed with the Siegel spectrophotometric modi ed method. ere was a significant increase in H2S concentrations in both nicotine doses groups in the kidney (D1 by 54.2%, D2 by 40.0%). In the heart the higher nicotine dose caused a marked decrease in H2S tissue level (by 65.4%), while the lower dose did not affect H2S content. Nicotine administration had no effect on H2S concentrations in the brain and liver. In conclusion, nicotine affects H2S tissue concentrations in kidney and heart but not in the liver and brain tissues.

  2. Effect of MgSO4 on expression of NSE and S-100 in rats brain tissue irradiated by 6 MeV electron beam

    International Nuclear Information System (INIS)

    Zhou Juying; Wang Lili; Yu Zhiying; Qin Songbing; Xu Xiaoting; Li Li; Tu Yu

    2007-01-01

    Objective: To explore the protection of magnesium sulfate (MgSO 4 ) on radiation-induced acute brain injuries. Methods: Thirty six mature Sprague-Dawley rats were randomly divided into 3 groups: blank control group, experimental control group and experimental administered group. The whole brain of SD rats of experimental control group and experimental-therapeutic group were irradiated with a dose of 20 Gy using 6 MeV electron beam. Magnesium sulfate was injected intraperitoneally into the rats of experimental-therapeutic group before and after irradiation for five times. The brain tissue were taken on days 1, 7, 14 and 30 after irradiation. Immunohistochemical method was used to detect the expressions of NSE and S-100 in brain tissue. All data were processed statistically with One-ANOVA analysis. Results: The expressions of NSE and S-100 after whole brain irradiation were time-dependent. Compared with blank control group, the expression of NSE in brains of experimental control group decreased significantly (P 4 can inhibit the expression of S-100, but induce the expression of NSE on radiation-induced acute brain injury. MgSO 4 has a protective effect on radiation-induced acute brain injury. (authors)

  3. Brain tumors and synchrotron radiation: Methodological developments in quantitative brain perfusion imaging and radiation therapy

    International Nuclear Information System (INIS)

    Adam, Jean-Francois

    2005-01-01

    High-grade gliomas are the most frequent type of primary brain tumors in adults. Unfortunately, the management of glioblastomas is still mainly palliative and remains a difficult challenge, despite advances in brain tumor molecular biology and in some emerging therapies. Synchrotron radiation opens fields for medical imaging and radiation therapy by using monochromatic intense x-ray beams. It is now well known that angiogenesis plays a critical role in the tumor growth process and that brain perfusion is representative of the tumor mitotic activity. Synchrotron radiation quantitative computed tomography (SRCT) is one of the most accurate techniques for measuring in vivo contrast agent concentration and thus computing precise and accurate absolute values of the brain perfusion key parameters. The methodological developments of SRCT absolute brain perfusion measurements as well as their preclinical validation are detailed in this thesis. In particular, absolute cerebral volume and blood brain barrier permeability high-resolution (pixel size 2 ) parametric maps were reported. In conventional radiotherapy, the treatment of these tumors remains a delicate challenge, because the damages to the surrounding normal brain tissue limit the amount of radiation that can be delivered. One strategy to overcome this limitation is to infuse an iodinated contrast agent to the patient during the irradiation. The contrast agent accumulates in the tumor, through the broken blood brain barrier, and the irradiation is performed with kilovoltage x rays, in tomography mode, the tumor being located at the center of rotation and the beam size adjusted to the tumor dimensions. The dose enhancement results from the photoelectric effect on the heavy element and from the irradiation geometry. Synchrotron beams, providing high intensity, tunable monochromatic x rays, are ideal for this treatment. The beam properties allow the selection of monochromatic irradiation, at the optimal energy, for a

  4. Proficiency performance benchmarks for removal of simulated brain tumors using a virtual reality simulator NeuroTouch.

    Science.gov (United States)

    AlZhrani, Gmaan; Alotaibi, Fahad; Azarnoush, Hamed; Winkler-Schwartz, Alexander; Sabbagh, Abdulrahman; Bajunaid, Khalid; Lajoie, Susanne P; Del Maestro, Rolando F

    2015-01-01

    Assessment of neurosurgical technical skills involved in the resection of cerebral tumors in operative environments is complex. Educators emphasize the need to develop and use objective and meaningful assessment tools that are reliable and valid for assessing trainees' progress in acquiring surgical skills. The purpose of this study was to develop proficiency performance benchmarks for a newly proposed set of objective measures (metrics) of neurosurgical technical skills performance during simulated brain tumor resection using a new virtual reality simulator (NeuroTouch). Each participant performed the resection of 18 simulated brain tumors of different complexity using the NeuroTouch platform. Surgical performance was computed using Tier 1 and Tier 2 metrics derived from NeuroTouch simulator data consisting of (1) safety metrics, including (a) volume of surrounding simulated normal brain tissue removed, (b) sum of forces utilized, and (c) maximum force applied during tumor resection; (2) quality of operation metric, which involved the percentage of tumor removed; and (3) efficiency metrics, including (a) instrument total tip path lengths and (b) frequency of pedal activation. All studies were conducted in the Neurosurgical Simulation Research Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada. A total of 33 participants were recruited, including 17 experts (board-certified neurosurgeons) and 16 novices (7 senior and 9 junior neurosurgery residents). The results demonstrated that "expert" neurosurgeons resected less surrounding simulated normal brain tissue and less tumor tissue than residents. These data are consistent with the concept that "experts" focused more on safety of the surgical procedure compared with novices. By analyzing experts' neurosurgical technical skills performance on these different metrics, we were able to establish benchmarks for goal proficiency performance training of neurosurgery residents. This

  5. Protective effect of pineapple (Ananas cosmosus peel extract on alcohol-induced oxidative stress in brain tissues of male albino rats

    Directory of Open Access Journals (Sweden)

    Ochuko L Erukainure

    2011-03-01

    Full Text Available Objective: To investigate the ability of pineapple peels to protect against alcohol-induced oxidative stress in brain tissues using male albino rat models. Methods: Response surface methodology (RSM was used to design a series of experiments to optimize treatment conditions with the aim of investigating the protective effect of pineapple peel extract on alcohol-induced oxidative stress in brain tissues. Oxidative stress was induced by oral administration of ethanol (20% w/v at a dosage of 5 mL/kg bw. The treatment lasted for 28 days. At the end of the treatment, the rats were fasted overnight and sacrificed by cervical dislocation. Tissue homogenates were used for the assessment of protein concentration, reduced glutathione (GSH content, catalase, and SOD. Results: Alcohol administration caused a significant decrease (P>0.05 in GSH level in the group which was only fed alcohol. Treatment with pineapple peel extracts caused increase in GSH level in alcohol fed groups. No significant difference (P<0.05 was observed in SOD levels of the negative control and group fed on only pineapple peel extract. Elevated level of catalase was observed in the negative control but pineapple peel extract significantly reduced the levels. Conclusions: This study indicates the protective effect of pineapple peel against alcoholinduced oxidative stress in brain tissues.

  6. A permeability barrier surrounds taste buds in lingual epithelia

    Science.gov (United States)

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa

    2014-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003–1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. PMID:25209263

  7. A permeability barrier surrounds taste buds in lingual epithelia.

    Science.gov (United States)

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2015-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003-1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. Copyright © 2015 the American Physiological Society.

  8. High resolution post-mortem MRI of non-fixed in situ foetal brain in the second trimester of gestation. Normal foetal brain development

    Energy Technology Data Exchange (ETDEWEB)

    Scola, Elisa; Palumbo, Giovanni; Avignone, Sabrina; Cinnante, Claudia Maria [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan (Italy); Conte, Giorgio [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan (Italy); Universita degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan (Italy); Boito, Simona; Persico, Nicola [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Department of Obstetrics and Gynaecology ' L. Mangiagalli' , Milan (Italy); Rizzuti, Tommaso [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Pathology Unit, Milan (Italy); Triulzi, Fabio [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan (Italy); Universita degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan (Italy)

    2018-01-15

    To describe normal foetal brain development with high resolution post-mortem MRI (PMMRI) of non-fixed foetal brains. We retrospectively collected PMMRIs of foetuses without intracranial abnormalities and chromosomal aberrations studied after a termination of pregnancy due to extracranial abnormalities or after a spontaneous intrauterine death. PMMRIs were performed on a 3-T scanner without any fixation and without removing the brain from the skull. All PMMRIs were evaluated in consensus by two neuroradiologists. Our analysis included ten PMMRIs (median gestational age (GA): 21 weeks; range: 17-28 weeks). At 19 and 20 weeks of GA, the corticospinal tracts are recognisable in the medulla oblongata, becoming less visible from 21 weeks. Prior to 20 weeks the posterior limb of the internal capsule (PLIC) is more hypointense than surrounding deep grey nuclei; starting from 21 weeks the PLIC becomes isointense, and is hyperintense at 28 weeks. From 19-22 weeks, the cerebral hemispheres show transient layers: marginal zone, cortical plate, subplate, and intermediate, subventricular and germinal zones. PMMRI of non-fixed in situ foetal brains preserves the natural tissue contrast and skull integrity. We assessed foetal brain development in a small cohort of foetuses, focusing on 19-22 weeks of gestation. (orig.)

  9. High resolution post-mortem MRI of non-fixed in situ foetal brain in the second trimester of gestation. Normal foetal brain development

    International Nuclear Information System (INIS)

    Scola, Elisa; Palumbo, Giovanni; Avignone, Sabrina; Cinnante, Claudia Maria; Conte, Giorgio; Boito, Simona; Persico, Nicola; Rizzuti, Tommaso; Triulzi, Fabio

    2018-01-01

    To describe normal foetal brain development with high resolution post-mortem MRI (PMMRI) of non-fixed foetal brains. We retrospectively collected PMMRIs of foetuses without intracranial abnormalities and chromosomal aberrations studied after a termination of pregnancy due to extracranial abnormalities or after a spontaneous intrauterine death. PMMRIs were performed on a 3-T scanner without any fixation and without removing the brain from the skull. All PMMRIs were evaluated in consensus by two neuroradiologists. Our analysis included ten PMMRIs (median gestational age (GA): 21 weeks; range: 17-28 weeks). At 19 and 20 weeks of GA, the corticospinal tracts are recognisable in the medulla oblongata, becoming less visible from 21 weeks. Prior to 20 weeks the posterior limb of the internal capsule (PLIC) is more hypointense than surrounding deep grey nuclei; starting from 21 weeks the PLIC becomes isointense, and is hyperintense at 28 weeks. From 19-22 weeks, the cerebral hemispheres show transient layers: marginal zone, cortical plate, subplate, and intermediate, subventricular and germinal zones. PMMRI of non-fixed in situ foetal brains preserves the natural tissue contrast and skull integrity. We assessed foetal brain development in a small cohort of foetuses, focusing on 19-22 weeks of gestation. (orig.)

  10. Scintigraphic assessment of vascularity and blood-tissue barrier of human brain tumours

    International Nuclear Information System (INIS)

    Front, D.

    1978-01-01

    Assessment of vascularity and blood-tissue barrier was performed by sequential scintigraphy in 43 patients with brain tumours. The blood-tumour barrier was evaluated by use of sup(99m)Tc-pertechnetate, and vascularity using sup(99m)Tc-labelled red blood cells. Three groups of tumours were found: tumours with low vascularity and permeable barrier, tumours with high vascularity and permeable barrier, and tumours with low vascularity and relatively impermeable barrier. The first group indicates that when vessels are permeable, there may be a rapid penetration of large amounts of pertechnetate into the tumour even when vascularity is not increased. In the other two groups penetration of pertechnetate into the tumour is affected by vascularity, as it determines the total area where passage of the radiopharmaceutical takes place. It is suggested that the permeability of the blood-tumour barrier and the amount of vascularity may have an effect on the success of chemotherapy in brain tumours. (author)

  11. Radiation-induced brain damage in children; Histological analysis of sequential tissue changes in 34 autopsy cases

    Energy Technology Data Exchange (ETDEWEB)

    Oi, Shizuo; Kokunai, Takashi; Ijichi, Akihiro; Matsumoto, Satoshi [Kobe Univ. (Japan). School of Medicine; Raimondi, A J

    1990-01-01

    The nature and sequence of the radiation-induced changes in the brain were studied postmortem in 34 children with glioma, 22 of whom underwent central nervous system radiation therapy. Twenty received whole-brain or whole-neuroaxis radiation at a total mean dosage of 4063 cGy. Brain tissue alternations were analyzed histologically by means of various staining methods, including immunohistochemical techniques. The histological features of irradiated brains were compared with those of non-irradiated brains. Microscopic findings included demyelination (seven cases), focal necrosis (six cases), cortical atrophy (four cases), endothelial proliferation (four cases), and telangiectatic vascular proliferation with vascular thickening and oozing of a thick fluid (one case). Such findings were rare in non-irradiated patients. Demyelination was observed earliest in a patient who died 5 months after radiation therapy and was more common after 9 months. Focal necrosis was first observed 9 months post-irradiation but was more advanced and extensive after 1 year. Calcified foci were found only after 60 months. Various vascular changes such as vascular thickening and thrombosis suggested ischemic insult to the brain as a late effect of radiation injury. The results of this study suggest that the immature brain may be more sensitive to radiation than is the adult brain, and that the manifestations of radiation-induced injury depend on the time elapsed after irradiation. (author).

  12. Brain hypoxia imaging

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-04-15

    The measurement of pathologically low levels of tissue pO{sub 2} is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowadays have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. {sup 18}F-MISO PET and {sup 99m}Tc-EC-metronidazole SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using {sup 123}I-IAZA in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.

  13. Histopathological Study of Protective Effects of Honey on Subacute Toxicity of Acrylamide-Induced Tissue Lesions in Rats’ Brain and Liver

    Directory of Open Access Journals (Sweden)

    Parichehr Ahrari Roodi

    2018-04-01

    Full Text Available Background: The therapeutic potential of honey is related to antioxidant activity against reactive oxygen species because it contains compounds such as polyphenols; therefore, we evaluated the potential protective effect of honey on subacute toxicity of ACR by histopathologic study on tissue lesions in rat. Methods: In Ferdowsi University of Mashhad, Mashhad, Iran, 2016, male Wistar rats were divided into 7 groups. To induce toxicity, ACR was injected (50 mg/kg for 11 d to rats in 5 groups. In treatment groups, rats received three doses of honey 1.25, 2.5, and 5 g/kg in addition to the ACR. The two remaining groups received vitamin E (200 IU/kg and normal saline as positive and negative control respectively. On the last day, after necropsy, tissue specimens from brain and liver were collected for histopathological studies. Results: Receiving of ACR caused tissue injuries including degeneration, necrosis, hyperemia, hemorrhage and inflammation in liver; ischemic cell change, hyperemia, hemorrhage and edema in brain tissue. Administration of honey considerably reduced tissue damages caused by ACR, particularly with dosage 5 g/kg. Conclusion: The severity of tissue lesions caused by the ACR can be reduced by honey, likely through its antioxidant activity. Increasing concentrations of honey will enhance its effectiveness.

  14. [Changes in 2,3-diphosphoglycerate Levels in Blood and Brain Tissue after Craniocerebral Trauma and Cardiac Surgery].

    Science.gov (United States)

    Hausdörfer, J; Heller, W; Junger, H; Oldenkott, P; Stunkat, R

    1976-10-01

    The response of the 2,3-diphosphoglycerate (DPG) levels in the blood and brain tissue to a craniocerebral trauma of varying severity was studied in anaesthetized rats. A trauma producing cerebral contusion was followed within two hours by a highly significant rise in DPG concentration in the blood as compared with the control animals or only mildly traumatized rats. The DPG levels in the brain tissue showed no significant differences. Similar changes in DPG concentration were observed in the blood of patients with craniocerebral injuries. The DPG-mediated increased release of oxygen to the tissues represents a compensatory mechanism and is pathognomic for craniocerebral trauma. Patients undergoing surgery with extracorporeal circulation lack this mechanism for counteracting hypoxaemia; already during thoracotomy the DPG concentration in the blood fell significantly and did not reach its original level until 72 hours after the operation. In stored, ACD stabilized, blood the DPG concentration gradually decreases. Estimations carried out over 28 days showed a continuous statistically significant loss of DPG. After 24 hours the DPG levels in stored blood had already dropped to the lower limits of normal - a fact that has to be taken into account in massive blood transfusions.

  15. Multichannel optical brain imaging to separate cerebral vascular, tissue metabolic, and neuronal effects of cocaine

    Science.gov (United States)

    Ren, Hugang; Luo, Zhongchi; Yuan, Zhijia; Pan, Yingtian; Du, Congwu

    2012-02-01

    Characterization of cerebral hemodynamic and oxygenation metabolic changes, as well neuronal function is of great importance to study of brain functions and the relevant brain disorders such as drug addiction. Compared with other neuroimaging modalities, optical imaging techniques have the potential for high spatiotemporal resolution and dissection of the changes in cerebral blood flow (CBF), blood volume (CBV), and hemoglobing oxygenation and intracellular Ca ([Ca2+]i), which serves as markers of vascular function, tissue metabolism and neuronal activity, respectively. Recently, we developed a multiwavelength imaging system and integrated it into a surgical microscope. Three LEDs of λ1=530nm, λ2=570nm and λ3=630nm were used for exciting [Ca2+]i fluorescence labeled by Rhod2 (AM) and sensitizing total hemoglobin (i.e., CBV), and deoxygenated-hemoglobin, whereas one LD of λ1=830nm was used for laser speckle imaging to form a CBF mapping of the brain. These light sources were time-sharing for illumination on the brain and synchronized with the exposure of CCD camera for multichannel images of the brain. Our animal studies indicated that this optical approach enabled simultaneous mapping of cocaine-induced changes in CBF, CBV and oxygenated- and deoxygenated hemoglobin as well as [Ca2+]i in the cortical brain. Its high spatiotemporal resolution (30μm, 10Hz) and large field of view (4x5 mm2) are advanced as a neuroimaging tool for brain functional study.

  16. HSV presence in brains of individuals without dementia: the TASTY brain series

    Directory of Open Access Journals (Sweden)

    Jan Olsson

    2016-11-01

    Full Text Available Herpes simplex virus (HSV type 1 affects a majority of the population and recent evidence suggests involvement in Alzheimer's disease aetiology. We investigated the prevalence of HSV type 1 and 2 in the Tampere Autopsy Study (TASTY brain samples using PCR and sero-positivity in plasma, and associations with Alzheimer's disease neuropathology. HSV was shown to be present in human brain tissue in 11/584 (1.9% of samples in the TASTY cohort, of which six had Alzheimer's disease neuropathological amyloid beta (Aβ aggregations. Additionally, serological data revealed 86% of serum samples tested were IgG-positive for HSV. In conclusion, we report epidemiological evidence of the presence of HSV in brain tissue free from encephalitis symptoms in a cohort most closely representing the general population (a minimum prevalence of 1.9%. Whereas 6/11 samples with HSV DNA in the brain tissue had Aβ aggregations, most of those with Aβ aggregations did not have HSV present in the brain tissue.

  17. Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy.

    Science.gov (United States)

    Krasieva, Tatiana B; Ehren, Jennifer; O'Sullivan, Thomas; Tromberg, Bruce J; Maher, Pamela

    2015-10-01

    Over the last few years, we have identified an orally active, novel neuroprotective and cognition-enhancing molecule, the flavonoid fisetin. Fisetin not only has direct antioxidant activity but it can also increase the intracellular levels of glutathione, the major intracellular antioxidant. Fisetin can also activate key neurotrophic factor signaling pathways. In addition, it has anti-inflammatory activity against microglia and astrocytes and inhibits the activity of lipoxygenases, thereby reducing the production of pro-inflammatory eicosanoids and their by-products. However, key questions about its targets and brain penetration remain. In this study, we used label-free two-photon microscopy of intrinsic fisetin fluorescence to examine the localization of fisetin in living nerve cells and the brains of living mice. In cells, fisetin but not structurally related flavonols with different numbers of hydroxyl groups, localized to the nucleoli suggesting that key targets of fisetin may reside in this organelle. In the mouse brain, following intraperitoneal injection and oral administration, fisetin rapidly distributed to the blood vessels of the brain followed by a slower dispersion into the brain parenchyma. Thus, these results provide further support for the effects of fisetin on brain function. In addition, they suggest that label-free two-photon microscopy may prove useful for studying the intracellular and tissue distribution of other intrinsically-fluorescent flavonoids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sajib, Saurav Z. K.; Jeong, Woo Chul; Oh, Tong In; Kim, Hyung Joong, E-mail: bmekim@khu.ac.kr, E-mail: ejwoo@khu.ac.kr; Woo, Eung Je, E-mail: bmekim@khu.ac.kr, E-mail: ejwoo@khu.ac.kr [Department of Biomedical Engineering, Kyung Hee University, Seoul 02447 (Korea, Republic of); Kyung, Eun Jung [Department of Pharmacology, Chung-Ang University, Seoul 06974 (Korea, Republic of); Kim, Hyun Bum [Department of East-West Medical Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Kwon, Oh In [Department of Mathematics, Konkuk University, Seoul 05029 (Korea, Republic of)

    2016-06-15

    Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.

  19. Laser-Neuron Interaction with Femtosecond Beat-Modulated 800-1200 nm Photon Beams, as the Treatment of Brain Cancer Tissue. Laser Neurophysics

    Science.gov (United States)

    Stefan, V. Alexander

    2011-03-01

    I propose a novel mechanism for the brain cancer tissue treatment: nonlinear interaction of ultrashort pulses of beat-photon, (ω1 -- ω2) , or double-photon, (ω1 +ω2) , beams with the cancer tissue. The multiphoton scattering is described via photon diffusion equation. The open-scull cerebral tissue can be irradiated with the beat-modulated photon pulses with the laser irradiances in the range of a few mW/cm2 , and repetition rate of a few 100s Hz generated in the beat-wave driven free electron laser. V. Stefan, B. I. Cohen, and C. Joshi, Nonlinear Mixing of Electromagnetic Waves in PlasmasScience 27 January 1989: V. Alexander Stefan, Genomic Medical Physics: A New Physics in the Making, (S-U-Press, 2008).} This highly accurate cancer tissue ablation removal may prove to be an efficient method for the treatment of brain cancer. Work supported in part by Nikola Tesla Laboratories (Stefan University), La Jolla, CA.

  20. Determination of pharmacological levels of harmane, harmine and harmaline in mammalian brain tissue, cerebrospinal fluid and plasma by high-performance liquid chromatography with fluorimetric detection.

    Science.gov (United States)

    Moncrieff, J

    1989-11-24

    Increased blood aldehyde levels, as occur in alcohol intoxication, could lead to the formation of beta-carbolines such as harmane by condensation with indoleamines. Endogenous beta-carbolines, therefore, should occur in specific brain areas where indoleamine concentrations are high, whilst exogenous beta-carbolines should exhibit an even distribution. The author presents direct and sensitive methods for assaying the beta-carbolines harmane, harmine and harmaline in brain tissue, cerebrospinal fluid and plasma at picogram sample concentrations using reversed-phase high-performance liquid chromatography with fluorimetric detection and minimal sample preparation. Using these assay methods, it was found that the distribution of beta-carbolines from a source exogenous to the brain results in a relatively even distribution within the brain tissue.

  1. Special distribution of polybrominated diphenyl ethers in brain tissues of free-range domestic hens and ducks from a village near an electronic waste recycling site in South China.

    Science.gov (United States)

    Yang, Zhong-Zhi; Li, Yong-Fang; Fu, Shan; Zhao, Xing-Ru

    2011-03-01

    The rural village, Taizhou of Zhejiang Province, had been exposed to e-waste recycling for years, the polybrominated diphenyl ether (PBDE) levels in hens and ducks were high. The concentration of ∑PBDEs in the brain was the lowest among tissues of individual hens and ducks after correction for the respective lipid content. Also, the concentration ratio of BDE-153 versus BDE-154 (153/154) of brain was the highest among tissues of individual hens and ducks. Our results indicate that the hindrance of blood-brain barrier to compounds, such as high molecular weight and non-planar conformation (steric hindrance), contributed to the low concentration of PBDEs in the brain tissue of hens and ducks, especially in cases exposed to high levels of PBDE.

  2. Brain banking for immunocytochemistry and autoradiography

    International Nuclear Information System (INIS)

    Eymin, C.; Jordan, D.; Saint-Pierre, G.; Kopp, N.

    1993-01-01

    The aim of a human brain bank is to establish groups of matched brains (normal control versus pathological groups) for studying human diseases of the nervous system. This bank is obtained by means of autopsy performed with a very short post-mortem delay and from clinically and neuropathologically well-documented patients. According to research protocols, two types of brain tissue storage are performed: fixed tissue or frozen tissue. Brain dissection procedures are performed according to precise anatomical boundaries of each brain region. This paper will center on the questions raised by brain banking in relation to histological and immunocytochemical studies and to biochemistry and autoradiography of binding sites. The lack of neuroanatomical data of the human brain leads us to compare anatomical results obtained in animals to that of the human. Moreover, it is clear that human brains present numerous interindividual differences (Kopp et al., 1977; Jack et al., 1989). Therefore, investigations of the human brain should be made on a large series of brains indicating the necessity of a well-documented brain bank of tissue from normal controls and patients. (authors)

  3. Brain physiological state evaluated by real-time multiparametric tissue spectroscopy in vivo

    Science.gov (United States)

    Mayevsky, Avraham; Barbiro-Michaely, Efrat; Kutai-Asis, Hofit; Deutsch, Assaf; Jaronkin, Alex

    2004-07-01

    The significance of normal mitochondrial function in cellular energy homeostasis as well as its involvement in acute and chronic neurodegenerative disease was reviewed recently (Nicholls & Budd. Physiol Rev. 80: 315-360, 2000). Nevertheless, monitoring of mitochondrial function in vivo and real time mode was not used by many investigators and is very rare in clinical practice. The main principle tool available for the evaluation of mitochondrial function is the monitoring of NADH fluorescence. In order to interpret correctly the changes in NADH redox state in vivo, it is necessary to correlate this signal to other parameters, reflecting O2 supply to the brain. Therefore, we have developed and applied a multiparametric optical monitoring system, by which microcirculatory blood flow and hemoglobin oxygenation is measured, together with mitochondrial NADH fluorescence. Since the calibration of these signals is not in absolute units, the simultaneous monitoring provide a practical tool for the interpretation of brain functional state under various pathophysiological conditions. The monitoring system combines a time-sharing fluorometer-reflectometer for the measurement of NADH fluorescence and hemoglobin oxygenation as well as a laser Doppler flowmeter for the recording of microcirculatory blood flow. A combined fiber optic probe was located on the surface of the brain using a skull cemented cannula. Rats and gerbils were exposed to anoxia, ischemia and spreading depression and the functional state of the brain was evaluated. The results showed a clear correlation between O2 supply/demand as well as, energy balance under the various pathophysiological conditions. This monitoring approach could be adapted to clinical monitoring of tissue vitality.

  4. Expression of defective measles virus genes in brain tissues of patients with subacute sclerosing panencephalitis

    International Nuclear Information System (INIS)

    Baczko, K.; Liebert, U.G.; Billeter, M.; Cattaneo, R.; Budka, H.; Ter Meulen, V.

    1986-01-01

    The persistence of measles virus in selected areas of the brains of four patients with subacute sclerosing panencephalitis (SSPE) was characterized by immunohistological and biochemical techniques. The five measles virus structural proteins were never simultaneously detectable in any of the bran sections. Nucleocapsid proteins and phosphoproteins were found in every diseased brain area, whereas hemagglutinin protein was detected in two cases, fusion protein was detected in three cases, and matrix protein was detected in only one case. Also, it could be shown that the amounts of measles virus RNA in the brains differed from patient to patient and in the different regions investigated. In all patients, plus-strand RNAs specific for these five viral genes could be detected. However, the amounts of fusion and hemagglutinin mRNAs were low compared with the amounts in lytically infected cells. The presence of particular measles virus RNAs in SSPE-infected brains did not always correlate with mRNA activity. In in vitro translations, the matrix protein was produced in only one case, and the hemagglutinin protein was produced in none. These results indicate that measles virus persistence in SSPE is correlated with different defects of several genes which probably prevent assembly of viral particles in SSPE-infected brain tissue

  5. Some positive effects of pine oil on brain tissue in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Demir, E.; Keser, S.; Yilmiz, O.

    2016-01-01

    Pine oil has antiseptic, expectorant and antioxidant properties and has been used for treatment of rheumatism, respiratory and urinary system and skin diseases. We aimed to determine protective effects of pine oil (PO) on the lipid-soluble vitamins, cholesterol, GSH, total protein, MDA, fatty acid levels of brain tissue of the streptozotocin-induced diabetic rats. Rats were randomly divided into three groups: Control (C), streptozotocin (STZ), streptozotocin+pine oil (PO) groups. Streptozotocin was injected intraperitoneally single dose (65 mg/kg) to the STZ and PO groups for inducing of diabetes. To the PO group 1 mg/kg dose pine oil was intraperitoneally injected every next day. While the GSH and total protein were significantly decreased in the Streptozotocin (STZ) group, their levels were protected in PO group. MDA level was significantly increased in STZ group, its level significantly decreased in the PO group. Our results showed that PO has a positive effect on the GSH, total protein, and MDA levels in the brain tissue of diabetic rats. The PO and STZ administrations were affected by levels of some important fatty acids. The decrease in the MDA level and observed protecting effects can be attributed to PO extract, because it contains some important phytochemical constituents. (author)

  6. Imaging cellular and subcellular structure of human brain tissue using micro computed tomography

    Science.gov (United States)

    Khimchenko, Anna; Bikis, Christos; Schweighauser, Gabriel; Hench, Jürgen; Joita-Pacureanu, Alexandra-Teodora; Thalmann, Peter; Deyhle, Hans; Osmani, Bekim; Chicherova, Natalia; Hieber, Simone E.; Cloetens, Peter; Müller-Gerbl, Magdalena; Schulz, Georg; Müller, Bert

    2017-09-01

    Brain tissues have been an attractive subject for investigations in neuropathology, neuroscience, and neurobiol- ogy. Nevertheless, existing imaging methodologies have intrinsic limitations in three-dimensional (3D) label-free visualisation of extended tissue samples down to (sub)cellular level. For a long time, these morphological features were visualised by electron or light microscopies. In addition to being time-consuming, microscopic investigation includes specimen fixation, embedding, sectioning, staining, and imaging with the associated artefacts. More- over, optical microscopy remains hampered by a fundamental limit in the spatial resolution that is imposed by the diffraction of visible light wavefront. In contrast, various tomography approaches do not require a complex specimen preparation and can now reach a true (sub)cellular resolution. Even laboratory-based micro computed tomography in the absorption-contrast mode of formalin-fixed paraffin-embedded (FFPE) human cerebellum yields an image contrast comparable to conventional histological sections. Data of a superior image quality was obtained by means of synchrotron radiation-based single-distance X-ray phase-contrast tomography enabling the visualisation of non-stained Purkinje cells down to the subcellular level and automated cell counting. The question arises, whether the data quality of the hard X-ray tomography can be superior to optical microscopy. Herein, we discuss the label-free investigation of the human brain ultramorphology be means of synchrotron radiation-based hard X-ray magnified phase-contrast in-line tomography at the nano-imaging beamline ID16A (ESRF, Grenoble, France). As an example, we present images of FFPE human cerebellum block. Hard X-ray tomography can provide detailed information on human tissues in health and disease with a spatial resolution below the optical limit, improving understanding of the neuro-degenerative diseases.

  7. BrainNet Europe's Code of Conduct for brain banking.

    Science.gov (United States)

    Klioueva, Natasja M; Rademaker, Marleen C; Dexter, David T; Al-Sarraj, Safa; Seilhean, Danielle; Streichenberger, Nathalie; Schmitz, Peer; Bell, Jeanne E; Ironside, James W; Arzberger, Thomas; Huitinga, Inge

    2015-07-01

    Research utilizing human tissue and its removal at post-mortem has given rise to many controversies in the media and posed many dilemmas in the fields of law and ethics. The law often lacks clear instructions and unambiguous guidelines. The absence of a harmonized international legislation with regard to post-mortem medical procedures and donation of tissue and organs contributes to the complexity of the issue. Therefore, within the BrainNet Europe (BNE) consortium, a consortium of 19 European brain banks, we drafted an ethical Code of Conduct for brain banking that covers basic legal rules and bioethical principles involved in brain banking. Sources include laws, regulations and guidelines (Declarations, Conventions, Recommendations, Guidelines and Directives) issued by international key organizations, such as the Council of Europe, European Commission, World Medical Association and World Health Organization. The Code of Conduct addresses fundamental topics as the rights of the persons donating their tissue, the obligations of the brain bank with regard to respect and observance of such rights, informed consent, confidentiality, protection of personal data, collections of human biological material and their management, and transparency and accountability within the organization of a brain bank. The Code of Conduct for brain banking is being adopted by the BNE network prior to being enshrined in official legislation for brain banking in Europe and beyond.

  8. Analysis of a human brain transcriptome map

    Directory of Open Access Journals (Sweden)

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  9. Cavitation Induced Structural and Neural Damage in Live Brain Tissue Slices: Relevance to TBI

    Science.gov (United States)

    2014-09-29

    objective of this project is to determine the conditions conducive for cavitation in cerebrospinal fluid (CSF) and corresponding tissue injury in 2-D brain...the radius of an isolated spherical bubble in an infinite, incompressible liquid is given by Where, R is the instantaneous bubble radius, which can...by the pressure transducer placed in the test chamber, and PR is the pressure in the liquid at the boundary of the bubble. The measurable bubble

  10. [Estimation of Time-Dependent microRNA Expression Patterns in Brain Tissue, Leukocytes, and Blood Plasma of Rats under Photochemically Induced Focal Cerebral Ischemia].

    Science.gov (United States)

    Gusar, V A; Timofeeva, A V; Zhanin, I S; Shram, S I; Pinelis, V G

    2017-01-01

    miRNA expression over different time periods (24 and 48 h) using the quantitative RT-PCR and deep sequencing has been evaluated in a model of photochemically induced thrombosis. A combination of two approaches allowed us to determine the miRNA expression patterns caused by ischemia. Nine miRNAs, including let-7f-5p, miR-221-3p, miR-21-5p, miR-30c-5p, miR-30a-3p, miR-223-3p, miR-23a-3p, miR-22-5p, and miR-99a-5p, were differentially expressed in brain tissue and leukocytes of rats 48 h after onset of ischemia. In addition, six miRNAs were differentially expressed in the brain tissue and blood plasma of rats 24 h after exposure, among which miR-145-3p and miR-375-3p were downregulated and miR-19a-3p, miR-92a-3p, miR-188-5p, and miR-532-5p were upregulated. In our opinion, miR-188-5p and miR-532-5p may be considered to be new potential markers of ischemic injury. The level of miRNA expression tended to increase 48 h after the onset of ischemia in brain tissue and leukocytes, which reflects not only the local response in brain tissue due to inflammation, vascular endothelial dysfunction, and disorders of the permeability of the blood-brain barrier, but also the systemic response of the organism to multifactor molecular processes induced by ischemic injury.

  11. The blood-tendon barrier: identification and characterisation of a novel tissue barrier in tendon blood vessels

    Directory of Open Access Journals (Sweden)

    C Lehner

    2016-05-01

    Full Text Available Tissue barriers function as “gate keepers” between different compartments (usually blood and tissue and are formed by specialised membrane-associated proteins, localising to the apicolateral plasma membrane domain of epithelial and endothelial cells. By sealing the paracellular space, the free diffusion of solutes and molecules across epithelia and endothelia is impeded. Thereby, tissue barriers contribute to the establishment and maintenance of a distinct internal and external environment, which is crucial during organ development and allows maintenance of an organ-specific homeostatic milieu. So far, various epithelial and endothelial tissue barriers have been described, including the blood-brain barrier, the blood-retina barrier, the blood-testis barrier, the blood-placenta barrier, and the cerebrospinal fluid (CSF-brain barrier, which are vital for physiological function and any disturbance of these barriers can result in severe organ damage or even death. Here, we describe the identification of a novel barrier, located in the vascular bed of tendons, which we term the blood-tendon barrier (BTB. By using immunohistochemistry, transmission electron microscopy, and tracer studies we demonstrate the presence of a functional endothelial barrier within tendons restricting the passage of large blood-borne molecules into the surrounding tendon tissue. We further provide in vitro evidence that the BTB potentially contributes to the creation of a distinct internal tissue environment impacting upon the proliferation and differentiation of tendon-resident cells, effects which might be fundamental for the onset of tendon pathologies.

  12. Preclinical models to study the impact of the blood-brain barrier in brain tumor chemotherapy

    NARCIS (Netherlands)

    Vries, N.A. de

    2009-01-01

    High-grade gliomas, in particular Glioblastoma Multiforme (GBM), are the most common primary brain tumors in adults and among the deadliest of human cancers. Their location and the extensively infiltrative character of tumor cells into surrounding normal brain structures is an impediment for all

  13. MO-F-CAMPUS-J-04: Tissue Segmentation-Based MR Electron Density Mapping Method for MR-Only Radiation Treatment Planning of Brain

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Lee, Y [Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Ruschin, M [Odette Cancer Centre, Toronto, ON (Canada); Karam, I [Sunnybrook Odette Cancer Center, Toronto, Ontario (Canada); Sahgal, A [University of Toronto, Toronto, ON (Canada)

    2015-06-15

    Purpose: Automatically derive electron density of tissues using MR images and generate a pseudo-CT for MR-only treatment planning of brain tumours. Methods: 20 stereotactic radiosurgery (SRS) patients’ T1-weighted MR images and CT images were retrospectively acquired. First, a semi-automated tissue segmentation algorithm was developed to differentiate tissues with similar MR intensities and large differences in electron densities. The method started with approximately 12 slices of manually contoured spatial regions containing sinuses and airways, then air, bone, brain, cerebrospinal fluid (CSF) and eyes were automatically segmented using edge detection and anatomical information including location, shape, tissue uniformity and relative intensity distribution. Next, soft tissues - muscle and fat were segmented based on their relative intensity histogram. Finally, intensities of voxels in each segmented tissue were mapped into their electron density range to generate pseudo-CT by linearly fitting their relative intensity histograms. Co-registered CT was used as a ground truth. The bone segmentations of pseudo-CT were compared with those of co-registered CT obtained by using a 300HU threshold. The average distances between voxels on external edges of the skull of pseudo-CT and CT in three axial, coronal and sagittal slices with the largest width of skull were calculated. The mean absolute electron density (in Hounsfield unit) difference of voxels in each segmented tissues was calculated. Results: The average of distances between voxels on external skull from pseudo-CT and CT were 0.6±1.1mm (mean±1SD). The mean absolute electron density differences for bone, brain, CSF, muscle and fat are 78±114 HU, and 21±8 HU, 14±29 HU, 57±37 HU, and 31±63 HU, respectively. Conclusion: The semi-automated MR electron density mapping technique was developed using T1-weighted MR images. The generated pseudo-CT is comparable to that of CT in terms of anatomical position of

  14. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue.

    Science.gov (United States)

    Jost, Gregor; Frenzel, Thomas; Lohrke, Jessica; Lenhard, Diana Constanze; Naganawa, Shinji; Pietsch, Hubertus

    2017-07-01

    Signal hyperintensity on unenhanced MRI in certain brain regions has been reported after multiple administrations of some, but not all, gadolinium-based contrast agents (GBCAs). One potential initial pathway of GBCA entry into the brain, infiltration from blood into the cerebrospinal fluid (CSF), was systematically evaluated in this preclinical study. GBCA infiltration and distribution in the CSF were investigated in healthy rats using repeated fluid-attenuated MRI up to 4 h after high-dose (1.8 mmol/kg) administration of six marketed and one experimental GBCA. Additionally, gadolinium measurements in CSF, blood and brain tissue samples (after 24 h) were performed using inductively coupled plasma mass spectrometry. Enhanced MRI signals in the CSF spaces with similar distribution kinetics were observed for all GBCAs. No substantial differences in the gadolinium concentrations among the marketed GBCAs were found in the CSF, blood or brain tissue. After 4.5 h, the concentration in the CSF was clearly higher than in blood but was almost completely cleared and lower than the brain tissue concentration after 24 h. In contrast to the brain signal hyperintensities, no differences in penetration and distribution into the CSF of healthy rats exist among the marketed GBCAs. • Gadolinium-based contrast agents can cross the blood-CSF barrier. • Fluid-attenuated MRI shows GBCA distribution with CSF flow. • GBCA structure and physicochemical properties do not impact CSF penetration and distribution. • GBCA clearance from CSF was almost complete within 24 h in rats. • CSF is a potential pathway of GBCA entry into the brain.

  15. Fatty acid composition of total lipids and phospholipids of muscular tissue and brain of rats under the impact of vibration

    Directory of Open Access Journals (Sweden)

    N. M. Kostyshyn

    2016-06-01

    Full Text Available Fatty acids are important structural components of biological membranes, energy substrate of cells involved in fixing phospholipid bilayer proteins, and acting as regulators and modulators of enzymatic activity. Under the impact of vibration oscillations there can occur shifts in the ratio of different groups of fatty acids, and degrees of their saturation may change. The imbalance between saturated, monounsaturated and polyunsaturated fatty acids, which occurs later in the cell wall, disrupts fluidity and viscosity of lipid phase and causes abnormal cellular metabolism. Aim. In order to study the impact of vibration on the level of fatty acids of total lipids in muscular tissue and fatty acid composition of phospholipids in muscles and brain, experimental animals have been exposed to vertical vibration oscillations with different frequency for 28 days. Methods and results. Tissues fragments of hip quadriceps and brain of rats were used for obtaining methyl esters of fatty acids studied by the method of gas-liquid chromatography. It was found that the lipid content, ratio of its separate factions and fatty acid composition in muscular tissue and brain of animals with the action of vibration considerably varies. With the increase of vibration acceleration tendency to increase in absolute quantity of total lipids fatty acids can be observed at the account of increased level of saturated and monounsaturated ones. These processes are caused by activation of self-defense mechanisms of the body under the conditions of deviations from stabilized physiological norm, since adaptation requires certain structural and energy costs. Increase in the relative quantity of saturated and monounsaturated fatty acids in phospholipids of muscles and brain and simultaneous reduction in concentration of polyunsaturated fatty acids are observed. Conclusion. These changes indicate worsening of structural and functional organization of muscles and brain cell membranes of

  16. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS

    Directory of Open Access Journals (Sweden)

    Johnston Jennifer

    2011-07-01

    Full Text Available Abstract Background Bardet-Biedl syndrome (BBS is a heterogeneous human disorder inherited in an autosomal recessive pattern, and characterized by the primary findings of obesity, polydactyly, hypogonadism, and learning and behavioural problems. BBS mouse models have a neuroanatomical phenotype consisting of third and lateral ventriculomegaly, thinning of the cerebral cortex, and reduction in the size of the corpus striatum and hippocampus. These abnormalities raise the question of whether humans with BBS have a characteristic morphologic brain phenotype. Further, although behavioral, developmental, neurological and motor defects have been noted in patients with BBS, to date, there are limited reports of brain findings in BBS. The present study represents the largest systematic evaluation for the presence of structural brain malformations and/or progressive changes, which may contribute to these functional problems. Methods A case-control study of 21 patients, most aged 13-35 years, except for 2 patients aged 4 and 8 years, who were diagnosed with BBS by clinical criteria and genetic analysis of known BBS genes, and were evaluated by qualitative and volumetric brain MRI scans. Healthy controls were matched 3:1 by age, sex and race. Statistical analysis was performed using SAS language with SAS STAT procedures. Results All 21 patients with BBS were found to have statistically significant region- and tissue-specific patterns of brain abnormalities. There was 1 normal intracranial volume; 2 reduced white matter in all regions of the brain, but most in the occipital region; 3 preserved gray matter volume, with increased cerebral cortex volume in only the occipital lobe; 4 reduced gray matter in the subcortical regions of the brain, including the caudate, putamen and thalamus, but not in the cerebellum; and 5 increased cerebrospinal fluid volume. Conclusions There are distinct and characteristic abnormalities in tissue- and region- specific volumes

  17. Rescuing Perishable Neuroanatomical Information from a Threatened Biodiversity Hotspot: Remote Field Methods for Brain Tissue Preservation Validated by Cytoarchitectonic Analysis, Immunohistochemistry, and X-Ray Microcomputed Tomography.

    Science.gov (United States)

    Hughes, Daniel F; Walker, Ellen M; Gignac, Paul M; Martinez, Anais; Negishi, Kenichiro; Lieb, Carl S; Greenbaum, Eli; Khan, Arshad M

    2016-01-01

    Biodiversity hotspots, which harbor more endemic species than elsewhere on Earth, are increasingly threatened. There is a need to accelerate collection efforts in these regions before threatened or endangered species become extinct. The diverse geographical, ecological, genetic, morphological, and behavioral data generated from the on-site collection of an individual specimen are useful for many scientific purposes. However, traditional methods for specimen preparation in the field do not permit researchers to retrieve neuroanatomical data, disregarding potentially useful data for increasing our understanding of brain diversity. These data have helped clarify brain evolution, deciphered relationships between structure and function, and revealed constraints and selective pressures that provide context about the evolution of complex behavior. Here, we report our field-testing of two commonly used laboratory-based techniques for brain preservation while on a collecting expedition in the Congo Basin and Albertine Rift, two poorly known regions associated with the Eastern Afromontane biodiversity hotspot. First, we found that transcardial perfusion fixation and long-term brain storage, conducted in remote field conditions with no access to cold storage laboratory equipment, had no observable impact on cytoarchitectural features of lizard brain tissue when compared to lizard brain tissue processed under laboratory conditions. Second, field-perfused brain tissue subjected to prolonged post-fixation remained readily compatible with subsequent immunohistochemical detection of neural antigens, with immunostaining that was comparable to that of laboratory-perfused brain tissue. Third, immersion-fixation of lizard brains, prepared under identical environmental conditions, was readily compatible with subsequent iodine-enhanced X-ray microcomputed tomography, which facilitated the non-destructive imaging of the intact brain within its skull. In summary, we have validated

  18. Rescuing Perishable Neuroanatomical Information from a Threatened Biodiversity Hotspot: Remote Field Methods for Brain Tissue Preservation Validated by Cytoarchitectonic Analysis, Immunohistochemistry, and X-Ray Microcomputed Tomography.

    Directory of Open Access Journals (Sweden)

    Daniel F Hughes

    Full Text Available Biodiversity hotspots, which harbor more endemic species than elsewhere on Earth, are increasingly threatened. There is a need to accelerate collection efforts in these regions before threatened or endangered species become extinct. The diverse geographical, ecological, genetic, morphological, and behavioral data generated from the on-site collection of an individual specimen are useful for many scientific purposes. However, traditional methods for specimen preparation in the field do not permit researchers to retrieve neuroanatomical data, disregarding potentially useful data for increasing our understanding of brain diversity. These data have helped clarify brain evolution, deciphered relationships between structure and function, and revealed constraints and selective pressures that provide context about the evolution of complex behavior. Here, we report our field-testing of two commonly used laboratory-based techniques for brain preservation while on a collecting expedition in the Congo Basin and Albertine Rift, two poorly known regions associated with the Eastern Afromontane biodiversity hotspot. First, we found that transcardial perfusion fixation and long-term brain storage, conducted in remote field conditions with no access to cold storage laboratory equipment, had no observable impact on cytoarchitectural features of lizard brain tissue when compared to lizard brain tissue processed under laboratory conditions. Second, field-perfused brain tissue subjected to prolonged post-fixation remained readily compatible with subsequent immunohistochemical detection of neural antigens, with immunostaining that was comparable to that of laboratory-perfused brain tissue. Third, immersion-fixation of lizard brains, prepared under identical environmental conditions, was readily compatible with subsequent iodine-enhanced X-ray microcomputed tomography, which facilitated the non-destructive imaging of the intact brain within its skull. In summary, we

  19. A survey of MRI-based medical image analysis for brain tumor studies

    Science.gov (United States)

    Bauer, Stefan; Wiest, Roland; Nolte, Lutz-P.; Reyes, Mauricio

    2013-07-01

    MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines.

  20. A survey of MRI-based medical image analysis for brain tumor studies

    International Nuclear Information System (INIS)

    Bauer, Stefan; Nolte, Lutz-P; Reyes, Mauricio; Wiest, Roland

    2013-01-01

    MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines. (topical review)

  1. Diffusion tensor imaging and neuromodulation: DTI as key technology for deep brain stimulation.

    Science.gov (United States)

    Coenen, Volker Arnd; Schlaepfer, Thomas E; Allert, Niels; Mädler, Burkhard

    2012-01-01

    Diffusion tensor imaging (DTI) is more than just a useful adjunct to invasive techniques like optogenetics which recently have tremendously influenced our understanding of the mechanisms of deep brain stimulation (DBS). In combination with other technologies, DTI helps us to understand which parts of the brain tissue are connected to others and which ones are truly influenced with neuromodulation. The complex interaction of DBS with the surrounding tissues-scrutinized with DTI-allows to create testable hypotheses that can explain network interactions. Those interactions are vital for our understanding of the net effects of neuromodulation. This work naturally was first done in the field of movement disorder surgery, where a lot of experience regarding therapeutic effects and only a short latency between initiation of neuromodulation and alleviation of symptoms exist. This chapter shows the journey over the past 10 years with first applications in DBS toward current research in affect regulating network balances and their therapeutic alterations with the neuromodulation technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Effect of Brain Tumor Presence During Radiation on Tissue Toxicity: Transcriptomic and Metabolic Changes.

    Science.gov (United States)

    Zawaski, Janice A; Sabek, Omaima M; Voicu, Horatiu; Eastwood Leung, Hon-Chiu; Gaber, M Waleed

    2017-11-15

    Radiation therapy (RT) causes functional and transcriptomic changes in the brain; however, most studies have been carried out in normal rodent brains. Here, the long-term effect of irradiation and tumor presence during radiation was investigated. Male Wistar rats ∼7 weeks old were divided into 3 groups: sham implant, RT+sham implant, and RT+tumor implant (C6 glioma). Hypofractionated irradiation (8 or 6 Gy/day for 5 days) was localized to a 1-cm strip of cranium starting 5 days after implantation, resulting in complete tumor regression and prolonged survival. Biopsy of tissue was performed in the implant area 65 days after implantation. RNA was hybridized to GeneChip Rat Exon 1.0 ST array. Data were analyzed using significant analysis of microarrays and ingenuity pathway analysis. 1 H magnetic resonance spectroscopy ( 1 H-MRS) imaging was performed in the implantation site 65 to 70 days after implantation using a 9.4 T Biospec magnetic resonance imaging scanner with a quadrature rat brain array. Immunohistochemical staining for astrogliosis, HMG-CoA synthase 2, γ-aminobutyric acid (GABA) and taurine was performed at ∼65 days after implantation. Eighty-four genes had a false discovery rate <3.5%. We compared RT+tumor implant with RT+sham implant animals. The tumor presence affected networks associated with cancer/cell morphology/tissue morphology. 1 H-MRS showed significant reduction in taurine levels (P<.04) at the implantation site in both groups. However, the RT+tumor group also showed significant increase in levels of neurotransmitter GABA (P=.02). Hippocampal taurine levels were only significantly reduced in the RT+tumor group (P=.03). HMG-CoA synthase 2, GABA and taurine levels were confirmed using staining. Glial fibrillary acidic protein staining demonstrated a significant increase in inflammation that was heightened in the RT+tumor group. Our data indicate that tumor presence during radiation significantly affects long-term functional

  3. Analysis of specific absorption rate and internal electric field in human biological tissues surrounding an air-core coil-type transcutaneous energy transmission transformer.

    Science.gov (United States)

    Shiba, Kenji; Zulkifli, Nur Elina Binti; Ishioka, Yuji

    2017-06-01

    In this study, we analyzed the internal electric field E and specific absorption rate (SAR) of human biological tissues surrounding an air-core coil transcutaneous energy transmission transformer. Using an electromagnetic simulator, we created a model of human biological tissues consisting of a dry skin, wet skin, fat, muscle, and cortical bone. A primary coil was placed on the surface of the skin, and a secondary coil was located subcutaneously inside the body. The E and SAR values for the model representing a 34-year-old male subject were analyzed using electrical frequencies of 0.3-1.5 MHz. The transmitting power was 15 W, and the load resistance was 38.4 Ω. The results showed that the E values were below the International Commission on Non-ionizing Radiation Protection (ICNIRP) limit for the general public exposure between the frequencies of 0.9 and 1.5 MHz, and SAR values were well below the limit prescribed by the ICNIRP for the general public exposure between the frequencies of 0.3 and 1.2 MHz.

  4. Brain infection with Staphylococcus aureus leads to high extracellular levels of glutamate, aspartate, γ-aminobutyric acid, and zinc.

    Science.gov (United States)

    Hassel, Bjørnar; Dahlberg, Daniel; Mariussen, Espen; Goverud, Ingeborg Løstegaard; Antal, Ellen-Ann; Tønjum, Tone; Maehlen, Jan

    2014-12-01

    Staphylococcal brain infections may cause mental deterioration and epileptic seizures, suggesting interference with normal neurotransmission in the brain. We injected Staphylococcus aureus into rat striatum and found an initial 76% reduction in the extracellular level of glutamate as detected by microdialysis at 2 hr after staphylococcal infection. At 8 hr after staphylococcal infection, however, the extracellular level of glutamate had increased 12-fold, and at 20 hr it had increased >30-fold. The extracellular level of aspartate and γ-aminobutyric acid (GABA) also increased greatly. Extracellular Zn(2+) , which was estimated at ∼2.6 µmol/liter in the control situation, was increased by 330% 1-2.5 hr after staphylococcal infection and by 100% at 8 and 20 hr. The increase in extracellular glutamate, aspartate, and GABA appeared to reflect the degree of tissue damage. The area of tissue damage greatly exceeded the area of staphylococcal infiltration, pointing to soluble factors being responsible for cell death. However, the N-methyl-D-aspartate receptor antagonist MK-801 ameliorated neither tissue damage nor the increase in extracellular neuroactive amino acids, suggesting the presence of neurotoxic factors other than glutamate and aspartate. In vitro staphylococci incubated with glutamine and glucose formed glutamate, so bacteria could be an additional source of infection-related glutamate. We conclude that the dramatic increase in the extracellular concentration of neuroactive amino acids and zinc could interfere with neurotransmission in the surrounding brain tissue, contributing to mental deterioration and a predisposition to epileptic seizures, which are often seen in brain abscess patients. © 2014 Wiley Periodicals, Inc.

  5. Temporal, Diagnostic, and Tissue-Specific Regulation of NRG3 Isoform Expression in Human Brain Development and Affective Disorders

    Science.gov (United States)

    Paterson, Clare; Wang, Yanhong; Hyde, Thomas M.; Weinberger, Daniel R.; Kleinman, Joel E.; Law, Amanda J.

    2018-01-01

    Objective Genes implicated in schizophrenia are enriched in networks differentially regulated during human CNS development. Neuregulin 3 (NRG3), a brain-enriched neurotrophin, undergoes alternative splicing and is implicated in several neurological disorders with developmental origins. Isoform-specific increases in NRG3 are observed in schizophrenia and associated with rs10748842, a NRG3 risk polymorphism, suggesting NRG3 transcriptional dysregulation as a molecular mechanism of risk. The authors quantitatively mapped the temporal trajectories of NRG3 isoforms (classes I–IV) in the neocortex throughout the human lifespan, examined whether tissue-specific regulation of NRG3 occurs in humans, and determined if abnormalities in NRG3 transcriptomics occur in mood disorders and are genetically determined. Method NRG3 isoform classes I–IV were quantified using quantitative real-time polymerase chain reaction in human postmortem dorsolateral prefrontal cortex from 286 nonpsychiatric control individuals, from gestational week 14 to 85 years old, and individuals diagnosed with either bipolar disorder (N=34) or major depressive disorder (N=69). Tissue-specific mapping was investigated in several human tissues. rs10748842 was genotyped in individuals with mood disorders, and association with NRG3 isoform expression examined. Results NRG3 classes displayed individually specific expression trajectories across human neocortical development and aging; classes I, II, and IV were significantly associated with developmental stage. NRG3 class I was increased in bipolar and major depressive disorder, consistent with observations in schizophrenia. NRG3 class II was increased in bipolar disorder, and class III was increased in major depression. The rs10748842 risk genotype predicted elevated class II and III expression, consistent with previous reports in the brain, with tissue-specific analyses suggesting that classes II and III are brain-specific isoforms of NRG3. Conclusions

  6. Brain Cancer—Patient Version

    Science.gov (United States)

    Brain cancer refers to growths of malignant cells in tissues of the brain. Tumors that start in the brain are called primary brain tumors. Tumors that spread to the brain are called metastatic brain tumors. Start here to find information on brain cancer treatment, research, and statistics.

  7. Quantification of VGF- and pro-SAAS-derived peptides in endocrine tissues and the brain, and their regulation by diet and cold stress.

    Science.gov (United States)

    Chakraborty, Tandra R; Tkalych, Oleg; Nanno, Daniela; Garcia, Angelo L; Devi, Lakshmi A; Salton, Stephen R J

    2006-05-17

    Two novel granin-like polypeptides, VGF and pro-SAAS, which are stored in and released from secretory vesicles and are expressed widely in nervous, endocrine, and neuroendocrine tissues, play roles in the regulation of body weight, feeding, and energy expenditure. Both VGF and pro-SAAS are cleaved into peptide fragments, several of which are biologically active. We utilized a highly sensitive and specific radioimmunoassay (RIA) to immunoreactive, pro-SAAS-derived PEN peptides, developed another against immunoreactive, VGF-derived AQEE30 peptides, and quantified these peptides in various mouse tissues and brain regions. Immunoreactive AQEE30 was most abundant in the pituitary, while brain levels were highest in hypothalamus, striatum, and frontal cortex. Immunoreactive PEN levels were highest in the pancreas and spinal cord, and in brain, PEN was most abundant in striatum, hippocampus, pons and medulla, and cortex. Since both peptides were expressed in hypothalamus, a region of the brain that controls feeding and energy expenditure, double label immunofluorescence studies were employed. These demonstrated that 42% of hypothalamic arcuate neurons coexpress VGF and SAAS peptides, and that the intracellular distributions of these peptides in arcuate neurons differed. By RIA, cold stress increased immunoreactive AQEE30 and PEN peptide levels in female but not male hypothalamus, while a high fat diet increased AQEE30 and PEN peptide levels in female but not male hippocampus. VGF and SAAS-derived peptides are therefore widely expressed in endocrine, neuroendocrine, and neural tissues, can be accurately quantified by RIA, and are differentially regulated in the brain by diet and cold stress.

  8. Implanting Glioblastoma Spheroids into Rat Brains and Monitoring Tumor Growth by MRI Volumetry.

    Science.gov (United States)

    Löhr, Mario; Linsenmann, Thomas; Jawork, Anna; Kessler, Almuth F; Timmermann, Nils; Homola, György A; Ernestus, Ralf-Ingo; Hagemann, Carsten

    2017-01-01

    The outcome of patients suffering from glioblastoma multiforme (GBM) remains poor with a median survival of less than 15 months. To establish innovative therapeutical approaches or to analyze the effect of protein overexpression or protein knockdown by RNA interference in vivo, animal models are mandatory. Here, we describe the implantation of C6 glioma spheroids into the rats' brain and how to follow tumor growth by MRI scans. We show that C6 cells grown in Sprague-Dawley rats share several morphologic features of human glioblastoma like pleomorphic cells, areas of necrosis, vascular proliferation, and tumor cell invasion into the surrounding brain tissue. In addition, we describe a method for tumor volumetry utilizing the CISS 3D- or contrast-enhanced T1-weighted 3D sequence and freely available post-processing software.

  9. Bioimaging of teeth and their surrounding tissues and biofilm

    DEFF Research Database (Denmark)

    Dige, Irene; Spin-Neto, Rubens; Kraft, David Christian Evar

    At the Department of Dentistry and Oral Health, bioimaging is a central part of our research of dental tissues and diseases in the oral cavity. We conduct research in the understanding, preventing, and treating of such diseases and there has been a strategic focus on the image-based investigation...... of clinical problems. For example, because of the etiological role of biofilms in many diseases including dental caries and periodontitis, we have investigated biofilm ecology combining newer molecular techniques such as Confocal Laser Scanning Microscopy (CLSM) and fluorescence techniques. These methods...

  10. Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface

    Science.gov (United States)

    Michelson, Nicholas J.; Vazquez, Alberto L.; Eles, James R.; Salatino, Joseph W.; Purcell, Erin K.; Williams, Jordan J.; Cui, X. Tracy; Kozai, Takashi D. Y.

    2018-06-01

    Objective. Implantable neural electrode devices are important tools for neuroscience research and have an increasing range of clinical applications. However, the intricacies of the biological response after implantation, and their ultimate impact on recording performance, remain challenging to elucidate. Establishing a relationship between the neurobiology and chronic recording performance is confounded by technical challenges related to traditional electrophysiological, material, and histological limitations. This can greatly impact the interpretations of results pertaining to device performance and tissue health surrounding the implant. Approach. In this work, electrophysiological activity and immunohistological analysis are compared after controlling for motion artifacts, quiescent neuronal activity, and material failure of devices in order to better understand the relationship between histology and electrophysiological outcomes. Main results. Even after carefully accounting for these factors, the presence of viable neurons and lack of glial scarring does not convey single unit recording performance. Significance. To better understand the biological factors influencing neural activity, detailed cellular and molecular tissue responses were examined. Decreases in neural activity and blood oxygenation in the tissue surrounding the implant, shift in expression levels of vesicular transporter proteins and ion channels, axon and myelin injury, and interrupted blood flow in nearby capillaries can impact neural activity around implanted neural interfaces. Combined, these tissue changes highlight the need for more comprehensive, basic science research to elucidate the relationship between biology and chronic electrophysiology performance in order to advance neural technologies.

  11. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment.

    Science.gov (United States)

    Sun, Hongtao; Zheng, Maohua; Wang, Yanmin; Diao, Yunfeng; Zhao, Wanyong; Wei, Zhengjun

    2016-01-01

    The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2) in the course of mild hypothermia treatment (MHT) for treating severe traumatic brain injury (sTBI). There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP), jugular venous oxygen saturation (SjvO2), and cerebral perfusion pressure (CPP) were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome.

  12. An investigation on the mechanism of sublimed DHB matrix on molecular ion yields in SIMS imaging of brain tissue.

    Science.gov (United States)

    Dowlatshahi Pour, Masoumeh; Malmberg, Per; Ewing, Andrew

    2016-05-01

    We have characterized the use of sublimation to deposit matrix-assisted laser desorption/ionization (MALDI) matrices in secondary ion mass spectrometry (SIMS) analysis, i.e. matrix-enhanced SIMS (ME-SIMS), a common surface modification method to enhance sensitivity for larger molecules and to increase the production of intact molecular ions. We use sublimation to apply a thin layer of a conventional MALDI matrix, 2,5-dihydroxybenzoic acid (DHB), onto rat brain cerebellum tissue to show how this technique can be used to enhance molecular yields in SIMS while still retaining a lateral resolution around 2 μm and also to investigate the mechanism of this enhancement. The results here illustrate that cholesterol, which is a dominant lipid species in the brain, is decreased on the tissue surface after deposition of matrix, particularly in white matter. The decrease of cholesterol is followed by an increased ion yield of several other lipid species. Depth profiling of the sublimed rat brain reveals that the lipid species are de facto extracted by the DHB matrix and concentrated in the top most layers of the sublimed matrix. This extraction/concentration of lipids directly leads to an increase of higher mass lipid ion yield. It is also possible that the decrease of cholesterol decreases the potential suppression of ion yield caused by cholesterol migration to the tissue surface. This result provides us with significant insights into the possible mechanisms involved when using sublimation to deposit this matrix in ME-SIMS.

  13. Brain tissue strains vary with head impact location: A possible explanation for increased concussion risk in struck versus striking football players.

    Science.gov (United States)

    Elkin, Benjamin S; Gabler, Lee F; Panzer, Matthew B; Siegmund, Gunter P

    2018-03-29

    On-field football helmet impacts over a large range of severities have caused concussions in some players but not in other players. One possible explanation for this variability is the struck player's helmet impact location. We examined the effect of impact location on regional brain tissue strain when input energy was held constant. Laboratory impacts were performed at 12 locations distributed over the helmet and the resulting head kinematics were simulated in two finite element models of the brain: the Simulated Injury Monitor and the Global Human Body Model Consortium brain model. Peak kinematics, injury metrics and brain strain varied significantly with impact location. Differences in impact location explained 33 to 37% of the total variance in brain strain for the whole brain and cerebrum, considerably more than the variance explained by impact location for the peak resultant head kinematics (8 to 23%) and slightly more than half of the variance explained by the difference in closing speed (57 to 61%). Both finite element models generated similar strain results, with minor variations for impacts that generated multi-axial rotations, larger variations in brainstem strains for some impact locations and a small bias for the cerebellum. Based on this experimental and computational simulation study, impact location on the football helmet has a large effect on regional brain tissue strain. We also found that the lowest strains consistently occurred in impacts to the crown and forehead, helmet locations commonly associated with the striking player. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  15. Radioisotopic Studies of Brain Uptake

    International Nuclear Information System (INIS)

    Oldendorf, W. H.

    1970-01-01

    Measurements of the uptake of radioactive substances in the brain tissues after their administration by injection or inhalation provide an a traumatic approach to the study of blood flow and metabolic processes in the brain. This paper reviews the anatomical,physiological and physical problems arising in the measurement of radioactivity in the brain. The factors governing the passage of various classes of substances through the brain capillaries and their transport through the brain tissues are first considered. The physical problems arising in the measurement of radioactivity in the brain are then discussed. The main difficulties in such measurements is shown to arise from the contribution to the observed counting rate from radioactivity in the scalp and skull. This contribution can be minimized by the use of special collimators designed to view only a part of the brain but to include in their field of view a minimum of non-neural tissue. A further possibility arises with radioisotopes such as 113 In m which emit characteristic X radiation as well as y radiation since the contribution of the former to the total observed counting rate is almost entirely due to radioactivity in the superficial tissues whereas that of the latter is due to radioactivity in the superficial tissues and the brain. By recording the counting rates in appropriate channels of the photon spectrum it is thus possible to correct the results for radioactivity in the scalp and skull. With radioisotopes such as 75 Sc which emit two or more photons in cascade, coincidence counting techniques offer still a further possibility to minimize the contribution from radioactivity in the superficial tissues. Various potential applications of these techniques are described. (author)

  16. Characterization of the Transcriptome and Gene Expression of Brain Tissue in Sevenband Grouper (Hyporthodus septemfasciatus in Response to NNV Infection

    Directory of Open Access Journals (Sweden)

    Jong-Oh Kim

    2017-01-01

    Full Text Available Grouper is one of the favorite sea food resources in Southeast Asia. However, the outbreaks of the viral nervous necrosis (VNN disease due to nervous necrosis virus (NNV infection have caused mass mortality of grouper larvae. Many aqua-farms have suffered substantial financial loss due to the occurrence of VNN. To better understand the infection mechanism of NNV, we performed the transcriptome analysis of sevenband grouper brain tissue, the main target of NNV infection. After artificial NNV challenge, transcriptome of brain tissues of sevenband grouper was subjected to next generation sequencing (NGS using an Illumina Hi-seq 2500 system. Both mRNAs from pooled samples of mock and NNV-infected sevenband grouper brains were sequenced. Clean reads of mock and NNV-infected samples were de novo assembled and obtained 104,348 unigenes. In addition, 628 differentially expressed genes (DEGs in response to NNV infection were identified. This result could provide critical information not only for the identification of genes involved in NNV infection, but for the understanding of the response of sevenband groupers to NNV infection.

  17. Brain Stroke Detection by Microwaves Using Prior Information from Clinical Databases

    Directory of Open Access Journals (Sweden)

    Natalia Irishina

    2013-01-01

    Full Text Available Microwave tomographic imaging is an inexpensive, noninvasive modality of media dielectric properties reconstruction which can be utilized as a screening method in clinical applications such as breast cancer and brain stroke detection. For breast cancer detection, the iterative algorithm of structural inversion with level sets provides well-defined boundaries and incorporates an intrinsic regularization, which permits to discover small lesions. However, in case of brain lesion, the inverse problem is much more difficult due to the skull, which causes low microwave penetration and highly noisy data. In addition, cerebral liquid has dielectric properties similar to those of blood, which makes the inversion more complicated. Nevertheless, the contrast in the conductivity and permittivity values in this situation is significant due to blood high dielectric values compared to those of surrounding grey and white matter tissues. We show that using brain MRI images as prior information about brain's configuration, along with known brain dielectric properties, and the intrinsic regularization by structural inversion, allows successful and rapid stroke detection even in difficult cases. The method has been applied to 2D slices created from a database of 3D real MRI phantom images to effectively detect lesions larger than 2.5 × 10−2 m diameter.

  18. Methodological issues in protein and lipidic expressions in brain tissue exposed to Co60 based on DESI/MALDI-MS

    International Nuclear Information System (INIS)

    Soares, Matheus F.; Campos, Tarcísio P.R.; Augusti, Rodinei; Eberlin, Marcos N.; Vendramini, Pedro H.

    2017-01-01

    The present paper attempts to present some issues in the methodology of identifying lipid and protein changes in brain tissue induced by radiation. The goal was to address the analysis of the methodology and to investigate the feasibility of the generation of lipid/protein profiles of irradiated brain tissue, in order to identify radioinduced changes. Lipids and proteins are biomolecules with diverse structures and functionalities that participate in important intracellular processes. Changes in the lipid and the tissue protein profiles may indicate a cellular response to an external stimulus as well as the emergence of neoplasms or neurodegenerative diseases such as Alzheimer's. DESI-MS is a convenient method for identifying lipids and their spatial distribution in tissue beyond analytical quantification. DESI-MS allows the creation of an image of several low lipid m/z classes. MALDI-MS has already been a method used in the study of macromolecules as structural, membrane, hormone, neuromediator and immunological peptides. Through a full-scan matrix scan, with a m/z spectrum between 500-1000 for lipids and with a mass spectrum of 1000-15000 Da for proteins, the molecular profile can be analyzed. Generated pixel shape 2D chemical image. The produced image allows to associate the tissue distribution of the lipids and proteins with their chemical profile identified, allowing the verification of the changes radioinduced. Radiation triggers intense oxidative stress by increasing reactive oxygen species (ROS) and free radicals, causing DNA damage with consequent alterations in proteomics and cellular lipid explaining such changes in the lipid and protein expressions. The cellular morphophysiological changes are responsible for both the clonogenic inhibition and the induction of the apoptotic process. The images's production was directly dependent on the rigorous execution of the methodological procedures. Innumerable interferences could impair the image

  19. The role of stereotactic radiation therapy in the management of children with brain tumors.

    Science.gov (United States)

    Lew, C M; LaVally, B

    1995-10-01

    Conventional radiation therapy plays an important role in the management of intracranial tumors in children. For certain tumors radiation therapy serves as the primary mode of treatment, and for others it plays an adjuvant role with surgery and/or chemotherapy. Improvements in long-term survival rates have focused attention on the long-term sequelae of brain tumors and their treatment, and the sequelae, in turn, have become important targets for clinical investigation. Long-term side effects of particular concern in children include cranial nerve damage, memory and intellectual deficits, pituitary-hypothalamic dysfunction, demyelinization of brain tissue, and secondary malignancies. A new form of radiation therapy, stereotactic radiotherapy (SRT), merges the technologies of stereotactic surgery and conventional fractionated radiotherapy. The intent is to deliver maximum tumoricidal doses to the target while limiting the dose to normal surrounding brain tissue. The key feature of SRT is a noninvasive, relocatable immobilization system to assure accurate and reproducible positioning during planning and treatment. The headframes used for children have been modified to address their specific needs. The complexities of this process require careful preparation of patients and their families and the participation of many disciplines. Long-term follow-up will be essential to evaluate the effectiveness of this innovative treatment.

  20. Synchrotron supported Dei/KES of a brain tumor in an animal model: The search for a microimaging modality

    International Nuclear Information System (INIS)

    Mannan, K.A.; Schueltke, E.; Menk, R.H.; Siu, K.; Pavlov, K.; Kelly, M.; McLoughlin, G.; Beveridge, T.; Tromba, G.; Juurlink, B.H.; Chapman, D.; Rigon, L.; Griebel, R.W.

    2005-01-01

    Glioblastoma multiforme (GBM) is the commonest and most aggressive primary brain tumor in humans. The high rate of tumor recurrence results in a poor prognosis despite multimodality treatment. One reason for high rate of recurrence is the invasive nature of the tumor into the surrounding normal brain tissue or multifocal occurrence at sites remote from that of the primary tumor establishment. Existing imaging demonstrates the primary tumor but fail to show the residual tumor microaggregates left behind following initial treatment. In this study, we employed diffraction-enhanced imaging (DEI) in an attempt to find an imaging modality that will provide visualization of residual disease that is not be apparent on MRI or CT scans

  1. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA

    Science.gov (United States)

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2015-01-01

    A number of contaminants affect fish health, including mercury and selenium, and the selenium: mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium: mercury molar ratios by tissues. Total mercury averaged 0.32 ± 0.02 ppm wet weight in edible muscle and 0.09 ± 0.01 ppm in brain. Selenium concentration averaged 0.37 ± 0.03 in muscle and 0.36 ± 0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium: mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium: mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. PMID:23202378

  2. Multifrequency magnetic resonance elastography of the brain reveals tissue degeneration in neuromyelitis optica spectrum disorder

    International Nuclear Information System (INIS)

    Streitberger, Kaspar-Josche; Fehlner, Andreas; Sack, Ingolf; Pache, Florence; Lacheta, Anna; Papazoglou, Sebastian; Brandt, Alexander; Bellmann-Strobl, Judith; Ruprecht, Klemens; Braun, Juergen; Paul, Friedemann; Wuerfel, Jens

    2017-01-01

    Application of multifrequency magnetic resonance elastography (MMRE) of the brain parenchyma in patients with neuromyelitis optica spectrum disorder (NMOSD) compared to age matched healthy controls (HC). 15 NMOSD patients and 17 age- and gender-matched HC were examined using MMRE. Two three-dimensional viscoelastic parameter maps, the magnitude G* and phase angle φ of the complex shear modulus were reconstructed by simultaneous inversion of full wave-field data in 1.9-mm isotropic resolution at 7 harmonic drive frequencies from 30 to 60 Hz. In NMOSD patients, a significant reduction of G* was observed within the white matter fraction (p = 0.017), predominantly within the thalamic regions (p = 0.003), compared to HC. These parameters exceeded the reduction in brain volume measured in patients versus HC (p = 0.02 whole-brain volume reduction). Volumetric differences in white matter fraction and the thalami were not detectable between patients and HC. However, phase angle φ was decreased in patients within the white matter (p = 0.03) and both thalamic regions (p = 0.044). MMRE reveals global tissue degeneration with accelerated softening of the brain parenchyma in patients with NMOSD. The predominant reduction of stiffness is found within the thalamic region and related white matter tracts, presumably reflecting Wallerian degeneration. (orig.)

  3. Multifrequency magnetic resonance elastography of the brain reveals tissue degeneration in neuromyelitis optica spectrum disorder

    Energy Technology Data Exchange (ETDEWEB)

    Streitberger, Kaspar-Josche [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Fehlner, Andreas; Sack, Ingolf [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Pache, Florence [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Lacheta, Anna; Papazoglou, Sebastian; Brandt, Alexander [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Bellmann-Strobl, Judith [Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Ruprecht, Klemens [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Braun, Juergen [Charite - Universitaetsmedizin Berlin, Institute of Medical Informatics, Berlin (Germany); Paul, Friedemann [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Wuerfel, Jens [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Medical Image Analysis Center (MIAC AG), Basel (Switzerland)

    2017-05-15

    Application of multifrequency magnetic resonance elastography (MMRE) of the brain parenchyma in patients with neuromyelitis optica spectrum disorder (NMOSD) compared to age matched healthy controls (HC). 15 NMOSD patients and 17 age- and gender-matched HC were examined using MMRE. Two three-dimensional viscoelastic parameter maps, the magnitude G* and phase angle φ of the complex shear modulus were reconstructed by simultaneous inversion of full wave-field data in 1.9-mm isotropic resolution at 7 harmonic drive frequencies from 30 to 60 Hz. In NMOSD patients, a significant reduction of G* was observed within the white matter fraction (p = 0.017), predominantly within the thalamic regions (p = 0.003), compared to HC. These parameters exceeded the reduction in brain volume measured in patients versus HC (p = 0.02 whole-brain volume reduction). Volumetric differences in white matter fraction and the thalami were not detectable between patients and HC. However, phase angle φ was decreased in patients within the white matter (p = 0.03) and both thalamic regions (p = 0.044). MMRE reveals global tissue degeneration with accelerated softening of the brain parenchyma in patients with NMOSD. The predominant reduction of stiffness is found within the thalamic region and related white matter tracts, presumably reflecting Wallerian degeneration. (orig.)

  4. Irradiation-injured brain tissues can self-renew in the absence of the pivotal tumor suppressor p53 in the medaka (Oryzias latipes) embryo

    International Nuclear Information System (INIS)

    Yasuda, Takako; Nagata, Kento; Igarashi, Kento; Watanabe-Asaka, Tomomi; Oda, Shoji; Mitani, Hiroshi; Kimori, Yoshitaka

    2016-01-01

    The tumor suppressor protein, p53, plays pivotal roles in regulating apoptosis and proliferation in the embryonic and adult central nervous system (CNS) following neuronal injuries such as those induced by ionizing radiation. There is increasing evidence that p53 negatively regulates the self-renewal of neural stem cells in the adult murine brain; however, it is still unknown whether p53 is essential for self-renewal in the injured developing CNS. Previously, we demonstrated that the numbers of apoptotic cells in medaka (Oryzias latipes) embryos decreased in the absence of p53 at 12-24 h after irradiation with 10-Gy gamma rays. Here, we used histology to examine the later morphological development of the irradiated medaka brain. In p53-deficient larvae, the embryonic brain possessed similar vacuoles in the brain and retina, although the vacuoles were much smaller and fewer than those found in wild-type embryos. At the time of hatching (6 days after irradiation), no brain abnormality was observed. In contrast, severe disorganized neuronal arrangements were still present in the brain of irradiated wild-type embryos. Our present results demonstrated that self-renewal of the brain tissue completed faster in the absence of p53 than wild type at the time of hatching because p53 reduces the acute severe neural apoptosis induced by irradiation, suggesting that p53 is not essential for tissue self-renewal in developing brain. (author)

  5. Immunocapture-based fluorometric assay for the measurement of neprilysin-specific enzyme activity in brain tissue homogenates and cerebrospinal fluid.

    NARCIS (Netherlands)

    Miners, J.S.; Verbeek, M.M.; Olde Rikkert, M.G.M.; Kehoe, P.G.; Love, S.

    2008-01-01

    Neprilysin, a zinc-metalloendopeptidase, has important roles in the physiology and pathology of many diseases such as hypertension, cancer and Alzheimer's disease. We have developed an immunocapture assay to measure the specific enzyme activity of neprilysin in brain tissue homogenates and

  6. Multiplex coherent anti-Stokes Raman scattering microspectroscopy of brain tissue with higher ranking data classification for biomedical imaging

    Science.gov (United States)

    Pohling, Christoph; Bocklitz, Thomas; Duarte, Alex S.; Emmanuello, Cinzia; Ishikawa, Mariana S.; Dietzeck, Benjamin; Buckup, Tiago; Uckermann, Ortrud; Schackert, Gabriele; Kirsch, Matthias; Schmitt, Michael; Popp, Jürgen; Motzkus, Marcus

    2017-06-01

    Multiplex coherent anti-Stokes Raman scattering (MCARS) microscopy was carried out to map a solid tumor in mouse brain tissue. The border between normal and tumor tissue was visualized using support vector machines (SVM) as a higher ranking type of data classification. Training data were collected separately in both tissue types, and the image contrast is based on class affiliation of the single spectra. Color coding in the image generated by SVM is then related to pathological information instead of single spectral intensities or spectral differences within the data set. The results show good agreement with the H&E stained reference and spontaneous Raman microscopy, proving the validity of the MCARS approach in combination with SVM.

  7. Proposals for best-quality immunohistochemical staining of paraffin-embedded brain tissue slides in forensics.

    Science.gov (United States)

    Trautz, Florian; Dreßler, Jan; Stassart, Ruth; Müller, Wolf; Ondruschka, Benjamin

    2018-01-03

    Immunohistochemistry (IHC) has become an integral part in forensic histopathology over the last decades. However, the underlying methods for IHC vary greatly depending on the institution, creating a lack of comparability. The aim of this study was to assess the optimal approach for different technical aspects of IHC, in order to improve and standardize this procedure. Therefore, qualitative results from manual and automatic IHC staining of brain samples were compared, as well as potential differences in suitability of common IHC glass slides. Further, possibilities of image digitalization and connected issues were investigated. In our study, automatic staining showed more consistent staining results, compared to manual staining procedures. Digitalization and digital post-processing facilitated direct analysis and analysis for reproducibility considerably. No differences were found for different commercially available microscopic glass slides regarding suitability of IHC brain researches, but a certain rate of tissue loss should be expected during the staining process.

  8. Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact

    NARCIS (Netherlands)

    Brands, D.W.A.; Peters, G.W.M.; Bovendeerd, P.H.M.

    2004-01-01

    Finite Element (FE) head models are often used to understand mechanical response of the head and its contents during impact loading in the head. CurrentFE models do not account for non-linear viscoelastic material behavior of brain tissue. We developed a new non-linear viscoelastic material model

  9. Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics

    Science.gov (United States)

    Liu, Quan; Grant, Gerald; Li, Jianjun; Zhang, Yan; Hu, Fangyao; Li, Shuqin; Wilson, Christy; Chen, Kui; Bigner, Darell; Vo-Dinh, Tuan

    2011-03-01

    We report the development of a compact point-detection fluorescence spectroscopy system and two data analysis methods to quantify the intrinsic fluorescence redox ratio and diagnose brain cancer in an orthotopic brain tumor rat model. Our system employs one compact cw diode laser (407 nm) to excite two primary endogenous fluorophores, reduced nicotinamide adenine dinucleotide, and flavin adenine dinucleotide. The spectra were first analyzed using a spectral filtering modulation method developed previously to derive the intrinsic fluorescence redox ratio, which has the advantages of insensitivty to optical coupling and rapid data acquisition and analysis. This method represents a convenient and rapid alternative for achieving intrinsic fluorescence-based redox measurements as compared to those complicated model-based methods. It is worth noting that the method can also extract total hemoglobin concentration at the same time but only if the emission path length of fluorescence light, which depends on the illumination and collection geometry of the optical probe, is long enough so that the effect of absorption on fluorescence intensity due to hemoglobin is significant. Then a multivariate method was used to statistically classify normal tissues and tumors. Although the first method offers quantitative tissue metabolism information, the second method provides high overall classification accuracy. The two methods provide complementary capabilities for understanding cancer development and noninvasively diagnosing brain cancer. The results of our study suggest that this portable system can be potentially used to demarcate the elusive boundary between a brain tumor and the surrounding normal tissue during surgical resection.

  10. Identification of β-SiC surrounded by relatable surrounding diamond ...

    Indian Academy of Sciences (India)

    β-SiC is identified in the presence of a relatable surrounding diamond medium using subtle, but discernible Raman ... Change in the nature of the surrounding material structure and its .... intensity implies very low graphite content in thin film. In.

  11. FTIR Imaging of Brain Tissue Reveals Crystalline Creatine Deposits Are an ex Vivo Marker of Localized Ischemia during Murine Cerebral Malaria: General Implications for Disease Neurochemistry

    Science.gov (United States)

    2012-01-01

    Phosphocreatine is a major cellular source of high energy phosphates, which is crucial to maintain cell viability under conditions of impaired metabolic states, such as decreased oxygen and energy availability (i.e., ischemia). Many methods exist for the bulk analysis of phosphocreatine and its dephosphorylated product creatine; however, no method exists to image the distribution of creatine or phosphocreatine at the cellular level. In this study, Fourier transform infrared (FTIR) spectroscopic imaging has revealed the ex vivo development of creatine microdeposits in situ in the brain region most affected by the disease, the cerebellum of cerebral malaria (CM) diseased mice; however, such deposits were also observed at significantly lower levels in the brains of control mice and mice with severe malaria. In addition, the number of deposits was observed to increase in a time-dependent manner during dehydration post tissue cutting. This challenges the hypotheses in recent reports of FTIR spectroscopic imaging where creatine microdeposits found in situ within thin sections from epileptic, Alzheimer’s (AD), and amlyoid lateral sclerosis (ALS) diseased brains were proposed to be disease specific markers and/or postulated to contribute to the brain pathogenesis. As such, a detailed investigation was undertaken, which has established that the creatine microdeposits exist as the highly soluble HCl salt or zwitterion and are an ex-vivo tissue processing artifact and, hence, have no effect on disease pathogenesis. They occur as a result of creatine crystallization during dehydration (i.e., air-drying) of thin sections of brain tissue. As ischemia and decreased aerobic (oxidative metabolism) are common to many brain disorders, regions of elevated creatine-to-phosphocreatine ratio are likely to promote crystal formation during tissue dehydration (due to the lower water solubility of creatine relative to phosphocreatine). The results of this study have demonstrated that

  12. Contrast medium enhancement of soft tissues and brain in CT examinations of dogs

    International Nuclear Information System (INIS)

    Pavlicek, M.

    2000-11-01

    CT is an x-ray based method which shows less contrast for soft tissue as has been known from radiography. Therefore, it is necessary to use intravenously administered iodine contrast media to detect and localize tumors, fistulas or other pathologic lesions. Usually contrast medium is administered manually which yields random patterns of media distribution due to varying application pressure during varying administration time, therefore enhancement of parenchymous organs could not be used to the optimum extent. The use of an automatic injection pump guarantees the necessary constancy during the examination procedure to undoubtedly detect pathologic enhancement of organs in the CT-image as known from human medicine. The standards which are expected of the injection pump and the contrast media are: a good contrast enhancement, a good accumulation in the examined organs, an accumulation, which lasts long enough during the diagnostic phase, and a rapid excretion without side effects. Because of the short scan time of the modern CT-scanner, the best contrast enhancement can be administered by a short bolus injection, which can be applied by the automatic injection pump with a defined flow and a defined quantity of contrast media. This guarantees a good enhancement in the chosen region for the duration of the scan. The main aim of this study is to find a standardized flow and quantity of contrast media for defined regions and organs considering the speed of the scanner. In a subsequent step, the existing scan-protocols are then updated using the newly found information. This study showed, that CT examination of the head and brain in middle-sized dogs can be administered with a flow of 0.5 ml/s and a dose of 2 ml of contrast medium per kg weight. The contrast enhancement of the brain is caused by the enhancement of the vessels, the parenchym is free of contrast media - brain shows a low increase of density. Only if the blood-brain-barrier is destroyed, it is possible that

  13. Contrast medium enhancement of soft tissues and brain in CT examinations of dogs

    International Nuclear Information System (INIS)

    Pavlicek, M.

    2000-11-01

    CT is a x-ray based method which shows less contrast for soft tissue as has been known from radiography. Therefore, it is necessary to use intravenously administered iodine contrast media to detect and localize tumors, fistulas or other pathologic lesions. Usually contrast medium is administered manually which yields random patterns of media distribution due to varying application pressure during varying administration time, therefore enhancement of parenchymous organs could not be used to the optimum extent. The use of an automatic injection pump guarantees the necessary constancy during the examination procedure to undoubtedly detect pathologic enhancement of organs in the CT-image as known from human medicine. The standards which are expected of the injection pump and the contrast media are: a good contrast enhancement, a good accumulation in the examined organs, an accumulation, which lasts long enough during the diagnostic phase, and a rapid excretion without side effects. Because of the short scan time of the modern CT-scanner, the best contrast enhancement can be administered by a short bolus injection, which can be applied by the automatic injection pump with a defined flow and a defined quantity of contrast media. This guarantees a good enhancement in the chosen region for the duration of the scan. The main aim of this study is to find a standardized flow and quantity of contrast media for defined regions and organs considering the speed of the scanner. In a subsequent step, the existing scan-protocols are then updated using the newly found information. This study showed, that CT examination of the head and brain in middle-sized dogs can be administered with a flow of 0.5 ml/s and a dose of 2 ml of contrast medium per kg weight. The contrast enhancement of the brain is caused by the enhancement of the vessels, the parenchym is free of contrast media - brain shows a low increase of density. Only if the blood-brain-barrier is destroyed, it is possible that

  14. [Influence of mastication on the amount of hemoglobin in human brain tissue].

    Science.gov (United States)

    Sasaki, A

    2001-03-01

    The purpose of this study was to investigate the influence of mastication on the amount of hemoglobin in human brain tissue. Nine healthy volunteers (6 males and 3 females) participated in this study. They underwent two tasks: 1) at rest, 2) gum-chewing. In seven of the nine (4 males and 3 females), experimental occlusal interference was applied to the first molar of the mandibule on the habitual masticatory side. They underwent the gum-chewing task. To evaluate the amount of hemoglobin, both the hemoglobin oxygenation state and blood volume during gum-chewing were measured in the frontal region, using near-infrared spectroscopy. The amount of total-hemoglobin (blood volume) and oxyhemoglobin of subjects significantly increased during gum-chewing (p experimental occlusal interference was imposed on the subject, the amount of them significantly decreased compared with subjects without experimental occlusal interference (p < 0.05). The results suggested that increases of cerebral blood flow in the frontal region were not due to the mandibular movement, and that human brain activity caused by mastication was not only in the cortical masticatory area but also in the frontal region.

  15. Brain Tissue Oxygen: In Vivo Monitoring with Carbon Paste Electrodes

    Directory of Open Access Journals (Sweden)

    John P. Lowry

    2005-11-01

    Full Text Available In this communication we review selected experiments involving the use ofcarbon paste electrodes (CPEs to monitor and measure brain tissue O2 levels in awakefreely-moving animals. Simultaneous measurements of rCBF were performed using the H2clearance technique. Voltammetric techniques used include both differential pulse (O2 andconstant potential amperometry (rCBF. Mild hypoxia and hyperoxia produced rapidchanges (decrease and increase respectively in the in vivo O2 signal. Neuronal activation(tail pinch and stimulated grooming produced similar increases in both O2 and rCBFindicating that CPE O2 currents provide an index of increases in rCBF when such increasesexceed O2 utilization. Saline injection produced a transient increase in the O2 signal whilechloral hydrate produced slower more long-lasting changes that accompanied the behavioralchanges associated with anaesthesia. Acetazolamide increased O2 levels through an increasein rCBF.

  16. Antioxidant effect of sericin in brain and peripheral tissues of oxidative stress induced hypercholesterolemic rats

    Directory of Open Access Journals (Sweden)

    Meetali Deori

    2016-09-01

    Full Text Available This study evaluated the antioxidant effect of crude sericin extract (CSE from Antheraea assamenisis (Aa in high cholesterol fed rats. Investigation was conducted by administering graded oral dose of 0.25 and 0.5 gm/kg body weight (b.w./day of CSE for a period of 28 days. Experiments were conducted in 30 rats and were divided into five groups: normal control (NC, high cholesterol fed (HCF, HCF + 0.065 gm/kg b.w./day fenofibrate (FF, HCF + sericin 0.25 gm/kg b.w./day (LSD and HCF + sericin 0.5 gm/kg b.w./day (HSD. In brain, heart, liver, serum and kidney homogenates nitric oxide (NO, thiobarbituric acid reactive substances (TBARS, protein carbonyl content (PCC, superoxide dismutase (SOD, reduced glutathione (GSH was measured. LSD treatment prevented the alterations in GSH and PCC levels in hypercholesterolemic (HyC brain tissue homogenates of rats. CSE lowers the serum total cholesterol level in HyC rats by promoting fecal cholesterol (FC excretion. CSE increases FC level by promoting inhibition of cholesterol absorption in intestine. The endogenous antioxidant reduced significantly and the oxidative stress (OS marker TBARS level increases significantly in the peripheral tissue of HCF rats. However, the administration of LSD and HSD exhibited a good antioxidant activity by reducing the TBARS level and increasing the endogenous antioxidant in peripheral tissue. In addition, a histological examination revealed loss of normal liver and kidney architecture in cholesterol fed rats which were retained in sericin treated groups. The findings of this study suggested that CSE improves hypercholesterolemia in rats fed a HyC diet. Clinical relevance of this effect of CSE seems worthy of further studies.

  17. Use of flow cytometry for high-throughput cell population estimates in fixed brain tissue

    Directory of Open Access Journals (Sweden)

    Nicole A Young

    2012-07-01

    Full Text Available The numbers and types of cells in an area of cortex define its function. Therefore it is essential to characterize the numbers and distributions of total cells in areas of the cortex, as well as to identify numbers of subclasses of neurons and glial cells. To date, the large size of the primate brain and the lack of innovation in cell counting methods have been a roadblock to obtaining high-resolution maps of cell and neuron density across the cortex in humans and non-human primates. Stereological counting methods and the isotropic fractionator are valuable tools for estimating cell numbers, but are better suited to smaller, well-defined brain structures or to cortex as a whole. In the present study, we have extended our flow-cytometry based counting method, the flow fractionator (Collins et al., 2010a, to include high-throughput total cell population estimates in homogenized cortical samples. We demonstrate that our method produces consistent, accurate and repeatable cell estimates quickly. The estimates we report are in excellent agreement with estimates for the same samples obtained using a Neubauer chamber and a fluorescence microscope. We show that our flow cytometry-based method for total cell estimation in homogenized brain tissue is more efficient and more precise than manual counting methods. The addition of automated nuclei counting to our flow fractionator method allows for a fully automated, rapid characterization of total cells and neuronal and non-neuronal populations in human and non-human primate brains, providing valuable data to further our understanding of the functional organization of normal, aging and diseased brains.

  18. Neuroprotection and enhanced neurogenesis by extract from the tropical plant Knema laurina after inflammatory damage in living brain tissue.

    Science.gov (United States)

    Häke, Ines; Schönenberger, Silvia; Neumann, Jens; Franke, Katrin; Paulsen-Merker, Katrin; Reymann, Klaus; Ismail, Ghazally; Bin Din, Laily; Said, Ikram M; Latiff, A; Wessjohann, Ludger; Zipp, Frauke; Ullrich, Oliver

    2009-01-03

    Inflammatory reactions in the CNS, resulting from a loss of control and involving a network of non-neuronal and neuronal cells, are major contributors to the onset and progress of several major neurodegenerative diseases. Therapeutic strategies should therefore keep or restore the well-controlled and finely-tuned balance of immune reactions, and protect neurons from inflammatory damage. In our study, we selected plants of the Malaysian rain forest by an ethnobotanic survey, and investigated them in cell-based-assay-systems and in living brain tissue cultures in order to identify anti-inflammatory and neuroprotective effects. We found that alcoholic extracts from the tropical plant Knema laurina (Black wild nutmeg) exhibited highly anti-inflammatory and neuroprotective effects in cell culture experiments, reduced NO- and IL-6-release from activated microglia cells dose-dependently, and protected living brain tissue from microglia-mediated inflammatory damage at a concentration of 30 microg/ml. On the intracellular level, the extract inhibited ERK-1/2-phosphorylation, IkB-phosphorylation and subsequently NF-kB-translocation in microglia cells. K. laurina belongs to the family of Myristicaceae, which have been used for centuries for treatment of digestive and inflammatory diseases and is also a major food plant of the Giant Hornbill. Moreover, extract from K. laurina promotes also neurogenesis in living brain tissue after oxygen-glucose deprivation. In conclusion, extract from K. laurina not only controls and limits inflammatory reaction after primary neuronal damage, it promotes moreover neurogenesis if given hours until days after stroke-like injury.

  19. Contrast enhanced susceptibility weighted imaging (CE-SWI) of the mouse brain using ultrasmall superparamagnetic ironoxide particles (USPIO)

    International Nuclear Information System (INIS)

    Hamans, B.C.; Heerschap, A.; Barth, M.; Leenders, W.P.

    2006-01-01

    Susceptibility weighted imaging (SWI) has been introduced as a novel approach to visualize the venous vasculature in the human brain. With SWI, small veins in the brain are depicted based on the susceptibility difference between deoxyhaemoglobin in the veins and surrounding tissue, which is further enhanced by the use of MR phase information. In this study we applied SWI in the mouse brain using an exogenous iron-based blood-pool contrast agent, with the aims of further enhancing the susceptibility effect and allowing the visualization of individual veins and arteries. Contrast enhanced (CE-) SWI of the brain was performed on healthy mice and mice carrying intracerebral glioma xenografts. This study demonstrates that detailed vascular information in the mouse brain can be obtained by using CE-SWI and is substantially enhanced compared to native SWI (i.e. without contrast agent). CE-SWI images of tumour-bearing mice were directly compared to histology, confirming that CE-SWI depicts the vessels supplying and draining the tumour. We propose that CE-SWI is a very promising tool for the characterization of tumour vasculature. (orig.)

  20. Robust volume assessment of brain tissues for 3-dimensional fourier transformation MRI via a novel multispectral technique.

    Directory of Open Access Journals (Sweden)

    Jyh-Wen Chai

    Full Text Available A new TRIO algorithm method integrating three different algorithms is proposed to perform brain MRI segmentation in the native coordinate space, with no need of transformation to a standard coordinate space or the probability maps for segmentation. The method is a simple voxel-based algorithm, derived from multispectral remote sensing techniques, and only requires minimal operator input to depict GM, WM, and CSF tissue clusters to complete classification of a 3D high-resolution multislice-multispectral MRI data. Results showed very high accuracy and reproducibility in classification of GM, WM, and CSF in multislice-multispectral synthetic MRI data. The similarity indexes, expressing overlap between classification results and the ground truth, were 0.951, 0.962, and 0.956 for GM, WM, and CSF classifications in the image data with 3% noise level and 0% non-uniformity intensity. The method particularly allows for classification of CSF with 0.994, 0.961 and 0.996 of accuracy, sensitivity and specificity in images data with 3% noise level and 0% non-uniformity intensity, which had seldom performed well in previous studies. As for clinical MRI data, the quantitative data of brain tissue volumes aligned closely with the brain morphometrics in three different study groups of young adults, elderly volunteers, and dementia patients. The results also showed very low rates of the intra- and extra-operator variability in measurements of the absolute volumes and volume fractions of cerebral GM, WM, and CSF in three different study groups. The mean coefficients of variation of GM, WM, and CSF volume measurements were in the range of 0.03% to 0.30% of intra-operator measurements and 0.06% to 0.45% of inter-operator measurements. In conclusion, the TRIO algorithm exhibits a remarkable ability in robust classification of multislice-multispectral brain MR images, which would be potentially applicable for clinical brain volumetric analysis and explicitly promising

  1. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke.

    Science.gov (United States)

    Mao, Leilei; Li, Peiying; Zhu, Wen; Cai, Wei; Liu, Zongjian; Wang, Yanling; Luo, Wenli; Stetler, Ruth A; Leak, Rehana K; Yu, Weifeng; Gao, Yanqin; Chen, Jun; Chen, Gang; Hu, Xiaoming

    2017-07-01

    Delayed thrombolytic treatment with recombinant tissue plasminogen activator (tPA) may exacerbate blood-brain barrier breakdown after ischaemic stroke and lead to lethal haemorrhagic transformation. The immune system is a dynamic modulator of stroke response, and excessive immune cell accumulation in the cerebral vasculature is associated with compromised integrity of the blood-brain barrier. We previously reported that regulatory T cells, which function to suppress excessive immune responses, ameliorated blood-brain barrier damage after cerebral ischaemia. This study assessed the impact of regulatory T cells in the context of tPA-induced brain haemorrhage and investigated the underlying mechanisms of action. The number of circulating regulatory T cells in stroke patients was dramatically reduced soon after stroke onset (84 acute ischaemic stroke patients with or without intravenous tPA treatment, compared to 115 age and gender-matched healthy controls). Although stroke patients without tPA treatment gradually repopulated the numbers of circulating regulatory T cells within the first 7 days after stroke, post-ischaemic tPA treatment led to sustained suppression of regulatory T cells in the blood. We then used the murine suture and embolic middle cerebral artery occlusion models of stroke to investigate the therapeutic potential of adoptive regulatory T cell transfer against tPA-induced haemorrhagic transformation. Delayed administration of tPA (10 mg/kg) resulted in haemorrhagic transformation in the ischaemic territory 1 day after ischaemia. When regulatory T cells (2 × 106/mouse) were intravenously administered immediately after delayed tPA treatment in ischaemic mice, haemorrhagic transformation was significantly decreased, and this was associated with improved sensorimotor functions. Blood-brain barrier disruption and tight junction damages were observed in the presence of delayed tPA after stroke, but were mitigated by regulatory T cell transfer. Mechanistic

  2. MicroCT Bone Densitometry: Context Sensitivity, Beam Hardening Correction and the Effect of Surrounding Media

    Directory of Open Access Journals (Sweden)

    Philip L. Salmon

    2014-12-01

    Full Text Available The context-sensitivity of microCT bone densitometry due to beam hardening artefacts was assessed. Bones and teeth are scanned with varying thickness of surrounding media (water, alcohol, biological tissue and it is important to understand how this affects reconstructed attenuation (“density” of the mineralized tissue. Aluminium tubes and rods with thickness 0.127mm–5mm were scanned both in air or surrounded by up to 2cm of water. Scans were performed with different energy filters and degrees of software beam hardening correction (BHC. Also tested were the effects of signal-to-noise ratio, magnification and truncation. The thickness of an aluminium tube significantly affected its mean reconstructed attenuation. This effect of thickness could be reduced substantially by BHC for scans in air, but not for scans in water. Varying thickness of surrounding water also changed the mean attenuation of an aluminium tube. This artefact could be almost eliminated by an optimal BHC value. The “cupping” artefact of heterogeneous attenuation (elevated at outer surfaces could be corrected if aluminium was scanned in air, but in water BHC was much less effective. Scan truncation, changes to magnification and signal-to-noise ratio also caused artificial changes to measured attenuation. Measurement of bone mineral density by microCT is highly context sensitive. A surrounding layer of liquid or biological tissue reduces the ability of software BHC to remove bone density artefacts. Sample thickness, truncation, magnification and signal to noise ratio also affect reconstructed attenuation. Thus it is important for densitometry that sample and calibration phantom dimensions and mounting materials are standardised.

  3. Anodal transcranial direct current stimulation reduces psychophysically measured surround suppression in the human visual cortex.

    Directory of Open Access Journals (Sweden)

    Daniel P Spiegel

    Full Text Available Transcranial direct current stimulation (tDCS is a safe, non-invasive technique for transiently modulating the balance of excitation and inhibition within the human brain. It has been reported that anodal tDCS can reduce both GABA mediated inhibition and GABA concentration within the human motor cortex. As GABA mediated inhibition is thought to be a key modulator of plasticity within the adult brain, these findings have broad implications for the future use of tDCS. It is important, therefore, to establish whether tDCS can exert similar effects within non-motor brain areas. The aim of this study was to assess whether anodal tDCS could reduce inhibitory interactions within the human visual cortex. Psychophysical measures of surround suppression were used as an index of inhibition within V1. Overlay suppression, which is thought to originate within the lateral geniculate nucleus (LGN, was also measured as a control. Anodal stimulation of the occipital poles significantly reduced psychophysical surround suppression, but had no effect on overlay suppression. This effect was specific to anodal stimulation as cathodal stimulation had no effect on either measure. These psychophysical results provide the first evidence for tDCS-induced reductions of intracortical inhibition within the human visual cortex.

  4. Neospora caninum and Toxoplasma gondii in brain tissue of feral rodents and insectivores caught on farms in the Netherlands

    NARCIS (Netherlands)

    Meerburg, B.G.; Craeye, de S.; Dierick, K.; Kijlstra, A.

    2012-01-01

    We investigated the presence of both Neospora caninum and Toxoplasma gondii in 250 brain tissue samples from 9 species of feral rodents and insectivores caught on 10 organic farms in the Netherlands in 2004. Collected samples were conserved in 4% paraformaldehyde solution and analysed by real-time

  5. Methodological issues in protein and lipidic expressions in brain tissue exposed to Co{sup 60} based on DESI/MALDI-MS

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Matheus F.; Campos, Tarcísio P.R.; Augusti, Rodinei, E-mail: matheus.soares@gmail.com, E-mail: tprcampos@pq.cnpq.br, E-mail: augusti.rodinei@gmail.com, E-mail: augusti@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil); Eberlin, Marcos N.; Vendramini, Pedro H., E-mail: eberlin@iqm.unicamp.br, E-mail: ph_vendramini@yahoo.com.br [Universidade de Campinas (UNICAMP), SP (Brazil). Thompson Mass Spectroscopy Laboratory

    2017-07-01

    The present paper attempts to present some issues in the methodology of identifying lipid and protein changes in brain tissue induced by radiation. The goal was to address the analysis of the methodology and to investigate the feasibility of the generation of lipid/protein profiles of irradiated brain tissue, in order to identify radioinduced changes. Lipids and proteins are biomolecules with diverse structures and functionalities that participate in important intracellular processes. Changes in the lipid and the tissue protein profiles may indicate a cellular response to an external stimulus as well as the emergence of neoplasms or neurodegenerative diseases such as Alzheimer's. DESI-MS is a convenient method for identifying lipids and their spatial distribution in tissue beyond analytical quantification. DESI-MS allows the creation of an image of several low lipid m/z classes. MALDI-MS has already been a method used in the study of macromolecules as structural, membrane, hormone, neuromediator and immunological peptides. Through a full-scan matrix scan, with a m/z spectrum between 500-1000 for lipids and with a mass spectrum of 1000-15000 Da for proteins, the molecular profile can be analyzed. Generated pixel shape 2D chemical image. The produced image allows to associate the tissue distribution of the lipids and proteins with their chemical profile identified, allowing the verification of the changes radioinduced. Radiation triggers intense oxidative stress by increasing reactive oxygen species (ROS) and free radicals, causing DNA damage with consequent alterations in proteomics and cellular lipid explaining such changes in the lipid and protein expressions. The cellular morphophysiological changes are responsible for both the clonogenic inhibition and the induction of the apoptotic process. The images's production was directly dependent on the rigorous execution of the methodological procedures. Innumerable interferences could impair the image

  6. Monte Carlo modeling and optimization of contrast-enhanced radiotherapy of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, C E; Garnica-Garza, H M, E-mail: hgarnica@cinvestav.mx [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional Unidad Monterrey, Via del Conocimiento 201 Parque de Investigacion e Innovacion Tecnologica, Apodaca NL CP 66600 (Mexico)

    2011-07-07

    Contrast-enhanced radiotherapy involves the use of a kilovoltage x-ray beam to impart a tumoricidal dose to a target into which a radiological contrast agent has previously been loaded in order to increase the x-ray absorption efficiency. In this treatment modality the selection of the proper x-ray spectrum is important since at the energy range of interest the penetration ability of the x-ray beam is limited. For the treatment of brain tumors, the situation is further complicated by the presence of the skull, which also absorbs kilovoltage x-ray in a very efficient manner. In this work, using Monte Carlo simulation, a realistic patient model and the Cimmino algorithm, several irradiation techniques and x-ray spectra are evaluated for two possible clinical scenarios with respect to the location of the target, these being a tumor located at the center of the head and at a position close to the surface of the head. It will be shown that x-ray spectra, such as those produced by a conventional x-ray generator, are capable of producing absorbed dose distributions with excellent uniformity in the target as well as dose differential of at least 20% of the prescribed tumor dose between this and the surrounding brain tissue, when the tumor is located at the center of the head. However, for tumors with a lateral displacement from the center and close to the skull, while the absorbed dose distribution in the target is also quite uniform and the dose to the surrounding brain tissue is within an acceptable range, hot spots in the skull arise which are above what is considered a safe limit. A comparison with previously reported results using mono-energetic x-ray beams such as those produced by a radiation synchrotron is also presented and it is shown that the absorbed dose distributions rendered by this type of beam are very similar to those obtained with a conventional x-ray beam.

  7. [Interference of vitamin E on the brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats].

    Science.gov (United States)

    Gao, Xian; Luo, Rui; Ma, Bin; Wang, Hui; Liu, Tian; Zhang, Jing; Lian, Zhishun; Cui, Xi

    2013-07-01

    To investigate the interlerence ot vitamin E on brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats. 40 pregnant rats were randomly divided into five groups (positive control, negative control, low, middle and high dosage of vitamin E groups). The low, middle and high dosage of vitamin E groups were supplemented with 5, 15 and 30 mg/ml vitamin E respectively since the first day of pregnancy. And the negative control group and the positive control group were given peanut oil without vitamin E. All groups except for the negative control group were exposed to 900MHz intensity of cell phone radiation for one hour each time, three times per day for 21 days. After accouchement, the right hippocampus tissue of fetal rats in each group was taken and observed under electron microscope. The vitality of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the content of malondialdehyde (MDA) in pregnant and fetal rats' brain tissue were tested. Compared with the negative control group, the chondriosomes in neuron and neuroglia of brain tissues was swelling, mild edema was found around the capillary, chromatin was concentrated and collected, and bubbles were formed in vascular endothelial cells (VEC) in the positive fetal rat control group, whereas the above phenomenon was un-conspicuous in the middle and high dosage of vitamin E groups. We can see uniform chromatin, abundant mitochondrion, rough endoplasmic reticulum and free ribosomes in the high dosage group. The apoptosis has not fond in all groups'sections. In the antioxidase activity analysis, compared with the negative control group, the vitality of SOD and GSH-Px significantly decreased and the content of MDA significantly increased both in the pregnant and fetal rats positive control group (P electromagnetic radiation of cell phone in pregnant rats and fetal rats.

  8. Theoretical Benefits of Dynamic Collimation in Pencil Beam Scanning Proton Therapy for Brain Tumors: Dosimetric and Radiobiological Metrics

    Energy Technology Data Exchange (ETDEWEB)

    Moignier, Alexandra, E-mail: alexandra-moignier@uiowa.edu [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); Gelover, Edgar; Wang, Dongxu; Smith, Blake; Flynn, Ryan [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); Kirk, Maura; Lin, Liyong; Solberg, Timothy; Lin, Alexander [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Hyer, Daniel [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States)

    2016-05-01

    Purpose: To quantify the dosimetric benefit of using a dynamic collimation system (DCS) for penumbra reduction during the treatment of brain tumors by pencil beam scanning proton therapy (PBS PT). Methods and Materials: Collimated and uncollimated brain treatment plans were created for 5 patients previously treated with PBS PT and retrospectively enrolled in an institutional review board–approved study. The in-house treatment planning system, RDX, was used to generate the plans because it is capable of modeling both collimated and uncollimated beamlets. The clinically delivered plans were reproduced with uncollimated plans in terms of target coverage and organ at risk (OAR) sparing to ensure a clinically relevant starting point, and collimated plans were generated to improve the OAR sparing while maintaining target coverage. Physical and biological comparison metrics, such as dose distribution conformity, mean and maximum doses, normal tissue complication probability, and risk of secondary brain cancer, were used to evaluate the plans. Results: The DCS systematically improved the dose distribution conformity while preserving the target coverage. The average reduction of the mean dose to the 10-mm ring surrounding the target and the healthy brain were 13.7% (95% confidence interval [CI] 11.6%-15.7%; P<.0001) and 25.1% (95% CI 16.8%-33.4%; P<.001), respectively. This yielded an average reduction of 24.8% (95% CI 0.8%-48.8%; P<.05) for the brain necrosis normal tissue complication probability using the Flickinger model, and 25.1% (95% CI 16.8%-33.4%; P<.001) for the risk of secondary brain cancer. A general improvement of the OAR sparing was also observed. Conclusion: The lateral penumbra reduction afforded by the DCS increases the normal tissue sparing capabilities of PBS PT for brain cancer treatment while preserving target coverage.

  9. Theoretical Benefits of Dynamic Collimation in Pencil Beam Scanning Proton Therapy for Brain Tumors: Dosimetric and Radiobiological Metrics

    International Nuclear Information System (INIS)

    Moignier, Alexandra; Gelover, Edgar; Wang, Dongxu; Smith, Blake; Flynn, Ryan; Kirk, Maura; Lin, Liyong; Solberg, Timothy; Lin, Alexander; Hyer, Daniel

    2016-01-01

    Purpose: To quantify the dosimetric benefit of using a dynamic collimation system (DCS) for penumbra reduction during the treatment of brain tumors by pencil beam scanning proton therapy (PBS PT). Methods and Materials: Collimated and uncollimated brain treatment plans were created for 5 patients previously treated with PBS PT and retrospectively enrolled in an institutional review board–approved study. The in-house treatment planning system, RDX, was used to generate the plans because it is capable of modeling both collimated and uncollimated beamlets. The clinically delivered plans were reproduced with uncollimated plans in terms of target coverage and organ at risk (OAR) sparing to ensure a clinically relevant starting point, and collimated plans were generated to improve the OAR sparing while maintaining target coverage. Physical and biological comparison metrics, such as dose distribution conformity, mean and maximum doses, normal tissue complication probability, and risk of secondary brain cancer, were used to evaluate the plans. Results: The DCS systematically improved the dose distribution conformity while preserving the target coverage. The average reduction of the mean dose to the 10-mm ring surrounding the target and the healthy brain were 13.7% (95% confidence interval [CI] 11.6%-15.7%; P<.0001) and 25.1% (95% CI 16.8%-33.4%; P<.001), respectively. This yielded an average reduction of 24.8% (95% CI 0.8%-48.8%; P<.05) for the brain necrosis normal tissue complication probability using the Flickinger model, and 25.1% (95% CI 16.8%-33.4%; P<.001) for the risk of secondary brain cancer. A general improvement of the OAR sparing was also observed. Conclusion: The lateral penumbra reduction afforded by the DCS increases the normal tissue sparing capabilities of PBS PT for brain cancer treatment while preserving target coverage.

  10. Functional magnetic resonance imaging-controlled neuronavigator-guided brain surgery: a case report.

    Science.gov (United States)

    Morioka, J; Nishizaki, T; Tokumaru, T; Uesugi, S; Yamashita, K; Ito, H; Suzuki, M

    2001-05-01

    The effectiveness of functional magnetic resonance imaging (f-MRI)-controlled and navigator-guided brain surgery for a patient with a recurrent astrocytoma is demonstrated. Preoperative f-MRI was performed in order to identify the motor area and ensure that the tumour was in the left prefrontal area. A more aggressive operation was planned for the recurrent tumour. The f-MRI data were input to the MKM navigation system and during the operation the contours of the tumour and motor area were visualised b y the microscope of the navigation system. The tumour and surrounding gliotic brain tissue were removed completely. The diagnosis was a grade III astrocytoma. The combination of the navigation system and f-MRI was useful for preoperative design of the surgical strategy, and tumour orientation during the operation, enabling aggressive surgery to be performed without functional deficits ensuing. Copyright 2001 Harcourt Publishers Ltd.

  11. A study of neurotoxicity of BHC in relation to residual accumulation on the brain tissue of Heteropneustes fossilis (Bloch).

    Science.gov (United States)

    Hazarika, Ranjit

    2003-01-01

    Neurotoxic effect of BHC, the organochlorine pesticide in Heteropneustes fossilis has been studied exposing at the dose concentrations of 1 ppm, 5 ppm and 10 ppm in lab aquarium for 96 hours over a period of one year. The results showed the behavioural abnormalities in different exposure concentrations such as dysfunction of endocrine gland, excretion of mucus, dispigmentation, sign of restlessness, erratic swimming with rapid jurkey movement, spiralling and convolution showing severe effect in central nervous system. Therefore an attempt has been made for monitoring of BHC residues viz. alpha, beta, gamma isomers in the brain tissue exposed to different sublethal concentrations using Gas liquid chromatography. The mean values of isomers were found to be 1.587 microg/gm for 1 ppm, 2.993 microg/gm for 5 ppm and 3.78 microg/gm for 10 ppm test group. Severe behavioural abnormalities were recorded at high dose concentration of pesticides with higher accumulation of pesticide residues in brain tissue.

  12. Brain antibodies in the cortex and blood of people with schizophrenia and controls.

    Science.gov (United States)

    Glass, L J; Sinclair, D; Boerrigter, D; Naude, K; Fung, S J; Brown, D; Catts, V S; Tooney, P; O'Donnell, M; Lenroot, R; Galletly, C; Liu, D; Weickert, T W; Shannon Weickert, C

    2017-08-08

    The immune system is implicated in the pathogenesis of schizophrenia, with elevated proinflammatory cytokine mRNAs found in the brains of ~40% of individuals with the disorder. However, it is not clear if antibodies (specifically immunoglobulin-γ (IgG)) can be found in the brain of people with schizophrenia and if their abundance relates to brain inflammatory cytokine mRNA levels. Therefore, we investigated the localization and abundance of IgG in the frontal cortex of people with schizophrenia and controls, and the impact of proinflammatory cytokine status on IgG abundance in these groups. Brain IgGs were detected surrounding blood vessels in the human and non-human primate frontal cortex by immunohistochemistry. IgG levels did not differ significantly between schizophrenia cases and controls, or between schizophrenia cases in 'high' and 'low' proinflammatory cytokine subgroups. Consistent with the existence of IgG in the parenchyma of human brain, mRNA and protein of the IgG transporter (FcGRT) were present in the brain, and did not differ according to diagnosis or inflammatory status. Finally, brain-reactive antibody presence and abundance was investigated in the blood of living people. The plasma of living schizophrenia patients and healthy controls contained antibodies that displayed positive binding to Rhesus macaque cerebellar tissue, and the abundance of these antibodies was significantly lower in patients than controls. These findings suggest that antibodies in the brain and brain-reactive antibodies in the blood are present under normal circumstances.

  13. Quantification of brain tissue through incorporation of partial volume effects

    Science.gov (United States)

    Gage, Howard D.; Santago, Peter, II; Snyder, Wesley E.

    1992-06-01

    This research addresses the problem of automatically quantifying the various types of brain tissue, CSF, white matter, and gray matter, using T1-weighted magnetic resonance images. The method employs a statistical model of the noise and partial volume effect and fits the derived probability density function to that of the data. Following this fit, the optimal decision points can be found for the materials and thus they can be quantified. Emphasis is placed on repeatable results for which a confidence in the solution might be measured. Results are presented assuming a single Gaussian noise source and a uniform distribution of partial volume pixels for both simulated and actual data. Thus far results have been mixed, with no clear advantage being shown in taking into account partial volume effects. Due to the fitting problem being ill-conditioned, it is not yet clear whether these results are due to problems with the model or the method of solution.

  14. Carbogen inhalation increases oxygen transport to hypoperfused brain tissue in patients with occlusive carotid artery disease: increased oxygen transport to hypoperfused brain

    DEFF Research Database (Denmark)

    Ashkanian, Mahmoud; Gjedde, Albert; Mouridsen, Kim

    2009-01-01

    to inhaled oxygen (the mixture known as carbogen). In the present study, we measured CBF by positron emission tomography (PET) during inhalation of test gases (O(2), carbogen, and atmospheric air) in healthy volunteers (n = 10) and in patients with occlusive carotid artery disease (n = 6). Statistical...... and Sa(O2) are readily obtained with carbogen, while oxygen increases only Sa(O2). Thus, carbogen improves oxygen transport to brain tissue more efficiently than oxygen alone. Further studies with more subjects are, however, needed to investigate the applicability of carbogen for long-term inhalation...

  15. Effects of 60Co γ-radiation on brain hippocampal tissue of adult mice

    International Nuclear Information System (INIS)

    Liu Yongbao; Rao Yongqing; Xu Luxi

    2000-01-01

    Objective: To study neuro-pathological changes of hippocampus tissue in adult mice following a series of irradiation with 60 Co γ-rays. Methods: Male mice of Kunming strain in experimental group (n = 8) were exposed total-bodily to 60 Co γ-rays at 2.0 Gy once every two days. A histopathological imaging analysis of the mouse brain tissue was carried out after paraffin embedding and a series of sections were made and stained with Nissl and Weil staining methods. Results: In the irradiation group (the cumulative dose = 26 Gy) loss of pyramidal cells in hippocampus was significant when compared with the control group. Neuro-pathological changes were characterised by reduced neuron size, nuclear pyknosis and karyolysis. The neurofibrillar density of the pyramidal layer in the irradiation group was much lower than that of the control group (P CA2>CA3>CA4 in the hippocampus. Conclusion: The neuronal damage in hippocampus after 60 Co irradiation could form a pathological basis in reduction of memorial and learning ability

  16. X-ray micro-tomography for investigations of brain tissues on cellular level

    Science.gov (United States)

    Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Zanette, Irene; Zdora, Marie-Christine; Bikis, Christos; Hipp, Alexander; Hieber, Simone E.; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert

    2016-10-01

    X-ray imaging in absorption contrast mode is well established for hard tissue visualization. However, performance for lower density materials is limited due to a reduced contrast. Our aim is three-dimensional (3D) characterization of micro-morphology of human brain tissues down to (sub-)cellular resolution within a laboratory environment. Using the laboratory-based microtomography (μCT) system nanotom m (GE Sensing and Inspection Technologies GmbH, Wunstorf, Germany) and synchrotron radiation at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK), we have acquired 3D data with a resolution down to 0.45 μm for visualization of a human cerebellum specimen down to cellular level. We have shown that all selected modalities, namely laboratory-based absorption contrast micro-tomography (LBμCT), synchrotron radiation based in-line single distance phase contrast tomography (SDPR) and synchrotron radiation based single-grating interferometry (GI), can reach cellular resolution for tissue samples with a size in the mm-range. The results are discussed qualitatively in comparison to optical microscopy of haematoxylin and eosin (HE) stained sections. As phase contrast yields to a better data quality for soft tissues and in order to overcome restrictions of limited beamline access for phase contrast measurements, we have equipped the μCT system nanotom m with a double-grating phase contrast set-up. Preliminary experimental results of a knee sample consisting of a bony part and a cartilage demonstrate that phase contrast data exhibits better quality compared to absorption contrast. Currently, the set-up is under adjustment. It is expected that cellular resolution would also be achieved. The questions arise (1) what would be the quality gain of laboratory-based phase contrast in comparison to laboratory-based absorption contrast tomography and (2) could laboratory-based phase contrast data provide comparable results to synchrotron radiation based

  17. Evaluation of chlorpyrifos toxicity through a 28-day study: Cholinesterase activity, oxidative stress responses, parent compound/metabolite levels, and primary DNA damage in blood and brain tissue of adult male Wistar rats.

    Science.gov (United States)

    Kopjar, Nevenka; Žunec, Suzana; Mendaš, Gordana; Micek, Vedran; Kašuba, Vilena; Mikolić, Anja; Lovaković, Blanka Tariba; Milić, Mirta; Pavičić, Ivan; Čermak, Ana Marija Marjanović; Pizent, Alica; Lucić Vrdoljak, Ana; Želježić, Davor

    2018-01-05

    In this 28 day-study, we evaluated the effects of the insecticide chlorpyrifos orally administered to Wistar rats at doses 0.160, 0.015, and 0.010 mg/kg b. w./day. Following treatment, total cholinesterase activity and activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were measured. Oxidative stress responses were evaluated using a battery of endpoints to establish lipid peroxidation, changes in total antioxidant capacity, level of reactive oxygen species (ROS), glutathione (GSH) level and activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase. Using HPLC-UV DAD analysis, levels of the parent compound and its main metabolite 3,5,6-trichloro-2-pyridinol in plasma and brain tissue were measured. The genotoxic effect was estimated using alkaline comet assay in leukocytes and brain tissue. The exposure did not result in significant effects on total cholinesterase, AChE and BChE activity in plasma and brain tissue. Lipid peroxidation slightly increased both in plasma and brain tissue. Total antioxidant capacity, ROS and GSH levels were marginally influenced by the exposure. Treatment led to significant increases of GSH-Px activity in blood, SOD activity in erythrocytes and a slight increase of catalase activity in plasma. HPLC-UV DAD analysis revealed the presence of both the parent compound and its main metabolite in the plasma of all of the experimental animals and brain tissue of the animals treated at the two higher doses. All of the tested doses of chlorpyrifos were slightly genotoxic, both to leukocytes and brain tissue. Our results call for further research using other sensitive biomarkers of effect, along with different exposure scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Postmortem concentrations of gamma-hydroxybutyrate (GHB) in peripheral blood and brain tissue - Differentiating between postmortem formation and antemortem intake

    DEFF Research Database (Denmark)

    Thomsen, Ragnar; Rasmussen, Brian Schou; Johansen, Sys Stybe

    2017-01-01

    to fermentation processes. The endogenous nature of GHB leads to difficulty in interpretation of concentrations, as the source of GHB is not obvious. Postmortem brain and blood samples were collected from 221 individuals at autopsy. Of these, 218 were not suspected of having ingested GHB, while GHB intake....../kg (median 15.3mg/kg) in blood and not-detected to 9.8mg/kg (median 4.8mg/kg) in brain tissue. For case A, where intoxication with GHB was deemed to be the sole cause of death, the concentrations were 199 and 166mg/kg in blood and brain, respectively. For case B, where intoxication with GHB...

  19. MRI Brain Images Healthy and Pathological Tissues Classification with the Aid of Improved Particle Swarm Optimization and Neural Network

    Science.gov (United States)

    Sheejakumari, V.; Sankara Gomathi, B.

    2015-01-01

    The advantages of magnetic resonance imaging (MRI) over other diagnostic imaging modalities are its higher spatial resolution and its better discrimination of soft tissue. In the previous tissues classification method, the healthy and pathological tissues are classified from the MRI brain images using HGANN. But the method lacks sensitivity and accuracy measures. The classification method is inadequate in its performance in terms of these two parameters. So, to avoid these drawbacks, a new classification method is proposed in this paper. Here, new tissues classification method is proposed with improved particle swarm optimization (IPSO) technique to classify the healthy and pathological tissues from the given MRI images. Our proposed classification method includes the same four stages, namely, tissue segmentation, feature extraction, heuristic feature selection, and tissue classification. The method is implemented and the results are analyzed in terms of various statistical performance measures. The results show the effectiveness of the proposed classification method in classifying the tissues and the achieved improvement in sensitivity and accuracy measures. Furthermore, the performance of the proposed technique is evaluated by comparing it with the other segmentation methods. PMID:25977706

  20. Glial Tissue Mechanics and Mechanosensing by Glial Cells

    OpenAIRE

    Katarzyna Pogoda; Katarzyna Pogoda; Paul A. Janmey

    2018-01-01

    Understanding the mechanical behavior of human brain is critical to interpret the role of physical stimuli in both normal and pathological processes that occur in CNS tissue, such as development, inflammation, neurodegeneration, aging, and most common brain tumors. Despite clear evidence that mechanical cues influence both normal and transformed brain tissue activity as well as normal and transformed brain cell behavior, little is known about the links between mechanical signals and their bio...

  1. Structure and function of the interphotoreceptor matrix surrounding retinal photoreceptor cells.

    Science.gov (United States)

    Ishikawa, Makoto; Sawada, Yu; Yoshitomi, Takeshi

    2015-04-01

    The interphotoreceptor matrix (IPM) is a highly organized structure with interconnected domains surrounding cone and rod photoreceptor cells and extends throughout the subretinal space. Based on known roles of the extracellular matrix in other tissues, the IPM is thought to have several prominent functions including serving as a receptor for growth factors, regulating retinoid transport, participating in cytoskeletal organization in surrounding cells, and regulation of oxygen and nutrient transport. In addition, a number of studies suggest that the IPM also may play a significant role in the etiology of retinal degenerative disorders. In this review, we describe the present knowledge concerning the structure and function of the IPM under physiological and pathological conditions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Improved application of the electrophoretic tissue clearing technology, CLARITY, to intact solid organs including brain, pancreas, liver, kidney, lung, and intestine.

    Science.gov (United States)

    Lee, Hyunsu; Park, Jae-Hyung; Seo, Incheol; Park, Sun-Hyun; Kim, Shin

    2014-12-21

    Mapping of tissue structure at the cellular, circuit, and organ-wide scale is important for understanding physiological and biological functions. A bio-electrochemical technique known as CLARITY used for three-dimensional anatomical and phenotypical mapping within transparent intact tissues has been recently developed. This method provided a major advance in understanding the structure-function relationships in circuits of the nervous system and organs by using whole-body clearing. Thus, in the present study, we aimed to improve the original CLARITY procedure and developed specific CLARITY protocols for various intact organs. We determined the optimal conditions for reducing bubble formation, discoloration, and depositing of black particles on the surface of tissue, which allowed production of clearer organ images. We also determined the appropriate replacement cycles of clearing solution for each type of organ, and convincingly demonstrated that 250-280 mA is the ideal range of electrical current for tissue clearing. We then acquired each type of cleared organs including brain, pancreas, liver, lung, kidney, and intestine. Additionally, we determined the images of axon fibers of hippocampal region, the Purkinje layer of cerebellum, and vessels and cellular nuclei of pancreas. CLARITY is an innovative biochemical technology for the structural and molecular analysis of various types of tissue. We developed improved CLARITY methods for clearing of the brain, pancreas, lung, intestine, liver, and kidney, and identified the appropriate experimental conditions for clearing of each specific tissue type. These optimized methods will be useful for the application of CLARITY to various types of organs.

  3. Neocortical Transplants in the Mammalian Brain Lack a Blood-Brain Barrier to Macromolecules

    Science.gov (United States)

    Rosenstein, Jeffrey M.

    1987-02-01

    In order to determine whether the blood-brain barrier was present in transplants of central nervous tissue, fetal neocortex, which already possesses blood-brain and blood-cerebrospinal fluid barriers to protein, was grafted into the undamaged fourth ventricle or directly into the neocortex of recipient rats. Horseradish peroxidase or a conjugated human immunoglobulin G-peroxidase molecule was systemically administered into the host. These proteins were detected within the cortical transplants within 2 minutes regardless of the age of the donor or postoperative time. At later times these compounds, which normally do not cross the blood-brain barrier, inundated the grafts and adjacent host brain and also entered the cerebrospinal fluid. Endogenous serum albumin detected immunocytochemically in untreated hosts had a comparable although less extensive distribution. Thus, transplants of fetal central nervous tissue have permanent barrier dysfunction, probably due to microvascular changes, and are not integrated physiologically within the host. Blood-borne compounds, either systemically administered or naturally occurring, which should never contact normal brain tissue, have direct access to these transplants and might affect neuronal function.

  4. Clinical Application of colored three-dimensional CT (3D-CT) for brain tumors using helical scanning CT (HES-CT)

    International Nuclear Information System (INIS)

    Ogura, Yuko; Katada, Kazuhiro; Fujisawa, Kazuhisa; Imai, Fumihiro; Kawase, Tsukasa; Kamei, Yoshifumi; Kanno, Tetsuo; Takeshita, Gen; Koga, Sukehiko

    1995-01-01

    We applied colored three-dimensional CT (colored 3D-CT) images to distinguish brain tumors from the surrounding vascular and bony structures using a work station system and helical scanning CT (HES-CT). CT scanners with a slip-ring system were employed (TCT-900S and X vigor). A slice thickness of 2 mm and bed speed of 2 mm/s were used. The volume of contrast medium injected was 60 to 70 ml. Four to 8 colors were used for the tissue segmentation on the workstation system (xtension) using the data transferred from HES-CT. Tissue segmentation succeeded on the colored 3D-CT images in all 13 cases. The relationship between the tumors and the surrounding structures were easily recognized. The technique was useful to simulate operative fields, because deep structures could be visualized by cutting and drilling the colored 3D-CT volumetric data. On the basis of our findings, we suggest that colored 3D-CT images should be used as a supplementary aid for preoperative simulation. (author)

  5. Magnetic Resonance Fingerprinting of Adult Brain Tumors: Initial Experience

    Science.gov (United States)

    Badve, Chaitra; Yu, Alice; Dastmalchian, Sara; Rogers, Matthew; Ma, Dan; Jiang, Yun; Margevicius, Seunghee; Pahwa, Shivani; Lu, Ziang; Schluchter, Mark; Sunshine, Jeffrey; Griswold, Mark; Sloan, Andrew; Gulani, Vikas

    2016-01-01

    Background Magnetic resonance fingerprinting (MRF) allows rapid simultaneous quantification of T1 and T2 relaxation times. This study assesses the utility of MRF in differentiating between common types of adult intra-axial brain tumors. Methods MRF acquisition was performed in 31 patients with untreated intra-axial brain tumors: 17 glioblastomas, 6 WHO grade II lower-grade gliomas and 8 metastases. T1, T2 of the solid tumor (ST), immediate peritumoral white matter (PW), and contralateral white matter (CW) were summarized within each region of interest. Statistical comparisons on mean, standard deviation, skewness and kurtosis were performed using univariate Wilcoxon rank sum test across various tumor types. Bonferroni correction was used to correct for multiple comparisons testing. Multivariable logistic regression analysis was performed for discrimination between glioblastomas and metastases and area under the receiver operator curve (AUC) was calculated. Results Mean T2 values could differentiate solid tumor regions of lower-grade gliomas from metastases (mean±sd: 172±53ms and 105±27ms respectively, p =0.004, significant after Bonferroni correction). Mean T1 of PW surrounding lower-grade gliomas differed from PW around glioblastomas (mean±sd: 1066±218ms and 1578±331ms respectively, p=0.004, significant after Bonferroni correction). Logistic regression analysis revealed that mean T2 of ST offered best separation between glioblastomas and metastases with AUC of 0.86 (95% CI 0.69–1.00, p<0.0001). Conclusion MRF allows rapid simultaneous T1, T2 measurement in brain tumors and surrounding tissues. MRF based relaxometry can identify quantitative differences between solid-tumor regions of lower grade gliomas and metastases and between peritumoral regions of glioblastomas and lower grade gliomas. PMID:28034994

  6. The Effects on Antioxidant Enzyme Systems in Rat Brain Tissues of Lead Nitrate and Mercury Chloride

    OpenAIRE

    Baş, Hatice; Kalender, Suna; Karaboduk, Hatice; Apaydın, Fatma

    2014-01-01

    The present study was undertaken to evaluate the effects of lead nitrate and mercury chloride in brain tissues of Wistar rats. Mercury chloride (0.02 mg/kg bw) and lead nitrate (45 mg/kg bw) were administered orally for 28 days rats. The mercury chloride and lead nitrate treated animals were exhibited a significant inhibition of superoxide dismutase, catalase, glutation peroxidase and glutathione-S-transferase activities and increasing of malondialdehyde levels. In our present study mercury c...

  7. Alzheimer’s Disease Mutant Mice Exhibit Reduced Brain Tissue Stiffness Compared to Wild-type Mice in both Normoxia and following Intermittent Hypoxia Mimicking Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Maria José Menal

    2018-01-01

    Full Text Available BackgroundEvidence from patients and animal models suggests that obstructive sleep apnea (OSA may increase the risk of Alzheimer’s disease (AD and that AD is associated with reduced brain tissue stiffness.AimTo investigate whether intermittent hypoxia (IH alters brain cortex tissue stiffness in AD mutant mice exposed to IH mimicking OSA.MethodsSix-eight month old (B6C3-Tg(APPswe,PSEN1dE985Dbo/J AD mutant mice and wild-type (WT littermates were subjected to IH (21% O2 40 s to 5% O2 20 s; 6 h/day or normoxia for 8 weeks. After euthanasia, the stiffness (E of 200-μm brain cortex slices was measured by atomic force microscopy.ResultsTwo-way ANOVA indicated significant cortical softening and weight increase in AD mice compared to WT littermates, but no significant effects of IH on cortical stiffness and weight were detected. In addition, reduced myelin was apparent in AD (vs. WT, but no significant differences emerged in the cortex extracellular matrix components laminin and glycosaminoglycans when comparing baseline AD and WT mice.ConclusionAD mutant mice exhibit reduced brain tissue stiffness following both normoxia and IH mimicking sleep apnea, and such differences are commensurate with increased edema and demyelination in AD.

  8. Culturing of PC12 Cells, Neuronal Cells, Astrocytes Cultures and Brain Slices in an Open Microfluidic System

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya; Rømer Sørensen, Ane

    The brain is the center of the nervous system, where serious neurodegenerative diseases such as Parkinson’s, Alzheimer’s and Huntington’s are products of functional loss in the neural cells (1). Typical techniques used to investigate these diseases lack precise control of the cellular surroundings......, in addition to isolating the neural tissue from nutrient delivery and to creating unwanted gradients (2). This means that typical techniques used to investigate neurodegenerative diseases cannot mimic in vivo conditions, as closely as desired. We have developed a novel microfluidic system for culturing PC12...... cells, neuronal cells, astrocytes cultures and brain slices. The microfluidic system provides efficient nutrient delivery, waste removal, access to oxygen, fine control over the neurochemical environment and access to modern microscopy. Additionally, the setup consists of an in vitro culturing...

  9. In-Vivo Characterization of Glassy Carbon Micro-Electrode Arrays for Neural Applications and Histological Analysis of the Brain Tissue

    Science.gov (United States)

    Vomero, Maria

    The aim of this work is to fabricate and characterize glassy carbon Microelectrode Arrays (MEAs) for sensing and stimulating neural activity, and conduct histological analysis of the brain tissue after the implant to determine long-term performance. Neural applications often require robust electrical and electrochemical response over a long period of time, and for those applications we propose to replace the commonly used noble metals like platinum, gold and iridium with glassy carbon. We submit that such material has the potential to improve the performances of traditional neural prostheses, thanks to better charge transfer capabilities and higher electrochemical stability. Great interest and attention is given in this work, in particular, to the investigation of tissue response after several weeks of implants in rodents' brain motor cortex and the associated materials degradation. As part of this work, a new set of devices for Electrocorticography (ECoG) has been designed and fabricated to improve durability and quality of the previous generation of devices, designed and manufactured by the same research group in 2014. In-vivo long-term impedance measurements and brain activity recordings were performed to test the functionality of the neural devices. In-vitro electrical characterization of the carbon electrodes, as well as the study of the adhesion mechanisms between glassy carbon and different substrates is also part of the research described in this book.

  10. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  11. Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiliang; Costantino, Isabel; Venugopalan, Nagarajan; Fischetti, Robert F.; Hyman, Bradley; Frosch, Matthew; Gomez-Isla, Teresa; Makowski, Lee

    2016-09-15

    Although aggregation of Aβ amyloid fibrils into plaques in the brain is a hallmark of Alzheimer's Disease (AD), the correlation between amyloid burden and severity of symptoms is weak. One possible reason is that amyloid fibrils are structurally polymorphic and different polymorphs may contribute differentially to disease. However, the occurrence and distribution of amyloid polymorphisms in human brain is poorly documented. Here we seek to fill this knowledge gap by using X-ray microdiffraction of histological sections of human tissue to map the abundance, orientation and structural heterogeneities of amyloid within individual plaques; among proximal plaques and in subjects with distinct clinical histories. A 5 µ x-ray beam was used to generate diffraction data with each pattern arising from a scattering volume of only ~ 450 µ3 , making possible collection of dozens to hundreds of diffraction patterns from a single amyloid plaque. X-ray scattering from these samples exhibited all the properties expected for scattering from amyloid. Amyloid distribution was mapped using the intensity of its signature 4.7 Å reflection which also provided information on the orientation of amyloid fibrils across plaques. Margins of plaques exhibited a greater degree of orientation than cores and orientation around blood vessels frequently appeared tangential. Variation in the structure of Aβ fibrils is reflected in the shape of the 4.7 Å peak which usually appears as a doublet. Variations in this peak correspond to differences between the structure of amyloid within cores of plaques and at their periphery. Examination of tissue from a mismatch case - an individual with high plaque burden but no overt signs of dementia at time of death - revealed a diversity of structure and spatial distribution of amyloid that is distinct from typical AD cases. We demonstrate the existence of structural polymorphisms among amyloid within and among plaques of a single individual and suggest

  12. Mathematical modelling of blood-brain barrier failure and edema

    Science.gov (United States)

    Waters, Sarah; Lang, Georgina; Vella, Dominic; Goriely, Alain

    2015-11-01

    Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic edema. Although the initial injury may be localised, the resulting edema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of blood-brain barrier permeability changes within a region of brain tissue and the onset of vasogenic edema. We find that such localised changes can indeed result in brain tissue swelling and that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear edema fluid.

  13. Biomaterials for tissue engineering applications.

    Science.gov (United States)

    Keane, Timothy J; Badylak, Stephen F

    2014-06-01

    With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community. Copyright © 2014. Published by Elsevier Inc.

  14. Simulation of the BNCT of Brain Tumors Using MCNP Code: Beam Designing and Dose Evaluation

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadat Rasouli

    2012-09-01

    Full Text Available Introduction BNCT is an effective method to destroy brain tumoral cells while sparing the healthy tissues. The recommended flux for epithermal neutrons is 109 n/cm2s, which has the most effectiveness on deep-seated tumors. In this paper, it is indicated that using D-T neutron source and optimizing of Beam Shaping Assembly (BSA leads to treating brain tumors in a reasonable time where all IAEA recommended criteria are met. Materials and Methods The proposed BSA based on a D-T neutron generator consists of a neutron multiplier system, moderators, reflector, and collimator. The simulated Snyder head phantom is used to evaluate dose profiles in tissues due to the irradiation of designed beam. Monte Carlo Code, MCNP-4C, was used in order to perform these calculations.   Results The neutron beam associated with the designed and optimized BSA has an adequate epithermal flux at the beam port and neutron and gamma contaminations are removed as much as possible. Moreover, it was showed that increasing J/Φ, as a measure of beam directionality, leads to improvement of beam performance and survival of healthy tissues surrounding the tumor. Conclusion According to the simulation results, the proposed system based on D-T neutron source, which is suitable for in-hospital installations, satisfies all in-air parameters. Moreover, depth-dose curves investigate proper performance of designed beam in tissues. The results are comparable with the performances of other facilities.

  15. Detection of neuronal tissue in meat using tissue specific DNA modifications

    Directory of Open Access Journals (Sweden)

    Harris N.

    2004-01-01

    Full Text Available A method has been developed to differentiate between non-muscle tissues such as liver, kidney and heart and that of muscle in meat samples using tissue specific DNA detection. Only muscle tissue is considered meat from the point of view of labelling (Food Labelling [Amendment] (England Regulations 2003 and Quantitative Ingredient Declaration (QUID, and also certain parts of the carcass are prohibited to be used in raw meat products (Meat Products [England] Regulations 2003. Included in the prohibited offal are brain and spinal cord. The described methodology has therefore been developed primarily to enforce labelling rules but also to contribute to the enforcement of BSE legislation on the detection of Central Nervous System (CNS tissue. The latter requires the removal of Specified Risk Material (SRM, such as bovine and ovine brain and spinal cord, from the food chain. Current methodologies for detection of CNS tissue include histological examination, analysis of cholesterol content and immunodetection. These can potentially be time consuming, less applicable to processed samples and may not be readily adapted to high throughput sample analysis. The objective of this work was therefore to develop a DNAbased detection assay that exploits the sensitivity and specificity of PCR and is potentially applicable to more highly processed food samples. For neuronal tissue, the DNA target selected was the promoter for Glial Fibrillary Acidic Protein (GFAP, a gene whose expression is restricted to astroglial cells within CNS tissue. The promoter fragments from both cattle and sheep have been isolated and key differences in the methylation patterns of certain CpG dinucleotides in the sequences from bovine and sheep brain and spinal cord and the corresponding skeletal muscle identified. These have been used to design a PCR assay exploiting Methylation Specific PCR (MSP to specifically amplify the neuronal tissue derived sequence and therefore identify the

  16. Brain tumor-targeted drug delivery strategies

    Directory of Open Access Journals (Sweden)

    Xiaoli Wei

    2014-06-01

    Full Text Available Despite the application of aggressive surgery, radiotherapy and chemotherapy in clinics, brain tumors are still a difficult health challenge due to their fast development and poor prognosis. Brain tumor-targeted drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in normal brain and peripheral tissue, are a promising new approach to brain tumor treatments. Since brain tumors exhibit many distinctive characteristics relative to tumors growing in peripheral tissues, potential targets based on continuously changing vascular characteristics and the microenvironment can be utilized to facilitate effective brain tumor-targeted drug delivery. In this review, we briefly describe the physiological characteristics of brain tumors, including blood–brain/brain tumor barriers, the tumor microenvironment, and tumor stem cells. We also review targeted delivery strategies and introduce a systematic targeted drug delivery strategy to overcome the challenges.

  17. Dynamic, mating-induced gene expression changes in female head and brain tissues of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Stirling Emma J

    2010-10-01

    Full Text Available Abstract Background Drosophila melanogaster females show changes in behavior and physiology after mating that are thought to maximize the number of progeny resulting from the most recent copulation. Sperm and seminal fluid proteins induce post-mating changes in females, however, very little is known about the resulting gene expression changes in female head and central nervous system tissues that contribute to the post-mating response. Results We determined the temporal gene expression changes in female head tissues 0-2, 24, 48 and 72 hours after mating. Females from each time point had a unique post-mating gene expression response, with 72 hours post-mating having the largest number of genes with significant changes in expression. At most time points, genes expressed in the head fat body that encode products involved in metabolism showed a marked change in expression. Additional analysis of gene expression changes in dissected brain tissues 24 hours post-mating revealed changes in transcript abundance of many genes, notably, the reduced transcript abundance of genes that encode ion channels. Conclusions Substantial changes occur in the regulation of many genes in female head tissues after mating, which might underlie aspects of the female post-mating response. These results provide new insights into the physiological and metabolic changes that accompany changes in female behaviors.

  18. Brain donation procedures in the Sudden Death Brain Bank in Edinburgh.

    Science.gov (United States)

    Smith, Colin; Millar, Tracey

    2018-01-01

    Brain banks typically receive donations through premortem consent procedures, often through disease-specific patient cohorts, such as dementia. While some control cases can be obtained through this route, access to age-matched control tissues, and some chronic neurologic conditions, particularly psychiatric disorders, can be challenging. The Edinburgh Sudden Death Brain Bank was established to try and increase access to control cases across all ages, and also access to psychiatric disorders through suicides. This chapter outlines the processes for establishing donations through medicolegal postmortems, which, although often with a prolonged postmortem interval, can provide high-quality well-characterized postmortem brain tissue to the neuroscience research community. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The Responses of Tissues from the Brain, Heart, Kidney, and Liver to Resuscitation following Prolonged Cardiac Arrest by Examining Mitochondrial Respiration in Rats.

    Science.gov (United States)

    Kim, Junhwan; Villarroel, José Paul Perales; Zhang, Wei; Yin, Tai; Shinozaki, Koichiro; Hong, Angela; Lampe, Joshua W; Becker, Lance B

    2016-01-01

    Cardiac arrest induces whole-body ischemia, which causes damage to multiple organs. Understanding how each organ responds to ischemia/reperfusion is important to develop better resuscitation strategies. Because direct measurement of organ function is not practicable in most animal models, we attempt to use mitochondrial respiration to test efficacy of resuscitation on the brain, heart, kidney, and liver following prolonged cardiac arrest. Male Sprague-Dawley rats are subjected to asphyxia-induced cardiac arrest for 30 min or 45 min, or 30 min cardiac arrest followed by 60 min cardiopulmonary bypass resuscitation. Mitochondria are isolated from brain, heart, kidney, and liver tissues and examined for respiration activity. Following cardiac arrest, a time-dependent decrease in state-3 respiration is observed in mitochondria from all four tissues. Following 60 min resuscitation, the respiration activity of brain mitochondria varies greatly in different animals. The activity after resuscitation remains the same in heart mitochondria and significantly increases in kidney and liver mitochondria. The result shows that inhibition of state-3 respiration is a good marker to evaluate the efficacy of resuscitation for each organ. The resulting state-3 respiration of brain and heart mitochondria following resuscitation reenforces the need for developing better strategies to resuscitate these critical organs following prolonged cardiac arrest.

  20. The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia

    Energy Technology Data Exchange (ETDEWEB)

    Doormaal, Pieter Jan van [University Medical Center Groningen and University of Groningen, Department of Pediatrics, Division of Neonatology, Groningen (Netherlands); Meander Medical Center Amersfoort, Department of Radiology, PO Box 1502, Amersfoort (Netherlands); Meiners, Linda C.; Sijens, Paul E. [University Medical Center Groningen and University of Groningen, Department of Radiology, Groningen (Netherlands); Horst, Hendrik J. ter; Veere, Christa N. van der [University Medical Center Groningen and University of Groningen, Department of Pediatrics, Division of Neonatology, Groningen (Netherlands)

    2012-04-15

    Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia by providing ratios of metabolites, such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/NAA, etc.]. The purpose of this study was to quantify the separate white and grey matter metabolites in a slab cranial to the ventricles and relate these to the outcome. A standard 2D-chemical shift imaging protocol was used for measuring a transverse volume of interest located cranial to the ventricles allowing for direct comparison of the metabolites in white and grey matter brain tissue in 24 term asphyxiated newborns aged 3 to 16 days. Cho, NAA and Lact showed significant differences between four subgroups of asphyxiated infants with more and less favourable outcomes. High levels of Cho and Lact in the grey matter differentiated non-survivors from survivors (P = 0.003 and P = 0.017, respectively). In perinatal asphyxia the levels of Cho, NAA and Lact in both white and grey matter brain tissue are affected. The levels of Cho and Lact measured in the grey matter are the most indicative of survival. It is therefore advised to include grey matter brain tissue in the region of interest examined by multivoxel MR spectroscopy. (orig.)

  1. The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia

    International Nuclear Information System (INIS)

    Doormaal, Pieter Jan van; Meiners, Linda C.; Sijens, Paul E.; Horst, Hendrik J. ter; Veere, Christa N. van der

    2012-01-01

    Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia by providing ratios of metabolites, such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/NAA, etc.]. The purpose of this study was to quantify the separate white and grey matter metabolites in a slab cranial to the ventricles and relate these to the outcome. A standard 2D-chemical shift imaging protocol was used for measuring a transverse volume of interest located cranial to the ventricles allowing for direct comparison of the metabolites in white and grey matter brain tissue in 24 term asphyxiated newborns aged 3 to 16 days. Cho, NAA and Lact showed significant differences between four subgroups of asphyxiated infants with more and less favourable outcomes. High levels of Cho and Lact in the grey matter differentiated non-survivors from survivors (P = 0.003 and P = 0.017, respectively). In perinatal asphyxia the levels of Cho, NAA and Lact in both white and grey matter brain tissue are affected. The levels of Cho and Lact measured in the grey matter are the most indicative of survival. It is therefore advised to include grey matter brain tissue in the region of interest examined by multivoxel MR spectroscopy. (orig.)

  2. Experimental Toxoplasmosis in Rats Induced Orally with Eleven Strains of Toxoplasma gondii of Seven Genotypes: Tissue Tropism, Tissue Cyst Size, Neural Lesions, Tissue Cyst Rupture without Reactivation, and Ocular Lesions.

    Directory of Open Access Journals (Sweden)

    Jitender P Dubey

    Full Text Available The protozoan parasite Toxoplasma gondii is one of the most widely distributed and successful parasites. Toxoplasma gondii alters rodent behavior such that infected rodents reverse their fear of cat odor, and indeed are attracted rather than repelled by feline urine. The location of the parasite encysted in the brain may influence this behavior. However, most studies are based on the highly susceptible rodent, the mouse.Latent toxoplasmosis was induced in rats (10 rats per T. gondii strains of the same age, strain, and sex, after oral inoculation with oocysts (natural route and natural stage of infection of 11 T. gondii strains of seven genotypes. Rats were euthanized at two months post inoculation (p.i. to investigate whether the parasite genotype affects the distribution, location, tissue cyst size, or lesions. Tissue cysts were enumerated in different regions of the brains, both in histological sections as well in saline homogenates. Tissue cysts were found in all regions of the brain. The tissue cyst density in different brain regions varied extensively between rats with many regions highly infected in some animals. Overall, the colliculus was most highly infected although there was a large amount of variability. The cerebral cortex, thalamus, and cerebellum had higher tissue cyst densities and two strains exhibited tropism for the colliculus and olfactory bulb. Histologically, lesions were confined to the brain and eyes. Tissue cyst rupture was frequent with no clear evidence for reactivation of tachyzoites. Ocular lesions were found in 23 (25% of 92 rat eyes at two months p.i. The predominant lesion was focal inflammation in the retina. Tissue cysts were seen in the sclera of one and in the optic nerve of two rats. The choroid was not affected. Only tissue cysts, not active tachyzoite infections, were detected. Tissue cysts were seen in histological sections of tongue of 20 rats but not in myocardium and leg muscle.This study reevaluated

  3. What lies beneath? Diffusion EAP-based study of brain tissue microstructure.

    Science.gov (United States)

    Zucchelli, Mauro; Brusini, Lorenza; Andrés Méndez, C; Daducci, Alessandro; Granziera, Cristina; Menegaz, Gloria

    2016-08-01

    Diffusion weighted magnetic resonance signals convey information about tissue microstructure and cytoarchitecture. In the last years, many models have been proposed for recovering the diffusion signal and extracting information to constitute new families of numerical indices. Two main categories of reconstruction models can be identified in diffusion magnetic resonance imaging (DMRI): ensemble average propagator (EAP) models and compartmental models. From both, descriptors can be derived for elucidating the underlying microstructural architecture. While compartmental models indices directly quantify the fraction of different cell compartments in each voxel, EAP-derived indices are only a derivative measure and the effect of the different microstructural configurations on the indices is still unclear. In this paper, we analyze three EAP indices calculated using the 3D Simple Harmonic Oscillator based Reconstruction and Estimation (3D-SHORE) model and estimate their changes with respect to the principal microstructural configurations. We take advantage of the state of the art simulations to quantify the variations of the indices with the simulation parameters. Analysis of in-vivo data correlates the EAP indices with the microstructural parameters obtained from the Neurite Orientation Dispersion and Density Imaging (NODDI) model as a pseudo ground truth for brain data. Results show that the EAP derived indices convey information on the tissue microstructure and that their combined values directly reflect the configuration of the different compartments in each voxel. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model.

    Science.gov (United States)

    Son, Seung-Wan; Lee, Jin-Seok; Kim, Hyeong-Geug; Kim, Dong-Woon; Ahn, Yo-Chan; Son, Chang-Gue

    2016-01-01

    in brain tissues, especially in the hippocampus. These findings are the first evidence that testosterone depletion makes the brain prone to oxidative injury. © 2015 International Society for Neurochemistry.

  5. Revisiting the Logan plot to account for non-negligible blood volume in brain tissue.

    Science.gov (United States)

    Schain, Martin; Fazio, Patrik; Mrzljak, Ladislav; Amini, Nahid; Al-Tawil, Nabil; Fitzer-Attas, Cheryl; Bronzova, Juliana; Landwehrmeyer, Bernhard; Sampaio, Christina; Halldin, Christer; Varrone, Andrea

    2017-08-18

    Reference tissue-based quantification of brain PET data does not typically include correction for signal originating from blood vessels, which is known to result in biased outcome measures. The bias extent depends on the amount of radioactivity in the blood vessels. In this study, we seek to revisit the well-established Logan plot and derive alternative formulations that provide estimation of distribution volume ratios (DVRs) that are corrected for the signal originating from the vasculature. New expressions for the Logan plot based on arterial input function and reference tissue were derived, which included explicit terms for whole blood radioactivity. The new methods were evaluated using PET data acquired using [ 11 C]raclopride and [ 18 F]MNI-659. The two-tissue compartment model (2TCM), with which signal originating from blood can be explicitly modeled, was used as a gold standard. DVR values obtained for [ 11 C]raclopride using the either blood-based or reference tissue-based Logan plot were systematically underestimated compared to 2TCM, and for [ 18 F]MNI-659, a proportionality bias was observed, i.e., the bias varied across regions. The biases disappeared when optimal blood-signal correction was used for respective tracer, although for the case of [ 18 F]MNI-659 a small but systematic overestimation of DVR was still observed. The new method appears to remove the bias introduced due to absence of correction for blood volume in regular graphical analysis and can be considered in clinical studies. Further studies are however required to derive a generic mapping between plasma and whole-blood radioactivity levels.

  6. Treatment with the NK1 antagonist emend reduces blood brain barrier dysfunction and edema formation in an experimental model of brain tumors.

    Directory of Open Access Journals (Sweden)

    Elizabeth Harford-Wright

    Full Text Available The neuropeptide substance P (SP has been implicated in the disruption of the blood-brain barrier (BBB and development of cerebral edema in acute brain injury. Cerebral edema accumulates rapidly around brain tumors and has been linked to several tumor-associated deficits. Currently, the standard treatment for peritumoral edema is the corticosteroid dexamethasone, prolonged use of which is associated with a number of deleterious side effects. As SP is reported to increase in many cancer types, this study examined whether SP plays a role in the genesis of brain peritumoral edema. A-375 human melanoma cells were injected into the right striatum of male Balb/c nude mice to induce brain tumor growth, with culture medium injected in animals serving as controls. At 2, 3 or 4 weeks following tumor cell inoculation, non-treated animals were perfusion fixed for immunohistochemical detection of Albumin, SP and NK1 receptor. A further subgroup of animals was treated with a daily injection of the NK1 antagonist Emend (3 mg/kg, dexamethasone (8 mg/kg or saline vehicle at 3 weeks post-inoculation. Animals were sacrificed a week later to determine BBB permeability using Evan's Blue and brain water content. Non-treated animals demonstrated a significant increase in albumin, SP and NK1 receptor immunoreactivity in the peritumoral area as well as increased perivascular staining in the surrounding brain tissue. Brain water content and BBB permeability was significantly increased in tumor-inoculated animals when compared to controls (p<0.05. Treatment with Emend and dexamethasone reduced BBB permeability and brain water content when compared to vehicle-treated tumor-inoculated mice. The increase in peritumoral staining for both SP and the NK1 receptor, coupled with the reduction in brain water content and BBB permeability seen following treatment with the NK1 antagonist Emend, suggests that SP plays a role in the genesis of peritumoral edema, and thus warrants

  7. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  8. Brain water mapping with MR imaging

    International Nuclear Information System (INIS)

    Laine, F.J.; Fatouros, P.P.; Kraft, K.A.

    1990-01-01

    This paper reports on a recently developed MR imaging technique to determine the spatial distribution of brain water to healthy volunteers. A noninvasive MR imaging technique to obtain absolute measurements of brain water has been developed and validated with phantom and animal studies. Patient confirmation was obtained from independent gravimetric measurements of brain tissue samples harvested by biopsy. This approach entails the production of accurate T1 maps from multiple inversion recovery images of a selected anatomic section and their subsequent conversion into an absolute water image by means of a previously determined calibration curve. Twenty healthy volunteers were studied and their water distribution was determined in a standard section. The following brain water values means and SD grams of water per gram of tissue) were obtained for selected brain regions; white matter, 68.9% ± 1.0; corpus callosum, 67.4% ± 1.1; thalamus, 75.3% ± 1.4; and caudate nucleus, 80.3% ± 1.4. MR imaging water mapping is a valid means of determining water content in a variety of brain tissues

  9. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity

    Directory of Open Access Journals (Sweden)

    Dae Woo Park

    2016-01-01

    Full Text Available Shear wave elasticity imaging (SWEI can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE- based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard tumor and surrounding tissue (soft. The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.

  10. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity.

    Science.gov (United States)

    Park, Dae Woo

    2015-01-01

    Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard) tumor and surrounding tissue (soft). The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.

  11. DNA Nanoparticles: Detection of Long-Term Transgene Activity in Brain using Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    David M. Yurek

    2011-09-01

    Full Text Available In this study, we used bioluminescence imaging (BLI to track long-term transgene activity following the transfection of brain cells using a nonviral gene therapy technique. Formulations of deoxyribonucleic acid (DNA combined with 30-mer lysine polymers (substituted with 10 kDa polyethylene glycol form nanoparticles that transfect brain cells in vivo and produce transgene activity. Here we show that a single intracerebral injection of these DNA nanoparticles (DNPs into the rat cortex, striatum, or substantia nigra results in long-term and persistent luciferase transgene activity over an 8- to 11-week period as evaluated by in vivo BLI analysis, and single injections of DNPs into the mouse striatum showed stable luciferase transgene activity for 1 year. Compacted DNPs produced in vivo signals 7- to 34-fold higher than DNA alone. In contrast, ex vivo BLI analysis, which is subject to less signal quenching from surrounding tissues, demonstrated a DNP to DNA alone ratio of 76- to 280-fold. Moreover, the ex vivo BLI analysis confirmed that signals originated from the targeted brain structures. In summary, BLI permits serial analysis of luciferase transgene activity at multiple brain locations following gene transfer with DNPs. Ex vivo analysis may permit more accurate determination of relative activities of gene transfer vectors.

  12. Effects of dexamethasone on brain edema

    International Nuclear Information System (INIS)

    Takemoto, Motohisa

    1982-01-01

    Experimental cerebral edema was produced on the right parietal lobe of Wistar male rats with a cold metal probe cooled by liquid nitrogen. Twenty hour later, 3 H-dexamethasone was either intramuscularly or intravenously injected into rats, estimated in the brain tissue by the liquid scintillation counting method. Edematous brain generally contained much higher 3 H-activity than the control. Furthermore, I.V. injection showed higher 3 H-activity than I.M injection in edematous and control brains at all times. For examination of the subcellular distribution of 3 H-dexamethasone in edematous brain, 3 H-activity was most strongly detected in the supernatant fraction (63%), followed by the heavy mitochondrial fraction (25.4%) and the nuclear fraction (8.4%). Although edematous brain tissue constantly demonstrated higher 3 H-activity than the control, its supernatant fraction conversely had less activity. As a next step, distribution of 3 H-dexamethasone in the supernatant fraction was studies. The result was that the high molecular weight fraction in the edematous brain showed higher radioactivity than the control. From these findings, unequivocal distribution of dexamethasone in the supernatant fraction of edematous brain tissue could be correlated with its biochemical action for preventing brain edema. (J.P.N.)

  13. Contribution of brain size to IQ and educational underperformance in extremely preterm adolescents.

    Directory of Open Access Journals (Sweden)

    Jeanie L Y Cheong

    Full Text Available OBJECTIVES: Extremely preterm (EP survivors have smaller brains, lower IQ, and worse educational achievement than their term-born peers. The contribution of smaller brain size to the IQ and educational disadvantages of EP is unknown. This study aimed (i to compare brain volumes from multiple brain tissues and structures between EP-born (< 28 weeks and term-born (≥ 37 weeks control adolescents, (ii to explore the relationships of brain tissue volumes with IQ and basic educational skills and whether this differed by group, and (iii to explore how much total brain tissue volume explains the underperformance of EP adolescents compared with controls. METHODS: Longitudinal cohort study of 148 EP and 132 term controls born in Victoria, Australia in 1991-92. At age 18, magnetic resonance imaging-determined brain volumes of multiple tissues and structures were calculated. IQ and educational skills were measured using the Wechsler Abbreviated Scale of Intelligence (WASI and the Wide Range Achievement Test(WRAT-4, respectively. RESULTS: Brain volumes were smaller in EP adolescents compared with controls (mean difference [95% confidence interval] of -5.9% [-8.0, -3.7%] for total brain tissue volume. The largest relative differences were noted in the thalamus and hippocampus. The EP group had lower IQs(-11.9 [-15.4, -8.5], spelling(-8.0 [-11.5, -4.6], math computation(-10.3 [-13.7, -6.9] and word reading(-5.6 [-8.8, -2.4] scores than controls; all p-values<0.001. Volumes of total brain tissue and other brain tissues and structures correlated positively with IQ and educational skills, a relationship that was similar for both the EP and controls. Total brain tissue volume explained between 20-40% of the IQ and educational outcome differences between EP and controls. CONCLUSIONS: EP adolescents had smaller brain volumes, lower IQs and poorer educational performance than controls. Brain volumes of multiple tissues and structures are related to IQ and

  14. Influence of length of interval between pulses in PDR brachytherapy (PDRBT on value of Biologically Equivalent Dose (BED in healthy tissues

    Directory of Open Access Journals (Sweden)

    Tomasz Piotrowski

    2010-07-01

    Full Text Available Purpose: Different PDR treatment schemas are used in clinical practice, however optimal length of interval between pulses still remains unclear. The aim of this work was to compare value of BED doses measured in surrounded healthy tissues according to different intervals between pulses in PDRBT. Influence of doses optimization on BED values was analyzed.Material and methods: Fifty-one patients treated in Greater Poland Cancer Centre were qualified for calculations.Calculations of doses were made in 51 patients with head and neck cancer, brain tumor, breast cancer, sarcoma, penis cancer and rectal cancer. Doses were calculated with the use of PLATO planning system in chosen critical points in surrounded healthy tissues. For all treatment plans the doses were compared using Biologically Equivalent Dose formula.Three interval lengths (1, 2 and 4 hours between pulses were chosen for calculations. For statistical analysis Friedman ANOVA test and Kendall ratio were used.Results: The median value of BED in chosen critical points in healthy tissues was statistically related to the length of interval between PDR pulses and decreased exponentially with 1 hour interval to 4 hours (Kendall = from 0.48 to 1.0; p = from 0.002 to 0.00001.Conclusions: Prolongation of intervals between pulses in PDR brachytherapy was connected with lower values of BED doses in healthy tissues. It seems that longer intervals between pulses reduced the risk of late complications, but also decreased the tumour control. Furthermore, optimization influenced the increase of doses in healthy tissues.

  15. Oxytocin receptor ligand binding in embryonic tissue and postnatal brain development of the C57BL/6J mouse

    Directory of Open Access Journals (Sweden)

    Elizabeth eHammock

    2013-12-01

    Full Text Available Oxytocin (OXT has drawn increasing attention as a developmentally relevant neuropeptide given its role in the brain regulation of social behavior. It has been suggested that OXT plays an important role in the infant brain during caregiver attachment in nurturing familial contexts, but there is incomplete experimental evidence. Mouse models of OXT system genes have been particularly informative for the role of the OXT system in social behavior, however, the developing brain areas that could respond to ligand activation of the OXT receptor (OXTR have yet to be identified in this species. Here we report new data revealing dynamic ligand-binding distribution of OXTR in the developing mouse brain. Using male and female C57BL/6J mice at postnatal days (P 0, 7, 14, 21, 35, and 60 we quantified OXTR ligand binding in several brain areas which changed across development. Further, we describe OXTR ligand binding in select tissues of the near-term whole embryo at E18.5. Together, these data aid in the interpretation of findings in mouse models of the OXT system and generate new testable hypotheses for developmental roles for OXT in mammalian systems. We discuss our findings in the context of developmental disorders (including autism, attachment biology, and infant physiological regulation.

  16. Tissue refractometry using Hilbert phase microscopy.

    Science.gov (United States)

    Lue, Niyom; Bewersdorf, Joerg; Lessard, Mark D; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S; Popescu, Gabriel

    2007-12-15

    We present, for the first time to our knowledge, quantitative phase images associated with unstained 5 mum thick tissue slices of mouse brain, spleen, and liver. The refractive properties of the tissue are retrieved in terms of the average refractive index and its spatial variation. We find that the average refractive index varies significantly with tissue type, such that the brain is characterized by the lowest value and the liver by the highest. The spatial power spectra of the phase images reveal power law behavior with different exponents for each tissue type. This approach opens a new possibility for stain-free characterization of tissues, where the diagnostic power is provided by the intrinsic refractive properties of the biological structure. We present results obtained for liver tissue affected by a lysosomal storage disease and show that our technique can quantify structural changes during this disease development.

  17. Fetal antigen 2 in primary and secondary brain tumors

    DEFF Research Database (Denmark)

    Rasmussen, H Boje; Teisner, B; Schrøder, H D

    1991-01-01

    Immunohistochemical deposition and distribution of fetal antigen 2 (FA2) was examined in normal brain tissue and in primary and metastatic tumors of the brain. In normal brain tissue FA2 was exclusively found linearly around the vessels, along pia and in arachnoidea. A similar localization was seen...

  18. Characteristic effects of heavy ion irradiation on the rat brain

    International Nuclear Information System (INIS)

    Sun, X.Z.; Takahashi, S.; Kubota, Y.; Yoshida, S.; Takeda, H.; Zhang, R.; Fukui, Y.

    2005-01-01

    successfully and satisfactorily retained its high-dose localization in the defined region. Histological and neuronal behavioral examinations showed that no obvious behavioral and histological changes before 7 weeks of exposure, but loss of hairs was found in the left brain this time in the irradiated group. The shape and size of depilation were almost same to the left collimation. At 8 weeks after exposure, the distinctive histological changes such as necrosis, vascular dilatation and tissue swelling were observed and almost animals exposed to the heavy ion beams exhibited behavioral changes, either in an abnormal walking pattern or rotation when suspended by their tail. From 16 to 32 weeks after irradiation, necrotic rarefaction became dominant at the center of the irradiated region and enlarged blood vessels were present in the surrounding area. Behavioral changes during this period also became more marked. The rats showed total loss of their balance both in an abnormal walking pattern and rotation from 16 weeks onwards, Major elemental contribution in the brain studied with X-rays fluorescence indicated that a sudden decrease in the concentration of K and Cl appeared as early as 24 hours after ischemia induction in the rat brain, while the concentrations of P, Fe and Zn did not significantly change. A decrease in the concentration of K and P in the region where tissue selling and necrosis was observed. Significant increases in the concentrations of Cl, Fe, Zn were found in the thalamus and surrounding area o f necrosis. These results revealed that levels of inorganic ions in the brain were good indicators for the pathological states of the nervous system.

  19. Tissue irradiator

    International Nuclear Information System (INIS)

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-01-01

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in-vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood-carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170

  20. Comparative support for the expensive tissue hypothesis: Big brains are correlated with smaller gut and greater parental investment in Lake Tanganyika cichlids.

    Science.gov (United States)

    Tsuboi, Masahito; Husby, Arild; Kotrschal, Alexander; Hayward, Alexander; Buechel, Séverine D; Zidar, Josefina; Løvlie, Hanne; Kolm, Niclas

    2015-01-01

    The brain is one of the most energetically expensive organs in the vertebrate body. Consequently, the energetic requirements of encephalization are suggested to impose considerable constraints on brain size evolution. Three main hypotheses concerning how energetic constraints might affect brain evolution predict covariation between brain investment and (1) investment into other costly tissues, (2) overall metabolic rate, and (3) reproductive investment. To date, these hypotheses have mainly been tested in homeothermic animals and the existing data are inconclusive. However, there are good reasons to believe that energetic limitations might play a role in large-scale patterns of brain size evolution also in ectothermic vertebrates. Here, we test these hypotheses in a group of ectothermic vertebrates, the Lake Tanganyika cichlid fishes. After controlling for the effect of shared ancestry and confounding ecological variables, we find a negative association between brain size and gut size. Furthermore, we find that the evolution of a larger brain is accompanied by increased reproductive investment into egg size and parental care. Our results indicate that the energetic costs of encephalization may be an important general factor involved in the evolution of brain size also in ectothermic vertebrates. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  1. The effects of raloxifene treatment on oxidative status in brain tissues and learning process of ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Süreyya Osmanova

    2011-01-01

    Full Text Available Background: The effects of estrogene on central nervous system are still controversial. Objective: We aimed to investigate the effects of raloxifene on the antioxidant enzyme [superoxide dismutase (SOD and catalase (CAT] activities and malondialdehyde (MDA levels in brain homogenates of ovariectomized female rats and its effect on cognitive process of learning.Materials and Methods: Female Sprague Dawley rats (n=24 were divided into three groups. Three weeks after ovariectomy; nonovariectomized group (control group (n=8 was given physiological saline (SP as placebo. First ovariectomized group (n=8 received raloxifene 1mg/kg dissolved in a 1% solution of carboxymethylcellulose (CMC subcutaneusly (sc and second group of ovariectomized rats were given 1 % CMC 1mg/kg (sc every day for 14 days. Learning behaviors of rats were evaluated in active avoidence cage with using sound and electrical stimulation. The levels of oxidative stress (MDA and antioxidant enzymes (SOD, CAT in different regions of the brain homogenates were compared between three groups of decapitated rats.Results: Raloxifene had a significant attenuating effect on the levels of MDA in brain tissues suggesting raloxifene’s effect against lipid peroxidation at the end of training days. With the comparison of brain regions, cortex showed the highest average activity of SOD and CAT and cerebellum had the lowest average levels for both. Its effects on learning and cognitive process with active avoidence task were considered insignificant.Conclusion: Raloxifene treatment may have preventive effects for the brain against oxidative stress and lipid peroxidation in rats

  2. The Responses of Tissues from the Brain, Heart, Kidney, and Liver to Resuscitation following Prolonged Cardiac Arrest by Examining Mitochondrial Respiration in Rats

    Directory of Open Access Journals (Sweden)

    Junhwan Kim

    2016-01-01

    Full Text Available Cardiac arrest induces whole-body ischemia, which causes damage to multiple organs. Understanding how each organ responds to ischemia/reperfusion is important to develop better resuscitation strategies. Because direct measurement of organ function is not practicable in most animal models, we attempt to use mitochondrial respiration to test efficacy of resuscitation on the brain, heart, kidney, and liver following prolonged cardiac arrest. Male Sprague-Dawley rats are subjected to asphyxia-induced cardiac arrest for 30 min or 45 min, or 30 min cardiac arrest followed by 60 min cardiopulmonary bypass resuscitation. Mitochondria are isolated from brain, heart, kidney, and liver tissues and examined for respiration activity. Following cardiac arrest, a time-dependent decrease in state-3 respiration is observed in mitochondria from all four tissues. Following 60 min resuscitation, the respiration activity of brain mitochondria varies greatly in different animals. The activity after resuscitation remains the same in heart mitochondria and significantly increases in kidney and liver mitochondria. The result shows that inhibition of state-3 respiration is a good marker to evaluate the efficacy of resuscitation for each organ. The resulting state-3 respiration of brain and heart mitochondria following resuscitation reenforces the need for developing better strategies to resuscitate these critical organs following prolonged cardiac arrest.

  3. Morphology and Ultrastructure of Brain Tissue and Fat Body from the Flesh Fly, Sarcophaga bullata Parker (Diptera: Sarcophagidae, Envenomated by the Ectoparasitic Wasp Nasonia vitripennis (Walker (Hymenoptera: Pteromalidae

    Directory of Open Access Journals (Sweden)

    David B. Rivers

    2011-01-01

    Full Text Available This study tested the hypothesis that venom from the ectoparasitic wasp Nasonia vitripennis targets brain tissue and fat body from its flesh fly host, Sarcophaga bullata. By 1 h postenvenomation, some brain neurons began to show irregularities in nuclear shape, and though they were predominately euchromatic, there was evidence of heterochromatin formation. Irregularity in the nuclear envelope became more prominent by 3 h after envenomation, as did the condensation of heterochromatin. The severity of ultrastructural changes continued to increase until at least 24 h after parasitoid attack. At this point, cellular swelling and extensive heterochromatic inclusions were evident, multivesicular bodies occurred in the cytoplasm of some cells, and the rough endoplasmic reticulum was dilated in many of the cells. Immunohistochemical staining revealed significant apoptosis in neurons located in brain tissues. By contrast, there was no evidence of any morphological or ultrastructural disturbances in fat body tissues up to 24 h after envenomation, nor did any of the cells display signs of cell death.

  4. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haar, Peter J [Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA (United States); Broaddus, William C; Chen Zhijian; Gillies, George T [Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA (United States); Fatouros, Panos P; Corwin, Frank D, E-mail: wbroaddus@mcvh-vcu.ed [Department of Radiology, Virginia Commonwealth University, Richmond, VA (United States)

    2010-06-21

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s){sup -1} in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  5. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    Science.gov (United States)

    Haar, Peter J.; Broaddus, William C.; Chen, Zhi-jian; Fatouros, Panos P.; Gillies, George T.; Corwin, Frank D.

    2010-06-01

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s)-1 in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  6. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    International Nuclear Information System (INIS)

    Haar, Peter J; Broaddus, William C; Chen Zhijian; Gillies, George T; Fatouros, Panos P; Corwin, Frank D

    2010-01-01

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s) -1 in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  7. Glial Tissue Mechanics and Mechanosensing by Glial Cells

    Directory of Open Access Journals (Sweden)

    Katarzyna Pogoda

    2018-02-01

    Full Text Available Understanding the mechanical behavior of human brain is critical to interpret the role of physical stimuli in both normal and pathological processes that occur in CNS tissue, such as development, inflammation, neurodegeneration, aging, and most common brain tumors. Despite clear evidence that mechanical cues influence both normal and transformed brain tissue activity as well as normal and transformed brain cell behavior, little is known about the links between mechanical signals and their biochemical and medical consequences. A multi-level approach from whole organ rheology to single cell mechanics is needed to understand the physical aspects of human brain function and its pathologies. This review summarizes the latest achievements in the field.

  8. Intracranial microcapsule chemotherapy delivery for the localized treatment of rodent metastatic breast adenocarcinoma in the brain.

    Science.gov (United States)

    Upadhyay, Urvashi M; Tyler, Betty; Patta, Yoda; Wicks, Robert; Spencer, Kevin; Scott, Alexander; Masi, Byron; Hwang, Lee; Grossman, Rachel; Cima, Michael; Brem, Henry; Langer, Robert

    2014-11-11

    Metastases represent the most common brain tumors in adults. Surgical resection alone results in 45% recurrence and is usually accompanied by radiation and chemotherapy. Adequate chemotherapy delivery to the CNS is hindered by the blood-brain barrier. Efforts at delivering chemotherapy locally to gliomas have shown modest increases in survival, likely limited by the infiltrative nature of the tumor. Temozolomide (TMZ) is first-line treatment for gliomas and recurrent brain metastases. Doxorubicin (DOX) is used in treating many types of breast cancer, although its use is limited by severe cardiac toxicity. Intracranially implanted DOX and TMZ microcapsules are compared with systemic administration of the same treatments in a rodent model of breast adenocarcinoma brain metastases. Outcomes were animal survival, quantified drug exposure, and distribution of cleaved caspase 3. Intracranial delivery of TMZ and systemic DOX administration prolong survival more than intracranial DOX or systemic TMZ. Intracranial TMZ generates the more robust induction of apoptotic pathways. We postulate that these differences may be explained by distribution profiles of each drug when administered intracranially: TMZ displays a broader distribution profile than DOX. These microcapsule devices provide a safe, reliable vehicle for intracranial chemotherapy delivery and have the capacity to be efficacious and superior to systemic delivery of chemotherapy. Future work should include strategies to improve the distribution profile. These findings also have broader implications in localized drug delivery to all tissue, because the efficacy of a drug will always be limited by its ability to diffuse into surrounding tissue past its delivery source.

  9. Selection of TI for Suppression Fat Tissue of SPAIR and Comparative Study of SPAIR and STIR of Brain Fast SE T2 Weighted Imaging

    International Nuclear Information System (INIS)

    Lee, Hoo Min; Kim, Ham Gyum; Kong, Seok Kyo

    2009-01-01

    The purpose of this research is to seek SPAIR's reversal time (TI) which satisfies two conditions ; maintaining the suppression ability of fat tissue and simultaneously minimizing the inhomogeneity of fat tissue in T2 high-speed spin echo 3.0T magnetic resonance image (MRI) of the brain, and to compare SPAIR with STIR which is fat-suppression technique. The reversal times (TI) of SPAIR protocol are set to 1/2, 1/3, 1/6 and 1/12 of SPAIR TR (420 msec), namely 210 msec (8 people), 140 msec (26 people), 70 msec (26 people) and 35 msec (18 people) and STIR TI is set with 250 msec (26 people). With these parameter sets, we acquired the axis direction 104 images of the brain. In ROI (50 mm 2 ) of output image, signal intensities of the fatty tissue, the muscular tissue, and the background were measured and the CNRs of fatty tissue and the muscular tissue were calculated. The inhomogeneity of the fatty tissue is SD/mean, where SD is the standard deviation and 'mean' is a average fatty tissue signal. Consequently, SPAIR TI is determined on either 1/3 or 1/6 of TR (420 ms) ; 140 ms or 70 ms. Because the difference of statistics in fat-suppression ability and inhomogeneity of fatty tissue is very small (p < 0.001), Selecting 140 ms seems to be better choice for the image quality. Meanwhile, Comparing SPAIR (TI : 140 ms) with STIR, the fat-suppression is not able to be considered statistically (p < 0.252), but the image quality is able to be considered statistically (p < 0.01). In conclusion, SPAIR is better than STIR in the image quality.

  10. [Influence of tissue-specific superoxide dismutase genes expression in brain cells on Drosophila melanogaster sensitivity to oxidative stress and viability].

    Science.gov (United States)

    Vitushynska, M V; Matiytsiv, N P; Chernyk, Y

    2015-01-01

    The study has shown that both functional gene knockout Sodl and Sod2 and their overexpression in neurons and glial tissue increase the sensitivity of Drosophila melanogaster to oxidative stress (OS) conditions. The lowest survival rate was only 20.5% in insects with Sod2 knockout in neurons. Comparative analysis of the survival curves showed that adults with altered tissue-specific expression of the studied genes had reduced average and maximum life span. Under OS conditions induced by 5% hydrogen peroxide the life spans of wild type Oregon R and transgenic insects were significantly reduced. Altered Sod gene expression in glial tissue leads to degenerative changes in Drosophila brain at the young age. During the aging of insects and the action of pro-oxidants increasing of neurodegenerative phenotype is observed.

  11. Hardwiring stem cell communication through tissue structure

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-01-01

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. PMID:26967287

  12. Therapeutic Ultrasound Enhancement of Drug Delivery to Soft Tissues

    Science.gov (United States)

    Lewis, George; Wang, Peng; Lewis, George; Olbricht, William

    2009-04-01

    Effects of exposure to 1.58 MHz focused ultrasound on transport of Evans Blue Dye (EBD) in soft tissues are investigated when an external pressure gradient is applied to induce convective flow through the tissue. The magnitude of the external pressure gradient is chosen to simulate conditions in brain parenchyma during convection-enhanced drug delivery (CED) to the brain. EBD uptake and transport are measured in equine brain, avian muscle and agarose brain-mimicking phantoms. Results show that ultrasound enhances EBD uptake and transport, and the greatest enhancement occurs when the external pressure gradient is applied. The results suggest that exposure of the brain parenchyma to ultrasound could enhance penetration of material infused into the brain during CED therapy.

  13. Brain–gut–adipose-tissue communication pathways at a glance

    Directory of Open Access Journals (Sweden)

    Chun-Xia Yi

    2012-09-01

    Full Text Available One of the ‘side effects’ of our modern lifestyle is a range of metabolic diseases: the incidence of obesity, type 2 diabetes and associated cardiovascular diseases has grown to pandemic proportions. This increase, which shows no sign of reversing course, has occurred despite education and new treatment options, and is largely due to a lack of knowledge about the precise pathology and etiology of metabolic disorders. Accumulating evidence suggests that the communication pathways linking the brain, gut and adipose tissue might be promising intervention points for metabolic disorders. To maintain energy homeostasis, the brain must tightly monitor the peripheral energy state. This monitoring is also extremely important for the brain’s survival, because the brain does not store energy but depends solely on a continuous supply of nutrients from the general circulation. Two major groups of metabolic inputs inform the brain about the peripheral energy state: short-term signals produced by the gut system and long-term signals produced by adipose tissue. After central integration of these inputs, the brain generates neuronal and hormonal outputs to balance energy intake with expenditure. Miscommunication between the gut, brain and adipose tissue, or the degradation of input signals once inside the brain, lead to the brain misunderstanding the peripheral energy state. Under certain circumstances, the brain responds to this miscommunication by increasing energy intake and production, eventually causing metabolic disorders. This poster article overviews current knowledge about communication pathways between the brain, gut and adipose tissue, and discusses potential research directions that might lead to a better understanding of the mechanisms underlying metabolic disorders.

  14. Prognostic value of changes in brain tissue oxygen pressure before and after decompressive craniectomy following severe traumatic brain injury.

    Science.gov (United States)

    Lubillo, Santiago T; Parrilla, Dácil M; Blanco, José; Morera, Jesús; Dominguez, Jaime; Belmonte, Felipe; López, Patricia; Molina, Ismael; Ruiz, Candelaria; Clemente, Francisco J; Godoy, Daniel A

    2018-05-01

    OBJECTIVE In severe traumatic brain injury (TBI), the effects of decompressive craniectomy (DC) on brain tissue oxygen pressure (PbtO 2 ) and outcome are unclear. The authors aimed to investigate whether changes in PbtO 2 after DC could be used as an independent prognostic factor. METHODS The authors conducted a retrospective, observational study at 2 university hospital ICUs. The study included 42 patients who were admitted with isolated moderate or severe TBI and underwent intracranial pressure (ICP) and PbtO 2 monitoring before and after DC. The indication for DC was an ICP higher than 25 mm Hg refractory to first-tier medical treatment. Patients who underwent primary DC for mass lesion evacuation were excluded. However, patients were included who had undergone previous surgery as long as it was not a craniectomy. ICP/PbtO 2 monitoring probes were located in an apparently normal area of the most damaged hemisphere based on cranial CT scanning findings. PbtO 2 values were routinely recorded hourly before and after DC, but for comparisons the authors used the first PbtO 2 value on ICU admission and the number of hours with PbtO 2 areas under the curve for the mean PbtO 2 values at 12 and 24 hours after DC were 0.878 (95% CI 0.75-1, p areas of the most damaged hemisphere, have independent prognostic value for the 6-month outcome in TBI patients.

  15. Vaccine-induced rabies in a red fox (Vulpes vulpes): isolation of vaccine virus in brain tissue and salivary glands.

    Science.gov (United States)

    Hostnik, Peter; Picard-Meyer, Evelyne; Rihtarič, Danijela; Toplak, Ivan; Cliquet, Florence

    2014-04-01

    Oral vaccination campaigns to eliminate fox rabies were initiated in Slovenia in 1995. In May 2012, a young fox (Vulpes vulpes) with typical rabies signs was captured. Its brain and salivary gland tissues were found to contain vaccine strain SAD B19. The Basic Logical Alignment Search Tool alignment of 589 nucleotides determined from the N gene of the virus isolated from the brain and salivary glands of the affected fox was 100% identical to the GenBank reference SAD B19 strain. Sequence analysis of the N and M genes (4,351 nucleotides) showed two nucleotide modifications at position 1335 (N gene) and 3114 (M gene) in the KC522613 isolate identified in the fox compared to SAD B19.

  16. Quantification of petroleum-type hydrocarbons in avian tissue

    Energy Technology Data Exchange (ETDEWEB)

    Gay, M.L.; Belisle, A.A.; Patton, J.F.

    1980-01-04

    Methods were developed for the analysis of 16 hydrocarbons in avian tissue. Mechanical extraction with pentane was followed by clean-up on Florisil and Silicar. Residues were determined by gas-liquid chromatography and gas-liquid, chromatography-mass spectrometry. The method was applied to the analysis of liver, kidney, fat, and brain tissue of mallard ducks (Anas platyrhynchos) fed a mixture of hydrocarbons. Measurable concentrations of all compounds analyzed were present in all tissues except brain. Highest concentrations were in fat.

  17. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion

    Science.gov (United States)

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-feng; Kong, Liang; Yao, Ying-Jia; Jiao, Ya-Nan; Yan, Yu-Hui; Li, Shao-Heng; Tao, Zhen-Yu; Lian, Guan; Yang, Jing-Xian; Kang, Ting-Guo

    2016-01-01

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary brain injury and the determination of the underlying mechanism of action in a mouse model of SWI that mimics the process of CED. After CED, mice received a gavage of ARC from 30 min to 14 days. Neurological severity scores (NSS) and wound closure degree were assessed after the injury. Histological analysis and immunocytochemistry were used to evaluated the extent of brain damage and neuroinflammation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect universal apoptosis. Enzyme-linked immunosorbent assays (ELISA) was used to test the inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10) and lactate dehydrogenase (LDH) content. Gene levels of inflammation (TNF-α, IL-6, and IL-10) and apoptosis (Caspase-3, Bax and Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Using these, we analyzed ARC’s efficacy and mechanism of action. Results: ARC treatment improved neurological function by reducing brain water content and hematoma and accelerating wound closure relative to untreated mice. ARC treatment reduced the levels of TNF-α and IL-6 and the number of allograft inflammatory factor (IBA)- and myeloperoxidase (MPO)-positive cells and increased the levels of IL-10. ARC-treated mice had fewer TUNEL+ apoptotic neurons and activated caspase-3-positive neurons surrounding the lesion than controls, indicating increased neuronal survival. Conclusions: ARC treatment confers

  18. Evidence for brain glucose dysregulation in Alzheimer's disease.

    Science.gov (United States)

    An, Yang; Varma, Vijay R; Varma, Sudhir; Casanova, Ramon; Dammer, Eric; Pletnikova, Olga; Chia, Chee W; Egan, Josephine M; Ferrucci, Luigi; Troncoso, Juan; Levey, Allan I; Lah, James; Seyfried, Nicholas T; Legido-Quigley, Cristina; O'Brien, Richard; Thambisetty, Madhav

    2018-03-01

    It is unclear whether abnormalities in brain glucose homeostasis are associated with Alzheimer's disease (AD) pathogenesis. Within the autopsy cohort of the Baltimore Longitudinal Study of Aging, we measured brain glucose concentration and assessed the ratios of the glycolytic amino acids, serine, glycine, and alanine to glucose. We also quantified protein levels of the neuronal (GLUT3) and astrocytic (GLUT1) glucose transporters. Finally, we assessed the relationships between plasma glucose measured before death and brain tissue glucose. Higher brain tissue glucose concentration, reduced glycolytic flux, and lower GLUT3 are related to severity of AD pathology and the expression of AD symptoms. Longitudinal increases in fasting plasma glucose levels are associated with higher brain tissue glucose concentrations. Impaired glucose metabolism due to reduced glycolytic flux may be intrinsic to AD pathogenesis. Abnormalities in brain glucose homeostasis may begin several years before the onset of clinical symptoms. Copyright © 2017 the Alzheimer's Association. All rights reserved.

  19. Postmortem Quetiapine Reference Concentrations in Brain and Blood

    DEFF Research Database (Denmark)

    Skov, Louise; Johansen, Sys Stybe; Linnet, Kristian

    2015-01-01

    and related to concentrations in postmortem blood. For cases, where quetiapine was unrelated to the cause of death (N 5 36), the 10–90 percentiles for quetiapine concentrations in brain tissue were 0.030 – 1.54 mg/kg (median 0.48 mg/kg, mean 0.79 mg/kg). Corresponding blood 10 –90 percentile values were 0.......007 – 0.39 mg/kg (median 0.15 mg/kg, mean 0.19 mg/kg), giving brain –blood ratio 10 –90 percentiles of 2.31 – 6.54 (median 3.87, mean 4.32). Both correspond well to the limited amount of data found in the literature. For cases where quetiapine was a contributing factor to death (N 5 5), the median value......Brain tissue is a useful alternative to blood in postmortem forensic investigations, but scarcity of information on reference concentrations in brain tissue makes interpretation challenging. Here we present a study of 43 cases where the antipsychotic drug quetiapine was quantified in brain tissue...

  20. FCM Clustering Algorithms for Segmentation of Brain MR Images

    Directory of Open Access Journals (Sweden)

    Yogita K. Dubey

    2016-01-01

    Full Text Available The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF, Gray Matter (GM, and White Matter (WM, has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed.

  1. Insertion mechanics of bioinspired needles into soft tissues.

    Science.gov (United States)

    Sahlabadi, Mohammad; Khodaei, Seyedvahid; Jezler, Kyle; Hutapea, Parsaoran

    2017-12-22

    Most studies to date confirm that any increase in the needle insertion force increases the damage to the tissue. When it comes to brain tissue, even minor damage can cause a long-lasting traumatic brain injury. Thus there is a great demand for innovative minimally invasive needles among the medical community. In our previous studies a novel bioinspired needle design with specially designed barbs was used to perform insertion tests into Polyvinyl chloride (PVC) tissue-mimicking gels, in which it decreased the insertion force by as much as 25%. In this work, bioinspired needles were designed using a CAD software, and were then manufactured using a 3 D printer. The insertion tests into bovine brain and liver were then performed to further investigate the performance of our bioinspired needles in real tissues. Our results show that there was a 10-25% decrease in the insertion force for insertions into bovine brain, and a 35-45% reduction in the insertion force for insertions into bovine liver using the proposed bioinspired needles. The reduction in the insertion force is due to the decrease in the friction force of the bioinspired needle with the bovine tissues, and its results are consistent with our previous results.

  2. Correlation of non-mass-like abnormal MR signal intensity with pathological findings surrounding pediatric osteosarcoma and Ewing's sarcoma

    International Nuclear Information System (INIS)

    Masrouha, Karim Z.; Haidar, Rachid; Saghieh, Said; Musallam, Khaled M.; Samra, Alexis Bou; Tawil, Ayman; Chakhachiro, Zaher; Abdallah, Abeer; Khoury, Nabil J.; Saab, Raya; Muwakkit, Samar; Abboud, Miguel R.

    2012-01-01

    The aim of this work was to determine the role of MRI in interpreting abnormal signals within bones and soft tissues adjacent to tumor bulk of osteosarcoma and Ewing's sarcoma in a pediatric population by correlating MR findings with histopathology. Thirty patients met the inclusion criteria, which included (1) osteosarcoma or Ewing's sarcoma, (2) MR studies no more than 2 months prior to surgery, (3) presence of abnormal MR signal surrounding the tumor bulk, (4) pathological material from resected tumor. The patients received standard neoadjuvant chemotherapy. Using grid maps on gross pathology specimens, the abnormal MR areas around the tumor were matched with the corresponding grid sections. Histopathology slides of these sections were then analyzed to determine the nature of the regions of interest. The MR/pathological correlation was evaluated using Mann-Whitney U test and Fisher's exact test. Twenty-seven patients had osteosarcoma and three patients had Ewing's sarcoma. Of the studied areas, 17.4% were positive for tumor (viable or necrotic). There was no statistically significant correlation between areas positive for tumor and age, gender, signal extent and intensity on MRI, or tissue type. There was, however, a statistically significant correlation between presence of tumor and the appearance of abnormal soft tissue signals. A feathery appearance correlated with tumor-negative areas whereas a bulky appearance correlated with tumor-positive regions. MR imaging is helpful in identifying the nature of abnormal signal areas surrounding bone sarcomas that are more likely to be tumor-free, particularly when the signal in the soft tissues surrounding the tumor is feathery and edema-like in appearance. (orig.)

  3. Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers.

    Science.gov (United States)

    Cole, James H; Franke, Katja

    2017-12-01

    The brain changes as we age and these changes are associated with functional deterioration and neurodegenerative disease. It is vital that we better understand individual differences in the brain ageing process; hence, techniques for making individualised predictions of brain ageing have been developed. We present evidence supporting the use of neuroimaging-based 'brain age' as a biomarker of an individual's brain health. Increasingly, research is showing how brain disease or poor physical health negatively impacts brain age. Importantly, recent evidence shows that having an 'older'-appearing brain relates to advanced physiological and cognitive ageing and the risk of mortality. We discuss controversies surrounding brain age and highlight emerging trends such as the use of multimodality neuroimaging and the employment of 'deep learning' methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Quantification of thermal damage in skin tissue

    Institute of Scientific and Technical Information of China (English)

    徐峰; 文婷; 卢天健; Seffen; Keith

    2008-01-01

    Skin thermal damage or skin burns are the most commonly encountered type of trauma in civilian and military communities. Besides, advances in laser, microwave and similar technologies have led to recent developments of thermal treatments for disease and damage involving skin tissue, where the objective is to induce thermal damage precisely within targeted tissue structures but without affecting the surrounding, healthy tissue. Further, extended pain sensation induced by thermal damage has also brought great...

  5. In vivo bone tissue response to a canasite glass-ceramic.

    Science.gov (United States)

    da Rocha Barros, V M; Salata, L A; Sverzut, C E; Xavier, S P; van Noort, R; Johnson, A; Hatton, P V

    2002-07-01

    The aim of this study was to determine the biocompatibility and osteoconductive potential of a high-strength canasite glass ceramic. Glass-ceramic rods were produced using the lost-wax casting technique and implanted in the mid-shafts rabbit femurs. Implants were harvested at 4, 13 and 22 weeks and prepared for light and electron microscopy. Hydroxyapatite was used as a control material. Hydroxyapatite implants were surrounded by new mineralised bone tissue after 4 weeks of implantation. The amount of bone surrounding the implant increased slightly at 13 weeks. In contrast, canasite glass and glass ceramic implants were almost entirely surrounded by soft tissue during all the time periods. Close contact between bone and canasite glass-ceramic implant without the intervening fibrous tissue was observed in only a few regions. The canasite formulation evaluated was not osteoconductive and appeared to degrade in the biological environment. It was therefore concluded that the canasite formulation used was unsuitable for use as implant. Further work is required to improve the biocompatibility of these materials with bone tissue. It is possible that this could be achieved by reducing the solubility of the glass and glass ceramic.

  6. Fluid Mechanics of the Vascular Basement Membrane in the Brain

    Science.gov (United States)

    Coloma, Mikhail; Hui, Jonathan; Chiarot, Paul; Huang, Peter; Carare, Roxana; McLeod, Kenneth; Schaffer, David

    2013-11-01

    Beta-amyloid is a normal product of brain metabolic function and is found within the interstitial fluid of the brain. Failure of the clearance of beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. The vascular basement membrane (VBM) within the walls of cerebral arteries surrounds the spirally arranged smooth muscle cells and represents an essential pathway for removal of beta-amyloid from the brain. This process fails with the stiffening of arterial walls associated with aging. In this study we hypothesize that the deformation of the VBM associated with arterial pulsations drives the interstitial fluid to drain in the direction opposite of the arterial blood flow. This hypothesis is theoretically investigated by modeling the VBM as a thin, coaxial, fluid-filled porous medium surrounding a periodically deforming cylindrical tube. Flow and boundary conditions required to achieve such a backward clearance are derived through a control volume analysis of mass, momentum, and energy.

  7. Distribution of vitamin C is tissue specific with early saturation of the brain and adrenal glands following differential oral dose regimens in guinea pigs

    DEFF Research Database (Denmark)

    Andersen, Stine Hasselholt; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2015-01-01

    Vitamin C (VitC) deficiency is surprisingly common in humans even in developed parts of the world. The micronutrient has several established functions in the brain; however, the consequences of its deficiency are not well characterised. To elucidate the effects of VitC deficiency on the brain......, increased knowledge about the distribution of VitC to the brain and within different brain regions after varying dietary concentrations is needed. In the present study, guinea pigs (like humans lacking the ability to synthesise VitC) were randomly divided into six groups (n 10) that received different...... concentrations of VitC ranging from 100 to 1500 mg/kg feed for 8 weeks, after which VitC concentrations in biological fluids and tissues were measured using HPLC. The distribution of VitC was found to be dynamic and dependent on dietary availability. Brain saturation was region specific, occurred at low dietary...

  8. Tissue oxygenation in brain, muscle, and fat in a rat model of sleep apnea: differential effect of obstructive apneas and intermittent hypoxia.

    Science.gov (United States)

    Almendros, Isaac; Farré, Ramon; Planas, Anna M; Torres, Marta; Bonsignore, Maria R; Navajas, Daniel; Montserrat, Josep M

    2011-08-01

    To test the hypotheses that the dynamic changes in brain oxygen partial pressure (PtO(2)) in response to obstructive apneas or to intermittent hypoxia differ from those in other organs and that the changes in brain PtO(2) in response to obstructive apneas is a source of oxidative stress. Prospective controlled animal study. University laboratory. 98 Sprague-Dawley rats. Cerebral cortex, skeletal muscle, or visceral fat tissues were exposed in anesthetized animals subjected to either obstructive apneas or intermittent hypoxia (apneic and hypoxic events of 15 s each and 60 events/h) for 1 h. Arterial oxygen saturation (SpO(2)) presented a stable pattern, with similar desaturations during both stimuli. The PtO(2) was measured by a microelectrode. During obstructive apneas, a fast increase in cerebral PtO(2) was observed (38.2 ± 3.4 vs. 54.8 ± 5.9 mm Hg) but not in the rest of tissues. This particular cerebral response was not found during intermittent hypoxia. The cerebral content of reduced glutathione was decreased after obstructive apneas (46.2% ± 15.2%) compared to controls (100.0% ± 14.7%), but not after intermittent hypoxia. This antioxidant consumption after obstructive apneas was accompanied by increased cerebral lipid peroxidation under this condition. No changes were observed for these markers in the other tissues. These results suggest that cerebral cortex could be protected in some way from hypoxic periods caused by obstructive apneas. The increased cerebral PtO(2) during obstructive apneas may, however, cause harmful effects (oxidative stress). The obstructive apnea model appears to be more adequate than the intermittent hypoxia model for studying brain changes associated with OSA.

  9. A simple procedure for the extraction of DNA from long-term formalin-preserved brain tissues for the detection of EBV by PCR.

    Science.gov (United States)

    Hassani, Asma; Khan, Gulfaraz

    2015-12-01

    Long-term formalin fixed brain tissues are potentially an important source of material for molecular studies. Ironically, very few protocols have been published describing DNA extraction from such material for use in PCR analysis. In our attempt to investigate the role of Epstein-Barr virus (EBV) in the pathogenesis of multiple sclerosis (MS), extracting PCR quality DNA from brain samples fixed in formalin for 2-22 years, proved to be very difficult and challenging. As expected, DNA extracted from these samples was not only of poor quality and quantity, but more importantly, it was frequently found to be non-amplifiable due to the presence of PCR inhibitors. Here, we describe a simple and reproducible procedure for extracting DNA using a modified proteinase K and phenol-chloroform methodology. Central to this protocol is the thorough pre-digestion washing of the tissues in PBS, extensive digestion with proteinase K in low SDS containing buffer, and using low NaCl concentration during DNA precipitation. The optimized protocol was used in extracting DNA from meninges of 26 MS and 6 non-MS cases. Although the quality of DNA from these samples was generally poor, small size amplicons (100-200 nucleotides) of the house-keeping gene, β-globin could be reliably amplified from all the cases. PCR for EBV revealed positivity in 35% (9/26) MS cases, but 0/6 non-MS cases. These findings indicate that the method described here is suitable for PCR detection of viral sequences in long-term formalin persevered brain tissues. Our findings also support a possible role for EBV in the pathogenesis of MS. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Radiation Injury to the Brain

    Science.gov (United States)

    ... Hits since January 2003 RADIATION INJURY TO THE BRAIN Radiation treatments affect all cells that are targeted. ... fractions, duration of therapy, and volume of [healthy brain] nervous tissue irradiated influence the likelihood of injury. ...

  11. Detection of hepatitis C virus sequences in brain tissue obtained in recurrent hepatitis C after liver transplantation.

    Science.gov (United States)

    Vargas, Hugo E; Laskus, Tomasz; Radkowski, Marek; Wilkinson, Jeff; Balan, Vijay; Douglas, David D; Harrison, M Edwyn; Mulligan, David C; Olden, Kevin; Adair, Debra; Rakela, Jorge

    2002-11-01

    Patients with chronic hepatitis C frequently report tiredness, easy fatigability, and depression. The aim of this study is to determine whether hepatitis C virus (HCV) replication could be found in brain tissue in patients with hepatitis C and depression. We report two patients with recurrent hepatitis C after liver transplantation who also developed severe depression. One patient died of multiorgan failure and the other, septicemia caused by Staphylococcus aureussis. Both patients had evidence of severe hepatitis C recurrence with features of cholestatic fibrosing hepatitis. We were able to study samples of their central nervous system obtained at autopsy for evidence of HCV replication. The presence of HCV RNA-negative strand, which is the viral replicative form, was determined by strand-specific Tth-based reverse-transcriptase polymerase chain reaction. Viral sequences were compared by means of single-strand conformation polymorphism and direct sequencing. HCV RNA-negative strands were found in subcortical white matter from one patient and cerebral cortex from the other patient. HCV RNA-negative strands amplified from brain tissue differed by several nucleotide substitutions from serum consensus sequences in the 5' untranslated region. These findings support the concept of HCV neuroinvasion, and we speculate that it may provide a biological substrate to neuropsychiatric disorders observed in patients with chronic hepatitis C. The exact lineage of cells permissive for HCV replication and the possible interaction between viral replication and cerebral function that may lead to depression remain to be elucidated.

  12. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    Science.gov (United States)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  13. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    International Nuclear Information System (INIS)

    Manley, N.B.

    1988-01-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. The decrease in the values of the labeling indices 1 week after charged particle irradiation was dose- and ion-dependent. Mitotic indices 1 week after 10 and 25 Gy helium and after 10 Gy neon were the same as those seen in the control mice. Analysis of cell kinetics 1 week after 10 Gy helium and 10 Gy neon irradiation suggests the presence of a progenitor subpopulation that is proliferating with a shorter cell cycle. Comparison of the responses to the different charged particle beams indicates that neon ions are more effective in producing direct cellular damage than the helium ions, but the surviving proliferating cells several divisions later continue to maintain active cell renewal. Based on the 1 week post-irradiation H 3 -TdR labeling indices, a rough estimate of the RBE for neon ions is at least 2.5 when compared to helium ions

  14. Hardwiring Stem Cell Communication through Tissue Structure.

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-03-10

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function, but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Diagnostic sensitivity and specificity of in situ hybridization and immunohistochemistry for Eastern equine encephalitis virus and West Nile virus in formalin-fixed, paraffin-embedded brain tissue of horses.

    Science.gov (United States)

    Pennick, Kate E; McKnight, Christy A; Patterson, Jon S; Latimer, Kenneth S; Maes, Roger K; Wise, Annabel G; Kiupel, Matti

    2012-03-01

    Immunohistochemistry (IHC) and in situ hybridization (ISH) can be used either to detect or to differentiate between Eastern equine encephalitis virus (EEEV) and West Nile virus (WNV) within formalin-fixed, paraffin-embedded (FFPE) brain tissue of horses. To compare the diagnostic sensitivity and specificity of ISH and IHC, FFPE brain tissue from 20 EEEV-positive horses and 16 WNV-positive horses were tested with both EEEV and WNV oligoprobes and EEEV- and WNV-specific antibodies. Reverse transcription polymerase chain reaction (RT-PCR) for detection of EEEV and WNV was used as the gold standard to confirm infection. All horses that tested positive for EEEV by RT-PCR also tested positive by IHC and ISH, except for 1 case that was false-negative by ISH. In contrast, all horses that tested positive for WNV by RT-PCR tested negative by IHC and only 2 horses tested positive by ISH. No false-positives were detected with either method for both viruses. Both IHC and ISH are highly specific and sensitive diagnostic methods to detect EEEV in equine FFPE brain tissues, although neither appear effective for the diagnosis of WNV in equine neurologic cases.

  16. The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats

    Directory of Open Access Journals (Sweden)

    Akbar Anaeigoudari

    2016-03-01

    Full Text Available Objective: In the present work, the effects of different fractions of Coriandrum sativum (C. sativum, on pentylenetetrazole (PTZ-induced seizures and brain tissues oxidative damage were investigated in rats. Materials and Methods: The rats were divided into the following groups: (1 vehicle, (2 PTZ (90 mg/kg, (3 water fraction (WF of C. sativum (25 and 100 mg/kg, (4 n-butanol fraction (NBF of C. sativum (25 and 100 mg/kg, and (5 ethyl acetate fraction (EAF of C. sativum (25 and 100 mg/kg. Results: The first generalized tonic-clonic seizures (GTCS latency in groups treated with 100 mg /kg of WF or EAF was significantly higher than that of PTZ group (p< 0.01. In contrast to WF, the EAF and NBF were not effective in increasing the first minimal clonic seizure (MCS latency. Malondialdehyde (MDA levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of control animals (p< 0.001. Pretreatment with WF, NBF, or EAF resulted in a significant reduction in the MDA levels of hippocampi (pConclusion: The present study showed that different fractions of C. sativum possess antioxidant activity in the brain and WF and EAF of this plant have anticonvulsant effects.

  17. Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation.

    Science.gov (United States)

    Lavenex, Pierre; Lavenex, Pamela Banta; Bennett, Jeffrey L; Amaral, David G

    2009-01-01

    Comparative studies of the structural organization of the brain are fundamental to our understanding of human brain function. However, whereas brains of experimental animals are fixed by perfusion of a fixative through the vasculature, human or ape brains are fixed by immersion after varying postmortem intervals. Although differential treatments might affect the fundamental characteristics of the tissue, this question has not been evaluated empirically in primate brains. Monkey brains were either perfused or acquired after varying postmortem intervals before immersion-fixation in 4% paraformaldehyde. We found that the fixation method affected the neuroanatomical characteristics of the monkey hippocampal formation. Soma size was smaller in Nissl-stained, immersion-fixed tissue, although overall brain volume was larger as compared to perfusion-fixed tissue. Nonphosphorylated high-molecular-weight neurofilament immunoreactivity was lower in CA3 pyramidal neurons, dentate mossy cells, and the entorhinal cortex, whereas it was higher in the mossy fiber pathway in immersion-fixed tissue. Serotonin-immunoreactive fibers were well stained in perfused tissue but were undetectable in immersion-fixed tissue. Although regional immunoreactivity patterns for calcium-binding proteins were not affected, intracellular staining degraded with increasing postmortem intervals. Somatostatin-immunoreactive clusters of large axonal varicosities, previously reported only in humans, were observed in immersion-fixed monkey tissue. In addition, calretinin-immunoreactive multipolar neurons, previously observed only in rodents, were found in the rostral dentate gyrus in both perfused and immersion-fixed brains. In conclusion, comparative studies of the brain must evaluate the effects of fixation on the staining pattern of each marker in every structure of interest before drawing conclusions about species differences.

  18. Increased Expression of Herpes Virus-Encoded hsv1-miR-H18 and hsv2-miR-H9-5p in Cancer-Containing Prostate Tissue Compared to That in Benign Prostate Hyperplasia Tissue

    Directory of Open Access Journals (Sweden)

    Seok Joong Yun

    2016-06-01

    Full Text Available Purpose: Previously, we reported the presence of virus-encoded microRNAs (miRNAs in the urine of prostate cancer (CaP patients. In this study, we investigated the expression of two herpes virus-encoded miRNAs in prostate tissue. Methods: A total of 175 tissue samples from noncancerous benign prostatic hyperplasia (BPH, 248 tissue samples from patients with CaP and BPH, and 50 samples from noncancerous surrounding tissues from these same patients were analyzed for the expression of two herpes virus-encoded miRNAs by real-time polymerase chain reaction (PCR and immunocytochemistry using nanoparticles as molecular beacons. Results: Real-time reverse transcription-PCR results revealed significantly higher expression of hsv1-miR-H18 and hsv2-miRH9- 5p in surrounding noncancerous and CaP tissues than that in BPH tissue (each comparison, P<0.001. Of note, these miRNA were expressed equivalently in the CaP tissues and surrounding noncancerous tissues. Moreover, immunocytochemistry clearly demonstrated a significant enrichment of both hsv1-miR-H18 and hsv2-miR-H9 beacon-labeled cells in CaP and surrounding noncancerous tissue compared to that in BPH tissue (each comparison, P<0.05 for hsv1-miR-H18 and hsv2- miR-H9. Conclusions: These results suggest that increased expression of hsv1-miR-H18 and hsv2-miR-H95p might be associated with tumorigenesis in the prostate. Further studies will be required to elucidate the role of these miRNAs with respect to CaP and herpes viral infections.

  19. Commonness and ecology, but not bigger brains, predict urban living in birds.

    Science.gov (United States)

    Dale, Svein; Lifjeld, Jan T; Rowe, Melissah

    2015-04-11

    Several life history and ecological variables have been reported to affect the likelihood of species becoming urbanized. Recently, studies have also focused on the role of brain size in explaining ability to adapt to urban environments. In contrast, however, little is known about the effect of colonization pressure from surrounding areas, which may confound conclusions about what makes a species urban. We recorded presence/absence data for birds in 93 urban sites in Oslo (Norway) and compared these with species lists generated from 137 forest and 51 farmland sites surrounding Oslo which may represent source populations for colonization. We found that the frequency (proportion of sites where present) of a species within the city was strongly and positively associated with its frequency in sites surrounding the city, as were both species breeding habitat and nest site location. In contrast, there were generally no significant effects of relative brain mass or migration on urban occupancy. Furthermore, analyses of previously published data showed that urban density of birds in six other European cities was also positively and significantly associated with density in areas outside cities, whereas relative brain mass showed no such relationship. These results suggest that urban bird communities are primarily determined by how frequently species occurred in the surrounding landscapes and by features of ecology (i.e. breeding habitat and nest site location), whereas species' relative brain mass had no significant effects.

  20. The effect of head size/shape, miscentering, and bowtie filter on peak patient tissue doses from modern brain perfusion 256-slice CT: How can we minimize the risk for deterministic effects?

    International Nuclear Information System (INIS)

    Perisinakis, Kostas; Seimenis, Ioannis; Tzedakis, Antonis; Papadakis, Antonios E.; Damilakis, John

    2013-01-01

    Purpose: To determine patient-specific absorbed peak doses to skin, eye lens, brain parenchyma, and cranial red bone marrow (RBM) of adult individuals subjected to low-dose brain perfusion CT studies on a 256-slice CT scanner, and investigate the effect of patient head size/shape, head position during the examination and bowtie filter used on peak tissue doses. Methods: The peak doses to eye lens, skin, brain, and RBM were measured in 106 individual-specific adult head phantoms subjected to the standard low-dose brain perfusion CT on a 256-slice CT scanner using a novel Monte Carlo simulation software dedicated for patient CT dosimetry. Peak tissue doses were compared to corresponding thresholds for induction of cataract, erythema, cerebrovascular disease, and depression of hematopoiesis, respectively. The effects of patient head size/shape, head position during acquisition and bowtie filter used on resulting peak patient tissue doses were investigated. The effect of eye-lens position in the scanned head region was also investigated. The effect of miscentering and use of narrow bowtie filter on image quality was assessed. Results: The mean peak doses to eye lens, skin, brain, and RBM were found to be 124, 120, 95, and 163 mGy, respectively. The effect of patient head size and shape on peak tissue doses was found to be minimal since maximum differences were less than 7%. Patient head miscentering and bowtie filter selection were found to have a considerable effect on peak tissue doses. The peak eye-lens dose saving achieved by elevating head by 4 cm with respect to isocenter and using a narrow wedge filter was found to approach 50%. When the eye lies outside of the primarily irradiated head region, the dose to eye lens was found to drop to less than 20% of the corresponding dose measured when the eye lens was located in the middle of the x-ray beam. Positioning head phantom off-isocenter by 4 cm and employing a narrow wedge filter results in a moderate reduction of