WorldWideScience

Sample records for surprisingly wide range

  1. Wide Range SET Pulse Measurement

    Science.gov (United States)

    Shuler, Robert L.; Chen, Li

    2012-01-01

    A method for measuring a wide range of SET pulses is demonstrated. Use of dynamic logic, faster than ordinary CMOS, allows capture of short pulses. A weighted binning of SET lengths allows measurement of a wide range of pulse lengths with compact circuitry. A pulse-length-conservative pulse combiner tree routes SETs from combinational logic to the measurement circuit, allowing SET measurements in circuits that cannot easily be arranged in long chains. The method is applied to add-multiplex combinational logic, and to an array of NFET routing switches, at .35 micron. Pulses are captured in a chain of Domino Logic AND gates. Propagation through the chain is frozen on the trailing edge by dropping low the second "enable" input to the AND gates. Capacitive loading is increased in the latter stages to create an approximately logarithmic weighted binning, so that a broad range of pulse lengths can be captured with a 10 stage capture chain. Simulations show pulses can be captured which are 1/5th the length of those typically captured with leading edge triggered latch methods, and less than the length of those captured with a trailing edge latch method. After capture, the pulse pattern is transferred to an SEU protected shift register for readout. 64 instances of each of two types of logic are used as targets. One is a full adder with a 4 to 1 mux on its inputs. The other is a 4 x 4 NFET routing matrix. The outputs are passed through buffered XNOR comparators to identify pulses, which are merged in a buffered not-nand (OR) tree designed to avoid pulse absorption as much as possible. The output from each of the two test circuits are input into separate pulse measurement circuits. Test inputs were provided so that the circuit could be bench tested and calibrated. A third SET measurement circuit with no inputs was used to judge the contribution from direct hits on the measurement circuit. Heavy ions were used with an LET range from 12 to 176. At LET of 21 and below, the very

  2. DC-DC converter with a wide load range and a wide input-voltage range

    NARCIS (Netherlands)

    Ting, Y.

    2015-01-01

    This thesis investigated the possibility of increasing the efficiency of a DC-DC converter over a wide load range and a wide input-voltage range based on the Single Active Bridge (SAB) topology with two approaches. The first approach involved making changes to the topology whereas the second made us

  3. Logarithmic circuit with wide dynamic range

    Science.gov (United States)

    Wiley, P. H.; Manus, E. A. (Inventor)

    1978-01-01

    A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage.

  4. Wide-Temperature-Range Integrated Operational Amplifier

    Science.gov (United States)

    Mojarradi, Mohammad; Levanas, Greg; Chen, Yuan; Kolawa, Elizabeth; Cozy, Raymond; Blalock, Benjamin; Greenwell, Robert; Terry, Stephen

    2007-01-01

    A document discusses a silicon-on-insulator (SOI) complementary metal oxide/semiconductor (CMOS) integrated- circuit operational amplifier to be replicated and incorporated into sensor and actuator systems of Mars-explorer robots. This amplifier is designed to function at a supply potential less than or equal to 5.5 V, at any temperature from -180 to +120 C. The design is implemented on a commercial radiation-hard SOI CMOS process rated for a supply potential of less than or equal to 3.6 V and temperatures from -55 to +110 C. The design incorporates several innovations to achieve this, the main ones being the following: NMOS transistor channel lengths below 1 m are generally not used because research showed that this change could reduce the adverse effect of hot carrier injection on the lifetimes of transistors at low temperatures. To enable the amplifier to withstand the 5.5-V supply potential, a circuit topology including cascade devices, clamping devices, and dynamic voltage biasing was adopted so that no individual transistor would be exposed to more than 3.6 V. To minimize undesired variations in performance over the temperature range, the transistors in the amplifier are biased by circuitry that maintains a constant inversion coefficient over the temperature range.

  5. Wide Range Multiscale Entropy Changes through Development

    Directory of Open Access Journals (Sweden)

    Nicola R. Polizzotto

    2015-12-01

    Full Text Available How variability in the brain’s neurophysiologic signals evolves during development is important for a global, system-level understanding of brain maturation and its disturbance in neurodevelopmental disorders. In the current study, we use multiscale entropy (MSE, a measure that has been related to signal complexity, to investigate how this variability evolves during development across a broad range of temporal scales. We computed MSE, standard deviation (STD and standard spectral analyses on resting EEG from 188 healthy individuals aged 8–22 years old. We found age-related increases in entropy at lower scales (<~20 ms and decreases in entropy at higher scales (~60–80 ms. Decreases in the overall signal STD were anticorrelated with entropy, especially in the lower scales, where regression analyses showed substantial covariation of observed changes. Our findings document for the first time the scale dependency of developmental changes from childhood to early adulthood, challenging a parsimonious MSE-based account of brain maturation along a unidimensional, complexity measure. At the level of analysis permitted by electroencephalography (EEG, MSE could capture critical spatiotemporal variations in the role of noise in the brain. However, interpretations critically rely on defining how signal STD affects MSE properties.

  6. Wide dynamic range acquisition system for innovative radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Petasecca, M., E-mail: mauro.menichelli@pg.infn.i [Istituto Nazionale di Fisica Nucleare, Via A. Pascoli, 06123 Perugia (Italy); MAPRAD S.r.l., via Colombo 19/I, 06127 Perugia (Italy); University of Wollongong, Northfields Av., 2500 Wollongong, NSW (Australia); Alpat, B.; Ambrosi, G.; Menichelli, M.; Papi, A. [Istituto Nazionale di Fisica Nucleare, Via A. Pascoli, 06123 Perugia (Italy); Cirrone, P.; Ferrera, F.; Figuera, P.; Finocchiaro, P.; Lattuada, M.; Rifuggiato, D. [Laboratori Nazionali del Sud dell' INFN, Catania (Italy); Bizzarri, F.; Blasko, S.; Caraffini, D.; Renzi, F. [MAPRAD S.r.l., via Colombo 19/I, 06127 Perugia (Italy); Denizli, H. [Abant izzet Baysal Universitesi, Bolu (Turkey)

    2010-05-21

    There is particular interest to develop low-noise and wide dynamic range data acquisition systems for silicon detectors in view of using the same acquisition readout electronics for a wide range of application fields like monitoring and characterization of radiation sources or particle beams. In the framework of a research project for the qualification of Components Off The Shelf (COTS) for their use in space, research groups from INFN-Perugia, INFN-LNS and from MAPRAD have developed a fully automated, remote controllable, wide dynamic range acquisition system for silicon strip or pixelated detectors. Its design and a basic description of the performance are given here.

  7. Wide Output Range Power Processing Unit for Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hall thrusters can be operated over a wide range of specific impulse while maintaining high efficiency. However S/C power system constraints on electric propulsion...

  8. Ontological Surprises

    DEFF Research Database (Denmark)

    Leahu, Lucian

    2016-01-01

    This paper investigates how we might rethink design as the technological crafting of human-machine relations in the context of a machine learning technique called neural networks. It analyzes Google’s Inceptionism project, which uses neural networks for image recognition. The surprising output of...... a hybrid approach where machine learning algorithms are used to identify objects as well as connections between them; finally, it argues for remaining open to ontological surprises in machine learning as they may enable the crafting of different relations with and through technologies....

  9. Surprise Trips

    DEFF Research Database (Denmark)

    Korn, Matthias; Kawash, Raghid; Andersen, Lisbet Møller

    We report on a platform that augments the natural experience of exploration in diverse indoor and outdoor environments. The system builds on the theme of surprises in terms of user expectations and finding points of interest. It utilizes physical icons as representations of users' interests and a...

  10. Wide Range Fiber Displacement Sensor Based on Bending Loss

    Directory of Open Access Journals (Sweden)

    Jinlei Zhao

    2016-01-01

    Full Text Available A wide range fiber optic sensor system for displacement and crack monitoring is developed. In the proposed fiber optic sensor system, a number of fiber loops are formed from a single fiber and each fiber loop is used as a crack or displacement sensor. The feasibility and the dynamic range of the fiber sensor developed in this manner are investigated experimentally. Both glass fibers and plastic fibers are used in the experiments. Experimental results show that the new fiber optic sensor has a wide range (maximum range is 88 mm and this sensor also has a high sensitivity for displacement and crack monitoring when an appropriate diameter of the fiber loop is selected as the sensor. Moreover, the proposed method is very simple and has low cost, so in situ application potential of the proposed sensor is high.

  11. A wide-range metrology AFM and its applications

    Science.gov (United States)

    Lin, Xiaofeng; Zhang, Haijun; Zhang, Dongxian

    2005-02-01

    In view of the fact that the application field of a dual tunneling-unit scanning tunneling microscope (DTU-STM) was strongly limited by sample conductivity, a dual imaging unit atomic force microscope (DIU-AFM) was developed for wide-range nano-metrology. A periodic grating is employed as a reference sample. The DIU-AFM simultaneously scans the grating and a test sample by using one single XY scanner. Their images thus have the same lateral size, and the length of the test sample image can be precisely measured by counting the number of periodic features of the reference grating. We further developed a new method of implementing wide-range nano-metrology. By alternatively moving the XY scanner in the X direction using a step motor, a series of pairs of images are obtained and can be spliced into two wide-range reference and test ones, respectively. Again, the two spliced images are of the same size, and the length of test image can be measured based on the reference grating features. In this way, wide-range metrology with nanometer order accuracy is successfully realized.

  12. Wide Operating Voltage Range Fuel Cell Battery Charger

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Mira Albert, Maria del Carmen; Sen, Gokhan;

    2014-01-01

    DC-DC converters for fuel cell applications require wide voltage range operation due to the unique fuel cell characteristic curve. Primary parallel isolated boost converter (PPIBC) is a boost derived topology for low voltage high current applications reaching an efficiency figure up to 98.2 %. Th...

  13. Wide Operating Voltage Range Fuel Cell Battery Charger

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Mira Albert, Maria del Carmen; Sen, Gokhan

    2014-01-01

    DC-DC converters for fuel cell applications require wide voltage range operation due to the unique fuel cell characteristic curve. Primary parallel isolated boost converter (PPIBC) is a boost derived topology for low voltage high current applications reaching an efficiency figure up to 98.2 %. Th...

  14. Soil Compressibility Models for a Wide Stress Range

    KAUST Repository

    Chong, Song-Hun

    2016-03-03

    Soil compressibility models with physically correct asymptotic void ratios are required to analyze situations that involve a wide stress range. Previously suggested models and other functions are adapted to satisfy asymptotic void ratios at low and high stress levels; all updated models involve four parameters. Compiled consolidation data for remolded and natural clays are used to test the models and to develop correlations between model parameters and index properties. Models can adequately fit soil compression data for a wide range of stresses and soil types; in particular, models that involve the power of the stress σ\\'β display higher flexibility to capture the brittle response of some natural soils. The use of a single continuous function avoids numerical discontinuities or the need for ad hoc procedures to determine the yield stress. The tangent stiffness-readily computed for all models-should not be mistaken for the small-strain constant-fabric stiffness. © 2016 American Society of Civil Engineers.

  15. Aerodynamic characteristics research on wide-speed range waverider configuration

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Waverider generated from a given flow field has a high lift-to-drag ratio because of attached bow shock on leading edge. However, leading edge blunt and off-design condition can make bow shock off leading edge and have unfavorable influence on aerodynamic characteristics. So these two problems have always been concerned as important engineering science issues by aeronautical engineering scientists. In this paper, through respectively using low speed and high speed waverider design principles, a wide-speed rang vehicle is designed, which can level takeoff and accelerate to hypersonic speed for cruise. In addition, sharp leading edge is blunted to alleviated aeroheating. Theoretical study and wind tunnel test show that this vehicle has good aerodynamic performance in wide-speed range of subsonic, transonic, supersonic and hypersonic speeds.

  16. Distant and wide range wireless power transfer from metamedia

    Science.gov (United States)

    Zhu, Lin; Luo, Xudong; Ma, Hongru

    2016-07-01

    Based on electromagnetic scattering theory, a model of superscatterer enhanced distant wireless power transfer (WPT) device has designed and analyzed with the concept of transformation optics. The numerical results obtained through a series expansion method reveal that a properly designed ss-WPT has high efficiency for long transfer distances as well as a wide transfer range. The transfer distance can be further enlarged by fine tuning of the design. These effects can be explained qualitatively through the study of magnetic flux.

  17. Improved Wide Operating Temperature Range of Li-Ion Cells

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2013-01-01

    Future NASA missions aimed at exploring the Moon, Mars, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications including landers, rovers, penetrators, CEV, CLV, etc. This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. The Department of Energy (DoE) has identified a number of technical barriers associated with the development of Liion rechargeable batteries for PHEVs. For this reason, DoE has interest in the development of advanced electrolytes that will improve performance over a wide range of temperatures, and lead to long life characteristics (5,000 cycles over a 10-year life span). There is also interest in improving the high-voltage stability of these candidate electrolyte systems to enable the operation of up to 5 V with high specific energy cathode materials. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, the rate capability at the lower temperatures is very poor. In addition, the low-temperature performance typically deteriorates rapidly upon being exposed to high temperatures. A number of electrolyte formulations were developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl propionate (MP)-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalate borate) (LiBOB), which have previously been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. These MP-based electrolytes with additives have been shown to have improved performance in experiments with MCMB-LiNiCoAlO2 cells.

  18. A method for the evaluation of wide dynamic range cameras

    Science.gov (United States)

    Wong, Ping Wah; Lu, Yu Hua

    2012-01-01

    We propose a multi-component metric for the evaluation of digital or video cameras under wide dynamic range (WDR) scenes. The method is based on a single image capture using a specifically designed WDR test chart and light box. Test patterns on the WDR test chart include gray ramps, color patches, arrays of gray patches, white bars, and a relatively dark gray background. The WDR test chart is professionally made using 3 layers of transparencies to produce a contrast ratio of approximately 110 dB for WDR testing. A light box is designed to provide a uniform surface with light level at about 80K to 100K lux, which is typical of a sunny outdoor scene. From a captured image, 9 image quality component scores are calculated. The components include number of resolvable gray steps, dynamic range, linearity of tone response, grayness of gray ramp, number of distinguishable color patches, smearing resistance, edge contrast, grid clarity, and weighted signal-to-noise ratio. A composite score is calculated from the 9 component scores to reflect the comprehensive image quality in cameras under WDR scenes. Experimental results have demonstrated that the multi-component metric corresponds very well to subjective evaluation of wide dynamic range behavior of cameras.

  19. High accuracy magnetic field sensors with wide operation temperature range

    Science.gov (United States)

    Vasil'evskii, I. S.; Vinichenko, A. N.; Rubakin, D. I.; Bolshakova, I. A.; Kargin, N. I.

    2016-10-01

    n+InAs(Si) epitaxial thin films heavily doped by silicon and Hall effect magnetic field sensors based on this structures have been fabricated and studied. We have demonstrated the successful formation of highly doped InAs thin films (∼100 nm) with the different intermediate layer arrangement and appropriate electron mobility values. Hall sensors performance parameters have been measured in wide temperature range. Obtained sensitivity varied from 1 to 40 Ω/T, while the best linearity and lower temperature coefficient have been found in the higher doped samples with lower electron mobility. We attribute this to the electron system degeneracy and decreased phonon contribution to electron mobility and resistance.

  20. Amplifier circuit operable over a wide temperature range

    Science.gov (United States)

    Kelly, Ronald D.; Cannon, William L.

    1979-01-01

    An amplifier circuit having stable performance characteristics over a wide temperature range from approximately 0.degree. C up to as high as approximately 500.degree. C, such as might be encountered in a geothermal borehole. The amplifier utilizes ceramic vacuum tubes connected in directly coupled differential amplifier pairs having a common power supply and a cathode follower output stage. In an alternate embodiment, for operation up to 500.degree. C, positive and negative power supplies are utilized to provide improved gain characteristics, and all electrical connections are made by welding. Resistor elements in this version of the invention are specially heat treated to improve their stability with temperature.

  1. Doped silicene: Evidence of a wide stability range

    KAUST Repository

    Cheng, Yingchun

    2011-06-17

    The effects of doping on the lattice structure, electronic structure, phonon spectrum, and electron-phonon coupling of low-buckling silicene are studied by first-principles calculations. Although the lattice is found to be very sensitive to the carrier concentration, it is stable in a wide doping range. The frequencies of the E2g-Γ and A′-K Raman modes can be used to probe the carrier concentration. In addition, the phonon dispersion displays Kohn anomalies at the Γ and K points which are reduced by doping. This implies that the electron-phonon coupling cannot be neglected in field-effect transistor applications. Copyright © 2011 EPLA.

  2. Low Power, Wide Dynamic Range Carbon Nanotube Vacuum Gauges

    Science.gov (United States)

    Kaul, Anupama B.; Manohara, Harish M.

    2008-01-01

    This slide presentation presents carbon nanotube vacuum pressure sensor gauges that operate at low power and exhibit a wide-dynamic range based on microelectromechanical systems (MEMS) technology. The fabrication facility, and the formation process are shown. Pressure sensitivity was found to increase rapidly as the bias power was increased. In addition, by etching part of the thermal SiO2 beneath the tubes and minimizing heat conduction through the substrate, pressure sensitivity was extended toward lower pressures. Results are compared to a conventional thin film meander resistor, which was fabricated and whose pressure response was also measured for comparative purposes.

  3. Range-wide patterns of greater sage-grouse persistence

    Science.gov (United States)

    Aldridge, C.L.; Nielsen, S.E.; Beyer, H.L.; Boyce, M.S.; Connelly, J.W.; Knick, S.T.; Schroeder, M.A.

    2008-01-01

    Aim: Greater sage-grouse (Centrocercus urophasianus), a shrub-steppe obligate species of western North America, currently occupies only half its historical range. Here we examine how broad-scale, long-term trends in landscape condition have affected range contraction. Location: Sagebrush biome of the western USA. Methods: Logistic regression was used to assess persistence and extirpation of greater sage-grouse range based on landscape conditions measured by human population (density and population change), vegetation (percentage of sagebrush habitat), roads (density of and distance to roads), agriculture (cropland, farmland and cattle density), climate (number of severe and extreme droughts) and range periphery. Model predictions were used to identify areas where future extirpations can be expected, while also explaining possible causes of past extirpations. Results: Greater sage-grouse persistence and extirpation were significantly related to sagebrush habitat, cultivated cropland, human population density in 1950, prevalence of severe droughts and historical range periphery. Extirpation of sage-grouse was most likely in areas having at least four persons per square kilometre in 1950, 25% cultivated cropland in 2002 or the presence of three or more severe droughts per decade. In contrast, persistence of sage-grouse was expected when at least 30 km from historical range edge and in habitats containing at least 25% sagebrush cover within 30 km. Extirpation was most often explained (35%) by the combined effects of peripherality (within 30 km of range edge) and lack of sagebrush cover (less than 25% within 30 km). Based on patterns of prior extirpation and model predictions, we predict that 29% of remaining range may be at risk. Main Conclusions: Spatial patterns in greater sage-grouse range contraction can be explained by widely available landscape variables that describe patterns of remaining sagebrush habitat and loss due to cultivation, climatic trends, human

  4. Cobalt catalyzed hydroesterification of a wide range of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Van Rensburg, H.; Hanton, M.; Tooze, R.P.; Foster, D.F. [Sasol Technology UK, St Andrews (United Kingdom)

    2011-07-01

    Petrochemical raw materials are an essential raw material for the production of detergents with a substantial portion of synthetic fatty alcohols being produced via hydroformylation of oil or coal derived olefins. Carbonylation processes other than hydroformylation have to date not been commercially employed for the production of fatty esters or alcohols. In this document we highlight the opportunities of converting olefins to esters using cobalt catalyzed alkoxycarbonylation. This process is highly versatile and applicable to a wide range of olefins, linear or branched, alpha or internal in combination with virtually any chain length primary or secondary alcohol allowing the synthesis of a diverse array of compounds such as ester ethoxylated surfactants, methyl branched detergents, lubricants and alkyl propanoates. Furthermore, alkoxycarbonylation of a broad olefin/paraffin hydrocarbon range could be used to produce the corresponding broad cut detergent alcohols. (orig.)

  5. Development of a wide-range tritium-concentration detector

    Energy Technology Data Exchange (ETDEWEB)

    Jun, F.; Zhe, L.; Shicheng, L.; Jiangfeng, S.; Deli, L. [China Academy of Engineering Physics, Mianyang (China)

    2015-03-15

    According to the requirements of the tritium related systems of the TBM (Test Blanket Module) for monitoring the on-line tritium concentration, a wide-range tritium-concentration detector has been developed to measure the tritium concentration in the range of 10{sup 4} Bq/ml - 5*10{sup 8} Bq/ml. This detector is combined with a low-memory helium ionization chamber. The weak current signal collected in the ionization chamber is converted to the voltage signal by an I-V converter. The minimum weak current which the detector could be measured is 10{sup -14} A. The performance of the background current and the current response linearity of the prototype have been tested. The test result indicates that the linear response of the current signal of the prototype without connecting the ionization chamber is good. The linear correlation coefficient is R{sup 2} = 0.998.

  6. Ozone formation in pulsed SDBD in a wide pressure range

    Science.gov (United States)

    Starikovskiy, Andrey; Nudnova, Maryia; mipt Team

    2011-10-01

    Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.

  7. Wide Dynamic Range CMOS Potentiostat for Amperometric Chemical Sensor

    Directory of Open Access Journals (Sweden)

    Wei-Song Wang

    2010-03-01

    Full Text Available Presented is a single-ended potentiostat topology with a new interface connection between sensor electrodes and potentiostat circuit to avoid deviation of cell voltage and linearly convert the cell current into voltage signal. Additionally, due to the increased harmonic distortion quantity when detecting low-level sensor current, the performance of potentiostat linearity which causes the detectable current and dynamic range to be limited is relatively decreased. Thus, to alleviate these irregularities, a fully-differential potentiostat is designed with a wide output voltage swing compared to single-ended potentiostat. Two proposed potentiostats were implemented using TSMC 0.18-μm CMOS process for biomedical application. Measurement results show that the fully differential potentiostat performs relatively better in terms of linearity when measuring current from 500 ºpA to 10 uA. Besides, the dynamic range value can reach a value of 86 dB.

  8. Charming surprise

    CERN Multimedia

    Antonella Del Rosso

    2011-01-01

    The CP violation in charm quarks has always been thought to be extremely small. So, looking at particle decays involving matter and antimatter, the LHCb experiment has recently been surprised to observe that things might be different. Theorists are on the case.   The study of the physics of the charm quark was not in the initial plans of the LHCb experiment, whose letter “b” stands for “beauty quark”. However, already one year ago, the Collaboration decided to look into a wider spectrum of processes that involve charm quarks among other things. The LHCb trigger allows a lot of these processes to be selected, and, among them, one has recently shown interesting features. Other experiments at b-factories have already performed the same measurement but this is the first time that it has been possible to achieve such high precision, thanks to the huge amount of data provided by the very high luminosity of the LHC. “We have observed the decay modes of t...

  9. Charming surprise

    CERN Multimedia

    Antonella Del Rosso

    2011-01-01

    The CP violation in charm quarks has always been thought to be extremely small. So, looking at particle decays involving matter and antimatter, the LHCb experiment has recently been surprised to observe that things might be different. Theorists are on the case. The study of the physics of the charm quark was not in the initial plans of the LHCb experiment, whose letter “b” stands for “beauty quark”. However, already one year ago, the Collaboration decided to look into a wider spectrum of processes that involve charm quarks among other things. The LHCb trigger allows a lot of these processes to be selected, and, among them, one has recently shown interesting features. Other experiments at b-factories have already performed the same measurement but this is the first time that it has been possible to achieve such high precision, thanks to the huge amount of data provided by the very high luminosity of the LHC. “We have observed the decay modes of the D0, a pa...

  10. Innovative static spectropolarimeter concept for wide spectral ranges: tolerancing study

    CERN Document Server

    Pertenais, Martin; Parès, Laurent; Petit, Pascal

    2015-01-01

    Developing an efficient and robust polarimeter for wide spectral ranges and space applications is a main issue in many projects. As part of the UVMag consortium created to develop UV facilities in space (e.g. the Arago mission proposed to ESA), we are studying an innovative concept of polarimeter that is robust, simple, and efficient on a wide spectral range. The idea, based on the article by Sparks et al. (2012), is to use polarization scramblers to create a spatial modulation of the polarization. Along the height of the wedges of the scramblers, the thickness of the birefringent material crossed by the light, and thus the retardance, vary continuously. This variation creates an intensity modulation of the light related to the entrance polarization state. Analyzing this modulation with a linear polarizer, and dispersing the light spectrally in the orthogonal spatial direction, enables the measurement of the full Stokes vector over the entire spectrum. This determination is performed with a single-shot measur...

  11. Profile Monitors for Wide Multiplicity Range Electron Beams

    CERN Document Server

    Buonomo, B; Quintieri, L

    2005-01-01

    The DAFNE Beam Test Facility (BTF) provides electron and positron beams in a wide range of intensity, from single particle up to 1010 particles per pulse, and energy, from a few tens of MeV up to 800 MeV. The pulse time width can be adjusted between 1 and 10 ns and the maximum repetition rate is 50 Hz. The large range of operation of the facility requires the implementation of different beam profile and multiplicity monitors. In the single particle operation mode the beam spot profile and position are measured by a x-y scintillating fiber system with millimetric resolution and multi-anode PMT readout. From a few tens up to 106-107 particles per pulse, a silicon chamber made of two 9.5x9.5 cm2 wide 400μm thick silicon strip detectors organized in a x-y configuration with a pitch of 121μm has been developed. Once calibrated, the system can be used also as an intensity monitor. The description of the devices and the results obtained during the data taking periods of several experiments at the...

  12. A New Wide-Range Equation of State for Xenon

    Science.gov (United States)

    Carpenter, John H.

    2011-06-01

    We describe the development of a new wide-range equation of state (EOS) for xenon. Three different prior EOS models predicted significant variations in behavior along the high pressure Hugoniot from an initial liquid state at 163.5 K and 2.97 g/cm3, which is near the triple point. Experimental measurements on Sandia's Z machine as well as density functional theory based molecular dynamics calculations both invalidate the prior EOS models in the pressure range from 200 to 840 GPa. The reason behind these EOS model disagreements is found to lie in the contribution from the thermal electronic models. A new EOS, based upon the standard separation of the Helmholtz free energy into ionic and electronic components, is constructed by combining the successful parts of prior models with a semi-empirical electronic model. Both the fluid and fcc solid phases are combined in a wide-range, multi-phase table. The new EOS is tabulated on a fine temperature and density grid, to preserve phase boundary information, and is available as table number 5191 in the LANL SESAME database. Improvements over prior EOS models are found not only along the Hugoniot, but also along the melting curve and in the region of the liquid-vapor critical point. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Profile monitors for wide multiplicity range electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Buonomo, B.; Mazzitelli, G.; Quintieri, L. [Laboratori Nazionali di Frascati LNF - INFN (Italy); Bulgheroni, A.; Cappellini, C.; Prest, M. [Univ. Insubria e INFN Sez-Milano (Italy); Foggetta, L. [Consorzio Interunivesitario per la Fisica Spaziale, CIFS (Italy); Mozzanica, A. [Milano Univ., INFN Pavia (Italy); Vallazza, E. [INFN Trieste Via Valerio, Trieste (Italy); Valente, P. [INFN Sez Roma (Italy)

    2005-07-01

    The DAFNE Beam Test Facility (BTF) provides electron and positron beams in a wide range of intensity, from single particle up to 10{sup 10} particles per pulse, and energy, from a few tens of MeV up to 800 MeV. The pulse time width can be 1 or 10 ns long, and the maximum repetition rate is 50 Hz. The large range of operation of the facility requires the implementation of different beam profile and multiplicity monitors. In the single particle operation mode, and up to a few 10{sup 3} particles/pulse, the beam spot profile and position are measured by a x-y scintillating fiber system with millimeter scale resolution and multi-anode photomultiplier tube readout. From a few tens up to 10{sup 6-7} particles per pulse, a silicon chamber made of two 9.5 x 9.5 cm{sup 2} wide 400 {mu}m thick silicon strip detectors organized in a x-y configuration with a pitch of 121 {mu}m has been developed. Once calibrated, the system can be used also as an intensity monitor. The description of the devices and the results obtained during the data taking periods of several experiments at the facility are presented. The system has showed very good performance operating with very high reliability in the energy range from a few tens of MeV up to 800 MeV, in single electron/positron mode as well as in the high intensity beam.

  14. Study on Method of Wide Dynamic Range Data Acquisition System

    Science.gov (United States)

    Hu, X.; Teng, Y.

    2013-12-01

    Seismic data acquisition system is an indispensable device for seismic signal digitalization processing. Its performance is directly related to the final seismic signal acquisited, and ultimately affect the results of the data processing. The amplitude of seismic signal has a great span, its dynamic range even reached more than 160dB. And the dynamic range of the output signal of broadband seismometer is greater than 150dB too. Yet the dynamic range of 24-bit DAS(Data Acquisition System) which is currently widespread used and based on Σ-ΔA/D converter is only about 130dB. This lead to that the small seismic signal can't be recorded by 24-bit DAS as well as the amplitude of big seismic event wave recorded by it would be limited. For instance, since the 2008 Wenchuan Ms8.0 Earthquake is a huge seismic event, the amplitudes of seismic wave recorded by all the 24-bit seismometors in Sichuan Province in China are seriously limited. It makes the earthquake monitoring station lost its function when we seriously need the data, and we lost the rare huge seismic event wave data for late studying. It is the requirement for the DAS in practical application that for a small seismic signal recorded, it needed to improve the signal-to-noise ratio and has a high resolution, and for a big one, it is demanded to record the signal perfectly and not to be limited of its amplitude. According to this, we present a new method of wide dynamic range data acquisition: The Analog-to-Digital Converter classifies the input signal amplitude into several levels; The smaller-amplitude-level input voltage signal is digitalized with higher resolution while lower resolution digitalized for the bigger-amplitude-level input; Every amplitude-level-signal can be digitalized by an independent ordinary 24-bit Σ-ΔA/D converter for its dynamic range is less smaller; And finally, the controller-processing unit make all the level signal digital outputs into a 32-bit data, which has high resolution and

  15. Range-wide determinants of plague distribution in North America.

    Science.gov (United States)

    Maher, Sean P; Ellis, Christine; Gage, Kenneth L; Enscore, Russell E; Peterson, A Townsend

    2010-10-01

    Plague, caused by the bacterium Yersinia pestis, is established across western North America, and yet little is known of what determines the broad-scale dimensions of its overall range. We tested whether its North American distribution represents a composite of individual host-plague associations (the "Host Niche Hypothesis"), or whether mammal hosts become infected only at sites overlapping ecological conditions appropriate for plague transmission and maintenance (the "Plague Niche Hypothesis"). We took advantage of a novel data set summarizing plague records in wild mammals newly digitized from paper-based records at the Centers for Disease Control and Prevention to develop range-wide tests of ecological niche similarity between mammal host niches and plague-infected host niches. Results indicate that plague infections occur under circumstances distinct from the broader ecological distribution of hosts, and that plague-infected niches are similar among hosts; hence, evidence coincides with the predictions of the Plague Niche Hypothesis, and contrasts with those of the Host Niche Hypothesis. The "plague niche" is likely driven by ecological requirements of vector flea species.

  16. Wide-dynamic-range promoters engineered for cyanobacteria

    Science.gov (United States)

    2013-01-01

    Background Cyanobacteria, prokaryotic cells with oxygenic photosynthesis, are excellent bioengineering targets to convert solar energy into solar fuels. Tremendous genetic engineering approaches and tools have been and still are being developed for prokaryotes. However, the progress for cyanobacteria is far behind with a specific lack of non-native inducible promoters. Results We report the development of engineered TetR-regulated promoters with a wide dynamic range of transcriptional regulation. An optimal 239 (±16) fold induction in darkness (white-light-activated heterotrophic growth, 24 h) and an optimal 290 (±93) fold induction in red light (photoautotrophic growth, 48 h) were observed with the L03 promoter in cells of the unicellular cyanobacterium Synechocystis sp. strain ATCC27184 (i.e. glucose-tolerant Synechocystis sp. strain PCC 6803). By altering only few bases of the promoter in the narrow region between the -10 element and transcription start site significant changes in the promoter strengths, and consequently in the range of regulations, were observed. Conclusions The non-native inducible promoters developed in the present study are ready to be used to further explore the notion of custom designed cyanobacterial cells in the complementary frameworks of metabolic engineering and synthetic biology. PMID:23607865

  17. Range-wide Determinants of Plague Distribution in North America

    Science.gov (United States)

    Maher, Sean P.; Ellis, Christine; Gage, Kenneth L.; Enscore, Russell E.; Peterson, A. Townsend

    2010-01-01

    Plague, caused by the bacterium Yersinia pestis, is established across western North America, and yet little is known of what determines the broad-scale dimensions of its overall range. We tested whether its North American distribution represents a composite of individual host–plague associations (the “Host Niche Hypothesis”), or whether mammal hosts become infected only at sites overlapping ecological conditions appropriate for plague transmission and maintenance (the “Plague Niche Hypothesis”). We took advantage of a novel data set summarizing plague records in wild mammals newly digitized from paper-based records at the Centers for Disease Control and Prevention to develop range-wide tests of ecological niche similarity between mammal host niches and plague-infected host niches. Results indicate that plague infections occur under circumstances distinct from the broader ecological distribution of hosts, and that plague-infected niches are similar among hosts; hence, evidence coincides with the predictions of the Plague Niche Hypothesis, and contrasts with those of the Host Niche Hypothesis. The “plague niche” is likely driven by ecological requirements of vector flea species. PMID:20889857

  18. High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera Tracking

    Science.gov (United States)

    Liss, J.; Dunagan, S. E.; Johnson, R. R.; Chang, C. S.; LeBlanc, S. E.; Shinozuka, Y.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Pistone, K.; Kacenelenbogen, M. S.; Fahey, L.

    2016-12-01

    High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera TrackingThe NASA Ames Sun-photometer-Satellite Group, DOE, PNNL Atmospheric Sciences and Global Change Division, and NASA Goddard's AERONET (AErosol RObotic NETwork) team recently collaborated on the development of a new airborne sunphotometry instrument that provides information on gases and aerosols extending far beyond what can be derived from discrete-channel direct-beam measurements, while preserving or enhancing many of the desirable AATS features (e.g., compactness, versatility, automation, reliability). The enhanced instrument combines the sun-tracking ability of the current 14-Channel NASA Ames AATS-14 with the sky-scanning ability of the ground-based AERONET Sun/sky photometers, while extending both AATS-14 and AERONET capabilities by providing full spectral information from the UV (350 nm) to the SWIR (1,700 nm). Strengths of this measurement approach include many more wavelengths (isolated from gas absorption features) that may be used to characterize aerosols and detailed (oversampled) measurements of the absorption features of specific gas constituents. The Sky Scanning Sun Tracking Airborne Radiometer (3STAR) replicates the radiometer functionality of the AATS-14 instrument but incorporates modern COTS technologies for all instruments subsystems. A 19-channel radiometer bundle design is borrowed from a commercial water column radiance instrument manufactured by Biospherical Instruments of San Diego California (ref, Morrow and Hooker)) and developed using NASA funds under the Small Business Innovative Research (SBIR) program. The 3STAR design also incorporates the latest in robotic motor technology embodied in Rotary actuators from Oriental motor Corp. having better than 15 arc seconds of positioning accuracy. Control system was designed, tested and simulated using a Hybrid-Dynamical modeling methodology. The design also replaces the classic quadrant detector tracking sensor with a

  19. Wide Stiffness Range Cavity Optomechanical Sensors for Atomic Force Microscopy

    CERN Document Server

    Liu, Yuxiang; Aksyuk, Vladimir; Srinivasan, Kartik

    2012-01-01

    We report on progress in developing compact sensors for atomic force microscopy (AFM), in which the mechanical transducer is integrated with near-field optical readout on a single chip. The motion of a nanoscale, doubly-clamped cantilever was transduced by an adjacent high quality factor silicon microdisk cavity. In particular, we show that displacement sensitivity on the order of 1 fm/(Hz)^(1/2) can be achieved while the cantilever stiffness is varied over four orders of magnitude (\\approx 0.01 N/m to \\approx 290 N/m). The ability to transduce both very soft and very stiff cantilevers extends the domain of applicability of this technique, potentially ranging from interrogation of microbiological samples (soft cantilevers) to imaging with high resolution (stiff cantilevers). Along with mechanical frequencies (> 250 kHz) that are much higher than those used in conventional AFM probes of similar stiffness, these results suggest that our cavity optomechanical sensors may have application in a wide variety of hig...

  20. Wide-range displacement expressions for standard fracture mechanics specimens

    Science.gov (United States)

    Kapp, J. A.; Gross, B.; Leger, G. S.

    1985-01-01

    Wide-range algebraic expressions for the displacement of cracked fracture mechanics specimens are developed. For each specimen two equations are given: one for the displacement as a function of crack length, the other for crack length as a function of displacement. All the specimens that appear in ASTM Test for Plane-Strain Fracture Toughness of Metallic Materials (E 399) are represented in addition to the crack mouth displacement for a pure bending specimen. For the compact tension sample and the disk-shaped compact tension sample, the displacement at the crack mouth and at the load line are both considered. Only the crack mouth displacements for the arc-shaped tension samples are presented. The agreement between the displacements or crack lengths predicted by the various equations and the corresponding numerical data from which they were developed are nominally about 3 percent or better. These expressions should be useful in all types of fracture testing including fracture toughness, K-resistance, and fatigue crack growth.

  1. Moderate rates of late Quaternary slip along the northwestern margin of the Basin and Range Province, Surprise Valley fault, northeastern California

    Science.gov (United States)

    Personius, Stephen F.; Crone, Anthony J.; Machette, Michael N.; Mahan, Shannon; Lidke, David J.

    2009-01-01

    The 86-km-long Surprise Valley normal fault forms part of the active northwestern margin of the Basin and Range province in northeastern California. We use trench mapping and radiocarbon, luminescence, and tephra dating to estimate displacements and timing of the past five surface-rupturing earthquakes on the central part of the fault near Cedarville. A Bayesian OxCal analysis of timing constraints indicates earthquake times of 18.2 ± 2.6, 10.9 ± 3.2, 8.5 ± 0.5, 5.8 ± 1.5, and 1.2 ± 0.1 ka. These data yield recurrence intervals of 7.3 ± 4.1, 2.5 ± 3.2, 2.7 ± 1.6, and 4.5 ± 1.5 ka and an elapsed time of 1.2 ± 0.1 ka since the latest surface-rupturing earthquake. Our best estimate of latest Quaternary vertical slip rate is 0.6 ?? 0.1 mm/a. This late Quaternary rate is remarkably similar to long-term (8-14 Ma) minimum vertical slip rates (>0.4-0.5 ± 0.3 mm/a) calculated from recently acquired seismic reflection and chronologic and structural data in Surprise Valley and the adjacent Warner Mountains. However, our slip rate yields estimates of extension that are lower than recent campaign GPS determinations by factors of 1.5-4 unless the fault has an unusually shallow (30°-35°) dip as suggested by recently acquired seismic reflection data. Coseismic displacements of 2-4.5 ± 1 m documented in the trench and probable rupture lengths of 53-65 km indicate a history of latest Quaternary earthquakes of M 6.8-7.3 on the central part of the. Surprise Valley fault.

  2. Range-Wide Snow Leopard Phylogeography Supports Three Subspecies.

    Science.gov (United States)

    Janecka, Jan E; Zhang, Yuguang; Li, Diqiang; Munkhtsog, Bariushaa; Bayaraa, Munkhtsog; Galsandorj, Naranbaatar; Wangchuk, Tshewang R; Karmacharya, Dibesh; Li, Juan; Lu, Zhi; Uulu, Kubanychbek Zhumabai; Gaur, Ajay; Kumar, Satish; Kumar, Kesav; Hussain, Shafqat; Muhammad, Ghulam; Jevit, Matthew; Hacker, Charlotte; Burger, Pamela; Wultsch, Claudia; Janecka, Mary J; Helgen, Kristofer; Murphy, William J; Jackson, Rodney

    2017-09-01

    The snow leopard, Panthera uncia, is an elusive high-altitude specialist that inhabits vast, inaccessible habitat across Asia. We conducted the first range-wide genetic assessment of snow leopards based on noninvasive scat surveys. Thirty-three microsatellites were genotyped and a total of 683 bp of mitochondrial DNA sequenced in 70 individuals. Snow leopards exhibited low genetic diversity at microsatellites (AN = 5.8, HO = 0.433, HE = 0.568), virtually no mtDNA variation, and underwent a bottleneck in the Holocene (∼8000 years ago) coinciding with increased temperatures, precipitation, and upward treeline shift in the Tibetan Plateau. Multiple analyses supported 3 primary genetic clusters: (1) Northern (the Altai region), (2) Central (core Himalaya and Tibetan Plateau), and (3) Western (Tian Shan, Pamir, trans-Himalaya regions). Accordingly, we recognize 3 subspecies, Panthera uncia irbis (Northern group), Panthera uncia uncia (Western group), and Panthera uncia uncioides (Central group) based upon genetic distinctness, low levels of admixture, unambiguous population assignment, and geographic separation. The patterns of variation were consistent with desert-basin "barrier effects" of the Gobi isolating the northern subspecies (Mongolia), and the trans-Himalaya dividing the central (Qinghai, Tibet, Bhutan, and Nepal) and western subspecies (India, Pakistan, Tajikistan, and Kyrgyzstan). Hierarchical Bayesian clustering analysis revealed additional subdivision into a minimum of 6 proposed management units: western Mongolia, southern Mongolia, Tian Shan, Pamir-Himalaya, Tibet-Himalaya, and Qinghai, with spatial autocorrelation suggesting potential connectivity by dispersing individuals up to ∼400 km. We provide a foundation for global conservation of snow leopard subspecies, and set the stage for in-depth landscape genetics and genomic studies. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Optical galaxy cluster detection across a wide redshift range

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiangang [Univ. of Michigan, Ann Arbor, MI (United States)

    2009-04-01

    bands is very efficient. Multi-color CCD photometry allows combined detection and redshift estimation for clusters across broad redshift ranges. However, the lack of precise information about galaxy positions along the line of sight leads to contamination by projection, which plagues both cluster detection and the measurement of their properties. The dominance of red sequence galaxies, tightly clustered along the E/S0 ridgeline, provides a powerful method for de-projecting field galaxies. We developed an Error Corrected Gaussian Mixture Model to fit the galaxies color distribution around clusters by taking into account the measurement errors. By this technique, we can detect the red sequence color clustering and extract unbiased information about the evolution of the red sequence ridgeline and its width. Precision measurements of ridgelines yields better estimates of cluster richness and possibly their dynamical state, leading to better estimates of cluster mass. By using the red sequence clustering in color space identified from the Error Corrected Gaussian Mixture Model, together with the projected NFW filter in the projected RA/DEC plane, we developed a new and efficient cluster finding algorithm that can reliably detect galaxy clusters across the redshift range from 0.1 to 1.4. We have also run the cluster finder on legacy SDSS DR7 data and assembled an approximately volume limited cluster catalog across redshifts from 0.1 to 0.5. The algorithm has been tested against a Monte Carlo mock catalog, showing the identified clusters are highly complete and pure. With the completion of this thesis, we build the first and essential step towards precision cluster cosmology. Meanwhile, the large optical cluster catalog across a wide redshift range makes possible the systematic and detailed investigation of cluster formation and evolution.

  4. Surprises in astrophysical gasdynamics

    Science.gov (United States)

    Balbus, Steven A.; Potter, William J.

    2016-06-01

    Much of astrophysics consists of the study of ionized gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetized fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one’s a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosyncratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out important assumptions, and to describe carefully whatever novel techniques may be appropriate to the problem at hand. By beginning at the beginning, and analysing a wide variety of astrophysical settings, we seek not only to make this review suitable for fluid dynamic veterans, but to engage novice recruits as well with what we hope will be an unusual and instructive introduction to the subject.

  5. Surprises in astrophysical gasdynamics.

    Science.gov (United States)

    Balbus, Steven A; Potter, William J

    2016-06-01

    Much of astrophysics consists of the study of ionized gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetized fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one's a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosyncratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out important assumptions, and to describe carefully whatever novel techniques may be appropriate to the problem at hand. By beginning at the beginning, and analysing a wide variety of astrophysical settings, we seek not only to make this review suitable for fluid dynamic veterans, but to engage novice recruits as well with what we hope will be an unusual and instructive introduction to the subject.

  6. Range-wide surveys for prairie butterfly species of concern

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Final report on a project to determine the status and current range of the Dakota skipper (Hesperia dacotae) and Poweshiek skipperling (Oarisma poweshiek) within...

  7. Wide Output Range Power Processing Unit for Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A power supply concept capable of operation over 25:1 and 64:1 impedance ranges at full power has been successfully demonstrated in our Phase I effort at...

  8. Log amplifier instrument measures physiological biopotentials over wide dynamic range

    Science.gov (United States)

    Kado, R. T.

    1970-01-01

    To record biopotentials with extreme dynamic ranges, biopotential inputs are capacitatively coupled to a miniature, low power, solid-state signal conditioner consisting of a two-stage differential preamplifier that has a low noise figure. The ouput of the preamplifier uses diodes to provide an overall gain which is nearly logarithmic.

  9. A wide spectral range photoacoustic aerosol absorption spectrometer.

    Science.gov (United States)

    Haisch, C; Menzenbach, P; Bladt, H; Niessner, R

    2012-11-06

    A photoacoustic spectrometer for the measurement of aerosol absorption spectra, based on the excitation of a pulsed nanosecond optical parametrical oscillator (OPO), will be introduced. This spectrometer is working at ambient pressure and can be used to detect and characterize different classes of aerosols. The spectrometer features a spectral range of 410 to 2500 nm and a sensitivity of 2.5 × 10(-7) m(-1) at 550 nm. A full characterization of the system in the visible spectral range is demonstrated, and the potential of the system for near IR measurement is discussed. In the example of different kinds of soot particles, the performance of the spectrometer was assessed. As we demonstrate, it is possible to determine a specific optical absorption per particle by a combination of the new spectrometer with an aerosol particle counter.

  10. Wide Dynamic Range CMOS Potentiostat for Amperometric Chemical Sensor

    OpenAIRE

    Wei-Song Wang; Wei-Ting Kuo; Hong-Yi Huang; Ching-Hsing Luo

    2010-01-01

    Presented is a single-ended potentiostat topology with a new interface connection between sensor electrodes and potentiostat circuit to avoid deviation of cell voltage and linearly convert the cell current into voltage signal. Additionally, due to the increased harmonic distortion quantity when detecting low-level sensor current, the performance of potentiostat linearity which causes the detectable current and dynamic range to be limited is relatively decreased. Thus, to alleviate these irreg...

  11. Wide-Range Bolometer with RF Readout TES

    CERN Document Server

    Shitov, S V; Kuzmin, A A; Merker, M; Arndt, M; Wuensch, S H; Ilin, K S; Erhan, E; Ustinov, A; Siegel, M

    2014-01-01

    To improve both scalability and noise-filtering capability of a Transition-Edge Sensor (TES), a new concept of a thin-film detector is suggested, which is based on embedding a microbridge TES into a high-Q planar GHz range resonator weakly coupled to a 50 Ohm-readout transmission line. Such a TES element is designed as a hot-electron microbolometer coupled to a THz range antenna and as a load of the resonator at the same time. A weak THz signal coupled to the antenna heats the microbridge TES, thus reducing the quality factor of the resonator and leading to a power increment in the readout line. The power-to-power conversion gain, an essential figure of merit, is estimated to be above 10. To demonstrate the basic concept, we fabricated and tested a few submicron sized devices from Nb thin films for operation temperature about 5 K. The dc and rf characterization of the new device is made at a resonator frequency about 5.8 GHz. A low-noise HEMT amplifier is used in our TES experiments without the need for a SQU...

  12. Wide spectral range characterization of antireflective coatings and their optimization

    Science.gov (United States)

    Franta, Daniel; Nečas, David; Ohlídal, Ivan; Jankuj, Jiří

    2015-09-01

    Development of antireflective coatings realized by thin film systems requires their characterization and optimization of their properties. Functional properties of such interference devices are determined by optical constants and thicknesses of the individual films and various defects taking place in these systems. In optics industry the characterization of the films is mostly performed in a relatively narrow spectral range using simple dispersion models and, moreover, the defects are not taken into account at all. This manner of characterization fails if applied to real-world non-ideal thin film systems because the measured data do not contain sufficient information about all the parameters describing the system including imperfections. Reliable characterization requires the following changes: extension of spectral range of measurements, combination of spectrophotometry and ellipsometry, utilization of physically correct dispersion models (Kramers-Kronig consistency, sum rules), inclusion of structural defects instrument imperfection into the models and simultaneous processing of all experimental data. This enables us to remove or reduce a correlation among the parameters searched so that correct and sufficiently precise determination of parameter values is achieved. Since the presence and properties of the defects are difficult to control independently by tuning of the deposition conditions, the optimization does not in general involve the elimination of defects. Instead they are taken into account in the design of the film systems. The outlined approach is demonstrated on the characterization and optimization of ultraviolet antireflective coating formed by double layer of Al2O3 and MgF2 deposited on fused silica.

  13. Wide vacuum pressure range monitoring by Pirani SAW sensor.

    Science.gov (United States)

    Nicolay, Pascal; Elmazria, Omar; Sarry, Frederic; Bouvot, Laurent; Kambara, Hisanori; Singh, Kanwar J; Alnot, Patrick

    2010-03-01

    A new kind of surface acoustic wave (SAW) sensor has been developed to measure sub-atmospheric pressure below 100 mtorr with accuracy better than 0.1 mtorr. It provides an efficient measuring solution in the pressure range inaccessible in past by conventional diaphragm-based SAW sensors. Indeed, because of the small bending force in lower pressure and limited sensitivity, diaphragm-based SAW sensors are only suited to monitor relatively high pressure with a precision hardly better than 0.5 torr. To reach precision level better than 1 mtorr at sub-atmospheric pressure for vacuum technology applications, a radically different SAW-based solution is necessary. Our device aims to measure sub-atmospheric pressure less than 100 mtorr with a threshold resolution better than 0.1 mtorr. The concept is similar to the one used by Pirani pressure gauges. However, it is claimed that a heated and suspended SAW device should have better sensitivity. A theoretical model based on the basic concepts of gas kinetic theory and thermodynamics is presented. The validity of the model is checked by comparison between theoretical and experimental results.

  14. Climate driven range divergence among host species affects range-wide patterns of parasitism

    Directory of Open Access Journals (Sweden)

    Richard E. Feldman

    2017-01-01

    Full Text Available Species interactions like parasitism influence the outcome of climate-driven shifts in species ranges. For some host species, parasitism can only occur in that part of its range that overlaps with a second host species. Thus, predicting future parasitism may depend on how the ranges of the two hosts change in relation to each other. In this study, we tested whether the climate driven species range shift of Odocoileus virginianus (white-tailed deer accounts for predicted changes in parasitism of two other species from the family Cervidae, Alces alces (moose and Rangifer tarandus (caribou, in North America. We used MaxEnt models to predict the recent (2000 and future (2050 ranges (probabilities of occurrence of the cervids and a parasite Parelaphostrongylus tenuis (brainworm taking into account range shifts of the parasite’s intermediate gastropod hosts. Our models predicted that range overlap between A. alces/R. tarandus and P. tenuis will decrease between 2000 and 2050, an outcome that reflects decreased overlap between A. alces/R. tarandus and O. virginianus and not the parasites, themselves. Geographically, our models predicted increasing potential occurrence of P. tenuis where A. alces/R. tarandus are likely to decline, but minimal spatial overlap where A. alces/R. tarandus are likely to increase. Thus, parasitism may exacerbate climate-mediated southern contraction of A. alces and R. tarandus ranges but will have limited influence on northward range expansion. Our results suggest that the spatial dynamics of one host species may be the driving force behind future rates of parasitism for another host species.

  15. Surprises in astrophysical gasdynamics

    CERN Document Server

    Balbus, Steven A

    2016-01-01

    Much of astrophysics consists of the study of ionised gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetised fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one's a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosynchratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out import...

  16. Studies of medium-range correlations by small-/wide-angle neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Otomo, Toshiya; Kamiyama, Takashi; Furusaka, Michihiro [Institute of Material Structure Science Lab., Neutron Science Lab., Tsukuba, Ibaraki (Japan); Kanno, Ryoji [Tokyo Institute of Technology, Dept. of Electronic Chemistry, Yokohama, Kanagawa (Japan); Yamamuro, Osamu [Osaka Univ., Graduate School of Science, Dept. of Chemistry and Microcalorimetry Research Center, Toyonaka, Osaka (Japan)

    2002-01-01

    A small/wide-angle neutron diffractometers (SWAN) covers very wide Q-range, 0.007A{sup -1} to 12A{sup -1}, therefore this instrument is useful to investigate medium-range correlations in many materials, including biological materials. Two examples are here to show the usefulness of the wide Q-range measurements to understand Li-absorption mechanism in hard-carbon as a battery anode material and to investigate medium-range correlation in vapor deposited CCl{sub 4} glass system. (author)

  17. Wide dynamic range neutron flux monitor having fast time response for the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, M., E-mail: isobe@nifs.ac.jp; Takeiri, Y. [National Institute for Fusion Science, Toki 509-5292 (Japan); Department of Fusion Science, The Graduate University for Advanced Studies, Toki 509-5292 (Japan); Ogawa, K.; Miyake, H.; Hayashi, H.; Kobuchi, T. [National Institute for Fusion Science, Toki 509-5292 (Japan); Nakano, Y.; Watanabe, K.; Uritani, A. [Department of Materials, Physics and Energy Engineering, Nagoya University, Nagoya 464-8603 (Japan); Misawa, T. [Kyoto University Research Reactor Institute, Kumatori 590-0494 (Japan); Nishitani, T. [Japan Atomic Energy Agency, Rokkasho 039-3212 (Japan); Tomitaka, M.; Kumagai, T.; Mashiyama, Y.; Ito, D.; Kono, S. [Toshiba Corporation, Fuchu 183-8511 (Japan); Yamauchi, M. [Toshiba Nuclear Engineering Services Corporation, Yokohama 235-8523 (Japan)

    2014-11-15

    A fast time response, wide dynamic range neutron flux monitor has been developed toward the LHD deuterium operation by using leading-edge signal processing technologies providing maximum counting rate up to ∼5 × 10{sup 9} counts/s. Because a maximum total neutron emission rate over 1 × 10{sup 16} n/s is predicted in neutral beam-heated LHD plasmas, fast response and wide dynamic range capabilities of the system are essential. Preliminary tests have demonstrated successful performance as a wide dynamic range monitor along the design.

  18. Wide Temperature Range DC-DC Boost Converters for Command/Control/Drive Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We shall develop wide temperature range DC-DC boost converters that can be fabricated using commercial CMOS foundries. The boost converters will increase the low...

  19. More Supernova Surprises

    Science.gov (United States)

    2010-09-24

    SEP 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE More Supernova Surprises 5a. CONTRACT NUMBER 5b. GRANT...PERSPECTIVES More Supernova Surprises ASTRONOMY J. Martin Laming Spectroscopic observations of the supernova SN1987A are providing a new window into high...a core-collapse supernova ) have stretched and motivated research that has expanded our knowledge of astrophysics. The brightest such event in

  20. Wide dynamic range CMOS image sensor with in-pixel double-exposure and synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Li Binqiao; Sun Zhongyan; Xu Jiangtao, E-mail: xujiangtao@tju.edu.c [School of Electronics and Information Engineering, Tianjin University, Tianjin 300072 (China)

    2010-05-15

    A wide-dynamic-range CMOS image sensor (CIS) based on synthesis of a long-time and a short-time exposure signal in the floating diffusion (FD) of a five-transistor active pixel is proposed. With optimized pixel operation, the response curve is compressed and a wide dynamic range image is obtained. A prototype wide-dynamic-range CMOS image sensor was developed with a 0.18 {mu}m CIS process. With the double exposure time 2.4 ms and 70 ns, the dynamic range of the proposed sensor is 80 dB with 30 frames per second (fps). The proposed CMOS image sensor meets the demands of applications in security surveillance systems. (semiconductor integrated circuits)

  1. Why Output Only Modal Analysis is a Desirable Tool for a Wide Range of Practical Applications

    DEFF Research Database (Denmark)

    Brincker, Rune; Ventura, C.; Andersen, P.

    2003-01-01

    In this paper the basic principles in output modal testing and analysis are presented and discussed. A brief review of the techniques for output-only modal testing and identification is presented, and it is argued, that there is now a wide range of techniques for effective identification of modal...... in an easier way and in many cases more effectively than traditional modal analysis methods. It can be applied for modal testing and analysis on a wide range of structures and not only for problems generally investigated using traditional modal analysis, but also for those requiring load estimation, vibration...

  2. Nanoscale fluid structure of liquid-solid-vapour contact lines for a wide range of contact angles

    CERN Document Server

    Nold, Andreas; Goddard, Benjamin D; Kalliadasis, Serafim

    2015-01-01

    We study the nanoscale behaviour of the density of a simple fluid in the vicinity of an equilibrium contact line for a wide range of Young contact angles between 40 and 135 degrees. Cuts of the density profile at various positions along the contact line are presented, unravelling the apparent step-wise increase of the film height profile observed in contour plots of the density. The density profile is employed to compute the normal pressure acting on the substrate along the contact line. We observe that for the full range of contact angles, the maximal normal pressure cannot solely be predicted by the curvature of the adsorption film height, but is instead softened -- likely by the width of the liquid-vapour interface. Somewhat surprisingly however, the adsorption film height profile can be predicted to a very good accuracy by the Derjaguin-Frumkin disjoining pressure obtained from planar computations, as was first shown in [Nold et al., Phys. Fluids, 26, 072001, 2014] for contact angles less than 90 degrees,...

  3. Cognitive and Social Perspectives on Surprise

    Science.gov (United States)

    Adhami, Mundler

    2007-01-01

    Meanings of "surprise" are wide and include uplifting and engaging facets like wonder and amazement on the one hand as well as ones that may be of the opposite nature like interruption and disrupt on the other. Pedagogically, educators who use surprise in class activities are focusing on students being "taken aback" by a situation, hopefully…

  4. A Wide-Range Ultrasonic Ranging System%大量程超声波测距系统

    Institute of Scientific and Technical Information of China (English)

    祝琴; 王琪; 刘浩

    2009-01-01

    针对一般的超声测距系统作用距离都不大的问题,设计一种大量程的超声波测距系统.为增大换能器的发射功率,专门设计一种新型的超声换能器驱动电路,对换能器采用阻抗匹配技术.采用Labview软件对回波信号进行实时采集和处理.实验表明,该超声波测距系统的量程可达到32m.%Aiming at problems like short coverage of traditional ultrasonic ranging system, put forward a wide-range ultrasonic ranging systems. In order to increase transducer's emissive power, design a new ultrasonic transducer drive circuit, and apply impedance matching on transducer, while adopt Labview software to collect and process echo signals. Experiment result show the range of ultrasonic measuring system is about 32 meters.

  5. A Fixed-Frequency Bidirectional Resonant DC-DC Converter Suitable for Wide Voltage Gain Range

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Al-Durra, Ahmed;

    2017-01-01

    This paper proposes a new bidirectional resonant dc-dc converter suitable for wide voltage gain range applications (e.g., energy storage systems). The proposed converter overcomes the narrow voltage gain range of conventional resonant DC-DC converters, and meanwhile achieves high efficiency...... and characteristics of the proposed converter are analyzed. Finally, a 1-kW converter prototype is built and the experimental results verify the theoretical analyses....

  6. Hardware Implementation of an Automatic Rendering Tone Mapping Algorithm for a Wide Dynamic Range Display

    OpenAIRE

    2013-01-01

    Tone mapping algorithms are used to adapt captured wide dynamic range (WDR) scenes to the limited dynamic range of available display devices. Although there are several tone mapping algorithms available, most of them require manual tuning of their rendering parameters. In addition, the high complexities of some of these algorithms make it difficult to implement efficient real-time hardware systems. In this work, a real-time hardware implementation of an exponent-based tone mapping algorithm i...

  7. Development of wide range charge integration application specified integrated circuit for photo-sensor

    Energy Technology Data Exchange (ETDEWEB)

    Katayose, Yusaku, E-mail: katayose@ynu.ac.jp [Department of Physics, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501 (Japan); Ikeda, Hirokazu [Institute of Space and Astronautical Science (ISAS)/Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Tanaka, Manobu [National Laboratory for High Energy Physics, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Shibata, Makio [Department of Physics, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501 (Japan)

    2013-01-21

    A front-end application specified integrated circuit (ASIC) is developed with a wide dynamic range amplifier (WDAMP) to read-out signals from a photo-sensor like a photodiode. The WDAMP ASIC consists of a charge sensitive preamplifier, four wave-shaping circuits with different amplification factors and Wilkinson-type analog-to-digital converter (ADC). To realize a wider range, the integrating capacitor in the preamplifier can be changed from 4 pF to 16 pF by a two-bit switch. The output of a preamplifier is shared by the four wave-shaping circuits with four gains of 1, 4, 16 and 64 to adapt the input range of ADC. A 0.25-μm CMOS process (of UMC electronics CO., LTD) is used to fabricate the ASIC with four-channels. The dynamic range of four orders of magnitude is achieved with the maximum range over 20 pC and the noise performance of 0.46 fC + 6.4×10{sup −4} fC/pF. -- Highlights: ► A front-end ASIC is developed with a wide dynamic range amplifier. ► The ASIC consists of a CSA, four wave-shaping circuits and pulse-height-to-time converters. ► The dynamic range of four orders of magnitude is achieved with the maximum range over 20 pC.

  8. Oxatub[4]arene: a molecular "transformer" capable of hosting a wide range of organic cations.

    Science.gov (United States)

    Jia, Fei; Wang, Hao-Yi; Li, Dong-Hao; Yang, Liu-Pan; Jiang, Wei

    2016-04-28

    The molecular "transformer", oxatub[4]arene, was found to be able to host a wide range of organic cations. The strong binding ability is believed to originate from its four interconvertible and deep-cavity conformers. The binding behavior of such adaptable receptors may provide implications for molecular recognition in nature.

  9. Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data

    NARCIS (Netherlands)

    Shen, F.; Verhoef, W.; Zhou, Y.; Salama, M.S.; Liu, X.

    2010-01-01

    The Changjiang (Yangtze) estuarine and coastal waters are characterized by suspended sediments over a wide range of concentrations from 20 to 2,500 mg l-1. Suspended sediment plays important roles in the estuarine and coastal system and environment. Previous algorithms for satellite estimates of sus

  10. Modelling plastic deformation of metals over a wide range of strain rates using irreversible thermodynamics

    NARCIS (Netherlands)

    Huang, M.; Rivera-Diaz-del-Castillo, P.E.J.; Bouaziz, O.; Van der Zwaag, S.

    2009-01-01

    Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that t

  11. Wide Symmetrical Dynamic Range PWM Neuron Circuit with Power Efficient Architecture

    Institute of Scientific and Technical Information of China (English)

    陈继伟; 石秉学

    2002-01-01

    A novel pulse stream neuron circuit is presented whose output pulse width facilitates sigmoid activation to activate the function of neurons. The wide symmetrical dynamic range of this neuron ensures high noise immunity. The pulsed activation strategy provides a power efficient architecture, so the circuit has very low power dissipation. The simplicity of the circuit ensures its suitability for large-scale integration.

  12. Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data

    NARCIS (Netherlands)

    Shen, F.; Verhoef, W.; Zhou, Y.; Salama, M.S.; Liu, X.

    2010-01-01

    The Changjiang (Yangtze) estuarine and coastal waters are characterized by suspended sediments over a wide range of concentrations from 20 to 2,500 mg l-1. Suspended sediment plays important roles in the estuarine and coastal system and environment. Previous algorithms for satellite estimates of

  13. Model Study of Wave Overtopping of Marine Structure for a Wide Range of Geometric Parameters

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    2000-01-01

    The objective of the study described in this paper is to enable estimation of wave overtopping rates for slopes/ramps given by a wide range of geometric parameters when subjected to varying wave conditions. To achieve this a great number of model tests are carried out in a wave tank using irregular...

  14. Imines that React with Phenols in Water over a Wide pH Range

    Science.gov (United States)

    Minakawa, Maki; Guo, Hai-Ming

    2009-01-01

    Cyclic imine derivatives that react with phenols, including tyrosine residues of peptides, have been developed. Reactions of the imines with phenols proceeded in water over a wide pH range (pH 2-10) at room temperature to 37 °C and afforded Mannich products without the need of additional catalysts. PMID:18844415

  15. Low Power Penalty Operation of a Wide Input Dynamic Range Cross-Phase Modulation Wavelength Converter

    Institute of Scientific and Technical Information of China (English)

    Jun; Endo; Akira; Ohki; Rieko; Sato; Toshio; Ito; Yuichi; Tohmori; Yasuhiro; Suzuki

    2003-01-01

    We successfully demonstrated low power penalty operation of a cross-phase modulated (XPM) wavelength converter using a semiconductor optical amplifier (SOA) power equalizer. We also clarified the SOA equalizing level for more adaptive wavelength conversion and achieved a power penalty of less than 1 dB over the wide input dynamic range of 15 dB.

  16. A sub-circuit MOSFET model with a wide temperature range including cryogenic temperature*

    Institute of Scientific and Technical Information of China (English)

    Jia Kan; Sun Weifeng; Shi Longxing

    2011-01-01

    A sub-circuit SPICE model ofa MOSFET for low temperature operation is presented. Two resistors are introduced for the freeze-out effect, and the explicit behavioral models are developed for them. The model can be used in a wide temperature range covering both cryogenic temperature and regular temperatures.

  17. Performance of Wide Operating Temperature Range Electrolytes in Quallion Prototype Li-Ion Cells

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Tomcsi, M. R.; Nagata, M.; Visco, V.; Tsukamoto, H.

    2010-01-01

    For a number of applications, there is a continued interest in the development of rechargeable lithium-based batteries that can effectively operate over a wide temperature range (i.e., -40 to +70 deg C). These applications include powering future planetary rovers for NASA, enabling the next generation of automotive batteries for DOE, and supporting many DOD applications. Li-ion technology has been demonstrated to have good performance over a reasonably wide temperature range with many systems; however, there is still a desire to improve the low temperature rate capacity as well as the high temperature resilience. In the current study, we would like to present recent results obtained with prototype Li-Ion cells (manufactured by Quallion, LLC) which include various wide operating temperature range electrolytes developed by both JPL and Quallion. To demonstrate the viability of the technology, a number of performance tests were carried out, including: (a) discharge rate characterization over a wide temperature range (down to -60 deg C) using various rates (up to 20C rates), (b) discharge rate characterization at low temperatures with low temperature charging, (c) variable temperature cycling over a wide temperature range (-40 to +70 deg C), and (d) cycling at high temperature (50 deg C). As will be discussed, impressive rate capability was observed at low temperatures with many systems, as well as good resilience to high temperature cycling. To augment the performance testing on the prototype cells, a number of experimental three electrodes cells were fabricated (including Li reference electrodes) to allow the determination of the lithium kinetics of the respective electrodes and interfacial properties as a function of temperatures.

  18. Changes in zonal surface temperature gradients and Walker circulations in a wide range of climates

    CERN Document Server

    Merlis, Timothy M

    2010-01-01

    Variations in zonal surface temperature gradients and zonally asymmetric tropical overturning circulations (Walker circulations) are examined over a wide range of climates simulated with an idealized atmospheric general circulation model (GCM). The asymmetry in the tropical climate is generated by an imposed ocean energy flux, which does not vary with climate. The range of climates is simulated by modifying the optical thickness of an idealized longwave absorber (representing greenhouse gases). The zonal surface temperature gradient in low latitudes generally decreases as the climate warms in the idealized GCM simulations. A scaling relationship based on a two-term balance in the surface energy budget accounts for the changes in the zonally asymmetric component of the GCM-simulated surface temperature gradients. As in comprehensive simulations of climate change, the Walker circulation weakens as the climate warms in the idealized simulations. The wide range of climates allows a systematic test of energetic ar...

  19. Dissociation and ionization equilibria of deuterium fluid over a wide range of temperatures and densities

    Energy Technology Data Exchange (ETDEWEB)

    Zaghloul, Mofreh R. [Department of Physics, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain (United Arab Emirates)

    2015-06-15

    We investigate the dissociation and ionization equilibria of deuterium fluid over a wide range of temperatures and densities. The partition functions for molecular and atomic species are evaluated, in a statistical-mechanically consistent way, implementing recent developments in the literature and taking high-density effects into account. A new chemical model (free energy function) is introduced in which the fluid is considered as a mixture of diatomic molecules, atoms, ions, and free electrons. Intensive short range hard core repulsion is taken into account together with partial degeneracy of free electrons and Coulomb interactions among charged particles. Samples of computational results are presented as a set of isotherms for the degree of ionization, dissociated fraction of molecules, pressure, and specific internal energy for a wide range of densities and temperatures. Predictions from the present model calculations show an improved and sensible physical behavior compared to other results in the literature.

  20. Wide dynamic range microwave planar coupled ring resonator for sensing applications

    Science.gov (United States)

    Zarifi, Mohammad Hossein; Daneshmand, Mojgan

    2016-06-01

    A highly sensitive, microwave-coupled ring resonator with a wide dynamic range is studied for use in sensing applications. The resonator's structure has two resonant rings and, consequently, two resonant frequencies, operating at 2.3 and 2.45 GHz. Inductive and capacitive coupling mechanisms are explored and compared to study their sensing performance. Primary finite element analysis and measurement results are used to compare the capacitive and inductive coupled ring resonators, demonstrating sensitivity improvements of up to 75% and dynamic range enhancement up to 100% in the capacitive coupled structure. In this work, we are proposing capacitive coupled planar ring resonators as a wide dynamic range sensing platform for liquid sensing applications. This sensing device is well suited for low-cost, real-time low-power, and CMOS compatible sensing technologies.

  1. Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2011-01-01

    Objectives of this work are: (1) Develop advanced Li -ion electrolytes that enable cell operation over a wide temperature range (i.e., -30 to +60C). (2) Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (3) Improve the high voltage stability of these candidate electrolytes systems to enable operation up to 5V with high specific energy cathode materials. (4) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (5) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

  2. A study on signal processing for wide-range neutron flux measurement using improved algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Hong; Lee, Yeun Hee; Lee, Jeong Yang [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-03-01

    ENFMS(ex-core neutron flux monitoring system) is divided to source range, intermediate range and power ranger in accordance with its range and the output signal measurements of that are carried out with BF{sub 3} counter, fission chamber. There have been lots of study to adopt the wide-range measurement method which use only fission chamber through the whole reactor power. To do that is needs extending the power measurement range which is covered by fission chamber to lower power range. In lower power range the effect of noise in signal is greater relatively than that of high power range. The existing signal processing method to measurement plant power range in ENFMS in which the individual neutron flux pulse can be countered as the reactor power increased is MSV (mean square voltage) measurement. In this paper the extended method from MSV (2nd moment) mode to 3rd moment to improve the discrimination between neutron signal and background noise was studied. The simulation was shown that accuracy of power measurement in ENFMS using the method mention above would be improved. 2 tabs., 10 figs., 18 refs. (Author) .new.

  3. Surprises with Nonrelativistic Naturalness

    CERN Document Server

    Horava, Petr

    2016-01-01

    We explore the landscape of technical naturalness for nonrelativistic systems, finding surprises which challenge and enrich our relativistic intuition already in the simplest case of a single scalar field. While the immediate applications are expected in condensed matter and perhaps in cosmology, the study is motivated by the leading puzzles of fundamental physics involving gravity: The cosmological constant problem and the Higgs mass hierarchy problem.

  4. A 2-Dimensional Micro Flow Sensor with Wide Range Flow Sensing Properties

    Institute of Scientific and Technical Information of China (English)

    Wan-Young Chung; Tae-Yong Kim

    2006-01-01

    A new silicon micro flow sensor with multiple temperature sensing elements was proposed and numerically simulated in considering wide range flow measuring properties. The micro flow sensor has three pairs of temperature sensing elements with a central heater compared with typical sensor which has only a temperature sensing element on each side of a central heater. A numerical analysis of the micro flow sensor by Finite Difference Formulation for Heat Transfer Equation was performed. The nearest pair of temperature sensor showed very good linear sensitivity between 0 to 0.4 m/s flow and saturated from 0.75 m/s flow. However the furthest pair of temperature sensor showed some flow sensitivity even though the flow rate of 2.0 m/s. Thus, this suggested new micro flow meter with multiple temperature sensing elements could be used as a thermal mass flow sensor which has accuracy sensitivity for very wide flow range.

  5. CFD comparison with centrifugal compressor measurements on a wide operating range

    Directory of Open Access Journals (Sweden)

    Arnou D.

    2013-04-01

    Full Text Available Centrifugal compressors are widely used in industrial applications thanks to their high efficiency. They are able to provide a wide operating range before reaching the flow barrier or surge limits. Performances and range are described by compressor maps obtained experimentally. After a description of performance test rig, this article compares measured centrifugal compressor performances with computational fluid dynamics results. These computations are performed at steady conditions with R134a refrigerant as fluid. Navier-Stokes equations, coupled with k-ε turbulence model, are solved by the commercial software ANSYS-CFX by means of volume finite method. Input conditions are varied in order to calculate several speed lines. Theoretical isentropic efficiency and theoretical surge line are finally compared to experimental data.

  6. A novel wide-range precision instrument for measuring three-dimensional surface topography

    Institute of Scientific and Technical Information of China (English)

    YANG Xu-dong; CHEN Yu-rong; XIE Tie-bang

    2008-01-01

    We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.

  7. A Robust Adaptive Sliding Mode Control for PMLSM with Variable Velocity Profile Over Wide Range

    Directory of Open Access Journals (Sweden)

    Payam Ghaebi Panah

    2015-07-01

    Full Text Available An adaptive robust variable structure speed controller is designed for wide range of desired velocity control of a Permanent Magnet Linear Synchronous Motor (PMLSM. This is performed for comprehensive nonlinear model of PMLSM including non-idealities such as detent force, parameter uncertainty, unpredicted disturbance and nonlinear friction. The proposed method is based on the robust Sliding Mode Control (SMC in combination with an adaptive strategy for a wide range of velocity. The simulation results are provided for the above mentioned comprehensive model of PMLSM with a variable velocity profile. Moreover, as an evaluation criterion, a Proportional-Integral (PI controller is designed whose parameters are optimally tuned by the Particle Swarm Optimization (PSO algorithm for better comparison.

  8. Noctilucent Clouds Polarimetry: Twilight Measurements in a Wide Range of Scattering Angles

    CERN Document Server

    Ugolnikov, Oleg S; Kozelov, Boris V; Dlugach, Janna M

    2015-01-01

    Wide-field polarization measurements of the twilight sky background during the several nights with bright and expanded noctilucent clouds in central and northern Russia in 2014 and 2015 are used to build the phase dependency of polarization of emission scattered by clouds particles in a wide range of scattering angles (from 40 to 130 degrees). This range covers the polarization maximum near 90 degrees and large-angle slope of the curve which are most sensitive to the particle size. The method of separation of scattering on clouds particles on the twilight background is presented. Results are compared with T-matrix simulations for different sizes and shapes of ice particles, the most probable radius of particles (0.06 microns) and maximum radius (about 0.1 microns) are estimated.

  9. A Wide Lock-Range Referenceless CDR with Automatic Frequency Acquisition

    Directory of Open Access Journals (Sweden)

    Seon-Kyoo Lee

    2011-01-01

    Full Text Available A wide lock-range referenceless CDR circuit is proposed with an automatic tracking of data rate. For efficient frequency acquisition, a DLL-based loop is used with a simple phase/frequency detector to extract 1-bit period of input data stream. The CDR, implemented in a 65 nm CMOS, shows a lock range of 650 Mb/s-to-8 Gb/s and BER of less than 10-12 at 8 Gb/s with low power consumption.

  10. Wide-range tunability, thermal locking, and mode-crossing effects in Kerr optical frequency combs

    Science.gov (United States)

    Lin, Guoping; Saleh, Khaldoun; Henriet, Rémi; Diallo, Souleymane; Martinenghi, Romain; Coillet, Aurélien; Chembo, Yanne K.

    2014-12-01

    We theoretically and experimentally investigate some effects related to the Kerr optical frequency comb generation, using a millimeter-size magnesium fluoride ultrahigh quality disk resonator. We show that the Kerr comb tunability can be extremely wide in the Turing pattern (or primary comb) regime, with an intermodal frequency that can be tuned from 4 to 229 multiple free spectral ranges (corresponding to a frequency spacing ranging from 24 GHz to 1.35 THz). We also discuss the role played by thermal locking while pumping the resonator, as well as the effect of modal crossing when broadband combs are generated.

  11. Wide-range Vacuum Measurements from MWNT Field Emitters Grown Directly on Stainless Steel Substrates

    Science.gov (United States)

    Zhang, Jian; Li, Detian; Zhao, Yangyang; Cheng, Yongjun; Dong, Changkun

    2016-01-01

    The field emission properties and the vacuum measurement application are investigated from the multi-walled carbon nanotubes (MWNTs) grown directly on catalytic stainless steel substrates. The MWNT emitters present excellent emission properties after the acid treatment of the substrate. The MWNT gauge is able to work down to the extreme-high vacuum (XHV) range with linear measurement performance in wide range from 10-11 to 10-6 Torr. A modulating grid is attempted with improved gauge sensitivity. The extension of the lower pressure limit is attributed largely to low outgassing effect due to direct growth of MWNTs and justified design of the electron source.

  12. Wide dynamic range 500 fA sensitivity current measurement instrument

    Directory of Open Access Journals (Sweden)

    Pelemeshko Anatoly

    2017-01-01

    Full Text Available Main technical features of Low Energy Charged Particle Sensor (LECPS are described, taking into account LECPS high sensitivity, wide dynamic range, and conditions of in-flight operation on-board a satellite. LECPS input cascade is capable of current measurement as low as 1 pA within a 120 dB dynamic range, providing error level below 20%. Statistical calculations of acquired data, measuring time considerations and implementation of input cascade auto-calibration technique were applied to gain the best possible stability and accuracy over −20° to +50°C operation temperature.

  13. New Laser Doppler Velocimetry with Wide Dynamic Range and Clear Directional Discrimination

    Institute of Scientific and Technical Information of China (English)

    GUI Hua-Qiao; L(U) Liang; HE De-Yong; XU Jun; XIE Jian-Ping; ZHAO Tian-Peng; WANG An-Ting; MING Hai

    2005-01-01

    @@ We present a new laser Doppler velocimetry based on self-mixing effect using a single longitudinal-mode verticalcavity surface-emitting laser modulated by a dynamic triangular current. It can indicate the direction of velocity without ambiguity in a wide dynamic range of 5.2-479.9mm/s. The accuracy of velocity measurement is better than 3.1% in the whole velocity range when a diffusing target is used for measurements. More interestingly, it works very well on different diffusing surfaces, even on a black glossy photographic paper.

  14. Simple Wide Frequency Range Impedance Meter Based on AD5933 Integrated Circuit

    OpenAIRE

    Chabowski Konrad; Piasecki Tomasz; Dzierka Andrzej; Nitsch Karol

    2015-01-01

    As it contains elements of complete digital impedance meter, the AD5933 integrated circuit is an interesting solution for impedance measurements. However, its use for measurements in a wide range of impedances and frequencies requires an additional digital and analogue circuitry. This paper presents the design and performance of a simple impedance meter based on the AD5933 IC. Apart from the AD5933 IC it consists of a clock generator with a programmable prescaler, a novel DC offset canceller ...

  15. 10-decade wide-range neutron-monitoring system. Final test report

    Energy Technology Data Exchange (ETDEWEB)

    Green, W.K.

    1970-10-01

    The objective of Project Agreement 49 was to design, fabricate, test, and evaluate under actual nuclear reactor operating conditions, one prototype counting-Campbelling wide-range type thermal neutron flux measurement channel. This report describes the basic system designed for PA 49, and describes and presents the results of tests conducted on the system. Individual module descriptions and schematics are contained in the instruction manual which was issued with the system.

  16. Activation of Lumbar Spinal Wide-Dynamic Range Neurons by a Sanshool Derivative

    OpenAIRE

    Sawyer, Carolyn M.; Carstens, Mirela Iodi; Simons, Christopher T.; Slack, Jay; McCluskey, T. Scott; Furrer, Stefan; Carstens, E.

    2009-01-01

    The enigmatic sensation of tingle involves the activation of primary sensory neurons by hydroxy-α-sanshool, a tingly agent in Szechuan peppers, by inhibiting two-pore potassium channels. Central mechanisms mediating tingle sensation are unknown. We investigated whether a stable derivative of sanshool—isobutylalkenyl amide (IBA)—excites wide-dynamic range (WDR) spinal neurons that participate in transmission of chemesthetic information from the skin. In anesthetized rats, the majority of WDR a...

  17. Motor Integrated Permanent Magnet Gear with a Wide Torque-Speed Range

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand; Matzen, Torben N.; Jahns, T. M.

    2009-01-01

    This paper present a new motor integrated permanent magnet gear with a wide torque-speed range. In the paper a 35 kW permanent magnet motor with a base speed of 4000 rpm and a top speed of 14000 rpm is integrated into a permanent magnetic gear with a gearing ratio of 8.67. The design process of t...... may be useful as a direct drive wheel motor for EV's and no liquid cooling system is required....

  18. A new wide range Euclidean distance circuit for neural network hardware implementations.

    Science.gov (United States)

    Gopalan, A; Titus, A H

    2003-01-01

    In this paper, we describe an analog very large-scale integration (VLSI) implementation of a wide range Euclidean distance computation circuit - the key element of many synapse circuits. This circuit is essentially a wide-range absolute value circuit that is designed to be as small as possible (80 /spl times/ 76 /spl mu/m) in order to achieve maximum synapse density while maintaining a wide range of operation (0.5 to 4.5 V) and low power consumption (less than 200 /spl mu/W). The circuit has been fabricated in 1.5-/spl mu/m technology through MOSIS. We present simulated and experimental results of the circuit, and compare these results. Ultimately, this circuit is intended for use as part of a high-density hardware implementation of a self-organizing map (SOM). We describe how this circuit can be used as part of the SOM and how the SOM is going to be used as part of a larger bio-inspired vision system based on the octopus visual system.

  19. Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology.

    Science.gov (United States)

    Dhakar, Kusum; Pandey, Anita

    2016-03-01

    Microorganisms that inhabit the extreme pH environments are classified as acidophiles and alkaliphiles. A number of studies emerged from extreme high (hot springs, hydrothermal vents) as well as low temperature (arctic and antarctic regions, sea water, ice shelf, marine sediments, cold deserts, glaciers, temperate forests, and plantations) environments have highlighted the occurrence of microorganisms (thermophiles/psychrophiles) with the ability to tolerate wide pH range, from acidic to alkaline (1.5-14.0 in some cases), under laboratory conditions. However, the sampling source (soil/sediment) of these microorganisms showed the pH to be neutral or slightly acidic/alkaline. The aim of the present review is to discuss the phenomenon of wide pH range tolerance possessed by these microorganisms as a hidden character in perspective of their habitats, possible mechanisms, phylogeny, ecological and biotechnological relevance, and future perspectives. It is believed that the genome is a probable reservoir of the hidden variations. The extremophiles have the ability to adapt against the environmental change that is probably through the expression/regulation of the specific genes that were already present in the genome. The phenomenon is likely to have broad implications in biotechnology, including both environmental (such as bioremediation, biodegradation, and biocontrol), and industrial applications (as a source of novel extremozymes and many other useful bioactive compounds with wide pH range tolerance).

  20. Depletion of eIF4G from yeast cells narrows the range of translational efficiencies genome-wide

    Directory of Open Access Journals (Sweden)

    Hinnebusch Alan G

    2011-01-01

    Full Text Available Abstract Background Eukaryotic translation initiation factor 4G (eIF4G is thought to influence the translational efficiencies of cellular mRNAs by its roles in forming an eIF4F-mRNA-PABP mRNP that is competent for attachment of the 43S preinitiation complex, and in scanning through structured 5' UTR sequences. We have tested this hypothesis by determining the effects of genetically depleting eIF4G from yeast cells on global translational efficiencies (TEs, using gene expression microarrays to measure the abundance of mRNA in polysomes relative to total mRNA for ~5900 genes. Results Although depletion of eIF4G is lethal and reduces protein synthesis by ~75%, it had small effects (less than a factor of 1.5 on the relative TE of most genes. Within these limits, however, depleting eIF4G narrowed the range of translational efficiencies genome-wide, with mRNAs of better than average TE being translated relatively worse, and mRNAs with lower than average TE being translated relatively better. Surprisingly, the fraction of mRNAs most dependent on eIF4G display an average 5' UTR length at or below the mean for all yeast genes. Conclusions This finding suggests that eIF4G is more critical for ribosome attachment to mRNAs than for scanning long, structured 5' UTRs. Our results also indicate that eIF4G, and the closed-loop mRNP it assembles with the m7 G cap- and poly(A-binding factors (eIF4E and PABP, is not essential for translation of most (if not all mRNAs but enhances the differentiation of translational efficiencies genome-wide.

  1. A Wide Tuning-Range CMOS VCO with a Tunable Active Inductor

    Directory of Open Access Journals (Sweden)

    Hsuan-Ling Kao

    2015-01-01

    Full Text Available This study describes a wide tuning-range VCO using tunable active inductor (TAI topology and cross-coupled pair configuration for radio frequency operation. The TAI used two feedback loops to form a cascode circuit to obtain more degrees of freedom for inductance value. The TAI-VCO was fabricated using a 0.18 μm CMOS technology. The coarse frequency tuning is achieved by TAIs while the fine tuning is controlled by varactors. The fabricated circuit provides an output frequency range from 0.6 to 7.2 GHz (169%. The measured phase noise is from −110.38 to −86.01 dBc/Hz at a 1 MHz offset and output power is from −11.11 to −3.89 dBm within the entire frequency range under a 1.8 V power supply.

  2. Wide-Range Adaptive RF-to-DC Power Converter for UHF RFIDs

    KAUST Repository

    Ouda, Mahmoud H.

    2016-07-27

    A wide-range, differential, cross-coupled rectifier is proposed with an extended dynamic range of input RF power that enables wireless powering from varying distances. The proposed architecture mitigates the reverse-leakage problem in conven- tional, cross-coupled rectifiers without degrading sensitivity. A prototype is designed for UHF RFID applications, and is imple- mented using 0.18 μ m CMOS technology. On-chip measurements demonstrate a sensitivity of − 18 dBm for 1 V output over a 100 k Ω load and a peak RF-to-DC power conversion efficiency of 65%. A conventional, fully cross-coupled rectifier is fabricated along- side for comparison and the proposed rectifier shows more than 2 × increase in dynamic range and a 25% boosting in output voltage than the conventional rectifier

  3. Wide bandwidth optical signals for high range resolution measurements in water

    Science.gov (United States)

    Nash, Justin; Lee, Robert; Mullen, Linda

    2016-05-01

    Measurements with high range resolution are needed to identify underwater threats, especially when two-dimensional contrast information is insufficient to extract object details. The challenge is that optical measurements are limited by scattering phenomena induced by the underwater channel. Back-scatter results in transmitted photons being directed back to the receiver before reaching the target of interest which induces a clutter signal for ranging and a reduction in contrast for imaging. Multiple small-angle scattering (forward-scatter) results in transmitted photons being directed to unintended regions of the target of interest (spatial spreading), while also stretching the temporal profile of a short optical pulse (temporal spreading). Spatial and temporal spreading of the optical signal combine to cause a reduction in range resolution in conventional laser imaging systems. NAVAIR has investigated ways in which wide bandwidth, modulated optical signals can be utilized to improve ranging and imaging performance in turbid water environments. Experimental efforts have been conducted to investigate channel effects on the propagated frequency content, as well as different filtering and processing techniques on the return signals to maximize range resolution. Of particular interest for the modulated pulses are coherent detection and processing techniques employed by the radar community, including methods to reduce sidelobe clutter. This paper will summarize NAVAIR's work and show that wideband optical signals, in combination with the CLEAN algorithm, can indeed provide enhancements to range resolution and 3D imagery in turbid water environments.

  4. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  5. Wide distribution range of rhizobial symbionts associated with pantropical sea-dispersed legumes.

    Science.gov (United States)

    Bamba, Masaru; Nakata, Sayuri; Aoki, Seishiro; Takayama, Koji; Núñez-Farfán, Juan; Ito, Motomi; Miya, Masaki; Kajita, Tadashi

    2016-12-01

    To understand the geographic distributions of rhizobia that associated with widely distributed wild legumes, 66 nodules obtained from 41 individuals including three sea-dispersed legumes (Vigna marina, Vigna luteola, and Canavalia rosea) distributed across the tropical and subtropical coastal regions of the world were studied. Partial sequences of 16S rRNA and nodC genes extracted from the nodules showed that only Bradyrhizobium and Sinorhizobium were associated with the pantropical legumes, and some of the symbiont strains were widely distributed over the Pacific. Horizontal gene transfer of nodulation genes were observed within the Bradyrhizobium and Sinorhizobium lineages. BLAST searches in GenBank also identified records of these strains from various legumes across the world, including crop species. However, one of the rhizobial strains was not found in GenBank, which implies the strain may have adapted to the littoral environment. Our results suggested that some rhizobia, which associate with the widespread sea-dispersed legume, distribute across a broad geographic range. By establishing symbiotic relationships with widely distributed rhizobia, the pantropical legumes may also be able to extend their range much further than other legume species.

  6. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  7. Low-power wide-locking-range injection-locked frequency divider for OFDM UWB systems

    Energy Technology Data Exchange (ETDEWEB)

    Yin Jiangwei; Li Ning; Zheng Renliang; Li Wei; Ren Junyan, E-mail: lining@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-05-01

    This paper describes a divide-by-two injection-locked frequency divider (ILFD) for frequency synthesizers as used in multiband orthogonal frequency division multiplexing (OFDM) ultra-wideband (UWB) systems. By means of dual-injection technique and other conventional tuning techniques, such as DCCA and varactor tuning, the divider demonstrates a wide locking range while consuming much less power. The chip was fabricated in the Jazz 0.18 mum RF CMOS process. The measurement results show that the divider achieves a locking range of 4.85 GHz (6.23 to 11.08 GHz) at an input power of 8 dBm. The core circuit without the test buffer consumes only 3.7 mA from a 1.8 V power supply and has a die area of 0.38 x 0.28 mm{sup 2}. The wide locking range combined with low power consumption makes the ILFD suitable for its application in UWB systems.

  8. Wide-Range Temperature Sensors with High-Level Pulse Train Output

    Science.gov (United States)

    Hammoud, Ahmad; Patterson, Richard L.

    2009-01-01

    Two types of temperature sensors have been developed for wide-range temperature applications. The two sensors measure temperature in the range of -190 to +200 C and utilize a thin-film platinum RTD (resistance temperature detector) as the temperature-sensing element. Other parts used in the fabrication of these sensors include NPO (negative-positive- zero) type ceramic capacitors for timing, thermally-stable film or wirewound resistors, and high-temperature circuit boards and solder. The first type of temperature sensor is a relaxation oscillator circuit using an SOI (silicon-on-insulator) operational amplifier as a comparator. The output is a pulse train with a period that is roughly proportional to the temperature being measured. The voltage level of the pulse train is high-level, for example 10 V. The high-level output makes the sensor less sensitive to noise or electromagnetic interference. The output can be read by a frequency or period meter and then converted into a temperature reading. The second type of temperature sensor is made up of various types of multivibrator circuits using an SOI type 555 timer and the passive components mentioned above. Three configurations have been developed that were based on the technique of charging and discharging a capacitor through a resistive element to create a train of pulses governed by the capacitor-resistor time constant. Both types of sensors, which operated successfully over the wide temperature range, have potential use in extreme temperature environments including jet engines and space exploration missions.

  9. Theoretical and Experimental Study on Wide Range Optical Fiber Turbine Flow Sensor.

    Science.gov (United States)

    Du, Yuhuan; Guo, Yingqing

    2016-07-15

    In this paper, a novel fiber turbine flow sensor was proposed and demonstrated for liquid measurement with optical fiber, using light intensity modulation to measure the turbine rotational speed for converting to flow rate. The double-circle-coaxial (DCC) fiber probe was introduced in frequency measurement for the first time. Through the divided ratio of two rings light intensity, the interference in light signals acquisition can be eliminated. To predict the characteristics between the output frequency and flow in the nonlinear range, the turbine flow sensor model was built. Via analyzing the characteristics of turbine flow sensor, piecewise linear equations were achieved in expanding the flow measurement range. Furthermore, the experimental verification was tested. The results showed that the flow range ratio of DN20 turbine flow sensor was improved 2.9 times after using piecewise linear in the nonlinear range. Therefore, combining the DCC fiber sensor and piecewise linear method, it can be developed into a strong anti-electromagnetic interference(anti-EMI) and wide range fiber turbine flowmeter.

  10. Modelling seasonal habitat suitability for wide-ranging species: Invasive wild pigs in northern Australia.

    Science.gov (United States)

    Froese, Jens G; Smith, Carl S; Durr, Peter A; McAlpine, Clive A; van Klinken, Rieks D

    2017-01-01

    Invasive wildlife often causes serious damage to the economy and agriculture as well as environmental, human and animal health. Habitat models can fill knowledge gaps about species distributions and assist planning to mitigate impacts. Yet, model accuracy and utility may be compromised by small study areas and limited integration of species ecology or temporal variability. Here we modelled seasonal habitat suitability for wild pigs, a widespread and harmful invader, in northern Australia. We developed a resource-based, spatially-explicit and regional-scale approach using Bayesian networks and spatial pattern suitability analysis. We integrated important ecological factors such as variability in environmental conditions, breeding requirements and home range movements. The habitat model was parameterized during a structured, iterative expert elicitation process and applied to a wet season and a dry season scenario. Model performance and uncertainty was evaluated against independent distributional data sets. Validation results showed that an expert-averaged model accurately predicted empirical wild pig presences in northern Australia for both seasonal scenarios. Model uncertainty was largely associated with different expert assumptions about wild pigs' resource-seeking home range movements. Habitat suitability varied considerably between seasons, retracting to resource-abundant rainforest, wetland and agricultural refuge areas during the dry season and expanding widely into surrounding grassland floodplains, savanna woodlands and coastal shrubs during the wet season. Overall, our model suggested that suitable wild pig habitat is less widely available in northern Australia than previously thought. Mapped results may be used to quantify impacts, assess risks, justify management investments and target control activities. Our methods are applicable to other wide-ranging species, especially in data-poor situations.

  11. Resource selection and its implications for wide-ranging mammals of the brazilian cerrado.

    Directory of Open Access Journals (Sweden)

    Carly Vynne

    Full Text Available Conserving animals beyond protected areas is critical because even the largest reserves may be too small to maintain viable populations for many wide-ranging species. Identification of landscape features that will promote persistence of a diverse array of species is a high priority, particularly, for protected areas that reside in regions of otherwise extensive habitat loss. This is the case for Emas National Park, a small but important protected area located in the Brazilian Cerrado, the world's most biologically diverse savanna. Emas Park is a large-mammal global conservation priority area but is too small to protect wide-ranging mammals for the long-term and conserving these populations will depend on the landscape surrounding the park. We employed novel, noninvasive methods to determine the relative importance of resources found within the park, as well as identify landscape features that promote persistence of wide-ranging mammals outside reserve borders. We used scat detection dogs to survey for five large mammals of conservation concern: giant armadillo (Priodontes maximus, giant anteater (Myrmecophaga tridactyla, maned wolf (Chrysocyon brachyurus, jaguar (Panthera onca, and puma (Puma concolor. We estimated resource selection probability functions for each species from 1,572 scat locations and 434 giant armadillo burrow locations. Results indicate that giant armadillos and jaguars are highly selective of natural habitats, which makes both species sensitive to landscape change from agricultural development. Due to the high amount of such development outside of the Emas Park boundary, the park provides rare resource conditions that are particularly important for these two species. We also reveal that both woodland and forest vegetation remnants enable use of the agricultural landscape as a whole for maned wolves, pumas, and giant anteaters. We identify those features and their landscape compositions that should be prioritized for

  12. Development of wide-range constitutive equations for calculations of high-rate deformation of metals

    Directory of Open Access Journals (Sweden)

    Preston D.

    2011-01-01

    Full Text Available For development of models of strength and compressibility of metals in wide range of pressures (up to several megabar and strain rates ~ 1÷108 s−1, the method of dynamic tests is used. Since direct measurement of strength is impossible under complicated intensive high-rate loading, a formal model is created at first, and then it is updated basing on comparison with many experiments, which are sensitive to shear strength. Elastic-plastic, viscous-elastic-plastic and relaxation integral models became nowadays most commonly used. The basic unsolved problems in simulation of high-rate deformation of metals are mentioned in the paper.

  13. Field Oriented Control for Rotor Position Estimation of IPM Drives over a Wide Speed Range

    Directory of Open Access Journals (Sweden)

    Ekhlas Kadhum

    2013-01-01

    Full Text Available Field oriented control strategy of Interior Permanent Magnet IPM Synchronous Motor drives over a wide speed range applications is presented. Rotor position estimation using model reference adaptive system method for IPM Drive without using a mechanical sensor is illustrated considering the effects of cross-saturation between the d and q axes. The cross saturation between d and q axes has been calculated by finite-element analysis. The inductance measurement regards the cross saturation which is used to obtain the suitable id - characteristics in base and flux weakening regions. The simulation results show that rotor position estimation error accuracy was improved. Various dynamic conditions have been investigated

  14. Voltage-controlled narrowband and wide, variable-range four-segment quartz crystal oscillator.

    Science.gov (United States)

    Ruslan, Ruzaini; Satoh, Tomio; Akitsu, Tetsuya

    2012-03-01

    In this work, our goal is to develop a voltage-controlled variable-frequency quartz crystal oscillator with narrowband response, wide, variable frequency range and the capacity to oscillate across the series resonance frequency using a four-segment configuration of a quartz crystal oscillator. In conventional quartz oscillators, the quartz resonator is inserted in the feedback loop between the input and the output of the active circuit, providing sufficient gain and the phase relation. In the oscillator developed here, the quartz crystal resonator is inserted between the loop circuit and the ground potential. The performance of the voltage-controlled variable-frequency oscillator is demonstrated across the series resonance frequency.

  15. Optical conductivity of warm dense matter in wide frequency range within quantum statistical and kinetic approach

    CERN Document Server

    Veysman, M; Winkel, M; Reinholz, H

    2016-01-01

    Fundamental properties of warm dense matter are described by the dielectric function, which gives access to the frequency-dependent electrical conductivity, absorption, emission and scattering of radiation, charged particles stopping and further macroscopic properties. Different approaches to the dielectric function and the related dynamical collision frequency are compared in a wide frequency range. The high-frequency limit describing inverse bremsstrahlung and the low-frequency limit of the dc conductivity are considered. Sum rules and Kramers-Kronig relation are checked for the generalized linear response theory and the standard approach following kinetic theory. The results are discussed in application to aluminum, xenon and argon plasmas.

  16. Range performance of the DARPA AWARE wide field-of-view visible imager.

    Science.gov (United States)

    Nichols, J M; Judd, K P; Olson, C C; Novak, K; Waterman, J R; Feller, S; McCain, S; Anderson, J; Brady, D

    2016-06-01

    In a prior paper, we described a new imaging architecture that addresses the need for wide field-of-view imaging combined with the resolution required to identify targets at long range. Over the last two years substantive improvements have been made to the system, both in terms of the size, weight, and power of the camera as well as to the optics and data management software. The result is an overall improvement in system performance, which we demonstrate via a maritime target identification experiment.

  17. Impedance Based Analysis and Design of Harmonic Resonant Controller for a Wide Range of Grid Impedance

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2014-01-01

    in the closed-loop output admittance of converter. Such negative resistances may interact with the grid impedance resulting in steady state error or unstable harmonic compensation. To deal with this problem, a design guideline for harmonic resonant controllers under a wide range of grid impedance is proposed......This paper investigates the effect of grid impedance variation on harmonic resonant current controllers for gridconnected voltage source converters by means of impedance-based analysis. It reveals that the negative harmonic resistances tend to be derived from harmonic resonant controllers...

  18. Study on single-mode photonic crystal fibers in wide wavelength range

    Institute of Scientific and Technical Information of China (English)

    Wei Chen; Jinyan Li; Shiyu Li; Haiqing Li; Zuowen Jiang; Jinggang Peng

    2007-01-01

    @@ The comparatively large mode field single-mode photonic crystal fibers (PCFs) were fabricated, the lightwave from 600- to 1600-nm wavelength along this PCF could be transmitted in single mode. The manufacturing process technologies of the PCFs were exploited, and the drawing parameters of PCFs were also presented. The structure parameters on the single-mode performance of PCFs were theoretically studied,and in practice the design was proved. The measurements of cut-off wavelength and light intensity distribution showed that the PCF had comparatively wide single-mode operating wavelength range.

  19. An MRAS method for sensorless control of induction motor over a wide speed range

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper addresses the problem of wide speed range sensorless control of induction motor.The proposed method is based on model reference adaptive system (MRAS),in which the current model serves as the adjustable model,and a novel hybrid model integrating the modified voltage model (MVM) and high-frequency signal injection method (HFSIM) are established to serve as the reference model.The HFSIM works together with MVM to improve the performance of the rotor speed and rotor flux position estimation at low s...

  20. Lithium-ion battery dynamic model for wide range of operating conditions

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Stroe, Daniel-Ioan; Swierczynski, Maciej Jozef

    2017-01-01

    In order to analyze the dynamic behavior of a Lithium-ion (Li-ion) battery and to determine their suitability for various applications, battery models are needed. An equivalent electrical circuit model is the most common way of representing the behavior of a Li-ion battery. There are different...... characterization tests performed for a wide range of operating conditions (temperature, load current and state-ofcharge) on a commercial available 13Ah high-power lithium titanate oxide battery cell. The obtained results were used to parametrize the proposed dynamic model of the battery cell. To assess...

  1. Experimental Investigation of Zinc Antimonide Thin Film Thermoelectric Element over Wide Range of Operating Conditions

    DEFF Research Database (Denmark)

    Hosseini, Seyed Mojtaba Mir; Rezaniakolaei, Alireza; Blichfeld, Anders Bank

    2017-01-01

    flows in plane with the thin film. At first, the effect of applying different temperatures at the hot side of the specimen is investigated to reach steady state in an open circuit analysis. Then, the study focuses on performance and stability analysis of the thermoelectric element operating under...... different resistive loads and over a wide range of operating temperatures from 160 °C to 350 °C. The results show that, at a hot side temperature equal to 275 °C, the Seebeck coefficient (α) reaches its maximum value (242 μV/K), which is comparable to that of bulk materials reported in the literature...

  2. Wide Input Range Power Converters Using a Variable Turns Ratio Transformer

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2016-01-01

    A new integrated transformer with variable turns ratio is proposed to enable dc-dc converters operating over a wide input voltage range. The integrated transformer employs a new geometry of magnetic core with “four legs”, two primary windings with orthogonal arrangement, and “8” shape connection...... of diagonal secondary windings, in order to make the transformer turns ratio adjustable by controlling the phase between the two current excitations subjected to the two primary windings. Full-bridge boost dc-dc converter is employed with the proposed transformer to demonstrate the feasibility of the variable...

  3. Modelling plastic deformation of metals over a wide range of strain rates using irreversible thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Huang Mingxin; Rivera-Diaz-del-Castillo, Pedro E J; Zwaag, Sybrand van der [Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Bouaziz, Olivier, E-mail: mingxin.huang@arcelormittal.com [ArcelorMittal Maizieres, Research and Development, Voie Romaine-BP30320, 57283 Maizieres-les-Metz Cedex (France)

    2009-07-15

    Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that there is a transitional strain rate ({approx} 10{sup 4} s{sup -1}) over which the phonon drag effects appear, resulting in a significant increase in the flow stress and the average dislocation density. The model is applied to pure Cu deformed at room temperature and at strain rates ranging from 10{sup -5} to 10{sup 6} s{sup -1} showing good agreement with experimental results.

  4. A programmable log-linear amplifier for wide range nuclear power measuring channels

    Science.gov (United States)

    Khaleeq, M. Tahir; Alam, Mahmood; Ghumman, Iftikhar Ahmad

    2002-12-01

    A programmable log-linear amplifier has been developed for nuclear channels. The amplifier can be programmed for logarithmic, linear or log-linear mode of operation. In the log-linear mode, the amplifier operates partially in log mode and automatically switches to linear mode at any preset point. The log-linear mode is used for wide range operation of nuclear channels and, hence, the amplifier will improve the fault finding capabilities of the nuclear channels used in power range. The amplifier is tested at nuclear reactor and the results are found in very good agreement with the designed specifications. This article presents design and construction of the amplifier and field test results.

  5. Catechol derivatives as fluorescent chemosensors for wide-range pH detection.

    Science.gov (United States)

    Evangelio, Emilia; Hernando, Jordi; Imaz, Inhar; Bardají, Gisela G; Alibés, Ramon; Busqué, Félix; Ruiz-Molina, Daniel

    2008-01-01

    The synthesis and characterization of a new family of catechol derivatives designed to behave as fluorescent chemosensors for wide-range pH detection has been described. These compounds were prepared by covalently coupling a catechol unit with other aromatic rings, thus obtaining pi-delocalized systems with both pH-responsive groups and fluorescent behavior. In the case of a pyridine-catechol derivative, this leads to up to three different protonation states with distinct optical properties in organic media, as corroborated by density functional theory calculations. By applying dual-wavelength detection techniques, this compound shows complementary "off-on-off" and "on-off-on" emission profiles upon pH variation, a behavior that can be exploited to perform acidity detection over a broad pH range.

  6. Generalized weighted ratio method for accurate turbidity measurement over a wide range.

    Science.gov (United States)

    Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying

    2015-12-14

    Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU.

  7. Wide range fully integrated VCO with new cells-based varactor

    Science.gov (United States)

    Marrero-Martin, Margarita; Gonzalez, Benito; Garcia, Javier; Khemchandani, Sunil L.; Hernandez, Antonio; del Pino, Javier

    2012-08-01

    This article presents a wide range inductance-capacitance voltage controlled oscillator (VCO) with a unit cells-based varactor. The unit cell represents the minimum possible integrated varactor based on p-n junction diodes, where N+ diffusions are central rectangles, surrounded by doughnut shaped P+ diffusions, with their respective contacts. The varactors are designed using the AMS 0.35 µm BiCMOS process. A physical model has been derived from the measurement of a set of eight fabricated varactors. Measurements indicate that the VCO, which is intended to be used in DVB-H, oscillates from 1.087 to 2.032 GHz, with a 61% tuning range. The phase noises of -124 dBc/Hz at 1 MHz offset and -108 dBc/Hz at 100 kHz offset are obtained.

  8. Phased array ultrasonic inspection method for homogeneous tube inspection over a wide oblique angle range

    Science.gov (United States)

    Lepage, Benoit; Painchaud-April, Guillaume

    2017-02-01

    As seamless tube manufacturers push quality requirements for their products, automated phased array Rotating Tube Inspection Systems (RTIS) are now required to provide continuous NDE detection performances over a wide angular range of oblique flaws. One major impact of this new reality is a paradigm shift for the calibration method use. This change is driven by the requirement to meet homogeneous detection over broad oblique flaw angle intervals, whereas standard practice only requires calibration at specific discrete angles. This paper presents an innovative method specifically designed to obtain high productivity and homogeneous inspection measurements over an oblique flaw range extending from -45 to 45 degrees. Experimental results from the application of the method on various tubes presenting multiple artificial flaws support the quantitative performance evaluation.

  9. Atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters

    CERN Document Server

    Kaspi, Yohai

    2014-01-01

    The recent discoveries of terrestrial exoplanets and super Earths extending over a broad range of orbital and physical parameters suggests that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone---including transitions to Snowball-like states and runaway-greenhouse feedbacks---depend on the equator-to-pole temperature differences, pattern of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model (GCM) including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, planetary mass,...

  10. Surrogate runner model for draft tube losses computation within a wide range of operating points

    Science.gov (United States)

    Susan-Resiga, R.; Muntean, S.; Ciocan, T.; de Colombel, T.; Leroy, P.

    2014-03-01

    We introduce a quasi two-dimensional (Q2D) methodology for assessing the swirling flow exiting the runner of hydraulic turbines at arbitrary operating points, within a wide operating range. The Q2D model does not need actual runner computations, and as a result it represents a surrogate runner model for a-priori assessment of the swirling flow ingested by the draft tube. The axial, radial and circumferential velocity components are computed on a conical section located immediately downstream the runner blades trailing edge, then used as inlet conditions for regular draft tube computations. The main advantage of our model is that it allows the determination of the draft tube losses within the intended turbine operating range in the early design stages of a new or refurbished runner, thus providing a robust and systematic methodology to meet the optimal requirements for the flow at the runner outlet.

  11. An ultra wide dynamic range CMOS image sensor with a linear response

    Science.gov (United States)

    Park, Jong Ho; Mase, Mitsuhito; Kawahito, Shoji; Sasaki, Masaaki; Wakamori, Yasuo; Ohta, Yukihiro

    2006-02-01

    An ultra wide dynamic range (WDR) CMOS image sensor (CIS) and the details of evaluation are presented. The proposed signal readout technique of extremely short accumulation (ESA) enables the dynamic range of image sensor to be expanded up to 146dB. Including the ESA signals, total of 4 different accumulation time signals are read out in one frame period based on burst readout technique. To achieve the high-speed signal readout required for the multiple exposure signals, column parallel A/D converters are integrated at the upper and lower sides of pixel arrays. The improved 12-bits cyclic ADCs with a built-in correlated double sampling (CDS) circuit has the differential non-linearity (DNL) of +/-0.3LSB.

  12. Autonomous Vehicles Have a Wide Range of Possible Energy Impacts (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A.; Repac, B.; Gonder, J.

    2013-07-01

    This poster presents initial estimates of the net energy impacts of automated vehicles (AVs). Automated vehicle technologies are increasingly recognized as having potential to decrease carbon dioxide emissions and petroleum consumption through mechanisms such as improved efficiency, better routing, lower traffic congestion, and by enabling advanced technologies. However, some effects of AVs could conceivably increase fuel consumption through possible effects such as longer distances traveled, increased use of transportation by underserved groups, and increased travel speeds. The net effect on petroleum use and climate change is still uncertain. To make an aggregate system estimate, we first collect best estimates for the energy impacts of approximately ten effects of AVs. We then use a modified Kaya Identity approach to estimate the range of aggregate effects and avoid double counting. We find that depending on numerous factors, there is a wide range of potential energy impacts. Adoption of automated personal or shared vehicles can lead to significant fuel savings but has potential for backfire.

  13. IC design of low power, wide tuning range VCO in 90 nm CMOS technology

    Science.gov (United States)

    Zhu, Li; Zhigong, Wang; Zhiqun, Li; Qin, Li; Faen, Liu

    2014-12-01

    A low power VCO with a wide tuning range and low phase noise has been designed and realized in a standard 90 nm CMOS technology. A newly proposed current-reuse cross-connected pair is utilized as a negative conductance generator to compensate the energy loss of the resonator. The supply current is reduced by half compared to that of the conventional LC-VCO. An improved inversion-mode MOSFET (IMOS) varactor is introduced to extend the capacitance tuning range from 32.8% to 66%. A detailed analysis of the proposed varactor is provided. The VCO achieves a tuning range of 27-32.5 GHz, exhibiting a frequency tuning range (FTR) of 18.4% and a phase noise of -101.38 dBc/Hz at 1 MHz offset from a 30 GHz carrier, and shows an excellent FOM of -185 dBc/Hz. With the voltage supply of 1.5 V, the core circuit of VCO draws only 2.1 mA DC current.

  14. Silicon photonics athermal Mach-Zehnder interferometer with wide thermal and spectral operating range

    Science.gov (United States)

    Xing, Peng; Viegas, Jaime

    2015-02-01

    In the context of 3D-integrated circuit (3DIC) integration of photonic and electronic components on vertical stacks covering different domains (digital, analog, RF, optical and MEMS), the control and minimization of adverse thermal effects on the behavior of the different parts of the microsystem is a major concern. Solutions based on passive athermal design are good candidates for enabling operation of optical components over electronic ICs with variable temporal and spatial thermal load while at the same time, minimizing energy loss on thermal biasing resistive loads. In this work, an improved athermal design method and the corresponding validating fabricated prototype are presented with the aim of extending the spectral athermal operating range of a Mach-Zehnder interferometer (MZI) over a wide thermal range with minimal temperature sensitivity. The proposed approach is demonstrated with a CMOS compatible silicon-on-insulator process flow fabrication run. The fabricated MZIs have a temperature sensitivity of around 20 pm/K over a spectral range larger than 60 nm for operating temperatures in the range of 20°C to 60°C. These devices are suitable for future optical and electronic 3D IC integration.

  15. A digital wide range neutron flux measuring system for HL-2A

    Science.gov (United States)

    Yuan, Chen; Wu, Jun; Yin, Zejie

    2017-08-01

    To achieve wide-range, high-integration, and real-time performance on the neutron flux measurement on the HL-2A tokamak, a digital neutron flux measuring (DNFM) system based on the peripheral component interconnection (PCI) eXtension for Instrumentation express (PXIe) bus was designed. This system comprises a charge-sensitive preamplifier and a field programmable gate array (FPGA)-based main electronics plug-in. The DNFM totally covers source-range and intermediate-range neutron flux measurements, and increases system integration by a large margin through joining the pulse-counting mode and Campbell mode. Meanwhile, the neutron flux estimation method based on pulse piling proportions is able to choose and switch measuring modes in accordance with current flux, and this ensures the accuracy of measurements when the neutron flux changes suddenly. It has been demonstrated by simulated signals that the DNFM enhances the full-scale measuring range up to 1.9 × 108 cm-2 s-1, with relative error below 6.1%. The DNFM has been verified to provide a high temporal sensitivity at 10 ms time intervals on a single fission chamber on HL-2A. Contributed paper, published as part of the Proceedings of the 3rd Domestic Electromagnetic Plasma Diagnostics Workshop, September 2016, Hefei, China.

  16. Dispersion model for optical thin films applicable in wide spectral range

    Science.gov (United States)

    Franta, Daniel; Nečas, David; Ohlídal, Ivan; Giglia, Angelo

    2015-09-01

    In the optics industry thin film systems are used to construct various interference devices such as antireflective coatings, high-reflectance mirrors, beam splitters and filters. The optical characterization of complex optical systems can not be performed by measurements only in the short spectral range in which the interference devices will be employed because the measured data do not contain sufficient information about all relevant parameters of these systems. The characterization of film materials requires the extension of the spectral range of the measurements to the IR region containing phonon absorption and to the UV region containing the electronic excitations. However, this leads to necessity of a dispersion model suitable for the description of the dielectric response in the wide spectral range. Such model must respect the physical conditions following from theory of dispersion, particularly Kramers-Kronig relations and integrability imposed by sum rules. This work presents the construction of a universal dispersion model composed from individual contributions representing both electronic and phonon excitations. The efficiency of presented model is given by the fact that all the contributions are described by analytical expressions. It is shown that the model is suitable for precise modeling of spectral dependencies of optical constants of a broad class of materials used in the optical industry for thin film systems such as MgF2, SiO2, Al2O3, HfO2, Ta2O5 and TiO2 in the spectral range from far IR to vacuum UV.

  17. Nonlinear analysis and dynamic compensation of stylus scanning measurement with wide range

    Science.gov (United States)

    Hui, Heiyang; Liu, Xiaojun; Lu, Wenlong

    2011-12-01

    Surface topography is an important geometrical feature of a workpiece that influences its quality and functions such as friction, wearing, lubrication and sealing. Precision measurement of surface topography is fundamental for product quality characterizing and assurance. Stylus scanning technique is a widely used method for surface topography measurement, and it is also regarded as the international standard method for 2-D surface characterizing. Usually surface topography, including primary profile, waviness and roughness, can be measured precisely and efficiently by this method. However, by stylus scanning method to measure curved surface topography, the nonlinear error is unavoidable because of the difference of horizontal position of the actual measured point from given sampling point and the nonlinear transformation process from vertical displacement of the stylus tip to angle displacement of the stylus arm, and the error increases with the increasing of measuring range. In this paper, a wide range stylus scanning measurement system based on cylindrical grating interference principle is constructed, the originations of the nonlinear error are analyzed, the error model is established and a solution to decrease the nonlinear error is proposed, through which the error of the collected data is dynamically compensated.

  18. /sup 210/Po in marine organisms: a wide range of natural radiation dose domains

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, F.P.

    1988-01-01

    Marine biota is able to concentrate /sup 210/Po to high levels, as 10/sup 3/-10/sup 5/ relative to sea water concentration. /sup 210/Po concentrations in mixed zooplankton reaches 34-51 Bq.kg/sup -1/ (fresh wt), special groups such as copepods reaching even higher concentrations /similar to/ 90 Bq.kg/sup -1/, whereas gelatinous zooplankton display /similar to/ 1 Bq.kg/sup -1/. Epipelagic teleosts feeding on plankton displayed the highest concentrations found in fish muscle, 2-21 Bq.kg/sup -1/. Contrasting with this, demersal teleosts and elasmobranchs display lower /sup 210/Po concentrations, in the ranges 0.5-7 Bq.kg/sup -1/ and 0.2-1.7 Bq.kg/sup -1/, respectively. Much higher concentrations can, however, be measured in fish liver, gonad, bone and piloric caecca, and small mesopelagic fish can reach /similar to/ 800 Bq.kg/sup -1/ on a whole-body basis. Due to these /sup 210/Po activity concentrations, dose equivalent rates delivered to biological tissues in marine organisms can vary widely, from 0.4 mSv.y/sup -1/ in gelatinous plankton up to 5.6 x 10/sup 3/ mSv.y/sup -1/ in the gut wall of sardines. It is concluded that in organisms living in the same ocean layer a wide range of internal radiation doses exists and it is essentially sustained by /sup 210/Po food-chain transfer. (author).

  19. Wide dynamic range enrichment method of semiconducting single-walled carbon nanotubes with weak field centrifugation.

    Science.gov (United States)

    Reis, Wieland G; Tomović, Željko; Weitz, R Thomas; Krupke, Ralph; Mikhael, Jules

    2017-03-20

    The potential of single-walled carbon nanotubes (SWCNTs) to outperform silicon in electronic application was finally enabled through selective separation of semiconducting nanotubes from the as-synthesized statistical mix with polymeric dispersants. Such separation methods provide typically high semiconducting purity samples with narrow diameter distribution, i.e. almost single chiralities. But for a wide range of applications high purity mixtures of small and large diameters are sufficient or even required. Here we proof that weak field centrifugation is a diameter independent method for enrichment of semiconducting nanotubes. We show that the non-selective and strong adsorption of polyarylether dispersants on nanostructured carbon surfaces enables simple separation of diverse raw materials with different SWCNT diameter. In addition and for the first time, we demonstrate that increased temperature enables higher purity separation. Furthermore we show that the mode of action behind this electronic enrichment is strongly connected to both colloidal stability and protonation. By giving simple access to electronically sorted SWCNTs of any diameter, the wide dynamic range of weak field centrifugation can provide economical relevance to SWCNTs.

  20. A single-element, thermal, flow-velocity sensor with wide dynamic range

    Science.gov (United States)

    Al-Salaymeh, A.; Durst, F.; Gad-El-Hak, M.

    2001-11-01

    Thermal flow sensors with a wide dynamic range approaching 1:1000 are presently not available in spite of the large demand for such sensors in practical fluid flow measurements. During the last meeting (paper JG4, Bul. Am. Phys. Soc. 45, no. 9, p. 141, 2000), we described such a probe consisting of a minute wire heated using sinusoidal alternating current and two sensing wires acting as resistance thermometers and set parallel to, and at a small distance on either side of, the pulsed wire. Herein we detail the development of a single wire heated using square waves of electrical current. The elimination of the sensing wires reduces the complexity as well as the cost of the sensor and improves its spatial resolution. Unlike time-of-flight sensors, however, the present single-element sensor is sensitive to the physical properties and temperature of the ambient fluid. The present device is suited for measuring slowly-varying unidirectional flows over a very wide dynamic range. For a given current amplitude and frequency, the nominal output of the single sensor is the increase in wire temperature (or resistance) between times just before the leading edge of the current pulse and just after the trailing edge of the pulse. In practice, an integral of the resistance over the pulse duration is computed and averaged over several pulses. This output is a function of the wire’s time constant or thermal inertia and thus of the flow speed as well as the heat convected from the heated wire to the flow. We exploit the fact that the time constant decreases as the flow speed increases while the rate of heat transfer increases. At very low flow speeds, the response is determined almost entirely by the time constant whereas at high speeds the device acts almost like a constant-current hot-wire anemometer. At low speeds, therefore, the wire thermal inertia augments the output signal of the basic hot wire increasing its speed range and sensitivity above that of a conventional hot

  1. Development and testing of a novel single-wire sensor for wide range flow velocity measurements

    Science.gov (United States)

    Al-Salaymeh, A.; Durst, F.

    2004-05-01

    Thermal flow sensors with a wide dynamic range, e.g. 1:1000 and more, are currently not available in spite of the great demand for such sensors in practical fluid flow measurements. The present paper introduces a sensor of this kind. The new sensor is mechanically the same as the 'sending' wire of the two-wire thermal flow sensor described by Durst et al, but it is excited by discrete, widely separated, square waves of electrical current rather than a continuous sinusoidal current. The nominal 'output' of the new sensor is the increase in wire temperature so that an integral of the resistance over the pulse length can be used for measurements. This 'output' is a function of the time constant ('thermal inertia') of the heated wire and thus also of the velocity of flow. The time constant decreases as the flow velocity increases, while the heat transfer increases. At very low flow velocities the response is determined almost entirely by the time constant of the wire while at high velocities the device acts almost like a 'constant current' hot-wire anemometer. That is, the effect of thermal inertia augments the output signal of the basic hot wire, thus increasing the flow rate range/sensitivity of the device, especially at the low-velocity end, above than that of a simple hot-wire flowmeter. The sensor described here was developed for slowly changing unidirectional flows, and uses one wire of 12.5 µm diameter. It is excited at 30 Hz frequency and its usable flow velocity range is 0.01-25 m s-1.

  2. Wide tuning-range CMOS VCO based on a tunable active inductor

    Science.gov (United States)

    Babaei Kia, Hojjat; Khari A'ain, Abu; Grout, Ian

    2014-01-01

    In this paper, a wide tuning-range CMOS voltage-controlled oscillator (VCO) with high output power using an active inductor circuit is presented. In this VCO design, the coarse frequency is achieved by tuning the integrated active inductor. The circuit has been simulated using a 0.18-µm CMOS fabrication process and presents output frequency range from 100 MHz to 2.5 GHz, resulting in a tuning range of 96%. The phase noise is -85 dBc/Hz at a 1 MHz frequency offset. The output power is from -3 dBm at 2.55 GHz to +14 dBm at 167 MHz. The active inductor power dissipation is 6.5 mW and the total power consumption is 16.27 mW when operating on a 1.8 V supply voltage. By comparing this active inductor architecture VCO with general VCO topology, the result shows that this topology, which employs the proposed active inductor, produces a better performance.

  3. LNA with wide range of gain control and wideband interference rejection

    Science.gov (United States)

    Wang, Jhen-Ji; Chen, Duan-Yu

    2016-10-01

    This work presents a low-noise amplifier (LNA) design with a wide-range gain control characteristic that integrates adjustable current distribution and output impedance techniques. For a given gain characteristic, the proposed LNA provides better wideband interference rejection performance than conventional LNA. Moreover, the proposed LNA also has a wider gain control range than conventional LNA. Therefore, it is suitable for satellite communications systems. The simulation results demonstrate that the voltage gain control range is between 14.5 and 34.2 dB for such applications (2600 MHz); the input reflection coefficient is less than -18.9 dB; the noise figure (NF) is 1.25 dB; and the third-order intercept point (IIP3) is 4.52 dBm. The proposed LNA consumes 23.85-28.17 mW at a supply voltage of 1.8 V. It is implemented by using TSMC 0.18-um RF CMOS process technology.

  4. Comprehensive Measurement of Atmospheric Aerosols with a Wide Range Aerosol Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Keck, L; Pesch, M; Grimm, H, E-mail: lk@grimm-aerosol.com [GRIMM Aerosol Technik GmbH and Co. KG, Dorfstrasse 9, D-83404 Ainring, Bayern (Germany)

    2011-07-06

    A wide range aerosol spectrometer (WRAS) was used for comprehensive long term measurements of aerosol size distributions. The system combines the results of an optical aerosol spectrometer with the results of a Scanning Mobility Particle Sizer (SMPS) to record essentially the full size range (5 nm - 32 {mu}m) of atmospheric particles in 72 channels. Measurements were carried out over one year (2009) at the Global Atmospheric Watch (GAW)-Station Hohenpeissenberg, Bavaria. Total particle number concentrations obtained from the aerosol size distributions were compared to the total number concentrations measured by a Condensation Particle Counter (CPC). The comparison showed an excellent agreement of the data. The high time resolution of 5 minutes allows the combination of the measured size distributions with meteorological data and correlations to gaseous pollutants (CO, NOx and SO2). A good correlation of particle number and CO concentrations was found for long distance transported small particles, which were probably mainly soot particles. Correlations to NOx were observed for aerosols from local sources such as traffic emissions. The formation of secondary aerosols from gaseous precursors was also observed. Episodes of relatively high concentration of particles in the range of 2-3 {mu}m were probably caused by pollen.

  5. Connectivity of wood thrush breeding, wintering, and migration sites based on range-wide tracking.

    Science.gov (United States)

    Stanley, Calandra Q; McKinnon, Emily A; Fraser, Kevin C; Macpherson, Maggie P; Casbourn, Garth; Friesen, Lyle; Marra, Peter P; Studds, Colin; Ryder, T Brandt; Diggs, Nora E; Stutchbury, Bridget J M

    2015-02-01

    Many migratory animals are experiencing rapid population declines, but migration data with the geographic scope and resolution to quantify the complex network of movements between breeding and nonbreeding regions are often lacking. Determining the most frequently used migration routes and nonbreeding regions for a species is critical for understanding population dynamics and making effective conservation decisions. We tracked the migration of individual Wood Thrushes (Hylocichla mustelina) (n = 102) from across their range with light-level geolocators and, for the first time, quantified migration routes and wintering regions for distinct breeding populations. We identified regional and species-level migratory connectivity networks for this declining songbird by combining our tracking results with range-wide breeding abundance estimates and forest cover data. More than 50% of the species occupied the eastern wintering range (Honduras to Costa Rica), a region that includes only one-third of all wintering habitat and that is undergoing intensive deforestation. We estimated that half of all Wood Thrushes in North America migrate south through Florida in fall, whereas in spring approximately 73% funnel northward through a narrow span along the central U.S. Gulf Coast (88-93°W). Identifying migratory networks is a critical step for conservation of songbirds and we demonstrated with Wood Thrushes how it can highlight conservation hotspots for regional populations and species as a whole.

  6. Range-wide assessment of livestock grazing across the sagebrush biome

    Science.gov (United States)

    Veblen, Kari E.; Pyke, David A.; Aldridge, Cameron L.; Casazza, Michael L.; Assal, Timothy J.; Farinha, Melissa A.

    2011-01-01

    Domestic livestock grazing occurs in virtually all sagebrush habitats and is a prominent disturbance factor. By affecting habitat condition and trend, grazing influences the resources required by, and thus, the distribution and abundance of sagebrush-obligate wildlife species (for example, sage-grouse Centrocercus spp.). Yet, the risks that livestock grazing may pose to these species and their habitats are not always clear. Although livestock grazing intensity and associated habitat condition may be known in many places at the local level, we have not yet been able to answer questions about use, condition, and trend at the landscape scale or at the range-wide scale for wildlife species. A great deal of information about grazing use, management regimes, and ecological condition exists at the local level (for individual livestock management units) under the oversight of organizations such as the Bureau of Land Management (BLM). However, the extent, quality, and types of existing data are unknown, which hinders the compilation, mapping, or analysis of these data. Once compiled, these data may be helpful for drawing conclusions about rangeland status, and we may be able to identify relationships between those data and wildlife habitat at the landscape scale. The overall objective of our study was to perform a range-wide assessment of livestock grazing effects (and the relevant supporting data) in sagebrush ecosystems managed by the BLM. Our assessments and analyses focused primarily on local-level management and data collected at the scale of BLM grazing allotments (that is, individual livestock management units). Specific objectives included the following: 1. Identify and refine existing range-wide datasets to be used for analyses of livestock grazing effects on sagebrush ecosystems. 2. Assess the extent, quality, and types of livestock grazing-related natural resource data collected by BLM range-wide (i.e., across allotments, districts and regions). 3. Compile and

  7. Activation of Lumbar Spinal Wide-Dynamic Range Neurons by a Sanshool Derivative

    Science.gov (United States)

    Sawyer, Carolyn M.; Carstens, Mirela Iodi; Simons, Christopher T.; Slack, Jay; McCluskey, T. Scott; Furrer, Stefan; Carstens, E.

    2009-01-01

    The enigmatic sensation of tingle involves the activation of primary sensory neurons by hydroxy-α-sanshool, a tingly agent in Szechuan peppers, by inhibiting two-pore potassium channels. Central mechanisms mediating tingle sensation are unknown. We investigated whether a stable derivative of sanshool—isobutylalkenyl amide (IBA)—excites wide-dynamic range (WDR) spinal neurons that participate in transmission of chemesthetic information from the skin. In anesthetized rats, the majority of WDR and low-threshold units responded to intradermal injection of IBA in a dose-related manner over a >5-min time course and exhibited tachyphylaxis at higher concentrations (1 and 10%). Almost all WDR and low-threshold units additionally responded to the pungent agents mustard oil (allyl isothiocyanate) and/or capsaicin, prompting reclassification of the low-threshold cells as WDR. The results are discussed in terms of the functional role of WDR neurons in mediating tingle sensation. PMID:19164099

  8. Wide Range Vacuum Pumps for the SAM Instrument on the MSL Curiosity Rover

    Science.gov (United States)

    Sorensen, Paul; Kline-Schoder, Robert; Farley, Rodger

    2014-01-01

    Creare Incorporated and NASA Goddard Space Flight Center developed and space qualified two wide range pumps (WRPs) that were included in the Sample Analysis at Mars (SAM) instrument. This instrument was subsequently integrated into the Mars Science Laboratory (MSL) "Curiosity Rover," launched aboard an Atlas V rocket in 2011, and landed on August 6, 2012, in the Gale Crater on Mars. The pumps have now operated for more than 18 months in the Gale Crater and have been evacuating the key components of the SAM instrument: a quadrupole mass spectrometer, a tunable laser spectrometer, and six gas chromatograph columns. In this paper, we describe the main design challenges and the ways in which they were solved. This includes the custom design of a miniaturized, high-speed motor to drive the turbo drag pump rotor, analysis of rotor dynamics for super critical operation, and bearing/lubricant design/selection.

  9. A study on the excore neutron flux monitoring system for the wide range measurement

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Jun; Jeong, Dae Won; Baek, Kwang Il; Lee, Jeong Yang; Ha, Jae Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-11-01

    This paper describes a study in which only one kind of neutron detector were used in the advanced ENFMS. The conceptual design was performed for overall system with unified fission chamber. The system consists of detector, junction box, wide-range amplifier and signal processing device. Also the requirements of 10CFR50 App. R were considered in design. On the other hand, through computer simulation, the characteristics of pulse-count mode and MSV mode was scrutinized and each noise withstanding capability was analyzed. The results say that 3rd moment has the more stable characteristics to background noise than MSV method. Also, to remain the integrity of information against noise, during installation and operation, the overall system of KSNP was analyzed from a view of noise. By administration for the cause of noise and noise-coupling paths, through the full understanding of noise characteristics, the transfer of the noise source can be minimized. (Author).

  10. An arrayed accelerometer device of a wide range of detection for integrated CMOS-MEMS technology

    Science.gov (United States)

    Konishi, Toshifumi; Yamane, Daisuke; Matsushima, Takaaki; Masu, Kazuya; Machida, Katsuyuki; Toshiyoshi, Hiroshi

    2014-02-01

    This paper reports the design and experimental results of an arrayed accelerometer device in 3 × 3 format that can detect wide range of acceleration between 1G and 20G (1G = 9.8 m/s2). Implemented in a single chip has been performed by gold electroplating for integrated complementary metal oxide semiconductor-microelectromechanical systems (CMOS-MEMS) technology. An equivalent circuit of a MEMS accelerometer has been developed with an electrical circuit simulator to demonstrate the mixed-behavior of the arrayed sensor device and sensing CMOS circuits. Mechanical and electrical crosstalk between the arrayed elements is analyzed on the electrical field distributions. Experimental results show that the resonant frequency and readout capacitance as a function of applied acceleration have been well explained by the results of the multi-physics simulation. As a result, it is confirmed that the proposed device is applicable to an integrated CMOS-MEMS arrayed accelerometer.

  11. Development of transparent silica aerogel over a wide range of densities

    CERN Document Server

    Tabata, Makoto; Ishii, Yoshikazu; Kawai, Hideyuki; Sumiyoshi, Takayuki; Yokogawa, Hiroshi; 10.1016/j.nima.2010.02.241

    2011-01-01

    We have succeeded in developing hydrophobic silica aerogels over a wide range of densities (i.e. refractive indices). A pinhole drying method was invented to make possible producing highly transparent aerogels with entirely new region of refractive indices of 1.06-1.26. Obtained aerogels are more transparent than conventional ones, and the refractive index is well controlled in the pinhole drying process. A test beam experiment was carried out in order to evaluate the performance of the pinhole-dried aerogels as a Cherenkov radiator. A clear Cherenkov ring was successfully observed by a ring imaging Cherenkov counter. We also developed monolithic and hydrophobic aerogels with a density of 0.01 g/cm^3 (a low refractive index of 1.0026) as a cosmic dust capturer for the first time. Consequently, aerogels with any refractive indices between 1.0026 and 1.26 can be produced freely.

  12. Development of a Piezoelectric Vacuum Sensing Component for a Wide Pressure Range

    Directory of Open Access Journals (Sweden)

    Bing-Yu Wang

    2014-11-01

    Full Text Available In this study, we develop a clamped–clamped beam-type piezoelectric vacuum pressure sensing element. The clamped–clamped piezoelectric beam is composed of a PZT layer and a copper substrate. A pair of electrodes is set near each end. An input voltage is applied to a pair of electrodes to vibrate the piezoelectric beam, and the output voltage is measured at the other pair. Because the viscous forces on the piezoelectric beam vary at different air pressures, the vibration of the beam depends on the vacuum pressure. The developed pressure sensor can sense a wide range of pressure, from 6.5 × 10−6 to 760 Torr. The experimental results showed that the output voltage is inversely proportional to the gas damping ratio, and thus, the vacuum pressure was estimated from the output voltage.

  13. Interaction factors for two elliptical embedded cracks with a wide range of aspect ratios

    Directory of Open Access Journals (Sweden)

    Kisaburo Azuma

    2017-02-01

    Full Text Available The value of stress intensity factor may be increased through the interaction of multiple cracks that are in close proximity to one another. We investigated the interaction factors of two equal elliptical cracks with a wide range of aspect ratios. Finite element analysis for a linear elastic solid was used to obtain the interaction factor for embedded cracks in an infinite model subjected to remote tension loading. Relationships between interaction factors and dimensionless distances between the cracks were discussed. The results demonstrated that the interaction factors depend on the crack aspect ratio, whose effect is related to the dimensionless distance. Thus, it is suggested that interaction factors can be reasonably characterized using different dimensionless distances depending on the aspect ratio. Finally, we provide a simple empirical formula for obtaining the interaction factors for embedded cracks.

  14. High-Accuracy Programmable Timing Generator with Wide-Range Tuning Capability

    Directory of Open Access Journals (Sweden)

    Ting-Li Chu

    2013-01-01

    Full Text Available In this paper, a high-accuracy programmable timing generator with wide-range tuning capability is proposed. With the aid of dual delay-locked loop (DLL, both of the coarse- and fine-tuning mechanisms are operated in precise closed-loop scheme to lessen the effects of the ambient variations. The timing generator can provide sub-gate resolution and instantaneous switching capability. The circuit is implemented and simulated in TSMC 0.18 μm 1P6M technology. The test chip area occupies 1.9 mm2. The reference clock cycle can be divided into 128 bins by interpolation to obtain 14 ps resolution with the clock rate at 550 MHz. The INL and DNL are within −0.21~+0.78 and −0.27~+0.43 LSB, respectively.

  15. Protein and water dynamics in bovine serum albumin-water mixtures over wide ranges of composition.

    Science.gov (United States)

    Panagopoulou, A; Kyritsis, A; Shinyashiki, N; Pissis, P

    2012-04-19

    Dielectric dynamic behavior of bovine serum albumin (BSA)-water mixtures over wide ranges of water fractions, from dry protein until 40 wt % in water, was studied through dielectric relaxation spectroscopy (DRS). The α relaxation associated with the glass transition of the hydrated system was identified. The evolution of the low temperature dielectric relaxation of small polar groups of the protein surface with hydration level results in the enhancement of dielectric response and the decrease of relaxation times, until a critical water fraction, which corresponds to the percolation threshold for protonic conductivity. For water fractions higher than the critical one, the position of the secondary ν relaxation of water saturates in the Arrhenius diagram, while contributions originating from water molecules in excess (uncrystallized water or ice) follow separate relaxation modes slower than the ν relaxation.

  16. Motor Integrated Permanent Magnet Gear with a Wide Torque-Speed Range

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand; Matzen, Torben N.; Jahns, T. M.

    2009-01-01

    This paper present a new motor integrated permanent magnet gear with a wide torque-speed range. In the paper a 35 kW permanent magnet motor with a base speed of 4000 rpm and a top speed of 14000 rpm is integrated into a permanent magnetic gear with a gearing ratio of 8.67. The design process...... of the combined unit is described together with a description of the construction of the part for a test model. The unit is unique in the sense that it has superior traction characteristics and a torque density of 130 Nm/l which is more 1.5 times of other reported motor integrated permanent magnet gears. The unit...... may be useful as a direct drive wheel motor for EV's and no liquid cooling system is required....

  17. Electrical, optical, and electronic properties of Al:ZnO films in a wide doping range

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, Ilaria; Valeri, Sergio [CNR, Istituto Nanoscienze, S3, Via G. Campi 213/a, 41125 Modena (Italy); Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Via G. Campi 213/a, 41125 Modena (Italy); Benedetti, Stefania, E-mail: stefania.benedetti@unimore.it; Bona, Alessandro di [CNR, Istituto Nanoscienze, S3, Via G. Campi 213/a, 41125 Modena (Italy); Lollobrigida, Valerio [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome, Italy and Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Perucchi, Andrea; Di Pietro, Paola [INSTM Udr Trieste-ST and Elettra-Sincrotrone Trieste S.C.p.A., Area Science Park, I-34012 Trieste (Italy); Lupi, Stefano [CNR-IOM and Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 2, I-00185 Roma (Italy); Torelli, Piero [Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, I-34149 Trieste (Italy)

    2015-10-28

    The combination of photoemission spectroscopies, infrared and UV-VIS absorption, and electric measurements has allowed to clarify the mechanisms governing the conductivity and the electronic properties of Al-doped ZnO (AZO) films in a wide doping range. The contribution of defect-related in-gap states to conduction has been excluded in optimally doped films (around 4 at. %). The appearance of gap states at high doping, the disappearance of occupied DOS at Fermi level, and the bands evolution complete the picture of electronic structure in AZO when doped above 4 at. %. In this situation, compensating defects deplete the conduction band and increase the electronic bandgap of the material. Electrical measurements and figure of merit determination confirm the high quality of the films obtained by magnetron sputtering, and thus allow to extend their properties to AZO films in general.

  18. The Danish Dyslexia Test. Validity of a wide-range, web-based test for dyslexia

    DEFF Research Database (Denmark)

    Poulsen, Mads; Elbro, Carsten; Møller, Helene Lykke;

    2016-01-01

    Purpose: Dyslexia is a long lasting problem in learning to decode written words accurately and fluently. This definition suggests that dyslexia remains sufficiently constant to be assessed reliably with just one wide-range test across all educational levels. The current study investigated...... this possibility by asking whether students who receive special support in reading differ from other students on the same scale of decoding across all educational levels. Method: Decoding and spelling measures from a newly developed, web-based Danish dyslexia test were taken from 1564 students from Grade 3...... of decoding can be a valid marker of dyslexia across educational levels. A unified test may simplify testing and facilitate a common understanding of dyslexia throughout the educational system....

  19. 320×240 Pixels CMOS Digital Image Sensor with Wide Dynamic Range

    Institute of Scientific and Technical Information of China (English)

    FANG Jie; WANG Jing-guang; HONG Zhi-liang

    2004-01-01

    A 320×240 CMOS image sensor is demonstrated,which is implemented by a standard 0.6 μm 2P2M CMOS process.For reducing the chip area,each 2×2-pixel block shares a sample/hold circuit,analog-to-digital converter and 1-b memory.The 2×2 pixel pitch has an area of 40 μm×40 μm and the fill factor is about 16%.While operating at a low frame rate,the sensor dissipates a very low power by power-management circuit making pixel-level comparators in an idle state.A digital correlated double sampling,which eliminates fixed pattern noise,improves SNR of the sensor, and multiple sampling operations make the sensor have a wide dynamic range.

  20. Wide range tuning of resonant frequency for a vortex core in a regular triangle magnet.

    Science.gov (United States)

    Yakata, Satoshi; Tanaka, Terumitsu; Kiseki, Kohei; Matsuyama, Kimihide; Kimura, Takashi

    2013-12-20

    A magnetic vortex structure stabilized in a micron or nano-sized ferromagnetic disk has a strong potential as a unit cell for spin-based nano-electronic devices because of negligible magnetostatic interaction and superior thermal stability. Moreover, various intriguing fundamental physics such as bloch point reversal and symmetry breaking can be induced in the dynamical behaviors in the magnetic vortex. The static and dynamic properties of the magnetic vortex can be tuned by the disk dimension and/or the separation distance between the disks. However, to realize these modifications, the preparations of other devices with different sample geometries are required. Here, we experimentally demonstrate that, in a regular-triangle Permalloy dot, the dynamic properties of a magnetic vortex are greatly modified by the application of the in-plane magnetic field. The obtained wide range tunability based on the asymmetric position dependence of the core potential provides attractive performances in the microwave spintronic devices.

  1. Study of Saturn Electrostatic Discharges in a Wide Range of Timec SCALES

    Science.gov (United States)

    Mylostna, K.; Zakharenko, V.; Konovalenko, A.; Kolyadin, V.; Zarka, P.; Griemeier, J.-M.; Litvinenko, G.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Nikolaenko, V.; Shevchenko, V.

    Saturn Electrostatic discharges (SED) are sporadic broadband impulsive radio bursts associated with lightning in Saturnian atmosphere. After 25 years of space investigations in 2006 the first successful observations of SED on the UTR-2 radio telescope were carried out [1]. Since 2007 a long-term program of ED search and study in the Solar system has started. As a part of this program the unique observations with high time resolution were taken in 2010. New possibilities of UTR-2 radio telescope allowed to provide a long-period observations and study with high temporal resolution. This article presents the results of SED study in a wide range of time scales: from seconds to microseconds. For the first time there were obtained a low frequency spectrum of SED. We calculated flux densities of individual bursts at the maximum achievable time resolution. Flux densities of most intensive bursts reach 4200 Jy.

  2. Evaluation of the Dynamic Velocity Effect for Steam Generator Wide Range Water Level

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, In Soo; Nam, Ki Haeng; Kim, Jeong Hoon; Yun, Jae Hee [Korea Power Engineering Company, Daejeon (Korea, Republic of)

    2010-05-15

    The measurement of Steam Generator (SG) water level is based upon pressure differential of the level transmitter. As shown in Fig. 1, if the location of a lower tap is in the downcomer region, a deviation between the indicated level and the actual level occurs. This phenomenon is called 'velocity effect' or 'dynamic effect.' This effect needs to be addressed to obtain a more accurate SG water level. Korean Utility Requirements Document (KURD) requires Downcomer Velocity Effect (DVE) to be quantified and to be considered in the instrument requirements. In this paper, DVE occurred through downcomer will be evaluated for SG wide range (WR) level for OPR1000

  3. Activation of lumbar spinal wide-dynamic range neurons by a sanshool derivative.

    Science.gov (United States)

    Sawyer, Carolyn M; Carstens, Mirela Iodi; Simons, Christopher T; Slack, Jay; McCluskey, T Scott; Furrer, Stefan; Carstens, E

    2009-04-01

    The enigmatic sensation of tingle involves the activation of primary sensory neurons by hydroxy-alpha-sanshool, a tingly agent in Szechuan peppers, by inhibiting two-pore potassium channels. Central mechanisms mediating tingle sensation are unknown. We investigated whether a stable derivative of sanshool-isobutylalkenyl amide (IBA)-excites wide-dynamic range (WDR) spinal neurons that participate in transmission of chemesthetic information from the skin. In anesthetized rats, the majority of WDR and low-threshold units responded to intradermal injection of IBA in a dose-related manner over a >5-min time course and exhibited tachyphylaxis at higher concentrations (1 and 10%). Almost all WDR and low-threshold units additionally responded to the pungent agents mustard oil (allyl isothiocyanate) and/or capsaicin, prompting reclassification of the low-threshold cells as WDR. The results are discussed in terms of the functional role of WDR neurons in mediating tingle sensation.

  4. Cooperative Downlink Listening for Low-Power Long-Range Wide-Area Network

    Directory of Open Access Journals (Sweden)

    Byoungwook Kim

    2017-04-01

    Full Text Available Recently, the development of the Internet of Things (IoT applications has become more active with the emergence of low-power wide-area network (LPWAN, which has the advantages of low-power and long communication distance. Among the various LPWAN technologies, long-range wide-area network (LoRaWAN, or LoRa is considered as the most mature technology. However, since LoRa performs uplink-oriented communication to increase energy efficiency, there is a restriction on the downlink function from the network server to the end devices. In this paper, we propose cooperative downlink listening to solve the fundamental problem of LoRa. In particular, the proposed scheme can be extended to various communication models such as groupcasting and geocasting by combining with the data-centric model. Experiments also show that the proposed technology not only significantly reduces network traffic compared to the LoRa standard, but also guarantees maximum energy efficiency of the LoRa.

  5. Empirical Correlations for Thermal Flowmeters Covering a Wide Range of Thermal-Physical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J.E.; Hylton, J.O.; McKnight, T.E.

    1999-07-19

    Thermal flowmeters can provide direct mass flow measurement of gases and vapors over a wide range of process conditions without the need for density corrections based on pressure and temperature. They are widely used in industrial processes that contain toxic, corrosive, or highly reactive gases. It is often not possible to calibrate the flowmeter on the process gas in which it will be used. In this case a non-hazardous �surrogate� gas is used for calibration, and a theoretical model used to predict the meter�s response in the process gas. This can lead to large measurement errors because there are no accurate and straightforward methods for predicting the performance on one kind of gas based on the calibration on another gas because of the complexity of the thermal processes within the flow sensor. This paper describes some of the commonly used models and conversion methods and presents work done at ORNL to develop and experimentally verify better thermal models for predicting flowmeter performance.

  6. Practice of building production planning system of company with a wide range of products - case study

    Directory of Open Access Journals (Sweden)

    Łukasz Hadaś

    2012-09-01

    Full Text Available Background: The complexity of the manufacturing environments of today's mechanical engineering companies and the number of both internal and external restrictions affecting to need of building tailored production planning and control systems. This statement is particularly important in conditions of companies with a wide range of products and different customer service strategies (different locations of the logistics decoupling point otherwise called "order penetration point". Streams of materials in these conditions require different management what is the main reason for carrying out research in business conditions by the authors. Material and methods: The research was carried out in industrial engineering in complex environmental conditions of production. This was a specializing in technology, multi-departments environment, with multiple streams of values and a wide range of products (about 500 items. The work was carried out under the transformation of the production system from the "push" logic of flow to "pull" logic of flow and building a dedicated system based on the best practice approach. Results: The paper describes the process of building tailored hybrid systems in the area of planning and shop flow control of production. The authors present the theoretical considerations on the issue and practical experiences. The authors present factors of selection of the transformation path and its road map. The article describes the part of the authors' own experience in the work on the methodology of transformation of Polish companies in the running business condition. Conclusions: Establishing the methodology of transformation of the production system is not a simple task. This paper presents only selected aspects of complex decision-making process. However, the authors presented work shows the important aspect of the transformation of production systems for these organizational conditions.

  7. Wide-Range Highly-Efficient Wireless Power Receivers for Implantable Biomedical Sensors

    KAUST Repository

    Ouda, Mahmoud

    2016-11-01

    Wireless power transfer (WPT) is the key enabler for a myriad of applications, from low-power RFIDs, and wireless sensors, to wirelessly charged electric vehicles, and even massive power transmission from space solar cells. One of the major challenges in designing implantable biomedical devices is the size and lifetime of the battery. Thus, replacing the battery with a miniaturized wireless power receiver (WPRx) facilitates designing sustainable biomedical implants in smaller volumes for sentient medical applications. In the first part of this dissertation, we propose a miniaturized, fully integrated, wirelessly powered implantable sensor with on-chip antenna, designed and implemented in a standard 0.18μm CMOS process. As a batteryless device, it can be implanted once inside the body with no need for further invasive surgeries to replace batteries. The proposed single-chip solution is designed for intraocular pressure monitoring (IOPM), and can serve as a sustainable platform for implantable devices or IoT nodes. A custom setup is developed to test the chip in a saline solution with electrical properties similar to those of the aqueous humor of the eye. The proposed chip, in this eye-like setup, is wirelessly charged to 1V from a 5W transmitter 3cm away from the chip. In the second part, we propose a self-biased, differential rectifier with enhanced efficiency over an extended range of input power. A prototype is designed for the medical implant communication service (MICS) band at 433MHz. It demonstrates an efficiency improvement of more than 40% in the rectifier power conversion efficiency (PCE) and a dynamic range extension of more than 50% relative to the conventional cross-coupled rectifier. A sensitivity of -15.2dBm input power for 1V output voltage and a peak PCE of 65% are achieved for a 50k load. In the third part, we propose a wide-range, differential RF-to-DC power converter using an adaptive, self-biasing technique. The proposed architecture doubles

  8. Adaptive Flutter Suppression for a Fighter Wing via Recurrent Neural Networks over a Wide Transonic Range

    Directory of Open Access Journals (Sweden)

    Haojie Liu

    2016-01-01

    Full Text Available The paper presents a digital adaptive controller of recurrent neural networks for the active flutter suppression of a wing structure over a wide transonic range. The basic idea behind the controller is as follows. At first, the parameters of recurrent neural networks, such as the number of neurons and the learning rate, are initially determined so as to suppress the flutter under a specific flight condition in the transonic regime. Then, the controller automatically adjusts itself for a new flight condition by updating the synaptic weights of networks online via the real-time recurrent learning algorithm. Hence, the controller is able to suppress the aeroelastic instability of the wing structure over a range of flight conditions in the transonic regime. To demonstrate the effectiveness and robustness of the controller, the aeroservoelastic model of a typical fighter wing with a tip missile was established and a single-input/single-output controller was synthesized. Numerical simulations of the open/closed-loop aeroservoelastic simulations were made to demonstrate the efficacy of the adaptive controller with respect to the change of flight parameters in the transonic regime.

  9. Thermal stimulated current response in cupric oxide single crystal thin films over a wide temperature range

    Science.gov (United States)

    Yang, Kungan; Wu, Shuxiang; Yu, Fengmei; Zhou, Wenqi; Wang, Yunjia; Meng, Meng; Wang, Gaili; Zhang, Yueli; Li, Shuwei

    2017-01-01

    Cupric oxide single crystal thin films (~26 nm) were grown by plasma-assisted molecular beam epitaxy. X-ray diffraction, Raman spectra and in situ reflection high-energy electron diffraction show that the thin films are 2  ×  2 reconstructed with an in-plane compression and out-of-plane stretching. A thermal stimulated current measurement indicates that the electric polarization response is shown in the special 2D cupric oxide single crystal thin film over a wide temperature range from 130 K to near-room temperature. We infer that the abnormal electric response involves the changing of phase transition temperature induced by structure distortion, the spin frustration and the magnetic fluctuation effect of a short-range magnetic order, or the combined action of both of the two factors mentioned above. This work suggests a promising clue for finding new room temperature single phase multiferroics or tuning phase transition temperatures.

  10. Range-wide wetland associations of the King Rail: A multi-scale approach

    Science.gov (United States)

    Glisson, Wesley J.; Conway, Courtney J.; Nadeau, Christopher P.; Borgmann, Kathi L.; Laxson, Thomas A.

    2015-01-01

    King Rail populations have declined and identifying wetland features that influence King Rail occupancy can help prevent further population declines. We integrated continent-wide marsh bird survey data with spatial wetland data from the National Wetland Inventory (NWI) to examine wetland features that influenced King Rail occupancy throughout the species’ range. We analyzed wetland data at 7 spatial scales to examine the scale(s) at which 68 wetland features were most strongly related to King Rail occupancy. Occupancy was most strongly associated with estuarine features and brackish and tidal saltwater regimes. King Rail occupancy was positively associated with emergent and scrub-shrub wetlands and negatively associated with forested wetlands. The best spatial scale for assessing King Rail occupancy differed among wetland features; we could not identify one spatial scale (among all wetland features) that best explained variation in occupancy. Future research on King Rail habitat that includes multiple spatial scales is more likely to identify the suite of features that influence occupancy. Our results indicate that NWI data may be useful for predicting occupancy based on broad habitat features across the King Rail’s range, which may help inform management decisions for this and other wetland-dependent birds.

  11. A wide-range programmable frequency synthesizer based on a finite state machine filter

    Science.gov (United States)

    Alser, Mohammed H.; Assaad, Maher M.; Hussin, Fawnizu A.

    2013-11-01

    In this article, an FPGA-based design and implementation of a fully digital wide-range programmable frequency synthesizer based on a finite state machine filter is presented. The advantages of the proposed architecture are that, it simultaneously generates a high frequency signal from a low frequency reference signal (i.e. synthesising), and synchronising the two signals (signals have the same phase, or a constant difference) without jitter accumulation issue. The architecture is portable and can be easily implemented for various platforms, such as FPGAs and integrated circuits. The frequency synthesizer circuit can be used as a part of SERDES devices in intra/inter chip communication in system-on-chip (SoC). The proposed circuit is designed using Verilog language and synthesized for the Altera DE2-70 development board, with the Cyclone II (EP2C35F672C6) device on board. Simulation and experimental results are included; they prove the synthesizing and tracking features of the proposed architecture. The generated clock signal frequency of a range from 19.8 MHz to 440 MHz is synchronized to the input reference clock with a frequency step of 0.12 MHz.

  12. Range-wide population genetic structure of the Caribbean sea fan coral, Gorgonia ventalina.

    Science.gov (United States)

    Andras, Jason P; Rypien, Krystal L; Harvell, Catherine D

    2013-01-01

    The population structure of benthic marine organisms is of central relevance to the conservation and management of these often threatened species, as well as to the accurate understanding of their ecological and evolutionary dynamics. A growing body of evidence suggests that marine populations can be structured over short distances despite theoretically high dispersal potential. Yet the proposed mechanisms governing this structure vary, and existing empirical population genetic evidence is of insufficient taxonomic and geographic scope to allow for strong general inferences. Here, we describe the range-wide population genetic structure of an ecologically important Caribbean octocoral, Gorgonia ventalina. Genetic differentiation was positively correlated with geographic distance and negatively correlated with oceanographically modelled dispersal probability throughout the range. Although we observed admixture across hundreds of kilometres, estimated dispersal was low, and populations were differentiated across distances <2 km. These results suggest that populations of G. ventalina may be evolutionarily coupled via gene flow but are largely demographically independent. Observed patterns of differentiation corroborate biogeographic breaks found in other taxa (e.g. an east/west divide near Puerto Rico), and also identify population divides not discussed in previous studies (e.g. the Yucatan Channel). High genotypic diversity and absence of clonemates indicate that sex is the primary reproductive mode for G. ventalina. A comparative analysis of the population structure of G. ventalina and its dinoflagellate symbiont, Symbiodinium, indicates that the dispersal of these symbiotic partners is not coupled, and symbiont transmission occurs horizontally.

  13. Reactions of Cr3+ with aspartic acid within a wide pH range

    Directory of Open Access Journals (Sweden)

    Yahia Z. Hamada

    2014-12-01

    Full Text Available Formation of the metal complexes of aspartic acid (Asp with the chromium metal ion (Cr3+ in solutions using potentiometric titrations is presented within a wide pH range (∼3.5 to ∼10.5 at 25°C and I=0.10 M NaNO3. Concentration distribution diagrams revealed that the main complex formed within this pH range is the bis Cr 3+ complex. Literature stability constant values for the Cr–Asp complexes were used to construct concentration distribution diagrams. Complexes taken into consideration were the simple one-to-one complex, the bis-complex, and the bis-mono-protonated complex, namely, Cr–Asp, Cr(Asp2, and Cr(Asp2H. The corresponding Log β values of these complexes were 12.46, 21.86, and 24.30, respectively. UV–Vis spectra demonstrate Cr 3+–Asp binding. The UV–Vis spectra were collected from a system that reached a high level of equilibrium state (50 days’ equilibrium time.

  14. Hardware Implementation of an Automatic Rendering Tone Mapping Algorithm for a Wide Dynamic Range Display

    Directory of Open Access Journals (Sweden)

    Orly Yadid-Pecht

    2013-10-01

    Full Text Available Tone mapping algorithms are used to adapt captured wide dynamic range (WDR scenes to the limited dynamic range of available display devices. Although there are several tone mapping algorithms available, most of them require manual tuning of their rendering parameters. In addition, the high complexities of some of these algorithms make it difficult to implement efficient real-time hardware systems. In this work, a real-time hardware implementation of an exponent-based tone mapping algorithm is presented. The algorithm performs a mixture of both global and local compression on colored WDR images. An automatic parameter selector has been proposed for the tone mapping algorithm in order to achieve good tone-mapped images without manual reconfiguration of the algorithm for each WDR image. Both algorithms are described in Verilog and synthesized for a field programmable gate array (FPGA. The hardware architecture employs a combination of parallelism and system pipelining, so as to achieve a high performance in power consumption, hardware resources usage and processing speed. Results show that the hardware architecture produces images of good visual quality that can be compared to software-based tone mapping algorithms. High peak signal-to-noise ratio (PSNR and structural similarity (SSIM scores were obtained when the results were compared with output images obtained from software simulations using MATLAB.

  15. Polarization mosaicing: high dynamic range and polarization imaging in a wide field of view

    Science.gov (United States)

    Schechner, Yoav Y.; Nayar, Shree K.

    2003-12-01

    We present an approach for imaging the polarization state of scene points in a wide field of view, while enhancing the radiometric dynamic range of imaging systems. This is achieved by a simple modification of image mosaicking, which is a common technique in remote sensing. In traditional image mosaics, images taken in varying directions or positions are stitched to obtain a larger image. Yet, as the camera moves, it senses each scene point multiple times in overlapping regions of the raw frames. We rigidly attach to the camera a fixed, spatially varying polarization and attenuation filter. This way, the camera motion-induced multiple measurements per scene point are taken under different optical settings. This is in contrast to the redundant measurements of traditional mosaics. Computational algorithms then analyze the data to extract polarization imaging with high dynamic range across the mosaic field of view. We developed a Maximum Likelihood method to automatically register the images, in spite of the challenging spatially varying effects. Then, we use Maximum Likelihood to handle, in a single framework, variable exposures (due to transmittance variations), saturation, and partial polarization filtering. As a by product, these results enable polarization settings of cameras to change while the camera moves, alleviating the need for camera stability. This work demonstrates the modularity of the Generalized Mosaicing approach, which we recently introduced for multispectral image mosaics. The results are useful for the wealth of polarization imaging applications, in addition to mosaicking applications, particularly remote sensing. We demonstrate experimental results obtained using a system we built.

  16. A Range-Wide Experiment to Investigate Nutrient and Soil Moisture Interactions in Loblolly Pine Plantations

    Directory of Open Access Journals (Sweden)

    Rodney E. Will

    2015-06-01

    Full Text Available The future climate of the southeastern USA is predicted to be warmer, drier and more variable in rainfall, which may increase drought frequency and intensity. Loblolly pine (Pinus taeda is the most important commercial tree species in the world and is planted on ~11 million ha within its native range in the southeastern USA. A regional study was installed to evaluate effects of decreased rainfall and nutrient additions on loblolly pine plantation productivity and physiology. Four locations were established to capture the range-wide variability of soil and climate. Treatments were initiated in 2012 and consisted of a factorial combination of throughfall reduction (approximate 30% reduction and fertilization (complete suite of nutrients. Tree and stand growth were measured at each site. Results after two growing seasons indicate a positive but variable response of fertilization on stand volume increment at all four sites and a negative effect of throughfall reduction at two sites. Data will be used to produce robust process model parameterizations useful for simulating loblolly pine growth and function under future, novel climate and management scenarios. The resulting improved models will provide support for developing management strategies to increase pine plantation productivity and carbon sequestration under a changing climate.

  17. Recommended methods for range-wide monitoring of prairie dogs in the United States

    Science.gov (United States)

    McDonald, Lyman L.; Stanley, Thomas R.; Otis, David L.; Biggins, Dean E.; Stevens, Patricia D.; Koprowski, John L.; Ballard, Warren

    2011-01-01

    One of the greatest challenges for conserving grassland, prairie scrub, and shrub-steppe ecosystems is maintaining prairie dog populations across the landscape. Of the four species of prairie dogs found in the United States, the Utah prairie dog (Cynomys parvidens) is listed under the Endangered Species Act (ESA) as threatened, the Gunnison's prairie dog (C. gunnisoni) is a candidate for listing in a portion of its range, and the black-tailed prairie dog (C. ludovicianus) and white-tailed prairie dog (C. leucurus) have each been petitioned for listing at least once in recent history. Although the U.S. Fish and Wildlife Service (USFWS) determined listing is not warranted for either the black-tailed prairie dog or white-tailed prairie dog, the petitions and associated reviews demonstrated the need for the States to monitor and manage for self-sustaining populations. In response to these findings, a multi-State conservation effort was initiated for the nonlisted species which included the following proposed actions: (1) completing an assessment of each prairie dog species in each State, (2) developing a range-wide monitoring protocol for each species using a statistically valid sampling procedure that would allow comparable analyses across States, and (3) monitoring prairie dog status every 3-5 years depending upon the species. To date, each State has completed an assessment and currently is monitoring prairie dog status; however, for some species, the inconsistency in survey methodology has made it difficult to compare data year-to-year or State-to-State. At the Prairie Dog Conservation Team meeting held in November 2008, there was discussion regarding the use of different methods to survey prairie dogs. A recommendation from this meeting was to convene a panel in a workshop-type forum and have the panel review the different methods being used and provide recommendations for range-wide monitoring protocols for each species of prairie dog. Consequently, the Western

  18. A Numerical Study of Comet Mcnaught over a Wide Range of Heliocentric Distances

    Science.gov (United States)

    Shou, Yinsi; Combi, M. R.; Rubin, M.; Toth, G.

    2012-10-01

    A numerical study of Comet McNaught over a wide range of heliocentric distances Yinsi Shou, Michael R. Combi, Martin Rubin, Gabor Toth The Comet C/2006 P1 (McNaught) has a small perihelion distance (0.17 AU) and had a very high production rate during its passage close to the Sun in January and February of 2007. During that period, it was monitored by both ground- and space-based observatories, which provided substantial information about the comet. In early February, the Ulysses spacecraft encountered its ion tail and gave clues to the surrounding solar wind conditions and to the cometary environment. Therefore, Comet McNaught is an ideal object to study the cometary structures under extreme conditions and the solar wind-comet interaction over a wide range of heliocentric distances. A numerical study of Comet McNaught combining two models is conducted. First, a single species magnetohydrodynamics (MHD) [Gombosi et al. (1996, JGR 101, 15233)] simulation is performed using a set of ‘observed’ comet parameters as input. Then a chemistry model [Häberli et al. (1997, Icarus 130, 373)] extracts the streamlines from the MHD model and calculates the densities of different species accounting for photo-dissociation, photo-ionization, electron recombination, ion-molecule and charge-exchange reactions. The MHD results are able to give the diamagnetic cavity sizes and shock distances at various heliocentric distances while the chemistry model better resolves the distribution of the major chemical species in the cometary plasma environment. The combination of the two models allows us to obtain detailed information on the chemical composition of a much wider range of atoms and molecules compared to multi-species or multi-fluid MHD models and at much lower computational expense. Some preliminary results are presented and discussed. This work has been partially supported by grant AST-0707283 from the NSF Planetary Astronomy program and NASA Planetary Atmospheres program grant

  19. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Yohai [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel); Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States)

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  20. Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures

    Science.gov (United States)

    Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan

    2016-06-01

    The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates ( 10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass ( α ) transition and the secondary ( β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.

  1. Range-wide genetic connectivity of the Hawaiian monk seal and implications for translocation.

    Science.gov (United States)

    Schultz, Jennifer K; Baker, Jason D; Toonen, Robert J; Harting, Albert L; Bowen, Brian W

    2011-02-01

    The Hawaiian monk seal (Monachus schauinslandi) is one of the most critically endangered marine mammals. Less than 1200 individuals remain, and the species is declining at a rate of approximately 4% per year as a result of juvenile starvation, shark predation, and entanglement in marine debris. Some of these problems may be alleviated by translocation; however, if island breeding aggregates are effectively isolated subpopulations, moving individuals may disrupt local adaptations. In these circumstances, managers must balance the pragmatic need of increasing survival with theoretical concerns about genetic viability. To assess range-wide population structure of the Hawaiian monk seal, we examined an unprecedented, near-complete genetic inventory of the species (n =1897 seals, sampled over 14 years) at 18 microsatellite loci. Genetic variation was not spatially partitioned ((w) =-0.03, p = 1.0), and a Bayesian clustering method provided evidence of one panmictic population (K =1). Pairwise F(ST) comparisons (among 7 island aggregates over 14 annual cohorts) did not reveal temporally stable, spatial reproductive isolation. Our results coupled with long-term tag-resight data confirm seal movement and gene flow throughout the Hawaiian Archipelago. Thus, human-mediated translocation of seals among locations is not likely to result in genetic incompatibilities.

  2. An Integrated Programmable Wide-range PLL for Switching Synchronization in Isolated DC-DC Converters

    Science.gov (United States)

    Fard, Miad

    In this thesis, two Phase-Locked-Loop (PLL) based synchronization schemes are introduced and applied to a bi-directional Dual-Active-Bridge (DAB) dc-dc converter with an input voltage up to 80 V switching in the range of 250 kHz to 1 MHz. The two schemes synchronize gating signals across an isolated boundary without the need for an isolator per transistor. The Power Transformer Sensing (PTS) method utilizes the DAB power transformer to indirectly sense switching on the secondary side of the boundary, while the Digital Isolator Sensing (DIS) method utilizes a miniature transformer for synchronization and communication at up to 100 MHz. The PLL is implemented on-chip, and is used to control an external DAB power-stage. This work will lead to lower cost, high-frequency isolated dc-dc converters needed for a wide variety of emerging low power applications where isolator cost is relatively high and there is a demand for the reduction of parts.

  3. Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures

    Science.gov (United States)

    Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan

    2017-02-01

    The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates (10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass (α ) transition and the secondary (β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.

  4. A “twisted” microfluidic mixer suitable for a wide range of flow rate applications

    Science.gov (United States)

    Sivashankar, Shilpa; Agambayev, Sumeyra; Mashraei, Yousof; Li, Er Qiang; Thoroddsen, Sigurdur T.; Salama, Khaled Nabil

    2016-01-01

    This paper proposes a new “twisted” 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices. PMID:27453767

  5. A "twisted" microfluidic mixer suitable for a wide range of flow rate applications.

    Science.gov (United States)

    Sivashankar, Shilpa; Agambayev, Sumeyra; Mashraei, Yousof; Li, Er Qiang; Thoroddsen, Sigurdur T; Salama, Khaled Nabil

    2016-05-01

    This paper proposes a new "twisted" 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices.

  6. An abundance of small exoplanets around stars with a wide range of metallicities.

    Science.gov (United States)

    Buchhave, Lars A; Latham, David W; Johansen, Anders; Bizzarro, Martin; Torres, Guillermo; Rowe, Jason F; Batalha, Natalie M; Borucki, William J; Brugamyer, Erik; Caldwell, Caroline; Bryson, Stephen T; Ciardi, David R; Cochran, William D; Endl, Michael; Esquerdo, Gilbert A; Ford, Eric B; Geary, John C; Gilliland, Ronald L; Hansen, Terese; Isaacson, Howard; Laird, John B; Lucas, Philip W; Marcy, Geoffrey W; Morse, Jon A; Robertson, Paul; Shporer, Avi; Stefanik, Robert P; Still, Martin; Quinn, Samuel N

    2012-06-13

    The abundance of heavy elements (metallicity) in the photospheres of stars similar to the Sun provides a 'fossil' record of the chemical composition of the initial protoplanetary disk. Metal-rich stars are much more likely to harbour gas giant planets, supporting the model that planets form by accumulation of dust and ice particles. Recent ground-based surveys suggest that this correlation is weakened for Neptunian-sized planets. However, how the relationship between size and metallicity extends into the regime of terrestrial-sized exoplanets is unknown. Here we report spectroscopic metallicities of the host stars of 226 small exoplanet candidates discovered by NASA's Kepler mission, including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but on average a metallicity close to that of the Sun), whereas large planets preferentially form around stars with higher metallicities. This observation suggests that terrestrial planets may be widespread in the disk of the Galaxy, with no special requirement of enhanced metallicity for their formation.

  7. Carbon nanotube vacuum gauges with wide-dynamic range and processes thereof

    Science.gov (United States)

    Manohara, Harish (Inventor); Kaul, Anupama B. (Inventor)

    2013-01-01

    A miniature thermal conductivity gauge employs a carbon single-walled-nanotube. The gauge operates on the principle of thermal exchange between the voltage-biased nanotube and the surrounding gas at low levels of power and low temperatures to measure vacuum across a wide dynamic range. The gauge includes two terminals, a source of constant voltage to the terminals, a single-walled carbon nanotube between the terminals, a calibration of measured conductance of the nanotube to magnitudes of surrounding vacuum and a current meter in electrical communication with the source of constant voltage. Employment of the nanotube for measuring vacuum includes calibrating the electrical conductance of the nanotube to magnitudes of vacuum, exposing the nanotube to a vacuum, applying a constant voltage across the nanotube, measuring the electrical conductance of the nanotube in the vacuum with the constant voltage applied and converting the measured electrical conductance to the corresponding calibrated magnitude of vacuum using the calibration. The nanotube may be suspended to minimize heat dissipation through the substrate, increasing sensitivity at even tower pressures.

  8. Effects of Sevoflurane on the discharges of wide dynamic range neurons in spinally transected rats

    Institute of Scientific and Technical Information of China (English)

    WANG Ying-wei; XIONG Yuan-chang; DENG Xiao-ming; ZHAO Zhi-qi

    2004-01-01

    Objective: To study the effects of clinical concentration of sevoflurane on activity of wide dynamic range neurons. Methods: Eight Spraque-Dawley rats(male) were selected. Their spinal cords were exposed and transected at T9- 10 level. The rate of firings of single neurons in the dorsal horn in response to electrical stimulation of skin was recorded with microelectrodes. The early and late discharges were observed when rats inhaled 0.5%, 1.0%, 1.5%, and 2.0%sevoflurane. Results: Sevoflurane suppressed the early and late discharges at the concentration of 0.5%, 1.0%, 1.5%,and 2.0%. Compared with early discharges, the extent of inhibition of late discharges was wider at the concentration of1%, 1.5 %, and 2.0% of sevoflurane. Conclusion: It is indicated that sevoflurane could suppress the transmission of nociceptive and non-nociceptive stimulation at dorsal horn. The suppression on nociceptive imput is stronger than that on nonnociceptive imput when the concentration of sevoflurane is more than 1%.

  9. Thermal analysis of the mixtures of paraffin with aluminum in wide temperature range

    Science.gov (United States)

    Gubin, S. A.; Maklashova, I. V.; Levitskaya, I. S.

    2016-09-01

    The mixtures and composites of wax, paraffin and metals are widely used as energy efficient formulations and phase change materials for heat storage. Aluminum is frequently employed in the formulations of many composite explosives or propellants. Metal fuel additives are used in advanced explosive formulations to achieve higher combustion temperatures and longer pressure pulses. In this project, Al-paraffin wax composite materials were prepared and characterized. The thermal stability of the prepared powders was determined by differential scanning calorimeter, simultaneous thermogravimetry analysis- differential thermal analysis in the temperature range 30-1300°C at atmospheric pressure. The results of differential scanning calorimeter showed that the thermal performance and structure of the composite materials are stable up to 200°C.The paraffindecompositionwith an energy release is possible at temperatures over 200°C and the oxidation of aluminum may be at a temperature above its melting point.It is shown that the maximum total amount of heat generated by the thermal decomposition of the composition was at the mass fraction of aluminum of 16% - 18%.

  10. Simple Wide Frequency Range Impedance Meter Based on AD5933 Integrated Circuit

    Directory of Open Access Journals (Sweden)

    Chabowski Konrad

    2015-03-01

    Full Text Available As it contains elements of complete digital impedance meter, the AD5933 integrated circuit is an interesting solution for impedance measurements. However, its use for measurements in a wide range of impedances and frequencies requires an additional digital and analogue circuitry. This paper presents the design and performance of a simple impedance meter based on the AD5933 IC. Apart from the AD5933 IC it consists of a clock generator with a programmable prescaler, a novel DC offset canceller for the excitation signal based on peak detectors and a current to voltage converter with switchable conversion ratios. The authors proposed a simple method for choosing the measurement frequency to minimalize errors resulting from the spectral leakage and distortion caused by a lack of an anti-aliasing filter in the DDS generator. Additionally, a novel method for the AD5933 IC calibration was proposed. It consists in a mathematical compensation of the systematic error occurring in the argument of the value returned from the AD5933 IC as a result. The performance of the whole system is demonstrated in an exemplary measurement.

  11. A lithium-ion capacitor model working on a wide temperature range

    Science.gov (United States)

    Barcellona, S.; Piegari, L.

    2017-02-01

    Energy storage systems are spreading both in stationary and transport applications. Among innovative storage devices, lithium ion capacitors (LiCs) are very interesting. They combine the advantages of both traditional electric double layer capacitors (EDLCs) and lithium ion batteries (LiBs). The behavior of this device is much more similar to ELDCs than to batteries. For this reason, several models developed for traditional ELDCs were extended to LiCs. Anyway, at low temperatures LiCs behavior is quite different from ELDCs and it is more similar to a LiB. Consequently, EDLC models works fine at room temperature but give worse results at low temperatures. This paper proposes a new electric model that, overcoming this issue, is a valid solution in a wide temperature range. Based on only five parameters, depending on polarization voltage and temperature, the proposed model is very simple to be implemented. Its accuracy is verified through experimental tests. From the reported results, it is also shown that, at very low temperatures, the dependence of the resistance from the current has to be taken into account.

  12. Harvesting Ambient Vibration Energy over a Wide Frequency Range for Self-Powered Electronics.

    Science.gov (United States)

    Wang, Xiaofeng; Niu, Simiao; Yi, Fang; Yin, Yajiang; Hao, Chenglong; Dai, Keren; Zhang, Yue; You, Zheng; Wang, Zhong Lin

    2017-02-28

    Vibration is one of the most common energy sources in ambient environment. Harvesting vibration energy is a promising route to sustainably drive small electronics. This work introduces an approach to scavenge vibrational energy over a wide frequency range as an exclusive power source for continuous operation of electronics. An elastic multiunit triboelectric nanogenerator (TENG) is rationally designed to efficiently harvest low-frequency vibration energy, which can provide a maximum instantaneous output power density of 102 W·m(-3) at as low as 7 Hz and maintain its stable current outputs from 5 to 25 Hz. A self-charging power unit (SCPU) combining the TENG and a 10 mF supercapacitor gives a continuous direct current (DC) power delivery of 1.14 mW at a power management efficiency of 45.6% at 20 Hz. The performance of the SCPU can be further enhanced by a specially designed power management circuit, with a continuous DC power of 2 mW and power management efficiency of 60% at 7 Hz. Electronics such as a thermometer, hygrometer, and speedometer can be sustainably powered solely by the harvested vibration energy from a machine or riding bicycle. This approach has potential applications in self-powered systems for environment monitoring, machine safety, and transportation.

  13. WIDE RANGE ACHIEVEMENT TEST IN AUTISM SPECTRUM DISORDER: TEST-RETEST STABILITY.

    Science.gov (United States)

    Jantz, Paul B; Bigler, Erin D; Froehlich, Alyson L; Prigge, Molly B D; Cariello, Annahir N; Travers, Brittany G; Anderson, Jeffrey; Zielinski, Brandon A; Alexander, Andrew L; Lange, Nicholas; Lainhart, Janet E

    2015-06-01

    The principal goal of this descriptive study was to establish the test-retest stability of the Reading, Spelling, and Arithmetic subtest scores of the Wide Range Achievement Test (WRAT-3) across two administrations in individuals with autism spectrum disorder. Participants (N = 31) were males ages 6-22 years (M = 15.2, SD = 4.0) who were part of a larger ongoing longitudinal study of brain development in children and adults with autism spectrum disorder (N = 185). Test-retest stability for all three subtests remained consistent across administration periods (M = 31.8 mo., SD = 4.1). Age at time of administration, time between administrations, and test form did not significantly influence test-retest stability. Results indicated that for research involving individuals with autism spectrum disorder with a full scale intelligence quotient above 75, the WRAT-3 Spelling and Arithmetic subtests have acceptable test-retest stability over time and the Reading subtest has moderate test-retest stability over time.

  14. WIDE RANGE ACHIEVEMENT TEST IN AUTISM SPECTRUM DISORDER: TEST-RETEST STABILITY1, 2, 3

    Science.gov (United States)

    JANTZ, PAUL B.; FROEHLICH, ALYSON L.; CARIELLO, ANNAHIR N.; ANDERSON, JEFFREY; ALEXANDER, ANDREW L.; BIGLER, ERIN D.; PRIGGE, MOLLY B. D.; TRAVERS, BRITTANY G.; ZIELINSKI, BRANDON A.; LANGE, NICHOLAS; LAINHART, JANET E.

    2015-01-01

    Summary The principal goal of this descriptive study was to establish the test-retest stability of the Reading, Spelling, and Arithmetic subtest scores of the Wide Range Achievement Test (WRAT–3) across two administrations in individuals with autism spectrum disorder. Participants (N=31) were males ages 6–22years (M=15.2, SD=4.0) who were part of a larger ongoing longitudinal study of brain development in children and adults with autism spectrum disorder (N=185). Test-retest stability for all three subtests remained consistent across administration periods (M=31.8mo., SD=4.1). Age at time of administration, time between administrations, and test form did not significantly influence test-retest stability. Results indicated that for research involving individuals with autism spectrum disorder with a full scale intelligence quotient above 75, the WRAT–3 Spelling and Arithmetic subtests have acceptable test-retest stability over time and the Reading subtest has moderate test-retest stability over time. PMID:25871566

  15. Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity.

    Science.gov (United States)

    Kang, Hyun-Wook; Cho, Dong-Woo

    2012-09-01

    Tissue engineering, which is the study of generating biological substitutes to restore or replace tissues or organs, has the potential to meet current needs for organ transplantation and medical interventions. Various approaches have been attempted to apply three-dimensional (3D) solid freeform fabrication technologies to tissue engineering for scaffold fabrication. Among these, the stereolithography (SL) technology not only has the highest resolution, but also offers quick fabrication. However, a lack of suitable biomaterials is a barrier to applying the SL technology to tissue engineering. In this study, an indirect SL method that combines the SL technology and a sacrificial molding process was developed to address this challenge. A sacrificial mold with an inverse porous shape was fabricated from an alkali-soluble photopolymer by the SL technology. A sacrificial molding process was then developed for scaffold construction using a variety of biomaterials. The results indicated a wide range of biomaterial selectivity and a high resolution. Achievable minimum pore and strut sizes were as large as 50 and 65 μm, respectively. This technology can also be used to fabricate three-dimensional organ shapes, and combined with traditional fabrication methods to construct a new type of scaffold with a dual-pore size. Cytotoxicity tests, as well as nuclear magnetic resonance and gel permeation chromatography analyses, showed that this technology has great potential for tissue engineering applications.

  16. Novel Cross-Type Network for Wide-Tuning-Range Reconfigurable Multiband Antennas

    Directory of Open Access Journals (Sweden)

    Chieh-Sen Lee

    2014-01-01

    Full Text Available This paper presents a cross-type network design with a novel reconfigurable functionality to realize a tunable multiband antenna. By attaching a reconfigurable network at the feeding port of a broadband antenna, multi-input impedance adjustment enables the production of multimatching operating bands. Each band can be independently controlled by a single component with a considerably wide tuning range and high selectivity. The experiments in this study involved using an ultra-wideband (UWB antenna connected to the proposed cross-type network. The tunable antenna operates in a dual band of fL (1.39 to 2.34 GHz and fH (2.1 to 3.6 GHz with tunable frequency ratios of 168% and 132%, respectively. The average bandwidths at fL and fH are approximately 50 MHz and 148 MHz, respectively, implying narrowband operation. The measured radiation pattern revealed that the tunable antenna exhibits a nearly omnidirectional radiation pattern at both 1.8 and 3.5 GHz. The network circuit architecture can be extended to the multiband function type by adopting this matching approach. The amount of shunt matches determines the number of operation bands.

  17. A Wide-Range Displacement Sensor Based on Plastic Fiber Macro-Bend Coupling.

    Science.gov (United States)

    Liu, Jia; Hou, Yulong; Zhang, Huixin; Jia, Pinggang; Su, Shan; Fang, Guocheng; Liu, Wenyi; Xiong, Jijun

    2017-01-20

    This paper proposes the strategy of fabricating an all fiber wide-range displacement sensor based on the macro-bend coupling effect which causes power transmission between two twisted bending plastic optical fibers (POF), where the coupling power changes with the bending radius of the fibers. For the sensor, a structure of two twisted plastic fibers is designed with the experimental platform that we constructed. The influence of external temperature and displacement speed shifts are reported. The displacement sensor performance is the sensor test at different temperatures and speeds. The sensor was found to be satisfactory at both room temperature and 70 °C when the displacement is up to 140 mm. The output power is approximately linear to a displacement of 110 mm-140 mm under room temperature and 2 mm/s speed at 19.805 nW/mm sensitivity and 0.12 mm resolution. The simple structure of the sensor makes it reliable for other applications and further utilizations, promising a bright future.

  18. A Wide-Range Displacement Sensor Based on Plastic Fiber Macro-Bend Coupling

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-01-01

    Full Text Available This paper proposes the strategy of fabricating an all fiber wide-range displacement sensor based on the macro-bend coupling effect which causes power transmission between two twisted bending plastic optical fibers (POF, where the coupling power changes with the bending radius of the fibers. For the sensor, a structure of two twisted plastic fibers is designed with the experimental platform that we constructed. The influence of external temperature and displacement speed shifts are reported. The displacement sensor performance is the sensor test at different temperatures and speeds. The sensor was found to be satisfactory at both room temperature and 70 °C when the displacement is up to 140 mm. The output power is approximately linear to a displacement of 110 mm–140 mm under room temperature and 2 mm/s speed at 19.805 nW/mm sensitivity and 0.12 mm resolution. The simple structure of the sensor makes it reliable for other applications and further utilizations, promising a bright future.

  19. Performance of wide temperature range electrolytes for Li-Ion capacitor pouch cells

    Science.gov (United States)

    Cappetto, A.; Cao, W. J.; Luo, J. F.; Hagen, M.; Adams, D.; Shelikeri, A.; Xu, K.; Zheng, J. P.

    2017-08-01

    Four types of wide temperature-range electrolyte formulations based on carbonate and carboxylate esters were evaluated at various temperatures in lithium-ion capacitor (LIC) pouch cells consisting of both hard carbon (HC) and graphite negative electrodes (NEs) with thin lithium foil and an activated carbon (AC) positive electrodes (PEs). The electrolytes containing methyl butyrate (MB) with various additives enabled the LIC to operate at -40 °C, where all electrolytes based only on carbonates fail. MB-containing electrolyte with lithium Difluoro(oxalato)borate (LiDFOB) as additive showed the best cycling performance over 5000 cycles. Lithium plating also occurred on graphite NEs when charged at low temperatures starting at -20 °C, which resulted in the non-linear curves. When charged at 30 °C and discharged at -40 °C, graphite NE based LIC displayed regular linear charge-discharge curves without lithium plating. In comparison, HC NE based LICs showed better capacity retention at -40 °C and no signs of lithium plating. It could be concluded that low temperature performance of LIC was influenced by both electrolyte formulations and negative electrode material.

  20. A “twisted” microfluidic mixer suitable for a wide range of flow rate applications

    KAUST Repository

    Sivashankar, Shilpa

    2016-06-27

    This paper proposes a new “twisted” 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices.

  1. Surprising quantum bounces

    CERN Document Server

    Nesvizhevsky, Valery

    2015-01-01

    This unique book demonstrates the undivided unity and infinite diversity of quantum mechanics using a single phenomenon: quantum bounces of ultra-cold particles. Various examples of such "quantum bounces" are: gravitational quantum states of ultra-cold neutrons (the first observed quantum states of matter in a gravitational field), the neutron whispering gallery (an observed matter-wave analog of the whispering gallery effect well known in acoustics and for electromagnetic waves), and gravitational and whispering gallery states for anti-matter atoms that remain to be observed. These quantum states are an invaluable tool in the search for additional fundamental short-range forces, for exploring the gravitational interaction and quantum effects of gravity, for probing physics beyond the standard model, and for furthering studies into the foundations of quantum mechanics, quantum optics, and surface science.

  2. A CMOS frontend chip for implantable neural recording with wide voltage supply range

    Science.gov (United States)

    Jialin, Liu; Xu, Zhang; Xiaohui, Hu; Yatao, Guo; Peng, Li; Ming, Liu; Bin, Li; Hongda, Chen

    2015-10-01

    A design for a CMOS frontend integrated circuit (chip) for neural signal acquisition working at wide voltage supply range is presented in this paper. The chip consists of a preamplifier, a serial instrumental amplifier (IA) and a cyclic analog-to-digital converter (CADC). The capacitive-coupled and capacitive-feedback topology combined with MOS-bipolar pseudo-resistor element is adopted in the preamplifier to create a -3 dB upper cut-off frequency less than 1 Hz without using a ponderous discrete device. A dual-amplifier instrumental amplifier is used to provide a low output impedance interface for ADC as well as to boost the gain. The preamplifier and the serial instrumental amplifier together provide a midband gain of 45.8 dB and have an input-referred noise of 6.7 μVrms integrated from 1 Hz to 5 kHz. The ADC digitizes the amplified signal at 12-bits precision with a highest sampling rate of 130 kS/s. The measured effective number of bits (ENOB) of the ADC is 8.7 bits. The entire circuit draws 165 to 216 μA current from the supply voltage varied from 1.34 to 3.3 V. The prototype chip is fabricated in the 0.18-μm CMOS process and occupies an area of 1.23 mm2 (including pads). In-vitro recording was successfully carried out by the proposed frontend chip. Project supported by the National Natural Science Foundation of China (Nos. 61474107, 61372060, 61335010, 61275200, 61178051) and the Key Program of the Chinese Academy of Sciences (No. KJZD-EW-L11-01).

  3. Wide-range screening of psychoactive substances by FIA-HRMS: identification strategies.

    Science.gov (United States)

    Alechaga, Élida; Moyano, Encarnación; Galceran, Maria Teresa

    2015-06-01

    Recreational drugs (illicit drugs, human and veterinary medicines, legal highs, etc.) often contain lacing agents and adulterants which are not related to the main active ingredient. Serious side effects and even the death of the consumer have been related to the consumption of mixtures of psychoactive substances and/or adulterants, so it is important to know the actual composition of recreational drugs. In this work, a method based on flow injection analysis (FIA) coupled with high-resolution mass spectrometry (HRMS) is proposed for the fast identification of psychoactive substances in recreational drugs and legal highs. The FIA and HRMS working conditions were optimized in order to detect a wide range of psychoactive compounds. As most of the psychoactive substances are acid-base compounds, methanol-0.1 % aqueous formic acid (1:1 v/v) as a carrier solvent and electrospray in both positive ion mode and negative ion mode were used. Two data acquisition modes, full scan at high mass resolution (HRMS) and data-dependent tandem mass spectrometry (ddMS/HRMS) with a quadrupole-Orbitrap mass analyzer were used, resulting in sufficient selectivity for identification of the components of the samples. A custom-made database containing over 450 substances, including psychoactive compounds and common adulterants, was built to perform a high-throughput target and suspect screening. Moreover, online accurate mass databases and mass fragmenter software were used to identify unknowns. Some examples, selected among the analyzed samples of recreational drugs and legal highs using the FIA-HRMS(ddMS/HRMS) method developed, are discussed to illustrate the screening strategy used in this study. The results showed that many of the analyzed samples were adulterated, and in some cases the sample composition did not match that of the supposed marketed substance.

  4. Assessing the umbrella value of a range-wide conservation network for jaguars (Panthera onca).

    Science.gov (United States)

    Thornton, Daniel; Zeller, Kathy; Rondinini, Carlo; Boitani, Luigi; Crooks, Kevin; Burdeh, Christopher; Rabinowitz, Alan; Quigley, Howard

    2016-06-01

    Umbrella species are employed as conservation short-cuts for the design of reserves or reserve networks. However, empirical data on the effectiveness of umbrellas is equivocal, which has prevented more widespread application of this conservation strategy. We perform a novel, large-scale evaluation of umbrella species by assessing the potential umbrella value of a jaguar (Panthera onca) conservation network (consisting of viable populations and corridors) that extends from Mexico to Argentina. Using species richness, habitat quality, and fragmentation indices of ~1500 co-occurring mammal species, we show that jaguar populations and corridors overlap a substantial amount and percentage of high-quality habitat for co-occurring mammals and that the jaguar network performs better than random networks in protecting high-quality, interior habitat. Significantly, the effectiveness of the jaguar network as an umbrella would not have been noticeable had we focused on species richness as our sole metric of umbrella utility. Substantial inter-order variability existed, indicating the need for complementary conservation strategies for certain groups of mammals. We offer several reasons for the positive result we document, including the large spatial scale of our analysis and our focus on multiple metrics of umbrella effectiveness. Taken together, our results demonstrate that a regional, single-species conservation strategy can serve as an effective umbrella for the larger community and should help conserve viable populations and connectivity for a suite of co-occurring mammals. Current and future range-wide planning exercises for other large predators may therefore have important umbrella benefits.

  5. Optimising Habitat-Based Models for Wide-Ranging Marine Predators: Scale Matters

    Science.gov (United States)

    Scales, K. L.; Hazen, E. L.; Jacox, M.; Edwards, C. A.; Bograd, S. J.

    2016-12-01

    Predicting the responses of marine top predators to dynamic oceanographic conditions requires habitat-based models that sufficiently capture environmental preferences. Spatial resolution and temporal averaging of environmental data layers is a key aspect of model construction. The utility of surfaces contemporaneous to animal movement (e.g. daily, weekly), versus synoptic products (monthly, seasonal, climatological) is currently under debate, as is the optimal spatial resolution for predictive products. Using movement simulations with built-in environmental preferences (correlated random walks, multi-state hidden Markov-type models) together with modeled (Regional Oceanographic Modeling System, ROMS) and remotely-sensed (MODIS-Aqua) datasets, we explored the effects of degrading environmental surfaces (3km - 1 degree, daily - climatological) on model inference. We simulated the movements of a hypothetical wide-ranging marine predator through the California Current system over a three month period (May-June-July), based on metrics derived from previously published blue whale Balaenoptera musculus tracking studies. Results indicate that models using seasonal or climatological data fields can overfit true environmental preferences, in both presence-absence and behaviour-based model formulations. Moreover, the effects of a degradation in spatial resolution are more pronounced when using temporally averaged fields than when using daily, weekly or monthly datasets. In addition, we observed a notable divergence between the `best' models selected using common methods (e.g. AUC, AICc) and those that most accurately reproduced built-in environmental preferences. These findings have important implications for conservation and management of marine mammals, seabirds, sharks, sea turtles and large teleost fish, particularly in implementing dynamic ocean management initiatives and in forecasting responses to future climate-mediated ecosystem change.

  6. Improved Models and Tools for Prediction of Radiation Effects on Space Electronics in Wide Temperature Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — All NASA exploration systems operate in the extreme environments of space and require reliable electronics capable of handling a wide temperature range (-180:C to...

  7. A parameterization of momentum roughness length and displacement height for a wide range of canopy densities

    Directory of Open Access Journals (Sweden)

    A. Verhoef

    1997-01-01

    occurring in the d-data across 16 selected canopies can be explained, whereas the analogous value for the z0-data (24 datapoints available is 81%. This makes the R94 model, with only two coefficients and its relatively simple equations, a useful universal tool for predicting z0 and d values for all kinds of canopies. For comparison, a similar fitting exercise is made using simple linear equations based on obstacle height only (e.g. Brutsaert, 1982 and another formula involving canopy height as well as roughness density (Lettau, 1969. The fitted Brutsaert equations explain 98% and 62% of the variance in the d and z0-data, respectively. Lettau's equation for prediction of z0 performs unsatisfactorily (r2 values <0, even after fitting of the coefficient and so it is concluded that the drag partition model is definitely the most effective for prediction of the momentum roughness lengths for a wide rang of canopy densities.

  8. Multiple-input multiple-output synthetic aperture ladar system for wide-range swath with high azimuth resolution.

    Science.gov (United States)

    Tang, Yu; Qin, Bao; Yan, Yun; Xing, Mengdao

    2016-02-20

    For the trade-off between the high azimuth resolution and the wide-range swath in the single-input single-output synthetic aperture ladar (SAL) system, the range swath of the SAL system is restricted to a narrow range, this paper proposes a multiple-input multiple-output (MIMO) synthetic aperture ladar system. The MIMO system adopts a low pulse repetition frequency (PRF) to avoid a range ambiguity for the wide-range swath and in azimuth adopts the multi-channel method to achieve azimuth high resolution from the unambiguous azimuth wide-spectrum signal, processed through adaptive digital beam-forming technology. Simulations and analytical results are presented.

  9. Preliminary assessment of the ecological risks to wide-ranging wildlife species on the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Sample, B.E.; Baron, L.A.; Jackson, B.L.

    1995-08-01

    Historically, ecological risk assessment at CERCLA sites [such as the Oak Ridge Reservation (ORR)], has focused on species that may be definitively associated with a contaminated area or source operable unit. Consequently the species that are generally considered are those with home ranges small enough such that multiple individuals or a distinct population can be expected to reside within the boundaries of the contaminated site. This approach is adequate for sites with single, discrete areas of contamination that only provide habitat for species with limited requirements. This approach is not adequate however for large sites with multiple, spatially separated contaminated areas that provide habitat for wide-ranging wildlife species. Because wide-ranging wildlife species may travel between and use multiple contaminated sites they may be exposed to and be at risk from contaminants from multiple locations. Use of a particular contaminated site by wide-ranging species will be dependent upon the amount of suitable habitat available at that site. Therefore to adequately evaluate risks to wide-ranging species at the ORR-wide scale, the use of multiple contaminated sites must be weighted by the amount of suitable habitat on OUs. This reservation-wide ecological risk assessment is intended to identify which endpoints are significantly at risk; which contaminants are responsible for this risk; and which OUs significantly contribute to risk.

  10. Surprise... Surprise..., An Empirical Investigation on How Surprise is Connected to Customer Satisfaction

    NARCIS (Netherlands)

    J. Vanhamme (Joëlle)

    2003-01-01

    textabstractThis research investigates the specific influence of the emotion of surprise on customer transaction-specific satisfaction. Four empirical studies-two field studies (a diary study and a cross section survey) and two experiments-were conducted. The results show that surprise positively

  11. Surprise... Surprise..., An Empirical Investigation on How Surprise is Connected to Customer Satisfaction

    NARCIS (Netherlands)

    J. Vanhamme (Joëlle)

    2003-01-01

    textabstractThis research investigates the specific influence of the emotion of surprise on customer transaction-specific satisfaction. Four empirical studies-two field studies (a diary study and a cross section survey) and two experiments-were conducted. The results show that surprise positively [n

  12. A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology

    NARCIS (Netherlands)

    Mandai, S.; Fishburn, M.W.; Maruyama, Y.; Charbon, E.

    2012-01-01

    We present a single-photon avalanche diode (SPAD) with a wide spectral range fabricated in an advanced 180 nm CMOS process. The realized SPAD achieves 20 % photon detection probability (PDP) for wavelengths ranging from 440 nm to 820 nm at an excess bias of 4V, with 30 % PDP at wavelengths from 520

  13. A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology

    NARCIS (Netherlands)

    Mandai, S.; Fishburn, M.W.; Maruyama, Y.; Charbon, E.

    2012-01-01

    We present a single-photon avalanche diode (SPAD) with a wide spectral range fabricated in an advanced 180 nm CMOS process. The realized SPAD achieves 20 % photon detection probability (PDP) for wavelengths ranging from 440 nm to 820 nm at an excess bias of 4V, with 30 % PDP at wavelengths from 520

  14. Data resources for range-wide assessment of livestock grazing across the sagebrush biome

    Science.gov (United States)

    Assal, T.J.; Veblen, K.E.; Farinha, M.A.; Aldridge, C.L.; Casazza, M.L.; Pyke, D.A.

    2012-01-01

    The data contained in this series were compiled, modified, and analyzed for the U.S. Geological Survey (USGS) report "Range-Wide Assessment of Livestock Grazing Across the Sagebrush Biome." This report can be accessed through the USGS Publications Warehouse (online linkage: http://pubs.usgs.gov/of/2011/1263/). The dataset contains spatial and tabular data related to Bureau of Land Management (BLM) Grazing Allotments. We reviewed the BLM national grazing allotment spatial dataset available from the GeoCommunicator National Integrated Land System (NILS) website in 2007 (http://www.geocommunicator.gov). We identified several limitations in those data and learned that some BLM State and/or field offices had updated their spatial data to rectify these limitations, but maintained the data outside of NILS. We contacted appropriate BLM offices (State or field, 25 in all) to obtain the most recent data, assessed the data, established a data development protocol, and compiled data into a topologically enforced dataset throughout the area of interest for this project (that is, the pre-settlement distribution of Greater Sage-Grouse in the Western United States). The final database includes three spatial datasets: Allotments (BLM Grazing Allotments), OUT_Polygons (nonallotment polygons used to ensure topology), and Duplicate_Polygon_Allotments. See Appendix 1 of the aforementioned report for complete methods. The tabular data presented here consists of information synthesized by the Land Health Standard (LHS) analysis (Appendix 2), and data obtained from the BLM Rangeland Administration System (http://www.blm.gov/ras/). In 2008, available LHS data for all allotments in all regions were compiled by BLM in response to a Freedom of Information Act (FOIA) request made by a private organization. The BLM provided us with a copy of these data. These data provided three major types of information that were of interest: (1) date(s) (if any) of the most recent LHS evaluation for each

  15. A wide dynamic range CMOS image sensor with dual charge storage in a pixel and a multiple sampling technique

    Science.gov (United States)

    Shafie, Suhaidi; Kawahito, Shoji

    2008-02-01

    This paper presents a dynamic range expansion technique of CMOS image sensors with dual charge storage in a pixel and multiple exposures. Each pixel contains two photodiodes, PD1 and PD2 whose sensitivity can be set independently by the accumulation time. The difference of charge accumulation time in both photodiode can be manipulated to expand the dynamic range of the sensor. It allows flexible control of the dynamic range since the accumulation time in PD2 is adjustable. The multiple exposure technique used in the sensor reduces the motion blur in the synthesized wide dynamic range image when capturing fast-moving objects. It also reduces the signal-to-nose ratio dip at the switching point of the PD1 signal to the PD2 signals in the synthesized wide dynamic range image. A wide dynamic range camera with 320x240 pixels image sensor has been tested. It is found that the sampling of 4 times for the short accumulation time signals is sufficient for the reduction of motion blur in the synthesized wide dynamic range image, and the signal-to-noise ratio dip at the switching point of the PD1 signal to the PD2 signal is improved by 6 dB using 4 short-time exposures.

  16. Fixed-gain CMOS differential amplifiers with no external feedback for a wide temperature range

    Science.gov (United States)

    Michal, Vratislav; Klisnick, Geoffroy; Sou, Gérard; Redon, Michel; Kreisler, Alain J.; Dégardin, Annick F.

    2009-11-01

    We present original CMOS amplifiers designed for the DC to 10 MHz frequency range and operating in the 70-380 K temperature range. Aimed applications concern readout circuitry to be associated with THz bolometric pixels (either high- Tc superconducting or uncooled semiconducting), which require accuracy, low noise and low power consumption. Two designs are described that both exhibit high fixed-gain (40 dB) in a feedback-free architecture, which is based on a new low-transconductance composite transistor for an accurate control of this gain. Both amplifiers have been realized in a regular 0.35 μm CMOS process and tested in the 4.2-380 K temperature range, exhibiting good agreement between designed and measured characteristics.

  17. Wide-range, picoampere-sensitivity multichannel VLSI potentiostat for neurotransmitter sensing.

    Science.gov (United States)

    Murari, Kartikeya; Thakor, Nitish; Stanacevic, Milutin; Cauwenberghs, Gert

    2004-01-01

    Neurotransmitter sensing is critical in studying nervous pathways and neurological disorders. A 16-channel current-measuring VLSI potentiostat with multiple ranges from picoamperes to microamperes is presented for electrochemical detection of electroactive neurotransmitters like dopamine, nitric oxide etc. The analog-to-digital converter design employs a current-mode, first-order single-bit delta-sigma modulator architecture with a two-stage, digitally reconfigurable oversampling ratio for ranging the conversion scale. An integrated prototype is fabricated in CMOS technology, and experimentally characterized. Real-time multi-channel acquisition of dopamine concentration in vitro is performed with a microfabricated sensor array.

  18. Range-wide threats to a foundation tree species from disturbance interactions

    Science.gov (United States)

    Whalen W. Dillon; Ross K. Meentemeyer; John B. Vogler; Richard C. Cobb; Margaret R. Metz; David M. Rizzo

    2013-01-01

    The geographic range of tanoak, Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S. H. Oh (Fagaceae), encompasses tremendous physiographic variability, diverse plant communities, and complex disturbance regimes (e.g., development, timber harvest, and wildfire) that now also include serious threats posed by the invasive forest...

  19. Spontaneous ignition of methane-air mixtures in a wide range of pressures

    NARCIS (Netherlands)

    Zhukov, VP; Sechenov, VA; Starikovskii, AY

    2003-01-01

    The ignition delay in methane-air mixtures (phi = 0.5) within the range of temperatures of 1200-1700 K and pressures of 3-450 atm behind reflected shock waves in a shock tube is measured on the basis of emission of the electron-excited OH radical (transition A(2)Sigma(+) - X(2)Pi) at the wavelength

  20. Spontaneous ignition of methane-air mixtures in a wide range of pressures

    NARCIS (Netherlands)

    Zhukov, VP; Sechenov, VA; Starikovskii, AY

    2003-01-01

    The ignition delay in methane-air mixtures (phi = 0.5) within the range of temperatures of 1200-1700 K and pressures of 3-450 atm behind reflected shock waves in a shock tube is measured on the basis of emission of the electron-excited OH radical (transition A(2)Sigma(+) - X(2)Pi) at the wavelength

  1. A detector based on silica fibers for ion beam monitoring in a wide current range

    Science.gov (United States)

    Auger, M.; Braccini, S.; Carzaniga, T. S.; Ereditato, A.; Nesteruk, K. P.; Scampoli, P.

    2016-03-01

    A detector based on doped silica and optical fibers was developed to monitor the profile of particle accelerator beams of intensity ranging from 1 pA to tens of μA. Scintillation light produced in a fiber moving across the beam is measured, giving information on its position, shape and intensity. The detector was tested with a continuous proton beam at the 18 MeV Bern medical cyclotron used for radioisotope production and multi-disciplinary research. For currents from 1 pA to 20 μA, Ce3+ and Sb3+ doped silica fibers were used as sensors. Read-out systems based on photodiodes, photomultipliers and solid state photomultipliers were employed. Profiles down to the pA range were measured with this method for the first time. For currents ranging from 1 pA to 3 μA, the integral of the profile was found to be linear with respect to the beam current, which can be measured by this detector with an accuracy of ~1%. The profile was determined with a spatial resolution of 0.25 mm. For currents ranging from 5 μA to 20 μA, thermal effects affect light yield and transmission, causing distortions of the profile and limitations in monitoring capabilities. For currents higher than ~1 μA, non-doped optical fibers for both producing and transporting scintillation light were also successfully employed.

  2. A simple and wide-range refractive index measuring approach by using a sub-micron grating

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chun-Wei; Wu, Chun-Che; Lin, Shih-Chieh [Department of Power Mechanical Engineering, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2015-04-13

    This paper presents the design and simulation results of a high-precision low-cost refractometer that demonstrates the main advantage of a wide measurement range (1 ≤ n ≤ 2). The proposed design is based on the diffractive properties of sub-micron gratings and Snell's Law. The precision and uncertainty factors of the proposed system were tested and analyzed, revealing that the proposed refractometer demonstrates a wide measurement range with sensitivity of 10{sup −4}.

  3. Practical Wide-speed-range Sensorless Control System for Permanent Magnet Reluctance Synchronous Motor Drives via Active Flux Model

    DEFF Research Database (Denmark)

    Ancuti, Mihaela Codruta; Tutelea, Lucian; Andreescu, Gheorghe-Daniel

    2014-01-01

    This article introduces a control strategy to obtain near-maximum available torque in a wide speed range with sensorless operation via the active flux concept for permanent magnet-reluctance synchronous motor drives. A new torque dq current reference calculator is proposed, with reference torque...... digital simulation results (1–6000 rpm) and experimental results (50–3000 rpm at low inverter available DC voltage of 12 Vdc instead of 48 Vdc) demonstrate the effectiveness of the proposed sensorless control strategy in a wide speed range, with stable and reliable operations up to a speed equal to eight...

  4. A SOI-Based Low Noise and Wide Dynamic Range Event-Driven Detector for X-Ray Imaging

    CERN Document Server

    Shrestha, Sumeet; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo

    2015-01-01

    A low noise and wide dynamic range event driven detector for the detection of X-Ray energy is realized using 0.2 [um] Silicon on insulator (SOI) technology. Pixel circuits are divided into two parts; signal sensing circuit and event detection circuit. Event detection circuit is activated when X-Ray energy falls into the detector. In-pixel gain selection is implemented for the detection of a small signal and wide band of energy particle. Adaptive gain and capability of correlated double sampling (CDS) technique for the kTC noise canceling of charge detector realizes the low noise and high dynamic range event driven detector.

  5. Astable Oscillator Circuits using Silicon-on-Insulator Timer Chip for Wide Range Temperature Sensing

    Science.gov (United States)

    Patterson, Richard L.; Culley, Dennis; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Two astable oscillator circuits were constructed using a new silicon-on-insulator (SOI) 555 timer chip for potential use as a temperature sensor in harsh environments encompassing jet engine and space mission applications. The two circuits, which differed slightly in configuration, were evaluated between -190 and 200 C. The output of each circuit was made to produce a stream of rectangular pulses whose frequency was proportional to the sensed temperature. The preliminary results indicated that both circuits performed relatively well over the entire test temperature range. In addition, after the circuits were subjected to limited thermal cycling over the temperature range of -190 to 200 C, the performance of either circuit did not experience any significant change.

  6. Thermal Conductivity of High Performance Concrete in Wide Temperature and Moisture Ranges

    Directory of Open Access Journals (Sweden)

    J. Toman

    2001-01-01

    Full Text Available The thermal conductivity of two types of high performance concrete was measured in the temperature range from 100 °C to 800 °C and in the moisture range from dry material to saturation water content. A transient measuring method based on analysis of the measured temperature fields was chosen for the high temperature measurements, and a commercial hot wire device was employed in room temperature measurements of the effect of moisture on thermal conductivity. The measured results reveal that both temperature and moisture exhibit significant effects on the values of thermal conductivity, and these effects are quite comparable from the point of view of the magnitude of the observed variations.

  7. Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique

    Directory of Open Access Journals (Sweden)

    Izhal Abdul Halin

    2009-11-01

    Full Text Available The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region.

  8. Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique

    Science.gov (United States)

    Shafie, Suhaidi; Kawahito, Shoji; Halin, Izhal Abdul; Hasan, Wan Zuha Wan

    2009-01-01

    The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region. PMID:22303133

  9. Winding Schemes for Wide Constant Power Range of Double Stator Transverse Flux Machine

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Tausif; Hassan, Iftekhar; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2015-05-01

    Different ring winding schemes for double sided transverse flux machines are investigated in this paper for wide speed operation. The windings under investigation are based on two inverters used in parallel. At higher power applications this arrangement improves the drive efficiency. The new winding structure through manipulation of the end connection splits individual sets into two and connects the partitioned turns from individual stator sets in series. This configuration offers the flexibility of torque profiling and a greater flux weakening region. At low speeds and low torque only one winding set is capable of providing the required torque thus providing greater fault tolerance. At higher speeds one set is dedicated to torque production and the other for flux control. The proposed method improves the machine efficiency and allows better flux weakening which is desirable for traction applications.

  10. Stability Analysis and Trigger Control of LLC Resonant Converter for a Wide Operational Range

    Directory of Open Access Journals (Sweden)

    Zhijian Fang

    2017-09-01

    Full Text Available The gain of a LLC resonant converter can vary with the loads that can be used to improve the efficiency and power density for some special applications, where the maximum gain does not apply at the heaviest loads. However, nonlinear gain characteristics can make the converters unstable during a major disturbance. In this paper, the stability of an LLC resonant converter during a major disturbance is studied and a trigger control scheme is proposed to improve the converter’s stability by extending the converter’s operational range. Through in-depth analysis of the gain curve of the LLC resonant converter, we find that the switching frequency range is one of the key factors determining the system’s stability performance. The same result is also obtained from a mathematical point of view by utilizing the mixed potential function method. Then a trigger control method is proposed to make the LLC resonant converter stable even during a major disturbance, which can be used to extend the converter’s operational range. Finally, experimental results are given to verify the analysis and proposed control scheme.

  11. A Wirelessly Powered Smart Contact Lens with Reconfigurable Wide Range and Tunable Sensitivity Sensor Readout Circuitry.

    Science.gov (United States)

    Chiou, Jin-Chern; Hsu, Shun-Hsi; Huang, Yu-Chieh; Yeh, Guan-Ting; Liou, Wei-Ting; Kuei, Cheng-Kai

    2017-01-07

    This study presented a wireless smart contact lens system that was composed of a reconfigurable capacitive sensor interface circuitry and wirelessly powered radio-frequency identification (RFID) addressable system for sensor control and data communication. In order to improve compliance and reduce user discomfort, a capacitive sensor was embedded on a soft contact lens of 200 μm thickness using commercially available bio-compatible lens material and a standard manufacturing process. The results indicated that the reconfigurable sensor interface achieved sensitivity and baseline tuning up to 120 pF while consuming only 110 μW power. The range and sensitivity tuning of the readout circuitry ensured a reliable operation with respect to sensor fabrication variations and independent calibration of the sensor baseline for individuals. The on-chip voltage scaling allowed the further extension of the detection range and prevented the implementation of large on-chip elements. The on-lens system enabled the detection of capacitive variation caused by pressure changes in the range of 2.25 to 30 mmHg and hydration level variation from a distance of 1 cm using incident power from an RFID reader at 26.5 dBm.

  12. Michaelis–Menten speeds up tau-leaping under a wide range of conditions

    Science.gov (United States)

    Wu, Sheng; Fu, Jin; Cao, Yang; Petzold, Linda

    2011-01-01

    This paper examines the benefits of Michaelis–Menten model reduction techniques in stochastic tau-leaping simulations. Results show that although the conditions for the validity of the reductions for tau-leaping remain the same as those for the stochastic simulation algorithm (SSA), the reductions result in a substantial speed-up for tau-leaping under a different range of conditions than they do for SSA. The reason of this discrepancy is that the time steps for SSA and for tau-leaping are determined by different properties of system dynamics. PMID:21476748

  13. Michaelis-Menten speeds up tau-leaping under a wide range of conditions.

    Science.gov (United States)

    Wu, Sheng; Fu, Jin; Cao, Yang; Petzold, Linda

    2011-04-07

    This paper examines the benefits of Michaelis-Menten model reduction techniques in stochastic tau-leaping simulations. Results show that although the conditions for the validity of the reductions for tau-leaping remain the same as those for the stochastic simulation algorithm (SSA), the reductions result in a substantial speed-up for tau-leaping under a different range of conditions than they do for SSA. The reason of this discrepancy is that the time steps for SSA and for tau-leaping are determined by different properties of system dynamics.

  14. Thermodynamic magnetization of two-dimensional electron gas measured over wide range of densities

    OpenAIRE

    Reznikov, M.; Kuntsevich, A. Yu.; Teneh, N.; Pudalov, V. M.

    2011-01-01

    We report measurements of dm/dn in Si MOSFET, where m is the magnetization of the two-dimensional electron gas and n is its density. We extended the density range of measurements from well in the metallic to deep in the insulating region. The paper discusses in detail the conditions under which this extension is justified, as well as the corrections one should make to extract dm/dn properly. At low temperatures, dm/dn was found to be strongly nonlinear already in weak magnetic fields, on a sc...

  15. Michaelis-Menten speeds up tau-leaping under a wide range of conditions

    Science.gov (United States)

    Wu, Sheng; Fu, Jin; Cao, Yang; Petzold, Linda

    2011-04-01

    This paper examines the benefits of Michaelis-Menten model reduction techniques in stochastic tau-leaping simulations. Results show that although the conditions for the validity of the reductions for tau-leaping remain the same as those for the stochastic simulation algorithm (SSA), the reductions result in a substantial speed-up for tau-leaping under a different range of conditions than they do for SSA. The reason of this discrepancy is that the time steps for SSA and for tau-leaping are determined by different properties of system dynamics.

  16. Development of detector for neutron monitor of wide energy range. Joint research

    CERN Document Server

    Kim, E; Nakamura, T; Rasolonjatovo, D R D; Shiomi, T; Tanaka, S; Yamaguchi, Y; Yoshizawa, M

    2002-01-01

    Radiation monitoring of neutrons in high-power proton accelerator facilities is very important for radiation safety management for workers and members of the public. In the present study, a neutron detector that can evaluate dose of neutrons in the energy range from thermal energy to 100MeV was developed using an organic liquid scintillator, a boron-loaded scintillator and a sup 6 Li glass scintillator. First, a method was developed to evaluate neutron doses above several MeV by a spectrum weight function (G-function) which is applied to the organic liquid scintillator, and the validity of the methods was confirmed by dose evaluation in some neutron fields. Second, the G-function was applied to the boron-loaded scintillator which detects thermal neutrons by sup 1 sup 0 B(n, alpha) sup 7 Li reaction, in order to expand the covering neutron energy range. The response function and the G-function of the scintillator were evaluated by experiment and calculation, and the characteristics of dose measurement were ana...

  17. Effective optical constants of silver nanofilms calculated in wide frequency range

    Science.gov (United States)

    Tsysar, Kseniya M.; Andreev, Valery G.; Vdovin, Vladimir A.

    2016-12-01

    The optical properties of Ag ultrathin films in dependence of their thickness are studied theoretically in a wavelength range 0.3 - 10 μm. The extinction coefficient (k) and refractive index (n) for thin Ag films with smooth surface structure are calculated with software package VASP. It was found the effect of growth of extinction coefficient and shift of its peak into long wavelength range with the thickness increasing. The effect is explained by the significant increasing of the surface electron states. Refractive index n is increased with the wavelength growth and attains saturation value ns at the wavelength λs. The thicker the films the higher the magnitude of ns and the larger the wavelength λs. Our results of calculations of k(λ) are in a good agreement with experimental data from ref.[25]. The difference in magnitudes of n obtained experimentally and theoretically can be explained by the formation of Ag nanoclusters on the surface of sputtered film.

  18. Assessing range-wide habitat suitability for the Lesser Prairie-Chicken

    Directory of Open Access Journals (Sweden)

    Catherine S. Jarnevich

    2016-06-01

    Full Text Available Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.

  19. A highly selective and wide range ammonia sensor—Nanostructured ZnO:Co thin film

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Ganesh Kumar, E-mail: ganesh@eee.sastra.edu; Rayappan, John Bosco Balaguru, E-mail: rjbosco@ece.sastra.edu

    2015-01-15

    Graphical abstract: - Highlights: • Cobalt doped nanostructured ZnO thin films were spray deposited on glass substrates. • Co-doped ZnO film was highly selective towards ammonia than ethanol, methanol, etc. • The range of ammonia detection was improved significantly by doping cobalt in ZnO. - Abstract: Ammonia sensing characteristics of undoped and cobalt (Co)-doped nanostructured ZnO thin films were investigated. Polycrystalline nature with hexagonal wurtzite structure and high crystalline quality with dominant (0 0 2) plane orientation of Co-doped ZnO film were confirmed by the X-ray diffractogram. Scanning electron micrographs of the undoped film demonstrated the uniform deposition of sphere-shaped grains. But, smaller particles with no clear grain boundaries were observed for Co-doped ZnO thin film. Band gap values were found to be 3.26 eV and 3.22 eV for undoped and Co-doped ZnO thin films. Ammonia sensing characteristics of Co-doped ZnO film at room temperature were investigated in the concentration range of 15–1000 ppm. Variation in the sensing performances of Co-doped and pure ZnO thin films has been analyzed and compared.

  20. Assessing range-wide habitat suitability for the Lesser Prairie-Chicken

    Science.gov (United States)

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Grisham, Blake A.; Timmer, Jennifer M.; Boal, Clint W.; Butler, Matthew; Pitman, James C.; Kyle, Sean; Klute, David; Beauprez, Grant M.; Janus, Allan; Van Pelt, William E.

    2016-01-01

    Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.

  1. Study of Particle Motion in He II Counterflow Across a Wide Heat Flux Range

    Science.gov (United States)

    Mastracci, Brian; Takada, Suguru; Guo, Wei

    2017-01-01

    Some discrepancy exists in the results of He II counterflow experiments obtained using particle image velocimetry (PIV) when compared with those obtained using particle tracking velocimetry (PTV): using PIV, it was observed that tracer particles move at roughly half the expected normal fluid velocity, v_n/2 , while tracer particles observed using PTV moved at approximately v_n . A suggested explanation is that two different flow regimes were examined since the range of heat flux applied in each experiment was adjacent but non-overlapping. Another PTV experiment attempted to test this model, but the applied heat flux did not overlap with any PIV experiments. We report on the beginnings of a study of solid D_2 particle motion in counterflow using PTV, and the heat flux range overlaps that of all previous visualization studies. The observed particle velocity distribution transitions from a two-peak structure to a single peak as the heat flux is increased. Furthermore, the mean value of one peak in the bi-modal distributions grows at approximately the same rate as v_n , while the mean value of the single-peak distributions grows at roughly 0.4v_n , in reasonable agreement with both previous experiments and with the suggested model.

  2. Adaptive reshaper for high dynamic range and wide color gamut video compression

    Science.gov (United States)

    Lu, Taoran; Pu, Fangjun; Yin, Peng; Pytlarz, Jaclyn; Chen, Tao; Husak, Walt

    2016-09-01

    High Dynamic Range (HDR) and Wider Color Gamut (WCG) content represents a greater range of luminance levels and a more complete reproduction of colors found in real-world scenes. The characteristics of HDR/WCG content are very different from the SDR content. It poses a challenge to the compression system which is originally designed for SDR content. Recently in MPEG/VCEG, two directions have been taken to improve compression performances for HDR/WCG video using HEVC Main10 codec. The first direction is to improve HDR-10 using encoder optimization. The second direction is to modify the video signal in pre/post processing to better fit compression system. The process therefore is out of coding loop and does not involve changes to the HEVC specification. Among many proposals in the second direction, reshaper is identified to be the key component. In this paper, a novel luma reshaper is presented which re-allocates the codewords to help codec improve subjective quality. In addition, encoder optimization can be performed jointly with reshaping. Experiments are conducted with ICtCp color difference signal. Simulation results show that if both joint optimization of reshaper and encoder are carried out, there is evidence that improvement over the HDR-10 anchor can be achieved.

  3. Ultra-wide detectable concentration range of GMR biosensors using Fe3O4 microspheres

    Science.gov (United States)

    Xu, Jie; Li, Qiang; Zong, Weihua; Zhang, Yongcheng; Li, Shandong

    2016-11-01

    Exchange-biased GMR sensors were employed for biodetection using a DC in-plane measuring method and a magnetic label of Fe3O4 microspheres. It was revealed that an ultra-wide concentration span covering five orders from 10 ng/mL to 1000 μg/mL was achieved in a home-made biodetection device. The concentration x dependence of output voltage difference |ΔV| between with and without magnetic labels, exhibits nonlinear futures, which undergoes two functions depending on the concentration region. For the low concentration region from 10 ng/mL to 10 μg/mL, a logarithmic relation of |ΔV|=26.3lgx+91.4 fits well, while for the high concentration region, a negative exponential function of |ΔV|=3113(1-e-x/250) describes the |ΔV|~x relation better. For the former, the "coffee ring" effect, formed during the solvent evaporation, was considered as the main reason for the nonlinear relation. While for the latter with high concentration, the overlap among the particles and the enhanced interaction of the magnetic dipole were responsible for the nonlinear |ΔV|~x relationship. Moreover, the calculated detectable concentration limit is agreed well with the experimental data.

  4. Single & Multiprobe Apertureless Thermal Imaging of Electromagnetic Excitation Over A Wide Range of Wavelengths

    Science.gov (United States)

    Dekhter, Rimma; Lewis, Aaron; Kokotov, Sophia; Hamra, Patricia; Fleischman, Boaz; Taha, Hesham

    2013-03-01

    Near-field optical effects have generally been detected using photodetectors. There are no reports on the use of the temperature changes caused by electromagnetic radiation using thermal sensing probes for scanned probe microscopy. In this paper we apply our development of such probes to monitor the effects of electromagnetic radiation at a number of different wavelengths using the heating caused in a sample by specific wavelengths and their propagation. The paper will catalogue effects over a wide spectrum of wavelengths from the near to mid infrared. The thermal sensing probes are based on glass nanopipettes that have metal wires that make a contact at the very tip of a tapered glass structure. These probes are cantilevered and use normal force tuning fork methodology to bring them either into contact or near-contact since this feedback method has no jump to contact instability associated with it. Data will be shown that defines the resolution of such thermal sensing to at least the 32 nm level. In addition the probes have the important attribute of having a highly exposed tip that allows for either optical sensing methodologies with a lens either from directly above or below or heat sensing with a single or additional probe in a multiprobe scanning probe system.

  5. Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses.

    Science.gov (United States)

    Barciszewska-Pacak, Maria; Milanowska, Kaja; Knop, Katarzyna; Bielewicz, Dawid; Nuc, Przemyslaw; Plewka, Patrycja; Pacak, Andrzej M; Vazquez, Franck; Karlowski, Wojciech; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2015-01-01

    Arabidopsis microRNA expression regulation was studied in a wide array of abiotic stresses such as drought, heat, salinity, copper excess/deficiency, cadmium excess, and sulfur deficiency. A home-built RT-qPCR mirEX platform for the amplification of 289 Arabidopsis microRNA transcripts was used to study their response to abiotic stresses. Small RNA sequencing, Northern hybridization, and TaqMan® microRNA assays were performed to study the abundance of mature microRNAs. A broad response on the level of primary miRNAs (pri-miRNAs) was observed. However, stress response at the level of mature microRNAs was rather confined. The data presented show that in most instances, the level of a particular mature miRNA could not be predicted based on the level of its pri-miRNA. This points to an essential role of posttranscriptional regulation of microRNA expression. New Arabidopsis microRNAs responsive to abiotic stresses were discovered. Four microRNAs: miR319a/b, miR319b.2, and miR400 have been found to be responsive to several abiotic stresses and thus can be regarded as general stress-responsive microRNA species.

  6. Low-Voltage, Low-Power, and Wide-Tuning-Range Ring-VCO for Frequency ΔΣ Modulator

    DEFF Research Database (Denmark)

    Tuan Vu, Cao; Wisland, Dag T.; Lande, Tor Sverre

    A low-voltage, low-power, and wide-tuning-range VCO which converts an analog input voltage to phase information for a frequency ΔΣ modulator is proposed in this paper. The VCO is based on a differential ring oscillator, which is improved with modified symmetric load and a positive feedback in the...

  7. The Visual Aural Digit Span Test and Bender Gestalt Test as Predictors of Wide Range Achievement Test-Revised Scores.

    Science.gov (United States)

    Smith, Teresa C.; Smith, Billy L.

    1988-01-01

    Examined Visual Aural Digit Span Test (VADS) and Bender-Gestalt (BG) scores as predictors of Wide Range Achievement Test-Revised (WRAT-R) scores among 115 elementary school students referred for low academic achievement. Divided children into three age groups. Results suggest BG and VADS Test can be effective screening devices for young children…

  8. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range.

    Science.gov (United States)

    Tian, He; Shu, Yi; Wang, Xue-Feng; Mohammad, Mohammad Ali; Bie, Zhi; Xie, Qian-Yi; Li, Cheng; Mi, Wen-Tian; Yang, Yi; Ren, Tian-Ling

    2015-02-27

    Pressure sensors are a key component in electronic skin (e-skin) sensing systems. Most reported resistive pressure sensors have a high sensitivity at low pressures (pressures (>5 kPa), which is inadequate for practical applications. For example, actions like a gentle touch and object manipulation have pressures below 10 kPa, and 10-100 kPa, respectively. Maintaining a high sensitivity in a wide pressure range is in great demand. Here, a flexible, wide range and ultra-sensitive resistive pressure sensor with a foam-like structure based on laser-scribed graphene (LSG) is demonstrated. Benefitting from the large spacing between graphene layers and the unique v-shaped microstructure of the LSG, the sensitivity of the pressure sensor is as high as 0.96 kPa(-1) in a wide pressure range (0 ~ 50 kPa). Considering both sensitivity and pressure sensing range, the pressure sensor developed in this work is the best among all reported pressure sensors to date. A model of the LSG pressure sensor is also established, which agrees well with the experimental results. This work indicates that laser scribed flexible graphene pressure sensors could be widely used for artificial e-skin, medical-sensing, bio-sensing and many other areas.

  9. A Modified Johnson-Cook Model for Advanced High-Strength Steels Over a Wide Range of Temperatures

    Science.gov (United States)

    Qingdong, Zhang; Qiang, Cao; Xiaofeng, Zhang

    2014-12-01

    Advanced high-strength steel (AHSS) is widely used in automotive industry. In order to investigate the mechanical behaviors of AHSS over a wide range of temperatures, quasi-static tensile experiments were conducted at the temperatures from 298 to 1073 K on a Gleeble-3500 thermo-simulation machine. The results show that flow behaviors are affected by testing temperature significantly. In order to describe the flow features of AHSS, the Johnson-Cook (JC) model is employed. By introducing polynomial functions to consider the effects of temperature on hardening behavior, the JC model is modified and used to predict flow behavior of AHSS at different experimental conditions. The accuracy of the modified JC model is verified and the predicted flow stress is in good agreement with experimental results, which confirms that the modified JC model can give an accurate and precise estimate over a wide range of temperatures.

  10. VLSI Potentiostat Array With Oversampling Gain Modulation for Wide-Range Neurotransmitter Sensing.

    Science.gov (United States)

    Stanacevic, M; Murari, K; Rege, A; Cauwenberghs, G; Thakor, N V

    2007-03-01

    A 16-channel current-measuring very large-scale integration (VLSI) sensor array system for highly sensitive electrochemical detection of electroactive neurotransmiters like dopamine and nitric-oxide is presented. Each channel embeds a current integrating potentiostat within a switched-capacitor first-order single-bit delta-sigma modulator implementing an incremental analog-to-digital converter. The duty-cycle modulation of current feedback in the delta-sigma loop together with variable oversampling ratio provide a programmable digital range selection of the input current spanning over six orders of magnitude from picoamperes to microamperes. The array offers 100-fA input current sensitivity at 3.4-muW power consumption per channel. The operation of the 3 mm times3 mm chip fabricated in 0.5-mum CMOS technology is demonstrated with real-time multichannel acquisition of neurotransmitter concentration.

  11. Very-large-mode-area photonic bandgap Bragg fiber polarizing in a wide spectral range.

    Science.gov (United States)

    Aleshkina, Svetlana S; Likhachev, Mikhail E; Pryamikov, Andrey D; Gaponov, Dmitry A; Denisov, Alexandr N; Bubnov, Mikhail M; Salganskii, Mikhail Yu; Laptev, Alexandr Yu; Guryanov, Aleksei N; Uspenskii, Yurii A; Popov, Nikolay L; Février, Sébastien

    2011-09-15

    A design of a polarizing all-glass Bragg fiber with a microstructure core has been proposed for the first time. This design provides suppression of high-order modes and of one of the polarization states of the fundamental mode. The polarizing fiber was fabricated by a new, simple method based on a combination of the modified chemical vapor deposition (MCVD) process and the rod-in-tube technique. The mode field area has been found to be about 870 μm² near λ=1064 nm. The polarization extinction ratio better than 13 dB has been observed over a 33% wavelength range (from 1 to 1.4 μm) after propagation in a 1.7 m fiber piece bent to a radius of 70 cm.

  12. Power-Performance Tradeoffs in Wide Dynamic Range Image Sensors with Multiple Reset Approach

    Directory of Open Access Journals (Sweden)

    Arthur Spivak

    2011-03-01

    Full Text Available A variety of solutions for widening the dynamic range (DR of CMOS image sensors have been proposed throughout the years. These solutions can be categorized into different groups according to the principle used for DR widening. One of the methods, which is based on autonomous control over the integration time, was implemented by our group. We proposed the multiple resets algorithm, which was successfully implemented in three generations of WDR image sensors. While achieving the same goal of widening the DR of the sensor, each of the implemented imagers had a different architecture, and therefore presented different performance and power figures. This paper reviews designs of the aforementioned sensors and presents a comprehensive analysis of their power consumption. Power-performance tradeoffs are also discussed. Advantages and disadvantages of each sensor are presented.

  13. A projection of lesser prairie chicken (Tympanuchus pallidicinctus) populations range-wide

    Science.gov (United States)

    Cummings, Jonathan W.; Converse, Sarah J.; Moore, Clinton T.; Smith, David R.; Nichols, Clay T.; Allan, Nathan L.; O'Meilia, Chris M.

    2017-08-09

    We built a population viability analysis (PVA) model to predict future population status of the lesser prairie-chicken (Tympanuchus pallidicinctus, LEPC) in four ecoregions across the species’ range. The model results will be used in the U.S. Fish and Wildlife Service's (FWS) Species Status Assessment (SSA) for the LEPC. Our stochastic projection model combined demographic rate estimates from previously published literature with demographic rate estimates that integrate the influence of climate conditions. This LEPC PVA projects declining populations with estimated population growth rates well below 1 in each ecoregion regardless of habitat or climate change. These results are consistent with estimates of LEPC population growth rates derived from other demographic process models. Although the absolute magnitude of the decline is unlikely to be as low as modeling tools indicate, several different lines of evidence suggest LEPC populations are declining.

  14. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure

    Science.gov (United States)

    Liu, Ying; Tao, Lu-Qi; Wang, Dan-Yang; Zhang, Tian-Yu; Yang, Yi; Ren, Tian-Ling

    2017-03-01

    In this paper, a flexible, simple-preparation, and low-cost graphene-silk pressure sensor based on soft silk substrate through thermal reduction was demonstrated. Taking silk as the support body, the device had formed a three-dimensional structure with ordered multi-layer structure. Through a simple and low-cost process technology, graphene-silk pressure sensor can achieve the sensitivity value of 0.4 kPa - 1 , and the measurement range can be as high as 140 kPa. Besides, pressure sensor can have a good combination with knitted clothing and textile product. The signal had good reproducibility in response to different pressures. Furthermore, graphene-silk pressure sensor can not only detect pressure higher than 100 kPa, but also can measure weak body signals. The characteristics of high-sensitivity, good repeatability, flexibility, and comfort for skin provide the high possibility to fit on various wearable electronics.

  15. Simultaneous and accurate measurement of the dielectric constant at many frequencies spanning a wide range

    CERN Document Server

    Pérez-Aparicio, Roberto; Cottinet, Denis; Tanase, Marius; Metz, Pascal; Bellon, Ludovic; Naert, Antoine; Ciliberto, Sergio

    2015-01-01

    We present an innovative technique which allows the simultaneous measurement of the dielectric constant of a material at many frequencies, spanning a four orders of magnitude range chosen between 10 --2 Hz and 10 4 Hz. The sensitivity and accuracy are comparable to those obtained using standard single frequency techniques. The technique is based on three new and simple features: a) the precise real time correction of the amplication of a current amplier; b) the specic shape of the excitation signal and its frequency spectrum; and c) the precise synchronization between the generation of the excitation signal and the acquisition of the dielectric response signal. This technique is useful in the case of relatively fast dynamical measurements when the knowledge of the time evolution of the dielectric constant is needed.

  16. High Precision Stokes Polarimetry for Scattering Light using Wide Dynamic Range Intensity Detector

    Directory of Open Access Journals (Sweden)

    Shibata Shuhei

    2015-01-01

    Full Text Available This paper proposes a Stokes polarimetry for scattering light from a sample surface. To achieve a high accuracy measurement two approaches of an intensity detector and analysis algorism of a Stokes parameter were proposed. The dynamic range of this detector can achieve up to 1010 by combination of change of neutral-density (ND filters having different density and photon counting units. Stokes parameters can be measured by dual rotating of a retarder and an analyzer. The algorism of dual rotating polarimeter can be calibrated small linear diattenuation and linear retardance error of the retarder. This system can measured Stokes parameters from −20° to 70° of its scattering angle. It is possible to measure Stokes parameters of scattering of dust and scratch of optical device with high precision. This paper shows accuracy of this system, checking the polarization change of scattering angle and influence of beam size.

  17. Wide range operation of advanced low NOx aircraft gas turbine combustors

    Science.gov (United States)

    Roberts, P. B.; Fiorito, R. J.; Butze, H. F.

    1978-01-01

    The paper summarizes the results of an experimental test rig program designed to define and demonstrates techniques which would allow the jet-induced circulation and vortex air blast combustors to operate stably with acceptable emissions at simulated engine idle without compromise to the low NOx emissions under the high-altitude supersonic cruise condition. The discussion focuses on the test results of the key combustor modifications for both the simulated engine idle and cruise conditions. Several range-augmentation techniques are demonstrated that allow the lean-reaction premixed aircraft gas turbine combustor to operate with low NOx emissons at engine cruise and acceptable CO and UHC levels at engine idle. These techniques involve several combinations, including variable geometry and fuel switching designs.

  18. Range-wide mtDNA phylogeography yields insights into the origins of Asian elephants.

    Science.gov (United States)

    Vidya, T N C; Sukumar, Raman; Melnick, Don J

    2009-03-07

    Recent phylogeographic studies of the endangered Asian elephant (Elephas maximus) reveal two highly divergent mitochondrial DNA (mtDNA) lineages, an elucidation of which is central to understanding the species's evolution. Previous explanations for the divergent clades include introgression of mtDNA haplotypes between ancestral species, allopatric divergence of the clades between Sri Lanka or the Sunda region and the mainland, historical trade of elephants, and retention of divergent lineages due to large population sizes. However, these studies lacked data from India and Myanmar, which host approximately 70 per cent of all extant Asian elephants. In this paper, we analyse mtDNA sequence data from 534 Asian elephants across the species's range to explain the current distribution of the two divergent clades. Based on phylogenetic reconstructions, estimates of times of origin of clades, probable ancestral areas of origin inferred from dispersal-vicariance analyses and the available fossil record, we believe both clades originated from Elephas hysudricus. This probably occurred allopatrically in different glacial refugia, the alpha clade in the Myanmar region and the beta clade possibly in southern India-Sri Lanka, 1.6-2.1Myr ago. Results from nested clade and dispersal-vicariance analyses indicate a subsequent isolation and independent diversification of the beta clade in both Sri Lanka and the Sunda region, followed by northward expansion of the clade. We also find more recent population expansions in both clades based on mismatch distributions. We therefore suggest a contraction-expansion scenario during severe climatic oscillations of the Quaternary, with range expansions from different refugia during warmer interglacials leading to the varying geographical overlaps of the two mtDNA clades. We also demonstrate that trade in Asian elephants has not substantially altered the species's mtDNA population genetic structure.

  19. Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures

    KAUST Repository

    Bradley, Derek

    2013-01-01

    The implosion technique has been used to extend measurements of turbulent burning velocities over greater ranges of fuels and pressures. Measurements have been made up to 3.5 MPa and at strain rate Markstein numbers as low as 23. The implosion technique, with spark ignition at two opposite wall positions within a fan-stirred spherical bomb is capable of measuring turbulent burning velocities, at higher pressures than is possible with central ignition. Pressure records and schlieren high speed photography define the rate of burning and the smoothed area of the flame front. The first aim of the study was to extend the previous measurements with ethanol and propane-air, with further measurements over wider ranges of fuels and equivalence ratios with mixtures of hydrogen, methane, 10% hydrogen-90% methane, toluene, and i-octane, with air. The second aim was to study further the low turbulence regime in which turbulent burning co-exists with laminar flame instabilities. Correlations are presented of turbulent burning velocity normalised by the effective rms turbulent velocity acting on the flame front, ut=u0k , with the Karlovitz stretch factor, K, for different strain rate Markstein numbers, a decrease in which increases ut=u0k . Experimental correlations are presented for the present measurements, combined with previous ones. Different burning regimes are also identified, extending from that of mixed turbulence/laminar instability at low values of K to that at high values of K, in which ut=u0k is gradually reduced due to increasing localised flame extinctions. © 2012 The Combustion Institute.

  20. Efficient Wide Range Converters (EWiRaC): A new family of high efficient AC-DC Converters

    DEFF Research Database (Denmark)

    Petersen, Lars; Andersen, Michael Andreas E.

    2006-01-01

    The performance in terms of efficiency of the existing power supplies used for PFC is very dependent on the input voltage range. The boost converter is the most commonly used PFC converter because of its simplicity and high efficiency. But, the boost converter as well as other known converters...... the converter topology according to the input voltage. This new converter type has been named: efficient wide range converter (EWiRaC). The performance of the EWiRaC is experimental verified in a universal input range (90-270VAC) application with an output voltage of 185VDC capable of 500W output power. The EWi...

  1. Electrochemical behaviour of aluminium in non-aqueous electrolytes over a wide potential range

    Science.gov (United States)

    Suresh, P.; Shukla, A. K.; Shivashankar, S. A.; Munichandraiah, N.

    The electrochemical behaviour of aluminium in LiClO 4-propylene carbonate electrolyte is studied by cyclic voltammetry, steady-state polarisation, and ac impedance spectroscopy in the potential range -0.4-4.2 V versus Li/Li +. The open-circuit potential of Al is 1.57 V versus Li/Li +, which is about 0.2 V above the thermodynamic value of Al due to the presence of a surface passive film. In the positive potential region, Al is fairly stable between 1.57 and 3.5 V versus Li/Li + owing to the presence of the surface film. Nevertheless, the oxidation of Al occurs at potentials >3.5 V versus Li/Li +. The ac impedance data are analysed by using a non-linear least-squares fitting procedure, and the surface film resistance is found to be between 498 and 1032 kΩ cm -2. In the potential range 3.6-4.2 V versus Li/Li +, there is a breakdown of the passive film as demonstrated by a decrease in its resistance to 1.2-4.8 kΩ cm -2. This breakdown accompanies anodic oxidation of Al. Thus, there is a possibility of anodic degradation of the Al substrate that is usually used as the current-collector of positive electrodes of Li-ion batteries, if Al is exposed to the electrolyte. In the negative potential region, the deposition of uniform and non-dendritic Li occurs, which can be anodically stripped in a quasi-reversible process with high coulombic efficiency. Diffusion of Li into Al results in the formation of a surface layer of Li-Al alloy, as suggested by X-ray diffraction patterns. The quasi-reversible cathodic deposition and anodic stripping of Li with an exchange current density of 0.16 mA cm -2 indicates that Al is useful as a negative electrode in Li-batteries.

  2. Thermomechanical Response of the Rotary Forged Wha Over a Wide Range of Strain Rates and Temperatures

    Science.gov (United States)

    Guo, W. G.; Qu, C.; Liu, F. L.

    This paper is to understand and model the thermomechanical response of the rotary forged WHA, uniaxial compression and tension tests are performed on cylindrical samples, using a material testing machines and the split Hopkinson bar technique. True strains exceeding 40% are achieved in these tests over the range of strain rates from 0.001/s to about 7,000/s, and at initial temperatures from 77K to 1,073K. The results show: 1) the WHA displays a pronounced changing orientation due to mechanical processing, that is, the material is inhomogeneous along the section; 2) the dynamic strain aging occurs at temperatures over 700K and in a strain rate of 10-3 1/s; 3) failure strains decrease with increasing strain rate under uniaxial tension, it is about 1.2% at a strain rate of 1,000 1/s; and 4) flow stress of WHA strongly depends on temperatures and strain rates. Finally, based on the mechanism of dislocation motion, the parameters of a physically-based model are estimated by the experimental results. A good agreement between the modeling prediction and experiments was obtained.

  3. Development of wide range current signal data acquisition system for reactivity meter using Keithley electrometers

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, S. H.; Kim, H. K.; Chio, Y. S.; Kim, M. J.; Woo, J. S. [KAERI, Taejon (Korea, Republic of)

    2001-05-01

    The reactivity worth of control rods is measured to ensure safety every refueling phase in HANARO, the research reactor in KAERI. Two compensated ion chambers are installed around the outer core to measure the reactor power. The signals from CICs enter the reactivity computer system. The reactivity computer system operated on MS-DOS was developed during the commissioning phase. But it is not so user-friendly, is so outdated and difficult to aquire spare parts. Hence we decided to upgrade the system to utilize MS-Windows {sup TM} operating system and object oriented visual program language. This paper describes the data acquisition system developed for the new reactivity computer system operated on MS-Windows{sup TM} operating system. This data acquisition system uses electrometers for converting low current signal to voltage and measures the current signal accurately even though the electrometer change the range of the output automatically. We verified that the system was stable and acquired the input signals accurately.

  4. A Study on Flow Behavior of AA5086 Over a Wide Range of Temperatures

    Science.gov (United States)

    Asgharzadeh, A.; Jamshidi Aval, H.; Serajzadeh, S.

    2016-03-01

    Flow stress behavior of AA5086 was determined using tensile testing at different temperatures from room temperature to 500 °C and strain rates varying between 0.002 and 1 s-1. The strain rate sensitivity parameter and occurrence of dynamic strain aging were then investigated in which an Arrhenius-type model was employed to study the serrated flow. Additionally, hot deformation behavior at temperatures higher than 320 °C was evaluated utilizing hyperbolic-sine constitutive equation. Finally, a feed forward artificial neural network model with back propagation learning algorithm was proposed to predict flow stress for all deformation conditions. The results demonstrated that the strain rate sensitivity at temperature range of 25-270 °C was negative due to occurrence of dynamic strain aging leading to significant reduction in fracture strain. The serrated yielding activation energy was found to be 46.1 kJ/mol. It indicated that the migration of Mg-atoms could be the main reason for this phenomenon. The hot deformation activation energy of AA5086 was also calculated about 202.3 kJ/mol while the dynamic recovery was the main softening process. Moreover, the ANN model having two hidden layers was shown to be an efficient structure for determining flow stress of the examined alloy for all temperatures and strain rates.

  5. MRI profiles over very wide concentration ranges: Application to swelling of a bentonite clay

    Science.gov (United States)

    Dvinskikh, S. V.; Szutkowski, K.; Furó, I.

    2009-06-01

    In MRI investigation of soils, clays, and rocks, mainly mobile water is detected, similarly to that in biological and medical samples. However, the spin relaxation properties of water in these materials and/or low water concentration may make it difficult to use standard MRI approaches. Despite these limitations, one can combine MRI techniques developed for solid and liquid states and use independent information on relaxation properties of water, interacting with the material of interest, to obtain true images of both water and material content. We present procedures for obtaining such true density maps and demonstrate their use for studying the swelling of bentonite clay by water. A constant time imaging protocol provides 1D mapping of the clay distribution in regions with clay concentration above 10 vol%. T1 relaxation time imaging is employed to monitor the clay content down to 10 -3 vol%. Data provided by those two approaches are in good agreement in the overlapping range of concentrations. Covering five orders of magnitude of clay concentration, swelling of sodium-exchanged bentonite clays from pre-compacted pellets into a gel phase is followed in detail.

  6. A fully integrated VCO with a wide tuning range for DVB-H

    Science.gov (United States)

    Khemchandani, S. L.; Betancort, G.; del Pino Suarez, Javier; Alvarado, Unai; Goni-Iturri, Amaya; Hernandez, Antonio

    2007-05-01

    European standard DVB-T (Digital Video Broadcasting - Terrestrial) has already proven its exceptional features, including the possibility to receive broadcast services also with portable devices and even in receivers with a limited mobility such as cars. This paper presents a fully integrated LC voltage controlled oscillator (VCO) in a low cost 0.35 μm SiGe technology for DVB-H standard. To obtain VCO specifications system simulations have been done. The designed VCO is suitable to operate with ZERO and LOW IF receiver architectures. To integrate all the VCO components, it oscillates at double of the frequency band, from 940 to 1724 MHz. In order to sweep the whole frequency range, the tank is composed of an array of switched capacitors together with the varactors. The integrated inductors have been designed by electromagnetic simulations using Momentum(C). Techniques like using a capacitor divider, biasing the transistor for minimum noise and emitter degeneration have been utilized to improve phase noise requirements. The obtained phase noise is -108 dBc/Hz at 100 kHz offset and the power consumption, including the output buffers, is 28 mW.

  7. MRI profiles over very wide concentration ranges: application to swelling of a bentonite clay.

    Science.gov (United States)

    Dvinskikh, S V; Szutkowski, K; Furó, I

    2009-06-01

    In MRI investigation of soils, clays, and rocks, mainly mobile water is detected, similarly to that in biological and medical samples. However, the spin relaxation properties of water in these materials and/or low water concentration may make it difficult to use standard MRI approaches. Despite these limitations, one can combine MRI techniques developed for solid and liquid states and use independent information on relaxation properties of water, interacting with the material of interest, to obtain true images of both water and material content. We present procedures for obtaining such true density maps and demonstrate their use for studying the swelling of bentonite clay by water. A constant time imaging protocol provides 1D mapping of the clay distribution in regions with clay concentration above 10 vol%. T(1) relaxation time imaging is employed to monitor the clay content down to 10(-3) vol%. Data provided by those two approaches are in good agreement in the overlapping range of concentrations. Covering five orders of magnitude of clay concentration, swelling of sodium-exchanged bentonite clays from pre-compacted pellets into a gel phase is followed in detail.

  8. Neonatal hypoglycemia: A wide range of electroclinical manifestations and seizure outcomes.

    Science.gov (United States)

    Arhan, Ebru; Öztürk, Zeynep; Serdaroğlu, Ayşe; Aydın, Kürşad; Hirfanoğlu, Tuğba; Akbaş, Yılmaz

    2017-09-01

    We examined the various types of epilepsy in children with neonatal hypoglycemia in order to define electroclinical and prognostic features of these patients. We retrospectively reviewed the medical records of patients with a history of symptomatic neonatal hypoglycaemia who have been followed at Gazi University Hospital Pediatric Neurology Department between 2006 and 2015. Patients with perinatal asphyxia were excluded. Details of each patient's perinatal history, neurological outcome, epilepsy details, seizure outcome and EEG and brain MRI findings were reviewed. Fourty five patients (range 6 mo-15 y) with a history of symptomatic neonatal hypoglycaemia were included the study. Epilepsy developed in 36 patients and 23 of them had intractable epilepsy. All patients had occipital brain injury. We observed that most of the patients, either manifesting focal or generalized seizures, further develop intractable epilepsy. This finding establishes neonatal hypoglycemia as a possible cause to be considered in any case of intractable epilepsy. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  9. Measurement of a wide-range of X-ray doses using specialty doped silica fibres

    Science.gov (United States)

    Abdul Sani, S. F.; Hammond, R.; Jafari, S. M.; Wahab, Norfadira; Amouzad Mahdiraji, G.; Siti Shafiqah, A. S.; Abdul Rashid, H. A.; Maah, M. J.; Aldousari, H.; Alkhorayef, M.; Alzimami, M.; Bradley, D. A.

    2017-08-01

    Using six types of tailor-made doped optical fibres, we carry out thermoluminescent (TL) studies of X-rays, investigating the TL yield for doses from 20 mGy through to 50 Gy. Dosimetric parameters were investigated for nominal 8 wt% Ge doped fibres that in two cases were co-doped, using B in one case and Br in the other. A comparative measurement of surface analysis has also been made for non-annealed and annealed capillary fibres, use being made of X-ray Photoelectron Spectroscopy (XPS) analysis. Comparison was made with the conventional TL phosphor LiF in the form of the proprietary product TLD-100, including dose response and glow curves investigated for X-rays generated at 60 kVp over a dose range from 2 cGy to 50 Gy. The energy response of the fibres was also performed for X-rays generated at peak accelerating potentials of 80 kVp, 140 kVp, 250 kVp and 6 MV photons for an absorbed dose of 2 Gy. Present results show the samples to be suitable for use as TL dosimeters, with good linearity of response and a simple glow curve (simple trap) distribution. It has been established that the TL performance of an irradiated fibre is not only influenced by radiation parameters such as energy, dose-rate and total dose but also the type of fibre.

  10. A portable and wide energy range semiconductor-based neutron spectrometer

    Science.gov (United States)

    Hoshor, C. B.; Oakes, T. M.; Myers, E. R.; Rogers, B. J.; Currie, J. E.; Young, S. M.; Crow, J. A.; Scott, P. R.; Miller, W. H.; Bellinger, S. L.; Sobering, T. J.; Fronk, R. G.; Shultis, J. K.; McGregor, D. S.; Caruso, A. N.

    2015-12-01

    Hand-held instruments that can be used to passively detect and identify sources of neutron radiation-either bare or obscured by neutron moderating and/or absorbing material(s)-in real time are of interest in a variety of nuclear non-proliferation and health physics applications. Such an instrument must provide a means to high intrinsic detection efficiency and energy-sensitive measurements of free neutron fields, for neutrons ranging from thermal energies to the top end of the evaporation spectrum. To address and overcome the challenges inherent to the aforementioned applications, four solid-state moderating-type neutron spectrometers of varying cost, weight, and complexity have been designed, fabricated, and tested. The motivation of this work is to introduce these novel human-portable instruments by discussing the fundamental theory of their operation, investigating and analyzing the principal considerations for optimal instrument design, and evaluating the capability of each of the four fabricated spectrometers to meet the application needs.

  11. A portable and wide energy range semiconductor-based neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hoshor, C.B. [Department of Physics, University of Missouri, Kansas City, MO (United States); Oakes, T.M. [Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO (United States); Myers, E.R.; Rogers, B.J.; Currie, J.E.; Young, S.M.; Crow, J.A.; Scott, P.R. [Department of Physics, University of Missouri, Kansas City, MO (United States); Miller, W.H. [Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO (United States); Missouri University Research Reactor, Columbia, MO (United States); Bellinger, S.L. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS (United States); Sobering, T.J. [Electronics Design Laboratory, Kansas State University, Manhattan, KS (United States); Fronk, R.G.; Shultis, J.K.; McGregor, D.S. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS (United States); Caruso, A.N., E-mail: carusoan@umkc.edu [Department of Physics, University of Missouri, Kansas City, MO (United States)

    2015-12-11

    Hand-held instruments that can be used to passively detect and identify sources of neutron radiation—either bare or obscured by neutron moderating and/or absorbing material(s)—in real time are of interest in a variety of nuclear non-proliferation and health physics applications. Such an instrument must provide a means to high intrinsic detection efficiency and energy-sensitive measurements of free neutron fields, for neutrons ranging from thermal energies to the top end of the evaporation spectrum. To address and overcome the challenges inherent to the aforementioned applications, four solid-state moderating-type neutron spectrometers of varying cost, weight, and complexity have been designed, fabricated, and tested. The motivation of this work is to introduce these novel human-portable instruments by discussing the fundamental theory of their operation, investigating and analyzing the principal considerations for optimal instrument design, and evaluating the capability of each of the four fabricated spectrometers to meet the application needs.

  12. Dynamic mechanical behaviour and dislocation substructure evolution of Inconel 718 over wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woei-Shyan, E-mail: wslee@mail.ncku.edu.tw [Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Chi-Feng [National Center for High-Performance Computing, Hsin-Shi Tainan County 744, Taiwan (China); Chen, Tao-Hsing [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan (China); Chen, Hong-Wei [Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2011-07-25

    A compressive split-Hopkinson pressure bar and transmission electron microscope (TEM) are used to investigate the mechanical behaviour and microstructural evolution of Inconel 718 at strain rates ranging from 1000 to 5000 s{sup -1} and temperatures between -150 and 550 deg. C. The results show that the flow stress increases with an increasing strain rate or a reducing temperature. The strain rate effect is particularly pronounced at strain rates greater than 3000 s{sup -1} and a deformation temperature of -150 deg. C. A significant thermal softening effect occurs at temperatures between -150 and 25 deg. C. The microstructural observations reveal that the strengthening effect in deformed Inconel 718 alloy is a result primarily of dislocation multiplication. The dislocation density increases with increasing strain rate, but decreases with increasing temperature. By contrast, the dislocation cell size decreases with increasing strain rate, but increases with increasing temperature. It is shown that the correlation between the flow stress, the dislocation density and the dislocation cell size is well described by the Bailey-Hirsch constitutive equations.

  13. Surprise as a design strategy

    NARCIS (Netherlands)

    Ludden, G.D.S.; Schifferstein, H.N.J.; Hekkert, P.P.M.

    2008-01-01

    Imagine yourself queuing for the cashier’s desk in a supermarket. Naturally, you have picked the wrong line, the one that does not seem to move at all. Soon, you get tired of waiting. Now, how would you feel if the cashier suddenly started to sing? Many of us would be surprised and, regardless of

  14. Surprise as a design strategy

    NARCIS (Netherlands)

    Ludden, G.D.S.; Schifferstein, H.N.J.; Hekkert, P.P.M.

    2008-01-01

    Imagine yourself queuing for the cashier’s desk in a supermarket. Naturally, you have picked the wrong line, the one that does not seem to move at all. Soon, you get tired of waiting. Now, how would you feel if the cashier suddenly started to sing? Many of us would be surprised and, regardless of th

  15. Quadrupedal galloping control for a wide range of speed via vertical impulse scaling.

    Science.gov (United States)

    Park, Hae-Won; Kim, Sangbae

    2015-03-25

    This paper presents a bio-inspired quadruped controller that allows variable-speed galloping. The controller design is inspired by observations from biological runners. Quadrupedal animals increase the vertical impulse that is generated by ground reaction forces at each stride as running speed increases and the duration of each stance phase reduces, whereas the swing phase stays relatively constant. Inspired by this observation, the presented controller estimates the required vertical impulse at each stride by applying the linear momentum conservation principle in the vertical direction and prescribes the ground reaction forces at each stride. The design process begins with deriving a planar model from the MIT Cheetah 2 robot. A baseline periodic limit cycle is obtained by optimizing ground reaction force profiles and the temporal gait pattern (timing and duration of gait phases). To stabilize the optimized limit cycle, the obtained limit cycle is converted to a state feedback controller by representing the obtained ground reaction force profiles as functions of the state variable, which is monotonically increasing throughout the gait, adding impedance control around the height and pitch trajectories of the obtained limit cycle and introducing a finite state machine and a pattern stabilizer to enforce the optimized gait pattern. The controller that achieves a stable 3 m s(-1) gallop successfully adapts the speed change by scaling the vertical ground reaction force to match the momentum lost by gravity and adding a simple speed controller that controls horizontal speed. Without requiring additional gait optimization processes, the controller achieves galloping at speeds ranging from 3 m s(-1) to 14.9 m s(-1) while respecting the torque limit of the motor used in the MIT Cheetah 2 robot. The robustness of the controller is verified by demonstrating stable running during various disturbances, including 1.49 m step down and 0.18 m step up, as well as random ground

  16. Hydrogen peroxide sensor: Uniformly decorated silver nanoparticles on polypyrrole for wide detection range

    Energy Technology Data Exchange (ETDEWEB)

    Nia, Pooria Moozarm, E-mail: pooriamn@yahoo.com; Meng, Woi Pei, E-mail: pmwoi@um.edu.my; Alias, Y., E-mail: yatimah70@um.edu.my

    2015-12-01

    Graphical abstract: - Highlights: • Electrochemical method was used for depositing silver nanoparticles and polypyrrole. • Silver nanoparticles (25 nm) were uniformly decorated on electrodeposited polypyrrole. • (Ag(NH{sub 3}){sub 2}OH) precursor showed better electrochemical performance than (AgNO{sub 3}). • The sensor showed superior performance toward H{sub 2}O{sub 2}. - Abstract: Electrochemically synthesized polypyrrole (PPy) decorated with silver nanoparticles (AgNPs) was prepared and used as a nonenzymatic sensor for hydrogen peroxide (H{sub 2}O{sub 2}) detection. Polypyrrole was fabricated through electrodeposition, while silver nanoparticles were deposited on polypyrrole by the same technique. The field emission scanning electron microscopy (FESEM) images showed that the electrodeposited AgNPs were aligned along the PPy uniformly and the mean particle size of AgNPs is around 25 nm. The electrocatalytic activity of AgNPs-PPy-GCE toward H{sub 2}O{sub 2} was studied using chronoamperometry and cyclic voltammetry. The first linear section was in the range of 0.1–5 mM with a limit of detection of 0.115 μmol l{sup −1} and the second linear section was raised to 120 mM with a correlation factor of 0.256 μmol l{sup −1} (S/N of 3). Moreover, the sensor presented excellent stability, selectivity, repeatability and reproducibility. These excellent performances make AgNPs-PPy/GCE an ideal nonenzymatic H{sub 2}O{sub 2} sensor.

  17. Assessing ecological specialization of an ant-seed dispersal mutualism through a wide geographic range.

    Science.gov (United States)

    Manzaneda, Antonio J; Rey, Pedro J

    2009-11-01

    Specialization in species interactions is of central importance for understanding the ecological structure and evolution of plant-animal mutualisms. Most plant-animal mutualisms are facultative and strongly asymmetric. In particular, myrmecochory (seed dispersal by ants) has been regarded as a very generalized interaction. Although some recent studies have suggested that only a few ant species are really important for dispersal, no rigorous measurement of the specialization in ant-seed dispersal mutualisms has been performed. Here, we use individual plants as basic units for replication to investigate the generalization-specialization of the herb Helleborus foetidus on its ant dispersers over a considerable part of its geographical range. We define generalization in terms of diversity components (species richness and evenness) of the ant visitor that realizes dispersal by removing diaspores. We obtain truly comparable values of ant visitor diversity, distinguishing among different functional groups of visitors and identifying incidental visitors and real ant dispersers. Using null model approaches, we test the null hypothesis that ant-mediated dispersal is a generalized mutualism. At least two premises should be confirmed to validate the hypothesis: (1) diaspores are dispersed by multiple ant-visitor species, and (2) diaspore dispersal is significantly equitable. Though up to 37 ant species visited diaspores across 10 populations, only two large formicines, Camponotus cruentatus and Formica lugubris, were responsible for the vast majority of visits resulting in dispersal in most populations and years, which strongly suggests that ant seed dispersal in H. foetidus is ecologically specialized. Interestingly, specialization degree was unrelated to dispersal success across populations. Our study offers new insights into the spatiotemporal dynamics of myrmecochory. We propose the existence of an alternative scenario to extensive generalization. In this new scenario

  18. High efficiency RF amplifier development over wide dynamic range for accelerator application

    Science.gov (United States)

    Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Joshi, Gopal; Sharma, Archana; Singh, Pitamber

    2017-10-01

    Superconducting (SC) cavities in an accelerating section are designed to have the same geometrical velocity factor (βg). For these cavities, Radio Frequency (RF) power needed to accelerate charged particles varies with the particle velocity factor (β). RF power requirement from one cavity to other can vary by 2-5 dB within the accelerating section depending on the energy gain in the cavity and beam current. In this paper, we have presented an idea to improve operating efficiency of the SC RF accelerators using envelope tracking technique. A study on envelope tracking technique without feedback is carried out on a 1 kW, 325 MHz, class B (conduction angle of 180 degrees) tuned load power amplifier (PA). We have derived expressions for the efficiency and power output for tuned load amplifier operating on the envelope tracking technique. From the derived expressions, it is observed that under constant load resistance to the device (MOSFET), optimum amplifier efficiency is invariant whereas output power varies with the square of drain bias voltage. Experimental results on 1 kW PA module show that its optimum efficiency is always greater than 62% with variation less than 5% from mean value over 7 dB dynamic range. Low power amplifier modules are the basic building block for the high power amplifiers. Therefore, results for 1 kW PA modules remain valid for the high power solid state amplifiers built using these PA modules. The SC RF accelerators using these constant efficiency power amplifiers can improve overall accelerator efficiency.

  19. Wide-Band Spatially Tunable Photonic Bandgap in Visible Spectral Range and Laser based on a Polymer Stabilized Blue Phase

    OpenAIRE

    2016-01-01

    This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflec...

  20. Kinetic study of vibrational energy transfer from a wide range of vibrational levels of O2(X(3)Sigma(g)-, v = 6-12) to CF4.

    Science.gov (United States)

    Watanabe, Shinji; Fujii, Hidekazu; Kohguchi, Hiroshi; Hatano, Takayuki; Tokue, Ikuo; Yamasaki, Katsuyoshi

    2008-10-02

    A wide range of vibrational levels of O2(X(3)Sigma(g)(-), v = 6-13) generated in the ultraviolet photolysis of O3 was selectively detected by the laser-induced fluorescence (LIF) technique. The time-resolved LIF-excited B(3)Sigma(u)(-)-X(3)Sigma(g)(-) system in the presence of CF4 has been recorded and analyzed by the integrated profiles method (IPM). The IPM permitted us to determine the rate coefficients k(v)(CF4) for vibrational relaxation of O2(X(3)Sigma(g)(-), v = 6-12) by collisions with CF4. Energy transfer from O2 (v = 6-12) to CF4 is surprisingly efficient compared to that of other polyatomic relaxation partners studied so far. The k(v)(CF4) increases with vibrational quantum number v from [1.5 +/- 0.2(2sigma)] x 10(-12) for v = 6 to [7.3 +/- 1.5(2sigma)] x 10(-11) for v = 12, indicating that the infrared-active nu3 vibrational mode of CF4 mainly governs the energy transfer with O2(X(3)Sigma(g)(-), v = 6-12). The correlation between the rate coefficients and fundamental infrared intensities has been discussed based on a comparison of the efficiency of energy transfer by several collision partners.

  1. Wide range of metallic and organic contaminants in various tissues of the Antarctic prion, a planktonophagous seabird from the Southern Ocean.

    Science.gov (United States)

    Fromant, Aymeric; Carravieri, Alice; Bustamante, Paco; Labadie, Pierre; Budzinski, Hélène; Peluhet, Laurent; Churlaud, Carine; Chastel, Olivier; Cherel, Yves

    2016-02-15

    Trace elements (n=14) and persistent organic pollutants (POPs, n=30) were measured in blood, liver, kidney, muscle and feathers of 10 Antarctic prions (Pachyptila desolata) from Kerguelen Islands, southern Indian Ocean, in order to assess their concentrations, tissue distribution, and inter-tissue and inter-contaminant relationships. Liver, kidney and feathers presented the highest burdens of arsenic, cadmium and mercury, respectively. Concentrations of cadmium, copper, iron, and zinc correlated in liver and muscle, suggesting that uptake and pathways of metabolism and storage were similar for these elements. The major POPs were 4,4'-DDE, mirex, PCB-153 and PCB-138. The concentrations and tissue distribution patterns of environmental contaminants were overall in accordance with previous results in other seabirds. Conversely, some Antarctic prions showed surprisingly high concentrations of BDE-209. This compound has been rarely observed in seabirds before, and its presence in Antarctic prions could be due to the species feeding habits or to the ingestion of plastic debris. Overall, the study shows that relatively lower trophic level seabirds (zooplankton-eaters) breeding in the remote southern Indian Ocean are exposed to a wide range of environmental contaminants, in particular cadmium, selenium and some emerging-POPs, which merits further toxicological investigations.

  2. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation

    Science.gov (United States)

    Yukino, Ryoji; Sahoo, Pankaj K.; Sharma, Jaiyam; Takamura, Tsukasa; Joseph, Joby; Sandhu, Adarsh

    2017-01-01

    We describe wavelength tuning in a one dimensional (1D) silicon nitride nano-grating guided mode resonance (GMR) structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation) for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position over a wide range of wavelengths. We experimental demonstrate tuning over a range of 375 nm between 500 nm˜875 nm. We present a theoretical model to explain the resonance conditions observed in our experiments and predict the peak positions with show excellent agreement with experiments. Our method for tuning wavelengths is simpler and more efficient than conventional procedures that employ variations in the design parameters of structures or conical mounting of two-dimensional (2D) GMR structures and enables a single 1D GMR device to function as a high efficiency wavelength filter over a wide range of wavelengths. We expect tunable filters based on this technique to be applicable in a wide range of fields including astronomy and biomedical imaging.

  3. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation

    Directory of Open Access Journals (Sweden)

    Ryoji Yukino

    2017-01-01

    Full Text Available We describe wavelength tuning in a one dimensional (1D silicon nitride nano-grating guided mode resonance (GMR structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position over a wide range of wavelengths. We experimental demonstrate tuning over a range of 375 nm between 500 nm˜875 nm. We present a theoretical model to explain the resonance conditions observed in our experiments and predict the peak positions with show excellent agreement with experiments. Our method for tuning wavelengths is simpler and more efficient than conventional procedures that employ variations in the design parameters of structures or conical mounting of two-dimensional (2D GMR structures and enables a single 1D GMR device to function as a high efficiency wavelength filter over a wide range of wavelengths. We expect tunable filters based on this technique to be applicable in a wide range of fields including astronomy and biomedical imaging.

  4. Low-Voltage, Low-Power, and Wide-Tuning-Range Ring-VCO for Frequency ΔΣ Modulator

    DEFF Research Database (Denmark)

    Tuan Vu, Cao; Wisland, Dag T.; Lande, Tor Sverre

    A low-voltage, low-power, and wide-tuning-range VCO which converts an analog input voltage to phase information for a frequency ΔΣ modulator is proposed in this paper. The VCO is based on a differential ring oscillator, which is improved with modified symmetric load and a positive feedback...... in the differential delay cells, a new bias circuit and a full-swing amplifier. The proposed VCO operating with two stages at a power supply voltage of 0.6 V can achieve wide tuning-range and low power consumption of 176.892 uW. The new VCO has a good linearity reducing harmonic distortion for frequency ΔΣ modulator...

  5. Wide Operational Range Processor Power Delivery Design for Both Super-Threshold Voltage and Near-Threshold Voltage Computing

    Institute of Scientific and Technical Information of China (English)

    Xin He; Gui-Hai Yan; Yin-He Han; Xiao-Wei Li

    2016-01-01

    The load power range of modern processors is greatly enlarged because many advanced power management techniques are employed, such as dynamic voltage frequency scaling, Turbo Boosting, and near-threshold voltage (NTV) technologies. However, because the efficiency of power delivery varies greatly with different load conditions, conventional power delivery designs cannot maintain high efficiency over the entire voltage spectrum, and the gained power saving may be offset by power loss in power delivery. We propose SuperRange, a wide operational range power delivery unit. SuperRange complements the power delivery capability of on-chip voltage regulator and off-chip voltage regulator. On top of SuperRange, we analyze its power conversion characteristics and propose a voltage regulator (VR) aware power management algorithm. Moreover, as more and more cores have been integrated on a singe chip, multiple SuperRange units can serve as basic building blocks to build, in a highly scalable way, more powerful power delivery subsystem with larger power capacity. Experimental results show SuperRange unit offers 1x and 1.3x higher power conversion efficiency (PCE) than other two conventional power delivery schemes at NTV region and exhibits an average 70%PCE over entire operational range. It also exhibits superior resilience to power-constrained systems.

  6. A Wide Linear Range Eddy Current Displacement Sensor Equipped with Dual-Coil Probe Applied in the Magnetic Suspension Flywheel

    Directory of Open Access Journals (Sweden)

    Tong Wen

    2012-08-01

    Full Text Available The Eddy Current Displacement Sensor (ECDS is widely used in the Magnetic Suspension Flywheel (MSFW to measure the tiny clearance between the rotor and the magnetic bearings. The linear range of the ECDS is determined by the diameter of its probe coil. Wide clearances must be measured in some new MSFWs recently designed for the different space missions, but the coil diameter is limited by some restrictions. In this paper, a multi-channel ECDS equipped with dual-coil probes is proposed to extend the linear range to satisfy the demands of such MSFWs. In order to determine the best configuration of the dual-coil probe, the quality factors of the potential types of the dual-coil probes, the induced eddy current and the magnetic intensity on the surface of the measuring object are compared with those of the conventional single-coil probe. The linear range of the ECDS equipped with the selected dual-coil probe is extended from 1.1 mm to 2.4 mm under the restrictions without adding any cost for additional compensation circuits or expensive coil materials. The effectiveness of the linear range extension ability and the dynamic response of the designed ECDS are confirmed by the testing and the applications in the MSFW.

  7. Sensitive and selective analysis of a wide concentration range of IGFBP7 using a surface plasmon resonance biosensor.

    Science.gov (United States)

    Jang, Dae-Ho; Choi, Youngbo; Choi, Yong-Soo; Kim, Sun-Mi; Kwak, Hojung; Shin, Se-Hyun; Hong, Surin

    2014-11-01

    A sensitive method for selectively detecting insulin-like growth factor-binding protein 7 (IGFBP7) over a wide range of concentrations based on the surface plasmon resonance (SPR) biosensing techniques is described. IGFBP7 has been shown to regulate cell proliferation, cell adhesion, cellular senescence, apoptosis, and angiogenesis in several different cancer cell lines. Since the concentration of IGFBP7 can vary widely in the body, determining the precise concentration of IGFBP7 over a wide range of concentrations is important, since it serves as an inducible biomarker for both disease diagnosis and subsequent therapy. The SPR sensing method is based on the selective interaction of IGFBP7 with specific anti-IGFBP7 proteins on a gold thin film, which was covalently bound to the Fc-binding domain of protein G on a mixed self-assembled monolayer composed of DSNHS (S2(CH2)11COO(CH2)2COO-(N-hydroxysuccinimide)) and mercaptoundecanol, and effect of this on changes in the SPR profiles. The limit of detection (LOD) of the SPR biosensor was determined to be 10 ng/ml, which is a reasonable LOD value for biomedical applications. The response is essentially linear in the concentration range of 10-300 ng/ml. The SPR biosensor also shows specificity for IGFBP7 compared to that for biologically relevant interleukin (IL) derivatives including IL4, IL23, IL29, and IFG1. These molecules are also present along with IGFBP7 in the cell culture medium and have the potential to interfere with the analysis. Finally, the level secretion of IGFBP7 from cancer cells detected by the SPR biosensor showed a good correlation with a commercial kit using an IGFBP7 enzyme-linked immunosorbent assay. The findings reported herein indicate that the SPR biosensor for IGFBP7 would be applicable in a wide variety of biomedical fields.

  8. A wide dynamic range BF 3 neutron monitor with front-end electronics based on a logarithmic amplifier

    Science.gov (United States)

    Ferrarini, M.; Varoli, V.; Favalli, A.; Caresana, M.; Pedersen, B.

    2010-02-01

    This paper describes a wide dynamic range neutron monitor based on a BF 3 neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10 6 s -1. It has also proved effective in measuring the PUNITA facility pulse integral fluence.

  9. A wide dynamic range BF{sub 3} neutron monitor with front-end electronics based on a logarithmic amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Ferrarini, M., E-mail: michele.ferrarini@polimi.i [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Fondazione CNAO, via Caminadella 16, 20123 Milano (Italy); Varoli, V. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Favalli, A. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Vatican City State, Holy See) (Italy); Caresana, M. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Pedersen, B. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Italy)

    2010-02-01

    This paper describes a wide dynamic range neutron monitor based on a BF{sub 3} neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10{sup 6} s{sup -1}. It has also proved effective in measuring the PUNITA facility pulse integral fluence.

  10. Quantifying the spatial ecology of wide-ranging marine species in the Gulf of California: implications for marine conservation planning.

    Science.gov (United States)

    Anadón, José Daniel; D'Agrosa, Caterina; Gondor, Anne; Gerber, Leah R

    2011-01-01

    There is growing interest in systematic establishment of marine protected area (MPA) networks and representative conservation sites. This movement toward networks of no-take zones requires that reserves are deliberately and adequately spaced for connectivity. Here, we test the network functionality of an ecoregional assessment configuration of marine conservation areas by evaluating the habitat protection and connectivity offered to wide-ranging fauna in the Gulf of California (GOC, Mexico). We first use expert opinion to identify representative species of wide-ranging fauna of the GOC. These include leopard grouper, hammerhead sharks, California brown pelicans and green sea turtles. Analyzing habitat models with both structural and functional connectivity indexes, our results indicate that the configuration includes large proportions of biologically important habitat for the four species considered (25-40%), particularly, the best quality habitats (46-57%). Our results also show that connectivity levels offered by the conservation area design for these four species may be similar to connectivity levels offered by the entire Gulf of California, thus indicating that connectivity offered by the areas may resemble natural connectivity. The selected focal species comprise different life histories among marine or marine-related vertebrates and are associated with those habitats holding the most biodiversity values (i.e. coastal habitats); our results thus suggest that the proposed configuration may function as a network for connectivity and may adequately represent the marine megafauna in the GOC, including the potential connectivity among habitat patches. This work highlights the range of approaches that can be used to quantify habitat protection and connectivity for wide-ranging marine species in marine reserve networks.

  11. Brazilian rescue plan sparks surprise

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    According to Financial Times,when Guido Mantega,Brazil's finance minister,suddenly proposed a “Bric” rescue package for the eurozone this week,he caught not only other world leaders by surprise but also many of his fellow countrymen.Even as officials from other members of the so-called Bric grouping,Russia,India and China,said it was the first they heard of the idea,many ordinary Brazilians expressed shock at the notion of bailing out the world's richest trading bloc.

  12. Can benthic foraminifera be used as bio-indicators of pollution in areas with a wide range of physicochemical variability?

    Science.gov (United States)

    Martins, Maria Virgínia Alves; Pinto, Anita Fernandes Souza; Frontalini, Fabrizio; da Fonseca, Maria Clara Machado; Terroso, Denise Lara; Laut, Lazaro Luiz Mattos; Zaaboub, Noureddine; da Conceição Rodrigues, Maria Antonieta; Rocha, Fernando

    2016-12-01

    The Ria de Aveiro, a lagoon located in the NW coast of Portugal, presents a wide range of changes to the natural hydrodynamical and physicochemical conditions induced for instance by works of port engineering and pollution. In order to evaluate the response of living benthic foraminifera to the fluctuations in physicochemical parameters and pollution (metals and TOC), eight sediment samples were collected from canals and salt pans within the Aveiro City, in four different sampling events. During the sampling events, salinity showed the most significant fluctuations among the physicochemical parameters with the maximum range of variation at Troncalhada and Santiago salt pans. Species such as Haynesina germanica, Trochammina inflata and Entzia macrescens were found inhabiting these hypersaline environments with the widest fluctuations of physicochemical parameters. In contrast, Ammonia tepida dominated zones with high concentrations of metals and organic matter and in lower salinity waters. Parameters related to benthic foraminiferal assemblages (i.e., diversity and evenness) were found to significantly decline in stations polluted by metals and characterized by higher TOC content. Foraminiferal density reduced significantly in locations with a wide range of physicochemical temporal variability. This work shows that, even under extreme conditions caused by highly variable physicochemical parameters, benthic foraminiferal assemblages might be used as valuable bioindicators of environmental stress.

  13. Fast negative feedback enables mammalian auditory nerve fibers to encode a wide dynamic range of sound intensities.

    Directory of Open Access Journals (Sweden)

    Mark Ospeck

    Full Text Available Mammalian auditory nerve fibers (ANF are remarkable for being able to encode a 40 dB, or hundred fold, range of sound pressure levels into their firing rate. Most of the fibers are very sensitive and raise their quiescent spike rate by a small amount for a faint sound at auditory threshold. Then as the sound intensity is increased, they slowly increase their spike rate, with some fibers going up as high as ∼300 Hz. In this way mammals are able to combine sensitivity and wide dynamic range. They are also able to discern sounds embedded within background noise. ANF receive efferent feedback, which suggests that the fibers are readjusted according to the background noise in order to maximize the information content of their auditory spike trains. Inner hair cells activate currents in the unmyelinated distal dendrites of ANF where sound intensity is rate-coded into action potentials. We model this spike generator compartment as an attenuator that employs fast negative feedback. Input current induces rapid and proportional leak currents. This way ANF are able to have a linear frequency to input current (f-I curve that has a wide dynamic range. The ANF spike generator remains very sensitive to threshold currents, but efferent feedback is able to lower its gain in response to noise.

  14. Preliminary assessment of the ecological risks to wide-ranging wildlife species on the Oak Ridge Reservation. 1996 update

    Energy Technology Data Exchange (ETDEWEB)

    Sample, B.E.; Hinzman, R.L.; Jackson, B.L.; Baron, L.

    1996-09-01

    More than approximately 50 years of operations, storage, and disposal of wastes generated by the three facilities on the Oak Ridge Reservation (ORR) (the Oak Ridge K-25 Site, Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant) has resulted in a mosaic of uncontaminated property and lands that are contaminated to varying degrees. This contaminated property includes source areas and the terrestrial and aquatic habitats down gradient from these source areas. Although the integrator OUs generally contain considerable habitat for biota, the source OUs provide little or no suitable habitat. Historically, ecological risk assessment at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites has focused on species that may be definitively associated with a contaminated area or source OU. Endpoints considered in source OUs include plants, soil/litter invertebrates and processes, aquatic biota found in on-OU sediments and surface waters, and small herbivorous, omnivorous, and vermivorous (i.e., feeding on ground, litter, or soil invertebrates) wildlife. All of these endpoints have limited spatial distributions or home ranges such that numerous individuals or a distinct population can be expected to reside within the boundaries of the source OU. Most analyses are not adequate for large sites with multiple, spatially separated contaminated areas such as the ORR that provide habitat for wide-ranging wildlife species. This report is a preliminary response to a plan for assessing risks to wide-ranging species.

  15. A fully integrated W-band push-push CMOS VCO with low phase noise and wide tuning range.

    Science.gov (United States)

    Wang, To-Po

    2011-07-01

    A circuit topology suitable for a low-phase-noise wide-tuning-range push-push voltage-controlled oscillator (VCO) is proposed in this paper. By applying varactors connected between drain and source terminations of the cross-coupled pair, the tuning range is effectively increased and the phase noise is improved. Moreover, a small capacitor is inserted between the VCO core and testing buffer to reduce loading effects on the VCO core. Furthermore, the enhanced second-harmonic output signal is extracted at middle of the varactors, leading to the elimination of RF choke at VCO's second-harmonic output port and a reduced chip size. Based on the proposed architecture, this VCO fabricated in 0.18-μm CMOS exhibits a measured 6.35% tuning range. Operating at a supply voltage of 1.2 V, the VCO core consumes 7.5-mW dc power, and the measured phase noise is -75 dBc/Hz and -91.5 dBc/Hz at 100-kHz and 1-MHz offsets from the 77.8-GHz carrier, respectively. Compared with previously published silicon-based VCOs over 70 GHz, this work can simultaneously achieve low phase noise, wide tuning range, and low dc power consumption, leading to a superior figure of merit (FOM), and better figure of merit considering the tuning range (FOM(T)). In addition, this fully integrated VCO also demonstrates the highest operation frequency among previously published 0.18-μm CMOS VCOs.

  16. Wide-range controllable n-doping of molybdenum disulfide (MoS2) through thermal and optical activation.

    Science.gov (United States)

    Park, Hyung-Youl; Lim, Myung-Hoon; Jeon, Jeaho; Yoo, Gwangwe; Kang, Dong-Ho; Jang, Sung Kyu; Jeon, Min Hwan; Lee, Youngbin; Cho, Jeong Ho; Yeom, Geun Young; Jung, Woo-Shik; Lee, Jaeho; Park, Seongjun; Lee, Sungjoo; Park, Jin-Hong

    2015-03-24

    Despite growing interest in doping two-dimensional (2D) transition metal dichalcogenides (TMDs) for future layered semiconductor devices, controllability is currently limited to only heavy doping (degenerate regime). This causes 2D materials to act as metallic layers, and an ion implantation technique with precise doping controllability is not available for these materials (e.g., MoS2, MoSe2, WS2, WSe2, graphene). Since adjustment of the electrical and optical properties of 2D materials is possible within a light (nondegenerate) doping regime, a wide-range doping capability including nondegenerate and degenerate regimes is a critical aspect of the design and fabrication of 2D TMD-based electronic and optoelectronic devices. Here, we demonstrate a wide-range controllable n-doping method on a 2D TMD material (exfoliated trilayer and bulk MoS2) with the assistance of a phosphorus silicate glass (PSG) insulating layer, which has the broadest doping range among the results reported to date (between 3.6 × 10(10) and 8.3 × 10(12) cm(-2)) and is also applicable to other 2D semiconductors. This is achieved through (1) a three-step process consisting of, first, dopant out-diffusion between 700 and 900 °C, second, thermal activation at 500 °C, and, third, optical activation above 5 μW steps and (2) weight percentage adjustment of P atoms in PSG (2 and 5 wt %). We anticipate our widely controllable n-doping method to be a starting point for the successful integration of future layered semiconductor devices.

  17. Wide-range length metrology by dual-imaging-unit atomic force microscope based on porous alumina.

    Science.gov (United States)

    Zhang, Dongxian; Zhang, Haijun; Lin, Xiaofeng

    2004-06-15

    A new dual-imaging-unit atomic force microscope (DIU-AFM) was developed for wide-range length metrology. In the DIU-AFM, two AFM units were combined, one as a reference unit, and the other a test one. Their probes with Z piezo elements and tips were horizontally set in parallel at the same height to reduce errors due to geometric asymmetry. An XY scanner was attached to an XY block that was able to move in the X direction with a step of about 500 nm. A standard porous alumina film was employed as the reference sample. Both reference sample and test sample were installed at the center of the XY scanner on the same surface and were simultaneously imaged. The two images had the same lateral size, and thus the length of the test sample image could be accurately measured by counting the number of periodic features of the reference one. The XY block together with the XY scanner were next moved in the X direction for about 1.5 microm and a second pair of reference and test images were obtained by activating the scanner. In this way, a series of pairs of images were acquired and could be spliced into two wide-range reference and test images, respectively. Again, the two spliced images were of the same size and the length of test image was measured based on the reference one. This article presents a discussion about the structure and control of the DIU-AFM system. Some experiments were carried out on the system to demonstrate the method of length calculation and measurement. Experiments show a satisfactory result of wide-range length metrology based on the hexagonal features of the porous alumina with a periodic length of several tens of nanometers. Using this method the DIU-AFM is capable of realizing nanometer-order accuracy length metrology when covering a wide range from micron to several hundreds of microns, or even up to millimeter order.

  18. Combined Flux Observer With Signal Injection Enhancement for Wide Speed Range Sensorless Direct Torque Control of IPMSM Drives

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Andreescu, G.-D.; Pitic, C.I.;

    2008-01-01

    This paper proposes a motion-sensorless control system using direct torque control with space vector modulation for interior permanent magnet synchronous motor (IPMSM) drives, for wide speed range operation, including standstill. A novel stator flux observer with variable structure uses a combined...... voltage-current model with PI compensator for low-speed operations. As speed increases, the observer switches gradually to a PI compensated closed-loop voltage model, which is solely used at high speeds. High-frequency rotating-voltage injection with a single D-module bandpass vector filter and a phase...

  19. Long-Term Cathodoluminescent Characterization of Thin-Film Oxide Phosphors in a Wide Range of Electron Excitation Densities

    Energy Technology Data Exchange (ETDEWEB)

    Bondar, V D; Felter, T E; Hunt, C E; Dubov, Y G; Chakhovskoi, A G

    2001-05-06

    Long-term processes of cathodoluminescence degradation of thin film phosphors Zn{sub 2}SiO{sub 4}:Ti and Zn{sub 2}GeO{sub 4}:Mn were investigated in a wide range of e-beam energies, current and power densities. The time dependencies describing decreasing of emission intensity have been found. At high-level densities of e-beam irradiation the specific behavior of long-term degradation processes was observed, which is characteristic with rapid degradation at initial stage and slow consequent decrease of intensity. The most probable mechanisms responsible for long-term processes of degradation in investigated phosphors are proposed.

  20. Long-Term Cathodoluminescent Characterization of Thin-Film Oxide Phosphors in a Wide Range of Electron Excitation Densities

    Energy Technology Data Exchange (ETDEWEB)

    Bondar, V D; Felter, T E; Hunt, C E; Dubov, Y G; Chakhovskoy, A G

    2001-04-09

    Long-term processes of cathodoluminescence degradation of thin film phosphors Zn{sub 2}SiO{sub 4}:Ti and Zn{sub 2}GeO{sub 4}:Mn were investigated in a wide range of e-beam energies, current and power densities. The time dependencies describing decreasing of emission intensity have been found. At high-level densities of e-beam irradiation the specific behavior of long-term degradation processes was observed, which is characteristic with rapid degradation at initial stage and slow consequent decrease of intensity. The most probable mechanisms responsible for long-term processes of degradation in investigated phosphors are proposed.

  1. Efficient Sensitized Z→E Photoisomerization of an Iridium(III)-Azobenzene Complex over a Wide Concentration Range.

    Science.gov (United States)

    Moreno, Javier; Grubert, Lutz; Schwarz, Jutta; Bléger, David; Hecht, Stefan

    2017-09-07

    To improve the sensitized Z→E photoisomerization of azobenzenes, and circumvent the threshold concentration necessary for the bimolecular photoinduced electron transfer reaction to generate the rapidly isomerizing Z-azobenzene radical anion, an Ir(III) complex with a covalently tethered azobenzene fragment was synthesized. Selective irradiation of the (1) MLCT band of the Ir(III) complex induced an efficiently sensitized photoswitching of the dyad over a wide concentration range and even at high dilution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Optimization of nonimaging focusing heliostat in dynamic correction of astigmatism for a wide range of incident angles.

    Science.gov (United States)

    Chong, Kok-Keong

    2010-05-15

    To overcome astigmatism has always been a great challenge in designing a heliostat capable of focusing the sunlight on a small receiver throughout the year. In this Letter, a nonimaging focusing heliostat with a dynamic adjustment of facet mirrors in a group manner has been analyzed for optimizing the astigmatic correction in a wide range of incident angles. This what is to the author's knowledge a new heliostat is not only designed to serve the purpose of concentrating sunlight to several hundreds of suns, but also to significantly reduce the variation of the solar flux distribution with the incident angle.

  3. Optical conductivity of warm dense matter within a wide frequency range using quantum statistical and kinetic approaches

    Science.gov (United States)

    Veysman, M.; Röpke, G.; Winkel, M.; Reinholz, H.

    2016-07-01

    Fundamental properties of warm dense matter are described by the dielectric function, which gives access to the frequency-dependent electrical conductivity; absorption, emission, and scattering of radiation; charged particles stopping; and further macroscopic properties. Different approaches to the dielectric function and the related dynamical collision frequency are compared in a wide frequency range. The high-frequency limit describing inverse bremsstrahlung and the low-frequency limit of the dc conductivity are considered. Sum rules and Kramers-Kronig relation are checked for the generalized linear response theory and the standard approach following kinetic theory. The results are discussed in application to aluminum, xenon, and argon plasmas.

  4. A High Sensitivity and Wide Dynamic Range Fiber-Optic Sensor for Low-Concentration VOC Gas Detection

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2014-12-01

    Full Text Available In this paper, we propose a volatile organic compound (VOC gas sensing system with high sensitivity and a wide dynamic range that is based on the principle of the heterodyne frequency modulation method. According to this method, the time period of the sensing signal shift when Nile Red containing a VOC-sensitive membrane of a fiber-optic sensing element comes into contact with a VOC. This sensing membrane produces strong, fast and reversible signals when exposed to VOC gases. The response and recovery times of the proposed sensing system were less than 35 s, and good reproducibility and accuracy were obtained.

  5. A High Sensitivity and Wide Dynamic Range Fiber-Optic Sensor for Low-Concentration VOC Gas Detection

    Science.gov (United States)

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2014-01-01

    In this paper, we propose a volatile organic compound (VOC) gas sensing system with high sensitivity and a wide dynamic range that is based on the principle of the heterodyne frequency modulation method. According to this method, the time period of the sensing signal shift when Nile Red containing a VOC-sensitive membrane of a fiber-optic sensing element comes into contact with a VOC. This sensing membrane produces strong, fast and reversible signals when exposed to VOC gases. The response and recovery times of the proposed sensing system were less than 35 s, and good reproducibility and accuracy were obtained. PMID:25490592

  6. A 1-channel 3-band wide dynamic range compression chip for vibration transducer of implantable hearing aids.

    Science.gov (United States)

    Kim, Dongwook; Seong, Kiwoong; Kim, Myoungnam; Cho, Jinho; Lee, Jyunghyun

    2014-01-01

    In this paper, a digital audio processing chip which uses a wide dynamic range compression (WDRC) algorithm is designed and implemented for implantable hearing aids system. The designed chip operates at a single voltage of 3.3V and drives a 16 bit parallel input and output at 32 kHz sample. The designed chip has 1-channel 3-band WDRC composed of a FIR filter bank, a level detector, and a compression part. To verify the performance of the designed chip, we measured the frequency separations of bands and compression gain control to reflect the hearing threshold level.

  7. Thermophysical properties of solid phase ruthenium measured by the pulse calorimetry technique over a wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Milosevic, Nenad; Nikolic, Ivana [Belgrade Univ. (Serbia). Vinca Institute of Nuclear Sciences

    2015-04-15

    This paper presents experimental results on four thermophysical properties of pure polycrystalline ruthenium samples over a wide temperature range. Specific heat capacity and specific electrical resistivity were measured from 250 to 2 500 K, while hemispherical total emissivity and normal spectral emissivity at 900 nm were measured from 1 300 to 2 500 K. All the properties were obtained by using the pulse calorimetry technique. The 200 mm long specimens were in the form of a thin rod, of about 3 mm in diameter. For necessary corrections, literature data on thermal linear expansion were applied. The results are compared with available literature data and discussed. The specific heat capacity and specific electrical resistivity measurements did not indicate any allotropic transformation of the samples over the entire temperature range.

  8. Using Range-Wide Abundance Modeling to Identify Key Conservation Areas for the Micro-Endemic Bolson Tortoise (Gopherus flavomarginatus.

    Directory of Open Access Journals (Sweden)

    Cinthya A Ureña-Aranda

    Full Text Available A widespread biogeographic pattern in nature is that population abundance is not uniform across the geographic range of species: most occurrence sites have relatively low numbers, whereas a few places contain orders of magnitude more individuals. The Bolson tortoise Gopherus flavomarginatus is endemic to a small region of the Chihuahuan Desert in Mexico, where habitat deterioration threatens this species with extinction. In this study we combined field burrows counts and the approach for modeling species abundance based on calculating the distance to the niche centroid to obtain range-wide abundance estimates. For the Bolson tortoise, we found a robust, negative relationship between observed burrows abundance and distance to the niche centroid, with a predictive capacity of 71%. Based on these results we identified four priority areas for the conservation of this microendemic and threatened tortoise. We conclude that this approach may be a useful approximation for identifying key areas for sampling and conservation efforts in elusive and rare species.

  9. Characterization of a wide dynamic-range, radiation-tolerant charge-digitizer asic for monitoring of Beam losses

    CERN Document Server

    Guido Venturini, G G; Dehning, B; Kayal, M

    2012-01-01

    An Application Specific Integrated Circuit (ASIC) has been designed and fabricated to provide a compact solution to digitize current signals from ionization chambers and diamond detectors, employed as beam loss monitors at CERN and several other high energy physics facilities. The circuit topology has been devised to accept positive and negative currents, to have a wide dynamic range (above 120 dB), withstand radiation levels over 10 Mrad and offer different modes of operation, covering a broad range of applications. Furthermore, an internal conversion reference is employed in the digitization, to provide an accurate absolute measurement. This paper discusses the detailed characterization of the first prototype: linearity, radiation tolerance and temperature dependence of the conversion, as well as implications and system-level considerations regarding its use for beam instrumentation applications in a high energy physics facility.

  10. Design Issues for Low Power Integrated Thermal Flow Sensors with Ultra-Wide Dynamic Range and Low Insertion Loss

    Directory of Open Access Journals (Sweden)

    Paolo Bruschi

    2012-04-01

    Full Text Available Flow sensors are the key elements in most systems for monitoring and controlling fluid flows. With the introduction of MEMS thermal flow sensors, unprecedented performances, such as ultra wide measurement ranges, low power consumptions and extreme miniaturization, have been achieved, although several critical issues have still to be solved. In this work, a systematic approach to the design of integrated thermal flow sensors, with specification of resolution, dynamic range, power consumption and pressure insertion loss is proposed. All the critical components of the sensors, namely thermal microstructure, package and read-out interface are examined, showing their impact on the sensor performance and indicating effective optimization strategies. The proposed design procedures are supported by experiments performed using a recently developed test chip,including several different sensing structures and a flexible electronic interface.

  11. Magnetic tunnel junctions using perpendicularly magnetized synthetic antiferromagnetic reference layer for wide-dynamic-range magnetic sensors

    Science.gov (United States)

    Nakano, T.; Oogane, M.; Furuichi, T.; Ando, Y.

    2017-01-01

    We developed CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) with a perpendicularly magnetized synthetic antiferromagnetic (p-SAF) reference layer for magnetic sensor applications. The MTJs exhibited linear tunnel magnetoresistance curves to out-of-plane applied magnetic fields with dynamic ranges more than ±2.5 kOe, which are wider than those in CoFeB/MgO/CoFeB-MTJs reported to date. The performance metrics of MTJ sensors, i.e., sensitivity and nonlinearity, depend significantly on the anisotropy field of the free layer. We explained the dependences by a simple model based on the Stoner-Wohlfarth and Slonczewski models, which gives us a guideline to design the sensor performance metrics. These findings demonstrated that MTJs with a p-SAF reference layer are promising candidates for wide-dynamic-range magnetic sensors.

  12. Design of a High Precision, Wide Ranged Analog Clock Generator with Field Programmability Using Floating-Gate Transistors

    Directory of Open Access Journals (Sweden)

    Prem Pyara

    2010-09-01

    Full Text Available This paper presents a circuit of a high-precision, wide ranged, analog clock generator with on-chipprogrammability feature using Floating-gate transistors. The programmable oscillator can attain acontinuous range of time-periods lying in the programming precision range of Floating Gates. Thecircuit consists of two sub circuits: Current Generator circuit and Wave Generator circuit. The current ofcurrent generator circuit is programmable and mirrored to the wave generator to generate the desiredsquare wave. The topology is well suited to applications like clocking high performance ADCs and DACsas well as used as the internal clock in structured analog CMOS designs. A simulation model of thecircuit was built in T-Spice, 0.35μm CMOS process. The circuit results in finely tuned clock withprogrammability precision of about 13bit [1]. Simulation results show high amount of temperatureinsensitivity (0.507ns/°C for a large range of thermal conditions. The proposed circuit can compensateany change in temperature. The circuit design can be operated at low supply voltage i.e., 1v.

  13. Design of a High Precision, Wide Ranged Analog Clock Generator with Field Programmability Using Floating-Gate Transistors

    Directory of Open Access Journals (Sweden)

    Garima Kapur

    2010-09-01

    Full Text Available This paper presents a circuit of a high-precision, wide ranged, analog clock generator with on-chip programmability feature using Floating-gate transistors. The programmable oscillator can attain acontinuous range of time-periods lying in the programming precision range of Floating Gates. The circuit consists of two sub circuits: Current Generator circuit and Wave Generator circuit. The current of current generator circuit is programmable and mirrored to the wave generator to generate the desired square wave. The topology is well suited to applications like clocking high performance ADCs and DACsas well as used as the internal clock in structured analog CMOS designs. A simulation model of the circuit was built in T-Spice, 0.35μm CMOS process. The circuit results in finely tuned clock with programmability precision of about 13 bit [1]. Simulation results show high amount of temperature insensitivity (0.507 ns/°C for a large range of thermal conditions. The proposed circuit can compensate any change in temperature. The circuit design can be operated at low supply voltage i.e., 1v.

  14. A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes.

    Science.gov (United States)

    Lee, Inhee; Sylvester, Dennis; Blaauw, David

    2016-03-01

    This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from Vthn to [Vdd - |Vthp|]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21-60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC-DC converter. The converter is 11%-56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO.

  15. A-189 dBc/Hz FoMT Wide Tuning Range VCO Using Q-Factor Enhancement Technique

    Science.gov (United States)

    Liu, Faen; Wang, Zhigong; Li, Zhiqun; Li, Qin; Wang, Rong; Yang, Geliang; Li, Zhu

    2015-06-01

    A 28-GHz voltage-controlled oscillator (VCO) with a wide tuning range and a low phase noise is presented in this paper. A PMOS-only cross-coupled pair with a lower flicker noise is exploited to provide the negative resistance. The mechanisms for enhancing the Q-factor of the LC tank at millimeter-wave (mm-wave) frequencies are analyzed and applied to optimize the proposed VCO design to obtain a low phase noise. To guarantee accurate oscillating frequencies, distributed interconnections are carefully modeled by EM simulations. Fabricated in a standard 90-nm CMOS process, the proposed VCO achieves a wide tuning range of 20.1 %, from 25 to 30.66 GHz and a low phase noise of -105.47 dBc/Hz at 1-MHz offset. The current of the core circuit is 10.5 mA under a single 1.2-V supply. The core area of the chip is 0.38 mm × 0.24 mm.

  16. Mesoporous Germanium Anode Materials for Lithium-Ion Battery with Exceptional Cycling Stability in Wide Temperature Range.

    Science.gov (United States)

    Choi, Sinho; Cho, Yoon-Gyo; Kim, Jieun; Choi, Nam-Soon; Song, Hyun-Kon; Wang, Guoxiu; Park, Soojin

    2017-04-01

    Porous structured materials have unique architectures and are promising for lithium-ion batteries to enhance performances. In particular, mesoporous materials have many advantages including a high surface area and large void spaces which can increase reactivity and accessibility of lithium ions. This study reports a synthesis of newly developed mesoporous germanium (Ge) particles prepared by a zincothermic reduction at a mild temperature for high performance lithium-ion batteries which can operate in a wide temperature range. The optimized Ge battery anodes with the mesoporous structure exhibit outstanding electrochemical properties in a wide temperature ranging from -20 to 60 °C. Ge anodes exhibit a stable cycling retention at various temperatures (capacity retention of 99% after 100 cycles at 25 °C, 84% after 300 cycles at 60 °C, and 50% after 50 cycles at -20 °C). Furthermore, full cells consisting of the mesoporous Ge anode and an LiFePO4 cathode show an excellent cyclability at -20 and 25 °C. Mesoporous Ge materials synthesized by the zincothermic reduction can be potentially applied as high performance anode materials for practical lithium-ion batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Universal dispersion model for characterization of optical thin films over a wide spectral range: application to hafnia.

    Science.gov (United States)

    Franta, Daniel; Nečas, David; Ohlídal, Ivan

    2015-11-01

    A dispersion model capable of expressing the dielectric response of a broad class of optical materials in a wide spectral range from far IR to vacuum UV is described in detail. The application of this universal dispersion model to a specific material is demonstrated using the ellipsometric and spectrophotometric characterization of a hafnia film prepared by vacuum evaporation on silicon substrate. The characterization utilizes simultaneous processing of data from multiple techniques and instruments covering the wide spectral range and includes the characterization of roughness, nonuniformity, transition layer, and native oxide layer on the back of the substrate. It is shown how the combination of measurements in light reflected from both sides of the sample and transmitted light allows the separation of weak absorption in films and substrates. This approach is particularly useful in the IR region where the absorption structures in films and substrates often overlap and a prior measurement of the bare substrate may be otherwise necessary for precise separation. Individual phenomena that contribute to the dielectric response, i.e., interband electronic transitions, electronic excitations involving the localized states, and phonon absorption, are discussed in detail. A quantitative analysis of absorption on localized states, permitting the separation of transitions between localized states from transitions between localized and extended states, is utilized to obtain estimates of the density of localized states and film stoichiometry.

  18. Smart thorium and uranium determination exploiting renewable solid-phase extraction applied to environmental samples in a wide concentration range.

    Science.gov (United States)

    Avivar, Jessica; Ferrer, Laura; Casas, Montserrat; Cerdà, Víctor

    2011-07-01

    A smart fully automated system is proposed for determination of thorium and uranium in a wide concentration range, reaching environmental levels. The hyphenation of lab-on-valve (LOV) and multisyringe flow injection analysis (MSFIA), coupled to a long path length liquid waveguide capillary cell, allows the spectrophotometric determination of thorium and uranium in different types of environmental sample matrices achieving high selectivity and sensitivity levels. Online separation and preconcentration of thorium and uranium is carried out by means of Uranium and TEtraValents Actinides resin. The potential of the LOV-MSFIA makes possible the full automation of the system by the in-line regeneration of the column and its combination with a smart methodology is a step forward in automation. After elution, thorium(IV) and uranium(VI) are spectrophotometrically detected after reaction with arsenazo-III. We propose a rapid, inexpensive, and fully automated method to determine thorium(IV) and uranium(VI) in a wide concentration range (0-1,200 and 0-2,000 μg L(-1) Th and U, respectively). Limits of detection reached are 5.9 ηg L(-1) of uranium and 60 ηg L(-1) of thorium. Different water sample matrices (seawater, well water, freshwater, tap water, and mineral water), and a channel sediment reference material which contained thorium and uranium were satisfactorily analyzed with the proposed method.

  19. Achieving a Linear Dose Rate Response in Pulse-Mode Silicon Photodiode Scintillation Detectors Over a Wide Range of Excitations

    Science.gov (United States)

    Carroll, Lewis

    2014-02-01

    We are developing a new dose calibrator for nuclear pharmacies that can measure radioactivity in a vial or syringe without handling it directly or removing it from its transport shield “pig”. The calibrator's detector comprises twin opposing scintillating crystals coupled to Si photodiodes and current-amplifying trans-resistance amplifiers. Such a scheme is inherently linear with respect to dose rate over a wide range of radiation intensities, but accuracy at low activity levels may be impaired, beyond the effects of meager photon statistics, by baseline fluctuation and drift inevitably present in high-gain, current-mode photodiode amplifiers. The work described here is motivated by our desire to enhance accuracy at low excitations while maintaining linearity at high excitations. Thus, we are also evaluating a novel “pulse-mode” analog signal processing scheme that employs a linear threshold discriminator to virtually eliminate baseline fluctuation and drift. We will show the results of a side-by-side comparison of current-mode versus pulse-mode signal processing schemes, including perturbing factors affecting linearity and accuracy at very low and very high excitations. Bench testing over a wide range of excitations is done using a Poisson random pulse generator plus an LED light source to simulate excitations up to ˜106 detected counts per second without the need to handle and store large amounts of radioactive material.

  20. Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature range during Coal Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotis Smirniotis

    2002-09-17

    A number basic sorbents based on CaO were synthesized, characterized with novel techniques and tested for sorption of CO{sub 2} and selected gas mixtures simulating flue gas from coal fired boilers. Our studies resulted in highly promising sorbents which demonstrated zero affinity for N{sub 2}, O{sub 2}, SO{sub 2}, and NO very low affinity for water, ultrahigh CO{sub 2} sorption capacities, and rapid sorption characteristics, CO{sub 2} sorption at a very wide temperature range, durability, and low synthesis cost. One of the 'key' characteristics of the proposed materials is the fact that we can control very accurately their basicity (optimum number of basic sites of the appropriate strength) which allows for the selective chemisorption of CO{sub 2} at a wide range of temperatures. These unique characteristics of this family of sorbents offer high promise for development of advanced industrial sorbents for the effective CO{sub 2} removal.

  1. Wide range of metallic and organic contaminants in various tissues of the Antarctic prion, a planktonophagous seabird from the Southern Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Fromant, Aymeric [Centre d' Etudes Biologiques de Chizé, UMR 7372 CNRS—Université de La Rochelle, 79360 Villiers-en-Bois (France); Carravieri, Alice, E-mail: carravieri@cebc.cnrs.fr [Centre d' Etudes Biologiques de Chizé, UMR 7372 CNRS—Université de La Rochelle, 79360 Villiers-en-Bois (France); Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS—Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Bustamante, Paco [Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS—Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Labadie, Pierre; Budzinski, Hélène; Peluhet, Laurent [Université de Bordeaux, UMR 5805 EPOC (LPTC Research Group), Université Bordeaux, 351 Cours de la Libération, F 33405 Talence Cedex (France); Churlaud, Carine [Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS—Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Chastel, Olivier; Cherel, Yves [Centre d' Etudes Biologiques de Chizé, UMR 7372 CNRS—Université de La Rochelle, 79360 Villiers-en-Bois (France)

    2016-02-15

    ABSTRACT: Trace elements (n = 14) and persistent organic pollutants (POPs, n = 30) were measured in blood, liver, kidney, muscle and feathers of 10 Antarctic prions (Pachyptila desolata) from Kerguelen Islands, southern Indian Ocean, in order to assess their concentrations, tissue distribution, and inter-tissue and inter-contaminant relationships. Liver, kidney and feathers presented the highest burdens of arsenic, cadmium and mercury, respectively. Concentrations of cadmium, copper, iron, and zinc correlated in liver and muscle, suggesting that uptake and pathways of metabolism and storage were similar for these elements. The major POPs were 4,4′-DDE, mirex, PCB-153 and PCB-138. The concentrations and tissue distribution patterns of environmental contaminants were overall in accordance with previous results in other seabirds. Conversely, some Antarctic prions showed surprisingly high concentrations of BDE-209. This compound has been rarely observed in seabirds before, and its presence in Antarctic prions could be due to the species feeding habits or to the ingestion of plastic debris. Overall, the study shows that relatively lower trophic level seabirds (zooplankton-eaters) breeding in the remote southern Indian Ocean are exposed to a wide range of environmental contaminants, in particular cadmium, selenium and some emerging-POPs, which merits further toxicological investigations. - Highlights: • Trace elements and POPs were measured in various tissues of 10 Antarctic prions. • Residue diversity was notable given the species' small size and low trophic position. • Cd, Se, BDE 183 and 209 showed noticeably high internal tissue concentrations. • Several POPs showed inter- and intra-tissue correlations, indicating co-exposure. • Blood was validated as a good bioindicator of internal tissue As and Hg levels.

  2. Some Surprises in Relativistic Gravity

    CERN Document Server

    Santos, N O

    2016-01-01

    General Relativity has had tremendous success both on the theoretical and the experimental fronts for over a century now. However, the contents of the theory are far from exhausted. Only very recently, with the detection of gravitational waves from colliding black holes, we have started probing the behavior of gravity in the strongly non-linear regime. Even today, the studies of black holes keep revealing more and more paradoxes and bizarre results. In this paper, inspired by David Hilbert's startling observation, we show that, contrary to the conventional wisdom, a freely falling test particle feels gravitational repulsion by a black hole as seen by the asymptotic observer. We dig deeper into this surprising behavior of relativistic gravity and offer some explanations.

  3. Analog Encoding Voltage—A Key to Ultra-Wide Dynamic Range and Low Power CMOS Image Sensor

    Directory of Open Access Journals (Sweden)

    Orly Yadid-Pecht

    2013-03-01

    Full Text Available Usually Wide Dynamic Range (WDR sensors that autonomously adjust their integration time to fit intra-scene illumination levels use a separate digital memory unit. This memory contains the data needed for the dynamic range. Motivated by the demands for low power and chip area reduction, we propose a different implementation of the aforementioned WDR algorithm by replacing the external digital memory with an analog in-pixel memory. This memory holds the effective integration time represented by analog encoding voltage (AEV. In addition, we present a “ranging” scheme of configuring the pixel integration time in which the effective integration time is configured at the first half of the frame. This enables a substantial simplification of the pixel control during the rest of the frame and thus allows for a significantly more remarkable DR extension. Furthermore, we present the implementation of “ranging” and AEV concepts on two different designs, which are targeted to reach five and eight decades of DR, respectively. We describe in detail the operation of both systems and provide the post-layout simulation results for the second solution. The simulations show that the second design reaches DR up to 170 dBs. We also provide a comparative analysis in terms of the number of operations per pixel required by our solution and by other widespread WDR algorithms. Based on the calculated results, we conclude that the proposed two designs, using “ranging” and AEV concepts, are attractive, since they obtain a wide dynamic range at high operation speed and low power consumption.

  4. Absolute x-ray energy calibration over a wide energy range using a diffraction-based iterative method.

    Science.gov (United States)

    Hong, Xinguo; Chen, Zhiqiang; Duffy, Thomas S

    2012-06-01

    In this paper, we report a method of precise and fast absolute x-ray energy calibration over a wide energy range using an iterative x-ray diffraction based method. Although accurate x-ray energy calibration is indispensable for x-ray energy-sensitive scattering and diffraction experiments, there is still a lack of effective methods to precisely calibrate energy over a wide range, especially when normal transmission monitoring is not an option and complicated micro-focusing optics are fixed in place. It is found that by using an iterative algorithm the x-ray energy is only tied to the relative offset of sample-to-detector distance, which can be readily varied with high precision of the order of 10(-5) -10(-6) spatial resolution using gauge blocks. Even starting with arbitrary initial values of 0.1 Å, 0.3 Å, and 0.4 Å, the iteration process converges to a value within 3.5 eV for 31.122 keV x-rays after three iterations. Different common diffraction standards CeO(2), Au, and Si show an energy deviation of 14 eV. As an application, the proposed method has been applied to determine the energy-sensitive first sharp diffraction peak of network forming GeO(2) glass at high pressure, exhibiting a distinct behavior in the pressure range of 2-4 GPa. Another application presented is pair distribution function measurement using calibrated high-energy x-rays at 82.273 keV. Unlike the traditional x-ray absorption-based calibration method, the proposed approach does not rely on any edges of specific elements, and is applicable to the hard x-ray region where no appropriate absorption edge is available.

  5. Tribological behavior and self-healing functionality of TiNbCN-Ag coatings in wide temperature range

    Science.gov (United States)

    Bondarev, A. V.; Kiryukhantsev-Korneev, Ph. V.; Levashov, E. A.; Shtansky, D. V.

    2017-02-01

    Ag- and Nb-doped TiCN coatings with about 2 at.% of Nb and Ag contents varied between 4.0 and 15.1 at.% were designed as promising materials for tribological applications in a wide temperature range. We report on the structure, mechanical, and tribological properties of TiNbCN-Ag coatings fabricated by simultaneous co-sputtering of TiC0.5 + 10%Nb2C and Ag targets in comparison with those of Ag-free coating. The tribological characteristics were evaluated during constant-temperature tests both at room temperature and 300 °C, as well as during dynamic temperature ramp tests in the range of 25-700 °C. The coating structure and elemental composition were studied by means of X-ray diffraction, scanning and transmission electron microscopy, and glow discharge optical emission spectroscopy. The coating microstructures and elemental compositions inside wear tracks, as well as the wear products, were examined by scanning electron microscopy, energy-dispersive spectroscopy, and Raman spectroscopy. We demonstrate that simultaneous alloying with Nb and Ag permits to overcome the main drawbacks of TiCN coatings such as their relatively high values of friction coefficient at elevated temperatures and low oxidation resistance. It is shown that a relatively high amount of Ag (15 at.%) is required to provide enhanced tribological behavior in a wide temperature range of 25-700 °C. In addition, the prepared Ag-doped coatings demonstrated active oxidation protection and self-healing functionality due to the segregation of Ag metallic particles in damage areas such as cracks, pin-holes, or oxidation sites.

  6. Determining the bounds of skilful forecast range for probabilistic prediction of system-wide wind power generation

    Directory of Open Access Journals (Sweden)

    Dirk Cannon

    2017-06-01

    Full Text Available State-of-the-art wind power forecasts beyond a few hours ahead rely on global numerical weather prediction models to forecast the future large-scale atmospheric state. Often they provide initial and boundary conditions for nested high resolution simulations. In this paper, both upper and lower bounds on forecast range are identified within which global ensemble forecasts provide skilful information for system-wide wind power applications. An upper bound on forecast range is associated with the limit of predictability, beyond which forecasts have no more skill than predictions based on climatological statistics. A lower bound is defined at the lead time beyond which the resolved uncertainty associated with estimating the future large-scale atmospheric state is larger than the unresolved uncertainty associated with estimating the system-wide wind power response to a given large-scale state.The bounds of skilful ensemble forecast range are quantified for three leading global forecast systems. The power system of Great Britain (GB is used as an example because independent verifying data is available from National Grid. The upper bound defined by forecasts of GB-total wind power generation at a specific point in time is found to be 6–8 days. The lower bound is found to be 1.4–2.4 days. Both bounds depend on the global forecast system and vary seasonally. In addition, forecasts of the probability of an extreme power ramp event were found to possess a shorter limit of predictability (4.5–5.5 days. The upper bound on this forecast range can only be extended by improving the global forecast system (outside the control of most users or by changing the metric used in the probability forecast. Improved downscaling and microscale modelling of the wind farm response may act to decrease the lower bound. The potential gain from such improvements have diminishing returns beyond the short-range (out to around 2 days.

  7. A tuning fork based wide range mechanical characterization tool with nanorobotic manipulators inside a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, Juan Camilo; Hwang, Gilgueng; Regnier, Stephane [Institut des Systemes Intelligents et de Robotique Universite Pierre et Marie Curie, CNRS UMR 7222 4 Place Jussieu, 75252 Paris Cedex (France); Polesel-Maris, Jerome [CEA, IRAMIS, Service de Physique et Chimie des Surfaces et Interfaces, F-91191 Gif-sur-Yvette (France)

    2011-03-15

    This study proposes a tuning fork probe based nanomanipulation robotic system for mechanical characterization of ultraflexible nanostructures under scanning electron microscope. The force gradient is measured via the frequency modulation of a quartz tuning fork and two nanomanipulators are used for manipulation of the nanostructures. Two techniques are proposed for attaching the nanostructure to the tip of the tuning fork probe. The first technique involves gluing the nanostructure for full range characterization whereas the second technique uses van der Waals and electrostatic forces in order to avoid destroying the nanostructure. Helical nanobelts (HNB) are proposed for the demonstration of the setup. The nonlinear stiffness behavior of HNBs during their full range tensile studies is clearly revealed for the first time. Using the first technique, this was between 0.009 N/m for rest position and 0.297 N/m before breaking of the HNB with a resolution of 0.0031 N/m. For the second experiment, this was between 0.014 N/m for rest position and 0.378 N/m before detaching of the HNB with a resolution of 0.0006 N/m. This shows the wide range sensing of the system for potential applications in mechanical property characterization of ultraflexible nanostructures.

  8. The Digital Simulation of Synchronous Motors Fed by Voltage-Source Inverters Over Wide Speed and Frequency Ranges

    Science.gov (United States)

    Rowihal, Said Soliman

    Both voltage-source and current-source inverters are widely used for supplying three-phase power to induction motor drives, each having their advantages and disadvantages. For high power drives and applications requiring accurate speed and tracking coordination, the synchronous motors are the optimum choice. For constant speed applications of synchronous motor drives, current-source inverters tend to be favored as the motor can usually be operated in the overexcited leading power factor region, thus providing the inverter with sufficient electro-motive force to allow natural commutation. Generally speaking low speed operation of synchronous motors is not satisfactory from naturally commutated current-source inverters. To provide a dynamic range of speed and frequency would require expensive control circuitry and complicates the performance of the drive. The advantage of the voltage-source inverter for the wide range of speed and frequency control herein envisaged is that forced commutation is employed throughout the range and the commutating circuits have been well developed and established. On balance, voltage-source inverters represent a viable compromise for variable-speed three -phase synchronous motor drives including start-up. To investigate the transient response of the voltage -source fed-synchronous motor drives, a digital computer program is developed. The program is based on two models --machine model and inverter model. The machine is represented by a detailed two-axis model which includes the effects due to saliency, damper windings, and machine resistances. The inverter model represents a forced-commutated voltage-source inverter assuming ideal switching devices (thyristors and diodes). To cope with the wide variations of power factor during start-up, a thyristor with a reverse connected parallel diode are integrated as a bidirectional switch. The digital program provides the machine variables of interest (phase currents, field current, damper winding

  9. Wide Dynamic Range Multiband Infrared Radiometer for In-Fire Measurements of Wildland Fire Radiant Flux Density

    Science.gov (United States)

    Kremens, R.; Dickinson, M. B.; Hardy, C.; Skowronski, N.; Ellicott, E. A.; Schroeder, W.

    2016-12-01

    We have developed a wide dynamic range (24-bit) data acquisition system for collection of radiant flux density (FRFD) data from wildland fires. The data collection subsystem was designed as an Arduino `shield' and incorporates a 24-bit analog-to-digital converter, precision voltage reference, real time clock, microSD card interface, audible annuciator and interface for various digital communication interfaces (RS232, I2C, SPI, etc.). The complete radiometer system consists of our custom-designed `shield', a commercially available Arduino MEGA computer circuit board and a thermopile sensor -amplifier daughter board. Software design and development is greatly assisted by the availability of a library of public-domain, user-implemented software. The daughter board houses a 5-band radiometer using thermopiles designed for this experiment (Dexter Research Corp., Dexter, MI) to allow determination of the total FRFD from the fire (using a wide band thermopile with a KRS-5 window, 0.1 - 30 um), the FRFD as would be received by an orbital asset like MODIS (3.95 um center wavelength (CWL) and 10.95 CWL, corresponding to MODIS bands 21/22 and 31, respectively) and wider bandpass (0.1-5.5 um and 8-14 um) corresponding to the FRFD recorded by `MWIR' and `LWIR' imaging systems. We required a very wide dynamic range system in order to be able to record the flux density from `cold' ground before the fire, through the `hot' flaming combustion stage, to the `cool' phase after passage of the fire front. The recording dynamic range required (with reasonable resolution at the lowest temperatures) is on the order of 106, which is not currently available in commercial instrumentation at a price point, size or feature set that is suitable for wildland fire investigations. The entire unit, along with rechargeable battery power supply is housed in a fireproof aluminum chassis box, which is then mounted on a mast at a height of 5 - 7 m above the fireground floor. We will report initial

  10. Wide-range shell correction to the Thomas--Fermi theory and equation of state for electrons

    CERN Document Server

    Dyachkov, Sergey

    2016-01-01

    Shell effects reflects irregularities of physical quantities caused by a discrete energy spectrum. The theory of the shell effects by Kirzhnits and Shpatakovskaya is valid only at relatively low densities providing for oscillations of thermodynamic functions. Similar effects for the electronic binding energy of a neutral atom were considered by Englert and Schwinger. In this work we propose a method of calculation of shell effects applicable in a wide range of density and temperature. The model is based on the finite-temperature Thomas-Fermi theory. Shell corrections to thermodynamic functions are obtained by special accounting of semiclassical states of bound electrons in the Thomas-Fermi potential. The results are in good correspondence with the precise Saha approach for the low density plasma and density functional theory simulation at high density.

  11. Estimating Premorbid Functioning in Huntington's Disease: The Relationship between Disease Progression and the Wide Range Achievement Test Reading Subtest

    Science.gov (United States)

    O'Rourke, Justin J.F.; Adams, William H.; Duff, Kevin; Byars, Joanne; Nopoulos, Peg; Paulsen, Jane S.; Beglinger, Leigh J.

    2011-01-01

    The estimation of premorbid abilities is an essential part of a neuropsychological evaluation, especially in neurodegenerative conditions. Although word pronunciation tests are one standard method for estimating the premorbid level, research suggests that these tests may not be valid in neurodegenerative diseases. Therefore, the current study sought to examine two estimates of premorbid intellect, the Wide Range Achievement Test (WRAT) Reading subtest and the Barona formula, in 93 patients with mild to moderate Huntington's disease (HD) to determine their utility and to investigate how these measures relate to signs and symptoms of disease progression. In 89% of participants, WRAT estimates were below the Barona estimates. WRAT estimates were related to worsening memory and motor functioning, whereas the Barona estimates had weaker relationships. Neither estimate was related to depression or functional capacity. Irregular word reading tests appear to decline with HD progression, whereas estimation methods based on demographic factors may be more robust but overestimate premorbid functioning. PMID:21147861

  12. Pyrolysis of waste materials: Characterization and prediction of sorption potential across a wide range of mineral contents and pyrolysis temperatures.

    Science.gov (United States)

    Kah, Melanie; Sun, Huichao; Sigmund, Gabriel; Hüffer, Thorsten; Hofmann, Thilo

    2016-08-01

    Sewage sludge (50% mineral), manure (29%) and wood (mineral contents. A commercial plant-derived biochar (41% mineral) was also considered. The materials were extensively characterized and tested for their sorption towards the model sorbates benzene, naphthalene and pyrene. Plant-derived materials, regardless of their mineral content, developed micropores causing size exclusion of pyrene. Changes in properties and sorption behavior upon pyrolysis were generally consistent for the manure and wood series. A single regression equation developed on our data (including the sorbate hydrophobicity and sorbent polarity) provided excellent prediction of previously reported changes in sorption upon pyrolysis across a wide range of mineral content (up to 500°C). The sewage sludge series, however, followed a particular behavior, possibly due to very high mineral content (up to 67%).

  13. Improvement of the dynamic range using background subtraction in single shot wide-field optical coherence tomography

    Science.gov (United States)

    Anna, Tulsi; Singh Mehta, Dalip; Sato, Manabu

    2015-12-01

    We investigated on the signal in single shot wide-field optical coherence tomographic (SS-WF-OCT) system to improve the dynamic range (DR). The SS-WF-OCT system is based on two-dimensional (2D) polarization Michelson interferometer and superluminescent diode (center wavelength of 842.5 nm) as light source. Two π-phase-shifted interferograms were acquired simultaneously using a single CCD camera and after subtraction, the en-face OCT image (area (x) 4.0 mm × (y) 4.3 mm) is obtained using 2D Hilbert transform. The OCT signal including incoherent background noises was analyzed. To improve the DR, background noise subtraction has been introduced and its measurement process is presented. This method is valuable during the background noise is stable. Using the scattering samples, such as, grind metal and polymer sponge with background subtraction algorithm, a significant reduction in background noise and improvement in the DR was demonstrated .

  14. High diffraction efficiency of three-layer diffractive optics designed for wide temperature range and large incident angle.

    Science.gov (United States)

    Mao, Shan; Cui, Qingfeng; Piao, Mingxu; Zhao, Lidong

    2016-05-01

    A mathematical model of diffraction efficiency and polychromatic integral diffraction efficiency affected by environment temperature change and incident angle for three-layer diffractive optics with different dispersion materials is put forward, and its effects are analyzed. Taking optical materials N-FK5 and N-SF1 as the substrates of multilayer diffractive optics, the effect on diffraction efficiency and polychromatic integral diffraction efficiency with intermediate materials POLYCARB is analyzed with environment temperature change as well as incident angle. Therefore, three-layer diffractive optics can be applied in more wide environmental temperature ranges and larger incident angles for refractive-diffractive hybrid optical systems, which can obtain better image quality. Analysis results can be used to guide the hybrid imaging optical system design for optical engineers.

  15. Advance Vector Control on Based Energy Shaping for control in Wide Speed Range and Quicker Dynamic Response

    Directory of Open Access Journals (Sweden)

    Mohammad Bagher Banae Sharifian

    2013-01-01

    Full Text Available Based on the vector of the permanent magnet synchronous motor (PMSM and in order to obtain the system operation of wide variable speed range,quicker dynamic response, the maximum torque per ampere (MTPA control is often applied for the constant torque region, the flux-weakening control is used in the constant power region, moreover, the classical two closed-loop PI controller are often used. Recently, the energy-shaping nonlinear controller is increasingly used to control the nonlinear induction motor or PMSM, therefore, the comparison between both PMSM systems is devoted to research in this paper, one adopts the PI current controller, the other adopts the energy-shaping current controller. Both PMSM control systems are modeled based on the MATLAB/SIMULINK,and the system performances are tested and some conclusions are given.

  16. Thuringiensin: A Thermostable Secondary Metabolite from Bacillus thuringiensis with Insecticidal Activity against a Wide Range of Insects

    Directory of Open Access Journals (Sweden)

    Xiaoyan Liu

    2014-07-01

    Full Text Available Thuringiensin (Thu, also known as β-exotoxin, is a thermostable secondary metabolite secreted by Bacillus thuringiensis. It has insecticidal activity against a wide range of insects, including species belonging to the orders Diptera, Coleoptera, Lepidoptera, Hymenoptera, Orthoptera, and Isoptera, and several nematode species. The chemical formula of Thu is C22H32O19N5P, and it is composed of adenosine, glucose, phosphoric acid, and gluconic diacid. In contrast to the more frequently studied insecticidal crystal protein, Thu is not a protein but a small molecule oligosaccharide. In this review, a detailed and updated description of the characteristics, structure, insecticidal mechanism, separation and purification technology, and genetic determinants of Thu is provided.

  17. Thuringiensin: a thermostable secondary metabolite from Bacillus thuringiensis with insecticidal activity against a wide range of insects.

    Science.gov (United States)

    Liu, Xiaoyan; Ruan, Lifang; Peng, Donghai; Li, Lin; Sun, Ming; Yu, Ziniu

    2014-07-25

    Thuringiensin (Thu), also known as β-exotoxin, is a thermostable secondary metabolite secreted by Bacillus thuringiensis. It has insecticidal activity against a wide range of insects, including species belonging to the orders Diptera, Coleoptera, Lepidoptera, Hymenoptera, Orthoptera, and Isoptera, and several nematode species. The chemical formula of Thu is C22H32O19N5P, and it is composed of adenosine, glucose, phosphoric acid, and gluconic diacid. In contrast to the more frequently studied insecticidal crystal protein, Thu is not a protein but a small molecule oligosaccharide. In this review, a detailed and updated description of the characteristics, structure, insecticidal mechanism, separation and purification technology, and genetic determinants of Thu is provided.

  18. A Multi-Beam Radio Transient Detector With Real-Time De-Dispersion Over a Wide DM Range

    CERN Document Server

    Clarke, Nathan; Navarro, Robert; Trinh, Joseph

    2014-01-01

    Isolated, short dispersed pulses of radio emission of unknown origin have been reported and there is strong interest in wide-field, sensitive searches for such events. To achieve high sensitivity, large collecting area is needed and dispersion due to the interstellar medium should be removed. To survey a large part of the sky in reasonable time, a telescope that forms multiple simultaneous beams is desirable. We have developed a novel FPGA-based transient search engine that is suitable for these circumstances. It accepts short-integration-time spectral power measurements from each beam of the telescope, performs incoherent de-dispersion simultaneously for each of a wide range of dispersion measure (DM) values, and automatically searches the de-dispersed time series for pulse-like events. If the telescope provides buffering of the raw voltage samples of each beam, then our system can provide trigger signals to allow data in those buffers to be saved when a tentative detection occurs; this can be done with a la...

  19. Novel wide-range quantitative nested real-time PCR assay for Mycobacterium tuberculosis DNA: development and methodology.

    Science.gov (United States)

    Takahashi, Teruyuki; Tamura, Masato; Asami, Yukihiro; Kitamura, Eiko; Saito, Kosuke; Suzuki, Tsukasa; Takahashi, Sachiko Nonaka; Matsumoto, Koichi; Sawada, Shigemasa; Yokoyama, Eise; Takasu, Toshiaki

    2008-05-01

    Previously, we designed an internally controlled quantitative nested real-time (QNRT) PCR assay for Mycobacterium tuberculosis DNA in order to rapidly diagnose tuberculous meningitis. This technique combined the high sensitivity of nested PCR with the accurate quantification of real-time PCR. In this study, we attempted to improve the original QNRT-PCR assay and newly developed the wide-range QNRT-PCR (WR-QNRT-PCR) assay, which is more accurate and has a wider detection range. For use as an internal-control "calibrator" to measure the copy number of M. tuberculosis DNA, an original new-mutation plasmid (NM-plasmid) was developed. It had artificial random nucleotides in five regions annealing specific primers and probes. The NM-plasmid demonstrated statistically uniform amplifications (F = 1.086, P = 0.774) against a range (1 to 10(5)) of copy numbers of mimic M. tuberculosis DNA and was regarded as appropriate for use as a new internal control in the WR-QNRT-PSR assay. In addition, by the optimization of assay conditions in WR-QNRT-PCR, two-step amplification of target DNA was completely consistent with the standard curve of this assay. Due to the development of the NM-plasmid as the new internal control, significantly improved quantitative accuracy and a wider detection range were realized with the WR-QNRT-PCR assay. In the next study, we will try to use this novel assay method with actual clinical samples and examine its clinical usefulness.

  20. Parameter-free numerical method for modeling thermal convection in square cavities in a wide range of Rayleigh numbers

    Science.gov (United States)

    Goloviznin, V. M.; Korotkin, I. A.; Finogenov, S. A.

    2016-12-01

    Some numerical results for the two- and three-dimensional de Vahl Davis benchmark are presented. This benchmark describes thermal convection in a square (cubic) cavity with vertical heated walls in a wide range of Rayleigh numbers (104 to 1014), which covers both laminar and highly turbulent f lows. Turbulent f lows are usually described using a turbulence model with parameters that depend on the Rayleigh number and require adjustment. An alternative is Direct Numerical Simulation (DNS) methods, but they demand extremely large computational grids. Recently, there has been an increasing interest in DNS methods with an incomplete resolution, which, in some cases, are able to provide acceptable results without resolving Kolmogorov scales. On the basis of this approach, the so-called parameter-free computational techniques have been developed. These methods cover a wide range of Rayleigh numbers and allow computing various integral properties of heat transport on relatively coarse computational grids. In this paper, a new numerical method based on the CABARET scheme is proposed for solving the Navier-Stokes equations in the Boussinesq approximation. This technique does not involve a turbulence model or any tuning parameters and has a second-order approximation scheme in time and space on uniform and nonuniform grids with a minimal computational stencil. Testing the technique on the de Vahl Davis benchmark and a sequence of refined grids shows that the method yields integral heat f luxes with a high degree of accuracy for both laminar and highly turbulent f lows. For Rayleigh numbers up to 1014, a several percent accuracy is achieved on an extremely coarse grid consisting of 20 × 20 cells refined toward the boundary. No definite or comprehensive explanation of this computational phenomenon has been given. Cautious optimism is expressed regarding the perspectives of using the new method for thermal convection computations at low Prandtl numbers typical of liquid metals.

  1. The initial magnetic susceptibility of polydisperse ferrofluids: A comparison between experiment and theory over a wide range of concentration

    Science.gov (United States)

    Solovyova, Anna Y.; Goldina, Olga A.; Ivanov, Alexey O.; Lebedev, Aleksandr V.; Elfimova, Ekaterina A.

    2016-08-01

    Temperature dependencies of the static initial magnetic susceptibility for ferrofluids at various concentrations are studied using experiment and statistical-mechanical theories. Magnetic susceptibility measurements are carried out for twelve samples of magnetite-based fluids stabilized with oleic acid over a wide range of temperatures (210 K ≲T ≲ 390 K); all samples have the same granulometric composition but different volume ferroparticle concentrations (0.2 ≲ φ ≲ 0.5). Experimental results are analyzed using three theories: the second-order modified mean-field theory (MMF2) [A. O. Ivanov and O. B. Kuznetsova, Phys. Rev. E 64, 41405 (2001)]; its correction for polydisperse ferrofluids arising from Mayer-type cluster expansion and taking into account the first terms of the polydisperse second virial coefficient [A. O. Ivanov and E. A. Elfimova, J. Magn. Magn. Mater 374, 327 (2015)]; and a new theory based on MMF2 combined with the first terms of the polydisperse second and third virial contributions to susceptibility. It turns out that the applicability of each theory depends on the experimental sample density. If twelve ferrofluid samples are split into three groups of strong, moderate, and low concentrated fluids, the temperature dependences of the initial magnetic susceptibility in each group are very precisely described by one of the three theories mentioned above. The determination of a universal formula predicting a ferrofluid susceptibility over a broad range of concentrations and temperatures remains as a challenge.

  2. Range-wide phylogeographic analysis of the spotted frog complex (Rana luteiventris and Rana pretiosa) in northwestern North America

    Science.gov (United States)

    Funk, W.C.; Pearl, C.A.; Draheim, H.M.; Adams, M.J.; Mullins, T.D.; Haig, S.M.

    2008-01-01

    The dynamic geological and climatic history of northwestern North America has made it a focal region for phylogeography. We conducted a range-wide phylogeographic analysis of the spotted frog complex (Rana luteiventris and Rana pretiosa) across its range in northwestern North America to understand its evolutionary history and the distribution of clades to inform conservation of R. pretiosa and Great Basin R. luteiventris, candidates for listing under the US Endangered Species Act. Mitochondrial DNA sequence data from a segment of the cytochrome b gene were obtained from 308 R. luteiventris and R. pretiosa from 96 sites. Phylogenetic analysis revealed one main R. pretiosa clade and three main R. luteiventris clades, two of which overlapped in southeastern Oregon. The three R. luteiventris clades were separated from each other by high levels of sequence divergence (average of 4.75-4.97%). Two divergent clades were also uncovered within the Great Basin. Low genetic variation in R. pretiosa and the southeastern Oregon clade of R. luteiventris suggests concern about their vulnerability to extinction. ?? 2008 Elsevier Inc.

  3. Wide dynamic range FPGA-based TDC for monitoring a trigger timing distribution system in linear accelerators

    Science.gov (United States)

    Suwada, T.; Miyahara, F.; Furukawa, K.; Shoji, M.; Ikeno, M.; Tanaka, M.

    2015-06-01

    A new field-programmable gate array (FPGA)-based time-to-digital converter (TDC) with a wide dynamic range greater than 20 ms has been developed to monitor the timing of various pulsed devices in the trigger timing distribution system of the KEKB injector linac for the Super KEK B-factory project. The pulsed devices are driven by feeding regular as well as any irregular (or event-based) timing pulses. The timing pulses are distributed to these pulsed devices along the linac beam line with fiber-optic links on the basis of the parameters to be set pulse-by-pulse in the event-based timing and control system within 20 ms. For monitoring the timing as precisely as possible, a 16-ch FPGA-based TDC has been developed on a Xilinx Spartan-6 FPGA equipped on VME board with a resolution of 1 ns. The resolution was achieved by applying a multisampling technique, and the accuracies were 2.6 ns (rms) and less than 1 ns (rms) within the dynamic ranges of 20 ms and 7.5 ms, respectively. The various nonlinear effects were improved by implementing a high-precision external clock with a built-in temperature-compensated crystal oscillator.

  4. Experimental validation of the intrinsic spatial efficiency method over a wide range of sizes for cylindrical sources

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Ramŕez, Pablo, E-mail: rapeitor@ug.uchile.cl; Larroquette, Philippe [Departamento de Física, Facultad de Ciencias, Universidad de Chile (Chile); Camilla, S. [Departamento de Física, Universidad Tecnológica Metropolitana (Chile)

    2016-07-07

    The intrinsic spatial efficiency method is a new absolute method to determine the efficiency of a gamma spectroscopy system for any extended source. In the original work the method was experimentally demonstrated and validated for homogeneous cylindrical sources containing {sup 137}Cs, whose sizes varied over a small range (29.5 mm radius and 15.0 to 25.9 mm height). In this work we present an extension of the validation over a wide range of sizes. The dimensions of the cylindrical sources vary between 10 to 40 mm height and 8 to 30 mm radius. The cylindrical sources were prepared using the reference material IAEA-372, which had a specific activity of 11320 Bq/kg at july 2006. The obtained results were better for the sources with 29 mm radius showing relative bias lesser than 5% and for the sources with 10 mm height showing relative bias lesser than 6%. In comparison with the obtained results in the work where we present the method, the majority of these results show an excellent agreement.

  5. First observation of SASE radiation using the compact wide-spectral-range XUV spectrometer at FLASH2

    Energy Technology Data Exchange (ETDEWEB)

    Tanikawa, T., E-mail: takanori.tanikawa@desy.de [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Hage, A. [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); School of Mathematics and Physics, Queen' s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Kuhlmann, M. [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Gonschior, J. [Max Planck Research Group for Structural Dynamics, Notkestrasse 85, 22607 Hamburg (Germany); Grunewald, S.; Plönjes, E.; Düsterer, S.; Brenner, G.; Dziarzhytski, S.; Braune, M.; Brachmanski, M. [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Yin, Z. [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen (Germany); Siewert, F. [Helmholtz Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Dzelzainis, T.; Dromey, B. [School of Mathematics and Physics, Queen' s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Prandolini, M.J. [Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena (Germany); Tavella, F. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, CA 94025 (United States); Zepf, M. [School of Mathematics and Physics, Queen' s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena (Germany); Faatz, B. [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany)

    2016-09-11

    The Free-electron LASer in Hamburg (FLASH) has been extended with a new undulator line FLASH2 in 2014. A compact grazing-incident wide-spectral-range spectrometer based on spherical-variable-line-spacing (SVLS) gratings in the extreme ultraviolet (XUV) region was constructed to optimize and characterize the free-electron laser (FEL) performance at FLASH2. The spectrometer is equipped with three different concave SVLS gratings covering a spectral range from 1 to 62 nm to analyze the spectral characteristics of the XUV radiation. Wavelength calibration and evaluation of the spectral resolution were performed at the plane grating monochromator beamline PG2 at FLASH1 before the installation at FLASH2, and compared with analytical simulations. The first light using self-amplified spontaneous emission from FLASH2 was observed by the spectrometer during a simultaneous operation of both undulator lines—FLASH1 and FLASH2. In addition, the spectral resolution of the spectrometer was evaluated by comparing the measured spectrum from FLASH2 with FEL simulations.

  6. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-11-09

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  7. Wide dynamic range FPGA-based TDC for monitoring a trigger timing distribution system in linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Suwada, T., E-mail: tsuyoshi.suwada@kek.jp [Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Department of Accelerator Science, Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Miyahara, F.; Furukawa, K. [Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Department of Accelerator Science, Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Shoji, M.; Ikeno, M.; Tanaka, M. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2015-06-21

    A new field-programmable gate array (FPGA)-based time-to-digital converter (TDC) with a wide dynamic range greater than 20 ms has been developed to monitor the timing of various pulsed devices in the trigger timing distribution system of the KEKB injector linac for the Super KEK B-factory project. The pulsed devices are driven by feeding regular as well as any irregular (or event-based) timing pulses. The timing pulses are distributed to these pulsed devices along the linac beam line with fiber-optic links on the basis of the parameters to be set pulse-by-pulse in the event-based timing and control system within 20 ms. For monitoring the timing as precisely as possible, a 16-ch FPGA-based TDC has been developed on a Xilinx Spartan-6 FPGA equipped on VME board with a resolution of 1 ns. The resolution was achieved by applying a multisampling technique, and the accuracies were 2.6 ns (rms) and less than 1 ns (rms) within the dynamic ranges of 20 ms and 7.5 ms, respectively. The various nonlinear effects were improved by implementing a high-precision external clock with a built-in temperature-compensated crystal oscillator.

  8. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-02-01

    Full Text Available In this paper, we proposed an interdigitated capacitor (IDC-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt’s dye (R-dye. These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC] and N,N-Dimethylacetamide (DMAC solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.

  9. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won

    2016-02-20

    In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt's dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.

  10. Some Surprising Introductory Physics Facts and Numbers

    Science.gov (United States)

    Mallmann, A. James

    2016-01-01

    In the entertainment world, people usually like, and find memorable, novels, short stories, and movies with surprise endings. This suggests that classroom teachers might want to present to their students examples of surprising facts associated with principles of physics. Possible benefits of finding surprising facts about principles of physics are…

  11. Identification and characterization of highly divergent simian foamy viruses in a wide range of new world primates from Brazil.

    Directory of Open Access Journals (Sweden)

    Cláudia P Muniz

    Full Text Available Foamy viruses naturally infect a wide range of mammals, including Old World (OWP and New World primates (NWP, which are collectively called simian foamy viruses (SFV. While NWP species in Central and South America are highly diverse, only SFV from captive marmoset, spider monkey, and squirrel monkey have been genetically characterized and the molecular epidemiology of SFV infection in NWPs remains unknown. We tested a large collection of genomic DNA (n = 332 comprising 14 genera of NWP species for the presence of SFV polymerase (pol sequences using generic PCR primers. Further molecular characterization of positive samples was carried out by LTR-gag and larger pol sequence analysis. We identified novel SFVs infecting nine NWP genera. Prevalence rates varied between 14-30% in different species for which at least 10 specimens were tested. High SFV genetic diversity among NWP up to 50% in LTR-gag and 40% in pol was revealed by intragenus and intrafamilial comparisons. Two different SFV strains infecting two captive yellow-breasted capuchins did not group in species-specific lineages but rather clustered with SFVs from marmoset and spider monkeys, indicating independent cross-species transmission events. We describe the first SFV epidemiology study of NWP, and the first evidence of SFV infection in wild NWPs. We also document a wide distribution of distinct SFVs in 14 NWP genera, including two novel co-speciating SFVs in capuchins and howler monkeys, suggestive of an ancient evolutionary history in NWPs for at least 28 million years. A high SFV genetic diversity was seen among NWP, yet these viruses seem able to jump between NWP species and even genera. Our results raise concerns for the risk of zoonotic transmission of NWP SFV to humans as these primates are regularly hunted for food or kept as pets in forest regions of South America.

  12. The freshwater red alga Batrachospermum turfosum (Florideophyceae) can acclimate to a wide range of light and temperature conditions.

    Science.gov (United States)

    Aigner, Siegfried; Holzinger, Andreas; Karsten, Ulf; Kranner, Ilse

    2017-01-01

    Batrachospermum turfosum Bory is one of the generalists among the few red algae that have adapted to freshwater habitats, occurring in a variety of primarily shaded, nutrient-poor micro-habitats with lotic (running) or lentic (standing) waters. Seasonal variations in water level and canopy cover can expose this sessile alga to widely fluctuating temperatures, solar irradiation and nutrient availability. Here we report on the ecophysiology of B. turfosum collected from an ultra-oligotrophic bog pool in the Austrian Alps. Photosynthesis as a function of photon fluence density (PFD) and temperature was studied by measuring oxygen evolution in combination with chlorophyll fluorescence. In addition, the effects of ultraviolet radiation (UVR) on photosynthetic pigments were analysed using HPLC and spectrophotometric methods, and cellular ultrastructure was studied using transmission electron microscopy. We found that B. turfosum is adapted to low light, with a light compensation point (Ic) and a light saturation point (Ik) of 8.4 and 29.7 μmol photons m(- 2) s(-1), respectively, but also tolerates higher PFDs of ~1000 μmol photons m(-2) s(-1), and is capable of net photosynthesis at temperatures between 5°C and 35°C. Exposure to either UV-A or UV-AB for 102 h led to a strong transient drop in effective quantum yield (ΔF/FM'), followed by an acclimation to about 70% of initial ΔF/FM' values. Ultrastructural changes included the accumulation of plastoglobules and dilated membranes after UVR treatment. Although all photosynthetic pigments strongly decreased upon UVR exposure and no UV-photoprotectants (e.g. mycosporine-like amino acids) could be detected, the alga was capable of recovering ΔF/FM' and phycobiliproteins after UVR treatment. In summary, B. turfosum tolerates a wide range of irradiation and temperature regimes, and these traits may be the basis for its successful adaptation to challenging environments.

  13. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range

    Science.gov (United States)

    Yuan, Fanglong; Ding, Ling; Li, Yunchao; Li, Xiaohong; Fan, Louzhen; Zhou, Shixin; Fang, Decai; Yang, Shihe

    2015-07-01

    Smart functional nanomaterials colorimetrically responsive to all-pH and a wide temperature range are urgently needed due to their widespread applications in biotechnology, drug delivery, diagnosis and optical sensing. Although graphene quantum dots possess remarkable advantages in biological applications, they are only stable in neutral or weak acidic solutions, and strong acidic or alkaline conditions invariably suppress or diminish the fluorescence intensity. Herein, we report a new type of water-soluble, multicolor fluorescent graphene quantum dot which is responsive to all-pH from 1 to 14 with the naked eye. The synthesis was accomplished by electrolysis of the graphite rod, followed by refluxing in a concentrated nitric and sulfuric acid mixed solution. We demonstrate the novel red fluorescence of quinone structures transformed from the lactone structures under strong alkaline conditions. The fluorescence of the resulting graphene quantum dots was also found to be responsive to the temperature changes, demonstrating their great potential as a dual probe of pH and temperature in complicated environments such as biological media.Smart functional nanomaterials colorimetrically responsive to all-pH and a wide temperature range are urgently needed due to their widespread applications in biotechnology, drug delivery, diagnosis and optical sensing. Although graphene quantum dots possess remarkable advantages in biological applications, they are only stable in neutral or weak acidic solutions, and strong acidic or alkaline conditions invariably suppress or diminish the fluorescence intensity. Herein, we report a new type of water-soluble, multicolor fluorescent graphene quantum dot which is responsive to all-pH from 1 to 14 with the naked eye. The synthesis was accomplished by electrolysis of the graphite rod, followed by refluxing in a concentrated nitric and sulfuric acid mixed solution. We demonstrate the novel red fluorescence of quinone structures transformed

  14. Energy dependence of directed flow over a wide range of pseudorapidity in Au+Au collisions at RHIC

    CERN Document Server

    Back, B B; Ballintijn, M; Barton, D S; Betts, R R; Bickley, A A; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Chai, Z; Decowski, M P; García, E; Gburek, T; George, N; Gulbrandsen, K H; Gushue, S; Halliwell, C; Hamblen, J; Hauer, M; Heintzelman, G A; Henderson, C; Hofman, D J; Hollis, R S; Holynski, R; Holzman, B; Iordanova, A; Johnson, E; Kane, J L; Katzy, J; Khan, N; Kucewicz, W; Kulinich, P; Kuo, C M; Lin, W T; Manly, S; McLeod, D; Mignerey, A C; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L J; Sagerer, J; Sarin, P; Sawicki, P; Seals, H; Sedykh, I; Skulski, W; Smith, C E; Stankiewicz, M A; Steinberg, P; Stephans, G S F; Sukhanov, A; Tang, J L; Tonjes, M B; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Vaurynovich, S S; Verdier, R; Veres, G I; Wenger, E; Wolfs, F L H; Wosiek, B; Wozniak, K; Wuosmaa, A H; Wyslouch, B

    2006-01-01

    We report on measurements of directed flow as a function of pseudorapidity in Au+Au collisions at energies of $\\sqrt{s_{_{NN}}} =$ 19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC). These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.

  15. Simulating range-wide population and breeding habitat dynamics for an endangered woodland warbler in the face of uncertainty

    Science.gov (United States)

    Adam Duarte,; Hatfield, Jeffrey; Todd M. Swannack,; Michael R. J. Forstner,; M. Clay Green,; Floyd W. Weckerly,

    2015-01-01

    Population viability analyses provide a quantitative approach that seeks to predict the possible future status of a species of interest under different scenarios and, therefore, can be important components of large-scale species’ conservation programs. We created a model and simulated range-wide population and breeding habitat dynamics for an endangered woodland warbler, the golden-cheeked warbler (Setophaga chrysoparia). Habitat-transition probabilities were estimated across the warbler's breeding range by combining National Land Cover Database imagery with multistate modeling. Using these estimates, along with recently published demographic estimates, we examined if the species can remain viable into the future given the current conditions. Lastly, we evaluated if protecting a greater amount of habitat would increase the number of warblers that can be supported in the future by systematically increasing the amount of protected habitat and comparing the estimated terminal carrying capacity at the end of 50 years of simulated habitat change. The estimated habitat-transition probabilities supported the hypothesis that habitat transitions are unidirectional, whereby habitat is more likely to diminish than regenerate. The model results indicated population viability could be achieved under current conditions, depending on dispersal. However, there is considerable uncertainty associated with the population projections due to parametric uncertainty. Model results suggested that increasing the amount of protected lands would have a substantial impact on terminal carrying capacities at the end of a 50-year simulation. Notably, this study identifies the need for collecting the data required to estimate demographic parameters in relation to changes in habitat metrics and population density in multiple regions, and highlights the importance of establishing a common definition of what constitutes protected habitat, what management goals are suitable within those protected

  16. Behaviour and modelling of aluminium alloy AA6060 subjected to a wide range of strain rates and temperatures

    Directory of Open Access Journals (Sweden)

    Vilamosa Vincent

    2015-01-01

    Full Text Available The thermo-mechanical behaviour in tension of an as-cast and homogenized AA6060 alloy was investigated at a wide range of strains (the entire deformation process up to fracture, strain rates (0.01–750 s−1 and temperatures (20–350 ∘C. The tests at strain rates up to 1 s−1 were performed in a universal testing machine, while a split-Hopkinson tension bar (SHTB system was used for strain rates from 350 to 750 s−1. The samples were heated with an induction-based heating system. A typical feature of aluminium alloys at high temperatures is that necking occurs at a rather early stage of the deformation process. In order to determine the true stress-strain curve also after the onset of necking, all tests were instrumented with a digital camera. The experimental tests reveal that the AA6060 material has negligible strain-rate sensitivity (SRS for temperatures lower than 200 ∘C, while both yielding and work hardening exhibit a strong positive SRS at higher temperatures. The coupled strain-rate and temperature sensitivity is challenging to capture with most existing constitutive models. The paper presents an outline of a new semi-physical model that expresses the flow stress in terms of plastic strain, plastic strain rate and temperature. The parameters of the model were determined from the tests, and the stress-strain curves from the tests were compared with the predictions of the model. Good agreement was obtained over the entire strain rate and temperature range.

  17. Return customers: foraging site fidelity and the effect of environmental variability in wide-ranging antarctic fur seals.

    Science.gov (United States)

    Arthur, Benjamin; Hindell, Mark; Bester, Marthan; Trathan, Phil; Jonsen, Ian; Staniland, Iain; Oosthuizen, W Chris; Wege, Mia; Lea, Mary-Anne

    2015-01-01

    Strategies employed by wide-ranging foraging animals involve consideration of habitat quality and predictability and should maximise net energy gain. Fidelity to foraging sites is common in areas of high resource availability or where predictable changes in resource availability occur. However, if resource availability is heterogeneous or unpredictable, as it often is in marine environments, then habitat familiarity may also present ecological benefits to individuals. We examined the winter foraging distribution of female Antarctic fur seals, Arctocephalus gazelle, over four years to assess the degree of foraging site fidelity at two scales; within and between years. On average, between-year fidelity was strong, with most individuals utilising more than half of their annual foraging home range over multiple years. However, fidelity was a bimodal strategy among individuals, with five out of eight animals recording between-year overlap values of greater than 50%, while three animals recorded values of less than 5%. High long-term variance in sea surface temperature, a potential proxy for elevated long-term productivity and prey availability, typified areas of overlap. Within-year foraging site fidelity was weak, indicating that successive trips over the winter target different geographic areas. We suggest that over a season, changes in prey availability are predictable enough for individuals to shift foraging area in response, with limited associated energetic costs. Conversely, over multiple years, the availability of prey resources is less spatially and temporally predictable, increasing the potential costs of shifting foraging area and favouring long-term site fidelity. In a dynamic and patchy environment, multi-year foraging site fidelity may confer a long-term energetic advantage to the individual. Such behaviours that operate at the individual level have evolutionary and ecological implications and are potential drivers of niche specialization and modifiers of

  18. Return customers: foraging site fidelity and the effect of environmental variability in wide-ranging antarctic fur seals.

    Directory of Open Access Journals (Sweden)

    Benjamin Arthur

    Full Text Available Strategies employed by wide-ranging foraging animals involve consideration of habitat quality and predictability and should maximise net energy gain. Fidelity to foraging sites is common in areas of high resource availability or where predictable changes in resource availability occur. However, if resource availability is heterogeneous or unpredictable, as it often is in marine environments, then habitat familiarity may also present ecological benefits to individuals. We examined the winter foraging distribution of female Antarctic fur seals, Arctocephalus gazelle, over four years to assess the degree of foraging site fidelity at two scales; within and between years. On average, between-year fidelity was strong, with most individuals utilising more than half of their annual foraging home range over multiple years. However, fidelity was a bimodal strategy among individuals, with five out of eight animals recording between-year overlap values of greater than 50%, while three animals recorded values of less than 5%. High long-term variance in sea surface temperature, a potential proxy for elevated long-term productivity and prey availability, typified areas of overlap. Within-year foraging site fidelity was weak, indicating that successive trips over the winter target different geographic areas. We suggest that over a season, changes in prey availability are predictable enough for individuals to shift foraging area in response, with limited associated energetic costs. Conversely, over multiple years, the availability of prey resources is less spatially and temporally predictable, increasing the potential costs of shifting foraging area and favouring long-term site fidelity. In a dynamic and patchy environment, multi-year foraging site fidelity may confer a long-term energetic advantage to the individual. Such behaviours that operate at the individual level have evolutionary and ecological implications and are potential drivers of niche

  19. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-11-01

    Full Text Available In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  20. Reactivity of chars prepared from the pyrolysis of a Victorian lignite under a wide range of conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.; Mody, D.; Li, C.; Hayashi, J.; Chiba, T. [Monash University, Vic. (Australia). CRC for Clean Power from Lignite, Dept. of Chemical Engineering

    2000-07-01

    A Loy Yang lignite sample was pyrolysed under a wide range of experimental conditions using a wire-mesh reactor, a fluidised-bed reactor, a drop-tube reformer and a thermogravimetric analyser (TGA). The reactivity of these char samples in CO{sub 2} and air was measured in the TGA as well as in the fluidised-bed reactor. A sample prepared by the physical impregnation of NaCl into the lignite was also used in order to investigate the effect of NaCl in the lignite on the reactivity of the resulting char. Our experimental results indicate that, due to the volatilisation of a substantial fraction of Na in the lignite substrate during pyrolysis, the true catalytic activity of the Na in the lignite substrate should be evaluated by measuring the sodium content in the char after pyrolysis. The char reactivity measured in situ in the fluidised-bed reactor was compared with that of the same char measured separately in the TGA after re-heating the char sample to the same temperature as that in the fluidised-bed. It was found that the re-heating of the char in the TGA reduced the char reactivity.

  1. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    CERN Document Server

    Zhang, Xingyu; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chen, Ray T

    2016-01-01

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 um-long coupled L0-type photonic crystalmicrocavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystalmicrocavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystalmicrocavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 us, and a fall time of 18.5 us. The measured on-chip loss on the transmission band is as l...

  2. Charged-Particle Multiplicity Distributions over Wide Pseudorapidity Range in Proton-Proton and Proton-Lead Collisions with ALICE

    CERN Document Server

    Zaccolo, Valentina

    The charged–particle distribution ( P ( N ch ) as a function of N ch ), produced in high energy collisions between protons ( pp ) and between protons and heavy nucleus ( pPb ), depends on the fundamental processes, which lead to the for- mation of the observed particles. In particular, the so–called multiplicity dis- tribution is sensitive to the number of collisions between quarks and gluons contained in the colliding systems. In this thesis, data using the Forward Multiplicity Detector and the Sil- icon Pixel Detector of ALICE at CERN’s Large Hadron Collider (LHC) are presented, for pp and pPb collisions. For the first time the multiplicity distri- butions are performed over such a wide kinematic range at the LHC (pseu- dorapidity coverage of 3 : 4 < < +5 : 1 ) and at the highest energies ever, i.e. all available energies at the LHC’s first run: at p s = 0.9, 2.76, 7 and 8 TeV for pp collisions and at p s = 5.02 TeV for pPb and Pbp collisions. The results are compared, where possible, with th...

  3. Concurrent validity of the wide range assessment of visual motor abilities in typically developing children ages 4 to 11 years.

    Science.gov (United States)

    Obler, Doris R; Avi-Itzhak, Tamara

    2011-10-01

    Pediatric clinicians working with school-age children use the Wide Range Assessment of Visual Motor Abilities (WRAVMA) as a method for evaluating visual perception and motor skills in children despite limited information on concurrent validity. Whether it may be substituted for the Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI) and has suitable estimates of concurrent validity were examined with a convenience sample of 91 typically developing children ages 4 to 11 years. No systematic concurrent validity between the WRAVMA and the VMI emerged. Only two subtests of the WRAVMA (Matching with Visual Perception, and Pegboard with Motor Coordination) gave scores statistically significantly correlated with those on the VMI, and these correlations were weak, accounting for very small amounts of the shared variance. As such, they have low clinical relevance. These findings do not provide evidence of concurrent validity to support the use of WRAVMA as an alternative method for the VMI for assessing children's visual perception and motor skills.

  4. An exonuclease I-based label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection with a wide concentration range.

    Science.gov (United States)

    Wei, Yanli; Chen, Yanxia; Li, Huanhuan; Shuang, Shaomin; Dong, Chuan; Wang, Gufeng

    2015-01-15

    A novel aptamer-based label-free assay for sensitive and selective detection of ATP was developed. This assay employs a new aptamer/fluorescent probe system that shows resistance to exonuclease I (Exo I) digestion upon binding to ATP molecules. In the absence of ATP, the complex between the ATP-binding aptamer (ATP-aptamer) and a DNA binding dye, berberine, is digested upon the addition of exonuclease I, leading to the release of berberine into solution and consequently, quenched berberine fluorescence. In the presence of ATP, the ATP-binding aptamer folds into a G-quadruplex structure that is resistant to Exo I digestion. Accordingly, berberine is protected in the G-quadruplex structure and high fluorescence intensity is observed. As such, based on the fluorescence signal change, a label-free fluorescence assay for ATP was developed. Factors affecting the analysis of ATP including the concentration of ATP-binding aptamer, reaction time, temperature and the concentration of Exo I were comprehensively investigated. Under optimal conditions, the fluorescence intensity of the sensing system displayed a response for ATP in a wide range up to 17.5 mM with a detection limit of 140 nM.

  5. Micro-Viscometer for Measuring Shear-Varying Blood Viscosity over a Wide-Ranging Shear Rate.

    Science.gov (United States)

    Kim, Byung Jun; Lee, Seung Yeob; Jee, Solkeun; Atajanov, Arslan; Yang, Sung

    2017-06-20

    In this study, a micro-viscometer is developed for measuring shear-varying blood viscosity over a wide-ranging shear rate. The micro-viscometer consists of 10 microfluidic channel arrays, each of which has a different micro-channel width. The proposed design enables the retrieval of 10 different shear rates from a single flow rate, thereby enabling the measurement of shear-varying blood viscosity with a fixed flow rate condition. For this purpose, an optimal design that guarantees accurate viscosity measurement is selected from a parametric study. The functionality of the micro-viscometer is verified by both numerical and experimental studies. The proposed micro-viscometer shows 6.8% (numerical) and 5.3% (experimental) in relative error when compared to the result from a standard rotational viscometer. Moreover, a reliability test is performed by repeated measurement (N = 7), and the result shows 2.69 ± 2.19% for the mean relative error. Accurate viscosity measurements are performed on blood samples with variations in the hematocrit (35%, 45%, and 55%), which significantly influences blood viscosity. Since the blood viscosity correlated with various physical parameters of the blood, the micro-viscometer is anticipated to be a significant advancement for realization of blood on a chip.

  6. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    Science.gov (United States)

    Zhang, Xingyu; Chakravarty, Swapnajit; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chen, Ray T.

    2015-11-01

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB.

  7. Temperature and frequency characteristics of low-loss MnZn ferrite in a wide temperature range

    Science.gov (United States)

    Sun, Ke; Lan, Zhongwen; Yu, Zhong; Xu, Zhiyong; Jiang, Xiaona; Wang, Zihui; Liu, Zhi; Luo, Ming

    2011-05-01

    A low-loss Mn0.7Zn0.24Fe2.06O4 ferrite has been prepared by a solid-state reaction method. The MnZn ferrite has a high initial permeability, μi (3097), a high saturation induction, Bs (526 mT), a high Curie temperature, Tc (220 °C), and a low core loss, PL (≤ 415 kW/m3) in a wide temperature (25-120 °C) and frequency (10-100 kHz) range. As the temperature increases, an initial decrease followed by a subsequent increase of hysteresis loss, Ph, and eddy current loss, Pe is observed. Both Ph and Pe increase with increasing frequency. When f ≥ 300 kHz, a residual loss, Pr, appears. Pe increases with increasing temperature and frequency. The temperature and frequency dependence of Ph can be explained by irreversible domain wall movements, Pe by the skin effect, and Pr by domain wall resonance, respectively.

  8. Optimization of statistical methods for HpGe gamma-ray spectrometer used in wide count rate ranges

    Science.gov (United States)

    Gervino, G.; Mana, G.; Palmisano, C.

    2016-07-01

    The need to perform γ-ray measurements with HpGe detectors is a common technique in many fields such as nuclear physics, radiochemistry, nuclear medicine and neutron activation analysis. The use of HpGe detectors is chosen in situations where isotope identification is needed because of their excellent resolution. Our challenge is to obtain the "best" spectroscopy data possible in every measurement situation. "Best" is a combination of statistical (number of counts) and spectral quality (peak, width and position) over a wide range of counting rates. In this framework, we applied Bayesian methods and the Ellipsoidal Nested Sampling (a multidimensional integration technique) to study the most likely distribution for the shape of HpGe spectra. In treating these experiments, the prior information suggests to model the likelihood function with a product of Poisson distributions. We present the efforts that have been done in order to optimize the statistical methods to HpGe detector outputs with the aim to evaluate to a better order of precision the detector efficiency, the absolute measured activity and the spectra background. Reaching a more precise knowledge of statistical and systematic uncertainties for the measured physical observables is the final goal of this research project.

  9. Conservation genetics of the alligator snapping turtle: cytonuclear evidence of range-wide bottleneck effects and unusually pronounced geographic structure

    Science.gov (United States)

    Echelle, A.A.; Hackler, J.C.; Lack, Justin B.; Ballard, S. R.; Roman, J.; Fox, S. F.; Leslie,, David M.; Van Den Bussche, Ronald A.

    2010-01-01

    A previous mtDNA study indicated that female-mediated gene flow was extremely rare among alligator snapping turtle populations in different drainages of the Gulf of Mexico. In this study, we used variation at seven microsatellite DNA loci to assess the possibility of male-mediated gene flow, we augmented the mtDNA survey with additional sampling of the large Mississippi River System, and we evaluated the hypothesis that the consistently low within-population mtDNA diversity reflects past population bottlenecks. The results show that dispersal between drainages of the Gulf of Mexico is rare (F STmsat  = 0.43, ΦSTmtDNA = 0.98). Past range-wide bottlenecks are indicated by several genetic signals, including low diversity for microsatellites (1.1–3.9 alleles/locus; H e = 0.06–0.53) and mtDNA (h = 0.00 for most drainages; π = 0.000–0.001). Microsatellite data reinforce the conclusion from mtDNA that the Suwannee River population might eventually be recognized as a distinct taxonomic unit. It was the only population showing fixation or near fixation for otherwise rare microsatellite alleles. Six evolutionarily significant units are recommended on the basis of reciprocal mtDNA monophyly and high levels of microsatellite DNA divergence.

  10. Rhodobacter megalophilus sp. nov., a phototroph from the Indian Himalayas possessing a wide temperature range for growth.

    Science.gov (United States)

    Arunasri, K; Venkata Ramana, V; Spröer, C; Sasikala, Ch; Ramana, Ch V

    2008-08-01

    Two strains of phototrophic, purple non-sulfur bacteria capable of growing at low temperatures (5 degrees C) were isolated from the Himalayas. The two strains showed positive phototaxis and grew over a relatively wide temperature range (5-40 degrees C). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain JA194T clustered with members of the genus Rhodobacter. Strain JA194T showed highest 16S rRNA gene sequence similarity with Rhodobacter sphaeroides DSM 158T (99 %). However, DNA-DNA hybridization experiments between Rba. sphaeroides DSM 158T and strain JA194T revealed a level of relatedness of only 67 %. The DNA base composition of strain JA194T was 66.67 mol% G+C (by HPLC). Based on 16S rRNA gene sequence analysis, morphological, physiological, Fourier transform infrared fingerprinting and DNA-DNA hybridization studies, strain JA194T (=KCTC 5602T =JCM 14598T) is sufficiently different from other Rhodobacter species to merit its description as the type strain of a novel species, for which the name Rhodobacter megalophilus sp. nov. is proposed.

  11. Quality of Education Predicts Performance on the Wide Range Achievement Test-4th Edition Word Reading Subtest

    Science.gov (United States)

    Sayegh, Philip; Arentoft, Alyssa; Thaler, Nicholas S.; Dean, Andy C.; Thames, April D.

    2014-01-01

    The current study examined whether self-rated education quality predicts Wide Range Achievement Test-4th Edition (WRAT-4) Word Reading subtest and neurocognitive performance, and aimed to establish this subtest's construct validity as an educational quality measure. In a community-based adult sample (N = 106), we tested whether education quality both increased the prediction of Word Reading scores beyond demographic variables and predicted global neurocognitive functioning after adjusting for WRAT-4. As expected, race/ethnicity and education predicted WRAT-4 reading performance. Hierarchical regression revealed that when including education quality, the amount of WRAT-4's explained variance increased significantly, with race/ethnicity and both education quality and years as significant predictors. Finally, WRAT-4 scores, but not education quality, predicted neurocognitive performance. Results support WRAT-4 Word Reading as a valid proxy measure for education quality and a key predictor of neurocognitive performance. Future research should examine these findings in larger, more diverse samples to determine their robust nature. PMID:25404004

  12. Development of a novel monoclonal antibody with reactivity to a wide range of Venezuelan equine encephalitis virus strains

    Directory of Open Access Journals (Sweden)

    Phelps Amanda L

    2009-11-01

    Full Text Available Abstract Background There is currently a requirement for antiviral therapies capable of protecting against infection with Venezuelan equine encephalitis virus (VEEV, as a licensed vaccine is not available for general human use. Monoclonal antibodies are increasingly being developed as therapeutics and are potential treatments for VEEV as they have been shown to be protective in the mouse model of disease. However, to be truly effective, the antibody should recognise multiple strains of VEEV and broadly reactive monoclonal antibodies are rarely and only coincidentally isolated using classical hybridoma technology. Results In this work, methods were developed to reliably derive broadly reactive murine antibodies. A phage library was created that expressed single chain variable fragments (scFv isolated from mice immunised with multiple strains of VEEV. A broadly reactive scFv was identified and incorporated into a murine IgG2a framework. This novel antibody retained the broad reactivity exhibited by the scFv but did not possess virus neutralising activity. However, the antibody was still able to protect mice against VEEV disease induced by strain TrD when administered 24 h prior to challenge. Conclusion A monoclonal antibody possessing reactivity to a wide range of VEEV strains may be of benefit as a generic antiviral therapy. However, humanisation of the murine antibody will be required before it can be tested in humans. Crown Copyright © 2009

  13. A new control strategy with saturation effect compensation for an autonomous induction generator driven by wide speed range turbines

    Energy Technology Data Exchange (ETDEWEB)

    Margato, Elmano, E-mail: efmargato@isel.ipl.p [Instituto Superior de Engenharia de Lisboa, DEEA, Av. Cons. Emidio Navarro 1, 1950-062 Lisboa (Portugal); Centro de Electrotecnia e Electronica Industrial, Av. Cons. Emidio Navarro 1, 1950-062 Lisboa (Portugal); Center for Inovation in Electrical and Energy Engineering, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Faria, Jose, E-mail: josefaria@netvisao.p [Instituto Superior de Engenharia de Lisboa, DEEA, Av. Cons. Emidio Navarro 1, 1950-062 Lisboa (Portugal); Centro de Electrotecnia e Electronica Industrial, Av. Cons. Emidio Navarro 1, 1950-062 Lisboa (Portugal); Resende, M.J., E-mail: mresende@ist.utl.p [Center for Inovation in Electrical and Energy Engineering, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Instituto Superior Tecnico, DEEC, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Palma, Joao, E-mail: jpalma@lnec.p [Centro de Electrotecnia e Electronica Industrial, Av. Cons. Emidio Navarro 1, 1950-062 Lisboa (Portugal); Laboratorio Nacional de Engenharia Civil, LNEC, Av. Brasil 101, 1700-066 (Portugal)

    2011-05-15

    Research highlights: {yields} A novel control strategy for autonomous induction generators with variable rotor speed. {yields} Generator excitation achieved using a current controlled voltage source inverter. {yields} Machine optimized use with stability and saturation effect compensation. {yields} Both saturation and cross-saturation effects discussed upon generator modeling. {yields} Efficient excitation and continuous load voltage control in a wide rotor speed range. -- Abstract: This paper presents a variable speed autonomous squirrel cage generator excited by a current-controlled voltage source inverter to be used in stand-alone micro-hydro power plants. The paper proposes a system control strategy aiming to properly excite the machine as well as to achieve the load voltage control. A feed-forward control sets the appropriate generator flux by taking into account the actual speed and the desired load voltage. A load voltage control loop is used to adjust the generated active power in order to sustain the load voltage at a reference value. The control system is based on a rotor flux oriented vector control technique which takes into account the machine saturation effect. The proposed control strategy and the adopted system models were validated both by numerical simulation and by experimental results obtained from a laboratory prototype. Results covering the prototype start-up, as well as its steady-state and dynamical behavior are presented.

  14. ClassII peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi.

    Science.gov (United States)

    Bödeker, Inga T M; Nygren, Cajsa M R; Taylor, Andy F S; Olson, Ake; Lindahl, Björn D

    2009-12-01

    Fungal peroxidases (ClassII) have a key role in degrading recalcitrant polyphenolic compounds in boreal forest wood, litter and humus. To date, their occurrence and activity have mainly been studied in a small number of white-rot wood decomposers. However, peroxidase activity is commonly measured in boreal forest humus and mineral soils, in which ectomycorrhizal fungi predominate. Here, we used degenerate PCR primers to investigate whether peroxidase-encoding genes are present in the genomes of a wide phylogenetic range of ectomycorrhizal taxa. Cloning and sequencing of PCR products showed that ectomycorrhizal fungi from several different genera possess peroxidase genes. The new sequences represent four major homobasidiomycete lineages, but the majority is derived from Cortinarius, Russula and Lactarius. These genera are ecologically important, but consist mainly of non-culturable species from which little ecophysiological information is available. The amplified sequences contain conserved active sites, both for folding and substrate oxidation. In some Cortinarius spp., there is evidence for gene duplications during the evolution of the genus. ClassII peroxidases seem to be an ancient and a common feature of most homobasidiomycetes, including ectomycorrhizal fungi. Production of extracellular peroxidases may provide ectomycorrhizal fungi with access to nitrogen sequestered in complex polyphenolic sources.

  15. Parallel Mutations Result in a Wide Range of Cooperation and Community Consequences in a Two-Species Bacterial Consortium.

    Science.gov (United States)

    Douglas, Sarah M; Chubiz, Lon M; Harcombe, William R; Ytreberg, F Marty; Marx, Christopher J

    2016-01-01

    Multi-species microbial communities play a critical role in human health, industry, and waste remediation. Recently, the evolution of synthetic consortia in the laboratory has enabled adaptation to be addressed in the context of interacting species. Using an engineered bacterial consortium, we repeatedly evolved cooperative genotypes and examined both the predictability of evolution and the phenotypes that determine community dynamics. Eight Salmonella enterica serovar Typhimurium strains evolved methionine excretion sufficient to support growth of an Escherichia coli methionine auxotroph, from whom they required excreted growth substrates. Non-synonymous mutations in metA, encoding homoserine trans-succinylase (HTS), were detected in each evolved S. enterica methionine cooperator and were shown to be necessary for cooperative consortia growth. Molecular modeling was used to predict that most of the non-synonymous mutations slightly increase the binding affinity for HTS homodimer formation. Despite this genetic parallelism and trend of increasing protein binding stability, these metA alleles gave rise to a wide range of phenotypic diversity in terms of individual versus group benefit. The cooperators with the highest methionine excretion permitted nearly two-fold faster consortia growth and supported the highest fraction of E. coli, yet also had the slowest individual growth rates compared to less cooperative strains. Thus, although the genetic basis of adaptation was quite similar across independent origins of cooperative phenotypes, quantitative measurements of metabolite production were required to predict either the individual-level growth consequences or how these propagate to community-level behavior.

  16. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinquan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061 (United States)

    2016-12-15

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  17. Heliosphere for a wide range of interstellar magnetic field strengths as a source of energetic neutral atoms

    CERN Document Server

    Czechowski, A; McComas, D J

    2015-01-01

    Observations of the energetic neutral atoms (ENAs) of heliospheric origin by IBEX differ from expectations based on heliospheric models. It was proposed that the structure of the heliosphere may be similar to the "two-stream" model derived in 1961 by Parker for the case of strong interstellar magnetic field. Using MHD simulations, we examine possible structure of the heliosphere for a wide range of interstellar magnetic field strengths, with different choices of interstellar medium and solar wind parameters. For the model heliospheres, we calculate the fluxes of ENAs created in the inner heliosheath, and compare with IBEX observations. We find that the plasma flow in the model heliospheres for strong interstellar field ($\\sim$20 $\\mu$G) has a "two-stream" structure, which remains visible down to $\\sim$5 $\\mu$G. The obtained ENA flux distribution show the features similar to the "split tail" effect observed by IBEX. In our model, the main cause of this effect is the two component (fast and slow) solar wind str...

  18. Systematic drug repositioning for a wide range of diseases with integrative analyses of phenotypic and molecular data.

    Science.gov (United States)

    Iwata, Hiroaki; Sawada, Ryusuke; Mizutani, Sayaka; Yamanishi, Yoshihiro

    2015-02-23

    Drug repositioning, or the application of known drugs to new indications, is a challenging issue in pharmaceutical science. In this study, we developed a new computational method to predict unknown drug indications for systematic drug repositioning in a framework of supervised network inference. We defined a descriptor for each drug-disease pair based on the phenotypic features of drugs (e.g., medicinal effects and side effects) and various molecular features of diseases (e.g., disease-causing genes, diagnostic markers, disease-related pathways, and environmental factors) and constructed a statistical model to predict new drug-disease associations for a wide range of diseases in the International Classification of Diseases. Our results show that the proposed method outperforms previous methods in terms of accuracy and applicability, and its performance does not depend on drug chemical structure similarity. Finally, we performed a comprehensive prediction of a drug-disease association network consisting of 2349 drugs and 858 diseases and described biologically meaningful examples of newly predicted drug indications for several types of cancers and nonhereditary diseases.

  19. Development of a bunch-by-bunch longitudinal feedback system with a wide dynamic range for the HIGS facility

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W.Z., E-mail: wwz@fel.duke.ed [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); DFELL, Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Kim, Y. [Department of Physics, Idaho State University, Pocatello, ID 83209-8288 (United States); Li, J.Y. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); DFELL, Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Teytelman, D. [Dimtel, Inc., San Jose, CA 95124 (United States); Busch, M.; Wang, P.; Swift, G. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); DFELL, Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Park, I.S.; Ko, I.S. [Pohang Accelerator Laboratory, POSTECH, Pohang 790-784 (Korea, Republic of); Wu, Y.K., E-mail: wu@fel.duke.ed [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); DFELL, Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2011-03-11

    Electron beam coupled-bunch instabilities can limit and degrade the performance of storage ring based light sources. A longitudinal feedback system has been developed for the Duke storage ring to suppress multi-bunch beam instabilities which prevent stable, high-current operation of the storage ring based free-electron lasers (FELs) and an FEL driven Compton gamma source, the high intensity gamma-ray source (HIGS) at Duke University. In this work, we report the development of a state-of-the-art second generation longitudinal feedback system which employs a field programmable gate array (FPGA) based processor, and a broadband, high shunt-impedance kicker cavity. With two inputs and two outputs, the kicker cavity was designed with a resonant frequency of 937 MHz, a bandwidth of 97 MHz, and a shunt impedance of 1530{Omega}. We also developed an S-matrix based technique to fully characterize the performance of the kicker cavity in the cold test. This longitudinal feedback system has been commissioned and optimized to stabilize high-current electron beams with a wide range of electron beam energies (250 MeV to 1.15 GeV) and a number of electron beam bunch modes, including the single-bunch mode and all possible symmetric bunch modes. This feedback system has become a critical instrument to ensure stable, high-flux operation of HIGS to produce nearly monochromatic, highly polarized Compton gamma-ray beams.

  20. Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates

    Directory of Open Access Journals (Sweden)

    Julia Osten

    2015-05-01

    Full Text Available In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181 in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC was used to record heating curves between 20 and 600 °C. Heating rates were studied from 0.01 K/s to 5 K/s. We paid particular attention to control baseline stability, generating flat baselines and allowing accurate quantitative evaluation of the resulting DSC curves. As the heating rate increases, the individual dissolution and precipitation reactions shift to higher temperatures. The reactions during heating are significantly superimposed and partially run simultaneously. In addition, precipitation and dissolution reactions are increasingly suppressed as the heating rate increases, whereby exothermic precipitation reactions are suppressed earlier than endothermic dissolution reactions. Integrating the heating curves allowed the enthalpy levels of the different initial microstructural conditions to be quantified. Referring to time–temperature–austenitisation diagrams for steels, continuous heating dissolution diagrams for aluminium alloys were constructed to summarise the results in graphical form. These diagrams may support process optimisation in heat treatment shops.

  1. Wide-ranging molecular mobilities of water in active pharmaceutical ingredient (API) hydrates as determined by NMR relaxation times.

    Science.gov (United States)

    Yoshioka, Sumie; Aso, Yukio; Osako, Tsutomu; Kawanishi, Toru

    2008-10-01

    In order to examine the possibility of determining the molecular mobility of hydration water in active pharmaceutical ingredient (API) hydrates by NMR relaxation measurement, spin-spin relaxation and spin-lattice relaxation were measured for the 11 API hydrates listed in the Japanese Pharmacopeia using pulsed (1)H-NMR. For hydration water that has relatively high mobility and shows Lorentzian decay, molecular mobility as determined by spin-spin relaxation time (T(2)) was correlated with ease of evaporation under both nonisothermal and isothermal conditions, as determined by DSC and water vapor sorption isotherm analysis, respectively. Thus, T(2) may be considered a useful parameter which indicates the molecular mobility of hydration water. In contrast, for hydration water that has low mobility and shows Gaussian decay, T(2) was found not to correlate with ease of evaporation under nonisothermal conditions, which suggests that in this case, the molecular mobility of hydration water was too low to be determined by T(2). A wide range of water mobilities was found among API hydrates, from low mobility that could not be evaluated by NMR relaxation time, such as that of the water molecules in pipemidic acid hydrate, to high mobility that could be evaluated by this method, such as that of the water molecules in ceftazidime hydrate. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  2. Wide-range and accurate modeling of linear alkylbenzene sulfonate (LAS) adsorption/desorption on agricultural soil.

    Science.gov (United States)

    Oliver-Rodríguez, B; Zafra-Gómez, A; Reis, M S; Duarte, B P M; Verge, C; de Ferrer, J A; Pérez-Pascual, M; Vílchez, J L

    2015-11-01

    In this paper, rigorous data and adequate models about linear alkylbenzene sulfonate (LAS) adsorption/desorption on agricultural soil are presented, contributing with a substantial improvement over available adsorption works. The kinetics of the adsorption/desorption phenomenon and the adsorption/desorption equilibrium isotherms were determined through batch studies for total LAS amount and also for each homologue series: C10, C11, C12 and C13. The proposed multiple pseudo-first order kinetic model provides the best fit to the kinetic data, indicating the presence of two adsorption/desorption processes in the general phenomenon. Equilibrium adsorption and desorption data have been properly fitted by a model consisting of a Langmuir plus quadratic term, which provides a good integrated description of the experimental data over a wide range of concentrations. At low concentrations, the Langmuir term explains the adsorption of LAS on soil sites which are highly selective of the n-alkyl groups and cover a very small fraction of the soil surface area, whereas the quadratic term describes adsorption on the much larger part of the soil surface and on LAS retained at moderate to high concentrations. Since adsorption/desorption phenomenon plays a major role in the LAS behavior in soils, relevant conclusions can be drawn from the obtained results.

  3. A Wide-range Survey on Recall-Based Graphical User Authentications Algorithms Based on ISO and Attack Patterns

    Directory of Open Access Journals (Sweden)

    Arash Habibi Lashkari

    2009-12-01

    Full Text Available Nowadays, user authentication is one of the important topics in information security. Text-based strong password schemes could provide with certain degree of security. However, the fact that strong passwords being difficult to memorize often leads their owners to write them down on papers or even save them in a computer file. Graphical user authentication (GUA has been proposed as a possible alternative solution to text-based authentication, motivated particularly by the fact that humans can remember images better than text. In recent years, many networks, computer systems and Internet-based environments try used GUA technique for their user’s authentication. All of GUA algorithms have two different aspects which are usability and security. Unfortunately, none of graphical algorithms were being able to cover both of these aspects at the same time. This paper presents a wide-range survey on the pure and cued recall-based algorithms in GUA, based on ISO standards for usability and attack patterns standards for security. After explain usability ISO standards and attack patterns international standards, we try to collect the major attributes of usability and security in GUA. Finally, try to make comparison tables among all recall-based algorithms based on usability attributes and attack patterns those we found. Keywords - Recall-Based Graphical User Authentication; Graphical Password; Usability and security; ISO 9241-11; ISO 9126, ISO 13407; Attack Patterns; Brute force, Dictionary attacks; Guessing; Spyware; Shoulder surfing; Social engineering (description.

  4. Young Galaxy's Magnetism Surprises Astronomers

    Science.gov (United States)

    2008-10-01

    Astronomers have made the first direct measurement of the magnetic field in a young, distant galaxy, and the result is a big surprise. Looking at a faraway protogalaxy seen as it was 6.5 billion years ago, the scientists measured a magnetic field at least 10 times stronger than that of our own Milky Way. They had expected just the opposite. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF The scientists made the discovery using the National Science Foundation's ultra-sensitive Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. "This new measurement indicates that magnetic fields may play a more important role in the formation and evolution of galaxies than we have realized," said Arthur Wolfe, of the University of California-San Diego (UCSD). At its great distance, the protogalaxy is seen as it was when the Universe was about half its current age. According to the leading theory, cosmic magnetic fields are generated by the dynamos of rotating galaxies -- a process that would produce stronger fields with the passage of time. In this scenario, the magnetic fields should be weaker in the earlier Universe, not stronger. The new, direct magnetic-field measurement comes on the heels of a July report by Swiss and American astronomers who made indirect measurements that also implied strong magnetic fields in the early Universe. "Our results present a challenge to the dynamo model, but they do not rule it out," Wolfe said. There are other possible explanations for the strong magnetic field seen in the one protogalaxy Wolfe's team studied. "We may be seeing the field close to the central region of a massive galaxy, and we know such fields are stronger toward the centers of nearby galaxies. Also, the field we see may have been amplified by a shock wave caused by the collision of two galaxies," he said. The protogalaxy studied with the GBT, called DLA-3C286, consists of gas with little or no star formation occurring in it. The astronomers suspect that

  5. Wide range instantaneous temperature measurements of convective fluid flows by using a schlieren system based in color images

    Science.gov (United States)

    Martínez-González, A.; Moreno-Hernández, D.; Monzón-Hernández, D.; León-Rodríguez, M.

    2017-06-01

    In the schlieren method, the deflection of light by the presence of an inhomogeneous medium is proportional to the gradient of its refractive index. Such deflection, in a schlieren system, is represented by light intensity variations on the observation plane. Then, for a digital camera, the intensity level registered by each pixel depends mainly on the variation of the medium refractive index and the status of the digital camera settings. Therefore, in this study, we regulate the intensity value of each pixel by controlling the camera settings such as exposure time, gamma and gain values in order to calibrate the image obtained to the actual temperature values of a particular medium. In our approach, we use a color digital camera. The images obtained with a color digital camera can be separated on three different color-channels. Each channel corresponds to red, green, and blue color, moreover, each one has its own sensitivity. The differences in sensitivity allow us to obtain a range of temperature values for each color channel. Thus, high, medium and low sensitivity correspond to green, blue, and red color channel respectively. Therefore, by adding up the temperature contribution of each color channel we obtain a wide range of temperature values. Hence, the basic idea in our approach to measure temperature, using a schlieren system, is to relate the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the system. Our approach was applied to the measurement of instantaneous temperature fields of the air convection caused by a heated rectangular metal plate and a candle flame. We found that for the metal plate temperature measurements only the green and blue color-channels were required to sense the entire phenomena. On the other hand, for the candle case, the three color-channels were needed to obtain a complete measurement of temperature. In our study, the candle temperature was took as

  6. Molecular Dynamics Simulation Study of Skin Lipids: Effects of the Molar Ratio of Individual Components over a Wide Temperature Range.

    Science.gov (United States)

    Gupta, Rakesh; Rai, Beena

    2015-09-03

    Atomistic molecular dynamics (MD) simulations were employed to systematically investigate the effects of the molar ratio of the individual components cholesterol (CHOL), free fatty acid (FFA), and ceramides (CER) on the properties of the skin lipid bilayer over a wide temperature range (300-400 K). Several independent simulations were performed for bilayers comprised of only CER, CHOL, or FFA molecules as well as those made up of a mixture of CER:CHOL:FFA molecules in different molar ratios. It was found that CHOL increases the stability of the bilayer, since the mixed (CER:CHOL:FFA) 1:1:0, 1:1:1, and 2:2:1 bilayers remained stable until 400 K while the pure ceramide bilayer disintegrated around ∼390 K. It was also observed that CHOL reduces the volume spanned by ceramide molecules, thereby leading to a higher area per CER and FFA molecule in the mixed bilayer system. The CHOL molecule provided more rigidity to the mixed bilayer and led to a more ordered phase at elevated temperatures. The CHOL molecule provided fluidity to the bilayer below the phase transition temperature of CER and kept the bilayer rigid above the phase transition temperature. The FFA interdigitizes with CER molecules and increases the thickness of the bilayer, while rigid CHOL decreases the bilayer thickness. The presence of CHOL increases the compressibility of the bilayer which is responsible for the high barrier function of skin. The CER molecule forms inter- and intramolecular hydrogen bonds, while CHOL only forms intermolecular hydrogen bonds.

  7. Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads

    Energy Technology Data Exchange (ETDEWEB)

    Karagiozis, A.N.

    2007-05-15

    This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

  8. Short-range order in Fe-based metallic glasses: Wide-angle X-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Babilas, Rafał, E-mail: rafal.babilas@polsl.pl [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Gliwice (Poland); Hawełek, Łukasz [Institute of Non-Ferrous Metals, Gliwice (Poland); A. Chelkowski Institute of Physics, University of Silesia, Katowice (Poland); Burian, Andrzej [A. Chelkowski Institute of Physics, University of Silesia, Katowice (Poland)

    2014-11-15

    The local atomic structure of the Fe{sub 80}B{sub 20}, Fe{sub 70}Nb{sub 10}B{sub 20} and Fe{sub 62}Nb{sub 8}B{sub 30} glasses prepared in the form of ribbons has been studied by wide-angle X-ray scattering. Structural information about the amorphous ribbons has been derived from analysis of the radial distribution functions using the least-squares curve-fitting method. The obtained structural parameters indicate that Fe–Fe, Fe–B, Fe–Nb and Nb–B contributions are involved in the near-neighbor coordination spheres. The possible similarities of the local atomic arrangement in the investigated glasses and the crystalline Fe{sub 3}B, Fe{sub 23}B{sub 6} and bcc Fe structures are also discussed. - Graphical abstract: Pair distribution functions (a) and best-fit model and experimental radial distribution functions for Fe{sub 80}B{sub 20} (b), Fe{sub 70}Nb{sub 10}B{sub 20} (c) and Fe{sub 62}Nb{sub 8}B{sub 30} (d) metallic glasses. - Highlights: • The short-range ordering in the Fe-based metallic glasses is presented. • The results of RDF function have been analyzed using the least-squares method. • The Fe–Fe, Fe–B, Fe–Nb or Nb–B contributions are involved in coordination spheres. • The structural unit is distorted triangular prism containing B, Fe or Nb atoms. • Similarities of atomic arrangement in glassy and crystalline structures are discussed.

  9. Removal of GABA(A receptor γ2 subunits from parvalbumin neurons causes wide-ranging behavioral alterations.

    Directory of Open Access Journals (Sweden)

    Elli Leppä

    Full Text Available We investigated the behavioral significance of fast synaptic inhibition by αβγ2-type GABA(A receptors on parvalbumin (Pv cells. The GABA(A receptor γ2 subunit gene was selectively inactivated in Pv-positive neurons by Cre/loxP recombination. The resulting Pv-Δγ2 mice were relatively healthy in the first postnatal weeks; but then as Cre started to be expressed, the mice progressively developed wide-ranging phenotypic alterations including low body weight, motor deficits and tremor, decreased anxiety levels, decreased pain sensitivity and deficient prepulse inhibition of the acoustic startle reflex and impaired spatial learning. Nevertheless, the deletion was not lethal, and mice did not show increased mortality even after one year. Autoradiography with t-butylbicyclophosphoro[(35S]thionate suggested an increased amount of GABA(A receptors with only α and β subunits in central nervous system regions that contained high levels of parvalbumin neurons. Using BAC-transgenesis, we reduced some of the Pv-Δγ2 phenotype by selectively re-expressing the wild-type γ2 subunit back into some Pv cells (reticular thalamic neurons and cerebellar Pv-positive neurons. This produced less severe impairments of motor skills and spatial learning compared with Pv-Δγ2 mice, but all other deficits remained. Our results reveal the widespread significance of fast GABAergic inhibition onto Pv-positive neurons for diverse behavioral modalities, such as motor coordination, sensorimotor integration, emotional behavior and nociception.

  10. The comparative accuracy of the ROSA stereotactic robot across a wide range of clinical applications and registration techniques.

    Science.gov (United States)

    Brandmeir, Nicholas J; Savaliya, Sandip; Rohatgi, Pratik; Sather, Michael

    2017-05-08

    Robot-assisted stereotactic neurosurgery is an emerging technology with a growing range of applications. The ROSA system is a robotic stereotactic system that has been shown to be accurate in laboratory studies and large case series. The goal of this study was to examine the accuracy of the ROSA across different registration methods as well as different clinical applications. Sixteen patients with one hundred and seventeen stereotactic trajectories were examined. Accuracy was compared by measuring the distance between the trajectory target and the actual termination of the device as determined by imaging. Entry error and angular deviation were also measured. Variables included bone fiducials vs. laser facial scanning, the clinical indication for stereotactic surgery, and the effect of lead deflection on accuracy. Bone fiducials did not offer an accuracy benefit over laser facial scanning (mean target error 4.5-3.9 mm, p = 0.34) in these clinical scenarios. Laser interstitial thermal therapy, responsive neurostimulation, and stereo electroencephalography were equally accurate when placed by the ROSA (mean target error 4.4-4.3-4.0 mm, respectively, p = 0.69). Deflection did not affect lead accuracy (mean target error 4.4-3.9 mm, p = 0.11). Similar results are seen for entry error and angular deviation. ROSA is a highly accurate stereotactic system. Laser facial scanning provides the same accuracy as bone fiducials in these stereotactic applications. The ROSA is equally accurate across a wide spectrum of applications. The ROSA is effective at limiting lead deflection, and when it does occur, it does not impact target accuracy in a significant way.

  11. Muscle coordination limits efficiency and power output of human limb movement under a wide range of mechanical demands.

    Science.gov (United States)

    Blake, Ollie M; Wakeling, James M

    2015-12-01

    This study investigated the influence of cycle frequency and workload on muscle coordination and the ensuing relationship with mechanical efficiency and power output of human limb movement. Eleven trained cyclists completed an array of cycle frequency (cadence)-power output conditions while excitation from 10 leg muscles and power output were recorded. Mechanical efficiency was maximized at increasing cadences for increasing power outputs and corresponded to muscle coordination and muscle fiber type recruitment that minimized both the total muscle excitation across all muscles and the ineffective pedal forces. Also, maximum efficiency was characterized by muscle coordination at the top and bottom of the pedal cycle and progressive excitation through the uniarticulate knee, hip, and ankle muscles. Inefficiencies were characterized by excessive excitation of biarticulate muscles and larger duty cycles. Power output and efficiency were limited by the duration of muscle excitation beyond a critical cadence (120-140 rpm), with larger duty cycles and disproportionate increases in muscle excitation suggesting deteriorating muscle coordination and limitations of the activation-deactivation capabilities. Most muscles displayed systematic phase shifts of the muscle excitation relative to the pedal cycle that were dependent on cadence and, to a lesser extent, power output. Phase shifts were different for each muscle, thereby altering their mechanical contribution to the pedaling action. This study shows that muscle coordination is a key determinant of mechanical efficiency and power output of limb movement across a wide range of mechanical demands and that the excitation and coordination of the muscles is limited at very high cycle frequencies. Copyright © 2015 the American Physiological Society.

  12. Information and redundancy in the burial folding code of globular proteins within a wide range of shapes and sizes.

    Science.gov (United States)

    Ferreira, Diogo C; van der Linden, Marx G; de Oliveira, Leandro C; Onuchic, José N; de Araújo, Antônio F Pereira

    2016-04-01

    Recent ab initio folding simulations for a limited number of small proteins have corroborated a previous suggestion that atomic burial information obtainable from sequence could be sufficient for tertiary structure determination when combined to sequence-independent geometrical constraints. Here, we use simulations parameterized by native burials to investigate the required amount of information in a diverse set of globular proteins comprising different structural classes and a wide size range. Burial information is provided by a potential term pushing each atom towards one among a small number L of equiprobable concentric layers. An upper bound for the required information is provided by the minimal number of layers L(min) still compatible with correct folding behavior. We obtain L(min) between 3 and 5 for seven small to medium proteins with 50 ≤ Nr ≤ 110 residues while for a larger protein with Nr = 141 we find that L ≥ 6 is required to maintain native stability. We additionally estimate the usable redundancy for a given L ≥ L(min) from the burial entropy associated to the largest folding-compatible fraction of "superfluous" atoms, for which the burial term can be turned off or target layers can be chosen randomly. The estimated redundancy for small proteins with L = 4 is close to 0.8. Our results are consistent with the above-average quality of burial predictions used in previous simulations and indicate that the fraction of approachable proteins could increase significantly with even a mild, plausible, improvement on sequence-dependent burial prediction or on sequence-independent constraints that augment the detectable redundancy during simulations.

  13. Live cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures.

    Science.gov (United States)

    Lee, Il-Hyung; Saha, Suvrajit; Polley, Anirban; Huang, Hector; Mayor, Satyajit; Rao, Madan; Groves, Jay T

    2015-03-26

    Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14-37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane.

  14. Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range

    Science.gov (United States)

    Drozd, Marcin; Pietrzak, Mariusz; Parzuchowski, Paweł; Mazurkiewicz-Pawlicka, Marta; Malinowska, Elżbieta

    2015-12-01

    The aim of this work was to carry out comparative studies on the peroxidase-like activity of gold nanoparticles (AuNPs) stabilized with low molecular weight hyperbranched polyglycidol (HBPG-OH) and its derivative modified with maleic acid residues (HBPG-COOH). The influence of the stabilizer to gold precursor ratio on the size and morphology of nanoparticles obtained was checked, and prepared nanoparticles were characterized by means of transmission electron microscopy and UV-Vis spectroscopy. The results indicated the divergent effect of increasing the concentration of stabilizers (HBPG-OH or HBPG-COOH) on the size of the nanostructures obtained. The gold nanoparticles obtained were characterized as having intrinsic peroxidase-like activity and the mechanism of catalysis in acidic and alkaline mediums was consistent with the standard Michaelis-Menten kinetics, revealing a strong affinity of AuNPs with 2, 2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 3, 3‧, 5, 5‧-tetramethylbenzidine (TMB), and significantly lower affinity towards phenol. By comparing the kinetic parameters, a negligible effect of polymeric ligand charge on activity against various types of substrates (anionic or cationic) was indicated. The superiority of steric stabilization via the application of tested low-weight hyperbranched polymers over typical stabilizers in preventing salt-induced aggregation and maintaining high catalytic activity in time was proved. The applied hyperbranched stabilizers provide a good tool for manufacturing gold-based nanozymes, which are highly stable and active over a wide pH range.

  15. 宽量程放射性剂量检测装置%A Radioactive Dose Detector with Wide Range

    Institute of Scientific and Technical Information of China (English)

    王俊华; 施一生; 张开明; 张飞

    2012-01-01

    设计了一种智能化、功耗低、量程宽、剂量线性好、使用便捷的微型建材放射性检测仪,硬件由89S51单片机、显示控制器、时钟电路、存储器、按键、探测电路及电源等组成.该装置达到高、低档自动转换,满足量程高、低端线性要求.该剂量仪成本低廉、准确度高、抗干扰能力强,而且性能稳定,达到了预期的设计目的,可方便地检测住宅放射性剂量是否安全,也可用于核辐射实验室、核工业等常规监测.%A micro intelligent building material radioactive detector was designed in the paper, which features low power consumption, wide range, and good dose linearity. The hardware of the detector is composed of an 89S51 MCU, a display controller, clock circuits, a memory unit, a keypad, and power detection circuit. It can not only be used in the nuclear industry, the routine monitoring of radioactive in laboratories, but also facilitates the detection of radioactive dose of indoor decoration and building materials.

  16. The interaction of intraspecific competition and habitat on individual diet specialization: a near range-wide examination of sea otters

    Science.gov (United States)

    Newsome, Seth D.; Tinker, M. Tim; Gill, Verena A.; Hoyt, Zachary N.; Doroff, Angela; Nichol, Linda; Bodkin, James L.

    2015-01-01

    The quantification of individuality is a common research theme in the fields of population, community, and evolutionary ecology. The potential for individuality to arise is likely context-dependent, and the influence of habitat characteristics on its prevalence has received less attention than intraspecific competition. We examined individual diet specialization in 16 sea otter (Enhydra lutris) populations from southern California to the Aleutian Islands in Alaska. Because population histories, relative densities, and habitat characteristics vary widely among sites, we could examine the effects of intraspecific competition and habitat on the prevalence of individual diet specialization. Using observed diet data, we classified half of our sites as rocky substrate habitats and the other half containing a mixture of rocky and unconsolidated (soft) sediment substrates. We used stable isotope data to quantify population- and individual-level diet variation. Among rocky substrate sites, the slope [±standard error (SE)] of the positive significant relationship between the within-individual component (WIC) and total isotopic niche width (TINW) was shallow (0.23 ± 0.07) and negatively correlated with sea otter density. In contrast, the slope of the positive WIC/TINW relationship for populations inhabiting mixed substrate habitats was much higher (0.53 ± 0.14), suggesting a low degree of individuality, irrespective of intraspecific competition. Our results show that the potential for individuality to occur as a result of increasing intraspecific competition is context-dependent and that habitat characteristics, which ultimately influence prey diversity, relative abundance, and the range of skillsets required for efficient prey procurement, are important in determining when and where individual diet specialization occurs in nature.

  17. Glass transition and dynamics in BSA-water mixtures over wide ranges of composition studied by thermal and dielectric techniques.

    Science.gov (United States)

    Panagopoulou, A; Kyritsis, A; Sabater I Serra, R; Gómez Ribelles, J L; Shinyashiki, N; Pissis, P

    2011-12-01

    Protein-water dynamics in mixtures of water and a globular protein, bovine serum albumin (BSA), was studied over wide ranges of composition, in the form of solutions or hydrated solid pellets, by differential scanning calorimetry (DSC), thermally stimulated depolarization current technique (TSDC) and dielectric relaxation spectroscopy (DRS). Additionally, water equilibrium sorption isotherm (ESI) measurements were performed at room temperature. The crystallization and melting events were studied by DSC and the amount of uncrystallized water was calculated by the enthalpy of melting during heating. The glass transition of the system was detected by DSC for water contents higher than the critical water content corresponding to the formation of the first sorption layer of water molecules directly bound to primary hydration sites, namely 0.073 (grams of water per grams of dry protein), estimated by ESI. A strong plasticization of the T(g) was observed by DSC for hydration levels lower than those necessary for crystallization of water during cooling, i.e. lower than about 0.3 (grams of water per grams of hydrated protein) followed by a stabilization of T(g) at about -80°C for higher water contents. The α relaxation associated with the glass transition was also observed in dielectric measurements. In TSDC a microphase separation could be detected resulting in double T(g) for some hydration levels. A dielectric relaxation of small polar groups of the protein plasticized by water, overlapped by relaxations of uncrystallized water molecules, and a separate relaxation of water in the crystallized water phase (bulk ice crystals) were also recorded.

  18. Acidic pH shock induces the expressions of a wide range of stress-response genes

    Directory of Open Access Journals (Sweden)

    Hong Soon-Kwang

    2008-12-01

    Full Text Available Abstract Background Environmental signals usually enhance secondary metabolite production in Streptomycetes by initiating complex signal transduction system. It is known that different sigma factors respond to different types of stresses, respectively in Streptomyces strains, which have a number of unique signal transduction mechanisms depending on the types of environmental shock. In this study, we wanted to know how a pH shock would affect the expression of various sigma factors and shock-related proteins in S. coelicolor A3(2. Results According to the results of transcriptional and proteomic analyses, the major number of sigma factor genes were upregulated by an acidic pH shock. Well-studied sigma factor genes of sigH (heat shock, sigR (oxidative stress, sigB (osmotic shock, and hrdD that play a major role in the secondary metabolism, were all strongly upregulated by the pH shock. A number of heat shock proteins including the DnaK family and chaperones such as GroEL2 were also observed to be upregulated by the pH shock, while their repressor of hspR was strongly downregulated. Oxidative stress-related proteins such as thioredoxin, catalase, superoxide dismutase, peroxidase, and osmotic shock-related protein such as vesicle synthases were also upregulated in overall. Conclusion From these observations, an acidic pH shock was considered to be one of the strongest stresses to influence a wide range of sigma factors and shock-related proteins including general stress response proteins. The upregulation of the sigma factors and shock proteins already found to be related to actinorhodin biosynthesis was considered to have contributed to enhanced actinorhodin productivity by mediating the pH shock signal to regulators or biosynthesis genes for actinorhodin production.

  19. Local administration of resveratrol inhibits excitability of nociceptive wide-dynamic range neurons in rat trigeminal spinal nucleus caudalis.

    Science.gov (United States)

    Shimazu, Yoshihito; Shibuya, Eri; Takehana, Shiori; Sekiguchi, Kenta; Oshima, Katsuo; Kamata, Hiroaki; Karibe, Hiroyuki; Takeda, Mamoru

    2016-06-01

    Although we recently reported that intravenous administration of resveratrol suppresses trigeminal nociception, the precise peripheral effect of resveratrol on nociceptive and non-nociceptive mechanical stimulation-induced trigeminal neuron activity in vivo remains to be determined. The aim of the present study was to investigate whether local subcutaneous administration of resveratrol attenuates mechanical stimulation-induced excitability of trigeminal spinal nucleus caudalis (SpVc) neuron activity in rats, in vivo. Extracellular single-unit recordings were made of SpVc wide-dynamic range (WDR) neuron activity in response to orofacial mechanical stimulation in pentobarbital-anesthetized rats. Neurons responded to non-noxious and noxious mechanical stimulation applied to the orofacial skin. Local subcutaneous administration of resveratrol (1-10mM) into the orofacial skin dose dependently and significantly reduced the mean number of SpVc WDR neurons firing in response to both non-noxious and noxious mechanical stimuli, with the maximal inhibition of discharge frequency in response to both stimuli being seen within 5min. These inhibitory effects were no longer evident after approximately 20min. The mean magnitude of inhibition by resveratrol (10mM) of SpVc neuron discharge frequency was almost equal to that of the local anesthetic 1% lidocaine (37mM). These results suggest that local injection of resveratrol into the peripheral receptive field suppresses the excitability of SpVc neurons, possibly via inhibition of Na(+) channels in the nociceptive nerve terminals of trigeminal ganglion neurons. Therefore, local subcutaneous administration of resveratrol may provide relief of trigeminal nociceptive pain, without side effects, thus contributing to the suite of complementary and alternative medicines used as local anesthetic agents.

  20. Radiation-Hardening of Best-in-Class SiGe Mixed-Signal and RF Electronics for Ultra-Wide Temperature Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative, reliable, low-power, and low-noise electronics that can operate over a wide temperature range and high radiation are critical for future NASA missions....

  1. The Wide Range of Hot Dust Emission from Quasars: Clumpy Tori, Warped Disks and Black Hole Feeding

    Science.gov (United States)

    Elvis, Martin

    Objectives: Quasars and AGNs show characteristic hot dust emission not seen in other objects. This is due to an obscuring "torus" in the inner regions of the quasar. Understanding of this "torus" has progressed slowly in the past 2+ decades. Based on our WISE-based pilot project we find a wide range of IR (dust) to optical (accretion disk) emission ratios in quasar spectral energy distributions (SEDs). This implies order of magnitude differences in the covering factor of the obscuring "torus" from object to object. Moreover the near- IR (hot dust) to mid-IR (warm dust) ratio varies by a similar factor, so the structure within the "torus" also varies greatly from object to object. The results will inform us not only about the inner structure of quasars, but also of the mechanism that brings matter into bound orbit around the central supermassive black hole (SMBH). Methods: We propose to analyze the WISE data for 24,257 SDSS broad emission line, type 1, quasars that also lie in the near-IR UKIDSS survey to produce optical-mid-IR SEDs. The properties of the dust-emitting region will be our primary focus. Previous samples have been limited to a few hundred quasar SEDs. With this large sample we can search for systematic SED changes with redshift, luminosity and with physical parameters derived from the SDSS spectra: black hole mass and Eddington ratio. We will use the 'mixing diagram' method developed for COSMOS, plus theory based clumpy torus and warped disk models. Significance: The growth of supermassive black holes is a central part of galaxy evolution and cosmology, yet is poorly understood. The "torus" is likely the resevoir from which the accretion disk is fed, but how it forms is unknown. Moreover AGN "feedback" is thought to have a major effect on the evolution of galaxies, regulating star formation. However, the influence of the central AGN on its host galaxy is limited if the "torus" intercepts most of AGN continuum, or blocks accretion disk winds. Our

  2. Multiphase Binary Mixture Flows in Porous Media in a Wide Pressure and Temperature Range Including Critical Conditions

    Science.gov (United States)

    Afanasyev, A.

    2011-12-01

    Multiphase flows in porous media with a transition between sub- and supercritical thermodynamic conditions occur in many natural and technological processes (e.g. in deep regions of geothermal reservoirs where temperature reaches critical point of water or in gas-condensate fields where subject to critical conditions retrograde condensation occurs and even in underground carbon dioxide sequestration processes at high formation pressure). Simulation of these processes is complicated due to degeneration of conservation laws under critical conditions and requires non-classical mathematical models and methods. A new mathematical model is proposed for efficient simulation of binary mixture flows in a wide range of pressures and temperatures that includes critical conditions. The distinctive feature of the model lies in the methodology for mixture properties determination. Transport equations and Darcy law are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. Such approach allows determination not only single-phase states and two-phase states of liquid-gas type as in classical models but also two-phase states of liquid-liquid type and three-phase states. The proposed mixture model was implemented in MUFITS (Multiphase Filtration Transport Simulator) code for hydrodynamic simulations. As opposed to classical approaches pressure, enthalpy and composition variables together with fully implicit method and cascade procedure are used. The code is capable of unstructured grids, heterogeneous porous media, relative permeability and capillary pressure dependence on temperature and pressure, multiphase diffusion, optional number of sink and sources, etc. There is an additional module for mixture properties specification. The starting point for the simulation is a cubic equation of state that is

  3. Acute pressure on the sciatic nerve results in rapid inhibition of the wide dynamic range neuronal response

    Science.gov (United States)

    2012-01-01

    Background Acute pressure on the sciatic nerve has recently been reported to provide rapid short-term relief of pain in patients with various pathologies. Wide dynamic range (WDR) neurons transmit nociceptive information from the dorsal horn to higher brain centers. In the present study, we examined the effect of a 2-min application of sciatic nerve pressure on WDR neuronal activity in anesthetized male Sprague–Dawley rats. Results Experiments were carried out on 41 male Sprague–Dawley albino rats weighing 160–280 grams. Dorsal horn WDR neurons were identified on the basis of characteristic responses to mechanical stimuli applied to the cutaneous receptive field. Acute pressure was applied for 2 min to the sciatic nerve using a small vascular clip. The responses of WDR neurons to three mechanical stimuli applied to the cutaneous receptive field were recorded before, and 2, 5 and 20 min after cessation of the 2-min pressure application on the sciatic nerve. Two-min pressure applied to the sciatic nerve caused rapid attenuation of the WDR response to pinching, pressure and brushing stimuli applied to the cutaneous receptive field. Maximal attenuation of the WDR response to pinching and pressure was noted 5 min after release of the 2-min pressure on the sciatic nerve. The mean firing rate decreased from 31.7±1.7 Hz to 13±1.4 Hz upon pinching (p < 0.001), from 31.2±2.3 Hz to 10.9±1.4 Hz (p < 0.001) when pressure was applied, and from 18.9±1.2 Hz to 7.6±1.1 Hz (p < 0.001) upon brushing. Thereafter, the mean firing rates gradually recovered. Conclusions Our results indicate that acute pressure applied to the sciatic nerve exerts a rapid inhibitory effect on the WDR response to both noxious and innocuous stimuli. Our results may partially explain the rapid analgesic effect of acute sciatic nerve pressure noted in clinical studies, and also suggest a new model for the study of pain. PMID:23211003

  4. Improved Models and Tools for Prediction of Radiation Effects on Space Electronics in Wide Temperature Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — All NASA exploration systems operate in the extreme environments of space (Moon, Mars, etc.) and require reliable electronics capable of handling a wide temperature...

  5. Evaluative Appraisals of Environmental Mystery and Surprise

    Science.gov (United States)

    Nasar, Jack L.; Cubukcu, Ebru

    2011-01-01

    This study used a desktop virtual environment (VE) of 15 large-scale residential streets to test the effects of environmental mystery and surprise on response. In theory, mystery and surprise should increase interest and visual appeal. For each VE, participants walked through an approach street and turned right onto a post-turn street. We designed…

  6. Evaluative Appraisals of Environmental Mystery and Surprise

    Science.gov (United States)

    Nasar, Jack L.; Cubukcu, Ebru

    2011-01-01

    This study used a desktop virtual environment (VE) of 15 large-scale residential streets to test the effects of environmental mystery and surprise on response. In theory, mystery and surprise should increase interest and visual appeal. For each VE, participants walked through an approach street and turned right onto a post-turn street. We designed…

  7. Analyst Information Precision and Small Earnings Surprises

    NARCIS (Netherlands)

    S. Bissessur; D. Veenman

    2014-01-01

    Prior research attributes zero and small positive earnings surprises to managers’ incentives for earnings management. In contrast, this study introduces and empirically tests an explanation for zero and small positive earnings surprises based on predictable variation in analyst forecast errors. We a

  8. Modeling and Simulation of - and Silicon Germanium-Base Bipolar Transistors Operating at a Wide Range of Temperatures.

    Science.gov (United States)

    Shaheed, M. Reaz

    1995-01-01

    to provide consistently accurate values for base sheet resistance for both Si- and SiGe-base transistors over a wide range of temperatures. A model for plasma-induced bandgap narrowing suitable for implementation in a numerical simulator has been developed. The appropriate method of incorporating this model in a drift -diffusion solver is described. The importance of including this model for low temperature simulation is demonstrated. With these models in place, the enhanced simulator has been used for evaluating and designing the Si- and SiGe-base bipolar transistors. Silicon-germanium heterojunction bipolar transistors offer significant performance and cost advantages over conventional technologies in the production of integrated circuits for communications, computer and transportation applications. Their high frequency performance at low cost, will find widespread use in the currently exploding wireless communication market. However, the high performance SiGe-base transistors are prone to have a low common-emitter breakdown voltage. In this dissertation, a modification in the collector design is proposed for improving the breakdown voltage without sacrificing the high frequency performance. A comprehensive simulation study of p-n-p SiGe-base transistors has been performed. Different figures of merit such as drive current, current gain, cut -off frequency and Early voltage were compared between a graded germanium profile and an abrupt germanium profile. The differences in the performance level between the two profiles diminishes as the base width is scaled down.

  9. The conceptualization model problem—surprise

    Science.gov (United States)

    Bredehoeft, John

    2005-03-01

    The foundation of model analysis is the conceptual model. Surprise is defined as new data that renders the prevailing conceptual model invalid; as defined here it represents a paradigm shift. Limited empirical data indicate that surprises occur in 20-30% of model analyses. These data suggest that groundwater analysts have difficulty selecting the appropriate conceptual model. There is no ready remedy to the conceptual model problem other than (1) to collect as much data as is feasible, using all applicable methods—a complementary data collection methodology can lead to new information that changes the prevailing conceptual model, and (2) for the analyst to remain open to the fact that the conceptual model can change dramatically as more information is collected. In the final analysis, the hydrogeologist makes a subjective decision on the appropriate conceptual model. The conceptualization problem does not render models unusable. The problem introduces an uncertainty that often is not widely recognized. Conceptual model uncertainty is exacerbated in making long-term predictions of system performance. C'est le modèle conceptuel qui se trouve à base d'une analyse sur un modèle. On considère comme une surprise lorsque le modèle est invalidé par des données nouvelles; dans les termes définis ici la surprise est équivalente à un change de paradigme. Des données empiriques limitées indiquent que les surprises apparaissent dans 20 à 30% des analyses effectuées sur les modèles. Ces données suggèrent que l'analyse des eaux souterraines présente des difficultés lorsqu'il s'agit de choisir le modèle conceptuel approprié. Il n'existe pas un autre remède au problème du modèle conceptuel que: (1) rassembler autant des données que possible en utilisant toutes les méthodes applicables—la méthode des données complémentaires peut conduire aux nouvelles informations qui vont changer le modèle conceptuel, et (2) l'analyste doit rester ouvert au fait

  10. Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature Range During Coal Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotis G. Smirniotis

    2007-06-30

    In chapter 1, the studies focused on the development of novel sorbents for reducing the carbon dioxide emissions at high temperatures. Our studies focused on cesium doped CaO sorbents with respect to other major flue gas compounds in a wide temperature range. The thermo-gravimetric analysis of sorbents with loadings of CaO doped on 20 wt% cesium demonstrated high CO{sub 2} sorption uptakes (up to 66 wt% CO{sub 2}/sorbent). It is remarkable to note that zero adsorption affinity for N{sub 2}, O{sub 2}, H{sub 2}O and NO at temperatures as high as 600 C was observed. For water vapor and nitrogen oxide we observed a positive effect for CO{sub 2} adsorption. In the presence of steam, the CO{sub 2} adsorption increased to the highest adsorption capacity of 77 wt% CO{sub 2}/sorbent. In the presence of nitrogen oxide, the final CO{sub 2} uptake remained same, but the rate of adsorption was higher at the initial stages (10%) than the case where no nitrogen oxide was fed. In chapter 2, Ca(NO{sub 3}){sub 2} {center_dot} 4H{sub 2}O, CaO, Ca(OH){sub 2}, CaCO{sub 3}, and Ca(CH{sub 3}COO){sub 2} {center_dot} H{sub 2}O were used as precursors for synthesis of CaO sorbents on this work. The sorbents prepared from calcium acetate (CaAc{sub 2}-CaO) resulted in the best uptake characteristics for CO{sub 2}. It possessed higher BET surface area and higher pore volume than the other sorbents. According to SEM images, this sorbent shows 'fluffy' structure, which probably contributes to its high surface area and pore volume. When temperatures were between 550 and 800 C, this sorbent could be carbonated almost completely. Moreover, the carbonation progressed dominantly at the initial short period. Under numerous adsorption-desorption cycles, the CaAc{sub 2}-CaO demonstrated the best reversibility, even under the existence of 10 vol % water vapor. In a 27 cyclic running, the sorbent sustained fairly high carbonation conversion of 62%. Pore size distributions indicate that their

  11. Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature Range During Coal Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotis G. Smirniotis

    2007-06-30

    In chapter 1, the studies focused on the development of novel sorbents for reducing the carbon dioxide emissions at high temperatures. Our studies focused on cesium doped CaO sorbents with respect to other major flue gas compounds in a wide temperature range. The thermo-gravimetric analysis of sorbents with loadings of CaO doped on 20 wt% cesium demonstrated high CO{sub 2} sorption uptakes (up to 66 wt% CO{sub 2}/sorbent). It is remarkable to note that zero adsorption affinity for N{sub 2}, O{sub 2}, H{sub 2}O and NO at temperatures as high as 600 C was observed. For water vapor and nitrogen oxide we observed a positive effect for CO{sub 2} adsorption. In the presence of steam, the CO{sub 2} adsorption increased to the highest adsorption capacity of 77 wt% CO{sub 2}/sorbent. In the presence of nitrogen oxide, the final CO{sub 2} uptake remained same, but the rate of adsorption was higher at the initial stages (10%) than the case where no nitrogen oxide was fed. In chapter 2, Ca(NO{sub 3}){sub 2} {center_dot} 4H{sub 2}O, CaO, Ca(OH){sub 2}, CaCO{sub 3}, and Ca(CH{sub 3}COO){sub 2} {center_dot} H{sub 2}O were used as precursors for synthesis of CaO sorbents on this work. The sorbents prepared from calcium acetate (CaAc{sub 2}-CaO) resulted in the best uptake characteristics for CO{sub 2}. It possessed higher BET surface area and higher pore volume than the other sorbents. According to SEM images, this sorbent shows 'fluffy' structure, which probably contributes to its high surface area and pore volume. When temperatures were between 550 and 800 C, this sorbent could be carbonated almost completely. Moreover, the carbonation progressed dominantly at the initial short period. Under numerous adsorption-desorption cycles, the CaAc{sub 2}-CaO demonstrated the best reversibility, even under the existence of 10 vol % water vapor. In a 27 cyclic running, the sorbent sustained fairly high carbonation conversion of 62%. Pore size distributions indicate that their

  12. A toolkit for detecting technical surprise.

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Michael Wayne; Foehse, Mark C.

    2010-10-01

    The detection of a scientific or technological surprise within a secretive country or institute is very difficult. The ability to detect such surprises would allow analysts to identify the capabilities that could be a military or economic threat to national security. Sandia's current approach utilizing ThreatView has been successful in revealing potential technological surprises. However, as data sets become larger, it becomes critical to use algorithms as filters along with the visualization environments. Our two-year LDRD had two primary goals. First, we developed a tool, a Self-Organizing Map (SOM), to extend ThreatView and improve our understanding of the issues involved in working with textual data sets. Second, we developed a toolkit for detecting indicators of technical surprise in textual data sets. Our toolkit has been successfully used to perform technology assessments for the Science & Technology Intelligence (S&TI) program.

  13. Deciphering network community structure by surprise

    National Research Council Canada - National Science Library

    Aldecoa, Rodrigo; Marín, Ignacio

    2011-01-01

    .... A fundamental, unsolved problem is how to characterize the community structure of a network. Here, using both standard and novel benchmarks, we show that maximization of a simple global parameter, which we call Surprise...

  14. A Surprising Culprit Behind Celiac Disease?

    Science.gov (United States)

    ... news/fullstory_164503.html A Surprising Culprit Behind Celiac Disease? Study suggests harmless viruses may set stage ... typically harmless type of virus might sometimes trigger celiac disease, a new study suggests. Celiac disease is ...

  15. Fast Robust Gate-Drivers with Easy Adjustable Voltage Ranges for Driving Normally-On Wide-Bandgap Power Transistors

    OpenAIRE

    Jacqmaer, Pieter; Everts, Jordi; Gelagaev, Ratmir; Tant, Peter; Driesen, Johan

    2010-01-01

    Wide-bandgap (WBG) semiconductors, such as gallium nitride (GaN), are more and more being used in switching power devices. An AlGaN/GaN/AlGaN Double Heterojunction Field Effect transistor (DHFET) was developed in previous work and needed to be tested. The used test circuit was a buck converter. This type of converter, in addition with the normally-on switching behaviour of the GaN-based transistors, requires dedicated gate drive circuitry, resulting in the development of three types of gate-d...

  16. Calculation of the density of solutions (sunflower oil + n-hexane) over a wide range of temperatures and pressure

    Science.gov (United States)

    Safarov, M. M.; Abdukhamidova, Z.

    1995-09-01

    We present the results from an experimental investigation of the density of the sunflower oil system as a function of the mass concentration of n-hexane in the ranges of temperatures T=290 520 K and pressures P=0.101 98.1 MPa. A method of hydrostatic weighing was used to measure the density of the solutions under study.

  17. Mitochondrial DNA haplotype distribution patterns in Pinus ponderosa (pinaceae): range-wide evolutionary history and implications for conservation

    Science.gov (United States)

    Kevin M. Potter; Valerie D. Hipkins; Mary F. Mahalovich; Robert E. Means

    2013-01-01

    Premise of the study: Ponderosa pine ( Pinus ponderosa Douglas ex P. Lawson & C. Lawson) exhibits complicated patterns of morphological and genetic variation across its range in western North America. This study aims to clarify P. ponderosa evolutionary history and phylogeography using a highly polymorphic...

  18. Wide frequencies range of spin excitations in a rare-earth Bi-doped iron garnet with a giant Faraday rotation

    Science.gov (United States)

    Parchenko, Sergii; Stupakiewicz, Andrzej; Yoshimine, Isao; Satoh, Takuya; Maziewski, Andrzej

    2013-10-01

    Ultrafast magnetization dynamics of a rare-earth Bi-doped garnet were studied using an optical pump-probe technique via the inverse Faraday effect. We observed a wide range of frequency modes of the magnetization precession, covering two orders of magnitude. The excitation efficiency of low-frequency precessions in the GHz range, together with a significant beating effect, strongly depended on the amplitude of the external magnetic field. On the contrary, high-frequency precession was independent of the external magnetic field. The obtained results may be exploited in the development of wide class of microwave and magneto-optical devices.

  19. Demonstration of Airborne Wide Area Assessment Technologies at Pueblo Precision Bombing Ranges, Colorado. Hyperspectral Imaging, Version 2.0

    Science.gov (United States)

    2007-09-27

    Detection and Ranging (LiDAR) sensors for measuring variation in surface elevation, large-scale orthorectified photography for visual identification of...flown, herbaceous vegetation was dry / senescent due to the late season, and optimal conditions probably existed for discriminating various vegetation...This mapping strategy uses a broader spectrum rather than the VIS/NIR spectrum used in many satellite and photography studies. The SWIR is a key

  20. Ultra-sensitive and wide-dynamic-range sensors based on dense arrays of carbon nanotube tips

    Science.gov (United States)

    Sun, Gengzhi; Huang, Yinxi; Zheng, Lianxi; Zhan, Zhaoyao; Zhang, Yani; Pang, John H. L.; Wu, Tom; Chen, Peng

    2011-11-01

    Electrochemical electrodes based on dense and vertically aligned arrays of multi-walled carbon nanotubes (MWCNTs) were produced. The open tips of individual hollow nanotubes are exposed as active sites while the entangled nanotube stems encapsulated in epoxy collectively provide multiplexed and highly conductive pathways for charge transport. This unique structure together with the extraordinary electrical and electrochemical properties of MWCNTs offers a high signal-to-noise ratio (thus high sensitivity) and a large detection range, compared with other carbon-based electrodes. Our electrodes can detect K3FeCN6 and dopamine at concentrations as low as 5 nM and 10 nM, respectively, and are responsive in a large dynamic range that spans almost 5 orders of magnitude.Electrochemical electrodes based on dense and vertically aligned arrays of multi-walled carbon nanotubes (MWCNTs) were produced. The open tips of individual hollow nanotubes are exposed as active sites while the entangled nanotube stems encapsulated in epoxy collectively provide multiplexed and highly conductive pathways for charge transport. This unique structure together with the extraordinary electrical and electrochemical properties of MWCNTs offers a high signal-to-noise ratio (thus high sensitivity) and a large detection range, compared with other carbon-based electrodes. Our electrodes can detect K3FeCN6 and dopamine at concentrations as low as 5 nM and 10 nM, respectively, and are responsive in a large dynamic range that spans almost 5 orders of magnitude. Electronic supplementary information (ESI) available. See DOI: 10.1039/c1nr10899a

  1. Self-normalizing method to measure the detective quantum efficiency of a wide range of x-ray detectors.

    Science.gov (United States)

    Stierstorfer, K; Spahn, M

    1999-07-01

    The detective quantum efficiency (DQE) is widely accepted as the most relevant parameter to characterize the image quality of medical x-ray systems. In this article we describe a solid method to measure the DQE. The strength of the method lies in the fact that it is self-normalizing so measurements at very low spatial frequencies are not needed. Furthermore, it works on any system with a response function which is linear in the small-signal approximation. We decompose the DQE into several easily accessible quantities and discuss in detail how they can be measured. At the end we lead the interested reader through an example. Noise equivalent quanta and normalized contrast values are tabulated for standard radiation qualities.

  2. Multiple oscillator models for the optical constants of polycrystalline zinc oxide thin films over a wide wavelength range

    Energy Technology Data Exchange (ETDEWEB)

    Khoshman, J.M., E-mail: khoshman@ahu.edu.jo [Department of Physics, Al-Hussein Bin Talal University, Maan 71111 (Jordan); College of Engineering, University of Dammam, Dammam 31451 (Saudi Arabia); Hilfiker, J.N. [J.A. Woollam Company, 645 M Street, Suite 102, Lincoln, NE 68508 (United States); Tabet, N. [Physics Department, Center of Research Excellence in Renewable Energy, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Kordesch, M.E. [Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States)

    2014-07-01

    Zinc oxide (ZnO) films were prepared on Si(1 1 1) and quartz substrates using RF-magnetron sputtering in N₂ plasma at room temperature. From the X-ray diffraction observations, it was found that all films are polycrystalline with a preferred orientation of (1 0 1). X ray photoelectron spectroscopy was used to analyze the chemical composition of the films by observing the behavior of the Zn2p3, O1s, N1s, and C1s lines. The thicknesses and optical constants of the ZnO thin films were determined using variable angle spectroscopic ellipsometry through the Genosc™ Herzinger–Johs parameterized semiconductor oscillator functions and multiple Gaussian oscillator models. Combining multiple oscillator types provided a very flexible approach to fitting optical constants over a wavelength range 190–1400 nm while simultaneously enforcing Kramers–Kronig consistency in the fitted ellipsometric parameters. Refractive indices of the films were determined to be in the range 1.68–1.93 and extinction coefficients in the range 4.56 × 10⁻⁶–0.23. A direct bandgap of 3.38 ± 0.03 eV was calculated from the extinction coefficient. Low temperature photoluminescence studies of the films exhibited one prominent peak at 3.41 eV. The equality of the ZnO thin films was obtained through the depolarization measurements.

  3. Analysis of the device characteristics of AlGaN/GaN HEMTs over a wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, M., E-mail: miaozhao@mail.semi.ac.cn [Institute of Microelectronics of the Chinese Academy of Sciences, Microwave Devices and Integrated Circuits Department, 3 Beitucheng West Road, Beijing (China); Liu, X.Y.; Zheng, Y.K.; Li, Yankui; Ouyang, Sihua [Institute of Microelectronics of the Chinese Academy of Sciences, Microwave Devices and Integrated Circuits Department, 3 Beitucheng West Road, Beijing (China)

    2013-04-20

    Highlights: ► We report the behavior of the current–voltage characteristics of AlGaN/GaN HEMT in the temperature range of 223–398 K. ► The origin of the leakage current and the current transport behaviors are reported. ► There is a linear relationship between the barrier height and the ideality factor, which is attributed to barrier height in homogeneities. -- Abstract: In this study, we investigate the behavior of the current–voltage (I–V) characteristics of AlGaN/GaN HEMT in the temperature range of 223–398 K. Temperature dependent device characteristics and the current transport mechanism are reported. It is observed that the Schottky barrier height Φ increases and the ideality factor n decreases with temperature. There is a linear relationship between the barrier height and the ideality factor, which is attributed to barrier height inhomogeneities of AlGaN/GaN HEMT. The estimated values of the series resistances (R{sub s}) are in the range of 144.2 Ω at 223 K to 74.3 Ω at 398 K. The Φ, n, R{sub s}, G{sub m} and Schottky leakage current values are seen to be strongly temperature dependent.

  4. Ultra-wide detectable concentration range of GMR biosensors using Fe{sub 3}O{sub 4} microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jie [College of Physics, Key Laboratory of Photonics Materials and Technology in Universities of Shandong, and Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); School of Chemical Science and Engineering, Qingdao University, Qingdao 266071 (China); Li, Qiang [College of Physics, Key Laboratory of Photonics Materials and Technology in Universities of Shandong, and Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Zong, Weihua [Shandong Provincial Key Laboratory of Industrial Control Technology, Qingdao University, Qingdao 266071 (China); Zhang, Yongcheng [College of Physics, Key Laboratory of Photonics Materials and Technology in Universities of Shandong, and Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Li, Shandong, E-mail: lishd@qdu.edu.cn [College of Physics, Key Laboratory of Photonics Materials and Technology in Universities of Shandong, and Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-11-01

    Exchange-biased GMR sensors were employed for biodetection using a DC in-plane measuring method and a magnetic label of Fe{sub 3}O{sub 4} microspheres. It was revealed that an ultra-wide concentration span covering five orders from 10 ng/mL to 1000 μg/mL was achieved in a home-made biodetection device. The concentration x dependence of output voltage difference |ΔV| between with and without magnetic labels, exhibits nonlinear futures, which undergoes two functions depending on the concentration region. For the low concentration region from 10 ng/mL to 10 μg/mL, a logarithmic relation of |ΔV|=26.3lgx+91.4 fits well, while for the high concentration region, a negative exponential function of |ΔV|=3113(1−e{sup −x/250}) describes the |ΔV|~x relation better. For the former, the “coffee ring” effect, formed during the solvent evaporation, was considered as the main reason for the nonlinear relation. While for the latter with high concentration, the overlap among the particles and the enhanced interaction of the magnetic dipole were responsible for the nonlinear |ΔV|~x relationship. Moreover, the calculated detectable concentration limit is agreed well with the experimental data. - Highlights: • Ultra-wide concentration span covering five orders from 0.01 to 1000 μg/mL. • A logarithmic function well describes the relation of |ΔV|~x at low concentration. • An exponential function well describes the relation of |ΔV|~x at high concentration.

  5. Range-wide latitudinal and elevational temperature gradients for the world's terrestrial birds: implications under global climate change.

    Directory of Open Access Journals (Sweden)

    Frank A La Sorte

    Full Text Available Species' geographical distributions are tracking latitudinal and elevational surface temperature gradients under global climate change. To evaluate the opportunities to track these gradients across space, we provide a first baseline assessment of the steepness of these gradients for the world's terrestrial birds. Within the breeding ranges of 9,014 bird species, we characterized the spatial gradients in temperature along latitude and elevation for all and a subset of bird species, respectively. We summarized these temperature gradients globally for threatened and non-threatened species and determined how their steepness varied based on species' geography (range size, shape, and orientation and projected changes in temperature under climate change. Elevational temperature gradients were steepest for species in Africa, western North and South America, and central Asia and shallowest in Australasia, insular IndoMalaya, and the Neotropical lowlands. Latitudinal temperature gradients were steepest for extratropical species, especially in the Northern Hemisphere. Threatened species had shallower elevational gradients whereas latitudinal gradients differed little between threatened and non-threatened species. The strength of elevational gradients was positively correlated with projected changes in temperature. For latitudinal gradients, this relationship only held for extratropical species. The strength of latitudinal gradients was better predicted by species' geography, but primarily for extratropical species. Our findings suggest threatened species are associated with shallower elevational temperature gradients, whereas steep latitudinal gradients are most prevalent outside the tropics where fewer bird species occur year-round. Future modeling and mitigation efforts would benefit from the development of finer grain distributional data to ascertain how these gradients are structured within species' ranges, how and why these gradients vary among

  6. Activity patterns of Eurasian lynx are modulated by light regime and individual traits over a wide latitudinal range.

    Directory of Open Access Journals (Sweden)

    Marco Heurich

    Full Text Available The activity patterns of most terrestrial animals are regarded as being primarily influenced by light, although other factors, such as sexual cycle and climatic conditions, can modify the underlying patterns. However, most activity studies have been limited to a single study area, which in turn limit the variability of light conditions and other factors. Here we considered a range of variables that might potentially influence the activity of a large carnivore, the Eurasian lynx, in a network of studies conducted with identical methodology in different areas spanning latitudes from 49°7'N in central Europe to 70°00'N in northern Scandinavia. The variables considered both light conditions, ranging from a day with a complete day-night cycle to polar night and polar day, as well as individual traits of the animals. We analysed activity data of 38 individual free-ranging lynx equipped with GPS-collars with acceleration sensors, covering more than 11,000 lynx days. Mixed linear additive models revealed that the lynx activity level was not influenced by the daily daylight duration and the activity pattern was bimodal, even during polar night and polar day. The duration of the active phase of the activity cycle varied with the widening and narrowing of the photoperiod. Activity varied significantly with moonlight. Among adults, males were more active than females, and subadult lynx were more active than adults. In polar regions, the amplitude of the lynx daily activity pattern was low, likely as a result of the polycyclic activity pattern of their main prey, reindeer. At lower latitudes, the basic lynx activity pattern peaked during twilight, corresponding to the crepuscular activity pattern of the main prey, roe deer. Our results indicated that the basic activity of lynx is independent of light conditions, but is modified by both individual traits and the activity pattern of the locally most important prey.

  7. Range-wide latitudinal and elevational temperature gradients for the world's terrestrial birds: implications under global climate change.

    Science.gov (United States)

    La Sorte, Frank A; Butchart, Stuart H M; Jetz, Walter; Böhning-Gaese, Katrin

    2014-01-01

    Species' geographical distributions are tracking latitudinal and elevational surface temperature gradients under global climate change. To evaluate the opportunities to track these gradients across space, we provide a first baseline assessment of the steepness of these gradients for the world's terrestrial birds. Within the breeding ranges of 9,014 bird species, we characterized the spatial gradients in temperature along latitude and elevation for all and a subset of bird species, respectively. We summarized these temperature gradients globally for threatened and non-threatened species and determined how their steepness varied based on species' geography (range size, shape, and orientation) and projected changes in temperature under climate change. Elevational temperature gradients were steepest for species in Africa, western North and South America, and central Asia and shallowest in Australasia, insular IndoMalaya, and the Neotropical lowlands. Latitudinal temperature gradients were steepest for extratropical species, especially in the Northern Hemisphere. Threatened species had shallower elevational gradients whereas latitudinal gradients differed little between threatened and non-threatened species. The strength of elevational gradients was positively correlated with projected changes in temperature. For latitudinal gradients, this relationship only held for extratropical species. The strength of latitudinal gradients was better predicted by species' geography, but primarily for extratropical species. Our findings suggest threatened species are associated with shallower elevational temperature gradients, whereas steep latitudinal gradients are most prevalent outside the tropics where fewer bird species occur year-round. Future modeling and mitigation efforts would benefit from the development of finer grain distributional data to ascertain how these gradients are structured within species' ranges, how and why these gradients vary among species, and the capacity

  8. Demonstration of Synthetic Aperture Radar and Hyperspectral Imaging for Wide Area Assessment at Pueblo Precision Bombing Range #2, Colorado

    Science.gov (United States)

    2008-10-01

    orientation RCS radar cross section RGB red-green-blue RMSE root mean square error ROC receiver operating characteristic RTK GPS real-time...the UHF-VHF FOPEN SAR at 200-500 MHz was similar to the SkySAR operating range of 230-440 Mhz, and the radar cross section (RCS) obtained by the FOPEN...Positioning 3.4.3.1 SAR Triangular-plate trihedral corner reflectors and top hat fiducial targets were used for ground control at the site

  9. Distribution of Microbial Arsenic Reduction, Oxidation and Extrusion Genes along a Wide Range of Environmental Arsenic Concentrations

    OpenAIRE

    Escudero, Lorena V.; Casamayor, Emilio O.; Guillermo Chong; Carles Pedrós-Alió; Cecilia Demergasso

    2013-01-01

    The presence of the arsenic oxidation, reduction, and extrusion genes arsC, arrA, aioA, and acr3 was explored in a range of natural environments in northern Chile, with arsenic concentrations spanning six orders of magnitude. A combination of primers from the literature and newly designed primers were used to explore the presence of the arsC gene, coding for the reduction of As (V) to As (III) in one of the most common detoxification mechanisms. Enterobacterial related arsC genes appeared onl...

  10. Development of a robotic patient positioning system with a wide beam-angle range for fixed-beam particle therapy

    Science.gov (United States)

    Choi, Hongseok; Park, Jong-Oh; Ko, Seong Young; Park, Sukho; Cho, Sungho; Jung, Won-Gyun; Park, Yong Kyun; Kang, Jung Suk

    2016-10-01

    This paper describes a robotic patient positioning system (PPS) for a fixed-beam heavy-ion therapy system. In order to extend the limited irradiation angle range of the fixed beam, we developed a 6-degree-of-freedom (6-DOF) serial-link robotic arm and used it as the robotic PPS for the fixed-beam heavy-ion therapy system. This research aims to develop a robotic PPS for use in the Korea Heavy Ion Medical Accelerator (KHIMA) system, which is under development at the Korea Institute of Radiological & Medical Sciences (KIRAMS). In particular, we select constraints and criteria that will be used for designing and evaluating the robotic PPS through full consultation with KIRAMS. In accordance with the constraints and criteria, we develop a 6-DOF serial-link robotic arm that consists of six revolute joints for the robotic PPS, where the robotic arm covers the upper body of a patient as a treatment area and achieves a 15 ° roll and pitch angle in the treatment area without any collision. Various preliminary experiments confirm that the robotic PPS can meet all criteria for extension of the limited irradiation angle range in the treatment area and has a positioning repeatability of 0.275 mm.

  11. Development of new hCaM-Alexa Fluor(®) biosensors for a wide range of ligands.

    Science.gov (United States)

    Velázquez-López, I; León-Cruz, E; Pardo, J P; Sosa-Peinado, A; González-Andrade, M

    2017-01-01

    Eight new fluorescent biosensors of human calmodulin (hCaM) using Alexa Fluor(®) 350, 488, 532, and 555 dyes were constructed. These biosensors are thermodynamically stable, functional, and highly sensitive to ligands of the CaM. They resolve the problem of CaM ligands with similar spectroscopic properties to the intrinsic and extrinsic fluorophores of other biosensors previously reported. Additionally, they can be used in studies of protein-protein interaction through Förster resonance energy transfer (FRET). The variation in Tm (range 78.07-81.47 °C; 79.05 to WT) is no larger than two degrees in all cases in regards to CaM WT. The Kds calculated with all biosensors for CPZ and BIMI (a new inhibitor of CaM) are in the range of 0.45-1.86 and 0.69-1.54 μm respectively. All biosensors retain their ability to activate Calcineurin about 70%. Structural models built "in silico" show their possible conformation taking the fluorophores in protein thus we can predict system stability. Finally, these new biosensors represent a biotechnological development applied to an analytical problem, which aims to determine accurately the affinity of inhibitors of CaM without possible interference, to be put forward as possible drugs related to CaM.

  12. A semi-automated pipeline for the segmentation of rhesus macaque hippocampus: validation across a wide age range.

    Directory of Open Access Journals (Sweden)

    Michael R Hunsaker

    Full Text Available This report outlines a neuroimaging pipeline that allows a robust, high-throughput, semi-automated, template-based protocol for segmenting the hippocampus in rhesus macaque (Macaca mulatta monkeys ranging from 1 week to 260 weeks of age. The semiautomated component of this approach minimizes user effort while concurrently maximizing the benefit of human expertise by requiring as few as 10 landmarks to be placed on images of each hippocampus to guide registration. Any systematic errors in the normalization process are corrected using a machine-learning algorithm that has been trained by comparing manual and automated segmentations to identify systematic errors. These methods result in high spatial overlap and reliability when compared with the results of manual tracing protocols. They also dramatically reduce the time to acquire data, an important consideration in large-scale neuroradiological studies involving hundreds of MRI scans. Importantly, other than the initial generation of the unbiased template, this approach requires only modest neuroanatomical training. It has been validated for high-throughput studies of rhesus macaque hippocampal anatomy across a broad age range.

  13. A semi-automated pipeline for the segmentation of rhesus macaque hippocampus: validation across a wide age range.

    Science.gov (United States)

    Hunsaker, Michael R; Amaral, David G

    2014-01-01

    This report outlines a neuroimaging pipeline that allows a robust, high-throughput, semi-automated, template-based protocol for segmenting the hippocampus in rhesus macaque (Macaca mulatta) monkeys ranging from 1 week to 260 weeks of age. The semiautomated component of this approach minimizes user effort while concurrently maximizing the benefit of human expertise by requiring as few as 10 landmarks to be placed on images of each hippocampus to guide registration. Any systematic errors in the normalization process are corrected using a machine-learning algorithm that has been trained by comparing manual and automated segmentations to identify systematic errors. These methods result in high spatial overlap and reliability when compared with the results of manual tracing protocols. They also dramatically reduce the time to acquire data, an important consideration in large-scale neuroradiological studies involving hundreds of MRI scans. Importantly, other than the initial generation of the unbiased template, this approach requires only modest neuroanatomical training. It has been validated for high-throughput studies of rhesus macaque hippocampal anatomy across a broad age range.

  14. Evaluation of the performance of MP4-based procedures for a wide range of thermochemical and kinetic properties

    Science.gov (United States)

    Yu, Li-Juan; Wan, Wenchao; Karton, Amir

    2016-11-01

    We evaluate the performance of standard and modified MPn procedures for a wide set of thermochemical and kinetic properties, including atomization energies, structural isomerization energies, conformational energies, and reaction barrier heights. The reference data are obtained at the CCSD(T)/CBS level by means of the Wn thermochemical protocols. We find that none of the MPn-based procedures show acceptable performance for the challenging W4-11 and BH76 databases. For the other thermochemical/kinetic databases, the MP2.5 and MP3.5 procedures provide the most attractive accuracy-to-computational cost ratios. The MP2.5 procedure results in a weighted-total-root-mean-square deviation (WTRMSD) of 3.4 kJ/mol, whilst the computationally more expensive MP3.5 procedure results in a WTRMSD of 1.9 kJ/mol (the same WTRMSD obtained for the CCSD(T) method in conjunction with a triple-zeta basis set). We also assess the performance of the computationally economical CCSD(T)/CBS(MP2) method, which provides the best overall performance for all the considered databases, including W4-11 and BH76.

  15. Impact of MON863 transgenic roots is equivalent on western corn rootworm larvae for a wide range of maize phenologies.

    Science.gov (United States)

    Hibbard, Bruce E; El Khishen, Ahmed A; Vaughn, Ty T

    2009-08-01

    The effects of maize, Zea mays L., phenology on establishment, damage, and adult emergence of the western corn rootworm, Diabrotica virgifera virgifera LeConte, on MON863 transgenic maize expressing the Cry3Bb1 protein and its isoline was evaluated in field trials in 2002 and 2003. As expected, plant damage, western corn rootworm larval recovery, and adult emergence were significantly lower on MON863 than isoline maize. The average weight of larvae and adults recovered from MON863 and isoline maize was generally not significantly different. If western corn rootworm larvae were able to establish on transgenic rootworm-resistant plants, larval growth was relatively normal. Plant damage, the number of western corn rootworm larvae recovered, and adult emergence from MON863 did not significantly differ between egg hatch times from widely varying phenologies in either year of the study. Although the extractable level of Cry3Bb1 decreased significantly from vegetative (V)4 to V9 maize in previous studies, in the current study, the amount of Cry3Bb1 did not vary from V3 to R3 in a way that affected neonate survival by western corn rootworm larvae in the field.

  16. Wide-range genetic connectivity of Coney, Cephalopholis fulva (Epinephelidae, through oceanic islands and continental Brazilian coast

    Directory of Open Access Journals (Sweden)

    Allyson S. de Souza

    2015-03-01

    Full Text Available The Epinephelidae form a group of species of high biological and economical interests. It´s phylogeographic patterns are not well known especially the distributed populations in the western region of the Atlantic Ocean. Among the representatives is a small species called Cephalopholis fulva, Coney, which presents a wide geographical distribution, polychromia, hermaphroditism and is quickly becoming a large target for the exploration of commercial fishing. The genetic and historical demography were obtained through the partial sequence analysis of Control Region from six locations on the coastline of Brazil from the northeast coast to the southwest coast, including the oceanic islands of Rocas Atoll and Fernando de Noronha Archipelago. The analyzed samples revealed a high genetic variability and a strong gene flow among the sampled locations. Additionally, the genetic data revealed that population expansions probably occurred due to the changes in the sea levels that occurred during the Pleistocene. The large population connectivity found in Coney constitutes relevant conditions for their biological conservation.

  17. On-Board State-of-Health Estimation at a Wide Ambient Temperature Range in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Tiansi Wang

    2015-08-01

    Full Text Available A state-of-health (SOH estimation method for electric vehicles (EVs is presented with three main advantages: (1 it provides joint estimation of cell’s aging states in terms of power and energy (i.e., SOHP and SOHE—because the determination of SOHP and SOHE can be reduced to the estimation of the ohmic resistance increase and capacity loss, respectively, the ohmic resistance at nominal temperature will be taken as a health indicator, and the capacity loss is estimated based on a mechanistic model that is developed to describe the correlation between resistance increase and capacity loss; (2 it has wide applicability to various ambient temperatures—to eliminate the effects of temperature on the resistance, another mechanistic model about the resistance against temperature is presented, which can normalize the resistance at various temperatures to its standard value at the nominal temperature; and (3 it needs low computational efforts for on-board application—based on a linear equation of cell’s dynamic behaviors, the recursive least-squares (RLS algorithm is used for the resistance estimation. Based on the designed performance and validation experiments, respectively, the coefficients of the models are determined and the accuracy of the proposed method is verified. The results at different aging states and temperatures show good accuracy and reliability.

  18. Wide-range 7-switch flying capacitor based dc-dc converter for point-of-load applications

    Science.gov (United States)

    Jain, Parth

    In this thesis a dc-dc converter referred to as the 7-switch flying capacitor (7SFC) based multi-level buck converter intended for point-of-load applications is presented. The 7SFC operates with the principle of "transformability" which allows it to run in several switching modes when paired with a digital controller. The mode is selected based on input and output conditions by estimating the highest efficiency mode. The 7SFC converter utilizes a flying capacitor, which for certain modes allows for a large reduction in switching losses, especially when the converter is operated with high-input voltages. Compared to the conventional 2-phase interleaved buck converter, the 7SFC is able to reduce the size of the output inductors and capacitor by 33%. The 7SFC discrete prototype is able to achieve efficiencies greater than 90% over the majority of the operating range.

  19. Wide-range and fast thermally-tunable silicon photonic microring resonators using the junction field effect.

    Science.gov (United States)

    Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan

    2016-10-03

    Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a "pinched" p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. Thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%-90% transition time, and with efficiency of 3.2 μW/GHz.

  20. BEGA Starter/Alternator—Vector Control Implementation and Performance for Wide Speed Range at Unity Power Factor Operation

    DEFF Research Database (Denmark)

    Boldea, Ion; Coroban-Schramel, Vasile; Andreescu, Gheorghe-Daniel

    2010-01-01

    The Biaxial Excitation Generator for Automobiles (BEGA) is proposed as a solution for integrated starter/alternator systems used in hybrid electric vehicles. This paper demonstrates through experiments and simulations that BEGA has a very large constant power speed range. A vector control structure...... is proposed for BEGA operation during motoring and generating, at unity power factor with zero d-axis current (id) and zero q-axis flux (Ψq) control. In such conditions, BEGA behaves like a separately excited dc brush(commutator) machine, in the sense that no stator inductance voltage drop occurs...... in such constraint control conditions. A high iq current is required in order to cancel the q-axis flux, during unity power factor operation. This engages higher copper losses in the machine under light load. In order to minimize the copper losses, for lower load levels, a current referencer is proposed. Due...

  1. Higher harmonics flow measurement of charged hadrons and electrons in wide kinematic range with PHENIX VTX tracker

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, Maki

    2013-05-02

    The silicon vertex tracker (VTX) was installed into the PHENIX experiment in 2010 and it successfully collected approximately 5 billion events of Au + Au collisions at 200 GeV in the 2011 RHIC run. The main function of the VTX is separation of heavy flavor hadrons, charm and bottom, with a measurement of Distance of Closest Approach (DCA) of single electrons from heavy flavor decays. By identifying electrons with PHENIX central detectors, the azimuthal anisotropy of electrons from heavy flavor decays can be determined over a broad p{sub T} range. In this paper, we will present measurement results on v{sub 2} and v{sub 3} of charged hadrons, and v{sub 2} of single electron from charm decay.

  2. Distribution of microbial arsenic reduction, oxidation and extrusion genes along a wide range of environmental arsenic concentrations.

    Science.gov (United States)

    Escudero, Lorena V; Casamayor, Emilio O; Chong, Guillermo; Pedrós-Alió, Carles; Demergasso, Cecilia

    2013-01-01

    The presence of the arsenic oxidation, reduction, and extrusion genes arsC, arrA, aioA, and acr3 was explored in a range of natural environments in northern Chile, with arsenic concentrations spanning six orders of magnitude. A combination of primers from the literature and newly designed primers were used to explore the presence of the arsC gene, coding for the reduction of As (V) to As (III) in one of the most common detoxification mechanisms. Enterobacterial related arsC genes appeared only in the environments with the lowest As concentration, while Firmicutes-like genes were present throughout the range of As concentrations. The arrA gene, involved in anaerobic respiration using As (V) as electron acceptor, was found in all the systems studied. The As (III) oxidation gene aioA and the As (III) transport gene acr3 were tracked with two primer sets each and they were also found to be spread through the As concentration gradient. Sediment samples had a higher number of arsenic related genes than water samples. Considering the results of the bacterial community composition available for these samples, the higher microbial phylogenetic diversity of microbes inhabiting the sediments may explain the increased number of genetic resources found to cope with arsenic. Overall, the environmental distribution of arsenic related genes suggests that the occurrence of different ArsC families provides different degrees of protection against arsenic as previously described in laboratory strains, and that the glutaredoxin (Grx)-linked arsenate reductases related to Enterobacteria do not confer enough arsenic resistance to live above certain levels of As concentrations.

  3. Distribution of microbial arsenic reduction, oxidation and extrusion genes along a wide range of environmental arsenic concentrations.

    Directory of Open Access Journals (Sweden)

    Lorena V Escudero

    Full Text Available The presence of the arsenic oxidation, reduction, and extrusion genes arsC, arrA, aioA, and acr3 was explored in a range of natural environments in northern Chile, with arsenic concentrations spanning six orders of magnitude. A combination of primers from the literature and newly designed primers were used to explore the presence of the arsC gene, coding for the reduction of As (V to As (III in one of the most common detoxification mechanisms. Enterobacterial related arsC genes appeared only in the environments with the lowest As concentration, while Firmicutes-like genes were present throughout the range of As concentrations. The arrA gene, involved in anaerobic respiration using As (V as electron acceptor, was found in all the systems studied. The As (III oxidation gene aioA and the As (III transport gene acr3 were tracked with two primer sets each and they were also found to be spread through the As concentration gradient. Sediment samples had a higher number of arsenic related genes than water samples. Considering the results of the bacterial community composition available for these samples, the higher microbial phylogenetic diversity of microbes inhabiting the sediments may explain the increased number of genetic resources found to cope with arsenic. Overall, the environmental distribution of arsenic related genes suggests that the occurrence of different ArsC families provides different degrees of protection against arsenic as previously described in laboratory strains, and that the glutaredoxin (Grx-linked arsenate reductases related to Enterobacteria do not confer enough arsenic resistance to live above certain levels of As concentrations.

  4. New confocal microscopy hyperspectral imager for NIR-emitting bioprobes: high spectral resolution for a wide spectral range (Conference Presentation)

    Science.gov (United States)

    Marcet, Stéphane; Benayas, Antonio; Quintanilla, Marta; Mangiarini, Francesca; Verhaegen, Marc; Vetrone, Fiorenzo; Blais-Ouellette, Sébastien

    2016-03-01

    Functional nanoscale materials are being extensively investigated for applications in biology and medicine and are ready to make significant contributions in the realization of exciting advancements in diverse areas of diagnostics and therapeutics. Aiming for more accurate, efficient, non-invasive and fast diagnostic tools, the use of near-infrared (NIR) light in the range of the 1st and 2nd biological window (NIR-I: 0.70-0.95 µm; NIR-II: 1.00-1.35 µm) provides deeper penetration depth into biological tissue, better image contrast, reduced phototoxicity and photobleaching. Consequently, NIR-based bioimaging became a quickly emerging field and manifold new NIR-emitting bioprobes have been reported. Since commercially available microscopes are not optimized for this kind of NPs, a new microscopy hyperspectral confocal imager has been developed to cover a broad spectral range (400 to 1700 nm) with high spectral resolution. The smallest spectral variation can be easily monitored thanks to the high spectral resolution (as low as 0.2 nm). This is possible thanks to a combination of an EMCCD and an InGaAs camera with a high resolution spectrometer. An extended number of NPs can be excited with a Ti:Sapphire laser, which provides tunable illumination within 690-1040 nm. Cells and tissues can be mapped in less than 100 ms, allowing in-vivo imaging. As a proof of concept, here we present the preliminary results of the spatial distribution of the fluorescence signal intensity from lanthanide doped nanoparticles incorporated into a system of biological interest. The temperature sub-mm gradient - analyzing the spectral features so gathered through an all-optical route is also thoroughly discussed.

  5. Response to elevated CO2 in the temperate C3 grass Festuca arundinaceae across a wide range of soils.

    Science.gov (United States)

    Nord, Eric A; Jaramillo, Raúl E; Lynch, Jonathan P

    2015-01-01

    Soils vary widely in mineral nutrient availability and physical characteristics, but the influence of this variability on plant responses to elevated CO2 remains poorly understood. As a first approximation of the effect of global soil variability on plant growth response to CO2, we evaluated the effect of CO2 on tall fescue (Festuca arundinacea) grown in soils representing 10 of the 12 global soil orders plus a high-fertility control. Plants were grown in small pots in continuously stirred reactor tanks in a greenhouse. Elevated CO2 (800 ppm) increased plant biomass in the high-fertility control and in two of the more fertile soils. Elevated CO2 had variable effects on foliar mineral concentration-nitrogen was not altered by elevated CO2, and phosphorus and potassium were only affected by CO2 in a small number of soils. While leaf photosynthesis was stimulated by elevated CO2 in six soils, canopy photosynthesis was not stimulated. Four principle components were identified; the first was associated with foliar minerals and soil clay, and the second with soil acidity and foliar manganese concentration. The third principle component was associated with gas exchange, and the fourth with plant biomass and soil minerals. Soils in which tall fescue did not respond to elevated CO2 account for 83% of global land area. These results show that variation in soil physical and chemical properties have important implications for plant responses to global change, and highlight the need to consider soil variability in models of vegetation response to global change.

  6. Range-wide genetic structure of maritime pine predates the last glacial maximum: evidence from nuclear DNA.

    Science.gov (United States)

    Naydenov, Krassimir D; Alexandrov, Alexander; Matevski, Vlado; Vasilevski, Kole; Naydenov, Michel K; Gyuleva, Veselka; Carcaillet, Christopher; Wahid, Nadya; Kamary, Salim

    2014-02-01

    Using nuclear simple sequence repeats (nuSSRs), we determined the genetic variability in the natural distribution range of maritime pine (Pinus pinaster) in the western Mediterranean region. We analysed the role of global and significant climatic fluctuations in driving the evolutionary diversification of this species. We attempted to determine the impact of the last glacial maximum (LGM) and human activity on genetic variation and to identify the effect of bottlenecks, admixing, migration, time to the most recent common ancestor (TMRCA), and recent splits. A total of 972 individuals were analysed. The sample represented 27 natural populations from the western Mediterranean region, which encompasses most of the natural range of P. pinaster. Using eight nuSSRs, we analysed genetic diversity indices for each population and group of populations. We also examined the interpopulation structure by the frequency and distance method and investigated genetic barriers, signals of historical demographic fluctuations, phylogeographic structure, admixing, rate of mutation, migration, as well as testing the hypothesis of isolation by distance (IBD). Both cluster analyses showed similar population genetic structure with three genetic barriers that divided the samples into four large groups. Intensive migration was only detected during the period of the last glacial maximum (LGM), which permitted the mutation rate of the markers used to be calculated. The majority of the population was found to exhibit signs of a recent bottleneck and its timing showed a clear northeast-southwest geographic distribution. A clearly defined phylogeographic structure (Nst > Gst and Rst > Gst ) under IBD was established, and showed the highest divergence between groups of populations separated by physical barriers, such as the Strait of Gibraltar, the Mediterranean Sea and the Pyrenees. The high level of intergroup genetic differentiation (ΦIS = 20.26) was attributed to a long historical isolation

  7. Simultaneous and in situ analysis of thermal and volumetric properties of starch gelatinization over wide pressure and temperature ranges.

    Science.gov (United States)

    Randzio, Stanislaw L; Orlowska, Marta

    2005-01-01

    A method for simultaneous and in situ analysis of thermal and volumetric properties of starch gelatinization from 0.1 to 100 MPa and from 283 to 430 K is described. The temperature of a very sensitive calorimetric detector containing a starch-water emulsion at a selected pressure is programmed to rise at a slow rate; volume variations are performed automatically to keep the selected pressure constant while the heat exchange rate and the volume are recorded. The method is demonstrated with a novel investigation of pressure effects on a sequence of three phase transitions in an aqueous emulsion of wheat starch (56 wt % water). The volume changes during the main endothermic transition (M), associated with melting of the crystalline part of the starch granules and a helix-coil transformation in amylopectin, but also with an important swelling, were separated into a volume increase associated with swelling and a volume decrease associated with the transition itself. Thermodynamic parameters for this transition together with their pressure dependencies have been obtained from four independent experiments at each pressure. The data are thermodynamically consistent, but are poorly described by the Clapeyron equation. The negative volume change of the slow exothermic transition (A) appearing just after the main endothermic transition (M) is small, spread out over a wide temperature interval, and occurs at higher temperatures with increasing pressures. This transition is probably associated with reassociation of the unwound helixes of amylopectin with parts of amylopectin molecules other than their original helix duplex partner. The positive volume change of the high-temperature, endothermic transition (N) with a small enthalpy change is probably associated with a nematic-isotropic transformation ending the formation of a homogeneous SOL phase (in the sense of Flory), and is also pushed to higher temperatures with increasing pressures. Knowledge of the state of wheat starch

  8. Climatic and geographic predictors of life history variation in Eastern Massasauga (Sistrurus catenatus): A range-wide synthesis

    Science.gov (United States)

    King, Richard B.; Adamski, John M.; Anton, Thomas G.; Bailey, Robyn L.; Baker, Sarah J.; Bieser, Nickolas D.; Bell, Thomas A.; Bissell, Kristin M.; Bradke, Danielle R.; Campa, Henry; Casper, Gary S.; Cedar, Karen; Cross, Matthew D.; DeGregorio, Brett A.; Dreslik, Michael J.; Faust, Lisa J.; Harvey, Daniel S.; Hay, Robert W.; Jellen, Benjamin C.; Johnson, Brent D.; Johnson, Glenn; Kiel, Brooke D.; Kingsbury, Bruce A.; Kowalski, Matthew J.; Lee, Yu Man; Lentini, Andrew M.; Marshall, John C.; Mauger, David; Moore, Jennifer A.; Paloski, Rori A.; Phillips, Christopher A.; Pratt, Paul D.; Preney, Thomas; Prior, Kent A.; Promaine, Andrew; Redmer, Michael; Reinert, Howard K.; Rouse, Jeremy D.; Shoemaker, Kevin T.; Sutton, Scott; VanDeWalle, Terry J.; Weatherhead, Patrick J.; Wynn, Doug; Yagi, Anne

    2017-01-01

    Elucidating how life history traits vary geographically is important to understanding variation in population dynamics. Because many aspects of ectotherm life history are climate-dependent, geographic variation in climate is expected to have a large impact on population dynamics through effects on annual survival, body size, growth rate, age at first reproduction, size–fecundity relationship, and reproductive frequency. The Eastern Massasauga (Sistrurus catenatus) is a small, imperiled North American rattlesnake with a distribution centered on the Great Lakes region, where lake effects strongly influence local conditions. To address Eastern Massasauga life history data gaps, we compiled data from 47 study sites representing 38 counties across the range. We used multimodel inference and general linear models with geographic coordinates and annual climate normals as explanatory variables to clarify patterns of variation in life history traits. We found strong evidence for geographic variation in six of nine life history variables. Adult female snout-vent length and neonate mass increased with increasing mean annual precipitation. Litter size decreased with increasing mean temperature, and the size–fecundity relationship and growth prior to first hibernation both increased with increasing latitude. The proportion of gravid females also increased with increasing latitude, but this relationship may be the result of geographically varying detection bias. Our results provide insights into ectotherm life history variation and fill critical data gaps, which will inform Eastern Massasauga conservation efforts by improving biological realism for models of population viability and climate change. PMID:28196149

  9. An ultra-fast thermoelectric sensor for single-photon detection in a wide range of the electromagnetic spectrum

    Science.gov (United States)

    Kuzanyan, Astghik A.; Nikoghosyan, Vahan R.; Kuzanyan, Armen S.

    2017-05-01

    The results of computer simulation of heat distribution processes taking place after the absorption of single photons of 1-1000 eV energy in the three-layer detection pixel of the thermoelectric detector are presented. We considered different geometries of the detection pixel in which (La,Ce)B6 hexaboride is used as a thermoelectric layer and superconducting absorber and heat sink layers are of Nb, Pb and YBCO. The calculations are based on the heat conduction equation and are carried out by the matrix method for differential equations. It is shown, that by changing materials and sizes of the detection pixel's layers it is possible to obtain transducers for the registration of photons within the given spectral range with the required energy resolution and count rate. It is demonstrated that such detector has a number of advantages, as well as improved characteristics, which give ground to consider the thermoelectric detector as a real alternative to superconducting nanowire single-photon detectors.

  10. HESS J1427-608: an unusual hard unbroken $\\gamma-$ray spectrum in a very wide energy range

    CERN Document Server

    Guo, Xiao-Lei; Liao, Neng-Hui; Yuan, Qiang; Gao, Wei-Hong; Fan, Yi-Zhong; Liu, Si-Ming

    2016-01-01

    We report the detection of a GeV $\\gamma$-ray source which is likely associated with the unidentified very-high-energy (VHE) $\\gamma$-ray source HESS J1427-608 with the Pass 8 data recorded by the Fermi Large Area Telescope. The photon spectrum of this source is best described by a power-law with an index of $1.85\\pm0.17$ in the energy range of $3-500$ GeV, and the measured flux connects smoothly with that of HESS J1427-608 at a few hundred GeV. This source shows no significant extended morphology and time variation. The broadband GeV-TeV emission over four decades of energies can be well fitted by a single power-law function with an index of 2.0, without obvious indication of spectral cutoff toward high energies. Such a result implies that HESS J1427-608 may be a PeV particle accelerator. We discuss possible nature of HESS J1427-608 according to the multi-wavelength spectral fittings. Given the relatively large errors, either a leptonic or a hadronic model can explain the multi-wavelength data from radio to ...

  11. Mixing behavior of the rhombic micromixers over a wide Reynolds number range using Taguchi method and 3D numerical simulations.

    Science.gov (United States)

    Chung, C K; Shih, T R; Chen, T C; Wu, B H

    2008-10-01

    A planar micromixer with rhombic microchannels and a converging-diverging element has been systematically investigated by the Taguchi method, CFD-ACE simulations and experiments. To reduce the footprint and extend the operation range of Reynolds number, Taguchi method was used to numerically study the performance of the micromixer in a L(9) orthogonal array. Mixing efficiency is prominently influenced by geometrical parameters and Reynolds number (Re). The four factors in a L(9) orthogonal array are number of rhombi, turning angle, width of the rhombic channel and width of the throat. The degree of sensitivity by Taguchi method can be ranked as: Number of rhombi > Width of the rhombic channel > Width of the throat > Turning angle of the rhombic channel. Increasing the number of rhombi, reducing the width of the rhombic channel and throat and lowering the turning angle resulted in better fluid mixing efficiency. The optimal design of the micromixer in simulations indicates over 90% mixing efficiency at both Re > or = 80 and Re < or = 0.1. Experimental results in the optimal simulations are consistent with the simulated one. This planar rhombic micromixer has simplified the complex fabrication process of the multi-layer or three-dimensional micromixers and improved the performance of a previous rhombic micromixer at a reduced footprint and lower Re.

  12. Current-conduction mechanisms in Au/n-CdTe Schottky solar cells in the wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Fiat, Songuel, E-mail: songulfiat@yahoo.com [Physics Department, Faculty of Arts and Sciences, Gaziosmanpasa University, 60240 Tokat (Turkey); Merdan, Ziya [Physics Department, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey); Memmedli, Tofig [Physics Department, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey); National Academy of Science, Institute of Physics, Baku (Azerbaijan)

    2012-07-01

    The current-conduction mechanisms in Au/n-CdTe Schottky solar cells have been investigated by considering the series resistance (R{sub s}) effect in the temperature range 120-380 K. The obtained values of main electrical parameters such as zero-bias barrier height ({Phi}{sub bo}), ideality factor (n) and R{sub s} were found strongly function of temperature. While the {Phi}{sub bo} increases, the n decreases with the increasing temperature. Such behavior can be explained on the basis of the thermionic emission (TE) theory with the Gaussian distribution (GD) of the barrier height (BH) being related to inhomogeneities at the metal/semiconductor (M/S) interface. The results show that the conduction mechanism in Au/n-CdTe Schottky solar cells can be successfully explained on the basis of the TE mechanism with a GD of the BHs. In addition, the capacitance-voltage (C-V) characteristics of Au/n-CdTe solar cells have been investigated at room temperature and 1 MHz.

  13. On the complex structure of the optical spectra of a tetragonal calomel single crystal in a wide energy range

    Energy Technology Data Exchange (ETDEWEB)

    Sobolev, V. V., E-mail: sobolev@uni.udm.ru [Udmurt State University (Russian Federation); Sobolev, V. Val. [Izhevsk State Technical University (Russian Federation); Anisimov, D. V. [Udmurt State University (Russian Federation)

    2016-01-15

    The spectral complex of optical functions of the calomel Hg{sub 2}Cl{sub 2} single crystal is determined in the range 0–20 eV at 300 K in unpolarized light. The spectra of the imaginary part of the permittivity ε{sub 2}(E), the bulk–Imε{sup –1} and the surface–Im(1 + ε){sup –1} electron energy losses are decomposed into elementary bands. Their main parameters, including energies and oscillator strengths of the transition bands are determined. Calculations are performed on the basis of the experimental reflectance spectrum of the crystal cleavage. Computer programs based on Kramers–Kronig relations, analytical formulas, and the advanced parameterfree method of combined Argand diagrams are used. The main features of the spectral set of optical functions and the parameters of expansion band components ε{sub 2}(E),–Imε{sup –1}, and–Im(1 + ε){sup –1} are determined.

  14. Wide range local resistance imaging on fragile materials by conducting probe atomic force microscopy in intermittent contact mode

    Energy Technology Data Exchange (ETDEWEB)

    Vecchiola, Aymeric [Laboratoire de Génie électrique et électronique de Paris (GeePs), UMR 8507 CNRS-CentraleSupélec, Paris-Sud and UPMC Universities, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette (France); Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis (France); Unité Mixte de Physique CNRS-Thales UMR 137, 1 avenue Augustin Fresnel, 91767 Palaiseau (France); Chrétien, Pascal; Schneegans, Olivier; Mencaraglia, Denis; Houzé, Frédéric, E-mail: frederic.houze@geeps.centralesupelec.fr [Laboratoire de Génie électrique et électronique de Paris (GeePs), UMR 8507 CNRS-CentraleSupélec, Paris-Sud and UPMC Universities, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette (France); Delprat, Sophie [Unité Mixte de Physique CNRS-Thales UMR 137, 1 avenue Augustin Fresnel, 91767 Palaiseau (France); UPMC, Université Paris 06, 4 place Jussieu, 75005 Paris (France); Bouzehouane, Karim; Seneor, Pierre; Mattana, Richard [Unité Mixte de Physique CNRS-Thales UMR 137, 1 avenue Augustin Fresnel, 91767 Palaiseau (France); Tatay, Sergio [Molecular Science Institute, University of Valencia, 46980 Paterna (Spain); Geffroy, Bernard [Lab. Physique des Interfaces et Couches minces (PICM), UMR 7647 CNRS-École polytechnique, 91128 Palaiseau (France); Lab. d' Innovation en Chimie des Surfaces et Nanosciences (LICSEN), NIMBE UMR 3685 CNRS-CEA Saclay, 91191 Gif-sur-Yvette (France); and others

    2016-06-13

    An imaging technique associating a slowly intermittent contact mode of atomic force microscopy (AFM) with a home-made multi-purpose resistance sensing device is presented. It aims at extending the widespread resistance measurements classically operated in contact mode AFM to broaden their application fields to soft materials (molecular electronics, biology) and fragile or weakly anchored nano-objects, for which nanoscale electrical characterization is highly demanded and often proves to be a challenging task in contact mode. Compared with the state of the art concerning less aggressive solutions for AFM electrical imaging, our technique brings a significantly wider range of resistance measurement (over 10 decades) without any manual switching, which is a major advantage for the characterization of materials with large on-sample resistance variations. After describing the basics of the set-up, we report on preliminary investigations focused on academic samples of self-assembled monolayers with various thicknesses as a demonstrator of the imaging capabilities of our instrument, from qualitative and semi-quantitative viewpoints. Then two application examples are presented, regarding an organic photovoltaic thin film and an array of individual vertical carbon nanotubes. Both attest the relevance of the technique for the control and optimization of technological processes.

  15. Wide range local resistance imaging on fragile materials by conducting probe atomic force microscopy in intermittent contact mode

    Science.gov (United States)

    Vecchiola, Aymeric; Chrétien, Pascal; Delprat, Sophie; Bouzehouane, Karim; Schneegans, Olivier; Seneor, Pierre; Mattana, Richard; Tatay, Sergio; Geffroy, Bernard; Bonnassieux, Yvan; Mencaraglia, Denis; Houzé, Frédéric

    2016-06-01

    An imaging technique associating a slowly intermittent contact mode of atomic force microscopy (AFM) with a home-made multi-purpose resistance sensing device is presented. It aims at extending the widespread resistance measurements classically operated in contact mode AFM to broaden their application fields to soft materials (molecular electronics, biology) and fragile or weakly anchored nano-objects, for which nanoscale electrical characterization is highly demanded and often proves to be a challenging task in contact mode. Compared with the state of the art concerning less aggressive solutions for AFM electrical imaging, our technique brings a significantly wider range of resistance measurement (over 10 decades) without any manual switching, which is a major advantage for the characterization of materials with large on-sample resistance variations. After describing the basics of the set-up, we report on preliminary investigations focused on academic samples of self-assembled monolayers with various thicknesses as a demonstrator of the imaging capabilities of our instrument, from qualitative and semi-quantitative viewpoints. Then two application examples are presented, regarding an organic photovoltaic thin film and an array of individual vertical carbon nanotubes. Both attest the relevance of the technique for the control and optimization of technological processes.

  16. Surprises in numerical expressions of physical constants

    CERN Document Server

    Amir, Ariel; Tokieda, Tadashi

    2016-01-01

    In science, as in life, `surprises' can be adequately appreciated only in the presence of a null model, what we expect a priori. In physics, theories sometimes express the values of dimensionless physical constants as combinations of mathematical constants like pi or e. The inverse problem also arises, whereby the measured value of a physical constant admits a `surprisingly' simple approximation in terms of well-known mathematical constants. Can we estimate the probability for this to be a mere coincidence, rather than an inkling of some theory? We answer the question in the most naive form.

  17. Independent gene phylogenies and morphology demonstrate a malagasy origin for a wide-ranging group of swallowtail butterflies.

    Science.gov (United States)

    Zakharov, Evgueni V; Smith, Campbell R; Lees, David C; Cameron, Alison; Vane-Wright, Richard I; Sperling, Felix A H

    2004-12-01

    Madagascar is home to numerous endemic species and lineages, but the processes that have contributed to its endangered diversity are still poorly understood. Evidence is accumulating to demonstrate the importance of Tertiary dispersal across varying distances of oceanic barriers, supplementing vicariance relationships dating back to the Cretaceous, but these hypotheses remain tentative in the absence of well-supported phylogenies. In the Papilio demoleus group of swallowtail butterflies, three of the five recognized species are restricted to Madagascar, whereas the remaining two species range across the Afrotropical zone and southern Asia plus Australia. We reconstructed phylogenetic relationships for all species in the P. demoleus group, as well as 11 outgroup Papilio species, using 60 morphological characters and about 4 kb of nucleotide sequences from two mitochondrial (cytochrome oxidase I and II) and two nuclear (wg and EF-1alpha) genes. Of the three endemic Malagasy species, the two that are formally listed as endangered or at risk represented the most basal divergences in the group, while the more common third endemic was clearly related to African P. demodocus. The fifth species, P. demoleus, showed little differentiation across southern Asia, but showed divergence from its subspecies sthenelus in Australia. Dispersal-vicariance analysis using cladograms derived from morphology and three independent genes indicated a Malagasy diversification of lime swallowtails in the middle Miocene. Thus, diversification processes on the island of Madagascar may have contributed to the origin of common butterflies that now occur throughout much of the Old World tropical and subtemperate regions. An alternative hypothesis, that Madagascar is a refuge for ancient lineages resulting from successive colonizations from Africa, is less parsimonious and does not explain the relatively low continental diversity of the group.

  18. Design of a Kaplan turbine for a wide range of operating head -Curved draft tube design and model test verification-

    Science.gov (United States)

    KO, Pohan; MATSUMOTO, Kiyoshi; OHTAKE, Norio; DING, Hua

    2016-11-01

    As for turbomachine off-design performance improvement is challenging but critical for maximising the performing area. In this paper, a curved draft tube for a medium head Kaplan type hydro turbine is introduced and discussed for its significant effect on expanding operating head range. Without adding any extra structure and working fluid for swirl destruction and damping, a carefully designed outline shape of draft tube with the selected placement of center-piers successfully supresses the growth of turbulence eddy and the transport of the swirl to the outlet. Also, more kinetic energy is recovered and the head lost is improved. Finally, the model test results are also presented. The obvious performance improvement was found in the lower net head area, where the maximum efficiency improvement was measured up to 20% without compromising the best efficiency point. Additionally, this design results in a new draft tube more compact in size and so leads to better construction and manufacturing cost performance for prototype. The draft tube geometry parameter designing process was concerning the best efficiency point together with the off-design points covering various water net heads and discharges. The hydraulic performance and flow behavior was numerically previewed and visualized by solving Reynolds-Averaged Navier-Stokes equations with Shear Stress Transport turbulence model. The simulation was under the assumption of steady-state incompressible turbulence flow inside the flow passage, and the inlet boundary condition was the carefully simulated flow pattern from the runner outlet. For confirmation, the corresponding turbine efficiency performance of the entire operating area was verified by model test.

  19. SMA-causing missense mutations in survival motor neuron (Smn) display a wide range of phenotypes when modeled in Drosophila.

    Science.gov (United States)

    Praveen, Kavita; Wen, Ying; Gray, Kelsey M; Noto, John J; Patlolla, Akash R; Van Duyne, Gregory D; Matera, A Gregory

    2014-08-01

    Mutations in the human survival motor neuron 1 (SMN) gene are the primary cause of spinal muscular atrophy (SMA), a devastating neuromuscular disorder. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. Additional tissue-specific and global functions have been ascribed to SMN; however, their relevance to SMA pathology is poorly understood and controversial. Using Drosophila as a model system, we created an allelic series of twelve Smn missense mutations, originally identified in human SMA patients. We show that animals expressing these SMA-causing mutations display a broad range of phenotypic severities, similar to the human disease. Furthermore, specific interactions with other proteins known to be important for SMN's role in RNP assembly are conserved. Intragenic complementation analyses revealed that the three most severe mutations, all of which map to the YG box self-oligomerization domain of SMN, display a stronger phenotype than the null allele and behave in a dominant fashion. In support of this finding, the severe YG box mutants are defective in self-interaction assays, yet maintain their ability to heterodimerize with wild-type SMN. When expressed at high levels, wild-type SMN is able to suppress the activity of the mutant protein. These results suggest that certain SMN mutants can sequester the wild-type protein into inactive complexes. Molecular modeling of the SMN YG box dimer provides a structural basis for this dominant phenotype. These data demonstrate that important structural and functional features of the SMN YG box are conserved between vertebrates and invertebrates, emphasizing the importance of self-interaction to the proper functioning of SMN.

  20. SMA-causing missense mutations in survival motor neuron (Smn display a wide range of phenotypes when modeled in Drosophila.

    Directory of Open Access Journals (Sweden)

    Kavita Praveen

    2014-08-01

    Full Text Available Mutations in the human survival motor neuron 1 (SMN gene are the primary cause of spinal muscular atrophy (SMA, a devastating neuromuscular disorder. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs, core components of the spliceosome. Additional tissue-specific and global functions have been ascribed to SMN; however, their relevance to SMA pathology is poorly understood and controversial. Using Drosophila as a model system, we created an allelic series of twelve Smn missense mutations, originally identified in human SMA patients. We show that animals expressing these SMA-causing mutations display a broad range of phenotypic severities, similar to the human disease. Furthermore, specific interactions with other proteins known to be important for SMN's role in RNP assembly are conserved. Intragenic complementation analyses revealed that the three most severe mutations, all of which map to the YG box self-oligomerization domain of SMN, display a stronger phenotype than the null allele and behave in a dominant fashion. In support of this finding, the severe YG box mutants are defective in self-interaction assays, yet maintain their ability to heterodimerize with wild-type SMN. When expressed at high levels, wild-type SMN is able to suppress the activity of the mutant protein. These results suggest that certain SMN mutants can sequester the wild-type protein into inactive complexes. Molecular modeling of the SMN YG box dimer provides a structural basis for this dominant phenotype. These data demonstrate that important structural and functional features of the SMN YG box are conserved between vertebrates and invertebrates, emphasizing the importance of self-interaction to the proper functioning of SMN.

  1. Modeling Interactions among Individual P2 Receptors to Explain Complex Response Patterns over a Wide Range of ATP Concentrations.

    Science.gov (United States)

    Xing, Shu; Grol, Matthew W; Grutter, Peter H; Dixon, S Jeffrey; Komarova, Svetlana V

    2016-01-01

    Extracellular ATP acts on the P2X family of ligand-gated ion channels and several members of the P2Y family of G protein-coupled receptors to mediate intercellular communication among many cell types including bone-forming osteoblasts. It is known that multiple P2 receptors are expressed on osteoblasts (P2X2,5,6,7 and P2Y1,2,4,6). In the current study, we investigated complex interactions within the P2 receptor network using mathematical modeling. To characterize individual P2 receptors, we extracted data from published studies of overexpressed human and rodent (rat and mouse) receptors and fit their dependencies on ATP concentration using the Hill equation. Next, we examined responses induced by an ensemble of endogenously expressed P2 receptors. Murine osteoblastic cells (MC3T3-E1 cells) were loaded with fluo-4 and stimulated with varying concentrations of extracellular ATP. Elevations in the concentration of cytosolic free calcium ([Ca(2+)]i) were monitored by confocal microscopy. Dependence of the calcium response on ATP concentration exhibited a complex pattern that was not explained by the simple addition of individual receptor responses. Fitting the experimental data with a combination of Hill equations from individual receptors revealed that P2Y1 and P2X7 mediated the rise in [Ca(2+)]i at very low and high ATP concentrations, respectively. Interestingly, to describe responses at intermediate ATP concentrations, we had to assume that a receptor with a K 1∕2 in that range (e.g. P2Y4 or P2X5) exerts an inhibitory effect. This study provides new insights into the interactions among individual P2 receptors in producing an ensemble response to extracellular ATP.

  2. Projecting range-wide sun bear population trends using tree cover and camera-trap bycatch data.

    Science.gov (United States)

    Scotson, Lorraine; Fredriksson, Gabriella; Ngoprasert, Dusit; Wong, Wai-Ming; Fieberg, John

    2017-01-01

    Monitoring population trends of threatened species requires standardized techniques that can be applied over broad areas and repeated through time. Sun bears Helarctos malayanus are a forest dependent tropical bear found throughout most of Southeast Asia. Previous estimates of global population trends have relied on expert opinion and cannot be systematically replicated. We combined data from 1,463 camera traps within 31 field sites across sun bear range to model the relationship between photo catch rates of sun bears and tree cover. Sun bears were detected in all levels of tree cover above 20%, and the probability of presence was positively associated with the amount of tree cover within a 6-km2 buffer of the camera traps. We used the relationship between catch rates and tree cover across space to infer temporal trends in sun bear abundance in response to tree cover loss at country and global-scales. Our model-based projections based on this "space for time" substitution suggested that sun bear population declines associated with tree cover loss between 2000-2014 in mainland southeast Asia were ~9%, with declines highest in Cambodia and lowest in Myanmar. During the same period, sun bear populations in insular southeast Asia (Malaysia, Indonesia and Brunei) were projected to have declined at a much higher rate (22%). Cast forward over 30-years, from the year 2000, by assuming a constant rate of change in tree cover, we projected population declines in the insular region that surpassed 50%, meeting the IUCN criteria for endangered if sun bears were listed on the population level. Although this approach requires several assumptions, most notably that trends in abundance across space can be used to infer temporal trends, population projections using remotely sensed tree cover data may serve as a useful alternative (or supplement) to expert opinion. The advantages of this approach is that it is objective, data-driven, repeatable, and it requires that all assumptions

  3. Characterization of the translation elongation factor 1-α gene in a wide range of pathogenic Aspergillus species.

    Science.gov (United States)

    Nouripour-Sisakht, Sadegh; Ahmadi, Bahram; Makimura, Koichi; Hoog, Sybren de; Umeda, Yoshiko; Alshahni, Mohamed Mahdi; Mirhendi, Hossein

    2017-04-21

    We aimed to evaluate the resolving power of the translation elongation factor (TEF)-1α gene for phylogenetic analysis of Aspergillus species. Sequences of 526 bp representing the coding region of the TEF-1α gene were used for the assessment of levels of intra- and inter-specific nucleotide polymorphism in 33 species of Aspergillus, including 57 reference, clinical and environmental strains. Analysis of TEF-1α sequences indicated a mean similarity of 92.6 % between the species, with inter-species diversity ranging from 0 to 70 nucleotides. The species with the closest resemblance were A. candidus/A. carneus, and A. flavus/A. oryzae/A. ochraceus, with 100 and 99.8 % identification, respectively. These species are phylogenetically very close and the TEF-1α gene appears not to have sufficient discriminatory power to differentiate them. Meanwhile, intra-species differences were found within strains of A. clavatus, A. clavatonanicus, A. candidus, A. fumigatus, A. terreus, A. alliaceus, A. flavus, Eurotium amstelodami and E. chevalieri. The tree topology with strongly supported clades (≥70 % bootstrap values) was almost compatible with the phylogeny inferred from analysis of the DNA sequences of the beta tubulin gene (BT2). However, the backbone of the tree exhibited low bootstrap values, and inter-species correlations were not obvious in some clades; for example, tree topologies based on BT2 and TEF-1α genes were incompatible for some species, such as A. deflectus, A. janus and A. penicillioides. The gene was not phylogenetically more informative than other known molecular markers. It will be necessary to test other genes or larger genomic regions to better understand the taxonomy of this important group of fungi.

  4. Fast or slow-foods? Describing natural variations in oral processing characteristics across a wide range of Asian foods.

    Science.gov (United States)

    Forde, C G; Leong, C; Chia-Ming, E; McCrickerd, K

    2017-02-22

    The structural properties of foods have a functional role to play in oral processing behaviours and sensory perception, and also impact on meal size and the experience of fullness. This study adopted a new approach by using behavioural coding analysis of eating behaviours to explore how a range of food textures manifest as the microstructural properties of eating and expectations of fullness. A selection of 47 Asian foods were served in fixed quantities to a panel of participants (N = 12) and their eating behaviours were captured via web-camera recordings. Behavioural coding analysis was completed on the recordings to extract total bites, chews and swallows and cumulative time of the food spent in the mouth. From these measurements a series of microstructural properties including average bite size (g), chews per bite, oro-sensory exposure time (seconds) and average eating rate (g min(-1)) were derived per food. The sensory and macronutrient properties of each food were correlated with the microstructure of eating to compare the differences in eating behaviour on a gram for gram basis. There were strong relationships between the perceived food textural properties and its eating behaviours and a food's total water content was the best predictor of its eating rate. Foods that were eaten at a slower eating rate, with smaller bites and more chews per bite were rated as higher in the expected fullness. These relationships are important as oral processing behaviours and beliefs about the potential satiating value of food influence portion decisions and moderate meal size. These data support the idea that naturally occurring differences in the food structure and texture could be used to design meals that slow the rate of eating and maximise fullness.

  5. Source apportionment of wide range particle size spectra and black carbon collected at the airport of Venice (Italy)

    Science.gov (United States)

    Masiol, Mauro; Vu, Tuan V.; Beddows, David C. S.; Harrison, Roy M.

    2016-08-01

    Atmospheric particles are of high concern due to their toxic properties and effects on climate, and large airports are known as significant sources of particles. This study investigates the contribution of the Airport of Venice (Italy) to black carbon (BC), total particle number concentrations (PNC) and particle number size distributions (PNSD) over a large range (14 nm-20 μm). Continuous measurements were conducted between April and June 2014 at a site located 110 m from the main taxiway and 300 m from the runway. Results revealed no significantly elevated levels of BC and PNC, but exhibited characteristic diurnal profiles. PNSD were then analysed using both k-means cluster analysis and positive matrix factorization. Five clusters were extracted and identified as midday nucleation events, road traffic, aircraft, airport and nighttime pollution. Six factors were apportioned and identified as probable sources according to the size profiles, directional association, diurnal variation, road and airport traffic volumes and their relationships to micrometeorology and common air pollutants. Photochemical nucleation accounted for ∼44% of total number, followed by road + shipping traffic (26%). Airport-related emissions accounted for ∼20% of total PNC and showed a main mode at 80 nm and a second mode beyond the lower limit of the SMPS (pollution and local resuspension. An analysis of BC levels over different wind sectors revealed no especially significant contributions from specific directions associated with the main local sources, but a potentially significant role of diurnal dynamics of the mixing layer on BC levels. The approaches adopted in this study have identified and apportioned the main sources of particles and BC at an international airport located in area affected by a complex emission scenario. The results may underpin measures for improving local and regional air quality, and health impact assessment studies.

  6. Non-stationary emission of the blazar S4 0954+658 over a wide range of wavelength

    Science.gov (United States)

    Volvach, A. E.; Bychkova, V. S.; Larionov, M. G.; Kardashev, N. S.; Volvach, L. N.; Vlasyuk, V. V.; Spiridonova, O. I.; Lähteenmäki, A.; Tornikoski, M.; Aller, M. F.; Aller, H. D.; Pooley, G.; Carrasco, L.; Porras, A.; Recillas, E.

    2016-12-01

    Data from long-term multi-frequency monitoring are used to analyze variations in the flux density of the active galactic nucleus S4 0954+658. These data were obtained at the CrimeanAstrophysical Observatory, the Metsähovi Radio Observatory of Aalto University, the University of Michigan Radio Astronomy Observatory, the Cavendish Laboratory of Cambridge University, the Special Astrophysical Observatory, and the National Institute of Astrophysics, Optics, and Electronics; 0.1-300-GeV data from the Fermi space gamma-ray observatory were also used. Radio data at 4.8, 8, 14.5, 15, 22.2, and 36.8 GHz are considered together with optical and near-infrared data in the R, J, H, and K filters. In the framework of a model in which binary supermassive black holes (SMBHs) are present in active galactic nuclei, harmonic and structural analyses are carried out to establish the orbital ( T orb ≈ 780 yrs) and precessional ( T pr ≈ 7800 yrs) periods in the rest frame of the source. The development of the most powerful flare ever observed in this object, which occurred in February 2015, is considered. The delay in the flare's development in different wavelength ranges from the gamma-ray to the radio is determined. both the magnitude of the delays and the durations of the flares themselves suggest that the physical characteristics of S4 0954+658 are similar to those of the blazar S5 0716+714, which displays evidence of a high γ factor for the jet motion and high superluminal speeds in the jet. The masses of the components of the binary SMBH ( M and m), the dimensions of their orbit, and the velocity of the lower-mass SMBH about the central SMBH are estimated. The derived physical characteristics are subject to a comparative analysis.

  7. 宽温域蓝相液晶材料%Wide Temperature Range Blue Phase Liquid Crystalline Materials

    Institute of Scientific and Technical Information of China (English)

    何万里; 王玲; 王乐; 崔晓鹏; 谢谟文; 杨槐

    2012-01-01

    Blue phases (BPs) are mesophases usually exhibited by highly chiral materials and commonly occur in a narrow temperature range below the isotropic phase. They are optically active and non-birefringent, while exhibit Bragg diffraction of light in the visible wavelength. Recently, BPs have attracted growing attention in the field of optoelectronics and photonics. This paper reviews the recent research advances in BPs liquid crystals, also with a brief introduction of the history of the blue phase studies, and some special properties, especially the frustration in the double twist molecular alignment. Finally, the current challenges for applications of BPs materials are highlighted, and the focus of future research and development are proposed%蓝相常在高手性液晶体系的清亮点附近温度区间出现,由于具有优异的光学特性如无双折射现象和选择性反射可见光等,近年来蓝相在光电和光子领域越来越受到人们的关注。本文综述了蓝相的发现、分子排列和光学特性等,详细介绍了宽温域蓝相液晶材料在国内外的研究进展和应用现状。最后分析了蓝相液晶用于平板显示领域在技术方面存在的主要问题和未来发展方向。

  8. Modeling interactions among individual P2 receptors to explain complex response patterns over a wide range of ATP concentrations

    Directory of Open Access Journals (Sweden)

    Shu Xing

    2016-07-01

    Full Text Available EExtracellular ATP acts on the P2X family of ligand-gated ion channels and several members of the P2Y family of G protein-coupled receptors to mediate intercellular communication among many cell types including bone-forming osteoblasts. It is known that multiple P2 receptors are expressed on osteoblasts (P2X2,5,6,7 and P2Y1,2,4,6. In the current study, we investigated complex interactions within the P2 receptor network using mathematical modeling. To characterize individual P2 receptors, we extracted data from published studies of overexpressed human and rodent (rat and mouse receptors and fit their dependencies on ATP concentration using the Hill equation. Next, we examined responses induced by an ensemble of endogenously expressed P2 receptors. Murine osteoblastic cells (MC3T3-E1 cells were loaded with fluo-4 and stimulated with varying concentrations of extracellular ATP. Elevations in the concentration of cytosolic free calcium ([Ca2+]i were monitored by confocal microscopy. Dependence of the calcium response on ATP concentration exhibited a complex pattern that was not explained by the simple addition of individual receptor responses. Fitting the experimental data with a combination of Hill equations from individual receptors revealed that P2Y1 and P2X7 mediated the rise in [Ca2+]i at very low and high ATP concentrations, respectively. Interestingly, to describe responses at intermediate ATP concentrations, we had to assume that a receptor with a K1/2 in that range (e.g. P2Y4 or P2X5 exerts an inhibitory effect. This study provides new insights into the interactions among individual P2 receptors in producing an ensemble response to extracellular ATP.

  9. Extended use of ISO 15739 incremental signal-to-noise ratio as reliability criterion for multiple-slope wide dynamic range image capture

    Science.gov (United States)

    Hertel, Dirk

    2009-01-01

    In the emerging field of automotive vision, video capture is the critical front-end of driver assistance and active safety systems. Previous photospace measurements have shown that light levels in natural traffic scenes may contain an extremely wide intra-scene intensity range. This requires the camera to have a wide dynamic range (WDR) for it to adapt quickly to changing lighting conditions and to reliably capture all scene detail. Multiple-slope CMOS technology offers a cost-effective way of adaptively extending dynamic range by partially resetting (recharging) the CMOS pixel once or more often within each frame time. This avoids saturation and leads to a response curve with piecewise linear slopes of progressively increasing compression. It was observed that the image quality from multiple-slope image capture is strongly dependent on the control (height and time) of each reset barrier. As compression and thus dynamic range increase there is a trade-off against contrast and detail loss. Incremental signal-to-noise ratio (iSNR) is proposed in ISO 15739 for determining dynamic range. Measurements and computer simulations revealed that the observed trade-off between WDR extension and the loss of local detail could be explained by a drop in iSNR at each reset point. If a reset barrier is not optimally placed then iSNR may drop below the detection limit so that an 'iSNR hole' appears in the dynamic range. Thus ISO 15739 iSNR has gained extended utility: it not only measures the dynamic range limits but also defines dynamic range as the intensity range where detail detection is reliable. It has become a critical criterion when designing adaptive barrier control algorithms that maximize dynamic range while maintaining the minimum necessary level of detection reliability.

  10. Solubility parameter of drugs for predicting the solubility profile type within a wide polarity range in solvent mixtures.

    Science.gov (United States)

    Peña, M A; Reíllo, A; Escalera, B; Bustamante, P

    2006-09-14

    The solubility enhancement produced by two binary mixtures with a common cosolvent (ethanol-water and ethyl acetate-ethanol) was studied against the solubility parameter of the mixtures (delta1) to characterize different types of solubility profiles. Benzocaine, salicylic acid and acetanilide show a single peak in the least polar mixture (ethanol-ethyl acetate) at delta1=22.59, 21.70 and 20.91 MPa1/2, respectively. Phenacetin displays two solubility maxima, at delta1=25.71 (ethanol-water) and at delta1=23.30 (ethyl acetate-ethanol). Acetanilide shows an inflexion point in ethanol-water instead of a peak, and the sign of the slope does not vary when changing the cosolvent. The solubility profiles were compared to those obtained in dioxane-water, having a solubility parameter range similar to that covered with the common cosolvent system. All the drugs reach a maximum at about 90% dioxane (delta1=23 MPa1/2). A modification of the extended Hildebrand method is applicable for curves with a single maximum whereas a model including the Hildebrand solubility parameter delta1 and the acidic partial solubility parameter delta1a is required to calculate more complex solubility profiles (with inflexion point or two maxima). A single equation was able to fit the solubility curves of all drugs in the common cosolvent system. The polarity of the drug is related to the shape of the solubility profile against the solubility parameter delta1 of the solvent mixtures. The drugs with solubility parameters below 24 MPa1/2 display a single peak in ethanol-ethyl acetate. The drugs with delta2 values above 25 MPa1/2 show two maxima, one in each solvent mixture (ethanol-water and ethanol-ethyl acetate). The position of the maximum in ethanol-ethyl acetate shifts to larger polarity values (higher delta1 values) as the solubility parameter of the drug delta2 increases.

  11. Wide Ranging Insect Infestation of the Pioneer Mangrove Sonneratia alba by Two Insect Species along the Kenyan Coast

    Science.gov (United States)

    Jenoh, Elisha Mrabu; Robert, Elisabeth M. R.; Lehmann, Ingo; Kioko, Esther; Bosire, Jared O.; Ngisiange, Noah; Dahdouh-Guebas, Farid; Koedam, Nico

    2016-01-01

    Insect infestation of mangroves currently threatens mangrove forest health and management. In the Western Indian Ocean region, little is known about insect damage to mangroves despite the fact that numerous infestations have occurred. In Kenya, infestations of Sonneratia alba have persisted for almost two decades, yet the taxonomic identity of the infesting pest(s), the extent of infestation, the pests’ biology, the impacts of infestation on host and the ecosystem, the host’s defensive strategies to the infestation are poorly understood. S. alba is a ubiquitous, pioneer mangrove species of the Indo-Pacific, occurring along the waterfront in a variety of mangrove ecosystem settings. Our main objectives were to identify the pest(s) responsible for the current dieback of S. alba in Kenya, and to determine the extent of infestation. To identify the pests responsible for infestation, we trapped emergent insects and reared larvae in the laboratory. To determine the overall extent of infestation within the S. alba zone, we assessed nine sites along the entire Kenyan coastline for the presence or absence of infested mangroves. Insect infestation in two mangrove embayments (Gazi and Mida) was quantified in depth. Two wood-boring insects were identified: a metarbelid moth (Lepidoptera, Cossoidea) of undescribed genus and the beetle Bottegia rubra (Cerambycidae, Lamiinae).The metarbelid moth infests mangroves in both northern (from Ngomeni to Kiunga) and southern regions (from Vanga to Mtwapa) of the Kenyan coast. B. rubra appeared in low density in Gazi, and in high density in Mida, Kilifi, and Ngomeni, with densities gradually decreasing northward. Insect infestation levels reached 18% in Gazi and 25% of S. alba stands in Mida. Our results indicate that B. rubra has the ability to infest young mangrove trees and expand its range, posing a danger to rehabilitation efforts where plantations have been established. Thus, there is great need for forest managers to address

  12. A low-power tool for measuring acceleration, pressure, and temperature (APT) with wide dynamic range and bandwidth

    Science.gov (United States)

    Heesemann, Martin; Davis, Earl E.; Paros, Jerome; Johnson, Greg; Meldrum, Robert; Scherwath, Martin; Mihaly, Steven

    2017-04-01

    We present a new tool that facilitates the study of inter-related geodetic, geodynamic, seismic, and oceanographic phenomena. It incorporates a temperature compensated tri-axial accelerometer developed by Quartz Seismic Sensors, Inc., a pressure sensor built by Paroscientific Inc., and a low-power, high-precision frequency counter developed by Bennest Enterprises Ltd. and built by RBR, Ltd. The sensors are housed in a 7 cm o.d. titanium pressure case designed for use to full ocean depths (withstands more than 20 km of water pressure). Sampling intervals are programmable from 0.08 s to 1 hr; standard memory can store up to 130 million samples; total power consumption is roughly 115 mW when operating continuously and proportionately lower when operating intermittently (e.g., 2 mW average at 1 sample per min). Serial and USB communications protocols allow a variety of autonomous and cable-connection options. Measurement precision of the order of 10-8 of full scale (e.g., pressure equivalent to 4000 m water depth, acceleration = +/- 3 g) allows observations of pressure and acceleration variations of 0.4 Pa and 0.3 μm s-2. Long-term variations in vertical acceleration are sensitive to displacement through the gravity gradient down to a level of roughly 2 cm, and variations in horizontal acceleration are sensitive to tilt down to a level of 0.03 μrad. With the large dynamic ranges, high sensitivities and broad bandwidth (6 Hz to DC), ground motion associated with microseisms, strong and weak seismic ground motion, tidal loading, and slow and rapid geodynamic deformation - all normally studied using disparate instruments - can be observed with a single tool. Installation in the marine environment is accomplished by pushing the tool roughly 1 m vertically below the seafloor with a submersible or remotely operated vehicle, with no profile remaining above the seafloor to cause current-induced noise. The weight of the tool is designed to match the sediment it displaces to

  13. DNA barcoding as a tool for elucidating species delineation in wide-ranging species as illustrated by owls (Tytonidae and Strigidae).

    Science.gov (United States)

    Nijman, Vincent; Aliabadian, Mansour

    2013-11-01

    The mitochondrial cytochrome c-oxidase subunit I (cox1) can serve as a fast and accurate marker for the identification of animal species, and for the discovery of new species across the tree of life. Distinguishing species using this universal molecular marker, a technique known as DNA barcoding, relies on the identifying the gap between intra- and interspecific divergence. One of the difficulties could be wide-ranging, cosmopolitan species that show large amounts of morphological variation. The barn owl Tyto alba is a case in point. It occurs worldwide and varies morphologically, leading to the recognition of many subspecies or, more recently, species. We analysed data from the cox1 gene for 31 individuals of seven subspecies, and compared this with 214 sequences from 29 other owl species. Phylogenetic analysis of the T. alba samples gives very strong support for an Old World alba-clade (three subspecies) and a New World furcata-clade (four subspecies) that are genetically equidistant. The amount of intraspecific variation within each of these clades ranges from 0.66-0.99%, but variation among these clades ranges from 5.33-6.20%. Combined these data suggest that barn owl of the Old World is indeed best considered a separate species different from that of the New World. For combined dataset, sample size of owl species (n between 1 and 21 sequences) increased with geographic range size but we did not find significant relationships between interspecific divergence and sample size or between interspecific divergence and geographic range. For 21/24 species of owls with sample sizes of n ≥4 the maximum interspecific divergences was ≤ 3.00%. However, similar to those found in barn owls, the largest amount of divergence (3.23-4.09%) was present in two other wide-ranging species (Strix nebulosa and Aegolius funereus) raising the possibility of multiple species in other wide-ranging owls as well.

  14. A low-noise wide-dynamic-range event-driven detector using SOI pixel technology for high-energy particle imaging

    Science.gov (United States)

    Shrestha, Sumeet; Kamehama, Hiroki; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo

    2015-08-01

    This paper presents a low-noise wide-dynamic-range pixel design for a high-energy particle detector in astronomical applications. A silicon on insulator (SOI) based detector is used for the detection of wide energy range of high energy particles (mainly for X-ray). The sensor has a thin layer of SOI CMOS readout circuitry and a thick layer of high-resistivity detector vertically stacked in a single chip. Pixel circuits are divided into two parts; signal sensing circuit and event detection circuit. The event detection circuit consisting of a comparator and logic circuits which detect the incidence of high energy particle categorizes the incident photon it into two energy groups using an appropriate energy threshold and generate a two-bit code for an event and energy level. The code for energy level is then used for selection of the gain of the in-pixel amplifier for the detected signal, providing a function of high-dynamic-range signal measurement. The two-bit code for the event and energy level is scanned in the event scanning block and the signals from the hit pixels only are read out. The variable-gain in-pixel amplifier uses a continuous integrator and integration-time control for the variable gain. The proposed design allows the small signal detection and wide dynamic range due to the adaptive gain technique and capability of correlated double sampling (CDS) technique of kTC noise canceling of the charge detector.

  15. Surprising Connections between Partitions and Divisors

    Science.gov (United States)

    Osler, Thomas J.; Hassen, Abdulkadir; Chandrupatla, Tirupathi R.

    2007-01-01

    The sum of the divisors of a positive integer is one of the most interesting concepts in multiplicative number theory, while the number of ways of expressing a number as a sum is a primary topic in additive number theory. In this article, we describe some of the surprising connections between and similarities of these two concepts.

  16. Surprises from extragalactic propagation of UHECRs

    CERN Document Server

    Boncioli, Denise; Grillo, Aurelio

    2015-01-01

    Ultra-high energy cosmic ray experimental data are now of very good statistical significance even in the region of the expected GZK feature. The identification of their sources requires sophisticate analysis of their propagation in the extragalactic space. When looking at the details of this propagation some unforeseen features emerge. We will discuss some of these "surprises".

  17. DCM, FSM, dead time and width controllers for a high frequency high efficiency buck DC-DC converter over a wide load range

    Energy Technology Data Exchange (ETDEWEB)

    Pi Changming; Yan Wei; Zhang Ke; Li Wenhong, E-mail: wenhongli@fudan.edu.c [State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 201203 (China)

    2010-08-15

    This paper presents a width controller, a dead time controller, a discontinuous current mode (DCM) controller and a frequency skipping modulation (FSM) controller for a high frequency high efficiency buck DC-DC converter. To improve the efficiency over a wide load range, especially at high switching frequency, the dead time controller and width controller are applied to enhance the high load efficiency, while the DCM controller and FSM controller are proposed to increase the light load efficiency. The proposed DC-DC converter controllers have been designed and fabricated in the Chartered 0.35 {mu}m CMOS process, and the measured results show that the efficiency of the buck DC-DC converter is above 80% over a wide load current range from 8 to 570 mA, and the peak efficiency is 86% at 10 MHz switching frequency. (semiconductor integrated circuits)

  18. The prospects of evaluation the probabilities of multiple photoionization of atoms in a wide range of field strengths on base of one method

    Science.gov (United States)

    Bichkov, A. B.; Kozhina, A. S.; Smirnov, V. V.

    2016-03-01

    Theoretical studies of the processes in multielectron atoms under the exposure of strong electromagnetic fields is intensively developed subject in laser physics. Many interesting features of these processes are difficult to be reproduced by means of the existing theoretical methods. It concerns, for example, the effects of electron-electron correlations in multiple photoionization. In light of the progress in this area for weak and strong fields it may be of interest to develop a method equally efficient for a wide range of field strengths. In this paper the capability of a new trajectory-based method, which works in a wide range of field strengths and reproduces effects attributed to electron-electron correlations, is demonstrated for single- and double-photoionization in helium atom.

  19. KWS-2, the high intensity / wide Q-range small-angle neutron diffractometer for soft-matter and biology at FRM II

    Science.gov (United States)

    Radulescu, A.; Pipich, V.; Frielinghaus, H.; Appavou, M.-S.

    2012-03-01

    The KWS-2 small-angle neutron diffractometer operated by JCNS at FRM II is upgraded and optimized towards high intensity and wide Q-range studies of mesoscopic structures and structural changes due to rapid kinetics and becomes a dedicated SANS instrument to soft-matter and biology. The high intensity permits fast measurement of small or weak scattering samples and time resolved structural studies with a time resolution up to 100ms. The possibility to cover up to four decades in Q will soon enable structural investigation over a wide length scale, between several Å and lμm. The characteristics and performance of the instrument in the conventional pinhole mode is detailed presented and the new upgrades currently in progress and aiming for boosting the instrument performance towards higher intensity and wider Q-range are reported.

  20. Sampled grating tunable twin-guide laser diodes with wide tuning range (40 nm) and large output power (10 mW)

    Science.gov (United States)

    Todt, R.; Jacke, T.; Meyer, R.; Adler, J.; Laroy, R.; Morthier, G.; Amann, M.-C.

    2006-03-01

    The sampled grating tunable twin-guide (SG-TTG) laser diode is a DFB-like tunable laser that employs Vernier-effect tuning to achieve wide wavelength tuning. In contrast to most other monolithic widely tunable lasers (which are usually DBR-type lasers), a phase tuning section is not needed and, hence, the SG-TTG laser requires at least one tuning current less than comparable devices.The devices provide full wavelength coverage over a 40 nm-broad tuning range that is centered at 1.54 μm. Its tuning behavior is quasi-continuous with up to 8.2 nm broad continuous tuning regions. High side-mode suppression (SMSR 35 dB) as well as large output power (P 10 mW) are obtained over the whole wavelength range from 1520.5 to 1561.5 nm.

  1. SEMICONDUCTOR INTEGRATED CIRCUITS: DCM, FSM, dead time and width controllers for a high frequency high efficiency buck DC-DC converter over a wide load range

    Science.gov (United States)

    Changming, Pi; Wei, Yan; Ke, Zhang; Wenhong, Li

    2010-08-01

    This paper presents a width controller, a dead time controller, a discontinuous current mode (DCM) controller and a frequency skipping modulation (FSM) controller for a high frequency high efficiency buck DC-DC converter. To improve the efficiency over a wide load range, especially at high switching frequency, the dead time controller and width controller are applied to enhance the high load efficiency, while the DCM controller and FSM controller are proposed to increase the light load efficiency. The proposed DC-DC converter controllers have been designed and fabricated in the Chartered 0.35 μm CMOS process, and the measured results show that the efficiency of the buck DC-DC converter is above 80% over a wide load current range from 8 to 570 mA, and the peak efficiency is 86% at 10 MHz switching frequency.

  2. Crave, like, eat: determinants of food intake in a sample of children and adolescents with a wide range in body mass

    OpenAIRE

    Johannes Hofmann; Adrian Meule; Julia Reichenberger; Daniel Weghuber; Elisabeth Ardelt-Gattinger; Jens Blechert

    2016-01-01

    Obesity is heterogeneous condition with obese individuals displaying different eating patterns. Growing evidence suggests that there is a subgroup of obese adults that is marked by frequent and intense food cravings and addiction-like consumption of high-calorie foods. Little is known, however, about such a subgroup of obese individuals in childhood and adolescence. In the present study, a sample of children and adolescents with a wide range in body mass was investigated and trait food cravin...

  3. Crave, Like, Eat: Determinants of Food Intake in a Sample of Children and Adolescents with a Wide Range in Body Mass

    OpenAIRE

    Hofmann, Johannes; Meule, Adrian; Reichenberger, Julia; Weghuber, Daniel; Ardelt-Gattinger, Elisabeth; Blechert, Jens

    2016-01-01

    Obesity is a heterogeneous condition with obese individuals displaying different eating patterns. Growing evidence suggests that there is a subgroup of obese adults that is marked by frequent and intense food cravings and addiction-like consumption of high-calorie foods. Little is known, however, about such a subgroup of obese individuals in childhood and adolescence. In the present study, a sample of children and adolescents with a wide range in body mass was investigated and trait food crav...

  4. Results of an Advanced Fan Stage Operating Over a Wide Range of Speed and Bypass Ratio. Part 1; Fan Stage Design and Experimental Results

    Science.gov (United States)

    Suder, Kenneth L.; Prahst, Patricia S.; Thorp, Scott A.

    2011-01-01

    NASA s Fundamental Aeronautics Program is investigating turbine-based combined cycle (TBCC) propulsion systems for access to space because it provides the potential for aircraft-like, space-launch operations that may significantly reduce launch costs and improve safety. To this end, National Aeronautics and Space Administration (NASA) and General Electric (GE) teamed to design a Mach 4 variable cycle turbofan/ramjet engine for access to space. To enable the wide operating range of a Mach 4+ variable cycle turbofan ramjet required the development of a unique fan stage design capable of multi-point operation to accommodate variations in bypass ratio (10 ), fan speed (7 ), inlet mass flow (3.5 ), inlet pressure (8 ), and inlet temperature (3 ). In this paper, NASA has set out to characterize a TBCC engine fan stage aerodynamic performance and stability limits over a wide operating range including power-on and hypersonic-unique "windmill" operation. Herein, we will present the fan stage design, and the experimental test results of the fan stage operating from 15 to 100 percent corrected design speed. Whereas, in the companion paper, we will provide an assessment of NASA s APNASA code s ability to predict the fan stage performance and operability over a wide range of speed and bypass ratio.

  5. Improved Wide Operating Temperature Range of LiNiCoAiO2-based Li-ion Cells with Methyl Propionate-based Electrolytes

    Science.gov (United States)

    Smart, Marshall C.; Tomcsi, Michael R.; Hwang, C.; Whitcanack, L. D.; Bugga, Ratnakumar V.; Nagata, Mikito; Visco, Vince; Tsukamoto, Hisashi

    2012-01-01

    Demonstration of wide operating temperature range Li-ion electrolytes Methyl propionate-based wide operating temperature range electrolytes were demonstrated to provide dramatic improvement of the low temperature capability of Quallion prototype Li-ion cells (MCMB-LiNiCoAlO2). Some formulations were observed to deliver over 60% of the room temperature capacity using a 5C rate at - 40oC !! Represents over a 4-fold improvement over the baseline electrolyte system. Demonstrated operational capability of a number of systems over a wide temperature range (-40 to +70 C) Demonstrated reasonably good long term cycle life performance at high temperature (i.e., at +40deg and +50 C) A number of formulations containing electrolytes additives (i.e., FEC, VC, LiBOB, and lithium oxalate) have been shown to have enhanced lithium kinetics at low temperature and promising high temperature resilience. Demonstrated good performance in larger capacity (12 Ah) Quallion Li-ion cells with methyl propionate-based electrolytes. Current efforts focused upon performing life studies and the impact upon low temperature capability.

  6. Wide Range Neutron Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current design concepts of nuclear reactors for space applications are well advanced in core configurations and architectural design. There is a need to determine...

  7. Wide Range Neutron Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current design concepts for space nuclear reactors are well advanced in core configurations and architectural design. There is need however to determine how such...

  8. Surprising Sensitivities in Simulations of Radiative Convective Equilibrium

    Science.gov (United States)

    Drotos, Gabor; Becker, Tobias; Mauritsen, Thorsten; Stevens, Bjorn

    2017-04-01

    The climate and climate-sensitivity of a global model run in radiative equilibrium is explored. Results from simulations with ECHAM6.3 coupled to a slab ocean and run in a wide range of configurations are presented. Simulations both with and without a parameterised representation of deep convection are conducted for CO2 concentrations ranging from one eighth of present day values to thirty-two times the present day, and for variations in the solar constant of more than a factor of two. Very long simulations, in some case more than a thousand years, are performed to adequately sample the attractor of the different climate states of the model, and provide robust estimates of the system's climate sensitivity parameter. For the standard configuration of the model the climate sensitivity progressively decreases from very large values (6-7K) for the coldest climates to well below 1 K for the warmest climates. For very high CO2 levels (16 and 32 times the present value) fluctuations of globally averaged temperature as large as 10 K arise on decadal time-scales. These fluctuations manifest as quasi-period coolings, driven by large and persistent global scale decks of stratiform low clouds, so that for a period of several years global temperatures drop to levels below the lowest temperatures of the climate with present day values of CO2. The same configuration of the model has more modest sensitivities when the insolation is reduced, but runaway warming results for small (10%) increases. Simulations without parameterised convection have colder (by roughly 10K) climates and smaller (1K) sensitivities, allowing a stable climate with earth-like temperatures even for insolation much (50%) larger than the present day. Such values of insolation are possible because over a large range of the insolation the climate sensitivity parameter is very near zero. The surprising sensitivities of the system, and the limit-cycle like behaviour of the very CO2 rich climates, can be traced to

  9. Radar Design to Protect Against Surprise

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    Technological and doctrinal surprise is about rendering preparations for conflict as irrelevant or ineffective . For a sensor, this means essentially rendering the sensor as irrelevant or ineffective in its ability to help determine truth. Recovery from this sort of surprise is facilitated by flexibility in our own technology and doctrine. For a sensor, this mean s flexibility in its architecture, design, tactics, and the designing organizations ' processes. - 4 - Acknowledgements This report is the result of a n unfunded research and development activity . Sandia National Laboratories is a multi - program laboratory manage d and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  10. Surprise Leads to Noisier Perceptual Decisions

    Directory of Open Access Journals (Sweden)

    Marta I Garrido

    2011-02-01

    Full Text Available Surprising events in the environment can impair task performance. This might be due to complete distraction, leading to lapses during which performance is reduced to guessing. Alternatively, unpredictability might cause a graded withdrawal of perceptual resources from the task at hand and thereby reduce sensitivity. Here we attempt to distinguish between these two mechanisms. Listeners performed a novel auditory pitch—duration discrimination, where stimulus loudness changed occasionally and incidentally to the task. Responses were slower and less accurate in the surprising condition, where loudness changed unpredictably, than in the predictable condition, where the loudness was held constant. By explicitly modelling both lapses and changes in sensitivity, we found that unpredictable changes diminished sensitivity but did not increase the rate of lapses. These findings suggest that background environmental uncertainty can disrupt goal-directed behaviour. This graded processing strategy might be adaptive in potentially threatening contexts, and reflect a flexible system for automatic allocation of perceptual resources.

  11. Radar Design to Protect Against Surprise.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.

    2015-02-01

    Technological and doctrinal surprise is about rendering preparations for conflict as irrelevant or ineffective . For a sensor, this means essentially rendering the sensor as irrelevant or ineffective in its ability to help determine truth. Recovery from this sort of surprise is facilitated by flexibility in our own technology and doctrine. For a sensor, this mean s flexibility in its architecture, design, tactics, and the designing organizations ' processes. - 4 - Acknowledgements This report is the result of a n unfunded research and development activity . Sandia National Laboratories is a multi - program laboratory manage d and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  12. Surprise-Based Learning for Autonomous Systems

    Science.gov (United States)

    2009-02-28

    for scientific theories containing recursive theoretical terms". British Journal of Philosophy of Science, 44. 641-652, 1993. Piaget J.. "The Origins...paradigm stems from Piaget’s theory of Developmental Psychology [5], Herben Simon’s theory on dual-space search for knowledge and problem solving [6...34, Twenty-First Conference on Uncertainty in Artificial Intelligence, Edinburgh, Scotland, July 2005. [34] Itti L., Baldi P., "A Surprising Theory of

  13. Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source.

    Science.gov (United States)

    Song, Shaozhen; Xu, Jingjiang; Wang, Ruikang K

    2016-11-01

    Current optical coherence tomography (OCT) imaging suffers from short ranging distance and narrow imaging field of view (FOV). There is growing interest in searching for solutions to these limitations in order to expand further in vivo OCT applications. This paper describes a solution where we utilize an akinetic swept source for OCT implementation to enable ~10 cm ranging distance, associated with the use of a wide-angle camera lens in the sample arm to provide a FOV of ~20 x 20 cm(2). The akinetic swept source operates at 1300 nm central wavelength with a bandwidth of 100 nm. We propose an adaptive calibration procedure to the programmable akinetic light source so that the sensitivity of the OCT system over ~10 cm ranging distance is substantially improved for imaging of large volume samples. We demonstrate the proposed swept source OCT system for in vivo imaging of entire human hands and faces with an unprecedented FOV (up to 400 cm(2)). The capability of large-volume OCT imaging with ultra-long ranging and ultra-wide FOV is expected to bring new opportunities for in vivo biomedical applications.

  14. A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range.

    Science.gov (United States)

    Ran, Jiabing; Hu, Jingxiao; Sun, Guanglin; Chen, Si; Jiang, Pei; Shen, Xinyu; Tong, Hua

    2016-12-01

    Currently, great efforts have been made to enhance the mechanical strength of bone tissue engineering (BTE) scaffolds, which are composed of biopolymeric matrices and inorganic nano-fillers. But the tunability of mechanical strength in a wide range for BTE scaffolds has seldom been investigated in spite of the great importance of this performance. In this work, a chitosan-tussah silk fibroin/hydroxyapatite (CS-TSF/HAp) hydrogel was synthesized by using a novel in situ precipitation method. Through in situ inducing the conformation transition of TSF in the CS-TSF/HAp hydrogel, which could be monitored by XRD, FT-IR, TGA, and DTA, the elastic modulus and fracture strength of the final CS-TSF/HAp composite could be tailored in a wide range without changing its composition, morphology, roughness, and crystal structures. The elastic modulus of the CS-TSF/HAp composite ranged from ∼250 to ∼400MPa while its fracture strength ranged from ∼45 to ∼100MPa. In order to clarify the rationale behind this process, a speculative explanation was provided. In vitro cell culture indicated that MC3T3-E1 cells cultured on the CS-TSF/HAp composite had positive adhesion, proliferation, and differentiation potential. We believed that the CS-TSF/HAp composite could be used as an ideal scaffold platform for cell culture and implantation of bone reconstruction.

  15. A wide range ultra-low power Phase-Locked Loop with automatic frequency setting in 130 nm CMOS technology for data serialisation

    Science.gov (United States)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moroń, J.; Świentek, K.

    2015-12-01

    The design and measurements results of a wide frequency range ultra-low power Phase-Locked Loop (PLL) for applications in readout systems of particle physics detectors are presented. The PLL was fabricated in a 130 nm CMOS technology. To allow the implementation of different data serialisation schemes multiple division factors (6, 8, 10, 16) were implemented in the PLL feedback loop. The main PLL block—VCO works in 16 frequency ranges/modes, switched either manually or automatically. A dedicated automatic frequency mode switching circuit was developed to allow simple frequency tuning. Although the PLL was designed and simulated for a frequency range of 30 MHz-3 GHz, due to the SLVS interface limits, the measurements were done only up to 1.3 GHz. The full PLL functionality was experimentally verified, confirming a very low and frequency scalable power consumption (0.7 mW at 1 GHz).

  16. Note: Wide-range and high-resolution on-chip delay measurement circuit with low supply-voltage sensitivity for SoC applications

    Science.gov (United States)

    Sheng, Duo; Hung, Yu-Chan

    2016-11-01

    This paper presents an on-chip delay measurement (OCDM) circuit with a wide delay-measurement range, a high delay-measurement resolution and low supply-voltage sensitivity for efficient detection, and diagnosis in the high-performance system-on-chip (SoC). The proposed cascade-stage measurement structure can simultaneously achieve a delay-measurement range of several nanoseconds and a quantization resolution of several picoseconds. The proposed delay-measurement circuit has a high immunity to supply voltage variations without any additional calibration or self-biasing circuit. The delay-measurement range is 5.25 ns with 6 ps resolution; and the average delay resolution variation is 0.41% with ±10% supply voltage variations.

  17. Sleeping beauties in theoretical physics 26 surprising insights

    CERN Document Server

    Padmanabhan, Thanu

    2015-01-01

    This book addresses a fascinating set of questions in theoretical physics which will both entertain and enlighten all students, teachers and researchers and other physics aficionados. These range from Newtonian mechanics to quantum field theory and cover several puzzling issues that do not appear in standard textbooks. Some topics cover conceptual conundrums, the solutions to which lead to surprising insights; some correct popular misconceptions in the textbook discussion of certain topics; others illustrate deep connections between apparently unconnected domains of theoretical physics; and a few provide remarkably simple derivations of results which are not often appreciated. The connoisseur of theoretical physics will enjoy a feast of pleasant surprises skilfully prepared by an internationally acclaimed theoretical physicist. Each topic is introduced with proper background discussion and special effort is taken to make the discussion self-contained, clear and comprehensible to anyone with an undergraduate e...

  18. Giant elastocaloric effect covering wide temperature range in columnar-grained Cu71.5Al17.5Mn11 shape memory alloy

    Science.gov (United States)

    Xu, Sheng; Huang, Hai-You; Xie, Jianxin; Takekawa, Shouhei; Xu, Xiao; Omori, Toshihiro; Kainuma, Ryosuke

    2016-10-01

    The elastocaloric effect in a columnar-grained Cu71.5Al17.5Mn11 shape memory alloy fabricated by directional solidification was investigated. A large entropy change of 25.0 J/kg K generated by the reversible martensitic transformation was demonstrated. The adiabatic temperature change of 12-13 K was directly measured, covering a wide temperature range of more than 100 K. The low applied stress with a specific elastocaloric ability of 100.8 K/GPa was identified and the potentially attainable operational temperature window as wide as more than 215 K was also discussed. The outstanding elastocaloric refrigeration capability, together with the low applying stress and uniform phase transformation, makes the columnar-grained Cu-Al-Mn shape memory alloy a promising material for solid-state refrigeration.

  19. Giant elastocaloric effect covering wide temperature range in columnar-grained Cu71.5Al17.5Mn11 shape memory alloy

    Directory of Open Access Journals (Sweden)

    Sheng Xu

    2016-10-01

    Full Text Available The elastocaloric effect in a columnar-grained Cu71.5Al17.5Mn11 shape memory alloy fabricated by directional solidification was investigated. A large entropy change of 25.0 J/kg K generated by the reversible martensitic transformation was demonstrated. The adiabatic temperature change of 12-13 K was directly measured, covering a wide temperature range of more than 100 K. The low applied stress with a specific elastocaloric ability of 100.8 K/GPa was identified and the potentially attainable operational temperature window as wide as more than 215 K was also discussed. The outstanding elastocaloric refrigeration capability, together with the low applying stress and uniform phase transformation, makes the columnar-grained Cu–Al–Mn shape memory alloy a promising material for solid-state refrigeration.

  20. Simulation Evidence of Hexagonal-to-Tetragonal ZnSe Structure Transition: A Monolayer Material with a Wide-Range Tunable Direct Bandgap.

    Science.gov (United States)

    Li, Lei; Li, Pengfei; Lu, Ning; Dai, Jun; Zeng, Xiao Cheng

    2015-12-01

    2D material with tunable direct bandgap in the intermediate region (i.e., ≈2-3 eV) is key to the achievement of high efficiency in visible-light optical devices. Herein, a simulation evidence of structure transition of monolayer ZnSe from the experimental pseudohexagonal structure to the tetragonal structure (t-ZnSe) under lateral pressure is shown, suggesting a possible fabrication route to achieve the t-ZnSe monolayer. The as-produced t-ZnSe monolayer exhibits highly tunable bandgap under the biaxial strains, allowing strain engineering of t-ZnSe's bandgap over a wide range of 2-3 eV. Importantly, even under the biaxial strain up to 7%, the t-ZnSe monolayer still keeps its direct-gap property in the desirable range of 2.40-3.17 eV (corresponding to wavelength of green light to ultraviolet). The wide-range tunability of direct bandgap appears to be a unique property of the t-ZnSe monolayer, suggesting its potential application as a light-emitting 2D material in red-green-blue light emission diodes or as complementary light-absorption material in the blue-yellow region for multijunction solar cells. The straddling of the band edge of the t-ZnSe monolayer over the redox potential of water splitting reaction also points to its plausible application for visible-light-driven water splitting.