WorldWideScience

Sample records for surprisingly optical electron

  1. Electron optics

    CERN Document Server

    Grivet, Pierre; Bertein, F; Castaing, R; Gauzit, M; Septier, Albert L

    1972-01-01

    Electron Optics, Second English Edition, Part I: Optics is a 10-chapter book that begins by elucidating the fundamental features and basic techniques of electron optics, as well as the distribution of potential and field in electrostatic lenses. This book then explains the field distribution in magnetic lenses; the optical properties of electrostatic and magnetic lenses; and the similarities and differences between glass optics and electron optics. Subsequent chapters focus on lens defects; some electrostatic lenses and triode guns; and magnetic lens models. The strong focusing lenses and pris

  2. Optical electronics

    CERN Document Server

    Yariv, Amnon

    1991-01-01

    This classic text introduces engineering students to the first principles of major phenomena and devices of optoelectronics and optical communication technology. Yariv's "first principles" approach employs real-life examples and extensive problems. The text includes separate chapters on quantum well and semiconductor lasers, as well as phase conjugation and its applications. Optical fiber amplification, signal and noise considerations in optical fiber systems, laser arrays and distributed feedback lasers all are covered extensively in major sections within chapters.

  3. Surprising electronic structure of the BeH- dimer: a full-configuration-interaction study.

    Science.gov (United States)

    Verdicchio, Marco; Bendazzoli, Gian Luigi; Evangelisti, Stefano; Leininger, Thierry

    2013-01-10

    The electronic structure of the beryllium hydride anion, BeH(-), was investigated at valence full-configuration-interaction (FCI) level, using large cc-pV6Z basis sets. It appears that there is a deep change of the wave function nature as a function of the internuclear distance: the ion structure goes from a weakly bonded Be···H(-) complex, at long distance, to a rather strongly bonded system (more than 2 eV) at short distance, having a (:Be-H)(-) Lewis structure. In this case, it is the beryllium atom that formally bears the negative charge, a surprising result in view of the fact that it is the hydrogen atom that has a larger electronegativity. Even more surprisingly, at very short distances the average position of the total electronic charge is close to the beryllium atom but on the opposite side with respect to the hydrogen position.

  4. Optical Electronics. Electronics Module 9. Instructor's Guide.

    Science.gov (United States)

    Franken, Bill

    This module is the ninth of 10 modules in the competency-based electronics series. Introductory materials include a listing of competencies addressed in the module, a parts/equipment list, and a cross reference table of instructional materials. Five instructional units cover: fiber optic cable; optical coupler; lasers and masers; optical displays;…

  5. Polyplanar optical display electronics

    Energy Technology Data Exchange (ETDEWEB)

    DeSanto, L.; Biscardi, C. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology

    1997-07-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD{trademark} chip is operated remotely from the Texas Instruments circuit board. The authors discuss the operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with various video formats (CVBS, Y/C or S-video and RGB) including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.

  6. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu

    2015-09-02

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  7. Ontological Surprises

    DEFF Research Database (Denmark)

    Leahu, Lucian

    2016-01-01

    This paper investigates how we might rethink design as the technological crafting of human-machine relations in the context of a machine learning technique called neural networks. It analyzes Google’s Inceptionism project, which uses neural networks for image recognition. The surprising output of...... a hybrid approach where machine learning algorithms are used to identify objects as well as connections between them; finally, it argues for remaining open to ontological surprises in machine learning as they may enable the crafting of different relations with and through technologies....

  8. Surprises of electron microscopic imaging of proteins and polymers covering gold nanoparticles layer by layer.

    Science.gov (United States)

    Pyshnaya, Inna A; Razum, Kristina V; Dolodoev, Anton S; Shashkova, Valeriya V; Ryabchikova, Elena I

    2017-02-01

    Gold nanoparticles (GNPs) are used in complicated nanoconstructions, and their preparation implies careful analysis of the intermediate and resulting products, including visualisation of the NPs. Visualisation of protein and/or organic polymer covers on GNPs using electron microscopy (EM) was a goal of this study. We covered GNPs with human serum albumin or PEG, and then added a second layer of branched or linear polyethyleneimine. EM studies were supplemented with dynamic light scattering, spectrophotometry and gel electrophoresis, which confirmed the presence and integrity of a cover on GNPs in mixtures with uranylacetate (UA) or phosphotungstic acid (PTA). Covered GNPs were contrasted 'on a drop' or in suspension with UA (pH 4.5) or PTA (pH 0.5, 3.0, 5.0 and 7.0), and studied by transmission EM. A cover on GNPs becomes visible as the result of direct interaction of UA or PTA with the components of a layer. The same NPs could look 'naked' or demonstrate a distinct cover of average electron density. The most distinct images of the layers were obtained using PTA at pH 0.5. Thus, visualisation of protein and/or polymeric layers covering the GNPs by EM depends on the type of contrasting reagent and contrasting conditions, but does not depend on surface charge of the NPs and the chemical nature of a cover.

  9. Surprise Trips

    DEFF Research Database (Denmark)

    Korn, Matthias; Kawash, Raghid; Andersen, Lisbet Møller

    We report on a platform that augments the natural experience of exploration in diverse indoor and outdoor environments. The system builds on the theme of surprises in terms of user expectations and finding points of interest. It utilizes physical icons as representations of users' interests and a...

  10. Picosecond Optical Electronics

    Science.gov (United States)

    1988-08-01

    tanta- late (LiTaO3) and potassium dihydrogen phosphate (KH2PO4), used for nonlinear optical devices. Centrosymmetric crystals do not exhibit the...to the gate. N Figure 33 shows a gate delay measurement on an inverter chain implemented in l m gate-length buffered -FET logic MESFETS, with Figure 34...60 ps, while the delay between curves B and C is the delay of the source-follower buffer and diodeII~level-shifter, 15 ps. Ile inverter chain from

  11. Charming surprise

    CERN Multimedia

    Antonella Del Rosso

    2011-01-01

    The CP violation in charm quarks has always been thought to be extremely small. So, looking at particle decays involving matter and antimatter, the LHCb experiment has recently been surprised to observe that things might be different. Theorists are on the case.   The study of the physics of the charm quark was not in the initial plans of the LHCb experiment, whose letter “b” stands for “beauty quark”. However, already one year ago, the Collaboration decided to look into a wider spectrum of processes that involve charm quarks among other things. The LHCb trigger allows a lot of these processes to be selected, and, among them, one has recently shown interesting features. Other experiments at b-factories have already performed the same measurement but this is the first time that it has been possible to achieve such high precision, thanks to the huge amount of data provided by the very high luminosity of the LHC. “We have observed the decay modes of t...

  12. Charming surprise

    CERN Multimedia

    Antonella Del Rosso

    2011-01-01

    The CP violation in charm quarks has always been thought to be extremely small. So, looking at particle decays involving matter and antimatter, the LHCb experiment has recently been surprised to observe that things might be different. Theorists are on the case. The study of the physics of the charm quark was not in the initial plans of the LHCb experiment, whose letter “b” stands for “beauty quark”. However, already one year ago, the Collaboration decided to look into a wider spectrum of processes that involve charm quarks among other things. The LHCb trigger allows a lot of these processes to be selected, and, among them, one has recently shown interesting features. Other experiments at b-factories have already performed the same measurement but this is the first time that it has been possible to achieve such high precision, thanks to the huge amount of data provided by the very high luminosity of the LHC. “We have observed the decay modes of the D0, a pa...

  13. Electronic and optical excitations in crystalline conjugated polymers

    Science.gov (United States)

    van der Horst, J.-W.; Bobbert, P. A.; Michels, M. A.

    2002-07-01

    We calculate the electronic and optical excitations of crystalline polythiophene and polyphenylenevinylene, using the GW approximation for the electronic self-energy and including excitonic effects by solving the electron-hole Bethe-Salpeter equation. We compare with our earlier calculations on an isolated polythiophene chain and polymer chains embedded in a dielectric medium. Surprisingly, we find for the crystalline calculations optical gaps and exciton binding energies that are significantly smaller than present experimental values. We attribute the disagreement to the fact that the quantum-mechanical coherence between polymer chains, present in the calculations, is absent in most experimental situations. We discuss possible reasons for this absence. Our general conclusion is that the picture of a polymer chain in a dielectric medium is most appropriate in describing the present experimental data on electronic and optical excitations in conjugated polymers.

  14. Experimental study on helium optical electron polarimetry

    Institute of Scientific and Technical Information of China (English)

    Ding Hai-Bing; Pang Wen-Ning; Liu Yi-Bao; Shang Ren-Cheng

    2005-01-01

    Optical electron polarimetry is suitable for calibration of a spin-polarized electron source, especially for measurement of polarization of spin-polarized electron beam. In this paper, a new optical electron polarimeter is described,which is based on the circularly polarized He radiation induced by the bombarding of He atoms with spin-polarized electrons. The theoretical basis of the optical electron polarimetry and the structure of the optical electron polarimeter are discussed. The measurement of polarization of spin-polarized electrons produced from a new GaAs (100) spin-polarized electron source is carried out. The result of polarization of 30.8% for our spin-polarized electron source is obtained using the He optical electron polarimeter.

  15. Optics of high-performance electron microscopes*

    OpenAIRE

    H H Rose

    2016-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by...

  16. Electron quantum optics in ballistic chiral conductors

    Energy Technology Data Exchange (ETDEWEB)

    Bocquillon, Erwann; Freulon, Vincent; Parmentier, Francois D.; Berroir, Jean-Marc; Placais, Bernard; Feve, Gwendal [Laboratoire Pierre Aigrain, Ecole Normale Superieure, CNRS (UMR 8551), Universite Pierre et Marie Curie, Universite Paris Diderot, Paris (France); Wahl, Claire; Rech, Jerome; Jonckheere, Thibaut; Martin, Thierry [Aix Marseille Universite, CNRS, CPT, UMR 7332, Marseille (France); Universite de Toulon, CNRS, CPT, UMR 7332, La Garde (France); Grenier, Charles; Ferraro, Dario; Degiovanni, Pascal [Universite de Lyon, Federation de Physique Andre Marie Ampere, CNRS - Laboratoire de Physique de l' Ecole Normale Superieure de Lyon, Lyon (France)

    2014-01-15

    The edge channels of the quantum Hall effect provide one dimensional chiral and ballistic wires along which electrons can be guided in an optics-like setup. Electronic propagation can then be analyzed using concepts and tools derived from optics. After a brief review of electron optics experiments performed using stationary current sources which continuously emit electrons in the conductor, this paper focuses on triggered sources, which can generate on-demand a single particle state. It first outlines the electron optics formalism and its analogies and differences with photon optics and then turns to the presentation of single electron emitters and their characterization through the measurements of the average electrical current and its correlations. This is followed by a discussion of electron quantum optics experiments in the Hanbury-Brown and Twiss geometry where two-particle interferences occur. Finally, Coulomb interactions effects and their influence on single electron states are considered. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Anodic coupling of carboxylic acids to electron-rich double bonds: A surprising non-Kolbe pathway to lactones

    Directory of Open Access Journals (Sweden)

    Robert J. Perkins

    2013-08-01

    Full Text Available Carboxylic acids have been electro-oxidatively coupled to electron-rich olefins to form lactones. Kolbe decarboxylation does not appear to be a significant competing pathway. Experimental results indicate that oxidation occurs at the olefin and that the reaction proceeds through a radical cation intermediate.

  18. Advanced optical concepts for electron cooling

    CERN Document Server

    Derbenev, Yaroslav S

    2000-01-01

    The results of explorations of non-traditional solutions of beam transport which could raise the electron cooling rates and efficiency are presented. The proposed optical elements, methods, and conceptual designs are summarized in the following. (1) Magnetized electron beam acceleration and transport with discontinuous solenoid to provide matching between the electron gun and solenoid of the cooling section. These concepts allow the possibility to design and build economical, high beam quality accelerators for electron cooling over a wide energy range, up to that suited for hadron colliders. (2) A special beam adapter (skew quadrupole block) to transform between a magnetized and a flat beam state. This element meets a variety of uses in electron cooling trends. (3) Injectors with ring-shaped cathodes and resonance concentrators of hollow beams involving (optionally) beam adapters. (4) An isochronous (at no RF) electron recirculator ring with a solenoid in the cooling section and beam adapters. (5) Electron st...

  19. Electronic and optical properties of lead iodide

    DEFF Research Database (Denmark)

    Ahuja, R.; Arwin, H.; Ferreira da Silva, A.

    2002-01-01

    The electronic properties and the optical absorption of lead iodide (PbI2) have been investigated experimentally by means of optical absorption and spectroscopic ellipsometry, and theoretically by a full-potential linear muffin-tin-orbital method. PbI2 has been recognized as a very promising...... detector material with a large technological applicability. Its band-gap energy as a function of temperature has also been measured by optical absorption. The temperature dependence has been fitted by two different relations, and a discussion of these fittings is given. ©2002 American Institute of Physics....

  20. Optics of high-performance electron microscopes.

    Science.gov (United States)

    Rose, H H

    2008-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described.

  1. Multibeam Electron Source using MEMS Electron Optical Components

    Energy Technology Data Exchange (ETDEWEB)

    Someren, B van; Bruggen, M J van; Zhang, Y; Hagen, C W; Kruit, P [Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands)

    2006-04-01

    Recent developments in electron beam equipment have given rise to ever more complex electron optical (EO) designs. Until now these designs were realized using standard workshop techniques like drilling, turning etc. With the need for even more complex designs to advance electron optics, we use the possibilities of manufacturing EO components with MEMS fabrication techniques. This leads to different design rules in the EO design. One can use one of the strong points of MEMS fabrication, mass manufacturing of identical and reliable components within tight specifications. One of our designs that demonstrates this is presented in this paper, the multi-beam electron source. We are developing an electron source for use in a standard scanning electron microscope that produces 100 beams instead of one. The design is made so that the performance in terms of spot size and current per beam is equal to the performance of the beam from a single beam source, around 1 nm and 25 pA. Furthermore, since we modify the SEM for nanolithography purposes, it is necessary to switch each of the individual beams on and off. For that purpose we integrate an array of blanker electrodes in the source unit.

  2. Electron optics of multi-beam scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi-Gheidari, A., E-mail: A.M.Gheidari@tudelft.nl [Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Kruit, P. [Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands)

    2011-07-21

    We have developed a multi-beam scanning electron microscope (MBSEM), which delivers a square array of 196 focused beams onto a sample with a resolution and current per beam comparable to a state of the art single beam SEM. It consists of a commercially available FEI Nova-nano 200 SEM column equipped with a novel multi-electron beam source module. The key challenge in the electron optical design of the MBSEM is to minimize the off-axial aberrations of the lenses. This article addresses the electron optical design of the system and presents the result of optics simulations for a specific setting of the system. It is shown that it is possible to design a system with a theoretical axial spot size of 1.2 nm at 15 kV with a probe current of 26 pA. The off-axial aberrations for the outermost beam add up 0.8 nm, increasing the probe size to 1.5 nm.

  3. Optical analogue of electronic Bloch oscillations.

    Science.gov (United States)

    Sapienza, Riccardo; Costantino, Paola; Wiersma, Diederik; Ghulinyan, Mher; Oton, Claudio J; Pavesi, Lorenzo

    2003-12-31

    We report on the observation of Bloch oscillations in light transport through periodic dielectric systems. By introducing a linear refractive index gradient along the propagation direction the optical equivalent of a Wannier-Stark ladder was obtained. Bloch oscillations were observed as time-resolved oscillations in transmission, in direct analogy to electronic Bloch oscillations in conducting crystals where the Wannier-Stark ladder is obtained via an external electric field. The observed oscillatory behavior is in excellent agreement with transfer matrix calculations.

  4. More Supernova Surprises

    Science.gov (United States)

    2010-09-24

    SEP 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE More Supernova Surprises 5a. CONTRACT NUMBER 5b. GRANT...PERSPECTIVES More Supernova Surprises ASTRONOMY J. Martin Laming Spectroscopic observations of the supernova SN1987A are providing a new window into high...a core-collapse supernova ) have stretched and motivated research that has expanded our knowledge of astrophysics. The brightest such event in

  5. Optical response of correlated electron systems

    Science.gov (United States)

    Maslov, Dmitrii L.; Chubukov, Andrey V.

    2017-02-01

    Recent progress in experimental techniques has made it possible to extract detailed information on dynamics of carriers in a correlated electron material from its optical conductivity, σ (Ω,T) . This review consists of three parts, addressing the following three aspects of optical response: (1) the role of momentum relaxation; (2) Ω /T scaling of the optical conductivity of a Fermi-liquid metal, and (3) the optical conductivity of non-Fermi-liquid metals. In the first part (section 2), we analyze the interplay between the contributions to the conductivity from normal and umklapp electron–electron scattering. As a concrete example, we consider a two-band metal and show that although its optical conductivity is finite it does not obey the Drude formula. In the second part (sections 3 and 4), we re-visit the Gurzhi formula for the optical scattering rate, 1/τ (Ω,T)\\propto {{ Ω }2}+4{π2}{{T}2} , and show that a factor of 4{π2} is the manifestation of the ‘first-Matsubara-frequency rule’ for boson response, which states that 1/τ (Ω,T) must vanish upon analytic continuation to the first boson Matsubara frequency. However, recent experiments show that the coefficient b in the Gurzhi-like form, 1/τ (Ω,T)\\propto {{ Ω }2}+b{π2}{{T}2} , differs significantly from b  =  4 in most of the cases. We suggest that the deviations from Gurzhi scaling may be due to the presence of elastic but energy-dependent scattering, which decreases the value of b below 4, with b  =  1 corresponding to purely elastic scattering. In the third part (section 5), we consider the optical conductivity of metals near quantum phase transitions to nematic and spin-density-wave states. In the last case, we focus on ‘composite’ scattering processes, which give rise to a non-Fermi-liquid behavior of the optical conductivity at T  =  0: {σ\\prime}(Ω )\\propto {{ Ω }-1/3} at low frequencies and {σ\\prime}(Ω )\\propto {{ Ω }-1} at higher frequencies. We

  6. Optical NEP in Hot-Electron Nanobolometers

    CERN Document Server

    Karasik, Boris S

    2010-01-01

    For the first time, we have measured the optical noise equivalent power (NEP) in titanium (Ti) superconducting hot-electron nanobolometers (nano-HEBs). The bolometers were 2{\\mu}mx1{\\mu}mx20nm and 1{\\mu}mx1{\\mu}mx20nm planar antenna-coupled devices. The measurements were done at {\\lambda} = 460 {\\mu}m using a cryogenic black body radiation source delivering optical power from a fraction of a femtowatt to a few 100s of femtowatts. A record low NEP = 3x10^{-19} W/Hz^{1/2} at 50 mK has been achieved. This sensitivity meets the requirements for SAFARI instrument on the SPICA telescope. The ways for further improvement of the nano-HEB detector sensitivity are discussed.

  7. Electronic and optical properties of Praseodymium trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Sapan Mohan, E-mail: smsaini.phy@nitrr.ac.in [Department of Physics, National Institute of Technology, Raipur-492010, (CG) (India)

    2014-10-24

    We report the role of f- states on electronic and optical properties of Praseodymium trifluoride (PrF{sub 3}) compound. Full potential linearized augmented plane wave (FPLAPW) method with the inclusion of spin orbit coupling has been used. We employed the local spin density approximation (LSDA) and Coulomb-corrected local spin density approximation (LSDA+U). LSDA+U is known for treating the highly correlated 4f electrons properly. Our theoretical investigation shows that LSDA+U approximation reproduce the correct insulating ground state of PrF{sub 3}. On the other hand there is no significant difference of reflectivity calculated by LSDA and LSDA+U. We find that the reflectivity for PrF{sub 3} compound stays low till around 7 eV which is consistent with their large energy gaps. Our calculated reflectivity compares well with the experimental data. The results are analyzed in the light of transitions involved.

  8. Surprises with Nonrelativistic Naturalness

    CERN Document Server

    Horava, Petr

    2016-01-01

    We explore the landscape of technical naturalness for nonrelativistic systems, finding surprises which challenge and enrich our relativistic intuition already in the simplest case of a single scalar field. While the immediate applications are expected in condensed matter and perhaps in cosmology, the study is motivated by the leading puzzles of fundamental physics involving gravity: The cosmological constant problem and the Higgs mass hierarchy problem.

  9. Acousto-optic filter for electronic laser tuning

    Science.gov (United States)

    Harris, S. E.

    1972-01-01

    Electronically tunable lithium niobate filter utilizes acoustic-optic diffraction for tuning laser to desired frequencies. Filter placed inside laser cavity diffracts incident optical signal of one polarization into orthogonal polarization by collinearly propagating acoustic beam to desired wavelength.

  10. Particles and waves in electron optics and microscopy

    CERN Document Server

    Pozzi, Giulio

    2016-01-01

    Advances in Imaging and Electron Physics merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. * Contains contributions from leading authorities on the subject matter* Informs and updates all the latest developments in the field of imaging and electron physics* Provides practitioners interested in microscopy, optics, image processing, mathematical morphology, electromagnetic fields, electron, and ion emission with a valuable resource* Features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image pro...

  11. An electron optical theory of beam blanking

    Science.gov (United States)

    Gesley, M.

    1993-11-01

    Trajectory equations are derived in closed form for electrons in time-dependent electric fields produced by beam blankers. Simple parallel plate and double-deflection blankers with transmission delay lines are evaluated. Lens imaging of the apparent beam motion is analyzed by developing the virtual electron trajectories obtained from linear extrapolation back into the blanker region. Lens excitation effects and conjugate blanking optics can then be described. The blanker voltage is represented by a damped exponential cosine term, which satisfies a typical circuit equation for the driver-amplifier. The form of the trajectory equation is written as a 3×3 matrix, which comprises a set of conditional solutions that are determined by blanker geometry. The optimum delay line length of any double-deflection blanker can then be determined. The blanker-induced beam jitter is shown to be significantly reduced by using this configuration. The effect of the blanker beam stop on the motion at the target plane is given by combining results on the real and apparent beam trajectories.

  12. All-optical three-dimensional electron pulse compression

    CERN Document Server

    Wong, Liang Jie; Rohwer, Timm; Gedik, Nuh; Johnson, Steven G

    2014-01-01

    We propose an all-optical, three-dimensional electron pulse compression scheme in which Hermite-Gaussian optical modes are used to fashion a three-dimensional optical trap in the electron pulse's rest frame. We show that the correct choices of optical incidence angles are necessary for optimal compression. We obtain analytical expressions for the net impulse imparted by Hermite-Gaussian free-space modes of arbitrary order. Although we focus on electrons, our theory applies to any charged particle and any particle with non-zero polarizability in the Rayleigh regime. We verify our theory numerically using exact solutions to Maxwell's equations for first-order Hermite-Gaussian beams, demonstrating single-electron pulse compression factors of $>10^{2}$ in both longitudinal and transverse dimensions with experimentally realizable optical pulses. The proposed scheme is useful in ultrafast electron imaging for both single- and multi-electron pulse compression, and as a means of circumventing temporal distortions in ...

  13. Polarization Measurement of Spin-Polarized Electrons by Optical Electron Polarimeter

    Institute of Scientific and Technical Information of China (English)

    DING Hai-Bing; PANG Wen-Ning; LIU Yi-Bao; SHANG Ren-Cheng

    2005-01-01

    @@ The polarization of spin-polarized electrons, produced from a new GaAs spin-polarized electron source, is determined by an optical electron polarimeter. The He 3 3p → 23S1 (388.9nm) transition is used for the optical electron polarimetry. The structure and performance of the experimental setup of spin-polarized electron source and optical electron polarimeter are described. The result of polarization of 30.8% averaged spin-up and spindown polarized electrons is obtained and presented.

  14. Nonlinear optics with coherent free electron lasers

    Science.gov (United States)

    Bencivenga, F.; Capotondi, F.; Mincigrucci, R.; Cucini, R.; Manfredda, M.; Pedersoli, E.; Principi, E.; Simoncig, A.; Masciovecchio, C.

    2016-12-01

    We interpreted the recent construction of free electron laser (FELs) facilities worldwide as an unprecedented opportunity to bring concepts and methods from the scientific community working with optical lasers into the domain of x-ray science. This motivated our efforts towards the realization of FEL-based wave-mixing applications. In this article we present new extreme ultraviolet transient grating (X-TG) data from vitreous SiO2, collected using two crossed FEL pulses (photon frequency 38 eV) to generate the X-TG and a phase matched optical probing pulse (photon frequency 3.1 eV). This experiment extends our previous investigation, which was carried out on a nominally identical sample using a different FEL photon frequency (45 eV) to excite the X-TG. The present data are featured by a peak intensity of the X-TG signal substantially larger than that previously reported and by slower modulations of the X-TG signal at positive delays. These differences could be ascribed to the different FEL photon energy used in the two experiments or to differences in the sample properties. A systematic X-TG study on the same sample as a function of the FEL wavelength is needed to draw a consistent conclusion. We also discuss how the advances in the performance of the FELs, in terms of generation of fully coherent photon pulses and multi-color FEL emission, may push the development of original experimental strategies to study matter at the femtosecond-nanometer time-length scales, with the unique option of element and chemical state specificity. This would allow the development of advanced experimental tools based on wave-mixing processes, which may have a tremendous impact in the study of a large array of phenomena, ranging from nano-dynamics in complex materials to charge and energy transfer processes.

  15. Surprises in astrophysical gasdynamics

    CERN Document Server

    Balbus, Steven A

    2016-01-01

    Much of astrophysics consists of the study of ionised gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetised fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one's a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosynchratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out import...

  16. Optical Conductivity of Graphene Sheet Including Electron-Phonon Interaction

    Institute of Scientific and Technical Information of China (English)

    Hamze Mousavi

    2012-01-01

    Using an expression of optical conductivity, based on the linear response theory, the Green's function technique and within the Holstein Hamiltonian model, the effect of electron-phonon interaction on the optical conductivity of graphene plane is studied. It is found that the electron-phonon coupling increases the optical conductivity of graphene sheet in the low frequency region due to decreasing quasiparticle weight of electron excitation while the optical conductivity reduces in the high frequency region. The latter is due to role of electrical field's frequency.

  17. Nonlinear fiber optics formerly quantum electronics

    CERN Document Server

    Agrawal, Govind

    1995-01-01

    The field of nonlinear fiber optics has grown substantially since the First Edition of Nonlinear Fiber Optics, published in 1989. Like the First Edition, this Second Edition is a comprehensive, tutorial, and up-to-date account of nonlinear optical phenomena in fiber optics. It synthesizes widely scattered research material and presents it in an accessible manner for students and researchers already engaged in or wishing to enter the field of nonlinear fiber optics. Particular attention is paid to the importance of nonlinear effects in the design of optical fiber communication systems. This is

  18. TOPICAL REVIEW: Optics of high-performance electron microscopes

    OpenAIRE

    H H Rose

    2008-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by...

  19. Surprises in astrophysical gasdynamics

    Science.gov (United States)

    Balbus, Steven A.; Potter, William J.

    2016-06-01

    Much of astrophysics consists of the study of ionized gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetized fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one’s a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosyncratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out important assumptions, and to describe carefully whatever novel techniques may be appropriate to the problem at hand. By beginning at the beginning, and analysing a wide variety of astrophysical settings, we seek not only to make this review suitable for fluid dynamic veterans, but to engage novice recruits as well with what we hope will be an unusual and instructive introduction to the subject.

  20. Surprises in astrophysical gasdynamics.

    Science.gov (United States)

    Balbus, Steven A; Potter, William J

    2016-06-01

    Much of astrophysics consists of the study of ionized gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetized fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one's a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosyncratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out important assumptions, and to describe carefully whatever novel techniques may be appropriate to the problem at hand. By beginning at the beginning, and analysing a wide variety of astrophysical settings, we seek not only to make this review suitable for fluid dynamic veterans, but to engage novice recruits as well with what we hope will be an unusual and instructive introduction to the subject.

  1. Miniature electron microscope beam column optics

    Science.gov (United States)

    Loyd, Jody Stuart

    This investigation is in the area of electrostatic lens design with the overarching goal of contributing to the creation of a miniaturized scanning electron microscope (SEM) for use in mineralogical analysis or detection of signs of life on the surface of Mars. Such an instrument could also have application in the exploration of Earth's moon, planetary moons, asteroids, or comets. Other embodiments could include tabletop or field portable SEMs for use on Earth. The scope of this research is in the design of a beam column that attains focusing, demagnification, and aberration control within the smallest achievable package. The goals of planetary exploration and of spaceflight in general impose severe constraints on the instrument's mass and electrical power consumption, while favoring a robust design of small size and high rigidity that is also simple to align. To meet these requirements a design using electrostatic lenses was favored because of the lower power requirement and mass of electrostatic versus magnetic lenses, their relatively simple construction, as well as inherently easier shielding from extraneous fields. In modeling the lens field, a hybrid of a Boundary Element Method (BEM) and a Fourier series solution was employed, whereby an initial solution from the BEM is used to derive the bounding potential of a cylindrical subdomain for the subsequent Fourier series solution. The approach is applicable to many problems in physics and combines the inherent precision of this series solution with the flexibility of BEM to describe practical, non-idealized electrode shapes. The resulting lens field in the Fourier series subdomain is of higher precision, thereby allowing smaller errors in subsequent calculations of electron ray paths. The effects of aberrations are thus easier to observe in tracing non-paraxial rays. A significant speed increase in tracing rays is also observed. The modeling technique has been validated by reproducing example ray-traces through

  2. Integrated optical transceiver with electronically controlled optical beamsteering

    Energy Technology Data Exchange (ETDEWEB)

    Davids, Paul; DeRose, Christopher; Tauke-Pedretti, Anna

    2017-08-22

    A beam-steering optical transceiver is provided. The transceiver includes one or more modules, each comprising an antenna chip and a control chip bonded to the antenna chip. Each antenna chip has a feeder waveguide, a plurality of row waveguides that tap off from the feeder waveguide, and a plurality of metallic nanoantenna elements arranged in a two-dimensional array of rows and columns such that each row overlies one of the row waveguides. Each antenna chip also includes a plurality of independently addressable thermo-optical phase shifters, each configured to produce a thermo-optical phase shift in a respective row. Each antenna chip also has, for each row, a row-wise heating circuit configured to produce a respective thermo-optic phase shift at each nanoantenna element along its row. The control chip includes controllable current sources for the independently addressable thermo-optical phase shifters and the row-wise heating circuits.

  3. Design and Analysis of an Electron Gun/Booster and Free Electron Laser Optical Theory

    Science.gov (United States)

    2010-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA DISSERTATION DESIGN AND ANALYSIS OF AN ELECTRON GUN/BOOSTER AND FREE ELECTRON LASER OPTICAL THEORY by...298-102 September 2010 Dissertation Design and Analysis of an Electron Gun/Booster and Free Electron Laser Optical Theory Niles, Sean P. Naval...motor attached to a spool for adjusting the bead’s position in the cavity. The bead is a small piece of stainless steel hypodermic needle threaded

  4. Surprising quantum bounces

    CERN Document Server

    Nesvizhevsky, Valery

    2015-01-01

    This unique book demonstrates the undivided unity and infinite diversity of quantum mechanics using a single phenomenon: quantum bounces of ultra-cold particles. Various examples of such "quantum bounces" are: gravitational quantum states of ultra-cold neutrons (the first observed quantum states of matter in a gravitational field), the neutron whispering gallery (an observed matter-wave analog of the whispering gallery effect well known in acoustics and for electromagnetic waves), and gravitational and whispering gallery states for anti-matter atoms that remain to be observed. These quantum states are an invaluable tool in the search for additional fundamental short-range forces, for exploring the gravitational interaction and quantum effects of gravity, for probing physics beyond the standard model, and for furthering studies into the foundations of quantum mechanics, quantum optics, and surface science.

  5. Comparison of optical and electron spectra in an infra-red free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, A.M.; Gillespie, W.A.; Martin, P.F. [Univ. of Abertay, Dundee (United Kingdom)] [and others

    1995-12-31

    Time-resolved electron and optical spectra recently acquired at the FELIX facility are presented, showing the evolution of the respective macropulses. A comparison is made between the optical power output during the macropulse and the measured power extracted from the electron beam using a simple model of the cavity losses. Data are available for a wide range of operating conditions: the wavelength range is from 9 {mu}m to 28 {mu}m and detuning are between 1/4{lambda} and 2{lambda}. The effect of rapid electron beam energy changes on the optical and electron spectra will also be discussed.

  6. Research for Electronic Fiber Optics Technologists

    Science.gov (United States)

    Lawrence, Ellis E.

    1999-01-01

    The intent of this project was to provide research experiences for socially and economically disadvantaged students in networking via fiber optics. The objectives of this project were: 1) To provide knowledge and skills needed by students to use the tools and equipment essential to networking NASA's and the university's topologies; 2) To provide the student researchers with needed mathematical skills and concepts to progress in fiber optic technology; 3) To afford the principal investigator an opportunity to become certified in fiber optics; 4) To build a transmitter and receiver circuit that will be linked by fiber-optic cable to demonstrate mastery of concepts; and 5) To conduct research for NASA and the University in the fiber-optic system. The research will attempt to develop applications for THUNDER (Thin-layer Composite Unimorph Ferroelectric Driver and Sensor) and LARC-SI (Langley Research Center- Soluble Polyimide), (inventions at NASA/LaRC) and fiber-optic technology that will be beneficial to NASA, the university and the consumer. This research has the potential of improving the nation's manpower in the area of fiberoptic technology. It will allow students the opportunity to participate in visible research at NASA and in industry.

  7. Electron optics of skewed micro-Einzel lenses

    NARCIS (Netherlands)

    Van Bruggen, M.J.; Van Someren, B.; Kruit, P.

    2009-01-01

    Micro-Einzel lenses always suffer from chromatic and spherical aberration, even when the electron beam is exactly on the optical axis of the lens. When the inclination of the electron beam with respect to the lens axis increases, additional effects such as coma, astigmatism, and defocus start to dom

  8. Ultrafast electron diffraction studies of optically excited thin bismuth films

    Energy Technology Data Exchange (ETDEWEB)

    Rajkovic, Ivan

    2008-10-21

    This thesis contains work on the design and the realization of an experimental setup capable of providing sub-picosecond electron pulses for ultrafast electron diffraction experiments, and performing the study of ultrafast dynamics in bismuth after optical excitation using this setup. (orig.)

  9. Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication

    Directory of Open Access Journals (Sweden)

    D. Dey

    2011-01-01

    Full Text Available The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields.

  10. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. Wittig

    2015-08-01

    Full Text Available A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  11. Spontaneous Hot-Electron Light Emission from Electron-Fed Optical Antennas.

    Science.gov (United States)

    Buret, Mickael; Uskov, Alexander V; Dellinger, Jean; Cazier, Nicolas; Mennemanteuil, Marie-Maxime; Berthelot, Johann; Smetanin, Igor V; Protsenko, Igor E; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2015-09-09

    Nanoscale electronics and photonics are among the most promising research areas providing functional nanocomponents for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanoscale.

  12. Spontaneous hot-electron light emission from electron-fed optical antennas

    CERN Document Server

    Buret, Mickael; Dellinger, Jean; Cazier, Nicolas; Mennemanteuil, Marie-Maxime; Berthelot, Johann; Smetanin, Igor V; Protsenko, Igor E; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2015-01-01

    Nanoscale electronics and photonics are among the most promising research areas providing functional nano-components for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically-driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanos...

  13. Electron optics of microlenses with inclined beams

    NARCIS (Netherlands)

    Zhang, Y.; Barth, J.E.; Kruit, P.

    2008-01-01

    For multielectron beam systems with a single electron source, the outside beams need to be collimated before entering the individual microcolumns. As an alternative of the traditional multibeam source design where the broad beam from the source is collimated by a single lens, the broad beam can be f

  14. Electron Correlation Models for Optical Activity

    DEFF Research Database (Denmark)

    Höhn, E. G.; O. E. Weigang, Jr.

    1968-01-01

    A two-system no-overlap model for rotatory strength is developed for electric-dipole forbidden as well as allowed transitions. General equations which allow for full utilization of symmetry in the chromophore and in the environment are obtained. The electron correlation terms are developed in full...

  15. Surprise... Surprise..., An Empirical Investigation on How Surprise is Connected to Customer Satisfaction

    NARCIS (Netherlands)

    J. Vanhamme (Joëlle)

    2003-01-01

    textabstractThis research investigates the specific influence of the emotion of surprise on customer transaction-specific satisfaction. Four empirical studies-two field studies (a diary study and a cross section survey) and two experiments-were conducted. The results show that surprise positively

  16. Surprise... Surprise..., An Empirical Investigation on How Surprise is Connected to Customer Satisfaction

    NARCIS (Netherlands)

    J. Vanhamme (Joëlle)

    2003-01-01

    textabstractThis research investigates the specific influence of the emotion of surprise on customer transaction-specific satisfaction. Four empirical studies-two field studies (a diary study and a cross section survey) and two experiments-were conducted. The results show that surprise positively [n

  17. DNA Diagnostics: Optical or by Electronics?

    KAUST Repository

    Khan, Hadayat Ullah

    2016-01-15

    In this paper, we very briefly review DNA biosensors based on optical and electrical detection principles, referring mainly to our past work applying both techniques but here using nearly identical sensor chip surface architectures, i.e., capture probe layers that were prepared based on a pulsed plasma deposition protocol for maleic anhydride and subsequent wet-chemical attachment of the amine-functionalized peptide nucleic acid (PNA) probe oligonucleotides. 15 mer DNA target strands, labeled with Cy5-chromophores that were attached at the 5’ end were used for surface plasmon optical detection and the same target DNA but without label was used in OTFT sensor-based detection where the mere charge density of the bound (hybridized) DNA molecules modulate the source-drain current. The sensing mechanisms and the detection limits of the devices are described in some detail. Both techniques allow for the monitoring of surface hybridization reactions, and offer the capacity to quantitatively discriminate between targets with different degrees of mismatched sequences.

  18. Nanodiamond Landmarks for Subcellular Multimodal Optical and Electron Imaging

    CERN Document Server

    Zurbuchen, Mark A; Kohan, Sirus A; Leung, Belinda; Bouchard, Louis-S

    2015-01-01

    There is a growing need for biolabels that can be used in both optical and electron microscopies, are non-cytotoxic, and do not photobleach. Such biolabels could enable targeted nanoscale imaging of sub-cellular structures, and help to establish correlations between conjugation-delivered biomolecules and function. Here we demonstrate a subcellular multi-modal imaging methodology that enables localization of inert particulate probes, consisting of nanodiamonds having fluorescent nitrogen-vacancy centers. These are functionalized to target specific structures, and are observable by both optical and electron microscopies. Nanodiamonds targeted to the nuclear pore complex are rapidly localized in electron-microscopy diffraction mode to enable "zooming-in" to regions of interest for detailed structural investigations. Optical microscopies reveal nanodiamonds for in-vitro tracking or uptake-confirmation. The approach is general, works down to the single nanodiamond level, and can leverage the unique capabilities of...

  19. Single-element Electron-transfer Optical Detector System

    Science.gov (United States)

    Jordan, Jeffrey D. (Inventor)

    2004-01-01

    An optical detector system includes an electrically resistive screen that is substantially transparent to radiation energy having a wavelength of interest. An electron transfer element (e.g., a low work function photoactive material or a carbon nanotube (CNT)-based element) has a first end and a second end with its first end spaced apart from the screen by an evacuated gap. When radiation energy passes through the screen with a bias voltage being applied thereto, transfer of electrons through the electron transfer element is induced from its first to its second end such that a quantity indicative of the electrons transferred can be detected.

  20. Using electron microscopy to calculate optical properties of biological samples

    OpenAIRE

    Wu, Wenli; Radosevich, Andrew J.; Eshein, Adam; Nguyen, The-Quyen; Yi, Ji; Cherkezyan, Lusik; Roy, Hemant K.; Szleifer, Igal; Backman, Vadim

    2016-01-01

    The microscopic structural origins of optical properties in biological media are still not fully understood. Better understanding these origins can serve to improve the utility of existing techniques and facilitate the discovery of other novel techniques. We propose a novel analysis technique using electron microscopy (EM) to calculate optical properties of specific biological structures. This method is demonstrated with images of human epithelial colon cell nuclei. The spectrum of anisotropy...

  1. Hybrid optical and electronic laser locking using spectral hole burning

    CERN Document Server

    Farr, Warrick G; Ledingham, Patrick M; Korystov, Dmitry; Longdell, Jevon J

    2010-01-01

    We report on a narrow linewidth laser diode system that is stabilized using both optical and electronic feedback to a spectral hole in cryogenic Tm:YAG. The laser system exhibits very low phase noise. The spectrum of the beat signal between two lasers, over millisecond timescales, is either Fourier limited or limited by the -111dBc/Hz noise floor. The resulting laser is well suited to quantum optics and sensing applications involving rare earth ion dopants.

  2. Electronic system for optical shutter control

    Science.gov (United States)

    Viljoen, H. C.; Gaylord, T. K.

    1976-01-01

    The paper describes a precise and versatile electronic system for shutter control in light beam experiments. Digital and analog circuitry is used to provide automatic timing, exposure control, manual operation, and remote programmability. A block diagram of the system is presented and the individual circuits - the timer control circuit, the clock control circuit, the comparator circuit, the exposure (integrator) circuit, and the shutter drive circuit are discussed in detail and diagrams are provided.

  3. Optical guiding and beam bending in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Scharlemann, E.T.

    1987-01-01

    The electron beam in a free-electron laser (FEL) can act as an optical fiber, guiding or bending the optical beam. The refractive and gain effects of the bunched electron beam can compensate for diffraction, making possible wigglers that are many Rayleigh ranges (i.e., characteristic diffraction lengths) long. The origin of optical guiding can be understood by examining gain and refractive guiding in a fiber with a complex index of refraction, providing a mathematical description applicable also to the FEL, with some extensions. In the exponential gain regime of the FEL, the electron equations of motion must be included, but a self-consistent description of exponential gain with diffraction fully included becomes possible. The origin of the effective index of refraction of an FEL is illustrated with a simple example of bunched, radiating dipoles. Some of the properties of the index of refraction are described. The limited experimental evidence for optical beam bending is summarized. The evidence does not yet provide conclusive proof of the existence of optical guiding, but supports the idea. Finally, the importance of refractive guiding for the performance of a high-gain tapered-wiggler FEL amplifier is illustrated with numerical simulations.

  4. Neuromorphic opto-electronic integrated circuits for optical signal processing

    Science.gov (United States)

    Romeira, B.; Javaloyes, J.; Balle, S.; Piro, O.; Avó, R.; Figueiredo, J. M. L.

    2014-08-01

    The ability to produce narrow optical pulses has been extensively investigated in laser systems with promising applications in photonics such as clock recovery, pulse reshaping, and recently in photonics artificial neural networks using spiking signal processing. Here, we investigate a neuromorphic opto-electronic integrated circuit (NOEIC) comprising a semiconductor laser driven by a resonant tunneling diode (RTD) photo-detector operating at telecommunication (1550 nm) wavelengths capable of excitable spiking signal generation in response to optical and electrical control signals. The RTD-NOEIC mimics biologically inspired neuronal phenomena and possesses high-speed response and potential for monolithic integration for optical signal processing applications.

  5. TOPICAL REVIEW: Optics of high-performance electron microscopes

    Directory of Open Access Journals (Sweden)

    H H Rose

    2008-01-01

    Full Text Available During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described

  6. Electro-optic techniques in electron beam diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    van Tilborg, Jeroen; Toth, Csaba; Matlis, Nicholas; Plateau, Guillaume; Leemans, Wim

    2011-06-17

    Electron accelerators such as laser wakefield accelerators, linear accelerators driving free electron lasers, or femto-sliced synchrotrons, are capable of producing femtosecond-long electron bunches. Single-shot characterization of the temporal charge profile is crucial for operation, optimization, and application of such accelerators. A variety of electro-optic sampling (EOS) techniques exists for the temporal analysis. In EOS, the field profile from the electron bunch (or the field profile from its coherent radiation) will be transferred onto a laser pulse co-propagating through an electro-optic crystal. This paper will address the most common EOS schemes and will list their advantages and limitations. Strong points that all techniques share are the ultra-short time resolution (tens of femtoseconds) and the single-shot capabilities. Besides introducing the theory behind EOS, data from various research groups is presented for each technique.

  7. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    Science.gov (United States)

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  8. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    Science.gov (United States)

    Weiss, Shimon; Schlam, Michael C; Alivisatos, A. Paul

    2014-03-25

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  9. Vibrational and optical spectroscopies integrated with environmental transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Picher, Matthieu; Mazzucco, Stefano [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20740 (United States); Blankenship, Steve [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203 (United States); Sharma, Renu, E-mail: renu.sharma@nist.gov [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203 (United States)

    2015-03-15

    Here, we present a measurement platform for collecting multiple types of spectroscopy data during high-resolution environmental transmission electron microscopy observations of dynamic processes. Such coupled measurements are made possible by a broadband, high-efficiency, free-space optical system. The critical element of the system is a parabolic mirror, inserted using an independent hollow rod and placed below the sample holder which can focus a light on the sample and/or collect the optical response. We demonstrate the versatility of this optical setup by using it to combine in situ atomic-scale electron microscopy observations with Raman spectroscopy. The Raman data is also used to measure the local temperature of the observed sample area. Other applications include, but are not limited to: cathodo- and photoluminescence spectroscopy, and use of the laser as a local, high-rate heating source. - Highlights: • Broadband, high-efficiency design adaptable to other electron microscopes. • Raman spectroscopy integrated with environmental transmission electron microscopy. • Raman spectra peak frequency shifts enable measurement of local sample temperature. • Multiple types of optical spectroscopy enabled, e.g. cathodoluminescence.

  10. Electronic and optical properties of pristine and oxidized borophene

    Science.gov (United States)

    Lherbier, Aurélien; Botello-Méndez, Andrés Rafael; Charlier, Jean-Christophe

    2016-12-01

    Borophene, a two-dimensional monolayer of boron atoms, was recently synthesized experimentally and was shown to exhibit polymorphism. In its closed-packed triangular form, borophene is expected to exhibit anisotropic metallic character with relatively high electron velocities. At the same time, very low optical conductivities in the infrared-visible light region were predicted. Based on its promising electronic transport properties and its high transparency, borophene could become a genuine lego piece in the 2D materials assembling game known as the van der Waals heterocrystal approach. However, borophene is naturally degraded in ambient conditions and it is therefore important to assess the mechanisms and the effects of oxidation on borophene monolayers. Optical and electronic properties of pristine and oxidized borophene are here investigated by first-principles approaches. The transparent and conductive properties of borophene are elucidated by analyzing the electronic structure and its interplay with light. Optical response of borophene is found to be strongly affected by oxidation, suggesting that optical measurements can serve as an efficient probe for borophene surface contamination.

  11. Ion optics of RHIC electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Kuznetsov, G. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation)

    2012-02-15

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  12. Optical klystron and harmonic generation free electron laser

    Directory of Open Access Journals (Sweden)

    Qika Jia

    2005-06-01

    Full Text Available The optical field evolution of an optical klystron free electron laser is analytically described for both low gain and high gain cases. The harmonic optical klystron (HOK in which the second undulator is resonant on the higher harmonic of the first undulator is analyzed as a harmonic amplifier. The optical field evolution equation of the HOK is derived analytically for both the CHG mode (coherent harmonic generation, the quadratic gain regime and the HGHG mode (high gain harmonic generation, the exponential gain regime, the effects of energy spread, energy modulation, and dispersion in the whole process are taken into account. The linear theory is given and discussed for the HGHG mode. The analytical formula is given for the CHG mode.

  13. Electron optics with p-n junctions in ballistic graphene

    Science.gov (United States)

    Chen, Shaowen; Han, Zheng; Elahi, Mirza M.; Habib, K. M. Masum; Wang, Lei; Wen, Bo; Gao, Yuanda; Taniguchi, Takashi; Watanabe, Kenji; Hone, James; Ghosh, Avik W.; Dean, Cory R.

    2016-09-01

    Electrons transmitted across a ballistic semiconductor junction are expected to undergo refraction, analogous to light rays across an optical boundary. In graphene, the linear dispersion and zero-gap band structure admit highly transparent p-n junctions by simple electrostatic gating. Here, we employ transverse magnetic focusing to probe the propagation of carriers across an electrostatically defined graphene junction. We find agreement with the predicted Snell’s law for electrons, including the observation of both positive and negative refraction. Resonant transmission across the p-n junction provides a direct measurement of the angle-dependent transmission coefficient. Comparing experimental data with simulations reveals the crucial role played by the effective junction width, providing guidance for future device design. Our results pave the way for realizing electron optics based on graphene p-n junctions.

  14. Optical properties and electron dynamics in carbon nanodots

    Science.gov (United States)

    Wen, Xiaoming; Huang, Shujuan; Conibeer, Gavin; Shrestha, Santosh; Yu, Pyng; Toh, Yon-Rui; Tang, Jau

    2013-12-01

    Carbon nanodots (CNDs) have emerged as fascinating materials with exceptional electronic and optical properties, and thus they offer promising applications in photonics, photovoltaics and photocatalysis. Herein we study the optical properties and electron dynamics in CNDs using steady state and time-resolved spectroscopy. The photoluminescence (PL) is determined to originate from both core and surface. The massive surface fluorophores result in a broad spectral fluorescence. In addition to various synthesis techniques, it is demonstrated that the PL of CNDs can be extended from the blue to the near infrared by thermal assisted growth. Directional electron transfer was observed as fast as femtosecond in CND-graphene oxide nanocomposites from CND into graphene oxide. These results suggest CNDs can be promising in many applications.

  15. Interacting Electrons in Graphene: Fermi Velocity Renormalization and Optical Response.

    Science.gov (United States)

    Stauber, T; Parida, P; Trushin, M; Ulybyshev, M V; Boyda, D L; Schliemann, J

    2017-06-30

    We have developed a Hartree-Fock theory for electrons on a honeycomb lattice aiming to solve a long-standing problem of the Fermi velocity renormalization in graphene. Our model employs no fitting parameters (like an unknown band cutoff) but relies on a topological invariant (crystal structure function) that makes the Hartree-Fock sublattice spinor independent of the electron-electron interaction. Agreement with the experimental data is obtained assuming static self-screening including local field effects. As an application of the model, we derive an explicit expression for the optical conductivity and discuss the renormalization of the Drude weight. The optical conductivity is also obtained via precise quantum Monte Carlo calculations which compares well to our mean-field approach.

  16. Surprise as a design strategy

    NARCIS (Netherlands)

    Ludden, G.D.S.; Schifferstein, H.N.J.; Hekkert, P.P.M.

    2008-01-01

    Imagine yourself queuing for the cashier’s desk in a supermarket. Naturally, you have picked the wrong line, the one that does not seem to move at all. Soon, you get tired of waiting. Now, how would you feel if the cashier suddenly started to sing? Many of us would be surprised and, regardless of

  17. Surprise as a design strategy

    NARCIS (Netherlands)

    Ludden, G.D.S.; Schifferstein, H.N.J.; Hekkert, P.P.M.

    2008-01-01

    Imagine yourself queuing for the cashier’s desk in a supermarket. Naturally, you have picked the wrong line, the one that does not seem to move at all. Soon, you get tired of waiting. Now, how would you feel if the cashier suddenly started to sing? Many of us would be surprised and, regardless of th

  18. Electron Beam Spectrum Diagnostics with Optical Transition Radiation on the Beijing Free-Electron Laser

    Institute of Scientific and Technical Information of China (English)

    李泉凤; 吴频; 高建江; 吴刚

    2004-01-01

    A measurement system was developed to measure the electron beam spectrum of the Beijing free-electron laser based on the optical transition radiation (OTR). This paper describes the system, which consists of a 32-channel high resolution of 0.02% OTR detector, especially the spectrometer. The OTR angular-distribution pattern at the focal plane has two apexes, but the two apexes are smoothed out due to the electron beam energy distribution. The energy spectrum can be measured if the magnet energy resolution is higher than 0.7% to distinguish the electron beam energy distribution.

  19. Electronic and optical properties of CuInTe2

    Science.gov (United States)

    Shankar, A.; Thapa, R. K.; Mandal, P. K.

    2016-10-01

    The electronic and optical properties of a ternary chalcopyrite compound CuInTe2 with diamond like structure have been studied. The calculations are carried out using the density functional theory (DFT) based full potential-linearized augmented plane wave (FP- LAPW) method within the framework of GGA and modified Becke Johnson (mBJ) potential approach. The presence of direct energy band gap of 0.8 eV suggests the sample material can be a good material for solar cell application. The study of the optical response of the material against the incident photon energy radiation indicates the material can be an effective candidate for the optoelectronic devices.

  20. Semiconductor optical modulator by using electron depleting absorption control

    OpenAIRE

    Yamada, Minoru; Noda, Kazuhiro; Kuwamura, Yuji; Nakanishi, Hirohumi; Imai, Kiyohumi

    1992-01-01

    Operation of a newly proposed semiconductor optical modulator based on absorption control by electron depletion around a p-n junction is demonstrated, forming preliminary structures of waveguide-type as well as panel-type (or surface-illuminated type) devices. The optical absorption is occurred at the intrinsic energy levels in the band structure not at the extended state into the band-gap. Performance of 35 dB on-off extinction ratio for 4 V variation of the applied voltage was obtained in a...

  1. Quantum entanglement in electron optics generation, characterization, and applications

    CERN Document Server

    Chandra, Naresh

    2013-01-01

    This monograph forms an interdisciplinary study in atomic, molecular, and quantum information (QI) science. Here a reader will find that applications of the tools developed in QI provide new physical insights into electron optics as well as properties of atoms & molecules which, in turn, are useful in studying QI both at fundamental and applied levels. In particular, this book investigates entanglement properties of flying electronic qubits generated in some of the well known processes capable of taking place in an atom or a molecule following the absorption of a photon. Here, one can generate Coulombic or fine-structure entanglement of electronic qubits. The properties of these entanglements differ not only from each other, but also from those when spin of an inner-shell photoelectron is entangled with the polarization of the subsequent fluorescence. Spins of an outer-shell electron and of a residual photoion can have free or bound entanglement in a laboratory.

  2. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

    CERN Document Server

    Pearton, Stephen

    2013-01-01

    Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and ...

  3. Valley Filtering and Electronic Optics Using Polycrystalline Graphene

    Science.gov (United States)

    Nguyen, V. Hung; Dechamps, S.; Dollfus, P.; Charlier, J.-C.

    2016-12-01

    In this Letter, both the manipulation of valley-polarized currents and the optical-like behaviors of Dirac fermions are theoretically explored in polycrystalline graphene. When strain is applied, the misorientation between two graphene domains separated by a grain boundary can result in a mismatch of their electronic structures. Such a discrepancy manifests itself in a strong breaking of the inversion symmetry, leading to perfect valley polarization in a wide range of transmission directions. In addition, these graphene domains act as different media for electron waves, offering the possibility to modulate and obtain negative refraction indexes.

  4. Organic structures design applications in optical and electronic devices

    CERN Document Server

    Chow, Tahsin J

    2014-01-01

    ""Presenting an overview of the syntheses and properties of organic molecules and their applications in optical and electronic devices, this book covers aspects concerning theoretical modeling for electron transfer, solution-processed micro- and nanomaterials, donor-acceptor cyclophanes, molecular motors, organogels, polyazaacenes, fluorogenic sensors based on calix[4]arenes, and organic light-emitting diodes. The publication of this book is timely because these topics have become very popular nowadays. The book is definitely an excellent reference for scientists working in these a

  5. Electronic structure and optical properties of thorium monopnictides

    Indian Academy of Sciences (India)

    S Kumar; S Auluck

    2003-01-01

    We have calculated the electronic density of states (DOS) and dielectric function for the ThX (X = P, As and Sb) using the linear muffin tin orbital method within atomic sphere approximation (LMTO–ASA) including the combined correction terms. The calculated electronic DOS of ThSb has been compared with the available experimental data and we find a good agreement. The calculated optical conductivity for ThP and ThAs is increasing monotonically, while for ThSb a sharp peak has been found at 6.5 eV. Unfortunately there are no experimental data to compare with calculated optical properties, we hope our calculations will motivate some experimentalists.

  6. Ultra-high-speed optical and electronic distributed devices

    Energy Technology Data Exchange (ETDEWEB)

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  7. Magneto-electronic and optical properties of zigzag silicene nanoribbons

    Science.gov (United States)

    Shyu, Feng-Lin

    2017-03-01

    The tight-binding model including the spin-orbit coupling (SOC) is used to study electronic and optical properties of zigzag silicene nanoribbons (ZSiNRs) in magnetic and electric fields. The SOC affects the low-energy bands and induces new selection rules leading to richer optical spectra. Except an increase in bandgaps, perpendicular magnetic field further exhibits spin-polarized Landau levels, in which electron's probability density of band-edge states distributes like a standing-wave. Landau levels could enhance the DOS and increases absorption frequency and strength. Perpendicular electric field (Fz) increases bandgap and thus absorption frequency, but it does not change band symmetry, edge-states, and selection rules. Moreover, Fz enhances the split of spin-polarized states inducing more absorption peaks. Parallel electric field (Fx) leads to an overlap between conduction and valence bands and destroys band symmetry and Landau levels. Consequently, Fx exhibits new selection rules and enriches absorption spectra.

  8. Hyperhoneycomb boron nitride with anisotropic mechanical, electronic, and optical properties

    Science.gov (United States)

    Yu, Jin; Qu, Lihua; van Veen, Edo; Katsnelson, Mikhail I.; Yuan, Shengjun

    2017-09-01

    Boron nitride structures have excellent thermal and chemical stabilities. Based on state-of-art theoretical calculations, we propose a wide-gap semiconducting BN crystal with a three-dimensional hyperhoneycomb structure (Hp-BN), which is both mechanically and thermodynamically stable. Our calculated results show that Hp-BN has a higher bulk modulus and a smaller energy gap as compared to c-BN. Moreover, due to the unique bonding structure, Hp-BN exhibits anisotropic electronic and optical properties. It has great adsorption in the ultraviolet region, but it is highly transparent in the visible and infrared region, suggesting that the Hp-BN crystal could have potential applications in electronic and optical devices.

  9. Ab initio electronic structure and optical conductivity of bismuth tellurohalides

    CERN Document Server

    Schwalbe, Sebastian; Starke, Ronald; Schober, Giulio A H; Kortus, Jens

    2016-01-01

    We investigate the electronic structure, dielectric and optical properties of bismuth tellurohalides BiTeX (X = I, Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. , Makhnev et al. , and Rusinov et al. . We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices.

  10. Using electron microscopy to calculate optical properties of biological samples.

    Science.gov (United States)

    Wu, Wenli; Radosevich, Andrew J; Eshein, Adam; Nguyen, The-Quyen; Yi, Ji; Cherkezyan, Lusik; Roy, Hemant K; Szleifer, Igal; Backman, Vadim

    2016-11-01

    The microscopic structural origins of optical properties in biological media are still not fully understood. Better understanding these origins can serve to improve the utility of existing techniques and facilitate the discovery of other novel techniques. We propose a novel analysis technique using electron microscopy (EM) to calculate optical properties of specific biological structures. This method is demonstrated with images of human epithelial colon cell nuclei. The spectrum of anisotropy factor g, the phase function and the shape factor D of the nuclei are calculated. The results show strong agreement with an independent study. This method provides a new way to extract the true phase function of biological samples and provides an independent validation for optical property measurement techniques.

  11. Alternative optical concept for electron cyclotron emission imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J. X., E-mail: jsliu9@berkeley.edu [Department of Physics, University of California Berkeley, Berkeley, California 94720 (United States); Milbourne, T. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23185 (United States); Bitter, M.; Delgado-Aparicio, L.; Dominguez, A.; Efthimion, P. C.; Hill, K. W.; Kramer, G. J.; Kung, C.; Pablant, N. A.; Tobias, B. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Kubota, S. [Department of Physics, University of California Los Angeles, Los Angeles, California 90095 (United States); Kasparek, W. [Department of Electrical Engineering, University of Stuttgart, Stuttgart (Germany); Lu, J. [Department of Physics, Chongqing University, Chongqing 400044 (China); Park, H. [Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of)

    2014-11-15

    The implementation of advanced electron cyclotron emission imaging (ECEI) systems on tokamak experiments has revolutionized the diagnosis of magnetohydrodynamic (MHD) activities and improved our understanding of instabilities, which lead to disruptions. It is therefore desirable to have an ECEI system on the ITER tokamak. However, the large size of optical components in presently used ECEI systems have, up to now, precluded the implementation of an ECEI system on ITER. This paper describes a new optical ECEI concept that employs a single spherical mirror as the only optical component and exploits the astigmatism of such a mirror to produce an image with one-dimensional spatial resolution on the detector. Since this alternative approach would only require a thin slit as the viewing port to the plasma, it would make the implementation of an ECEI system on ITER feasible. The results obtained from proof-of-principle experiments with a 125 GHz microwave system are presented.

  12. Optical Transition Radiation Measurement of Electron Beam for Beijing Free Electron Laser

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qiang; XIE Jia-Lin; LI Yong-Gui; ZHUANG Jie-Jia

    2001-01-01

    We used transition radiation techniques instead of the original phosphor targets to improve the electronic beam diagnostic system at Beijing Free Electron Laser. The beam profile, size (3.3 × 2.4 mm), position and divergence angle (σrms = 2.5 mrad) in transverse have been obtained from optical transition radiation. We also present the experimental set-up and some preliminary results.

  13. Quantum computing by optical control of electron spins

    CERN Document Server

    Liu, Ren-Bao; Sham, L J

    2010-01-01

    We review the progress and main challenges in implementing large-scale quantum computing by optical control of electron spins in quantum dots (QDs). Relevant systems include self-assembled QDs of III-V or II-VI compound semiconductors (such as InGaAs and CdSe), monolayer fluctuation QDs in compound semiconductor quantum wells, and impurity centers in solids such as P-donors in silicon and nitrogen-vacancy centers in diamond. The decoherence of the electron spin qubits is discussed and various schemes for countering the decoherence problem are reviewed. We put forward designs of local nodes consisting of a few qubits which can be individually addressed and controlled. Remotely separated local nodes are connected by photonic structures (microcavities and waveguides) to form a large-scale distributed quantum system or a quantum network. The operation of the quantum network consists of optical control of a single electron spin, coupling of two spins in a local nodes, optically controlled quantum interfacing betwe...

  14. Creating and Probing Graphene Electron Optics with Local Scanning Probes

    Science.gov (United States)

    Stroscio, Joseph

    Ballistic propagation and the light-like dispersion of graphene charge carriers make graphene an attractive platform for optics-inspired graphene electronics where gate tunable potentials can control electron refraction and transmission. In analogy to optical wave propagation in lenses, mirrors and metamaterials, gate potentials can be used to create a negative index of refraction for Veselago lensing and Fabry-Pérot interferometers. In circular geometries, gate potentials can induce whispering gallery modes (WGM), similar to optical and acoustic whispering galleries albeit on a much smaller length scale. Klein scattering of Dirac carriers plays a central role in determining the coherent propagation of electron waves in these resonators. In this talk, I examine the probing of electron resonators in graphene confined by linear and circular gate potentials with the scanning tunneling microscope (STM). The tip in the STM tunnel junction serves both as a tunable local gate potential, and as a probe of the graphene states through tunneling spectroscopy. A combination of a back gate potential, Vg, and tip potential, Vb, creates and controls a circular pn junction that confines the WGM graphene states. The resonances are observed in two separate channels in the tunneling spectroscopy experiment: first, by directly tunneling into the state at the bias energy eVb, and, second, by tunneling from the resonance at the Fermi level as the state is gated by the tip potential. The second channel produces a fan-like set of WGM peaks, reminiscent of the fringes seen in planar geometries by transport measurements. The WGM resonances split in a small applied magnetic field, with a large energy splitting approaching the WGM spacing at 0.5 T. These results agree well with recent theory on Klein scattering in graphene electron resonators. This work is done in collaboration with Y. Zhao, J. Wyrick, F.D. Natterer, J. F. Rodriquez-Nieva, C. Lewandoswski, K. Watanabe, T. Taniguchi, N. B

  15. 76 FR 12144 - Advanced Optics Electronics, Inc.; Order of Suspension of Trading

    Science.gov (United States)

    2011-03-04

    ... COMMISSION Advanced Optics Electronics, Inc.; Order of Suspension of Trading March 2, 2011. It appears to the... securities of Advanced Optics Electronics, Inc. because it has not filed any periodic reports since the... of investors require a suspension of trading in Advanced Optics Electronics, Inc. Therefore, it...

  16. Terahertz-driven, all-optical electron gun

    CERN Document Server

    Huang, W Ronny; Wu, Xiaojun; Cankaya, Huseyin; Calendron, Anne-Laure; Ravi, Koustuban; Zhang, Dongfang; Nanni, Emilio A; Hong, Kyung-Han; Kärtner, Franz X

    2016-01-01

    Ultrashort electron beams with narrow energy spread, high charge, and low jitter are essential for resolving phase transitions in metals, semiconductors, and molecular crystals. These semirelativistic beams, produced by phototriggered electron guns, are also injected into accelerators for x-ray light sources. The achievable resolution of these time-resolved electron diffraction or x-ray experiments has been hindered by surface field and timing jitter limitations in conventional RF guns, which thus far are 96 fs, respectively. A gun driven by optically-generated single-cycle THz pulses provides a practical solution to enable not only GV/m surface fields but also absolute timing stability, since the pulses are generated by the same laser as the phototrigger. Here, we demonstrate an all-optical THz gun yielding peak electron energies approaching 1 keV, accelerated by 300 MV/m THz fields in a novel micron-scale waveguide structure. We also achieve quasimonoenergetic, sub-keV bunches with 32 fC of charge, which ca...

  17. Electron spin control of optically levitated nanodiamonds in vacuum

    Science.gov (United States)

    Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-07-01

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.

  18. Electron spin control of optically levitated nanodiamonds in vacuum.

    Science.gov (United States)

    Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-07-19

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.

  19. Multi-Element Electron-Transfer Optical Detector System

    Science.gov (United States)

    Jordan, Jeffrey D. (Inventor)

    2004-01-01

    A multi-element optical detector system includes an electrically resistive screen that is substantially transparent to radiation energy having a wavelength of interest. A plurality of electron transfer elements (e.g., a low work function photoactive material or a carbon nanotube (CNT)-based element) are provided with each having a first end and a second end. The first end of each element is spaced apart from the screen by an evacuated gap. When the radiation energy passes through the screen with a bias voltage applied thereto, transfer of electrons through each element is induced from the first end to the second end such that a quantity indicative of the electrons transferred through each element can be detected.

  20. Strong electronic correlation effects in coherent multidimensional nonlinear optical spectroscopy.

    Science.gov (United States)

    Karadimitriou, M E; Kavousanaki, E G; Dani, K M; Fromer, N A; Perakis, I E

    2011-05-12

    We discuss a many-body theory of the coherent ultrafast nonlinear optical response of systems with a strongly correlated electronic ground state that responds unadiabatically to photoexcitation. We introduce a truncation of quantum kinetic density matrix equations of motion that does not rely on an expansion in terms of the interactions and thus applies to strongly correlated systems. For this we expand in terms of the optical field, separate out contributions to the time-evolved many-body state due to correlated and uncorrelated multiple optical transitions, and use "Hubbard operator" density matrices to describe the exact dynamics of the individual contributions within a subspace of strongly coupled states, including "pure dephasing". Our purpose is to develop a quantum mechanical tool capable of exploring how, by coherently photoexciting selected modes, one can trigger nonlinear dynamics of strongly coupled degrees of freedom. Such dynamics could lead to photoinduced phase transitions. We apply our theory to the nonlinear response of a two-dimensional electron gas (2DEG) in a magnetic field. We coherently photoexcite the two lowest Landau level (LL) excitations using three time-delayed optical pulses. We identify some striking temporal and spectral features due to dynamical coupling of the two LLs facilitated by inter-Landau-level magnetoplasmon and magnetoroton excitations and compare to three-pulse four-wave-mixing (FWM) experiments. We show that these features depend sensitively on the dynamics of four-particle correlations between an electron-hole pair and a magnetoplasmon/magnetoroton, reminiscent of exciton-exciton correlations in undoped semiconductors. Our results shed light into unexplored coherent dynamics and relaxation of the quantum Hall system (QHS) and can provide new insight into non-equilibrium co-operative phenomena in strongly correlated systems.

  1. Optically programmable electron spin memory using semiconductor quantum dots.

    Science.gov (United States)

    Kroutvar, Miro; Ducommun, Yann; Heiss, Dominik; Bichler, Max; Schuh, Dieter; Abstreiter, Gerhard; Finley, Jonathan J

    2004-11-04

    The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.

  2. KM3NeT Digital Optical Module electronics

    Science.gov (United States)

    Real, Diego

    2016-04-01

    The KM3NeT collaboration is currently building of a neutrino telescope with a volume of several cubic kilometres at the bottom of the Mediterranean Sea. The telescope consists of a matrix of Digital Optical Modules that will detect the Cherenkov light originated by the interaction of the neutrinos in the proximity of the detector. This contribution describes the main components of the read-out electronics of the Digital Optical Module: the Power Board, which delivers all the power supply required by the Digital Optical Molule electronics; the Central Logic Board, the main core of the read-out system, hosting 31 Time to Digital Converters with 1 ns resolution and the White Rabbit protocol embedded in the Central Logic Board Field Programmable Gate Array; the Octopus boards, that transfer the Low Voltage Digital Signals from the PMT bases to the Central Logic Board and finally the PMT bases, in charge of converting the analogue signal produced in the 31 3" PMTs into a Low Voltage Digital Signal.

  3. KM3NeT Digital Optical Module electronics

    Directory of Open Access Journals (Sweden)

    Real Diego

    2016-01-01

    Full Text Available The KM3NeT collaboration is currently building of a neutrino telescope with a volume of several cubic kilometres at the bottom of the Mediterranean Sea. The telescope consists of a matrix of Digital Optical Modules that will detect the Cherenkov light originated by the interaction of the neutrinos in the proximity of the detector. This contribution describes the main components of the read-out electronics of the Digital Optical Module: the Power Board, which delivers all the power supply required by the Digital Optical Molule electronics; the Central Logic Board, the main core of the read-out system, hosting 31 Time to Digital Converters with 1 ns resolution and the White Rabbit protocol embedded in the Central Logic Board Field Programmable Gate Array; the Octopus boards, that transfer the Low Voltage Digital Signals from the PMT bases to the Central Logic Board and finally the PMT bases, in charge of converting the analogue signal produced in the 31 3” PMTs into a Low Voltage Digital Signal.

  4. Structural, electronic and optical properties of brookite phase titanium dioxide

    Science.gov (United States)

    Samat, M. H.; Taib, M. F. M.; Hassan, O. H.; Yahya, M. Z. A.; Ali, A. M. M.

    2017-04-01

    Structural, electronic and optical properties of titanium dioxide (TiO2) in brookite phase were studied via first-principles calculations in the framework of density functional theory (DFT). The exchange-correlation functional from local density approximation (LDA) and generalized gradient approximation (GGA) were used to calculate the properties of brookite TiO2. The structural parameters of brookite in orthorhombic structure (Pbca space group) are in good agreement with the previous theoretical and experimental data. The obtained direct band gaps from GGA are slightly higher than LDA. Both LDA and GGA band gaps underestimate the experimental band gap due to the well-known limitation of DFT. The density of states (DOS) displays the hybridization of O 2p and Ti 3d states and Mulliken population analysis presents the net charge of Ti and O atoms in brookite. The dielectric function was also analyzed together with other optical properties such as refractive index, reflectivity, loss function and absorption coefficient. The first-principles calculations on the least studied TiO2 in brookite phase using different exchange-correlation functional from LDA and GGA provide theoretical understanding about its structural, electronic and optical properties. Besides, these results would give a better support for technological applications concerning TiO2 materials using brookite phase.

  5. Fast character projection electron beam lithography for diffractive optical elements

    Science.gov (United States)

    Harzendorf, Torsten; Fuchs, Frank; Banasch, Michael; Zeitner, Uwe D.

    2014-05-01

    Electron beam lithography becomes attractive also for the fabrication of large scale diffractive optical elements by the use of the character projection (CP) technique. Even in the comparable fast variable shaped beam (VSB) exposure approach for conventional electron beam writers optical nanostructures may require very long writing times exceeding 24 hours per wafer because of the high density of features, as required by e.g. sub-wavelength nanostructures. Using character projection, the writing time can be reduced by more than one order of magnitude, due to the simultaneous exposure of multiple features. The benefit of character projection increases with increasing complexity of the features and decreasing period. In this contribution we demonstrate the CP technique for a grating of hexagonal symmetry at 350nm period. The pattern is designed to provide antireflective (AR) properties, which can be adapted in their spectral and angular domain for applications from VIS to NIR by changing the feature size and the etching depth of the nanostructure. This AR nanostructure can be used on the backside of optical elements e.g. gratings, when an AR coating stack could not be applied for the reason of climatic conditions or wave front accuracy.

  6. Brazilian rescue plan sparks surprise

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    According to Financial Times,when Guido Mantega,Brazil's finance minister,suddenly proposed a “Bric” rescue package for the eurozone this week,he caught not only other world leaders by surprise but also many of his fellow countrymen.Even as officials from other members of the so-called Bric grouping,Russia,India and China,said it was the first they heard of the idea,many ordinary Brazilians expressed shock at the notion of bailing out the world's richest trading bloc.

  7. Organic non-linear optics and opto-electronics

    Science.gov (United States)

    Maldonado, J. L.; Ramos-Ortíz, G.; Rodríguez, M.; Meneses-Nava, M. A.; Barbosa-García, O.; Santillán, R.; Farfán, N.

    2010-12-01

    π-conjugated organic molecules and polymers are of great importance in physics, chemistry, material science and engineering. It is expected that, in the near future, organic materials will find widespread use in many technological applications. In the case of organic opto-electronic systems, the list of devices includes light emitting diodes (OLEDs), photovoltaic cells (OPVs), field-effect transistors (OFET), photorefractive materials for light manipulation, among others. These materials are also used for photonic applications: all-optical switching, modulators, optical correlators, plastic waveguides, all polymeric integrated circuits, solid-state lasers, and for biophotonic applications as in the case of the development of organic labels for multiphoton microscopy and photodynamic therapy. The advances in the developing of organic compounds with better mechanical, electrical, and optical (linear and non-linear) characteristics are of a great importance for this field. Here, we present the research on this area carried out at the Centro de Investigaciones en Óp-tica (CIO), in collaboration with Chemistry Departments of different institutions. This work focuses on the optical characterization of materials through several techniques such as TOF, FWM, TBC, THG Maker Fringes, HRS, Z-scan, and TPEF. Additionally, some applications, such as dynamic holography by using photorefractive polymers, and OPVs cells will be discussed.

  8. Optically transparent semiconducting polymer nanonetwork for flexible and transparent electronics

    Science.gov (United States)

    Yu, Kilho; Park, Byoungwook; Kim, Geunjin; Kim, Chang-Hyun; Park, Sungjun; Kim, Jehan; Jung, Suhyun; Jeong, Soyeong; Kwon, Sooncheol; Kang, Hongkyu; Kim, Junghwan; Yoon, Myung-Han; Lee, Kwanghee

    2016-12-01

    Simultaneously achieving high optical transparency and excellent charge mobility in semiconducting polymers has presented a challenge for the application of these materials in future “flexible” and “transparent” electronics (FTEs). Here, by blending only a small amount (˜15 wt %) of a diketopyrrolopyrrole-based semiconducting polymer (DPP2T) into an inert polystyrene (PS) matrix, we introduce a polymer blend system that demonstrates both high field-effect transistor (FET) mobility and excellent optical transparency that approaches 100%. We discover that in a PS matrix, DPP2T forms a web-like, continuously connected nanonetwork that spreads throughout the thin film and provides highly efficient 2D charge pathways through extended intrachain conjugation. The remarkable physical properties achieved using our approach enable us to develop prototype high-performance FTE devices, including colorless all-polymer FET arrays and fully transparent FET-integrated polymer light-emitting diodes.

  9. Transfer of optical orbital angular momentum to a bound electron

    Science.gov (United States)

    Schmiegelow, Christian T.; Schulz, Jonas; Kaufmann, Henning; Ruster, Thomas; Poschinger, Ulrich G.; Schmidt-Kaler, Ferdinand

    2016-10-01

    Photons can carry angular momentum, not only due to their spin, but also due to their spatial structure. This extra twist has been used, for example, to drive circular motion of microscopic particles in optical tweezers as well as to create vortices in quantum gases. Here we excite an atomic transition with a vortex laser beam and demonstrate the transfer of optical orbital angular momentum to the valence electron of a single trapped ion. We observe strongly modified selection rules showing that an atom can absorb two quanta of angular momentum from a single photon: one from the spin and another from the spatial structure of the beam. Furthermore, we show that parasitic ac-Stark shifts from off-resonant transitions are suppressed in the dark centre of vortex beams. These results show how light's spatial structure can determine the characteristics of light-matter interaction and pave the way for its application and observation in other systems.

  10. Optical Properties and Electronic Structure of CaO

    Science.gov (United States)

    Sobolev, V. V.; Merzlyakov, D. A.; Sobolev, V. Val.

    2016-09-01

    Spectra of 11 optical functions of CaO in the ranges 6.5-7.2 eV at 2 K and 0-60 eV at 77 K were determined. A total of 14 maxima and shoulders of excitons and interband transitions were found including two distinct exciton structures at 6.9 and 11.4 eV and volume and surface plasmon maxima at ~38.3 and 33.2 eV, respectively. Their principal features and general trends were established. Variable formation efficiencies of spectra of the dielectric permittivity and characteristic electron-energy losses in different spectral ranges were analyzed. The calculations used known experimental reflectance spectra and computer programs based on the Kramers-Kronig correlations and analytical formulae for the relationship between optical functions.

  11. Optical and electronic loss analysis of mesoporous solar cells

    Science.gov (United States)

    Kovalsky, Anton; Burda, Clemens

    2016-07-01

    We review the art of complete optical and electronic characterization of the popular mesoporous solar cell motif. An overview is given of how the mesoporous paradigm is applied to solar cell technology, followed by a discussion on the variety of techniques available for thoroughly probing efficiency leaching mechanisms at every stage of the energy transfer pathway. Some attention is dedicated to the rising importance of computational results to augment loss analysis due to the complexity of solar cell devices, which have emergent properties that are important to account for, but difficult to measure, such as parasitic absorption.

  12. Correlative stochastic optical reconstruction microscopy and electron microscopy.

    Directory of Open Access Journals (Sweden)

    Doory Kim

    Full Text Available Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets.

  13. Some Surprises in Relativistic Gravity

    CERN Document Server

    Santos, N O

    2016-01-01

    General Relativity has had tremendous success both on the theoretical and the experimental fronts for over a century now. However, the contents of the theory are far from exhausted. Only very recently, with the detection of gravitational waves from colliding black holes, we have started probing the behavior of gravity in the strongly non-linear regime. Even today, the studies of black holes keep revealing more and more paradoxes and bizarre results. In this paper, inspired by David Hilbert's startling observation, we show that, contrary to the conventional wisdom, a freely falling test particle feels gravitational repulsion by a black hole as seen by the asymptotic observer. We dig deeper into this surprising behavior of relativistic gravity and offer some explanations.

  14. Optically Forbidden Excitations of 3s Electron of Argon by Fast Electron Impact

    Institute of Scientific and Technical Information of China (English)

    朱林繁; 成华东; 刘小井; 田鹏; 苑震生; 李文斌; 徐克尊

    2003-01-01

    The electron energy loss spectrum of argon in the energy region of 24.5-30.5eV was measured at 2.5 keV impact energy. The line profile parameters of the optically forbidden excitations of 3s-1ns (n = 4-6) and 3s-1nd (n = 3-7) of argon, I.e.,Eγ,Г,q and p,were determined.

  15. Electronic structures and optical properties of two anthracene derivatives

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng; XIA Baohui; SUN Yinghui; YANG Bing; TIAN Wenjing; WANG Yue; ZHANG Guo

    2006-01-01

    The electronic structures and the optical properties of two anthracene derivatives, DBMA and DAA, are investigated by both experimental techniques and quantum chemical calculations. The cyclic voltammetry and differential pulse polarograph measurement revealed that the introduction of benzol-imidazol and pyrrolo-pyridine group on the anthracene block can affect the electrochemical behavior of DBMA and DAA. Both UV/visible absorption and emission spectra of DBMA and DAA are red-shifted in contrast to the unsubstituted anthracene, so that the anthracene derivatives emit at blue-green region and the luminescence yields are remarkably elevated (over 90%). The B3LYP/6-31G theoretical calculations explored that the electronic structures of the anthracene derivatives are perturbed by the side substitutes on the anthracene block, and the slight variation of the electronic structures results in the enhanced electron accepting ability and the decrease of the HOMO-LUMO energy gap,which is the origin of the emission to be shifted to blue-green region. The non-planar geometry structures of DBMA and DAA are responsible for the excellent luminescence yields.

  16. Device with foil corrector for electron optical aberrations at low energy

    NARCIS (Netherlands)

    Kruit, P.; Van Aken, R.H.

    2004-01-01

    An electron optical device for, in use, creating negative spherical and chromatic aberration and reducing the energy spread in an electron beam travelling on an optical axis, including: at least one conducting plate substantially perpendicular to the optical axis with a first aperture having a first

  17. Device with foil corrector for electron optical aberrations at low energy

    NARCIS (Netherlands)

    Kruit, P.; Van Aken, R.H.

    2004-01-01

    An electron optical device for, in use, creating negative spherical and chromatic aberration and reducing the energy spread in an electron beam travelling on an optical axis, including: at least one conducting plate substantially perpendicular to the optical axis with a first aperture having a first

  18. Optical Shaping of X-Ray Free-Electron Lasers

    Science.gov (United States)

    Marinelli, A.; Coffee, R.; Vetter, S.; Hering, P.; West, G. N.; Gilevich, S.; Lutman, A. A.; Li, S.; Maxwell, T.; Galayda, J.; Fry, A.; Huang, Z.

    2016-06-01

    In this Letter we report the experimental demonstration of a new temporal shaping technique for x-ray free-electron lasers (FELs). This technique is based on the use of a spectrally shaped infrared (IR) laser and allows optical control of the x-ray generation process. By accurately manipulating the spectral amplitude and phase of the IR laser, we can selectively modify the electron bunch longitudinal emittance thus controlling the duration of the resulting x-ray pulse down to the femtosecond time scale. Unlike other methods currently in use, optical shaping is directly applicable to the next generation of high-average power x-ray FELs such as the Linac Coherent Light Source-II or the European X-FEL, and it enables pulse shaping of FELs at the highest repetition rates. Furthermore, this laser-shaping technique paves the way for flexible tailoring of complex multicolor FEL pulse patterns required for nonlinear multidimensional x-ray spectroscopy as well as novel multicolor diffraction imaging schemes.

  19. Optical properties of Dirac electrons in a parabolic well.

    Science.gov (United States)

    Kim, S C; Lee, J W; Yang, S-R Eric

    2013-09-01

    A single electron transitor may be fabricated using qunatum dots. A good model for the confinement potential of a quantum dot is a parabolic well. Here we consider such a parabolic dot made of graphene. Recently, we found counter intuitively that resonant quasi-boundstates of both positive and negative energies exist in the energy spectrum. The presence of resonant quasi-boundstates of negative energies is a unique property of massless Dirac fermions. As magnetic field B gets smaller the energy width of these states become broader and for sufficiently weak value of B resonant quasi-bound states disappear into a quasi-continuum. In the limit of small B resonant and nonresonant states transform into discrete anomalous states with a narrow probability density peak inside the well and another broad peak under the potential barrier. In this paper we compute the optical strength between resonant quasi-bound states as a function of B, and investigate how the signature of resonant quasi-bound states of Dirac electrons may appear in optical measurements.

  20. Modeling a Miniaturized Scanning Electron Microscope Focusing Column - Lessons Learned in Electron Optics Simulation

    Science.gov (United States)

    Loyd, Jody; Gregory, Don; Gaskin, Jessica

    2016-01-01

    This presentation discusses work done to assess the design of a focusing column in a miniaturized Scanning Electron Microscope (SEM) developed at the NASA Marshall Space Flight Center (MSFC) for use in-situ on the Moon-in particular for mineralogical analysis. The MSFC beam column design uses purely electrostatic fields for focusing, because of the severe constraints on mass and electrical power consumption imposed by the goals of lunar exploration and of spaceflight in general. The resolution of an SEM ultimately depends on the size of the focused spot of the scanning beam probe, for which the stated goal here is a diameter of 10 nanometers. Optical aberrations are the main challenge to this performance goal, because they blur the ideal geometrical optical image of the electron source, effectively widening the ideal spot size of the beam probe. In the present work the optical aberrations of the mini SEM focusing column were assessed using direct tracing of non-paraxial rays, as opposed to mathematical estimates of aberrations based on paraxial ray-traces. The geometrical ray-tracing employed here is completely analogous to ray-tracing as conventionally understood in the realm of photon optics, with the major difference being that in electron optics the lens is simply a smoothly varying electric field in vacuum, formed by precisely machined electrodes. Ray-tracing in this context, therefore, relies upon a model of the electrostatic field inside the focusing column to provide the mathematical description of the "lens" being traced. This work relied fundamentally on the boundary element method (BEM) for this electric field model. In carrying out this research the authors discovered that higher accuracy in the field model was essential if aberrations were to be reliably assessed using direct ray-tracing. This led to some work in testing alternative techniques for modeling the electrostatic field. Ultimately, the necessary accuracy was attained using a BEM

  1. Precision laser processing for micro electronics and fiber optic manufacturing

    Science.gov (United States)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  2. Implementation of Optical Characterization for Flexible Organic Electronics Applications

    Science.gov (United States)

    Laskarakis, A.; Logothetidis, S.

    One of the most rapidly evolving sectors of the modern science and technology is the flexible organic electronic devices (FEDs) that are expected to significantly improve and revolutionize our everyday life. The FED application includes the generation of electricity by renewable sources (by organic photovoltaic cells - OPVs), power storage (thin film batteries), the visualization of information (by organic displays), the working and living environment (ambient lighting, sensors), safety, market (smart labels, radio frequency identification tags - RFID), textiles (smart fabrics with embedded display and sensor capabilities), as well as healthcare (smart sensors for vital sign monitoring), etc. Although there has been important progresses in inorganic-based Si devices, there are numerous advances in the organic (semiconducting, conducting), inorganic, and hybrid (organic-inorganic) materials that exhibit desirable properties and stability, and in the synthesis and preparation methods. The understanding of the organic material properties can lead to the fast progress of the functionality and performance of FEDs. The investigation of the optical properties of these materials can promote the understanding of the optical, electrical, structural properties of organic semiconductors and electrodes and can contribute to the optimization of the synthesis process and the tuning of their structure and morphology. In this chapter, we will describe briefly some of the advances toward the implementation of optical characterization methods, such as Spectroscopic Ellipsometry (SE) from the infrared to the visible and ultraviolet spectral region for the study of materials (flexible polymer substrates, barrier layers, transparent electrodes) to be used for application in the fabrication of FEDs.

  3. Optical absorption properties of electron bubbles and experiments on monitoring individual electron bubbles in liquid helium

    Science.gov (United States)

    Guo, Wei

    When a free electron is injected into liquid helium, it forms a microscopic bubble essentially free of helium atoms, which is referred to as an electron bubble. It represents a fine example of a quantum-mechanical particle confined in a potential well. In this dissertation, we describe our studies on bubble properties, especially the optical absorption properties of ground state electron bubbles and experiments on imaging individual electron bubbles in liquid helium. We studied the effect of zero-point and thermal fluctuations on the shape of ground state electron bubbles in liquid helium. The results are used to determine the line shape for the 1S to 1P optical transition. The calculated line shape is in very good agreement with the experimental measurements of Grimes and Adams. For 1S to 2P transition, the obtained transition line width agrees well with the measured data of Zipfel over a range of pressure up to 15 bars. Fluctuations in the bubble shape also make other "unallowed" transitions possible. The transition cross-sections from the 1S state to the 1D and 2D states are calculated with magnitude approximately two orders smaller than that of the 1S to 1P and 2P transitions. In our electron bubble imaging experiments, a planar ultrasonic transducer was used to generate strong sound wave pulse in liquid helium. The sound pulse passed through the liquid so as to produce a transient negative pressure over a large volume (˜ 1 cm3). An electron bubble that was passed by the sound pulse exploded for a fraction of a microsecond and grew to have a radius of around 10 microns. While the bubble had this large size it was illuminated with a flash lamp and its position was recorded. In this way, we can determine its position. Through the application of a series of sound pulses, we can then take images along the track of individual electrons. The motion of individual electron bubbles has been successfully monitored. Interesting bubble tracks that may relate to electrons

  4. Cone-like graphene nanostructures: electronic and optical properties.

    Science.gov (United States)

    Ulloa, Pablo; Latgé, Andrea; Oliveira, Luiz E; Pacheco, Monica

    2013-09-12

    : A theoretical study of electronic and optical properties of graphene nanodisks and nanocones is presented within the framework of a tight-binding scheme. The electronic densities of states and absorption coefficients are calculated for such structures with different sizes and topologies. A discrete position approximation is used to describe the electronic states taking into account the effect of the overlap integral to first order. For small finite systems, both total and local densities of states depend sensitively on the number of atoms and characteristic geometry of the structures. Results for the local densities of charge reveal a finite charge distribution around some atoms at the apices and borders of the cone structures. For structures with more than 5,000 atoms, the contribution to the total density of states near the Fermi level essentially comes from states localized at the edges. For other energies, the average density of states exhibits similar features to the case of a graphene lattice. Results for the absorption spectra of nanocones show a peculiar dependence on the photon polarization in the infrared range for all investigated structures.

  5. Transient optical response of ultrafast nonequilibrium excited metals: Effects of electron-electron contribution to collisional absorption

    CERN Document Server

    Colombier, Jean-Philippe; Audouard, Eric; Stoian, Razvan

    2008-01-01

    Approaching energy coupling in laser-irradiated metals, we point out the role of electron-electron collision as an efficient control factor for ultrafast optical absorption. The high degree of laser-induced electron-ion nonequilibrium drives a complex absorption pattern with consequences on the transient optical properties. Consequently, high electronic temperatures determine largely the collision frequency and establish a transition between absorptive regimes in solid and plasma phases. In particular, taking into account umklapp electron-electron collisions, we performed hydrodynamic simulations of the laser-matter interaction to calculate laser energy deposition during the electron-ion nonequilibrium stage and subsequent matter transformation phases. We observe strong correlations between optical and thermodynamic properties according to the experimental situations. A suitable connection between solid and plasma regimes is chosen in accordance with models that describe the behavior in extreme, asymptotic re...

  6. Simulation of electron beam formation and transport in a gas-filled electron-optical system with a plasma emitter

    Science.gov (United States)

    Grishkov, A. A.; Kornilov, S. Yu.; Rempe, N. G.; Shidlovskiy, S. V.; Shklyaev, V. A.

    2016-07-01

    The results of computer simulations of the electron-optical system of an electron gun with a plasma emitter are presented. The simulations are performed using the KOBRA3-INP, XOOPIC, and ANSYS codes. The results describe the electron beam formation and transport. The electron trajectories are analyzed. The mechanisms of gas influence on the energy inhomogeneity of the beam and its current in the regions of beam primary formation, acceleration, and transport are described. Recommendations for optimizing the electron-optical system with a plasma emitter are presented.

  7. Simulation of electron beam formation and transport in a gas-filled electron-optical system with a plasma emitter

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, A. A. [Russian Academy of Sciences, Institute of High Current Electronics, Siberian Branch (Russian Federation); Kornilov, S. Yu., E-mail: kornilovsy@gmail.com; Rempe, N. G. [Tomsk State University of Control Systems and Radioelectronics (Russian Federation); Shidlovskiy, S. V. [Tomsk State University (Russian Federation); Shklyaev, V. A. [Russian Academy of Sciences, Institute of High Current Electronics, Siberian Branch (Russian Federation)

    2016-07-15

    The results of computer simulations of the electron-optical system of an electron gun with a plasma emitter are presented. The simulations are performed using the KOBRA3-INP, XOOPIC, and ANSYS codes. The results describe the electron beam formation and transport. The electron trajectories are analyzed. The mechanisms of gas influence on the energy inhomogeneity of the beam and its current in the regions of beam primary formation, acceleration, and transport are described. Recommendations for optimizing the electron-optical system with a plasma emitter are presented.

  8. Electron-electron interactions, topological phase, and optical properties of a charged artificial benzene ring

    Science.gov (United States)

    Ozfidan, Isil; Vladisavljevic, Milos; Korkusinski, Marek; Hawrylak, Pawel

    2015-12-01

    We present a theory of the electronic and optical properties of a charged artificial benzene ring (ABR). The ABR is described by the extended Hubbard model solved using exact diagonalization methods in both real and Fourier space as a function of the tunneling matrix element t , Hubbard on-site repulsion U , and interdot interaction V . In the strongly interacting case, we discuss exact analytical results for the spectrum of the hole in a half-filled ABR dressed by the spin excitations of the remaining electrons. The spectrum is interpreted in terms of the appearance of a topological phase associated with an effective gauge field piercing through the ring. We show that the maximally spin-polarized (S =5 /2 ) and maximally spin-depolarized (S =1 /2 ) states are the lowest energy, orbitally nondegenerate, states. We discuss the evolution of the phase diagram and level crossings as interactions are switched off and the ground state becomes spin nondegenerate but orbitally degenerate S =1 /2 . We present a theory of optical absorption spectra and show that the evolution of the ground and excited states, level crossings, and presence of artificial gauge can be detected optically.

  9. Some Surprising Introductory Physics Facts and Numbers

    Science.gov (United States)

    Mallmann, A. James

    2016-01-01

    In the entertainment world, people usually like, and find memorable, novels, short stories, and movies with surprise endings. This suggests that classroom teachers might want to present to their students examples of surprising facts associated with principles of physics. Possible benefits of finding surprising facts about principles of physics are…

  10. Transmission electron microscope sample holder with optical features

    Science.gov (United States)

    Milas, Mirko [Port Jefferson, NY; Zhu, Yimei [Stony Brook, NY; Rameau, Jonathan David [Coram, NY

    2012-03-27

    A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

  11. Protein folding: the optically induced electronic excitations model

    Energy Technology Data Exchange (ETDEWEB)

    Jeknic-Dugic, J [Department of Physics, Faculty of Science, Nis (Serbia)], E-mail: jjeknic@pmf.ni.ac.yu

    2009-07-15

    The large-molecules conformational transitions problem (the 'protein folding problem') is an open issue of vivid current science research work of fundamental importance for a number of modern science disciplines as well as for nanotechnology. Here, we elaborate the recently proposed quantum-decoherence-based approach to the issue. First, we emphasize a need for detecting the elementary quantum mechanical processes (whose combinations may give a proper description of the realistic experimental situations) and then we design such a model. As distinct from the standard approach that deals with the conformation system, we investigate the optically induced transitions in the molecule electrons system that, in effect, may give rise to a conformation change in the molecule. Our conclusion is that such a model may describe the comparatively slow conformational transitions.

  12. Optically oriented electron spin transmission across ferromagnet/semiconductor interfaces

    Science.gov (United States)

    Taniyama, T.; Suzuki, I.; Wada, E.; Shirahata, Y.; Naito, T.; Itoh, M.; Yamaguchi, M.

    2011-10-01

    Electron spin transmission across ferromagnetic metal/semiconductor interfaces with different ferromagnetic contacts, i.e., Fe and FeGa, is studied using optical spin orientation method. The bias dependence of spin dependent photocurrent, which is the difference between the photocurrents excited with left- and right- handed circularly polarized lights, is found to show a dip-like feature at -0.058 and 0.021 V for Fe and FeGa contacts, respectively. The origin of the bias dependence of the spin dependent photocurrent is discussed on the basis of the Breit-Wigner type resonant tunneling process via interface resonant states, comparing the results for the both contacts. The results also indicate that the control of interface states is crucial to achieve efficient spin filtering effect at the ferromagnet/semiconductor interfaces.

  13. Electronic and optical properties of Fe, Pd, and Ti studied by reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Dahlang [Department of Physics, Hasanuddin University, Makassar 90245 (Indonesia); Kraaer, Jens; Tougaard, Sven [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2014-06-28

    We have studied the electronic and optical properties of Fe, Pd, and Ti by reflection electron energy-loss spectroscopy (REELS). REELS spectra recorded for primary energies in the range from 300 eV to 10 keV were corrected for multiple inelastically scattered electrons to determine the effective inelastic-scattering cross section. The dielectric functions and optical properties were determined by comparing the experimental inelastic-electron scattering cross section with a simulated cross section calculated within the semi-classical dielectric response model in which the only input is Im(−1/ε) by using the QUEELS-ε(k,ω)-REELS software package. The complex dielectric functions ε(k,ω), in the 0–100 eV energy range, for Fe, Pd, and Ti were determined from the derived Im(−1/ε) by Kramers-Kronig transformation and then the refractive index n and extinction coefficient k. The validity of the applied model was previously tested and found to give consistent results when applied to REELS spectra at energies between 300 and 1000 eV taken at widely different experimental geometries. In the present paper, we provide, for the first time, a further test on its validity and find that the model also gives consistent results when applied to REELS spectra in the full range of primary electron energies from 300 eV to 10000 eV. This gives confidence in the validity of the applied method.

  14. Optical studies on electron beam evaporated Lithium Triborate films

    Science.gov (United States)

    Mohandoss, R.; Dhanuskodi, S.; Sanjeeviraja, C.

    2012-10-01

    Lithium triborate (LB3) has numerous applications in scintillator for neutron detection, laser weapon and communication. LB3 films have been prepared by electron beam evaporation technique under a pressure of 1 × 10-5 mbar on glass substrate at 323 K for 4 min. The crystallographic orientations and the lattice parameters (a = 8.55 (2); b = 5.09 (2); c = 7.39 (2) Å) were determined by powder XRD indicating the (1 1 1) preferential orientation of the film. The lower cut off wavelength at 325 nm with 75% transparency was measured from the UV-vis spectrum. The optical constants extinction coefficient (K), reflectance (R), the linear refractive index (1.34) and the optical energy band gap (˜4.0 eV) were estimated. The photoluminescence spectrum shows the emission peak in the visible region with low concentration of oxygen defects. LB3 is found to be second harmonic generation (SHG) active using a Q-switched Nd:YAG laser (1064 nm, 9 ns, 10 Hz). The nonlinear refractive index (n2 ˜ 10-16 cm2/W) and nonlinear absorption coefficient (β ˜ 10-2 cm/W) reveal (Z-scan technique) that the material has negative nonlinearity and self-focusing nature.

  15. Electronic, elastic, and optical properties of monolayer BC2N

    Science.gov (United States)

    Jiao, Lina; Hu, Meng; Peng, Yusi; Luo, Yanting; Li, Chunmei; Chen, Zhiqian

    2016-12-01

    The structural stability, electronic structure, elasticity, and optical properties of four types of monolayer BC2N have been investigated from first principles using calculation based on density functional theory. The results show that the structural stability of BC2N increases with the number of C-C and B-N bonds. By calculating the two-dimensional Young's modulus, shear modulus, Poisson's ratio, and shear anisotropic factors in different directions, four structures present various anisotropies and the most stable structure is almost isotropic. For C-type BC2N, the values of two-dimensional Young's modulus, shear modulus, and bulk modulus (309, 128, 195 GPa m-1), are smaller than those of graphene (343, 151, 208) but bigger than those of h-BN (286, 185, 116). Furthermore, the dielectric function, refractive index, reflectivity, absorption coefficient, and energy loss spectrum are also calculated to investigate the mechanism underpinning the optical transitions in BC2N, revealing monolayer BC2N as a candidate window material.

  16. Young Galaxy's Magnetism Surprises Astronomers

    Science.gov (United States)

    2008-10-01

    Astronomers have made the first direct measurement of the magnetic field in a young, distant galaxy, and the result is a big surprise. Looking at a faraway protogalaxy seen as it was 6.5 billion years ago, the scientists measured a magnetic field at least 10 times stronger than that of our own Milky Way. They had expected just the opposite. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF The scientists made the discovery using the National Science Foundation's ultra-sensitive Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. "This new measurement indicates that magnetic fields may play a more important role in the formation and evolution of galaxies than we have realized," said Arthur Wolfe, of the University of California-San Diego (UCSD). At its great distance, the protogalaxy is seen as it was when the Universe was about half its current age. According to the leading theory, cosmic magnetic fields are generated by the dynamos of rotating galaxies -- a process that would produce stronger fields with the passage of time. In this scenario, the magnetic fields should be weaker in the earlier Universe, not stronger. The new, direct magnetic-field measurement comes on the heels of a July report by Swiss and American astronomers who made indirect measurements that also implied strong magnetic fields in the early Universe. "Our results present a challenge to the dynamo model, but they do not rule it out," Wolfe said. There are other possible explanations for the strong magnetic field seen in the one protogalaxy Wolfe's team studied. "We may be seeing the field close to the central region of a massive galaxy, and we know such fields are stronger toward the centers of nearby galaxies. Also, the field we see may have been amplified by a shock wave caused by the collision of two galaxies," he said. The protogalaxy studied with the GBT, called DLA-3C286, consists of gas with little or no star formation occurring in it. The astronomers suspect that

  17. Effects of Electron-Phonon Interaction on Linear and Nonlinear Optical Absorption in Cylindrical Quantum Wires

    Institute of Scientific and Technical Information of China (English)

    YU You-Bin

    2008-01-01

    The electron-phonon interaction influences on linear and nonlinear optical absorption in cylindrical quantum wires (CQW) with an infinite confining potential are investigated. The optical absorption coefficients are obtained by using the compact-density-matrix approach and iterative method, and the numerical results are presented for GaAs CQW. The results show that the electron-phonon interaction makes a distinct influence on optical absorption in CQW. The electron-phonon interaction on the wave functions of electron dominates the values of absorption coefficients and the correction of the electron-phonon effect on the energies of the electron makes the absorption peaks blue shift and become wider. Moreover, the electron-phonon interaction influence on optical absorption with an infinite confining potential is different from that with a finite confining potential.

  18. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rhodes, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schemer-Kohrn, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guzman, Anthony D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-01

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  19. Electronic Structure and Optical Properties Of EuIn2P2

    KAUST Repository

    Singh, Nirpendra

    2011-10-25

    The electronic structures and, optical and magneto‐optical properties of a newly found Zintl compound EuIn2P2 have been investigated within the density‐functional theory using the highly precise full‐potential linear‐augmented‐plane‐wave method. Results of detailed investigation of the electronic structure and related properties are reported.

  20. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rhodes, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schemer-Kohrn, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guzman, Anthony D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-30

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  1. Surprising characteristics of visual systems of invertebrates.

    Science.gov (United States)

    González-Martín-Moro, J; Hernández-Verdejo, J L; Jiménez-Gahete, A E

    2017-01-01

    To communicate relevant and striking aspects about the visual system of some close invertebrates. Review of the related literature. The capacity of snails to regenerate a complete eye, the benefit of the oval shape of the compound eye of many flying insects as a way of stabilising the image during flight, the potential advantages related to the extreme refractive error that characterises the ocelli of many insects, as well as the ability to detect polarised light as a navigation system, are some of the surprising capabilities present in the small invertebrate eyes that are described in this work. The invertebrate eyes have capabilities and sensorial modalities that are not present in the human eye. The study of the eyes of these animals can help us to improve our understanding of our visual system, and inspire the development of optical devices. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Amplified short-wavelength light scattered by relativistic electrons in the laser-induced optical lattice

    CERN Document Server

    Andriyash, I A; Malka, V; d'Humières, E; Balcou, Ph

    2014-01-01

    The scheme of the XUV/X-ray free electron laser based on the optical undulator created by two overlapped transverse laser beams is analyzed. A kinetic theoretical description and an ad hoc numerical model are developed to account for the finite energy spread, angular divergence and the spectral properties of the electron beam in the optical lattice. The theoretical findings are compared to the results of the one- and three-dimensional numerical modeling with the spectral free electron laser code PLARES.

  3. Surprises from Saturn: Implications for Other Environments

    Science.gov (United States)

    Coates, A. J.

    2014-05-01

    The exploration of Saturn by Cassini has provided many surprises regarding: Saturn's rapidly rotating magnetosphere, interactions with its diverse moons, and interactions with the solar wind. Enceladus, orbiting at 4 Saturn radii (RS), was found to have plumes of water vapour and ice which are the dominant source for the inner magnetosphere. Charged water clusters, charged dust and photoelectrons provide key populations in the 'dusty plasma' observed. Direct pickup is seen near Enceladus and field-aligned currents create a spot in Saturn's aurora. At Titan, orbiting at 20 RS, unexpected heavy negative and positive ions are seen in the ionosphere, which provide the source for Titan's haze. Ionospheric plasma is seen in Titan's tail, enabling ion escape to be estimated at 7 tonnes per day. Saturn's ring ionosphere was seen early in the mission and a return will be made in 2017. In addition, highly accelerated electrons are seen at Saturn's high Mach number (MA˜100) quasi-parallel bow shock. Here we review some of these key new results, and discuss the implications for other solar system objects.

  4. Evaluative Appraisals of Environmental Mystery and Surprise

    Science.gov (United States)

    Nasar, Jack L.; Cubukcu, Ebru

    2011-01-01

    This study used a desktop virtual environment (VE) of 15 large-scale residential streets to test the effects of environmental mystery and surprise on response. In theory, mystery and surprise should increase interest and visual appeal. For each VE, participants walked through an approach street and turned right onto a post-turn street. We designed…

  5. Evaluative Appraisals of Environmental Mystery and Surprise

    Science.gov (United States)

    Nasar, Jack L.; Cubukcu, Ebru

    2011-01-01

    This study used a desktop virtual environment (VE) of 15 large-scale residential streets to test the effects of environmental mystery and surprise on response. In theory, mystery and surprise should increase interest and visual appeal. For each VE, participants walked through an approach street and turned right onto a post-turn street. We designed…

  6. Analyst Information Precision and Small Earnings Surprises

    NARCIS (Netherlands)

    S. Bissessur; D. Veenman

    2014-01-01

    Prior research attributes zero and small positive earnings surprises to managers’ incentives for earnings management. In contrast, this study introduces and empirically tests an explanation for zero and small positive earnings surprises based on predictable variation in analyst forecast errors. We a

  7. Cognitive and Social Perspectives on Surprise

    Science.gov (United States)

    Adhami, Mundler

    2007-01-01

    Meanings of "surprise" are wide and include uplifting and engaging facets like wonder and amazement on the one hand as well as ones that may be of the opposite nature like interruption and disrupt on the other. Pedagogically, educators who use surprise in class activities are focusing on students being "taken aback" by a situation, hopefully…

  8. Strain Effect on the Electronic and Optical Properties of CdSe Nanowires

    Science.gov (United States)

    Huan, Hao; Chen, Li; Ye, Xiang

    2017-03-01

    First-principles density functional theory (DFT) simulations were carried out to study the strain dependence on the electronic and optical properties of cadmium selenide (CdSe) nanowires (NWs). The band structures, effective masses of electron and holes, dielectric properties, and other optical properties (such as extinction coefficient, optical reflectivity, and absorption coefficient) were calculated under both compressive and tensile uniaxial strains. Size-dependence was also discussed by comparing results among CdSe wires with various diameters. Simulation results show that an interesting band-switch behavior occurs at the valence bands regardless of size. The cause and the consequences of such band-switch behavior were also studied. Further strain dependence on corresponding electronic and optical properties were examined as well. Our results provide insights to possible mechanical tuning via strain on the electronic and optical properties of CdSe NWs.

  9. Synthesis, electronic and optical properties of Si nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L.N.

    1996-09-01

    Silicon and silicon oxide nanostructures have been deposited on solid substrates, in an ultra high vacuum (UHV) chamber, by laser ablation or thermal vaporization. Laser ablation followed by substrate post annealing produced Si clusters with average size of a few nanometers, on highly oriented pyrolytic graphite (HOPG) surfaces. This technique, which is based on surface diffusion, is limited to the production of less than one layer of clusters on a given surface. The low coverage of Si clusters and the possibility of nonradiative decay of excitation in the Si cores to the HOPG substrates in these samples rendered them unsuitable for many optical measurements. Thermal vaporization of Si in an Ar buffer gas, on the contrary, yielded multilayer coverage of Si nanoclusters with a fairly narrow size distribution of about 2 nm, full width at half maximum (FWHM). As a result, further study was performed only on Si nanoclusters synthesized by thermal vaporization in a buffer gas. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) revealed that these nanoclusters were crystalline. However, during synthesis, if oxygen was the buffer gas, a network of amorphous Si oxide nanostructures (an-SiO{sub x}) with occasional embedded Si dots was formed. All samples showed strong infrared and/or visible photoluminescence (PL) with varying decay times from nanoseconds to microseconds depending on synthesis conditions. There were differences in PL spectra for hydrogen and oxygen passivated nc-Si, while many common PL properties between oxygen passivated nc-Si and an SiO{sub x} were observed. The observed experimental results can be best explained by a model involving absorption between quantum confined states in the Si cores and emission for which the decay times are very sensitive to surface and/or interface states.

  10. Optical sensor array platform based on polymer electronic devices

    Science.gov (United States)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  11. New Electronic Technology Applied in Flexible Organic Optical System

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2014-02-01

    Full Text Available The synthesis and application of new organic materials, nanostructured, for developing technology based on organic devices, have been the main focus of the scientific community. In recent years, the first polymeric electronics products have entered the market (organic semiconductor materials and there are some electrochromic devices among them that have been called smart windows, once they control the passage of light or heat through a closed environment as an ordinary window. The main functional aspect of electrochromic devices, when being used in architectural and automotive industry, is to control the passage of light and temperature with thermal and visual comfort. These devices can be flexible and very thin, not containing heavy metals, and formed by layers of organic material deposited in several architectures. In this study, the electro-deposition of organic materials in the Polyaniline, PANI case, which provide stability in optical and electrical parameters, was utilized with the means of developing prototypes of organic electrochromic devices. These materials were characterized by: ultraviolet-visible spectroscopy absorption (UV-Vis, measurement of thickness (MT and electrical measurements (EM. This study aims to establish the relationship between the thickness of the active layer and the value of the electrical resistivity of the layer deposited through an electro-deposition technique. The experimental results enabled the equating of the electrical resistivity related to the thickness of the deposited layer. The linear fit of these results has expressed the thickness of the conducting layer, α, and the lowest value of the electrical resistivity, β, associated with the gap between the valence band and the conduction band. Thus, the results have demonstrated that, when the layer of organic material is completely conductive, we may obtain the thickness of the organic material deposited on the substrate.

  12. Diverse Electron-Induced Optical Emissions from Space Observatory Materials at Low Temperatures

    Science.gov (United States)

    Dennison, J.R.; Jensen, Amberly Evans; Wilson, Gregory; Dekany, Justin; Bowers, Charles W.; Meloy, Robert

    2013-01-01

    Electron irradiation experiments have investigated the diverse electron-induced optical and electrical signatures observed in ground-based tests of various space observatory materials at low temperature. Three types of light emission were observed: (i); long-duration cathodoluminescence which persisted as long as the electron beam was on (ii) short-duration (affect the performance of space-based observatories.

  13. Quantum theory of the optical and electronic properties of semiconductors

    CERN Document Server

    Haug, Hartmut

    2009-01-01

    This invaluable textbook presents the basic elements needed to understand and research into semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. Fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, the optical Stark effect, the semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects, are covered. The material is presented in sufficient detail for graduate students and researchers with a general background in quantum mechanics.This fifth edition includes an additional chapter on 'Quantum Optical Effects' where the theory of quantum optical effects in semiconductors is detailed. Besides deriving the 'semiconductor luminescence equations' and the expression for the stationary luminescence spectrum, the resu...

  14. Electronic and optical properties of beryllium sulfide monolayer: Under stress and strain conditions

    Science.gov (United States)

    Jalilian, Jaafar; Safari, Mandana

    2016-10-01

    Electronic and optical properties of two-dimensional graphene-like structure of beryllium sulfide (BeS) have been studied in the framework of the density functional theory. Different values of stress and strain are exerted for tuning electronic and optical parameters. The electronic results show that both biaxial stress and strain effects cause band gap reduction with different rates. Also, we have red and blue shifts in the optical absorption spectrum peaks by applying strain and stress, respectively. Our results express that BeS monolayer can be the promising candidate for the future nano-devices.

  15. Three-dimensional optical transfer functions in the aberration-corrected scanning transmission electron microscope.

    Science.gov (United States)

    Jones, L; Nellist, P D

    2014-05-01

    In the scanning transmission electron microscope, hardware aberration correctors can now correct for the positive spherical aberration of round electron lenses. These correctors make use of nonround optics such as hexapoles or octupoles, leading to the limiting aberrations often being of a nonround type. Here we explore the effect of a number of potential limiting aberrations on the imaging performance of the scanning transmission electron microscope through their resulting optical transfer functions. In particular, the response of the optical transfer function to changes in defocus are examined, given that this is the final aberration to be tuned just before image acquisition. The resulting three-dimensional optical transfer functions also allow an assessment of the performance of a system for focal-series experiments or optical sectioning applications. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  16. A toolkit for detecting technical surprise.

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Michael Wayne; Foehse, Mark C.

    2010-10-01

    The detection of a scientific or technological surprise within a secretive country or institute is very difficult. The ability to detect such surprises would allow analysts to identify the capabilities that could be a military or economic threat to national security. Sandia's current approach utilizing ThreatView has been successful in revealing potential technological surprises. However, as data sets become larger, it becomes critical to use algorithms as filters along with the visualization environments. Our two-year LDRD had two primary goals. First, we developed a tool, a Self-Organizing Map (SOM), to extend ThreatView and improve our understanding of the issues involved in working with textual data sets. Second, we developed a toolkit for detecting indicators of technical surprise in textual data sets. Our toolkit has been successfully used to perform technology assessments for the Science & Technology Intelligence (S&TI) program.

  17. Deciphering network community structure by surprise

    National Research Council Canada - National Science Library

    Aldecoa, Rodrigo; Marín, Ignacio

    2011-01-01

    .... A fundamental, unsolved problem is how to characterize the community structure of a network. Here, using both standard and novel benchmarks, we show that maximization of a simple global parameter, which we call Surprise...

  18. A Surprising Culprit Behind Celiac Disease?

    Science.gov (United States)

    ... news/fullstory_164503.html A Surprising Culprit Behind Celiac Disease? Study suggests harmless viruses may set stage ... typically harmless type of virus might sometimes trigger celiac disease, a new study suggests. Celiac disease is ...

  19. ElectroOptical measurements of ultrashort 45 MeV electron beam bunch

    CERN Document Server

    Nikas, D; Kowalski, L A; Larsen, R; Lazarus, D M; Ozben, C; Semertzidis, Y K; Tsang, Thomas; Srinivasan-Rao, T

    2001-01-01

    We have made an observation of 45 MeV electron beam bunches using the nondestructive electro-optical (EO) technique. The amplitude of the EO modulation was found to increase linearly with electron beam charge and decrease inversely with the optical beam path distance from the electron beam. The risetime of the signal was bandwidth limited by our detection system to \\~70ps. An EO signal due to ionization caused by the electrons traversing the EO crystal was also observed. The EO technique may be ideal for the measurement of bunch structure with femtosecond resolution of relativistic charged particle beam bunches.

  20. 3D optical manipulation of a single electron spin

    CERN Document Server

    Geiselmann, Michael; Renger, Jan; Say, Jana M; Brown, Louise J; de Abajo, F Javier García; Koppens, Frank; Quidant, Romain

    2013-01-01

    Nitrogen vacancy (NV) centers in diamond are promising elemental blocks for quantum optics [1, 2], spin-based quantum information processing [3, 4], and high-resolution sensing [5-13]. Yet, fully exploiting these capabilities of single NV centers requires strategies to accurately manipulate them. Here, we use optical tweezers as a tool to achieve deterministic trapping and 3D spatial manipulation of individual nano-diamonds hosting a single NV spin. Remarkably, we find the NV axis is nearly fixed inside the trap and can be controlled in-situ, by adjusting the polarization of the trapping light. By combining this unique spatial and angular control with coherent manipulation of the NV spin and fluorescent lifetime measurements near an integrated photonic system, we prove optically trapped NV center as a novel route for both 3D vectorial magnetometry and sensing of the local density of optical states.

  1. Improved optics for automatic stored-seam tracking on an electron-beam welder

    Energy Technology Data Exchange (ETDEWEB)

    Kitzke, K.A.

    1978-11-24

    A commercial 7.5-kW electron-beam welder has been optically upgraded. The viewing system has been replaced by high-resolution optics (36 line pairs per millimeter (36l/mm) with video option. A high-intensity arc lamp provides illumination of the weld region. The upgraded optical system provides the capability for making accurate and repeatable welds with computer-automated seam tracking.

  2. Non-thermal hot electrons ultrafastly generating hot optical phonons in graphite

    Science.gov (United States)

    Ishida, Y.; Togashi, T.; Yamamoto, K.; Tanaka, M.; Taniuchi, T.; Kiss, T.; Nakajima, M.; Suemoto, T.; Shin, S.

    2011-08-01

    Investigation of the non-equilibrium dynamics after an impulsive impact provides insights into couplings among various excitations. A two-temperature model (TTM) is often a starting point to understand the coupled dynamics of electrons and lattice vibrations: the optical pulse primarily raises the electronic temperature Tel while leaving the lattice temperature Tl low; subsequently the hot electrons heat up the lattice until Tel = Tl is reached. This temporal hierarchy owes to the assumption that the electron-electron scattering rate is much larger than the electron-phonon scattering rate. We report herein that the TTM scheme is seriously invalidated in semimetal graphite. Time-resolved photoemission spectroscopy (TrPES) of graphite reveals that fingerprints of coupled optical phonons (COPs) occur from the initial moments where Tel is still not definable. Our study shows that ultrafast-and-efficient phonon generations occur beyond the TTM scheme, presumably associated to the long duration of the non-thermal electrons in graphite.

  3. Energy modulation of nonrelativistic electrons in an optical near field on a metal microslit

    Science.gov (United States)

    Ishikawa, R.; Bae, J.; Mizuno, K.

    2001-04-01

    Energy modulation of nonrelativistic electrons with a laser beam using a metal microslit as an interaction circuit has been investigated. An optical near field is induced in the proximity of the microslit by illumination of the laser beam. The electrons passing close to the slit are accelerated or decelerated by an evanescent wave contained in the near field whose phase velocity is equal to the velocity of the electrons. The electron-evanescent wave interaction in the microslit has been analyzed theoretically and experimentally. The theory has predicted that electron energy can be modulated at optical frequencies. Experiments performed in the infrared region have verified theoretical predictions. The electron-energy changes of more than ±5 eV with a 10 kW CO2 laser pulse at the wavelength of 10.6 μm has been successfully observed for an electron beam with an energy of less than 80 keV.

  4. Prevention of electron beam transmittance for biological cell imaging using electron beam excitation-assisted optical microscope

    Science.gov (United States)

    Fukuta, Masahiro; Nawa, Yasunori; Inami, Wataru; Kawata, Yoshimasa

    2017-04-01

    We demonstrated the high-spatial-resolution imaging of label-free biological cells using an electron beam excitation-assisted optical (EXA) microscope without irradiation damage by the electron beam. An EXA microscope can be used to observe a specimen with a nanometric light source excited in the Si3N4 membrane by an electron beam. The incident electron beam penetrates the Si3N4 membrane and damages the specimen. To suppress the irradiation damage of the specimen, we prevented the transmittance of the electron beam by coating the Si3N4 membrane with a gold thin film. To obtain an electron beam transmittance through the Si3N4 of 0%, a gold film of 15 nm thickness was required. By adding the gold layer, a label-free cellular structure was observed with 135-nm spatial resolution.

  5. Optical principles of beam transport for relativistic electron cooling

    Directory of Open Access Journals (Sweden)

    A. Burov

    2000-09-01

    Full Text Available In conventional low energy electron coolers, the electron beam is immersed in a continuous solenoid, which provides a calm and tightly focused beam in a cooling section. While suitable for low energies, the continuity of the accompanying magnetic field is hardly realizable at relativistic energies. We consider the possibility of using an extended solenoid in the gun and the cooling section only, applying lumped focusing for the rest of the electron transport line.

  6. New compact and efficient local oscillator optic system for the KSTAR electron cyclotron emission imaging system

    Science.gov (United States)

    Nam, Y. B.; Lee, D. J.; Lee, J.; Kim, C.; Yun, G. S.; Lee, W.; Park, H. K.

    2016-11-01

    Electron cyclotron emission imaging (ECEI) diagnostic on Korean Superconducting Tokamak Advanced Research utilizes quasi-optical heterodyne-detection method to measure 2D (vertical and radial) Te fluctuations from two toroidally separated poloidal cross section of the plasma. A cylindrical lens local oscillator (LO) optics with optical path length (OPL) 2-2.5 m has been used in the current ECEI system to couple the LO source to the 24 vertically aligned array of ECE detectors. For efficient and compact LO optics employing the Powell lens is proposed so that the OPL of the LO source is significantly reduced from ˜2.0 m to 0.4 m with new optics. The coupling efficiency of the LO source is expected to be improved especially at the edge channels. Results from the optical simulation together with the laboratory test of the prototype optics will be discussed in this paper.

  7. Half-period optical pulse generation using a free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Jaroszynski, D.A.; Chaix, P.; Piovella, N. [Commissariat a l`Energie Atomique, Bruycres-le-Chatel (France)

    1995-12-31

    Recently there has been growth, in interest in non-equilibrium interaction of half-period long optical pulses with matter. To date the optical pulses have been produced by chopping out a half-period long segment from a longer pulse using a semiconductor switch driven by a femtosecond laser. In this paper we present new methods for producing tunable ultra-short optical pulses as short as half an optical period using a free-electron laser driven by electron bunches with a duration a fraction of an optical period. Two different methods relying on the production of coherent spontaneous emission will be described. In the first method we show that when a train of ultra-short optical pulses as short as one half period. We present calculations which show that the small signal gain is unimportant in the early stages of radiation build up in the cavity when the startup process is dominated by coherent spontaneous emission. To support our proposed method we present encouraging experimental results from the FELIX experiment in the Netherlands which show that interference effects between the coherent spontaneous optical pulses at start-up are very important. The second proposed method relies on the fact that coherent spontaneous emission mimics the undulations of electrons as they pass through the undulator. We show that ultra-short optical pulses are produced by coherent spontaneous emission when ultra-short electron bunches pass through an ultra-short undulator. We discuss the interesting case of such undulator radiation in the presence of an optical cavity and show that the optical pulse can be {open_quotes}taylored{close_quotes} by simply adjusting the optical cavity desynchronism. The proposed methods may be realisable using existing rf driven FELs in the far-infrared.

  8. Optical physics: Speedy electrons exposed in a flash

    Science.gov (United States)

    Chini, Michael

    2016-10-01

    A link has been established between high-frequency light emissions and electron oscillations induced in an insulator by a laser. This is a key step in efforts to make electronic devices that work faster than is currently possible. See Letter p.359

  9. Optical Emission Spectroscopy Study of Competing Phases of Electrons in the Second Landau Level.

    Science.gov (United States)

    Levy, A L; Wurstbauer, U; Kuznetsova, Y Y; Pinczuk, A; Pfeiffer, L N; West, K W; Manfra, M J; Gardner, G C; Watson, J D

    2016-01-01

    Quantum phases of electrons in the filling factor range 2≤ν≤3 are probed by the weak optical emission from the partially populated second Landau level and spin wave measurements. Observations of optical emission include a multiplet of sharp peaks that exhibit a strong filling factor dependence. Spin wave measurements by resonant inelastic light scattering probe breaking of spin rotational invariance and are used to link this optical emission with collective phases of electrons. A remarkably rapid interplay between emission peak intensities manifests phase competition in the second Landau level.

  10. Measurement of optically and thermally stimulated electron emission from natural minerals

    DEFF Research Database (Denmark)

    Ankjærgaard, C.; Murray, A.S.; Denby, P.M.

    2006-01-01

    Electron emission during thermal stimulation has been studied before in some detail, but there has been less work on the optically stimulated signal, especially in natural dosimeters. We report on measurements obtained using a windowless pancake Geiger-Nifiller electron detector attachment...

  11. Electronic, bonding, linear and non-linear optical properties of novel Li{sub 2}Ga{sub 2}GeS{sub 6} compound

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Wilayat, E-mail: wkhan@ntc.zcu.cz [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, Pilsen 306 14 (Czech Republic); Murtaza, G., E-mail: murtaza@icp.edu.pk [Department of Physics, Islamia College Peshawar, KPK (Pakistan); Ouahrani, T. [Laboratoire de Physique Théorique, B.P. 230, Université de Tlemcen, Tlemcen 13000 (Algeria); École Préparatoire en Sciences et Techniques, BP 165 R.P., 13000 Tlemcen (Algeria); Mahmood, Asif [College of Engineering, Chemical Engineering Department, King Saud University Riyadh (Saudi Arabia); Khenata, R.; El Amine Monir, Mohammed; Baltache, H. [Laboratoire de Physique Quantique, de la Matière et de la Modélisation Mathématique (LPQ3M), Université de Mascara, Mascara 29000 (Algeria)

    2016-07-25

    Recently a new sulphide compound Li{sub 2}Ga{sub 2}GeS{sub 6} was synthesized. It has attracted great attention due to its nonlinear optical properties. Quite surprisingly no theoretical study yet been reported on the physical properties of this important material. We have paid attention to study the electronic and optical properties of Li{sub 2}Ga{sub 2}GeS{sub 6} using first principles techniques of density functional theory. Different exchange-correlation techniques have been applied to study these properties. From local density and generalized gradient approximations the compound is predicted to be direct bandgap. However the band gap is indirect when calculated through the Engle–Vosko and modified Becke–Johnson potentials. Therefore the bandgap of the compound is pseudo direct (direct and indirect band gaps are very close). In optical properties dielectric function, refractive index, reflectivity and absorption coefficient were studied. Furthermore, the second harmonic generation properties of the compound are predicted. - Highlights: • Li{sub 2}Ga{sub 2}GeS{sub 6} studied for the first time using first principles calculations. • Different exchange correlation potentials have been adopted for the calculations. • Bandgap of the compound is pseudo direct. • Optical structures are prominent in the low frequency ultraviolet region. • The lone pair basins seem to have a non-negligible role in the optical properties.

  12. Structural, electronic and optical properties of Cu-doped ZnO: experimental and theoretical investigation

    Science.gov (United States)

    Horzum, S.; Torun, E.; Serin, T.; Peeters, F. M.

    2016-06-01

    Experiments are supplemented with ab initio density functional theory (DFT) calculations in order to investigate how the structural, electronic and optical properties of zinc oxide (ZnO) thin films are modified upon Cu doping. Changes in characteristic properties of doped thin films, that are deposited on a glass substrate by sol-gel dip coating technique, are monitored using X-ray diffraction (XRD) and UV measurements. Our ab initio calculations show that the electronic structure of ZnO can be well described by DFT+U/? method and we find that Cu atom substitutional doping in ZnO is the most favourable case. Our XRD measurements reveal that the crystallite size of the films decrease with increasing Cu doping. Moreover, we determine the optical constants such as refractive index, extinction coefficient, optical dielectric function and optical energy band gap values of the films by means of UV-Vis transmittance spectra. The optical band gap of ZnO the thin film linearly decreases from 3.25 to 3.20 eV at 5% doping. In addition, our calculations reveal that the electronic defect states that stem from Cu atoms are not optically active and the optical band gap is determined by the ZnO band edges. Experimentally observed structural and optical results are in good agreement with our theoretical results.

  13. Search for new optical, structural and electronic properties: From photons to electrons

    Science.gov (United States)

    Zhang, Feng

    With the development of modern computers, scientific computation has been an important facet in designing materials with desired properties. This thesis is devoted to predicting novel optical, structural and electronic properties from first-principles computation, by solving the fundamental governing Maxwell equations for photons and Schrodinger equation for electrons. In Chapter 1, we introduce a method of gradient-based optimization that continuously deforms a periodic dielectric distribution to generate photonic structures that possess any desired figure of merit expressible in terms of the electromagnetic eigenmodes and eigen-frequencies. The gradient is readily available from a perturbation theory that describes the change of eigenmodes and eigen-frequencies to small changes in dielectric pattern. As an example, we generate 2D forbidden regions between specified bands at very low dielectric contrast and very large gaps at a fixed dielectric contrast corresponding to a real material GaAs. In Chapter 2, we demonstrate that well-defined pi bonds can also be formed in two prototypical crystalline Si structures: Schwarzite Si-168 and dilated diamond. The sp2-bonded Si-168 is thermodynamically preferred over diamond silicon at a modest negative pressure of -2.5 GPa. Ab-initio molecular dynamics simulations of Si-168 at 1000 K reveal significant thermal stability. Si-168 is metallic in density functional theory, but with distinct pi-like and pi*-like valence and conduction band complexes just above and below the Fermi energy. A bandgap buried in the valence band but close to the Fermi level can be accessed via hole doping in semiconducting Si144B24. A less-stable crystalline system with a silicon-silicon triple bond is also examined: a rare-gas intercalated open framework on a dilated diamond lattice. In Chapter 3, we propose that microstructured optical fibers could be an attractive candidate for the imposition of negative pressure on materials deposited inside them

  14. Surface optical phonon-assisted electron Raman scattering in a semiconductor quantum disc

    Institute of Scientific and Technical Information of China (English)

    刘翠红; 马本堃; 陈传誉

    2002-01-01

    We have carried out a theoretical calculation of the differential cross section for the electron Raman scatteringprocess associated with the surface optical phonon modes in a semiconductor quantum disc. Electron states are consid-ered to be confined within a quantum disc with infinite potential barriers. The optical phonon modes we have adoptedare the slab phonon modes by taking into consideration the Frohlich interaction between an electron and a phonon.The selection rules for the Raman process are given. Numerical results and a discussion are also presented for variousradii and thicknesses of the disc, and different incident radiation energies.

  15. New trends in the optical and electronic applications of polymers containing transition-metal complexes.

    Science.gov (United States)

    Liu, Shu-Juan; Chen, Yang; Xu, Wen-Juan; Zhao, Qiang; Huang, Wei

    2012-04-13

    Polymers containing transition-metal complexes exhibit excellent optical and electronic properties, which are different from those of polymers with a pure organic skeleton and combine the advantages of both polymers and metal complexes. Hence, research about this class of polymers has attracted more and more interest in recent years. Up to now, a number of novel polymers containing transition-metal complexes have been exploited, and significant advances in their optical and electronic applications have been achieved. In this article, we summarize some new research trends in the applications of this important class of optoelectronic polymers, such as chemo/biosensors, electronic memory devices and photovoltaic devices.

  16. Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses.

    Science.gov (United States)

    Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa

    2007-07-27

    We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.

  17. Scalable standard optical sources in the VUV: Emissions from electron impact on metals. [tantalum and tungsten

    Science.gov (United States)

    Hughes, R.

    1980-01-01

    The use of electron impact on metals in the development of a compact optical standard lamp in the vacuum ultraviolet is described. Two different mechanisms are exploited, transition radiation and bremsstrahlung. Transition radiation will be used as a primary standard from 1200A to 3000A using 10 keV electron impact on tungsten. Bremsstrahlung will be used in the soft X-ray region below 1200A to less than 5A as an optical transfer standard from 4 keV electron impact on tantalum or tungsten.

  18. Optical circular deflector with attosecond resolution for ultrashort electron beam

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2017-05-01

    Full Text Available A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode (TEM_{01^{*}} in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the method and numerical results with reasonable parameters are both presented. It is shown that the temporal resolution can reach up to ∼100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.

  19. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    OpenAIRE

    Doory Kim; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Xiaowei Zhuang

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and ima...

  20. Optical Thermal Characterization Enables High-Performance Electronics Applications

    Energy Technology Data Exchange (ETDEWEB)

    2016-02-01

    NREL developed a modeling and experimental strategy to characterize thermal performance of materials. The technique provides critical data on thermal properties with relevance for electronics packaging applications. Thermal contact resistance and bulk thermal conductivity were characterized for new high-performance materials such as thermoplastics, boron-nitride nanosheets, copper nanowires, and atomically bonded layers. The technique is an important tool for developing designs and materials that enable power electronics packaging with small footprint, high power density, and low cost for numerous applications.

  1. Optical Pumping of Metastable Helium Atoms in Polarized Electron Sources

    Science.gov (United States)

    Brissaud, I.

    1995-04-01

    In this paper we present a comparison between the Orsay and Rice University polarized electron sources. Different explanations of the polarization degradation are discussed for the two cases. For the Rice source radiation, trapping can account for the observed reduction in polarization because of the high absorption cross sections associated with the D1 transition. Some improvements are proposed that might increase the electron polarization.

  2. Optical Pumping of Metastable Helium Atoms in Polarized Electron Sources

    OpenAIRE

    1995-01-01

    In this paper we present a comparison between the Orsay and Rice University polarized electron sources. Different explanations of the polarization degradation are discussed for the two cases. For the Rice source radiation, trapping can account for the observed reduction in polarization because of the high absorption cross sections associated with the D1 transition. Some improvements are proposed that might increase the electron polarization.

  3. Proton disorder in cubic ice: Effect on the electronic and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Garbuio, Viviana; Pulci, Olivia [MIFP, ETSF, Physics Department of Tor Vergata University, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); Cascella, Michele [Department of Chemistry and Centre for Theoretical and Computational Chemistry (CTCC), University of Oslo, Postboks 1033, Blindern, N-0315 Oslo (Norway); Kupchak, Igor [MIFP, V. Lashkarev Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, pr. Nauki 45, UA-03680 Kiev (Ukraine); Seitsonen, Ari Paavo [Institut für Chemie, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Département de Chimie, École Normale Supérieure, 24 rue Lhomond, F-75005 Paris (France)

    2015-08-28

    The proton disorder in ice has a key role in several properties such as the growth mode, thermodynamical properties, and ferroelectricity. While structural phase transitions from proton disordered to proton ordered ices have been extensively studied, much less is known about their electronic and optical properties. Here, we present ab initio many body perturbation theory-based calculations of the electronic and optical properties of cubic ice at different levels of proton disorder. We compare our results with those from liquid water, that acts as an example of a fully (proton- and oxygen-)disordered system. We find that by increasing the proton disorder, a shrinking of the electronic gap occurs in ice, and it is smallest in the liquid water. Simultaneously, the excitonic binding energy decreases, so that the final optical gaps result to be almost independent on the degree of proton disorder. We explain these findings as an interplay between the local dipolar disorder and the electronic correlation.

  4. Absolute Determination of Optical Constants by a Direct Physical Modeling of Reflection Electron Energy Loss Spectra

    CERN Document Server

    Xu, H; Toth, J; Tokesi, K; Ding, Z J

    2016-01-01

    We present an absolute extraction method of optical constants of metal from the measured reflection electron energy loss (REELS) spectra by using the recently developed reverse Monte Carlo (RMC) technique. The method is based on a direct physical modeling of electron elastic and electron inelastic scattering near the surface region where the surface excitation becomes important to fully describe the spectrum loss feature intensity in relative to the elastic peak intensity. An optimization procedure of oscillator parameters appeared in the energy loss function (ELF) for describing electron inelastic scattering due to the bulk- and surface-excitations was performed with the simulated annealing method by a successive comparison between the measured and Monte Carlo simulated REELS spectra. The ELF and corresponding optical constants of Fe were obtained from the REELS spectra measured at incident energies of 1000, 2000 and 3000 eV. The validity of the present optical data has been verified with the f- and ps-sum r...

  5. Surprises in numerical expressions of physical constants

    CERN Document Server

    Amir, Ariel; Tokieda, Tadashi

    2016-01-01

    In science, as in life, `surprises' can be adequately appreciated only in the presence of a null model, what we expect a priori. In physics, theories sometimes express the values of dimensionless physical constants as combinations of mathematical constants like pi or e. The inverse problem also arises, whereby the measured value of a physical constant admits a `surprisingly' simple approximation in terms of well-known mathematical constants. Can we estimate the probability for this to be a mere coincidence, rather than an inkling of some theory? We answer the question in the most naive form.

  6. Optical Electronic Bragg Reflection Sensor System with Hydrodynamic Flow Applications

    Science.gov (United States)

    Lyons, D. R.

    2003-01-01

    This project, as described in the following report, involved design and fabrication of fiber optic sensors for the detection and measurement of dynamic fluid density variations. These devices are created using UV (ultraviolet) ablation and generally modified transverse holographic fiber grating techniques. The resulting phase gratings created on or immediately underneath the flat portion of D-shaped optical waveguides are characterized as evanescent field sensing devices. The primary applications include the sensor portion of a real-time localized or distributed measurement system for hydrodynamic flow, fluid density measurements, and phase change phenomena. Several design modifications were implemented in an attempt to accomplish the tasks specified in our original proposal. In addition, we have established key collaborative relationships with numerous people and institutions.

  7. Electron kinetic effects on optical diagnostics in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mirnov, V. V.; Den Hartog, D. J.; Duff, J.; Parke, E. [University of Wisconsin-Madison and the Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, Madison, Wisconsin (United States); Brower, D. L., E-mail: vvmirnov@wisc.edu; Ding, W. X. [University of California Los Angeles, Los Angeles, California (United States)

    2014-08-21

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP) and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. We calculate electron thermal corrections to the interferometric phase and polarization state of an EM wave propagating along tangential and poloidal chords (Faraday and Cotton-Mouton polarimetry) and perform analysis of the degree of polarization for incoherent TS. The precision of the previous lowest order linear in τ = T{sub e}/m{sub e}c{sup 2} model may be insufficient; we present a more precise model with τ{sup 2}-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH and RF current drive effects. The classical problem of degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of T{sup e} measurement relevant to ITER operational scenarios.

  8. Surprising Connections between Partitions and Divisors

    Science.gov (United States)

    Osler, Thomas J.; Hassen, Abdulkadir; Chandrupatla, Tirupathi R.

    2007-01-01

    The sum of the divisors of a positive integer is one of the most interesting concepts in multiplicative number theory, while the number of ways of expressing a number as a sum is a primary topic in additive number theory. In this article, we describe some of the surprising connections between and similarities of these two concepts.

  9. Surprises from extragalactic propagation of UHECRs

    CERN Document Server

    Boncioli, Denise; Grillo, Aurelio

    2015-01-01

    Ultra-high energy cosmic ray experimental data are now of very good statistical significance even in the region of the expected GZK feature. The identification of their sources requires sophisticate analysis of their propagation in the extragalactic space. When looking at the details of this propagation some unforeseen features emerge. We will discuss some of these "surprises".

  10. An optical remote controlled high voltage dome for electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, S. [The Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Kapp, O.H. [The Department of Radiology and the Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637 (United States)

    1995-08-01

    A low cost high voltage dome has been completed for an electron microscope with a thermal emission tip as electron source. Two fibers are used to provide communication across the high electrical field zone between the computer and the dome. This system provides a reliable method to operate the dome circuitry (floating at high voltage) and ensures the safety of both the computer system and the operator. Because of the application of ``dummy`` serial data transfer, the least number of fibers and associated components are used, providing a relatively low-cost solution to this problem. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  11. Diverse electron-induced optical emissions from space observatory materials at low temperatures

    Science.gov (United States)

    Dennison, J. R.; Evans Jensen, Amberly; Wilson, Gregory; Dekany, Justin; Bowers, Charles W.; Meloy, Robert

    2013-09-01

    Electron irradiation experiments have investigated the diverse electron-induced optical and electrical signatures observed in ground-based tests of various space observatory materials at low temperature. Three types of light emission were observed: (i); long-duration cathodoluminescence which persisted as long as the electron beam was on (ii) short-duration (polyimides, epoxy resins, and silica glasses) and composite dielectric materials (disordered SiO2 thin films, carbon- and fiberglass-epoxy composites, and macroscopically-conductive carbon-loaded polyimides). We conclude that electron-induced optical emissions resulting from interactions between observatory materials and the space environment electron flux can, in specific circumstances, make significant contributions to the stray light background that could possibly adversely affect the performance of space-based observatories.

  12. Study on optical electron polarimeter and measurement of the relative Stokes parameters of weak light

    Institute of Scientific and Technical Information of China (English)

    阮存军; 庞文宁; 高君芳; 尚仁成

    2002-01-01

    In this paper, we present the research on an optical electron polarimeter, which is used to determine the polarizationof an incident electron beam by measuring the relative Stokes paraneters of the fluorescence emitted from the He gasfollowing the impact excitation with the electron beam. The fundamental theory of the optical electron polarimeter isdiscussed with the 33p→23S transition of He. The structure and performance of the instrument are described, whichare different in some aspects from previous works.The arrangement of the experiment for measuring the relativeStokes parameters of linearly polarized weak light is also investigated, which actually involves the same processes as thepolarization measurement with the incident electron beam. The results obtained are in agreement with the theoreticalprediction.

  13. Electro-optical Measurements of Ultrashort 45 MeV Electron Beam Bunches

    CERN Document Server

    Tsang, Thomas; Kowalski, L A; Larsen, R; Lazarus, D M; Nikas, D; Ozben, C; Semertzidis, Y K; Srinivasan-Rao, T

    2000-01-01

    We have measured the temporal duration of 45 MeV picosecond electron beam bunches using a noninvasive electro-optical (EO) technique. The amplitude of the EO modulation was found to increase linearly with electron beam charge and decrease inversely with distance from the electron beam. The risetime of the temporal signal was limited by our detection system to ~70ps. The EO signal due to ionization caused by the electrons traversing the EO crystal was also observed. It has a distinctively long decay time constant and signal polarity opposite to that due to the field induced by the electron beam. The electro-optical technique may be ideal for the measurement of bunch length of femtosecond, relativistic, high energy, charged, particle beams.

  14. Electronic and Optical Properties of Few Layer Black Phosphorus and Black Phosphorus Nanoribbons from First Principles Calculations

    Science.gov (United States)

    Tran, Vy

    Recently, a new semiconducting 2D material, black phosphorus, has piqued the interest of research groups in the field. In its bulk form, black phosphorus was synthesized over a century ago and in 2014 devices based on thin flakes of black phosphorus were successfully realized. This was a crucial step towards the exploration and characterization of this material. However, because this material was virtually ignored until this point, many open questions needed to be quickly addressed. Fundamental properties such as the band gap, carrier mobility, optical spectrum, and thermal transport had not been established. Furthermore, the effect of extrinsic factors such as the number of layers, external electric fields, and applied strain had not been explored. How these extrinsic factors affect the tunability of the aforementioned physical properties is of utmost importance for device engineers. Using first principle computations based on density functional theory and the GW approximation including many-electron effects, we calculate the fundamental electronic and optical properties of few-layer black phosphorus. Beyond basic calculations, such as the band structure, quasiparticle band gap, and optical absorption spectrum, we dig deeper to explore the origin and nature of some of black phosphorus' unusual and surprising properties. These properties include the existence of relativistic Dirac fermions as charge carriers, a highly anisotropic band structure, an anisotropic optical absorption spectrum, quasi-1D excitonic features, and an ultra-high sensitivity to a gate electric field. In the first chapter, we discuss the properties of few-layer black phosphorus. We calculate the quasiparticle band gap, and excitonic optical spectra for 1-4 layers. We provide an empirical formula in the form of a power law to fit the calculated results and predict the values for larger layer numbers. We also propose an effective mass hydrogenic model to describe the excitonic spectra calculated

  15. In plane optical sensor based on organic electronic devices

    NARCIS (Netherlands)

    Koetse, M.M; Rensing, P.A.; Heck, G.T. van; Sharpe, R.B.A.; Allard, B.A.M.; Wieringa, F.P.; Kruijt, P.G.M.; Meulendijks, N.M.M.; Jansen, H.; Schoo, H.F.M.

    2008-01-01

    Sensors based on organic electronic devices are emerging in a wide range of application areas. Here we present a sensor platform using organic light emitting diodes (OLED) and organic photodiodes (OPD) as active components. By means of lamination and interconnection technology the functional foils w

  16. In plane optical sensor based on organic electronic devices

    NARCIS (Netherlands)

    Koetse, M.M; Rensing, P.A.; Heck, G.T. van; Sharpe, R.B.A.; Allard, B.A.M.; Wieringa, F.P.; Kruijt, P.G.M.; Meulendijks, N.M.M.; Jansen, H.; Schoo, H.F.M.

    2008-01-01

    Sensors based on organic electronic devices are emerging in a wide range of application areas. Here we present a sensor platform using organic light emitting diodes (OLED) and organic photodiodes (OPD) as active components. By means of lamination and interconnection technology the functional foils w

  17. Field-modulated low-energy electronic and optical properties of armchair silicene nanoribbons

    Science.gov (United States)

    Shyu, Feng-Lin

    2017-01-01

    The tight-binding model including spin-orbit coupling is used to study electronic and optical properties of armchair silicene nanoribbons (ASiNRs) in electric fields. Perpendicular electric field monotonically increases band-gap, the DOS, and absorption frequency and strength. It does not change spin-degeneracy, edge-states, and optical selection rule. However, parallel electric field strongly modulates energy dispersions resulting in oscillatory band-gaps, shift in edge-states, and destruction of spin-degeneracy. It induces more transition channels and constructs new selection rules that exhibits richer optical spectra. Modulations of electronic and optical properties of ASiNRs have strong dependence on the direction of electric field and nanoribbon's geometry.

  18. An investigation of electronic and optical properties of InN nanosheet by first principle study

    Science.gov (United States)

    Farzan, M.; Elahi, S. M.; Salehi, H.; Abolhassani, M. R.

    2017-07-01

    In this work, we investigated electronic and optical properties of InN nanosheet using density function theory (DFT) implemented in Wien2k code. We calculated the dielectric function, absorption coefficient, optical conductivity, refraction index, extinction index, reflectivity, and energy loss function of the InN nanosheet within GGA (PBE) and Engel-Vosko (E.V) approximation in two directions E||x (electric field parallel to nanosheet) and E||z (electric field perpendicular to nanosheet), we also calculated the band gap energy within GGA (PBE) and E.V approximations. Optical conductivity in directions to x and z shows that InN nanosheet has semiconductor properties. At the end, we calculated electronic and optical properties, and elastic constant of InN Bulk (wurtzite).

  19. On the optical stability of high-resolution transmission electron microscopes.

    Science.gov (United States)

    Barthel, J; Thust, A

    2013-11-01

    In the recent two decades the technique of high-resolution transmission electron microscopy experienced an unprecedented progress through the introduction of hardware aberration correctors and by the improvement of the achievable resolution to the sub-Ångström level. The important aspect that aberration correction at a given resolution requires also a well defined amount of optical stability has received little attention so far. Therefore we investigate the qualification of a variety of high-resolution electron microscopes to maintain an aberration corrected optical state in terms of an optical lifetime. We develop a comprehensive statistical framework for the estimation of the optical lifetime and find remarkably low values between tens of seconds and a couple of minutes. Probability curves are introduced, which inform the operator about the chance to work still in the fully aberration corrected state.

  20. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B. [Particle Beam Physics Laboratory, UCLA, Los Angeles, CA 90095 (United States); Bruhwiler, David L. [RadiaSoft LLC, Boulder, CO 80304 (United States); RadiaBeam Technologies LLC (United States); Smith, Jonathan [Tech-X UK Ltd, Daresbury, Cheshire WA4 4FS (United Kingdom); Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G. [Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Hidding, Bernhard [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical “plasma torch” distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  1. Analogies in optics and micro electronics selected contributions on recent developments

    CERN Document Server

    Lenstra, Daan

    1990-01-01

    This book gives an account of a number of recent developments in two different subfields of research, optics and micro--electronics. The leading principle in presenting them together in one book is the striking similarity between a variety of notions in these two research areas. We mention in this respect tunneling, quantum interference and localization, which are important concepts in quantummechanics and more specifically in condensed matter physics. Miniaturization in solid state engineering has led to new phenomena in which these concepts play their significant roles. As it is the wave character of electrons which is strongly emphasized in these phenomena one's attention is quite naturally directed to the field of optics in which the above quantum-mechanical notions all seem to have their direct classical wavemechanical counterparts. Both micro--electronics and optics have been and still are in a mode of intensifying activity. The possibilities to technically "translate" devices developed within one resea...

  2. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Science.gov (United States)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B.; Bruhwiler, David L.; Smith, Jonathan; Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G.; Hidding, Bernhard

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  3. Influence of Electron Irradiation on Optical Properties of ZnSe Thin Films

    Directory of Open Access Journals (Sweden)

    P. Raghu

    2014-11-01

    Full Text Available Zinc Selenide (ZnSe thin films of 500 nm thickness were deposited by electron beam evaporation technique and irradiated with 8 MeV electron beam for the doses ranging from 0 Gy to 1 kGy. Optical properties were studied for both irradiated and pristine samples using Ultraviolet-Visible spectrophotometer. The increase in electron dose tends to decrease in transmittance and increase in refractive index of thin film. Irradiated thin film exhibits minimum of 67 % transmittance for 800 Gy with very high absorption of optical energy at 550 nm wavelength. The samples irradiated > 800 Gy tends to redeem the pristine properties. Optical band gap for irradiated thin film were direct and in the range of 2.66 – 2.69 eV.

  4. Effect of high energy electron beam irradiation on the optical properties of nanocrystalline TiO 2

    OpenAIRE

    Priyanka, K. P.; SUNNY JOSEPH; ANUTRESA SUNNY; THOMAS VARGHESE

    2013-01-01

    The effect of high energy electron beam irradiation on the optical properties of TiO 2 nanoparticles was studied in order to improve the optical absorption performance and photoactivity. Electron beam irradiation may have resulted in size reduction, which in turn caused an increase of the optical band gap and photoluminescence intensity. Irradiation at a suitable dose rate was found to enhance the optical absorption performance and photoactivity of the tested TiO 2 nanoparticles.

  5. Electron optical mask projector with a photocathode for miniaturization

    Science.gov (United States)

    Moellenstedt, G.; Speidel, R.; Dostmann, M.; Martin, F.; Mayr, M.

    1981-06-01

    The projector was developed with an image converter consisting of a masked photocathode and a plane anode grid. The mask structure to be demagnified is on a quartz glass plate in a thin layer of Ti02 strongly absorbing ultraviolet light. A photoemissive layer is deposited by evaporation on the whole front side of the plate. For the demagnification of the electron image of the mask, a system is used consisting of two geometrically similar magnetic lenses in a telescopic arrangement.

  6. Unified theory of electron-phonon renormalization and phonon-assisted optical absorption.

    Science.gov (United States)

    Patrick, Christopher E; Giustino, Feliciano

    2014-09-10

    We present a theory of electronic excitation energies and optical absorption spectra which incorporates energy-level renormalization and phonon-assisted optical absorption within a unified framework. Using time-independent perturbation theory we show how the standard approaches for studying vibronic effects in molecules and those for addressing electron-phonon interactions in solids correspond to slightly different choices for the non-interacting Hamiltonian. Our present approach naturally leads to the Allen-Heine theory of temperature-dependent energy levels, the Franck-Condon principle, the Herzberg-Teller effect and to phonon-assisted optical absorption in indirect band gap materials. In addition, our theory predicts sub-gap phonon-assisted optical absorption in direct gap materials, as well as an exponential edge which we tentatively assign to the Urbach tail. We also consider a semiclassical approach to the calculation of optical absorption spectra which simultaneously captures energy-level renormalization and phonon-assisted transitions and is especially suited to first-principles electronic structure calculations. We demonstrate this approach by calculating the phonon-assisted optical absorption spectrum of bulk silicon.

  7. Nonlinear optical studies of inorganic nanoparticles-polymer nanocomposite coatings fabricated by electron beam curing

    Science.gov (United States)

    Misra, Nilanjal; Rapolu, Mounika; Venugopal Rao, S.; Varshney, Lalit; Kumar, Virendra

    2016-05-01

    The optical nonlinearity of metal nanoparticles in dielectrics is of special interest because of their high polarizability and ultrafast response that can be utilized in potential device applications. In this study nanocomposite thin films containing in situ generated Ag nanoparticles dispersed in an aliphatic urethane acrylate (AUA) matrix were synthesized using electron beam curing technique, in presence of an optimized concentration of diluent Trimethylolpropanetriacrylate (TMPTA). The metal nanocomposite films were characterized using UV-visible spectrophotometry, transmission electron microscope (TEM) and field emission scanning electron microscope (FE-SEM) techniques. Ag nanoparticle impregnated films demonstrated an absorption peak at ∼420 nm whose intensity increased with increase in the Ag concentration. The optical limiting property of the coatings was tested using a nanosecond Nd-YAG laser operated at third harmonic wavelength of 355 nm. For a 25 ns pulse and 10 Hz cycle, Ag-polymer coatings showed good optical limiting property and the threshold fluence for optical limiting was found to be ∼3.8×10-2 J/cm2 while the transmission decreased to 82%. The nonlinear optical coefficients were also determined using the standard Z-scan technique with picosecond (∼2 ps, 1 kHz) and femtosecond (∼150 fs, 100 MHz) pulses. Open aperture Z-scan data clearly suggested two-photon absorption as the dominant nonlinear absorption mechanism. Our detailed studies suggest these composites are potential candidates for optical limiting applications.

  8. Radar Design to Protect Against Surprise

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    Technological and doctrinal surprise is about rendering preparations for conflict as irrelevant or ineffective . For a sensor, this means essentially rendering the sensor as irrelevant or ineffective in its ability to help determine truth. Recovery from this sort of surprise is facilitated by flexibility in our own technology and doctrine. For a sensor, this mean s flexibility in its architecture, design, tactics, and the designing organizations ' processes. - 4 - Acknowledgements This report is the result of a n unfunded research and development activity . Sandia National Laboratories is a multi - program laboratory manage d and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  9. Surprise Leads to Noisier Perceptual Decisions

    Directory of Open Access Journals (Sweden)

    Marta I Garrido

    2011-02-01

    Full Text Available Surprising events in the environment can impair task performance. This might be due to complete distraction, leading to lapses during which performance is reduced to guessing. Alternatively, unpredictability might cause a graded withdrawal of perceptual resources from the task at hand and thereby reduce sensitivity. Here we attempt to distinguish between these two mechanisms. Listeners performed a novel auditory pitch—duration discrimination, where stimulus loudness changed occasionally and incidentally to the task. Responses were slower and less accurate in the surprising condition, where loudness changed unpredictably, than in the predictable condition, where the loudness was held constant. By explicitly modelling both lapses and changes in sensitivity, we found that unpredictable changes diminished sensitivity but did not increase the rate of lapses. These findings suggest that background environmental uncertainty can disrupt goal-directed behaviour. This graded processing strategy might be adaptive in potentially threatening contexts, and reflect a flexible system for automatic allocation of perceptual resources.

  10. Radar Design to Protect Against Surprise.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.

    2015-02-01

    Technological and doctrinal surprise is about rendering preparations for conflict as irrelevant or ineffective . For a sensor, this means essentially rendering the sensor as irrelevant or ineffective in its ability to help determine truth. Recovery from this sort of surprise is facilitated by flexibility in our own technology and doctrine. For a sensor, this mean s flexibility in its architecture, design, tactics, and the designing organizations ' processes. - 4 - Acknowledgements This report is the result of a n unfunded research and development activity . Sandia National Laboratories is a multi - program laboratory manage d and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  11. Electronic and optical properties of BxNyCz monolayers with adsorption of hydrogen atoms

    Science.gov (United States)

    Leite, L.; Azevedo, S.; de Lima Bernardo, B.

    2017-03-01

    We apply first-principles calculations, using density functional theory, to analyze the electronic and optical properties of monolayers of graphene with a nanodomain of 2D hexagonal boron nitrite (h-BN). It also investigated the effects of the adsorption of hydrogen atoms in different atoms at the edge of the h-BN nanodomain. We calculate the electronic band structure, the complex dielectric function and the optical conductivity. For such systems, the calculations demonstrate that the compounds exhibit a prominent excitement in the visible and near-infrared regions. In this form, the present study provides physical basis for potential applications of the considered materials in optoelectronic devices at the nanoscale.

  12. Electronic and intraband optical properties of single quantum rings under intense laser field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Radu, A. [Department of Physics, Politehnica University of Bucharest, 313 Splaiul Independentei, Bucharest RO-060042 (Romania); Kirakosyan, A. A.; Baghramyan, H. M.; Barseghyan, M. G., E-mail: mbarsegh@ysu.am [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Laroze, D. [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile)

    2014-09-07

    The influence of an intense laser field on one-electron states and intraband optical absorption coefficients is investigated in two-dimensional GaAs/Ga{sub 0.7}Al{sub 0.3}As quantum rings. An analytical expression of the effective lateral confining potential induced by the laser field is obtained. The one-electron energy spectrum and wave functions are found using the effective mass approximation and exact diagonalization technique. We have shown that changes in the incident light polarization lead to blue- or redshifts in the intraband optical absorption spectrum. Moreover, we found that only blueshift is obtained with increasing outer radius of the quantum ring.

  13. Electronic absorption spectra and nonlinear optical properties of CO2 molecular aggregates: A quantum chemical study

    Indian Academy of Sciences (India)

    Tarun K Mandal; Sudipta Dutta; Swapan K Pati

    2009-09-01

    We have investigated the structural aspects of several carbon dioxide molecular aggregates and their spectroscopic and nonlinear optical properties within the quantum chemical theory framework. We find that, although the single carbon dioxide molecule prefers to be in a linear geometry, the puckering of angles occur in oligomers because of the intermolecular interactions. The resulting dipole moments reflect in the electronic excitation spectra of the molecular assemblies. The observation of significant nonlinear optical properties suggests the potential application of the dense carbon dioxide phases in opto-electronic devices.

  14. First-principles studies of the electronic and optical properties of 6H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Xie Changkun; Xu Pengshou; Xu Faqiang; Pan Haibin; Li Yonghua

    2003-08-01

    We study the electronic and optical properties of hexagonal 6H-SiC crystal, using ab initio full potential augmented plane wave method. The density of states (DOS) and band structure are presented based on local density function theory. From the electronic structure calculation, the imaginary part of the dielectric function has been obtained directly using the joint DOS and the optical matrix elements. With band gap correction, the real part of dielectric function can be derived from the imaginary part by the Kramers-Kronig relationship. The reflectivity for normal incidence is also calculated. The resulting spectrum is in good agreement with available experimental data in a wide energy range.

  15. A novel method for sub-micrometer transverse electron beam size measurements using optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Aryshev, A; Boogert, S T; Karataev, P [John Adams Institute at Royal Holloway, Egham, Surrey, TW20 0EX (United Kingdom); Howell, D [John Adams Institute at Oxford University, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Terunuma, N; Urakawa, J, E-mail: alar@post.kek.j [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2010-06-01

    Optical Transition Radiation (OTR) appearing when a charged particle crosses a boundary between two media with different dielectric properties has widely been used as a tool for transverse profile measurements of charged particle beams in various facilities worldwide. The resolution of the monitor is defined by so-called Point Spread Function (PSF), source distribution generated by a single electron and projected by an optical system onto a screen. In this paper we represent the development of a novel sub-micrometre electron beam profile monitor based on the measurements of the PSF structure. The first experimental results are presented and future plans on the optimization of the monitor are discussed

  16. Optical and Electronic NOx Sensors for Applications in Mechatronics

    Directory of Open Access Journals (Sweden)

    Scott D. Wolter

    2009-05-01

    Full Text Available Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i Quantum cascade lasers (QCL based photoacoustic (PA systems; ii gold nanoparticles as catalytically active materials in field-effect transistor (FET sensors, and iii functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling.

  17. Optical and Electronic NOx Sensors for Applications in Mechatronics

    Science.gov (United States)

    Di Franco, Cinzia; Elia, Angela; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugarà, Pietro Mario; Ieva, Eliana; Cioffi, Nicola; Torsi, Luisa; Bruno, Giovanni; Losurdo, Maria; Garcia, Michael A.; Wolter, Scott D.; Brown, April; Ricco, Mario

    2009-01-01

    Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling. PMID:22412315

  18. Surprise-Based Learning for Autonomous Systems

    Science.gov (United States)

    2009-02-28

    for scientific theories containing recursive theoretical terms". British Journal of Philosophy of Science, 44. 641-652, 1993. Piaget J.. "The Origins...paradigm stems from Piaget’s theory of Developmental Psychology [5], Herben Simon’s theory on dual-space search for knowledge and problem solving [6...34, Twenty-First Conference on Uncertainty in Artificial Intelligence, Edinburgh, Scotland, July 2005. [34] Itti L., Baldi P., "A Surprising Theory of

  19. Computational Investigation of the Electronic and Optical Properties of Planar Ga-Doped Graphene

    Directory of Open Access Journals (Sweden)

    Nicole Creange

    2015-01-01

    Full Text Available We simulate the optical and electrical responses in gallium-doped graphene. Using density functional theory with a local density approximation, we simulate the electronic band structure and show the effects of impurity doping (0–3.91% in graphene on the electron density, refractive index, optical conductivity, and extinction coefficient for each doping percentage. Here, gallium atoms are placed randomly (using a 5-point average throughout a 128-atom sheet of graphene. These calculations demonstrate the effects of hole doping due to direct atomic substitution, where it is found that a disruption in the electronic structure and electron density for small doping levels is due to impurity scattering of the electrons. However, the system continues to produce metallic or semimetallic behavior with increasing doping levels. These calculations are compared to a purely theoretical 100% Ga sheet for comparison of conductivity. Furthermore, we examine the change in the electronic band structure, where the introduction of gallium electronic bands produces a shift in the electron bands and dissolves the characteristic Dirac cone within graphene, which leads to better electron mobility.

  20. High-Resolution Two-Dimensional Optical Spectroscopy of Electron Spins

    Science.gov (United States)

    Salewski, M.; Poltavtsev, S. V.; Yugova, I. A.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Yakovlev, D. R.; Akimov, I. A.; Meier, T.; Bayer, M.

    2017-07-01

    Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using microwaves and radio waves, it has recently been extended into the visible and UV spectral range. However, resolving MHz energy splittings with ultrashort laser pulses still remains a challenge. Here, we analyze two-dimensional Fourier spectra for resonant optical excitation of resident electrons to localized trions or donor-bound excitons in semiconductor nanostructures subject to a transverse magnetic field. Particular attention is devoted to Raman coherence spectra, which allow one to accurately evaluate tiny splittings of the electron ground state and to determine the relaxation times in the electron spin ensemble. A stimulated steplike Raman process induced by a sequence of two laser pulses creates a coherent superposition of the ground-state doublet which can be retrieved only optically because of selective excitation of the same subensemble with a third pulse. This provides the unique opportunity to distinguish between different complexes that are closely spaced in energy in an ensemble. The related experimental demonstration is based on photon-echo measurements in an n -type CdTe /(Cd ,Mg )Te quantum-well structure detected by a heterodyne technique. The difference in the sub-μ eV range between the Zeeman splittings of donor-bound electrons and electrons localized at potential fluctuations can be resolved even though the homogeneous linewidth of the optical transitions is larger by 2 orders of magnitude.

  1. Beyond the effective mass approximation: predictive theory of the nonlinear optical response of conduction electrons

    CERN Document Server

    Yu, Shukai; Talbayev, Diyar

    2016-01-01

    We present an experimental and computational study of the nonlinear optical response of conduction electrons to intense terahertz (THz) electric field. Our observations (saturable absorption and an amplitude-dependent group refractive index) can be understood on the qualitative level as the breakdown of the effective mass approximation. However, a predictive theoretical description of the nonlinearity has been missing. We propose a model based on the semiclassical electron dynamics, a realistic band structure, and the free electron Drude parameters to accurately calculate the experimental observables in InSb. Our results open a path to predictive modeling of the conduction-electron optical nonlinearity in semiconductors, metamaterials, as well as high-field effects in THz plasmonics.

  2. Physics design of the in-vessel collection optics for the ITER electron cyclotron emission diagnostic

    Science.gov (United States)

    Rowan, W. L.; Houshmandyar, S.; Phillips, P. E.; Austin, M. E.; Beno, J. H.; Hubbard, A. E.; Khodak, A.; Ouroua, A.; Taylor, G.

    2016-11-01

    Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct view of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Blackbody radiation sources are provided for in situ calibration.

  3. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture. 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electric field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.

  4. Physics design of the in-vessel collection optics for the ITER electron cyclotron emission diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Rowan, W. L., E-mail: w.l.rowan@austin.utexas.edu; Houshmandyar, S.; Phillips, P. E.; Austin, M. E. [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States); Beno, J. H.; Ouroua, A. [Center for Electromechanics, The University of Texas at Austin, Austin, Texas 78712 (United States); Hubbard, A. E. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Khodak, A.; Taylor, G. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-11-15

    Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct view of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Blackbody radiation sources are provided for in situ calibration.

  5. Optical vibration modes and electron-phonon interaction in ternary mixed crystals of polar semiconductors

    Institute of Scientific and Technical Information of China (English)

    Liang Xi-Xia; Ban Shi-Liang

    2004-01-01

    @@ Optical vibrations of the lattice and the electron-phonon interaction in polar ternary mixed crystals are studied in the framework of the continuum model of Born and Huang and the random-element-isodisplacement model. A normal-coordinate system to describe the optical vibration in ternary mixed crystals is correctly adopted to derive a new Frohlich-like Hamiltonian for the electron-phonon interaction including the unit-cell volume variation influence.The numerical results for the phonon modes, the electron-phonon coupling constants and the polaronic energies for several typical materials are obtained. It is verified that the nonlinearity of the electron-phonon coupling effects with the composition is essential and the unit-cell volume effects cannot be neglected for most ternary mixed crystals.

  6. Ab initio prediction of the electronic and optical excitations in polythiophene: Isolated chains versus bulk polymer

    Science.gov (United States)

    van der Horst, J.-W.; Bobbert, P. A.; de Jong, P. H. L.; Michels, M. A. J.; Brocks, G.; Kelly, P. J.

    2000-06-01

    We calculate the electronic and optical excitations of polythiophene using the GW (G stands for one-electron Green function, W for the screened Coulomb interaction) approximation for the electronic self-energy, and include excitonic effects by solving the electron-hole Bethe-Salpeter equation. Two different situations are studied: excitations on isolated chains and excitations on chains in crystalline polythiophene. The dielectric tensor for the crystalline situation is obtained by modeling the polymer chains as polarizable line objects, with a long-wavelength polarizability tensor obtained from the ab initio polarizability function of the isolated chain. With this model dielectric tensor we construct a screened interaction for the crystalline case, including both intra- and interchain screening. In the crystalline situation both the quasiparticle band gap and the exciton binding energies are drastically reduced in comparison with the isolated chain. However, the optical gap is hardly affected. We expect this result to be relevant for conjugated polymers in general.

  7. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals

    Science.gov (United States)

    Brown, Ana M.; Sundararaman, Ravishankar; Narang, Prineha; Goddard, William A.; Atwater, Harry A.

    2016-08-01

    Ultrafast laser measurements probe the nonequilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semiempirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions, facilitating complete theoretical predictions of the time-resolved optical probe signatures in ultrafast laser experiments.

  8. Electronic entanglement via quantum Hall interferometry in analogy to an optical method

    Science.gov (United States)

    Frustaglia, Diego; Cabello, Adán

    2009-11-01

    We present an interferometric scheme producing orbital entanglement in a quantum Hall system upon electron-hole pair emission via tunneling. The proposed setup is an electronic version of the optical interferometer proposed by Cabello [Phys. Rev. Lett. 102, 040401 (2009)] and is feasible with the present technology. It requires single-channel propagation and a single primary source. We discuss the creation of entanglement and its detection by the violation of a Bell inequality.

  9. Nonintercepting electron beam size monitor using optical diffraction radiation interference

    Directory of Open Access Journals (Sweden)

    A. Cianchi

    2011-10-01

    Full Text Available In recent years, the use of diffraction radiation (DR, emitted when a charged particle beam passes through a rectangular slit, has been proposed and successfully tested as a nonintercepting diagnostic of high brightness beams. However, some problems related to the control of the particle trajectory through the slit still remain. If an additional slit is placed in front of the first one, at a distance shorter than the radiation formation length, interference between the forward diffraction radiation from the upstream slit and the backward diffraction radiation from the downstream slit can be observed. In this paper we report the first experimental observation of this effect, which we call here optical diffraction radiation interference (ODRI. If the two slits have different dimensions and are not aligned on the same axis, the properties of the ODRI pattern can be effectively used for nonintercepting beam diagnostics, especially for the unambiguously determination of the beam size. Indeed, the advantage of ODRI compared with a single aperture DR screen is due to the reduction of synchrotron radiation background, the increase of sensitivity for transverse beam dimensions, and the possibility to separate effects caused by the beam size and by beam offset within the slit.

  10. Optical detection of spin-filter effect for electron spin polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Majee, S.; Lampel, G.; Lassailly, Y.; Paget, D.; Peretti, J. [Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique - CNRS, 91128 Palaiseau Cedex (France); Tereshchenko, O. E., E-mail: teresh@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2014-08-04

    We have monitored the cathodoluminescence (CL) emitted upon injection of free electrons into a hybrid structure consisting of a thin magnetic Fe layer deposited on a p-GaAs substrate, in which InGaAs quantum wells are embedded. Electrons transmitted through the unbiased metal/semiconductor junction recombine radiatively in the quantum wells. Because of the electron spin-filtering across the Fe/GaAs structure, the CL intensity, collected from the backside, is found to depend on the relative orientation between the injected electronic spin polarization and the Fe layer magnetization. The spin asymmetry of the CL intensity in such junction provides a compact optical method for measuring spin polarization of free electrons beams or of hot electrons in solid-state devices.

  11. Electron optics simulation for designing carbon nanotube based field emission x-ray source

    Science.gov (United States)

    Sultana, Shabana

    In this dissertation, electron optics simulation for designing carbon nanotube (CNT) based field emission x-ray source for medical imaging applications will be presented. However, for design optimization of x-ray tubes accurate electron beam optics simulation is essential. To facilitate design of CNT x-ray sources a commercial 3D finite element software has been chosen for extensive simulation. The results show that a simplified model of uniform electron field emission from the cathode surface is not sufficient when compared to experimental measurements. This necessitated the development of a refined model to describe a macroscopic field emission CNT cathode for electron beam optics simulations. The model emulates the random distribution of CNTs and the associated variation of local field enhancement factor. The main parameter of the model has been derived empirically from the experimentally measured I-V characteristics of the CNT cathode. Simulation results based on this model agree well with experiments which include measurements of the transmission rate and focus spot size. The model provides a consistent simulation platform for optimization of electron beam optics in CNT x-ray source design. A systematic study of electron beam optics in CNT x-ray tubes led to the development of a new generation of compact x-ray source with multiple pixels. A micro focus field emission x-ray source with a variable focal spot size has been fully characterized and evaluated. It has been built and successfully integrated into micro-CT scanners which are capable of dynamic cardiac imaging of free-breathing small animals with high spatial and temporal resolutions. In addition a spatially distributed high power multi-beam x-ray source has also been designed and integrated into a stationary digital breast tomosynthesis (s-DBT) configuration. This system has the potential to reduce the total scan time to 4 seconds and yield superior image quality in breast imaging.

  12. Optically Forbidden Excitations of 2s Electron of Neon Studied by Fast Electron Impact

    Institute of Scientific and Technical Information of China (English)

    GE Min; ZHU Lin-Fan; LIU Cun-Ding; XU Ke-Zun

    2008-01-01

    The electron energy loss spectrum in the energy region of 42-48.5 eV of neon is measured with an angle-resolved fast-electron energy-loss spectrometer at an incident electron energy of 2500eV. Besides the dipole-allowed autoionization transitions of 2s-1np (n = 3, 4) and 2p-23s3p, the dipole-forbidden ones of 2s-1ns (n = 3 - 6) and 2s-13d are observed. The line profile parameters, i.e. ET, F and q for these transitions, are determined, and the momentum transfer dependence behaviour is discussed.

  13. Optical diffraction studies of crystalline structures in electron micrographs. I. Theoretical considerations.

    Science.gov (United States)

    Berger, J E

    1969-12-01

    Determination of the unit cell of crystalline particles by optical diffraction analysis of electron micrographs may establish the identity and help in approximating the molecular weight of the substances contained in the crystal. This technique may be particularly helpful when isolation and purification of the crystalline material cannot be accomplished.

  14. Proposed Coupling of an Electron Spin in a Semiconductor Quantum Dot to a Nanosize Optical Cavity

    DEFF Research Database (Denmark)

    Majumdar, Arka; Nielsen, Per Kær; Bajcsy, Michal

    2013-01-01

    We propose a scheme to efficiently couple a single quantum dot electron spin to an optical nano-cavity, which enables us to simultaneously benefit from a cavity as an efficient photonic interface, as well as to perform high fidelity (nearly 100%) spin initialization and manipulation achievable in...

  15. Structural, optical and electronic properties of LaMgHx switchable mirrors

    NARCIS (Netherlands)

    Isidorsson, J.; Giebels, I.A.M.E.; Kooij, E.S.; Koeman, N.J.; Rector, J.H.; Gogh, van A.T.M.; Griessen, R.

    2001-01-01

    Structural, optical and electronic properties of lanthanum magnesium alloy thin films are studied in situ in real time during hydrogenation. X-ray data show that the as-deposited films contain the intermetallic phase LaMg with CsCl structure as well as fcc β-La and fcc LaHx. Hydrogenation initiates

  16. Nexus between coherent longitudinal-optical phonons and electronic diffusions in low-gap semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Min, Kyung-Gu; Jho, Young-Dahl, E-mail: jho@gist.ac.kr [School of Info. and Comm., Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Yee, Ki-Ju [Department of Physics, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Stanton, C. J. [Department of Physics, University of Florida, Gainesville, Florida 32611-8440 (United States); Song, Jin-Dong [Nano-Photonics Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2013-12-04

    We have studied the characteristics of longitudinal-optical-phonon--plasmon coupled (LOPC) mode as a function of thickness in InAs epilayers, ranging from 10 to 900 nm. The absence of LOPC modes in a scale less than exciton Bohr radius manifests the role of electron diffusion rather than the carrier screening via drift motion in surface depletion region.

  17. Effect of ion and electron beam irradiation on surface morphology and optical properties of PVA

    Institute of Scientific and Technical Information of China (English)

    HM Eyssa; MO sman; SAK andil; MMA bdelrahman

    2015-01-01

    Polyvinyl alcohol (PVA) is a well-known friendly polymer for paper-making, textiles, and a variety of coat-ings, biomedical applications such as artificial pancreas, synthetic vitreous body, wound dressing, artificial skin, and cardiovascular device. In this paper, ion/electron beam is employed to get insight into the irradiation effect on surface morphology and optical properties of PVA polymer. UV-Vis spectra are recorded to investigate the effect of induced defects on the optical band gap and the formed carbon clusters size. Scanning electron microscopy (SEM) is used to relate and investigate surface morphology and optical properties of the target poly-mer with different doses (15, 30 and 60 min). Also, PVA polymer is subjected to theoretical studies by using semi-empirical PM7 quantum chemical method.

  18. Method for determiantion of the frequency-contrast characteristics of electronic-optic systems

    Science.gov (United States)

    Mardirossian, Garo; Zhekov, Zhivko

    The frequency-contrast characteristics is an important criterion to judge the quality of electronic-optic systems, which boast an increasing application in space research, astronomy, martial art etc. The paper provides a brief description of the methods for determining the frequency-contrast characteristics of optic systems, developed at the Space Research Institute of the Bulgarian Academy of Science. The suggested methods have been used to develop a couple of electronic-optic systems participated in the designed ground-based and aerospace scientific-research equipment. Based on the obtained practical results, the conclusion was made that the methods provide to obtain sufficiently precise data, which coincide well with the results, obtained when using other methods.

  19. Effect of electron beam irradiation on the structure and optical properties of nickel oxide nanocubes

    Indian Academy of Sciences (India)

    P A Sheena; K P Priyanka; N Aloysius Sabu; S Ganesh; Thomas Varghese

    2015-08-01

    This work reports the effect of electron beam (EB) irradiation on the structure and optical properties of nanocrystalline nickel oxide (NiO) cubes. NiO nanocubes were synthesized by the chemical precipitation method. The characterization was carried out by employing analytical techniques like X-ray diffraction, transmission electron microscopy, UV–visible and photoluminescence (PL) spectroscopy. The present investigation found that non-stoichiometry, defects and particle size variation caused by EB irradiation have a great influence on optical band gap, blue shift and band modification of absorption and PL spectra. Moreover, EB irradiation can result enhanced optical absorption performance and photo-activity in NiO nanocubes for optoelectronics and photo-catalytic applications. The study of International Commission on Illumination chromaticity diagram indicates that NiO can be developed as a suitable phosphor material for the application in near ultraviolet excited colour LEDs.

  20. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Timothy John [Northern Illinois U.

    2012-01-01

    Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.

  1. Optical Sideband Generation: a Longitudinal Electron Beam Diagnostic Beyond the Laser Bandwidth Resolution Limit

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Berkeley National Laboratory; Tilborg, J. van; Matlis, N. H.; Plateau, G. R.; Leemans, W. P.

    2010-06-01

    Electro-optic sampling (EOS) is widely used as a technique to measure THz-domain electric field pulses such asthe self-fields of femtosecond electron beams. We present an EOS-based approach for single-shot spectral measurement that excels in simplicity (compatible with fiber integration) and bandwidth coverage (overcomes the laser bandwidth limitation), allowing few-fs electron beams or single-cycle THz pulses to be characterized with conventional picosecond probes. It is shown that the EOS-induced optical sidebands on the narrow-bandwidth optical probe are spectrally-shifted replicas of the THz pulse. An experimental demonstration on a 0-3 THz source is presented.

  2. Electronic and optical properties of vacancy-doped WS2 monolayers

    Directory of Open Access Journals (Sweden)

    Jian-wei Wei

    2012-12-01

    Full Text Available Monolayers of tungsten disulfide doped with atomic vacancies have been investigated for the first time by density functional theory calculations. The results reveal that the atomic vacancy defects affect the electronic and optical properties of the tungsten disulfide monolayers. The strongly ionic character of the W-S bonds and the non-bonding electrons of the vacancy defects result in spin polarization near the defects. Moreover, the spin polarization of single W atomic vacancies has a larger range than for one or two S atomic vacancies. In particular, increased intensity of absorption and red shift of optical absorption are universally observed in the presence of these atomic defects, which are shown to be a fundamental factor in determining the spin transport and optical absorption of tungsten disulfide monolayers.

  3. Electron optics of nanoplasmonic metamaterials in bio/opto theranostics

    Science.gov (United States)

    Roper, D. Keith; DeJarnette, Drew; Forcherio, Gregory T.; Dunklin, Jeremy; Berry, Keith; Jang, Gyoung G.; Lisunova, Milana; Blake, Phillip; Ahn, Wonmi

    2014-08-01

    Opto-electronic coupling of plasmonic nano-antennas in the near infrared water window in vitro and in vivo is of growing interest for imaging contrast agents, spectroscopic labels and rulers, biosensing, drug-delivery, and optoplasmonic ablation. Metamaterials composed of nanoplasmonic meta-atoms offer improved figures of merit in many applications across a broader spectral window. Discrete and coupled dipole approximations effectively describe localized and coupled resonance modes in nanoplasmonic metamaterials. From numeric and experimental results have emerged four design principles to guide fabrication and implementation of metamaterials in bio-related devices and systems. Resonance intensity and sensitivity are enhanced by surface-to-mass of meta-atoms and lattice constant. Fano resonant coupling is dependent on meta-atom polarizability and lattice geometry. Internal reflection in plasmonic metaatom- containing polymer films enhances dissipation rate. Dimensions of self-assembled meta-atoms depend on balancing electrochemical and surface forces. Examples of these principles from our lab compare computation with images and spectra from ordered metal-ceramic and polymeric nanocomposite metamaterials for bio/opto theranostic applications. These principles speed design and description of new architectures for nanoplasmonic metamaterials that show promise for bioapplications.

  4. Pupil size tracks perceptual content and surprise.

    Science.gov (United States)

    Kloosterman, Niels A; Meindertsma, Thomas; van Loon, Anouk M; Lamme, Victor A F; Bonneh, Yoram S; Donner, Tobias H

    2015-04-01

    Changes in pupil size at constant light levels reflect the activity of neuromodulatory brainstem centers that control global brain state. These endogenously driven pupil dynamics can be synchronized with cognitive acts. For example, the pupil dilates during the spontaneous switches of perception of a constant sensory input in bistable perceptual illusions. It is unknown whether this pupil dilation only indicates the occurrence of perceptual switches, or also their content. Here, we measured pupil diameter in human subjects reporting the subjective disappearance and re-appearance of a physically constant visual target surrounded by a moving pattern ('motion-induced blindness' illusion). We show that the pupil dilates during the perceptual switches in the illusion and a stimulus-evoked 'replay' of that illusion. Critically, the switch-related pupil dilation encodes perceptual content, with larger amplitude for disappearance than re-appearance. This difference in pupil response amplitude enables prediction of the type of report (disappearance vs. re-appearance) on individual switches (receiver-operating characteristic: 61%). The amplitude difference is independent of the relative durations of target-visible and target-invisible intervals and subjects' overt behavioral report of the perceptual switches. Further, we show that pupil dilation during the replay also scales with the level of surprise about the timing of switches, but there is no evidence for an interaction between the effects of surprise and perceptual content on the pupil response. Taken together, our results suggest that pupil-linked brain systems track both the content of, and surprise about, perceptual events.

  5. Influence of Electron Irradiation on Optical Properties of ZnSe Thin Films

    OpenAIRE

    P. Raghu; C.S. Naveen; K. Mrudula; Sanjeev Ganesh; J. Shailaja; H.M. Mahesh

    2014-01-01

    Zinc Selenide (ZnSe) thin films of 500 nm thickness were deposited by electron beam evaporation technique and irradiated with 8 MeV electron beam for the doses ranging from 0 Gy to 1 kGy. Optical properties were studied for both irradiated and pristine samples using Ultraviolet-Visible spectrophotometer. The increase in electron dose tends to decrease in transmittance and increase in refractive index of thin film. Irradiated thin film exhibits minimum of 67 % transmittance for 800 Gy with ver...

  6. Transverse and longitudinal characterization of electron beams using interaction with optical near-fields

    CERN Document Server

    Kozák, Martin; Leedle, Kenneth J; Deng, Huiyang; Schönenberger, Norbert; Ruehl, Axel; Hartl, Ingmar; Hoogland, Heinar; Holzwarth, Ronald; Harris, James S; Byer, Robert L; Hommelhoff, Peter

    2016-01-01

    We demonstrate an experimental technique for both transverse and longitudinal characterization of bunched femtosecond free electron beams. The operation principle is based on monitoring of the current of electrons that obtained an energy gain during the interaction with the synchronized optical near-field wave excited by femtosecond laser pulses. The synchronous accelerating/decelerating fields confined to the surface of a silicon nanostructure are characterized using a highly focused sub-relativistic electron beam. Here the transverse spatial resolution of 450 nm and femtosecond temporal resolution achievable by this technique are demonstrated.

  7. Optical and electronic properties of some binary semiconductors from energy gaps

    CERN Document Server

    Tripathy, Sunil K

    2015-01-01

    II-VI and III-V tetrahedral semiconductors have significant potential for novel optoelectronic applications. In the present work, some of the optical and electronic properties of these groups of semiconductors have been studied using a recently proposed empirical relationship for refractive index from energy gap. The calculated values of these properties are also compared with those calculated from some well known relationships. From an analysis of the calculated electronic polarisability of these tetrahedral binary semiconductors from different formulations, we have proposed an empirical relation for its calculation. The predicted values of electronic polarisability of these semiconductors agree fairly well with the known values over a wide range of energy gap.

  8. Coherent Electronic Transport through Graphene Constrictions: Subwavelength Regime and Optical Analogy

    Science.gov (United States)

    Darancet, Pierre; Olevano, Valerio; Mayou, Didier

    2009-04-01

    Nanoelectronic devices smaller than the electron wavelength can be achieved in graphene with current lithography techniques. Here we show that the electronic quantum transport of graphene subwavelength nanodevices presents deep analogies with subwavelength optics. We introduce the concept of electronic diffraction barrier to represent the effect of constrictions and the rich transport phenomena of a variety of nanodevices. Results are presented for Bethe and Kirchhoff diffraction in graphene slits and Fabry-Perot interference oscillations in nanoribbons. The same concept applies to graphene quantum dots and gives new insight into recent experiments in these systems.

  9. Analysis of mid-infrared optical conductivity in electron-doped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Dinesh [School of Physics, Vigyan Bhawan, Devi Ahilya University, Khandwa Road Campus, Indore-452017 (India); Patel, G S [School of Physics, Vigyan Bhawan, Devi Ahilya University, Khandwa Road Campus, Indore-452017 (India); Singh, R K [M P Bhoj (Open) University, Shivaji Nagar, Bhopal-462016, Madhya Pradesh (India)

    2003-05-01

    Observed frequency dependent optical conductivity {sigma}({omega}) of electron-doped cuprate Nd{sub 1.85}Ce{sub 0.15}CuO{sub 4-{delta}} ({delta} {approx} 0.02, T{sub c} {approx} 25 K) superconductors has been theoretically analysed. Starting from an effective two-dimensional (2D) interaction potential for superlattice of electron-doped cuprates treated as a layered electron gas, the spectral function is developed. Calculations of {sigma}({omega}) have been made within the two component scheme: one is the coherent Drude carriers responsible for superconductivity and the other is incoherent motion of carriers from one site to the other that leads to a pairing between Drude carriers. The approach accounts for the anomalies observed (frequency dependence of optical conductivity) in the optical measurements for the normal state. Estimating the effective mass from specific heat measurement and {epsilon}{sub {infinity}} from band structure calculations for the low-energy charge density waves, the model has only one free parameter, the relaxation rate. The frequency dependent relaxation rates are expressed in terms of memory functions, and the coherent Drude carriers from the effective interaction potential lead to a sharp peak at zero frequency and a long tail at higher frequencies, i.e. in the infrared region, while the hopping of carriers from one site to the other (incoherent motion of doped carriers) yields a peak value in the optical conductivity centred at mid-infrared region. We find that both the Drude and hopping carriers in the superlattice of electron-doped cuprates will contribute to the optical process of conduction in the CuO{sub 2} planes and show similar results on optical conductivity in the mid-infrared as well as infrared frequency regions as those revealed from experiments.

  10. Analysis of mid-infrared optical conductivity in electron-doped cuprates

    Science.gov (United States)

    Varshney, Dinesh; Patel, G. S.; Singh, R. K.

    2003-05-01

    Observed frequency dependent optical conductivity sigma(omega) of electron-doped cuprate Nd1.85Ce0.15CuO4-delta (delta approx 0.02, Tc approx 25 K) superconductors has been theoretically analysed. Starting from an effective two-dimensional (2D) interaction potential for superlattice of electron-doped cuprates treated as a layered electron gas, the spectral function is developed. Calculations of sigma(omega) have been made within the two component scheme: one is the coherent Drude carriers responsible for superconductivity and the other is incoherent motion of carriers from one site to the other that leads to a pairing between Drude carriers. The approach accounts for the anomalies observed (frequency dependence of optical conductivity) in the optical measurements for the normal state. Estimating the effective mass from specific heat measurement and varepsiloninfty from band structure calculations for the low-energy charge density waves, the model has only one free parameter, the relaxation rate. The frequency dependent relaxation rates are expressed in terms of memory functions, and the coherent Drude carriers from the effective interaction potential lead to a sharp peak at zero frequency and a long tail at higher frequencies, i.e. in the infrared region, while the hopping of carriers from one site to the other (incoherent motion of doped carriers) yields a peak value in the optical conductivity centred at mid-infrared region. We find that both the Drude and hopping carriers in the superlattice of electron-doped cuprates will contribute to the optical process of conduction in the CuO2 planes and show similar results on optical conductivity in the mid-infrared as well as infrared frequency regions as those revealed from experiments.

  11. EGUN: An electron optics and gun design program

    Energy Technology Data Exchange (ETDEWEB)

    Herrmannsfeldt, W.B.

    1988-10-01

    The name EGUN has become commonly associated with the program also known as the SLAC Electron Trajectory Program. This document is an updated version of SLAC-226, published in 1979. The program itself has had substantial upgrading since then, but only a few new features are of much concern to the user. Most of the improvements are internal and are intended to improve speed or accuracy. EGUN is designed to compute trajectories of charged particles in electrostatic and magnetostatic fields, including the effects of space charge and self-magnetic fields. Starting options include Child's Law conditions on cathodes of various shapes, as well as used specified initial conditions. Either rectangular or cylindrical symmetry may be used. In the new jargon, the program is a 2-1/2 dimension code meaning 2-D in all fields and 3-D in all particle motion. A Poisson's Equation Solver is used to find the electrostatic fields by using difference equations derived from the boundary conditions. Magnetic fields are to be specified externally, by the user, by using one of several methods including data from another program or arbitrary configurations of coils. This edition of the documentation also covers the program EGN87c, which is a recently developed version of EGUN designed to be used on the newer models of personal computers, small main frames, work stations, etc. The EGN87c program uses the programming language C which is very transportable so the program should operate on any system that supports C. Plotting routines for most common PC monitors are included, and the capability to make hard copy plots on dot-matrix printer-plotters is provided. 18 refs., 7 figs.

  12. Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales

    Energy Technology Data Exchange (ETDEWEB)

    Knoops, Harm C. M., E-mail: H.C.M.Knoops@tue.nl; Loo, Bas W. H. van de; Smit, Sjoerd; Ponomarev, Mikhail V.; Weber, Jan-Willem; Sharma, Kashish [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Kessels, Wilhelmus M. M.; Creatore, Mariadriana, E-mail: M.Creatore@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands and Solliance, High Tech Campus 5, 5656 AE Eindhoven (Netherlands)

    2015-03-15

    In this work, an optical modeling study on electron scattering mechanisms in plasma-deposited ZnO layers is presented. Because various applications of ZnO films pose a limit on the electron carrier density due to its effect on the film transmittance, higher electron mobility values are generally preferred instead. Hence, insights into the electron scattering contributions affecting the carrier mobility are required. In optical models, the Drude oscillator is adopted to represent the free-electron contribution and the obtained optical mobility can be then correlated with the macroscopic material properties. However, the influence of scattering phenomena on the optical mobility depends on the considered range of photon energy. For example, the grain-boundary scattering is generally not probed by means of optical measurements and the ionized-impurity scattering contribution decreases toward higher photon energies. To understand this frequency dependence and quantify contributions from different scattering phenomena to the mobility, several case studies were analyzed in this work by means of spectroscopic ellipsometry and Fourier transform infrared (IR) spectroscopy. The obtained electrical parameters were compared to the results inferred by Hall measurements. For intrinsic ZnO (i-ZnO), the in-grain mobility was obtained by fitting reflection data with a normal Drude model in the IR range. For Al-doped ZnO (Al:ZnO), besides a normal Drude fit in the IR range, an Extended Drude fit in the UV-vis range could be used to obtain the in-grain mobility. Scattering mechanisms for a thickness series of Al:ZnO films were discerned using the more intuitive parameter “scattering frequency” instead of the parameter “mobility”. The interaction distance concept was introduced to give a physical interpretation to the frequency dependence of the scattering frequency. This physical interpretation furthermore allows the prediction of which Drude models can be used in a specific

  13. Optical and electronic properties of conductive ternary nitrides with rare- or alkaline-earth elements

    Science.gov (United States)

    Kassavetis, S.; Hodroj, A.; Metaxa, C.; Logothetidis, S.; Pierson, J. F.; Patsalas, P.

    2016-12-01

    Conductive nitrides, such as TiN, are key engineering materials for electronics, photonics, and plasmonics; one of the essential issues for such applications is the ability of tuning the conduction electron density, the resistivity, and the electron scattering. While enhancing the conduction electron density and blueshifting the intraband absorption towards the UV were easily achieved previously, reducing the conduction electron density and redshifting the intraband absorption into the infrared are still an open issue. The latter is achieved in this work by alloying TiN by rare earth (RE = Sc, Y, La) or alkaline earth (AE = Mg, Ca) atoms in Ti substitutional positions. The produced TixRE1-xN and TixAE1-xN thin film samples were grown by a hybrid arc evaporation/sputtering process, and most of them are stable in the B1 cubic structure. Their optical properties were studied in an extensive spectral range by spectroscopic ellipsometry. The ellipsometric spectra were analyzed and quantified by the Drude-Lorentz model, which provided the conduction electron density, the electron mean free path, and the resistivity. The observed interband transitions are firmly assigned, and the optical and electrical properties of TixRE1-xN and TixAE1-xN are quantitatively correlated with their composition and crystal structure.

  14. Electronic and Optical Properties of Aluminum Oxide Before and After Surface Reduction by Ar+ Bombardment

    Directory of Open Access Journals (Sweden)

    D. Tahir

    2014-08-01

    Full Text Available The electronic and optical properties of a-Al2O3 after induced by 3-keV Ar+ sputtering have been studied quantitatively by use of reflection electron energy loss spectroscopy (REELS spectra. The band gap values of a-Al2O3 was determined from the onset values of the energy loss spectrum to the background level of REELS spectra as a function of time Ar+ bombardment. The bandgap changes from 8.4 eV before sputtering to 6.2 eV after 4 minutes of sputtering.The optical properties of α-Al2O3 thin films have been determined by comparing the experimental cross section obtained from reflection electron energy loss spectroscopy with the theoretical inelastic scattering cross section, deduced from the simulated energy loss function (ELF by using QUEELS-ε(k-REELS software. The peak assignments are based on ELF and compared with reported data on the electronic structure of α-Al2O3 obtained using different techniques. The results demonstrate that the electronic and optical properties before and after surface reduction will provide further understanding in the fundamental properties of α-Al2O3 which will be useful in the design, modeling and analysis of devices applications performance.

  15. Observation of vacuum-enhanced electron spin resonance of optically levitated nanodiamonds

    Science.gov (United States)

    Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. Our results show that optical levitation of nanodiamonds in vacuum not only can improve the mechanical quality of its oscillation, but also enhance the ESR contrast, which pave the way towards a novel levitated spin-optomechanical system for studying macroscopic quantum mechanics. The results also indicate potential applications of NV centers in gas sensing.

  16. First principles electron-correlated calculations of optical absorption in magnesium clusters

    CERN Document Server

    Shinde, Ravindra

    2015-01-01

    In this paper we report the calculations of linear optical absorption spectra of various isomers of magnesium clusters Mg$_{n}$ (n=2--5) involving valence transitions, performed using the large-scale all-electron configuration interaction (CI) methodology. First, geometries of several low-lying isomers of each cluster were optimized at the coupled-cluster singles doubles (CCSD) level of theory. These geometries were subsequently employed to perform ground and excited state calculations on these systems using the multi-reference singles-doubles configuration-interaction (MRSDCI) approach, which includes electron correlation effects at a sophisticated level. Resultant CI wave functions were used to compute the optical absorption spectra within the electric-dipole approximation. Our results on magnesium dimer (Mg$_{2}$) isomer are in excellent agreement with the experiments as far as oscillator strengths, and excitation energies are concerned. Owing to a better description of electron-correlation effects, these ...

  17. Development of electron optical system using annular pupils for scanning transmission electron microscope by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Matsutani, Takaomi, E-mail: matutani@ele.kindai.ac.jp [Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Yasumoto, Tsuchika; Tanaka, Takeo [Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-8530 (Japan); Kawasaki, Tadahiro; Ichihashi, Mikio [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ikuta, Takashi [Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530 (Japan)

    2012-02-01

    Annular pupils for electron optics were produced using a focused ion beam (FIB), enabling an increase in the depth of focus and allowing for aberration-free imaging and separation of the amplitude and phase images in a scanning transmission electron microscope (STEM). Simulations demonstrate that an increased focal depth is advantageous for three-dimensional tomography in the STEM. For a 200 kV electron beam, the focal depth is increased to approximately 100 nm by using an annular pupil with inner and outer semi-angles of 29 and 30 mrad, respectively. Annular pupils were designed with various outer diameters of 40-120 {mu}m and the inner diameter was designed at 80% of the outer diameter. A taper angle varying from 1 Degree-Sign to 20 Degree-Sign was applied to the slits of the annular pupils to suppress the influence of high-energy electron scattering. The fabricated annular pupils were inspected by scanning ion beam microscopy and scanning electron microscopy. These annular pupils were loaded into a STEM and no charge-up effects were observed in the scintillator projection images recorded by a CCD camera.

  18. High definition in-situ electro-optical characterization for Roll to Roll printed electronics

    DEFF Research Database (Denmark)

    Pastorelli, Francesco

    2017-01-01

    Resume: Printed electronics is emerging as a new, large scale and cost effective technology that will be disruptive in fields such as energy harvesting, consumer electronics and medical sensors. The performance of printed organic electronic devices relies principally on the carrier mobility...... and molecular packing of the polymer semiconductor material. Unfortunately, the analysis of such materials is generally performed with destructive techniques, which are hard to make compatible with in situ measurements, and pose a great obstacle for the mass production of printed electronics devices. A rapid......-photon induced photoluminescence (TPPL) and second harmonic response. We anticipate that this non-linear optical method will substantially contribute to the understanding of printed electronic devices and demonstrate it as a promising novel tool for non-destructive and facile testing of materials during printing...

  19. Multi-beam-bulk model for electron transport during commutation in an optically triggered pseudospark thyratron

    Science.gov (United States)

    Pak, Hoyoung; Kushner, Mark J.

    1990-10-01

    The electron energy distribution in low-pressure pulsed power plasma switches is typically not in equilibrium with the local electric field. To simulate electron transport under these conditions a computer model has been developed and has been applied to the optically triggered pseudospark, or back-lit-thyratron (BLT). The model uses many groups of electrons divided into the ``bulk'' and the ``beam''. The bulk is represented by a fluid while the beam electrons are ballistic in nature and have not undergone significant energy-loss collisions after generation. To account for beam electrons being generated at arbitrary locations in the BLT, multiple beams are employed in the model. The commutation phase of switching in the BLT is investigated and the onset of a hollow cathode effect during switching is predicted.

  20. Optical dating in a new light: A direct, non-destructive probe of trapped electrons.

    Science.gov (United States)

    Prasad, Amit Kumar; Poolton, Nigel R J; Kook, Myungho; Jain, Mayank

    2017-09-26

    Optical dating has revolutionized our understanding of Global climate change, Earth surface processes, and human evolution and dispersal over the last ~500 ka. Optical dating is based on an anti-Stokes photon emission generated by electron-hole recombination within quartz or feldspar; it relies, by default, on destructive read-out of the stored chronometric information. We present here a fundamentally new method of optical read-out of the trapped electron population in feldspar. The new signal termed as Infra-Red Photo-Luminescence (IRPL) is a Stokes emission (~1.30 eV) derived from NIR excitation (~1.40 eV) on samples previously exposed to ionizing radiation. Low temperature (7-295 K) spectroscopic and time-resolved investigations suggest that IRPL is generated from excited-to-ground state relaxation within the principal (dosimetry) trap. Since IRPL can be induced even in traps remote from recombination centers, it is likely to contain a stable (non-fading), steady-state component. While IRPL is a powerful tool to understand details of the electron-trapping center, it provides a novel, alternative approach to trapped-charge dating based on direct, non-destructive probing of chronometric information. The possibility of repeated readout of IRPL from individual traps will open opportunities for dating at sub-micron spatial resolution, thus, marking a step change in the optical dating technology.

  1. Simulation of multicomponent light source for optical-electronic system of color analysis objects

    Science.gov (United States)

    Peretiagin, Vladimir S.; Alekhin, Artem A.; Korotaev, Valery V.

    2016-04-01

    Development of lighting technology has led to possibility of using LEDs in the specialized devices for outdoor, industrial (decorative and accent) and domestic lighting. In addition, LEDs and devices based on them are widely used for solving particular problems. For example, the LED devices are widely used for lighting of vegetables and fruit (for their sorting or growing), textile products (for the control of its quality), minerals (for their sorting), etc. Causes of active introduction LED technology in different systems, including optical-electronic devices and systems, are a large choice of emission color and LED structure, that defines the spatial, power, thermal and other parameters. Furthermore, multi-element and color devices of lighting with adjustable illumination properties can be designed and implemented by using LEDs. However, devices based on LEDs require more attention if you want to provide a certain nature of the energy or color distribution at all the work area (area of analysis or observation) or surface of the object. This paper is proposed a method of theoretical modeling of the lighting devices. The authors present the models of RGB multicomponent light source applied to optical-electronic system for the color analysis of mineral objects. The possibility of formation the uniform and homogeneous on energy and color illumination of the work area for this system is presented. Also authors showed how parameters and characteristics of optical radiation receiver (by optical-electronic system) affect on the energy, spatial, spectral and colorimetric properties of a multicomponent light source.

  2. Transverse phase space mapping of relativistic electron beams using optical transition radiation

    Directory of Open Access Journals (Sweden)

    G. P. Le Sage

    1999-12-01

    Full Text Available Optical transition radiation (OTR has proven to be a versatile and effective diagnostic for measuring the profile, divergence, and emittance of relativistic electron beams with a wide range of parameters. Diagnosis of the divergence of modern high brightness beams is especially well suited to OTR interference (OTRI techniques, where multiple dielectric or metal foils are used to generate a spatially coherent interference pattern. Theoretical analysis of measured OTR and OTRI patterns allows precise measurement of electron beam emittance characteristics. Here we describe an extension of this technique to allow mapping of divergence characteristics as a function of transverse coordinates within a measured beam. We present the first experimental analysis of the transverse phase space of an electron beam using all optical techniques. Comparing an optically masked portion of the beam to the entire beam, we measure different angular spread and average direction of the particles. Direct measurement of the phase-space ellipse tilt angle has been demonstrated using this optical masking technique.

  3. Projection-reduction method applied to deriving non-linear optical conductivity for an electron-impurity system

    Directory of Open Access Journals (Sweden)

    Nam Lyong Kang

    2013-07-01

    Full Text Available The projection-reduction method introduced by the present authors is known to give a validated theory for optical transitions in the systems of electrons interacting with phonons. In this work, using this method, we derive the linear and first order nonlinear optical conductivites for an electron-impurity system and examine whether the expressions faithfully satisfy the quantum mechanical philosophy, in the same way as for the electron-phonon systems. The result shows that the Fermi distribution function for electrons, energy denominators, and electron-impurity coupling factors are contained properly in organized manners along with absorption of photons for each electron transition process in the final expressions. Furthermore, the result is shown to be represented properly by schematic diagrams, as in the formulation of electron-phonon interaction. Therefore, in conclusion, we claim that this method can be applied in modeling optical transitions of electrons interacting with both impurities and phonons.

  4. Optical absorption spectrum and electronic structure of multiferroic hexagonal YMnO3 compound

    Science.gov (United States)

    Lima, A. F.; Lalic, M. V.

    2017-02-01

    Optical absorption (OA) spectrum and electronic structure of the hexagonal YMnO3 compound have been investigated by employment of the first-principles calculations based on density functional theory. The calculations were performed upon the ferroelectric structure of the YMnO3, by testing various approximations of the exchange-correlation effects between the Mn d-electrons and considering two types of magnetic ordering of the Mn sub-lattice: (1) collinear anti-ferromagnetic order of the G-type and (2) non-collinear antiferromagnetic order that correspond to magnetic space group P63. The results demonstrate that satisfactory agreement between the theoretical and the experimental OA spectrum can be achieved only if both non-collinear anti-ferromagnetic order of the Mn spins and strong correlations between the Mn d-electrons are taken into account. The latter is found to be best described by effective Hubbard parameter Ueff = 2.55 eV. The principal features of the OA spectrum are interpreted in terms of calculated electronic structure. It is found that the most important, threshold 1.6 eV OA peak is generated by electron transitions from strongly hybridized occupied Mn d- and its neighboring in-plane O p-states to unoccupied Mn d-states. It is also concluded that the electronic gap (calculated as ∼1.1 eV) should be smaller than the optical one (∼1.6 eV).

  5. Some surprising facts about (the problem of) surprising facts (from the Dusseldorf Conference, February 2011).

    Science.gov (United States)

    Mayo, D

    2014-03-01

    A common intuition about evidence is that if data x have been used to construct a hypothesis H, then x should not be used again in support of H. It is no surprise that x fits H, if H was deliberately constructed to accord with x. The question of when and why we should avoid such "double-counting" continues to be debated in philosophy and statistics. It arises as a prohibition against data mining, hunting for significance, tuning on the signal, and ad hoc hypotheses, and as a preference for predesignated hypotheses and "surprising" predictions. I have argued that it is the severity or probativeness of the test--or lack of it--that should determine whether a double-use of data is admissible. I examine a number of surprising ambiguities and unexpected facts that continue to bedevil this debate.

  6. Investigation of the Optical, Electronic, and Structural Properties of Fiber Optic Glasses

    Science.gov (United States)

    1993-06-01

    concentration measured by electron paramagnetic resonan, e) and Nd ( calibration curve using dope fractioning) as standards. The photoluminescent intensity of...phonon peak position at 13 3 3.30 cm- and FWHM of 3.00 cmŕ .For calibration and comparison. we had peoroand high msolution RS measurement (bandpass - M...DC 20375-500 $achslFreeman Associates, Landover, MD 20785-539% :-.nivmt ofIlinosUrbana-Campaign. Urbana. EL 61301 ABSTRACT Photolumi’nescence specto

  7. Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials

    Science.gov (United States)

    Sangiorgi, Nicola; Aversa, Lucrezia; Tatti, Roberta; Verucchi, Roberto; Sanson, Alessandra

    2017-02-01

    The optical band gap energy and the electronic processes involved are important parameters of a semiconductor material and it is therefore important to determine their correct values. Among the possible methods, the spectrophotometric is one of the most common. Several methods can be applied to determine the optical band gap energy and still now a defined consensus on the most suitable one has not been established. A highly diffused and accurate optical method is based on Tauc relationship, however to apply this equation is necessary to know the nature of the electronic transitions involved commonly related to the coefficient n. For this purpose, a spectrophotometric technique was used and we developed a graphical method for electronic transitions and band gap energy determination for samples in powder form. In particular, the n coefficient of Tauc equation was determined thorough mathematical elaboration of experimental results on TiO2 (anatase), ZnO, and SnO2. The results were used to calculate the band gap energy values and then compared with the information obtained by Ultraviolet Photoelectron Spectroscopy (UPS). This approach provides a quick and accurate method for band gap determination through n coefficient calculation. Moreover, this simple but reliable method can be used to evaluate the nature of electronic transition that occurs in a semiconductor material in powder form.

  8. Stroke Recovery: Surprising Influences and Residual Consequences

    Directory of Open Access Journals (Sweden)

    Argye E. Hillis

    2014-01-01

    Full Text Available There is startling individual variability in the degree to which people recover from stroke and the duration of time over which recovery of some symptoms occurs. There are a variety of mechanisms of recovery from stroke which take place at distinct time points after stroke and are influenced by different variables. We review recent studies from our laboratory that unveil some surprising findings, such as the role of education in chronic recovery. We also report data showing that the consequences that most plague survivors of stroke and their caregivers are loss of high level cortical functions, such as empathy or written language. These results have implications for rehabilitation and management of stroke.

  9. Diagnostics of Electron Beams Based on Cherenkov Radiation in an Optical Fiber

    Science.gov (United States)

    Vukolov, A. V.; Novokshonov, A. I.; Potylitsyn, A. P.; Uglov, S. R.

    2017-02-01

    The use of an optical fiber in which Cherenkov radiation is generated instead of a metal wire for scanning a beam profile allows a compact and noise-proof device for diagnostics of charged particle beams in a wide energy range to be developed. Results of experimental investigation of the yield of Vavilov-Cherenkov radiation generated in optical fibers with thickness in the range from 0.125 to 1 mm by electrons with energy of 5.7 MeV are presented.

  10. Electronic structure and optical properties of Sb{sub 2}S{sub 3} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ben Nasr, T., E-mail: tarek.ben-nasr@laposte.ne [Laboratoire de Physique de la Matiere Condensee, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar (Tunisia); Maghraoui-Meherzi, H. [Laboratoire de Chimie Analytique et Electrochimie, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar (Tunisia); Ben Abdallah, H.; Bennaceur, R. [Laboratoire de Physique de la Matiere Condensee, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar (Tunisia)

    2011-01-15

    The electronic and optical properties of Sb{sub 2}S{sub 3} are studied using the full potential linearized augmented plane wave (FP-LAPW) method as implemented in Wien2k. In this approach, the alternative form of the generalized gradient approximation (GGA) proposed by Engel and Vosko (EV-GGA) was used for the exchange correlation potential. The calculated band structure shows a direct band gap. The contribution of different bands was analyzed from total and partial density of states curves. Moreover, the optical properties, including the dielectric function, absorption spectrum, refractive index, extinction coefficient, reflectivity and energy-loss spectrum are all obtained and analyzed in detail.

  11. Structural and optical properties of electron beam evaporated yttria stabilized zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kirubaharan, A. Kamalan; Kuppusami, P., E-mail: pkigcar@gmail.com; Dharini, T.; Ramachandran, D. [Centre for Nanoscience and Nanotechnology, Sathyabama University, Chennai-600119 (India); Singh, Akash; Mohandas, E. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2015-06-24

    Yttria stabilized zirconia (10 mole % Y{sub 2}O{sub 3}) thin films were deposited on quartz substrates using electron beam physical vapor deposition at the substrate temperatures in the range 300 – 973 K. XRD analysis showed cubic crystalline phase of YSZ films with preferred orientation along (111). The surface roughness was found to increase with the increase of deposition temperatures. The optical band gap of ∼5.7 eV was calculated from transmittance curves. The variation in the optical properties is correlated with the changes in the microstructural features of the films prepared as a function of substrate temperature.

  12. Electronic Structures of Asymmetrically Substituted Phthalocyanines and Their Second Non-linear Optical Properties

    Institute of Scientific and Technical Information of China (English)

    张天莉; 严继民

    2001-01-01

    Quantum-chemical AM1 calculations were performed to study the geometries,the electronic structures and the second nonlinear optical properties of phthalocyanine and some asymmetrically substituted phthalocyanines,which include tert-butyl,amino,dimethylamino,nitro,fluoro,chloro,bromo iodo and nitrile substituents. The relationships of the second nonlinear optical coefficients β with dipole moment μ, and β with the energy-gap differences of frontier orbitals ΔEDA were discussed. Two relationships are regular and all ΔEDA-μ show very good linear relationship.

  13. Electronic structures and magnetic and optical properties of Co-Al alloys

    CERN Document Server

    Rhee, J Y; Kudryavtsev, Y V; Lee, Y P

    1999-01-01

    The electronic structures, the magnetic moments and the optical conductivity spectra of the Co sub 1 sub - sub x Al sub x (x=0.5, 0.4375, and 0.375) alloys were calculated using the tight-binding linearized-muffin-tin-orbital method. The supercell method was employed to calculate the properties of the alloys with the off-stoichiometric concentrations. The calculated magnetic moments were in reasonable agreement with the experimental results. The inclusion of corrections for both the real and the imaginary parts of the self-energy markedly improved the agreement between the experimental and calculated the optical conductivity spectra.

  14. Effect of the degree of disorder on electronic and optical properties in random superlattices

    Science.gov (United States)

    Wang, E. G.; Su, W. P.; Ting, C. S.

    1994-01-01

    A three-dimensional tight-binding calculation is developed and used to study disorder effects in a realistic random superlattice. With increasing disorder, a tendency of possible indirect-direct band-gap transition is suggested. Direct evidence of mobility edges between localized and extended states in three-dimensional random systems is given. As system disorder increases, the optical absorption intensities increase dramatically from five to forty-five times stronger than the ordered (GaAs)(sub 1)/(AlAs)(sub 1) superlattice. It is believed that the degree of disorder significantly affects electronic and optical properties of GaAs/AlAs random superlattices.

  15. Surprises and mysteries in urban soils

    Science.gov (United States)

    Groffman, P. M.

    2015-12-01

    In the Baltimore Ecosystem Study, one of two urban long-term ecological research (LTER) projects funded by the U.S. National Science Foundation, we are using "the watershed approach" to integrate ecological, physical and social sciences. Urban and suburban watershed input/output budgets for nitrogen have shown surprisingly high retention which has led to detailed analysis of sources and sinks in soils these watersheds. Home lawns, thought to be major sources of reactive nitrogen in suburban watersheds, have more complex coupled carbon and nitrogen dynamics than previously thought, and are likely the site of much nitrogen retention. Riparian zones, thought to be an important sink for reactive nitrogen in many watersheds, have turned out be nitrogen sources in urban watersheds due to hydrologic changes that disconnect streams from their surrounding landscape. Urban effects on atmospheric carbon dioxide levels and nitrogen deposition have strong effects on soil nitrogen cycling processes and soil:atmosphere fluxes of nitrous oxide, carbon dioxide and methane. Efforts to manage urban soils and watersheds through geomorphic stream restoration, creation of stormwater management features and changes in lawn and forest management can have significant effects on watershed carbon and nitrogen dynamics. Urban soils present a basic and applied science frontier that challenges our understanding of biological, physical, chemical and social science processes. The watershed approach provides an effective platform for integrating these disciplines and for articulating critical questions that arise from surprising results. This approach can help us to meet the challenge of urban soils, which is critical to achieving sustainability goals in cities across the world.

  16. An efficient method to improve the proximity effect for electron beam optical disc mastering

    Science.gov (United States)

    Pan, C. T.; Chen, M. F.

    2005-04-01

    For the next-generation optical disc, electron beam mastering has been considered as a high-potential technique to fabricate a high-density optical disc. However, for electron beam mastering, the proximity effect caused by electron backscattering is an important problem. In this study, the influence of the proximity effect on the linewidth (full width at half magnitude, FWHM) and thickness of the residual resist is discussed. Some methods are presented to solve the proximity effect for optical disc mastering, i.e., by raising the electron beam voltage and depositing thin film material with low atomic number on a silicon substrate. In the study, thin film materials such as Al, Ni, SiO2, and Si3N4 are deposited on a silicon wafer to explore the proximity effect. The preliminary experimental results show that raising the electron beam voltage and depositing SiO2 or Si3N4 thin film on a silicon substrate can efficiently solve this problem. Later, the resist with a nano-pattern is transferred into a metal Ni-Co (nickel-cobalt) mould by electroplating. The technique of the Ni-Co electroplating process with hardness at least Vicker hardness (Hv) 650 and residual stress below 1.5 kg mm-2 is developed. Then, with the Ni-Co mould, a modified LIGA process is applied to produce a high-density optical disc. The Ni-Co mould serves as the master for the hot embossing process to replicate the nano-pattern onto the PMMA sheet. Since the feature size is down to the nanometre range, the study presents an innovative demoulding mechanism to demould the master from the PMMA sheet without damaging the nanometre patterns.

  17. High-Resolution Two-Dimensional Optical Spectroscopy of Electron Spins

    Directory of Open Access Journals (Sweden)

    M. Salewski

    2017-08-01

    Full Text Available Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using microwaves and radio waves, it has recently been extended into the visible and UV spectral range. However, resolving MHz energy splittings with ultrashort laser pulses still remains a challenge. Here, we analyze two-dimensional Fourier spectra for resonant optical excitation of resident electrons to localized trions or donor-bound excitons in semiconductor nanostructures subject to a transverse magnetic field. Particular attention is devoted to Raman coherence spectra, which allow one to accurately evaluate tiny splittings of the electron ground state and to determine the relaxation times in the electron spin ensemble. A stimulated steplike Raman process induced by a sequence of two laser pulses creates a coherent superposition of the ground-state doublet which can be retrieved only optically because of selective excitation of the same subensemble with a third pulse. This provides the unique opportunity to distinguish between different complexes that are closely spaced in energy in an ensemble. The related experimental demonstration is based on photon-echo measurements in an n-type CdTe/(Cd,MgTe quantum-well structure detected by a heterodyne technique. The difference in the sub-μeV range between the Zeeman splittings of donor-bound electrons and electrons localized at potential fluctuations can be resolved even though the homogeneous linewidth of the optical transitions is larger by 2 orders of magnitude.

  18. Artificial optical emissions at HAARP for pump frequencies near the third and second electron gyro-harmonic

    OpenAIRE

    Kosch, M. J.; Pedersen, T; Hughes, J; Marshall, R.; Gerken, E.; A. Senior; Sentman, D.; McCarrick, M.; Djuth, F. T.

    2005-01-01

    International audience; High-power high-frequency radio waves beamed into the ionosphere cause plasma turbulence, which can accelerate electrons. These electrons collide with the F-layer neutral oxygen causing artificial optical emissions identical to natural aurora. Pumping at electron gyro-harmonic frequencies has special significance as many phenomena change their character. In particular, artificial optical emissions become strongly reduced for the third and higher gyro-harmonics. The Hig...

  19. Artificial optical emissions at HAARP for pump frequencies near the third and second electron gyro-harmonic

    OpenAIRE

    M. J. Kosch; Pedersen, T; Hughes, J; Marshall, R; Gerken, E.; Senior, A.; Sentman, D.; McCarrick, M.; Djuth, F. T.

    2005-01-01

    International audience; High-power high-frequency radio waves beamed into the ionosphere cause plasma turbulence, which can accelerate electrons. These electrons collide with the F-layer neutral oxygen causing artificial optical emissions identical to natural aurora. Pumping at electron gyro-harmonic frequencies has special significance as many phenomena change their character. In particular, artificial optical emissions become strongly reduced for the third and higher gyro-harmonics. The Hig...

  20. Novel optical waveguides by in-depth controlled electronic damage with swift ions

    Energy Technology Data Exchange (ETDEWEB)

    Olivares, J. [Instituto de Optica ' Daza de Valdes' , CSIC, C/Serrano 121, E-28006-Madrid (Spain)]. E-mail: j.olivares@io.cfmac.csic.es; Garcia-Navarro, A. [Centro de Microanalisis de Materiales (CMAM), UAM, Cantoblanco, E-28049-Madrid (Spain); Mendez, A. [Centro de Microanalisis de Materiales (CMAM), UAM, Cantoblanco, E-28049-Madrid (Spain); Agullo-Lopez, F. [Centro de Microanalisis de Materiales (CMAM), UAM, Cantoblanco, E-28049-Madrid (Spain); Depto. Fisica de Materiales (C-IV), UAM, E-28049-Madrid (Spain); Garcia, G. [Centro de Microanalisis de Materiales (CMAM), UAM, Cantoblanco, E-28049-Madrid (Spain); Garcia-Cabanes, A. [Depto. Fisica de Materiales (C-IV), UAM, E-28049-Madrid (Spain); Carrascosa, M. [Depto. Fisica de Materiales (C-IV), UAM, E-28049-Madrid (Spain)

    2007-04-15

    We review recent results on a novel method to modify crystalline dielectric materials and fabricate optical waveguides and integrated optics devices. It relies on irradiation with medium-mass high-energy ions (2-50 MeV) where the electronic stopping power is dominant over that one associated to nuclear collisions. By exploiting the processing capabilities of the method, novel optical structures can be achieved at moderate (10{sup 14} cm{sup -2}) and even low and ultralow (10{sup 12} cm{sup -2}) fluences. In particular, step-like waveguides with a high index jump {delta}n {approx} 0.1-0.2, guiding both ordinary and extraordinary modes, have been prepared with F and O ions (20 MeV) at moderate fluences. They present good non-linear and electrooptic perfomance and low losses. (1 dB/cm). Moreover, useful optical waveguiding has been also achieved at ultralow frequencies (isolated track regime), using Cl and Si ions (40-45 MeV). In this latter case, the individual amorphous nanotracks, whose radius increases with depth, create an effective optical medium causing optical trapping.

  1. Electron transport and nonlinear optical properties of substituted aryldimesityl boranes: a DFT study.

    Directory of Open Access Journals (Sweden)

    Altaf Hussain Pandith

    Full Text Available A comprehensive theoretical study was carried out on a series of aryldimesityl borane (DMB derivatives using Density Functional theory. Optimized geometries and electronic parameters like electron affinity, reorganization energy, frontiers molecular contours, polarizability and hyperpolarizability have been calculated by employing B3PW91/6-311++G (d, p level of theory. Our results show that the Hammett function and geometrical parameters correlates well with the reorganization energies and hyperpolarizability for the series of DMB derivatives studied in this work. The orbital energy study reveals that the electron releasing substituents increase the LUMO energies and electron withdrawing substituents decrease the LUMO energies, reflecting the electron transport character of aryldimesityl borane derivatives. From frontier molecular orbitals diagram it is evident that mesityl rings act as the donor, while the phenylene and Boron atom appear as acceptors in these systems. The calculated hyperpolarizability of secondary amine derivative of DMB is 40 times higher than DMB (1. The electronic excitation contributions to the hyperpolarizability studied by using TDDFT calculation shows that hyperpolarizability correlates well with dipole moment in ground and excited state and excitation energy in terms of the two-level model. Thus the results of these calculations can be helpful in designing the DMB derivatives for efficient electron transport and nonlinear optical material by appropriate substitution with electron releasing or withdrawing substituents on phenyl ring of DMB system.

  2. Electron lenses and cooling for the Fermilab Integrable Optics Test Accelerator

    CERN Document Server

    Stancari, G; Lebedev, V; Nagaitsev, S; Prebys, E; Valishev, A

    2015-01-01

    Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle dynamics) and 2.5-MeV protons (dynamics with self fields). One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The required parameters are similar to the ones of existing devices. In addition, the electron lens will be used in cooling mode to control the brightness of the proton beam and to measure transverse profiles through recombination. More generally, it is of great interest to investigate whet...

  3. Electronic structure and optical properties of Al-doped ZnO.

    Science.gov (United States)

    Qu, Xiurong; Lü, Shuchen; Jia, Dechang; Fu, Shufang

    2011-11-01

    Impure ZnO materials are of great interest in optic and electronic applications. In this work, the effects of Al-doping on the electronic structures of ZnO system are investigated in detail. We find that the crystal structure strains significantly due to the introduction of Al impurity. On the other hand, the electronic band structures show that the position of the Fermi level moves upwards and the bands split near the band gap due to the introduction of Al. This is attributed to the interaction between Al3p and Zn4s orbital, which tend to drive the system towards semimetal. Photoluminescence (PL) studies indicate that the Al-doped ZnO samples have a high density of defects. This can be explained qualitatively by the above analysis on electronic structure.

  4. Study of electronic and optical properties of two-layered hydrogenated aluminum nitrate nanosheet

    Science.gov (United States)

    Faghihzadeh, Somayeh; Shahtahmasebi, Nasser; Rezaee Roknabadi, Mahmood

    2017-09-01

    First principle calculations based on density functional theory using GW approximation and two particle Bethe-Salpeter equation with electron-hole effect were performed to investigate electronic structure and optical properties of two-layered hydrogenated AlN. According to many body green function due to decrease in dimension and considering electron-electron effect, direct (indirect) band gap change from 2 (1.01) eV to 4.83 (3.62) eV. The first peak in imaginary part of dielectric function was observed in parallel direction to a plane obtaining 3.4 was achieved by bound exciton states possess 1.39 eV. The first absorption peak was seen in two parallel and perpendicular directions to a plane which are in UV region.

  5. Electron Lens Construction for the Integrable Optics Test Accelerator at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, Mike [Fermilab; Carlson, Kermit [Fermilab; Nobrega, Lucy [Fermilab; Stancari, Giulio [Fermilab; Valishev, Alexander [Fermilab

    2016-06-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. Construction of an electron lens for IOTA is necessary for both electron and proton operation. Components required for the Electron Lens design include; a 0.8 T conventional water-cooled main solenoid, and magnetic bending and focusing elements. The foundation of the design relies on repurposing the Fermilab Tevatron Electron Lens II (TELII) gun and collector under ultra-high vacuum (UHV) conditions.

  6. A comparison among optical emission spectroscopic methods of determining electron temperature in low pressure argon plasmas

    Institute of Scientific and Technical Information of China (English)

    Niu Tian-Ye; Cao Jin-Xiang; Liu Lei; Liu Jin-Ying; Wang Yan; Wang Liang

    2007-01-01

    In this article, four kinds of optical emission spectroscopic methods of determining electron temperature are used to investigate the relationship between electron temperature and pressure in the cylindrical plasmas of dc glow discharges at low pressures in laboratory by measuring the relative intensities of ArI lines at various pressures. These methods are developed respectively on the basis of the Fermi-Dirac model, corona model, and two kinds of electron collision cross section models according to the kinetic analysis. Their theoretical bases and the conditions to which they are applicable are reviewed, and their calculation results and fitting errors are compared with each other. The investigation has indicated that the electron temperatures obtained by the four methods become consistent with each other when the pressure increases in the low pressure argon plasmas.

  7. Elastic scattering by hot electrons and apparent lifetime of longitudinal optical phonons in gallium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Khurgin, Jacob B., E-mail: jakek@jhu.edu [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Bajaj, Sanyam; Rajan, Siddharth [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-12-28

    Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, the saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.

  8. Elastic scattering by hot electrons and apparent lifetime of longitudinal optical phonons in gallium nitride

    Science.gov (United States)

    Khurgin, Jacob B.; Bajaj, Sanyam; Rajan, Siddharth

    2015-12-01

    Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, the saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.

  9. The conceptualization model problem—surprise

    Science.gov (United States)

    Bredehoeft, John

    2005-03-01

    The foundation of model analysis is the conceptual model. Surprise is defined as new data that renders the prevailing conceptual model invalid; as defined here it represents a paradigm shift. Limited empirical data indicate that surprises occur in 20-30% of model analyses. These data suggest that groundwater analysts have difficulty selecting the appropriate conceptual model. There is no ready remedy to the conceptual model problem other than (1) to collect as much data as is feasible, using all applicable methods—a complementary data collection methodology can lead to new information that changes the prevailing conceptual model, and (2) for the analyst to remain open to the fact that the conceptual model can change dramatically as more information is collected. In the final analysis, the hydrogeologist makes a subjective decision on the appropriate conceptual model. The conceptualization problem does not render models unusable. The problem introduces an uncertainty that often is not widely recognized. Conceptual model uncertainty is exacerbated in making long-term predictions of system performance. C'est le modèle conceptuel qui se trouve à base d'une analyse sur un modèle. On considère comme une surprise lorsque le modèle est invalidé par des données nouvelles; dans les termes définis ici la surprise est équivalente à un change de paradigme. Des données empiriques limitées indiquent que les surprises apparaissent dans 20 à 30% des analyses effectuées sur les modèles. Ces données suggèrent que l'analyse des eaux souterraines présente des difficultés lorsqu'il s'agit de choisir le modèle conceptuel approprié. Il n'existe pas un autre remède au problème du modèle conceptuel que: (1) rassembler autant des données que possible en utilisant toutes les méthodes applicables—la méthode des données complémentaires peut conduire aux nouvelles informations qui vont changer le modèle conceptuel, et (2) l'analyste doit rester ouvert au fait

  10. Electron Lenses and Cooling for the Fermilab Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, G. [Fermilab; Burov, A. [Fermilab; Lebedev, V. [Fermilab; Nagaitsev, S. [Fermilab; Prebys, E. [Fermilab; Valishev, A. [Fermilab

    2015-11-05

    Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle dynamics) and 2.5-MeV protons (dynamics with self fields). One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The required parameters are similar to the ones of existing devices. In addition, the electron lens will be used in cooling mode to control the brightness of the proton beam and to measure transverse profiles through recombination. More generally, it is of great interest to investigate whether nonlinear integrable optics allows electron coolers to exceed limitations set by both coherent or incoherent instabilities excited by space charge.

  11. Investigation of electronic structure and optical properties of MgAl2O4: DFT approach

    Science.gov (United States)

    Reshak, A. H.; Khan, Saleem Ayaz; Alahmed, Z. A.

    2014-11-01

    The electronic band structure, electronic charge density distribution and optical properties of MgAl2O4 were calculated using the full potential linear augmented plane wave. The exchange correlation potential was solved by recently developed modified Becke Johnson potential in the framework of DFT. The band structure and partial density of states (PDOS) were calculated. The PDOS exhibit the role of orbital in bands formation and nature of the bonds. The calculated effective mass of electrons show high mobility of electrons in the conduction band minimum with respect to heavy and light holes. The calculated electron charge density confirm the existence of mixed ionic and covalent nature of the bonds. Mg-O show more ionicity because of greater electro-negativity difference than Al-O. Imaginary part of dielectric function ε2(ω) exhibit high transparency in the visible and infrared region. For further investigation of optical properties absorption coefficient I(ω), refractive index n(ω), reflectivity R(ω) and energy loss function L(ω) were calculated. We found reasonable agreement with the experimental data.

  12. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    Science.gov (United States)

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy.

  13. TADPOLE for longitudinal electron-bunch diagnostics based on electro-optic upconversion

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick; Wunderlich, Steffen; Schmidt, Bernhard; Osterhoff, Jens [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-01

    Electron-bunch diagnostics are desired to utilize unambiguous, non-destructive, single-shot techniques. Various methods fulfill the latter two demands, but feature significant ambiguities and constraints in the reconstruction of a time-domain electron-bunch profile, as for example uncertainties due to the phase retrieval of coherent radiation using the Kramers-Kronig relation. We present a novel method of upconverting the THz-field spectrum of fs electron bunches at the free-electron laser FLASH into the near-infrared in an electro-optic crystal. This technique allows the single-shot detection of its longitudinal form factor in both, amplitude and phase. The spectral phase and amplitude information is measured and thus the temporal profile reconstructed using temporal analysis by dispersing a pair of light E-fields, also known as TADPOLE. This is a combination of frequency resolved optical gating (FROG) and spectral interferometry, which enables the temporal measurement of low-power laser pulses. In this experiment, a narrow-bandwidth laser pulse detecting the longitudinal electric field of an electron bunch is interfered with a broadband and FROG-characterized reference pulse. The longitudinal beam profile may therefore be unambiguously inferred from the generated interferogram and the detected spectral-phase-information of the reference pulse.

  14. Transformation optics: a time- and frequency-domain analysis of electron-energy loss spectroscopy

    CERN Document Server

    Kraft, Matthias; Pendry, J B

    2016-01-01

    Electron energy loss spectroscopy (EELS) and Cathodoluminescence (CL) play a pivotal role in many of the cutting edge experiments in plasmonics. EELS and CL experiments are usually supported by numerical simulations, which, whilst accurate, may not provide as much physical insight as analytical calculations do. Fully analytical solutions to EELS and CL systems in plasmonics are rare and difficult to obtain. This paper aims to narrow this gap by introducing a new method based on Transformation optics that allows to calculate the quasi-static frequency and time-domain response of plasmonic particles under electron beam excitation.

  15. Electronic Structure and Optical Properties of Co and Fe doped ZnO

    Directory of Open Access Journals (Sweden)

    Li Chunping

    2016-01-01

    Full Text Available First-principle ultrasoft pseudo potential approach of the plane wave based on density functional theory has been used for studying the electronic characterization and optical properties of ZnO and Fe, Co doped ZnO. The results show that the doping impurities change the lattice parameters a little, but bring more changes in the electronic structures. The band gaps are broadened by doping. And the Fermi level accesses to the conduction band which will lead the system to show the character of metallic properties. The dielectric function and absorption peaks are identified and the changes compared to pure ZnO are analyzed in detail.

  16. Optical detection and ionization of donors in specific electronic and nuclear spin States.

    Science.gov (United States)

    Yang, A; Steger, M; Karaiskaj, D; Thewalt, M L W; Cardona, M; Itoh, K M; Riemann, H; Abrosimov, N V; Churbanov, M F; Gusev, A V; Bulanov, A D; Kaliteevskii, A K; Godisov, O N; Becker, P; Pohl, H-J; Ager, J W; Haller, E E

    2006-12-01

    We resolve the remarkably sharp bound exciton transitions of highly enriched 28Si using a single-frequency laser and photoluminescence excitation spectroscopy, as well as photocurrent spectroscopy. Well-resolved doublets in the spectrum of the 31P donor reflect the hyperfine coupling of the electronic and nuclear donor spins. The optical detection of the nuclear spin state, and selective pumping and ionization of donors in specific electronic and nuclear spin states, suggests a number of new possibilities which could be useful for the realization of silicon-based quantum computers.

  17. All-electron versus pseudopotential calculation of optical properties: the case of GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Monachesi, P.; Marini, A.; Onida, G.; Palummo, M.; Sole, R. del [Tor Vergata Univ., Rome (Italy). Dipt. di Fisica

    2001-03-16

    The reliability of the widespread practice of calculating the optical properties of solids using pseudo wavefunctions instead of the true electron wavefunctions has been tested in the case of bulk GaAs. Pseudopotential calculations of the imaginary part of the dielectric function - where the matrix elements of the momentum operator are calculated between pseudo wavefunctions - have been compared with all-electron full-potential linear muffin-tin orbital calculations where the true wavefunctions are used. No evidence has been found of differences due to the different sets of wavefunctions employed in the two approaches. (orig.)

  18. Photoabsorption Spectrum and Optically Forbidden Transitions of Krypton by Electron Impact

    Institute of Scientific and Technical Information of China (English)

    苑震生; 朱林繁; 李文斌; 成华东; 徐克尊

    2002-01-01

    A high resolution fast electron energy loss spectrometer with multi-channel energy analysis was employed. The maxima just above the threshold 4p-1(2P1/2), which is regarded as a shape resonance, was obtained at 16.3 eV. The optically forbidden excitations of 4s electron were measured for the first time, and the energy positions are 23.75 eV(4s-15s), 25.66 eV (4s-16s/4d) and 26.60 eV(4s-17s/5d).

  19. Structural, optical and electronic properties of Fe doped ZnO thin films

    Science.gov (United States)

    Singh, Karmvir; Devi, Vanita; Dhar, Rakesh; Mohan, Devendra

    2015-09-01

    Fe doped ZnO thin films have been deposited by pulsed laser deposition technique on quartz substrate to study structural, optical and electronic structure using XRD, AFM, UV-visible and X-ray absorption spectroscopy. XRD study reveals that Fe doping has considerable effect on stress, strain, grain size and crystallinity of thin films. UV-visible study determines that band gap of pristine ZnO decreases with Fe doping, which can be directly correlated to transition tail width and grain size. Change in electronic structure with Fe doping has been examined by XAS study.

  20. All-optical time-resolved measurement of laser energy modulation in a relativistic electron beam

    Directory of Open Access Journals (Sweden)

    D. Xiang

    2011-11-01

    Full Text Available We propose and demonstrate an all-optical method to measure laser energy modulation in a relativistic electron beam. In this scheme the time-dependent energy modulation generated from the electron-laser interaction in an undulator is converted into time-dependent density modulation with a chicane, which is measured to infer the laser energy modulation. The method, in principle, is capable of simultaneously providing information on femtosecond time scale and 10^{-5} energy scale not accessible with conventional methods. We anticipate that this method may have wide applications in many laser-based advanced beam manipulation techniques.

  1. First-Principles Study on Electronic Structures and Optical Properties of Doped Ag Crystal

    Institute of Scientific and Technical Information of China (English)

    CAO Can; CHEN Ling-Na; JIA Shu-Ting; ZHANG Dan; XU Hui

    2012-01-01

    By using the first-principles calculation based on density functional theory,we investigate the electronic structures and optical properties of Cl-doped Ag crystal. The results show that the electronic structure of Cl-doped Ag crystal depends on the doped concentration and the site of impurity defect.Interestingly,the calculated adsorption spectra of Cl-doped Ag crystal show isotropy or anisotropy coincide with the symmetry of Ag crystal. These features are discussed to provide guidance to experimental efforts for Ag-based nanoeletronic devices.

  2. ESR and optical absorption studies of gamma- and electron-irradiated sugar crystals

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.C.; Cabrera, B.E.; Calderon, T.; Munoz, P.E.; Adem, E.; Hernandez, A.J.; Boldu, J.L.; Ovalle M.P.; Murrieta, S.H. E-mail: murrieta@fenix.ifisicacu.unam.mx

    2000-05-15

    Electron spin resonance (ESR) studies of the free radicals induced in gamma- or electron-irradiated sugar crystals were performed. The number of radicals increases linearly, pointing out that this material can be used as a dosimeter. The optical absorption studies show the presence of several distinctive bands in the infrared and UV region, whose intensity changes with the irradiation dose. An interpretation of these results in terms of the formation of free radicals and possible crosslinking along the sugar molecular chains is presented.

  3. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    Science.gov (United States)

    2016-01-26

    performed. 2.0 INTRODUCTION Three dimensional (3D) photonic crystals and their optical properties have attracted a lot of attention in the past decade... physical phenomena. The band gap frequency of this system can be varied to tailor to the electronic transition levels of a gain medium such as InAs...quantum dot or an InGaAs quantum well. The band gap can be varied in addition to include either one or two electronic levels of a multi-level system

  4. Electronic and optical properties of new multifunctional materials via half-substituted hematite: First principles calculations

    KAUST Repository

    Yang, Hua

    2012-01-01

    Electronic structure and optical properties of α-FeMO 3 systems (M = Sc, Ti, V, Cr, Cu, Cd or In) have been investigated using first principles calculations. All of the FeMO 3 systems have a large net magnetic moment. The ground state of pure α-Fe 2O 3 is an antiferromagnetic insulator. For M = Cu or Cd, the systems are half-metallic. Strong absorption in the visible region can be observed in the Cu and Cd-doped systems. Systems with M = Sc, Ti, V, Cr or In are not half-metallic and are insulators. The strongest peaks shift toward shorter wavelengths in the absorption spectra. It is concluded that transition metal doping can modify the electronic structure and optical properties of α-FeMO 3 systems. This journal is © 2012 The Royal Society of Chemistry.

  5. CAE "FOCUS" for modelling and simulating electron optics systems: development and application

    Science.gov (United States)

    Trubitsyn, Andrey; Grachev, Evgeny; Gurov, Victor; Bochkov, Ilya; Bochkov, Victor

    2017-02-01

    Electron optics is a theoretical base of scientific instrument engineering. Mathematical simulation of occurring processes is a base for contemporary design of complicated devices of the electron optics. Problems of the numerical mathematical simulation are effectively solved by CAE system means. CAE "FOCUS" developed by the authors includes fast and accurate methods: boundary element method (BEM) for the electric field calculation, Runge-Kutta- Fieghlberg method for the charged particle trajectory computation controlling an accuracy of calculations, original methods for search of terms for the angular and time-of-flight focusing. CAE "FOCUS" is organized as a collection of modules each of which solves an independent (sub) task. A range of physical and analytical devices, in particular a microfocus X-ray tube of high power, has been developed using this soft.

  6. New two-dimensional boron nitride allotropes with attractive electronic and optical properties

    Science.gov (United States)

    Shahrokhi, Masoud; Mortazavi, Bohayra; Berdiyorov, Golibjon R.

    2017-03-01

    Using first principles calculations, structural, electronic and optical properties of five new 2D boron nitride (BN) allotropes have been studied. The results exhibit that the cohesive energy for all these five new allotrope is positive such as all these systems are stable; therefore, it is possible to synthesize these structures in experiments. It is found that the band gap of all new 2D BN allotropes is smaller than the h-BN sheet. In our calculations the dielectric tensor is derived within the random phase approximation (RPA). Specifically, the dielectric function, refraction index and the loss function, of the 2D BN allotropes are calculated for both parallel and perpendicular electric field polarizations. The results show that the optical spectra are anisotropic along these two polarizations. The results obtained from our calculations are beneficial to practical applications of these 2D BN allotropes in optoelectronics and electronics.

  7. Bound states in optical absorption of semiconductor quantum wells containing a two-dimensional electron Gas

    Science.gov (United States)

    Huard; Cox; Saminadayar; Arnoult; Tatarenko

    2000-01-01

    The dependence of the optical absorption spectrum of a semiconductor quantum well on two-dimensional electron concentration n(e) is studied using CdTe samples. The trion peak (X-) seen at low n(e) evolves smoothly into the Fermi edge singularity at high n(e). The exciton peak (X) moves off to high energy, weakens, and disappears. The X,X- splitting is linear in n(e) and closely equal to the Fermi energy plus the trion binding energy. For Cd0.998Mn0.002Te quantum wells in a magnetic field, the X,X- splitting reflects unequal Fermi energies for M = +/-1/2 electrons. The data are explained by Hawrylak's theory of the many-body optical response including spin effects.

  8. Optical transition radiation measurements for the Los Alamos and Boeing Free-Electron Laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Feldman, D.W.; Apgar, S.A.; Calsten, B.E.; Fiorito, R.B.; Rule, D.W.

    1988-01-01

    Optical transition radiation (OTR) measurements of the electron-beam emittance have been performed at a location just before the wiggler in the Los Alamos Free-Electron Laser (FEL) experiment. Beam profiles and beam divergence patterns from a single macropulse were recorded simultaneously using two intensified charge-injection device (CID) television cameras and an optical beamsplitter. Both single-foil OTR and two-foil OTR interference experiments were performed. Preliminary results are compared to a reference variable quadrupole, single screen technique. New aspects of using OTR properties for pointing the e-beam on the FEL oscillator axis, as well as measuring e-beam emittance are addressed. 7 refs., 9 figs.

  9. Density functional study of $\\rm{AgScO_2}$: Electronic and optical properties

    Indian Academy of Sciences (India)

    K C BHAMU; JAGRATI SAHARIYA; RISHI VYAS; K R PRIOLKAR

    2017-07-01

    This paper focusses on the electronic and optical properties of scandium-based silver delafossite $\\rm{(AgScO_2)}$ semiconductor. The density functional theory (DFT) in the framework of full potential linearized augmented plane wave (FP-LAPW) scheme has been used for the present calculations with local densityapproximation (LDA) and generalized gradient approximation (GGA). Electronic properties deal with energy bands and density of states (DOSs), while optical properties describe refractive index and absorption coefficient.The energy bands are interpreted in terms of DOSs. The computed value of band gap is in agreement with that reported in the literature. Our results predict $\\rm{AgScO_2}$ as indirect band-gap semiconductor. Our calculated value of the refractive index in zero frequency limits is 2.42. The absorption coefficient predicts the applicability of $\\rm{AgScO_2}$ in solar cells and flat panel liquid crystal display as a transparent top window layer.

  10. Physics of Negative Refraction and Negative Index Materials Optical and Electronic Aspects and Diversified Approaches

    CERN Document Server

    Krowne, Clifford M

    2007-01-01

    This book deals with the subject of optical and electronic negative refraction (NR) and negative index materials NIM). Diverse approaches for achieving NR and NIM are covered, such as using photonic crystals, phononic crystals, split-ring resonators (SRRs) and continuous media, focusing of waves, guided-wave behavior, and nonlinear effects. Specific topics treated are polariton theory for LHMs (left handed materials), focusing of waves, guided-wave behavior, nonlinear optical effects, magnetic LHM composites, SRR-rod realizations, low-loss guided-wave bands using SRR-rods unit cells as LHMs, NR of electromagnetic and electronic waves in uniform media, field distributions in LHM guided-wave structures, dielectric and ferroelectric NR bicrystal heterostructures, LH metamaterial photonic-crystal lenses, subwavelength focusing of LHM/NR photonic crystals, focusing of sound with NR and NIMs, and LHM quasi-crystal materials for focusing.

  11. Magnetic, electronic and optical properties of different graphene, BN and BC2N nanoribbons

    Science.gov (United States)

    Guerra, T.; Leite, L.; Azevedo, S.; de Lima Bernardo, B.

    2017-04-01

    Graphene nanoribbons are predicted to be essential components in future nanoelectronics. The size, edge type, form, arrangement of atoms and width of nanoribbons drastically change their properties. However, magnetic, electronic and optical properties of armchair, chevron and sawtooth of graphene, BN and BC2N nanoribbons are not fully understood so far. Here, we make use of first-principles calculations based on the density functional theory (DFT) to investigate the structural, magnetic, electronic and optical properties of nanoribbons of graphene, boron nitride and BC2N with armchair edge, chevron-type and sawtooth forms. The lowest formation energies were found for the armchair and chevron nanoribbons of graphene and boron nitride. We have shown that the imbalance of carbon atoms between different sublattices generates a net magnetic moment. Chevron-type nanoribbons of BC2N and graphene showed a band gap comparable with silicon, and a high light absorption in the visible spectrum when compared to the other configurations.

  12. Electronic and optical properties of the zinc-blende structured LiZnN under pressure

    Institute of Scientific and Technical Information of China (English)

    Chang-Jing; Lan Jun-Qing; Ai Qiong; Chen Xiang-Rong

    2009-01-01

    The electronic and optical properties of the cubic zinc-blende (ZB) structured filled tetrahedral semiconductor α-LiZnN under pressure are investigated by using ab initio plane wave pseudopotential density functional theory method within the generalized gradient approximation (GGA). The electronic band structure and the density of state under pressure are systematically described. The basic optical constants, including the reflection and absorption spectra, the energy-loss function, the complex refractive index and the dielectric function, are calculated and analysed at different external pressures. Our results suggested that the ZB α-LiZnN is transparent in the partially ultra-violet to the visible light region, and it seems that the transparency is hardly affected by the pressure.

  13. Density functional study of AgScO_2: Electronic and optical properties

    Science.gov (United States)

    Bhamu, K. C.; Sahariya, Jagrati; Vyas, Rishi; Priolkar, K. R.

    2017-07-01

    This paper focusses on the electronic and optical properties of scandium-based silver delafossite (AgScO_2) semiconductor. The density functional theory (DFT) in the framework of full potential linearized augmented plane wave (FP-LAPW) scheme has been used for the present calculations with local density approximation (LDA) and generalized gradient approximation (GGA). Electronic properties deal with energy bands and density of states (DOSs), while optical properties describe refractive index and absorption coefficient. The energy bands are interpreted in terms of DOSs. The computed value of band gap is in agreement with that reported in the literature. Our results predict AgScO_2 as indirect band-gap semiconductor. Our calculated value of the refractive index in zero frequency limits is 2.42. The absorption coefficient predicts the applicability of AgScO_2 in solar cells and flat panel liquid crystal display as a transparent top window layer.

  14. ARTICLES: Effect of Pressure on Electronic Structures and Optical Properties of Rocksalt InN

    Science.gov (United States)

    Xu, Ming-yao; Xu, Ming; Duan, Man-yi; Hu, Qing-ping

    2010-06-01

    The electronic structures and optical properties of rocksalt indium nitride (InN) under pressure were studied using the first-principles calculation by considering the exchange and correlation potentials with the generalized gradient approximation. The calculated lattice constant shows good agreement with the experimental value. It is interestingly found that the band gap energy Eg at the Γ or X point remarkably increases with increasing pressure, but Eg at the L point does not increase obviously. The pressure coefficient of Eg is calculated to be 44 meV/GPa at the Γ point. Moreover, the optical properties of rocksalt InN were calculated and discussed based on the calculated band structures and electronic density of states.

  15. Synthesis, characterization and DFT calculations of electronic and optical properties of YbPO4

    Science.gov (United States)

    Khadraoui, Z.; Horchani-Naifer, K.; Ferhi, M.; Ferid, M.

    2015-08-01

    YbPO4 crystals were synthesized by solid-state reaction and characterized by X-ray diffraction, infrared and Raman spectroscopies. The electronic structure and optical properties of YbPO4 such as the energy band structures, density of states and chemical bonds were calculated with the Density Functional Theory (DFT) for the first time. We present a combination of the GGA and the LDA + U approaches in order to obtain appropriate results due to the strong Coulomb repulsion between the highly localized 4f electrons of rare earth atoms. The linear photon-energy-dependent dielectric functions, conductivity and some optical constants such as refractive index, reflectivity and absorption coefficients were determined. The calculated total and partial densities of states indicate that the top of valance band is built upon O-2p states with P-3p states via σ (P-O) interactions, and the conduction bands mostly originate from Yb-5d states.

  16. Lithium halide monolayers: Structural, electronic and optical properties by first principles study

    Science.gov (United States)

    Safari, Mandana; Maskaneh, Pegah; Moghadam, Atousa Dashti; Jalilian, Jaafar

    2016-09-01

    Using first principle study, we investigate the structural, electronic and optical properties of lithium halide monolayers (LiF, LiCl, LiBr). In contrast to graphene and other graphene-like structures that form hexagonal rings in plane, these compounds can form and stabilize in cubic shape interestingly. The type of band structure in these insulators is identified as indirect type and ionic nature of their bonds are illustrated as well. The optical properties demonstrate extremely transparent feature for them as a result of wide band gap in the visible range; also their electron transitions are indicated for achieving a better vision on the absorption mechanism in these kinds of monolayers.

  17. Electronic structure and optical properties of a new type of semiconductor material:graphene monoxide

    Institute of Scientific and Technical Information of China (English)

    Yang Gui; Zhang Yufeng; Yan Xunwang

    2013-01-01

    The electronic and optical properties of graphene monoxide,a new type of semiconductor material,are theoretically studied by first-principles density functional theory.The calculated band structure shows that graphene monoxide is a semiconductor with a direct band gap of 0.95 eV.The density of states of graphene monoxide and the partial density of states for C and O are given to understand the electronic structure.In addition,we calculate the optical properties of graphene monoxide,including the complex dielectric function,absorption coefficient,complex refractive index,loss-function,reflectivity and conductivity.These results provide a physical basis for potential application in optoelectronic devices.

  18. Magnetic, electronic, and optical properties of double perovskite Bi2FeMnO6

    Science.gov (United States)

    Ahmed, Towfiq; Chen, Aiping; Yarotski, Dmitry A.; Trugman, Stuart A.; Jia, Quanxi; Zhu, Jian-Xin

    2017-03-01

    Double perovskite Bi2FeMnO6 is a potential candidate for the single-phase multiferroic system. In this work, we study the magnetic, electronic, and optical properties in BFMO by performing the density functional theory calculations and experimental measurements of magnetic moment. We also demonstrate the strain dependence of magnetization. More importantly, our calculations of electronic and optical properties reveal that the onsite local correlation on Mn and Fe sites is critical to the gap opening in BFMO, which is a prerequisite condition for the ferroelectric ordering. Finally, we calculate the x-ray magnetic circular dichroism spectra of Fe and Mn ions (L2 and L3 edges) in BFMO.

  19. Optical transition radiation measurements for the Los Alamos and Boeing Free-Electron Laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Feldman, D.W.; Apgar, S.A.; Calsten, B.E.; Fiorito, R.B.; Rule, D.W.

    1988-01-01

    Optical transition radiation (OTR) measurements of the electron-beam emittance have been performed at a location just before the wiggler in the Los Alamos Free-Electron Laser (FEL) experiment. Beam profiles and beam divergence patterns from a single macropulse were recorded simultaneously using two intensified charge-injection device (CID) television cameras and an optical beamsplitter. Both single-foil OTR and two-foil OTR interference experiments were performed. Preliminary results are compared to a reference variable quadrupole, single screen technique. New aspects of using OTR properties for pointing the e-beam on the FEL oscillator axis, as well as measuring e-beam emittance are addressed. 7 refs., 9 figs.

  20. Electronic structure and optical properties of boron suboxide B6O system: First-principles investigations

    Science.gov (United States)

    Wang, Jinjin; Wang, Zhanyu; Jing, Yueyue; Wang, Songyou; Chou, Che-Fu; Hu, Han; Chiou, Shan-Haw; Tsoo, Chia-Chin; Su, Wan-Sheng

    2016-10-01

    The structural, mechanical, electronic, and optical properties of B6O were explored by means of first-principles calculations. Such a system is mechanically stable and also a relatively hard material which are derived from obtained elastic constants and bulk moduli. Bulk B6O is a direct-gap semiconductor with a bandgap of about 2.93 eV within G0W0 approximation. Furthermore, the optical properties, such as real and imaginary parts of dielectric functions, refractive index and extinction coefficient, and the comparison of optical properties between the density-functional theory (DFT) and G0W0 Bethe-Salpeter equation (G0W0-BSE) results, were computed and discussed. The results obtained from our calculations open a possibility for expanding its use in device applications.

  1. Structural, elastic, electronic and optical properties of bi-alkali antimonides

    Indian Academy of Sciences (India)

    G MURTAZA; MAZHAR ULLAH; NAEEM ULLAH; MALIKA RANI; M MUZAMMIL; R KHENATA; SHAHID M RAMAY; UMAIR KHAN

    2016-10-01

    The structural parameters, elastic constants, electronic and optical properties of the bi-alkali antimonides (Na$_2$KSb, Na$_2$RbSb, Na$_2$CsSb, K$_2$RbSb, K$_2$CsSb and Rb$_2$CsSb) were calculated using state-of-the-art density functional theory. Different exchange-correlation potentials were adopted to predict the physical properties of these compounds. The calculated structural parameters are found in good agreement with the available experimental and theoretical results. All the compounds are mechanically stable. The compounds Na$_2$KSb, K$_2$RbSb, K$_2$CsSb and Rb$_2$CsSb have direct bandgaps, in which chemical bonding among the cations and anions is mainly ionic. Furthermore, the optical properties of these compounds are described in detail in terms of the dielectric function, refractive index, reflectivity, optical conductivity and absorption coefficient.

  2. The electronic image stabilization technology research based on improved optical-flow motion vector estimation

    Science.gov (United States)

    Wang, Chao; Ji, Ming; Zhang, Ying; Jiang, Wentao; Lu, Xiaoyan; Wang, Jiaoying; Yang, Heng

    2016-01-01

    The electronic image stabilization technology based on improved optical-flow motion vector estimation technique can effectively improve the non normal shift, such as jitter, rotation and so on. Firstly, the ORB features are extracted from the image, a set of regions are built on these features; Secondly, the optical-flow vector is computed in the feature regions, in order to reduce the computational complexity, the multi resolution strategy of Pyramid is used to calculate the motion vector of the frame; Finally, qualitative and quantitative analysis of the effect of the algorithm is carried out. The results show that the proposed algorithm has better stability compared with image stabilization based on the traditional optical-flow motion vector estimation method.

  3. Electronic structure and optical properties of monoclinic clinobisvanite BiVO4.

    Science.gov (United States)

    Zhao, Zongyan; Li, Zhaosheng; Zou, Zhigang

    2011-03-14

    Monoclinic clinobisvanite bismuth vanadate is an important material with wide applications. However, its electronic structure and optical properties are still not thoroughly understood. Density functional theory calculations were adopted in the present work, to comprehend the band structure, density of states, and projected wave function of BiVO(4). In particular, we put more emphasis upon the intrinsic relationship between its structure and properties. Based on the calculated results, its molecular-orbital bonding structure was proposed. And a significant phenomenon of optical anisotropy was observed in the visible-light region. Furthermore, it was found that its slightly distorted crystal structure enhances the lone-pair impact of Bi 6s states, leading to the special optical properties and excellent photocatalytic activities.

  4. Electronic and optical properties of non-uniformly shaped InAs/InP quantum dashes

    Science.gov (United States)

    Kaczmarkiewicz, Piotr; Machnikowski, Paweł

    2012-10-01

    We theoretically study the optical properties and the electronic structure of highly elongated InAs/InP quantum dots (quantum dashes) and show how carrier trapping due to geometrical fluctuations of the confining potential affects the excitonic spectrum of the system. We focus on the study of the optical properties of a single exciton confined in the structure. The dependence of the absorption and emission intensities on the geometrical properties (size and position) of the trapping centre within the quantum dash is analysed and the dependence of the degree of linear polarization on these geometrical parameters is studied in detail. The role of Coulomb correlations for the optical properties of these structures is clarified.

  5. Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition

    CERN Document Server

    Woźniak, Paweł; Brönstrup, Gerald; Banyer, Peter; Christiansen, Silke; Leuchs, Gerd

    2015-01-01

    The direct writing using a focused electron beam allows for fabricating truly three-dimensional structures of sub-wavelength dimensions in the visible spectral regime. The resulting sophisticated geometries are perfectly suited for studying light-matter interaction at the nanoscale. Their overall optical response will strongly depend not only on geometry but also on the optical properties of the deposited material. In case of the typically used metal-organic precursors, the deposits show a substructure of metallic nanocrystals embedded in a carbonaceous matrix. Since gold-containing precursor media are especially interesting for optical applications, we experimentally determine the effective permittivity of such an effective material. Our experiment is based on spectroscopic measurements of planar deposits. The retrieved permittivity shows a systematic dependence on the gold particle density and cannot be sufficiently described using the common Maxwell-Garnett approach for effective medium.

  6. Optically detected electron paramagnetic resonance by microwave modulated magnetic circular dichroism

    Science.gov (United States)

    Börger, Birgit; Bingham, Stephen J.; Gutschank, Jörg; Schweika, Marc Oliver; Suter, Dieter; Thomson, Andrew J.

    1999-11-01

    Electron paramagnetic resonance (EPR) can be detected optically, with a laser beam propagating perpendicular to the static magnetic field. As in conventional EPR, excitation uses a resonant microwave field. The detection process can be interpreted as coherent Raman scattering or as a modulation of the laser beam by the circular dichroism of the sample oscillating at the microwave frequency. The latter model suggests that the signal should show the same dependence on the optical wavelength as the MCD signal. We check this for two different samples [cytochrome c-551, a metalloprotein, and ruby (Cr3+:Al2O3)]. In both cases, the observed wavelength dependence is almost identical to that of the MCD signal. A quantitative estimate of the amplitude of the optically detected EPR signal from the MCD also shows good agreement with the experimental results.

  7. Modeling Optical and Electronic Properties of Silica Nano-Clusters in Silicon Rich Oxide Films

    Directory of Open Access Journals (Sweden)

    N.D. Espinosa-Torres

    2013-07-01

    Full Text Available Quantum effects are very important in nano scale systems such as molecules and clusters constituted of particles from a few to hundreds or a few thousands of atoms. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these molecules or clusters are bonded. Generally, these nano-structures display optical and electronic properties significantly different of the bulk materials. Silica agglomerates expected in Silicon Rich Oxide (SRO films have optical properties, which depend directly on size, and their rationalization can lead to new applications with a potential impact on many fields of science and technology. On the other hand, the room temperature photoluminescence (PL of Si : SiO2 or Si : SiOx structures usually found in SRO has recently generated an enormous interest due to their possible applications in optoelectronic devices. However, the understanding of the emission mechanism is still under debate. In this research, we employed the Density Functional Theory with a functional B3LYP and a basis set 6-31 G* to calculate the electronic and optical properties of molecules and clusters of silicon dioxide. With the theoretical calculation of the structural and optical properties of silicon dioxide clusters is possible to evaluate the contribution of silica in the luminescent emission mechanism experimentally found in thin SRO films. It was found that silica contribution to the luminescent phenomenon in SRO thin films is less important than that of the silicon monoxide agglomerates because the number of silica structures, which may show emission in the visible spectrum, is much lower [1], compared to the number of silicon monoxide structures which emit in this region.

  8. Electron-hole interaction and optical excitations in solids, surfaces, and polymers

    OpenAIRE

    Louie, S. G.

    2001-01-01

    The optical properties of a variety of materials have been calculated using a recently developed ab initio method based on solving the Bethe-Salpeter equation of the two-particle Green's functions. Relevant self-energy and electron-hole interaction effects are included from first-principles. Results on selected semiconductors, insulators, surfaces, and conjugated polymers are discussed. In many of these systems, excitonic effects are shown to dramatically alter the excitation energies a...

  9. Possibilities for tuning electronic and optical properties of oligophenylenes by selected chemical influences

    Science.gov (United States)

    Radisavljević, Ivana; Marjanović, Dragan; Novaković, Nikola; Manasijević, Miodrag; Ivanović, Nenad

    2008-03-01

    Using semi-empirical quantum mechanic and ab initio Hartree-Fock (HF) calculations, we investigated changes induced by doping and addition of side-atoms and groups of P2P-P6P oligophenylenes structure, electronic and optical properties. The results are compared to the existing experimental data and results of similar calculations, and the possible implications for the oligophenylenes-based materials applications have been discussed.

  10. Optics solutions for pp operation with electron lenses at 100 GeV

    Energy Technology Data Exchange (ETDEWEB)

    White, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-07-12

    Electron lenses for head-on compensation are currently under commissioning and foreseen to be operational for the 2015 polarized proton run. These devices will provide a partial compensation of head-on beam-beam effects and allow to double the RHIC proton luminosity. This note reviews the optics constraints related to beam-beam compensation and summarizes the current lattice options for proton operation at 100 GeV.

  11. Proposed coupling of an electron spin in a semiconductor quantum dot to a nanosize optical cavity.

    Science.gov (United States)

    Majumdar, Arka; Kaer, Per; Bajcsy, Michal; Kim, Erik D; Lagoudakis, Konstantinos G; Rundquist, Armand; Vučković, Jelena

    2013-07-12

    We propose a scheme to efficiently couple a single quantum dot electron spin to an optical nano-cavity, which enables us to simultaneously benefit from a cavity as an efficient photonic interface, as well as to perform high fidelity (nearly 100%) spin initialization and manipulation achievable in bulk semiconductors. Moreover, the presence of the cavity speeds up the spin initialization process beyond the GHz range.

  12. Magneto-Optical Signature of Massless Kane Electrons in Cd3 As2

    Science.gov (United States)

    Akrap, A.; Hakl, M.; Tchoumakov, S.; Crassee, I.; Kuba, J.; Goerbig, M. O.; Homes, C. C.; Caha, O.; Novák, J.; Teppe, F.; Desrat, W.; Koohpayeh, S.; Wu, L.; Armitage, N. P.; Nateprov, A.; Arushanov, E.; Gibson, Q. D.; Cava, R. J.; van der Marel, D.; Piot, B. A.; Faugeras, C.; Martinez, G.; Potemski, M.; Orlita, M.

    2016-09-01

    We report on optical reflectivity experiments performed on Cd3 As2 over a broad range of photon energies and magnetic fields. The observed response clearly indicates the presence of 3D massless charge carriers. The specific cyclotron resonance absorption in the quantum limit implies that we are probing massless Kane electrons rather than symmetry-protected 3D Dirac particles. The latter may appear at a smaller energy scale and are not directly observed in our infrared experiments.

  13. Improved rate control for electron-beam evaporation and evaluation of optical performance improvements.

    Science.gov (United States)

    Gevelber, Michael; Xu, Bing; Smith, Douglas

    2006-03-01

    A new deposition-rate-control and electron-beam-gun (e-gun) strategy was developed that significantly reduces the growth-rate variations for e-beam-deposited SiO2 coatings. The resulting improvements in optical performance are evaluated for multilayer bandpass filters. The adverse effect of uneven silica-source depletion on coating spectral performances during long deposition runs is discussed.

  14. Electron-hole interaction and optical excitations in solids, surfaces, and polymers

    OpenAIRE

    Louie, S. G.

    2001-01-01

    The optical properties of a variety of materials have been calculated using a recently developed ab initio method based on solving the Bethe-Salpeter equation of the two-particle Green's functions. Relevant self-energy and electron-hole interaction effects are included from first-principles. Results on selected semiconductors, insulators, surfaces, and conjugated polymers are discussed. In many of these systems, excitonic effects are shown to dramatically alter the excitation energies a...

  15. Electronics and Optics of Graphene Nanoflakes: Edge Functionalization and Structural Distortions

    OpenAIRE

    Cocchi, Caterina; Prezzi, Deborah; Ruini, Alice; Caldas, Marilia J.; Molinari, Elisa

    2012-01-01

    The effects of edge covalent functionalization on the structural, electronic and optical properties of elongated armchair graphene nanoflakes (AGNFs) are analyzed in detail for a wide range of terminations, within the ramework of Hartree-Fock-based semi-empirical methods. The chemical features of the functional groups, their distribution and the resulting system symmetry are identified as the key factors that determine the modification of structural and optoelectronic features. While the elec...

  16. Electronic polarizability, optical basicity, and interaction parameter of La2O3 and related glasses

    Science.gov (United States)

    Honma, T.; Benino, Y.; Fujiwara, T.; Komatsu, T.; Sato, R.; Dimitrov, V.

    2002-03-01

    The electronic polarizability and optical basicity of La2O3 and related glasses have been determined from ultraviolet absorption spectra and calculations based on the Lorentz-Lorenz equation. The optical basicity for La2O3 oxide is found to be 1.07, being much larger compared with typical glass-forming oxides such as B2O3 (0.42) and SiO2 (0.48) but being similar to heavy element oxides such as TeO2 (0.93). The Yamashita and Kurosawa's interaction parameter of La2O3 is 0.03 Å-3, indicating that La2O3 is classified as a normal ionic (basic) oxide, i.e., an ionic bonding character in the La3+-O bond is proposed. Close correlations are confirmed among optical basicity, interaction parameter, and oxygen 1s binding energy in x-ray photoelectron (XPS) spectra for La2O3-P2O5 and other La2O3-containing glasses. It is found from XPS and Raman spectra that La3+ ions in La2O3-P2O5 glasses act as network modifiers, supporting an ionic bonding character in the La3+-O bond. The parameters related to electronic polarizability in La2O3 determined in the present study would be useful for the design of rare-earth containing optical functional glasses.

  17. Structural and optical properties of electron beam evaporated CdSe thin films

    Indian Academy of Sciences (India)

    N J Suthan Kissinger; M Jayachandran; K Perumal; C Sanjeevi Raja

    2007-12-01

    Thin films of cadmium selenide (CdSe) as a semiconductor is well suited for opto-electronic applications such as photo detection or solar energy conversion, due to its optical and electrical properties, as well as its good chemical and mechanical stability. In order to explore the possibility of using this in optoelectronics, a preliminary and thorough study of optical and structural properties of the host material is an important step. Based on the above view, the structural and optical properties of CdSe films have been studied thoroughly in the present work. The host material, CdSe film, has been prepared by the physical vapour deposition method of electron beam evaporation (PVD: EBE) technique under a pressure of 5 × 10-5 mbar. The structural properties have been studied by XRD technique. The hexagonal structure with a preferred orientation along the (0 0 2) direction of films has been confirmed by the X-ray diffraction analysis. The films have been analysed for optical band gap and absorbed a direct intrinsic band gap of 1.92 eV.

  18. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons

    Directory of Open Access Journals (Sweden)

    Kai Braun

    2015-05-01

    Full Text Available Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode into the highest occupied orbital of the closest substrate-bound molecule (lower level and radiative recombination with an electron from above the Fermi level (upper level, hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode.

  19. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons.

    Science.gov (United States)

    Braun, Kai; Wang, Xiao; Kern, Andreas M; Adler, Hilmar; Peisert, Heiko; Chassé, Thomas; Zhang, Dai; Meixner, Alfred J

    2015-01-01

    Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip) of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode) into the highest occupied orbital of the closest substrate-bound molecule (lower level) and radiative recombination with an electron from above the Fermi level (upper level), hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode.

  20. Ab-initio calculations of electronic structure and optical properties of TiAl alloy

    Science.gov (United States)

    Hussain, Altaf; Sikandar Hayat, Sardar; Choudhry, M. A.

    2011-05-01

    The electronic structures and optical properties of TiAl intermetallic alloy system are studied by the first-principle orthogonalized linear combination of atomic orbitals method. Results on the band structure, total and partial density of states, localization index, effective atomic charges, and optical conductivity are presented and discussed in detail. Total density of states spectra reveal that (near the Fermi level) the majority of the contribution is from Ti-3d states. The effective charge calculations show an average charge transfer of 0.52 electrons from Ti to Al in primitive cell calculations of TiAl alloy. On the other hand, calculations using supercell approach reveal an average charge transfer of 0.48 electrons from Ti to Al. The localization index calculations, of primitive cell as well as of supercell, show the presence of relatively localized states even above the Fermi level for this alloy. The calculated optical conductivity spectra of TiAl alloy are rich in structures, showing the highest peak at 5.73 eV for supercell calculations. Calculations of the imaginary part of the linear dielectric function show a prominent peak at 5.71 eV and a plateau in the range 1.1-3.5 eV.

  1. A robust fibre laser system for electro-optic electron bunch profile measurements at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Wissmann, Laurens-Georg

    2012-08-15

    For the electro-optic measurement of electron bunch profiles at FLASH a robust ytterbium doped fibre laser (YDFL) system has been developed consisting of a laser oscillator and a two-staged amplifier. The oscillator is designed to meet the specifications of high reliability and low noise operation. The amplifier makes use of tailored nonlinearity to enhance the spectral bandwidth of the output laser pulses. Active repetition rate control enables sub-picosecond synchronisation of the laser to the accelerator reference RF. Using a two-stage gating scheme the output pulse train repetition rate is adopted to the accelerator repetition rate. An experimental site used for electro-optic electron bunch diagnostics has been redesigned to support single-shot bunch profile measurements based on spectral decoding. An existing bunch profile monitor with a similar laser system was upgraded and electro-optic bunch profile measurements were conducted, allowing for a comparison with measurements done with other longitudinal electron bunch diagnostics and with former measurements.

  2. Three-Dimensional Electron Optics Model Developed for Traveling-Wave Tubes

    Science.gov (United States)

    Kory, Carol L.

    2000-01-01

    A three-dimensional traveling-wave tube (TWT) electron beam optics model including periodic permanent magnet (PPM) focusing has been developed at the NASA Glenn Research Center at Lewis Field. This accurate model allows a TWT designer to develop a focusing structure while reducing the expensive and time-consuming task of building the TWT and hot-testing it (with the electron beam). In addition, the model allows, for the first time, an investigation of the effect on TWT operation of the important azimuthally asymmetric features of the focusing stack. The TWT is a vacuum device that amplifies signals by transferring energy from an electron beam to a radiofrequency (RF) signal. A critically important component is the focusing structure, which keeps the electron beam from diverging and intercepting the RF slow wave circuit. Such an interception can result in excessive circuit heating and decreased efficiency, whereas excessive growth in the beam diameter can lead to backward wave oscillations and premature saturation, indicating a serious reduction in tube performance. The most commonly used focusing structure is the PPM stack, which consists of a sequence of cylindrical iron pole pieces and opposite-polarity magnets. Typically, two-dimensional electron optics codes are used in the design of magnetic focusing devices. In general, these codes track the beam from the gun downstream by solving equations of motion for the electron beam in static-electric and magnetic fields in an azimuthally symmetric structure. Because these two-dimensional codes cannot adequately simulate a number of important effects, the simulation code MAFIA (solution of Maxwell's equations by the Finite-Integration-Algorithm) was used at Glenn to develop a three-dimensional electron optics model. First, a PPM stack was modeled in three dimensions. Then, the fields obtained using the magnetostatic solver were loaded into a particle-in-cell solver where the fully three-dimensional behavior of the beam

  3. A 50/50 electronic beam splitter in graphene nanoribbons as a building block for electron optics

    Science.gov (United States)

    Lima, Leandro R. F.; Hernández, Alexis R.; Pinheiro, Felipe A.; Lewenkopf, Caio

    2016-12-01

    Based on the investigation of the multi-terminal conductance of a system composed of two graphene nanoribbons, in which one is on top of the other and rotated by {{60}\\circ} , we propose a setup for a 50/50 electronic beam splitter that neither requires large magnetic fields nor ultra low temperatures. Our findings are based on an atomistic tight-binding description of the system and on the Green function method to compute the Landauer conductance. We demonstrate that this system acts as a perfect 50/50 electronic beam splitter, in which its operation can be switched on and off by varying the doping (Fermi energy). We show that this device is robust against thermal fluctuations and long range disorder, as zigzag valley chiral states of the nanoribbons are protected against backscattering. We suggest that the proposed device can be applied as the fundamental element of the Hong-Ou-Mandel interferometer, as well as a building block of many devices in electron optics.

  4. Electronic structure and optical properties of the HoCoSi and ErNiSi compounds

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, Yu. V.; Lukoyanov, A. V., E-mail: lukoyanov@imp.uran.ru; Kuz’min, Yu. I. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation); Gupta, S.; Suresh, K. G. [Indian Institute of Technology, Department of Physics (India)

    2016-10-15

    The electronic structure and the optical properties of the HoCoSi and ErNiSi compounds are studied. Spin-polarized band calculations are performed in the local electron density approximation corrected for the strong electron–electron interactions in the 4f shell of a rare-earth ion (LSDA + U method [11]). The optical constants are measured by ellipsometry in a wide wavelength range, and the frequency dependences of a number of spectral parameters are determined. The calculated densities of states are used to interpret the structural features of the interband optical conductivities of the intermetallic compounds.

  5. Fluorescent Nanodiamond-Gold Hybrid Particles for Multimodal Optical and Electron Microscopy Cellular Imaging.

    Science.gov (United States)

    Liu, Weina; Naydenov, Boris; Chakrabortty, Sabyasachi; Wuensch, Bettina; Hübner, Kristina; Ritz, Sandra; Cölfen, Helmut; Barth, Holger; Koynov, Kaloian; Qi, Haoyuan; Leiter, Robert; Reuter, Rolf; Wrachtrup, Jörg; Boldt, Felix; Scheuer, Jonas; Kaiser, Ute; Sison, Miguel; Lasser, Theo; Tinnefeld, Philip; Jelezko, Fedor; Walther, Paul; Wu, Yuzhou; Weil, Tanja

    2016-10-12

    There is a continuous demand for imaging probes offering excellent performance in various microscopy techniques for comprehensive investigations of cellular processes by more than one technique. Fluorescent nanodiamond-gold nanoparticles (FND-Au) constitute a new class of "all-in-one" hybrid particles providing unique features for multimodal cellular imaging including optical imaging, electron microscopy, and, and potentially even quantum sensing. Confocal and optical coherence microscopy of the FND-Au allow fast investigations inside living cells via emission, scattering, and photothermal imaging techniques because the FND emission is not quenched by AuNPs. In electron microscopy, transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) analysis of FND-Au reveals greatly enhanced contrast due to the gold particles as well as an extraordinary flickering behavior in three-dimensional cellular environments originating from the nanodiamonds. The unique multimodal imaging characteristics of FND-Au enable detailed studies inside cells ranging from statistical distributions at the entire cellular level (micrometers) down to the tracking of individual particles in subcellular organelles (nanometers). Herein, the processes of endosomal membrane uptake and release of FNDs were elucidated for the first time by the imaging of individual FND-Au hybrid nanoparticles with single-particle resolution. Their convenient preparation, the availability of various surface groups, their flexible detection modalities, and their single-particle contrast in combination with the capability for endosomal penetration and low cytotoxicity make FND-Au unique candidates for multimodal optical-electronic imaging applications with great potential for emerging techniques, such as quantum sensing inside living cells.

  6. Investigations on electronic, Fermi surface, Curie temperature and optical properties of Zr2CoAl

    Science.gov (United States)

    Wei, Xiao-Ping; Sun, Weiwei; Zhang, Ya-Ling; Sun, Xiao-Wei; Song, Ting; Wang, Ting; Zhang, Jia-Liang; Su, Hao; Deng, Jian-Bo; Zhu, Xing-Feng

    2017-03-01

    Using full-potential local-orbital minimum-basis along with spin-polarized relativistic Korringa-Kohn-Rostoker methods, we study the electronic, Fermi surface, Curie temperature and optical properties of Zr2CoAl alloy. The alloy with Li2AgSb and Cu2MnAl structures are compared in terms of magnetic properties, and the electronic structures in two structures are also discussed. According to the calculated electronic states, it finds that the Zr2CoAl with Li2AgSb structure is half-metallic ferromagnet with an integral magnetic moment of 2.00μB , meanwhile we also notice the d-d and p-d hybridizations are responsible for the formation of minority-spin gap, furthermore, the fat-bands are applied to discuss the mixture between d and p electrons in the vicinity of the Fermi level. The Fermi surfaces related to the valence bands are constructed, and it is found that the spin-up valence bands 26, 27 and 28 across the Fermi energy dominate the nature of electrons. By mapping the system onto a Heisenberg Hamiltonian, we obtain the exchange coupling parameters, and observe that the Zr(A)-Co(C) and Zr(A)-Zr(B) interactions provide a major contribution for exchange interactions. Based on the calculated exchange coupling parameters, the Curie temperature is estimated to be 287.86 K at equilibrium, and also the dependence of Curie temperature on lattice constant related to the tunable Curie temperature in Zr2CoAl alloy is studied. Finally, we report the optical properties of Zr2CoAl alloy, and present the photon energy dependence of the absorption, the optical conductivity and the loss function.

  7. Investigation in morphology and optical properties of electron beam gun evaporated nanostructured Bromoindium phthalocyanine thin films

    Science.gov (United States)

    Azim-Araghi, M. E.; Sahebi, R.

    2014-01-01

    Bromoindium phthalocyanine in thin film form was prepared by electron beam gun evaporation technique, using pre-cleaned polyborosilicate glass as substrate. 2D AFM image confirms that the surface of BrInPc thin film is granular with a grain size of 40-60 nm. 3D AFM image confirms that surface is homogeneous and its RMS roughness is 4.9 nm. The UV-VIS absorption spectrum showed two well-known absorption bands of the phthalocyanines, B and Q bands and characteristics Davydov splitting were observed. The optical transition determined to be direct allowed and the value of optical band gap was obtained. The value of Urbach energy was calculated. To investigation in the effect of thermal annealing on optical properties of BrInPc thin films, we annealed some thin films at 473 and 603 K for 1 h. As the result of thermal annealing we observed another absorption peak, named N-band, in absorption spectrum. A red shift observed in the position of B-band and Q-band peaks. There was not changing in optical transition mechanism. The value of optical band gap decreased and the Urbach energy increased as the result of thermal annealing.

  8. Intrinsic temperature-dependent evolutions in the electron-boson spectral density obtained from optical data

    Science.gov (United States)

    Hwang, Jungseek

    2016-03-01

    We investigate temperature smearing effects on the electron-boson spectral density function (I2χ(ω)) obtained from optical data using a maximum entropy inversion method. We start with two simple model input I2χ(ω), calculate the optical scattering rates at selected temperatures using the model input spectral density functions and a generalized Allen’s formula, then extract back I2χ(ω) at each temperature from the calculated optical scattering rate using the maximum entropy method (MEM) which has been used for analysis of optical data of high-temperature superconductors including cuprates, and finally compare the resulting I2χ(ω) with the input ones. From this approach we find that the inversion process can recover the input I2χ(ω) almost perfectly when the quality of fits is good enough and also temperature smearing (or thermal broadening) effects appear in the I2χ(ω) when the quality of fits is not good enough. We found that the coupling constant and the logarithmically averaged frequency are robust to the temperature smearing effects and/or the quality of fits. We use these robust properties of the two quantities as criterions to check whether experimental data have intrinsic temperature-dependent evolutions or not. We carefully apply the MEM to two material systems (one optimally doped and the other underdoped cuprates) and conclude that the I2χ(ω) extracted from the optical data contain intrinsic temperature-dependent evolutions.

  9. Quasi-optical design for systems to diagnose the electron temperature and density fluctuations on EAST

    Science.gov (United States)

    Cao, Qifo; Liu, Yong; Zhao, Hailin; Zhou, Tianfu; Ti, Ang; Hu, Liqun

    2016-11-01

    A system to simultaneously diagnose the electron temperature and density fluctuations is proposed for Experimental Advanced Superconducting Tokamak device. This system includes a common quasi-optical antenna, a correlation electron cyclotron emission (CECE) system that is used to measure the electron temperature fluctuations and a Doppler backscattering (DBS) system that is used to measure the electron density fluctuations. The frequency range of the proposed CECE system is 108-120 GHz, and this corresponds to a radial coverage of normalized radius ((R - R0)/a, R0 = 1850 mm, a = 450 mm) from 0.2 to 0.67 for the plasma operation with a toroidal magnetic field of 2.26 T. This paper focuses on the design of the quasi-optical antenna and aims at optimizing the poloidal resolution for different frequency bands. An optimum result gives the beam radius for the CECE system of 13-15 mm and this corresponds to a wave number range of kθ < 2.4 cm-1. The beam radius is 20-30 mm for V band (50-75 GHz) and 15-20 mm for W band (75-110 GHz).

  10. Optical properties and electronic structure of BiTeCl and BiTeBr compounds

    Science.gov (United States)

    Makhnev, A. A.; Nomerovannaya, L. V.; Kuznetsova, T. V.; Tereshchenko, O. E.; Kokh, K. A.

    2016-09-01

    Optical properties of BiTeCl and BiTeBr compounds with a strong Rashba spin-orbit coupling are studied in the 0.08-5.0 eV range using the optical ellipsometry method. Fundamental characteristics of the electronic structure are obtained. Similarly to BiTeI, spectra of the imaginary part of dielectric permittivity constant ɛ2( E) in the energy interval between the plasma edge and the threshold of an intense interband absorption (0.7 eV in BiTeCl and 0.6 eV in BiTeBr) display a fine structure of electronic transitions at 0.25 and 0.55 eV in BiTeCl and 0.20 and 0.50 eV in BiTeBr. These features are assigned to electronic transitions between the bulk conduction zones split by the Rashba spin-orbit interaction. The parameters of the electronic structure of BiTeCl and BiTeBr are compared with the BiTeI compound that was studied earlier. In the BiTeCl-BiTeBr-BiTeI row, the absorption edge and main features of the fundamental absorption exhibit a shift to low energies.

  11. Optical synchronization of a free-electron laser with femtosecond precision

    Energy Technology Data Exchange (ETDEWEB)

    Loehl, F.

    2009-09-15

    High-gain free-electron lasers (FELs) are capable of generating sub-10 fs long light pulses. In order to take full advantage of these extremely short light pulses in time-resolved experiments, synchronization with a so far unprecedented timing accuracy is required. Within this thesis, an optical synchronization system providing sub-10 fs stability has been developed and was implemented at the ultra-violet and soft X-ray free-electron laser FLASH at DESY, Hamburg. The system uses a mode-locked laser as a timing reference. The laser pulses are distributed via length stabilized optical fiber-links to the remote locations. A key feature of the system is a bunch arrival-time monitor detecting the electron bunch arrival-time with an unrivaled resolution of 6 fs. A feedback system based on the arrival-time monitor was established, improving the arrival-time fluctuations from 200 fs in the unstabilized case to 25 fs with active feedback. In order to achieve the high peak current of several thousand amperes required for the FEL process, the electron bunches are longitudinally compressed in two magnetic chicanes. A second feedback system was developed stabilizing the bunch compression process based on measurements of diffraction radiation. The combination of both feedback systems improves the stability of the FEL radiation significantly. (orig.)

  12. Anomalous Optical and Electronic Properties of CaTiO3 Perovskites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    With the help of the first-principles full potential linearized augmented plane wave method, absorption coefficients, reflectivity, dielectric behavior and electronic properties, including electronic energy bands, density of states and charge density distributions, are studied for the tetragonal and cubic CaTiO3. By considering the thermal expansion effects, an approximate method is proposed for the study of the stability of ground state and a tendency of phase transition, based on the minimum free energy principle. Subsequently, numerical calculations are carried out by using the first-principles perturbation method. We demonstrate that the high-temperature phase is cubic. It is shown that optical spectra in tetragonal phase exhibit single-peak feature and differ from multi-peak character in cubic. We find that strong orbital hybridization results in the co-valent bonds between Ti 3d and O 2p electrons and forms two-type dipoles (Ti-O1 and Ti-O2) in tetragonal, while the Ti-O dipoles are identical in cubic. It is argued that crystal structure determines the dipole distributions and leads to some electron states among which the dipole-dipole transition forbidden is a key, causing such anomalous optical phenomena with the insulator characteristics. The predicted charge density distribution and the tendency of phase transition from tetragonal to cubic are in good agreement with experimental observations.

  13. TADPOLE for longitudinal electron-bunch diagnostics based on electro-optic upconversion

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick, E-mail: jan-patrick.schwinkendorf@desy.de; Wunderlich, Steffen, E-mail: steffen.wunderlich@desy.de; Schaper, Lucas; Schmidt, Bernhard; Osterhoff, Jens

    2014-03-11

    Electron-bunch diagnostics are desired to utilize unambiguous, non-destructive, single-shot techniques. Various methods fulfill the latter two demands, but feature significant ambiguities and constraints in the reconstruction of time-domain electron-bunch profiles, e.g. uncertainties arising from the phase retrieval of coherent radiation using the Kramers–Kronig relation. We present a novel method of measuring the spectral phase. The measurement is based on upconversion in an electro-optic crystal, where the THz-field spectrum of fs-electron bunches is shifted to the near-infrared. This technique allows the single-shot detection of its longitudinal form factor in both, amplitude and phase. The spectral phase and amplitude information is measured and thus the temporal profile reconstructed using temporal analysis by dispersing a pair of light E-fields, also known as TADPOLE. This is a combination of frequency resolved optical gating (FROG) and spectral interferometry, enabling the temporal measurement of low-power laser pulses. In this procedure, a narrow-bandwidth laser pulse detecting the longitudinal variations in the transverse electric field of an electron bunch via frequency mixing is interfered with a broadband and FROG-characterized reference pulse. The longitudinal beam profile may therefore be unambiguously inferred from the generated interferogram and the detected spectral-phase-information of the reference pulse.

  14. Evaluation of low energy electron beam dose application by means of a portable optical device

    Science.gov (United States)

    Reitzig, Manuela; Winkler, Martin; Härtling, Thomas; Röder, Olaf; Opitz, Jörg

    2014-11-01

    We present our recent development concerning the evaluation of a low energy dose application to electron beam responding materials with a simple portable optical device. Electron beam irradiation is a promising option to sterilize sensitive and high performance products or surfaces at a low temperature and without moisture. Especially in the fields of the food industry and medicine, regulations regarding sterility are increasingly tightened. Because of this, a secure proof for electron-beam-assisted sterilization is required. However, no nondestructive and in situ method exists up until now. Our approach to provide a secure proof of sterilization is to place a suitable marker material based on rare-earth-doped phosphors inside or on the top of the packaging material of the respective product. Upon electron irradiation the marker material changes its luminescence properties as a function of the applied energy dose. We verified the energy dependence by means of time-resolved measurements of the luminescence decay of an upconversion phosphor with a portable optical device. In our experimental realization, short laser pulses in the near-infrared range are triggered by a microcontrol unit (MCU) and excite the marker material. The light emitted by the marker is collected in the range between 400 and 1100 nm via a silicon photodiode, processed by the MCU, and analyzed in a Labview program via a single-exponential fit. As a main result, we observe an increasing reduction of the luminescence lifetime with higher dose applications.

  15. Electronic and optical properties of single excitons and biexcitons in type-II quantum dot nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Fatih, E-mail: fatih.koc@msn.com [Department of Physics, Faculty of Sciences, Selcuk University, 42075 Konya (Turkey); Sahin, Mehmet, E-mail: mehmet.sahin@agu.edu.tr, E-mail: mehsahin@gmail.com [Department of Physics, Faculty of Sciences, Selcuk University, 42075 Konya (Turkey); Department of Material Science and Nanotechnology Engineering, Abdullah Gül University, Kayseri (Turkey)

    2014-05-21

    In this study, a detailed investigation of the electronic and optical properties (i.e., binding energies, absorption wavelength, overlap of the electron-hole wave functions, recombination oscillator strength, etc.) of an exciton and a biexciton in CdTe/CdSe core/shell type-II quantum dot heterostructures has been carried out in the frame of the single band effective mass approximation. In order to determine the electronic properties, we have self-consistently solved the Poisson-Schrödinger equations in the Hartree approximation. We have considered all probable Coulomb interaction effects on both energy levels and also on the corresponding wave functions for both single exciton and biexciton. In addition, we have taken into account the quantum mechanical exchange-correlation effects in the local density approximation between same kinds of particles for biexciton. Also, we have examined the effect of the ligands and dielectric mismatch on the electronic and optical properties. We have used a different approximation proposed by Sahin and Koc [Appl. Phys. Lett. 102, 183103 (2013)] for the recombination oscillator strength of the biexciton for bound and unbound cases. The results obtained have been presented comparatively as a function of the shell thicknesses and probable physical reasons in behind of the results have been discussed in a detail.

  16. Optical phonon dynamics and electronic fluctuations in the Dirac semimetal C d3A s2

    Science.gov (United States)

    Sharafeev, A.; Gnezdilov, V.; Sankar, R.; Chou, F. C.; Lemmens, P.

    2017-06-01

    Raman scattering in the three-dimensional Dirac semimetal C d3A s2 shows an intricate interplay of electronic and phonon degrees of freedom. We observe resonant phonon scattering due to interband transitions, an anomalous anharmonicity of phonon frequency and intensity, as well as quasielastic (E ˜0 ) electronic scattering. The latter two effects are governed by a characteristic temperature scale T*˜100 K that is related to mutual fluctuations of lattice and electronic degrees of freedom. A refined analysis shows that this characteristic temperature corresponds to the energy of optical phonons which couple to interband transitions in the Dirac states of C d3A s2 . As electron-phonon coupling in a topological semimetal is primarily related to phonons with finite momenta, the back action on the optical phonons is only observed as anharmonicities via multiphonon processes involving a broad range of momenta. The resulting energy density fluctuations of the coupled system have previously only been observed in low dimensional or frustrated spin systems with suppressed long range ordering.

  17. Linear and nonlinear optical absorption coefficients of two-electron spherical quantum dot with parabolic potential

    Science.gov (United States)

    Çakır, Bekir; Yakar, Yusuf; Özmen, Ayhan

    2015-02-01

    Linear and nonlinear absorption coefficients of two-electron spherical quantum dot (QD) with parabolic potential are investigated in this paper. Wave functions and energy eigenvalues of the 1s2, 1s1p, 1s1d and 1s1f electronic states have been computed by using an optimization approach, which is a combination of Quantum Genetic Algorithm (QGA) and Hartree-Fock Roothaan (HFR) method. It is found that the strength of S→P transition is stronger than P→D and D→F transitions. Also the peak positions and amplitudes of the absorption coefficients are sensitive to the electron spin. It should be noted that the peak positions and amplitudes of absorption coefficients are strongly dependent on the parabolic potential. Additionally, dot radius, impurity charge, incident optical intensity and relaxation time have a great influence on the linear and nonlinear absorption coefficients.

  18. Linear and nonlinear optical absorption coefficients of two-electron spherical quantum dot with parabolic potential

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Bekir, E-mail: bcakir@selcuk.edu.tr [Physics Department, Faculty of Science, Selcuk University, Campus 42075, Konya (Turkey); Yakar, Yusuf, E-mail: yuyakar@yahoo.com [Physics Department, Faculty of Arts and Science, Aksaray University, Campus 68100, Aksaray (Turkey); Özmen, Ayhan [Physics Department, Faculty of Science, Selcuk University, Campus 42075, Konya (Turkey)

    2015-02-01

    Linear and nonlinear absorption coefficients of two-electron spherical quantum dot (QD) with parabolic potential are investigated in this paper. Wave functions and energy eigenvalues of the 1s{sup 2}, 1s1p, 1s1d and 1s1f electronic states have been computed by using an optimization approach, which is a combination of Quantum Genetic Algorithm (QGA) and Hartree–Fock Roothaan (HFR) method. It is found that the strength of S→P transition is stronger than P→D and D→F transitions. Also the peak positions and amplitudes of the absorption coefficients are sensitive to the electron spin. It should be noted that the peak positions and amplitudes of absorption coefficients are strongly dependent on the parabolic potential. Additionally, dot radius, impurity charge, incident optical intensity and relaxation time have a great influence on the linear and nonlinear absorption coefficients.

  19. Optical synchronization and electron bunch diagnostic at the quasi-cw accelerator ELBE

    Energy Technology Data Exchange (ETDEWEB)

    Kuntzsch, Michael [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Univ. Dresden (Germany); Lehnert, Ulf; Roeser, Fabian [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Czwalinna, Marie Kristin; Schulz, Sebastian; Schlarb, Holger; Vilcins, Silke [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-01

    The continuous wave electron accelerator ELBE is upgraded to generate short and highly charged electron bunches (200 fs duration, up to 1 nC) with an energy of up to 40 MeV. In the last years a prototype of an optical synchronization system using a mode locked fiber laser has been build up which is now in commissioning phase. The stabilized pulse train can be used for new methods of electron bunch diagnostics like bunch arrival time measurement with the resolution down to a few femtoseconds. At ELBE a bunch arrival time monitor (BAM) has been designed and tested at the accelerator. The contribution shows the concept of the femtosecond synchronization system, the design of the BAM and first measurement results.

  20. Optical and structural characterisation of low dimensional structures using electron beam excitation systems

    CERN Document Server

    Mohammed, A

    2000-01-01

    suppressed by nonradiative recombination centres. The temperatures at which the QW luminescence starts to quench and the activation energies of luminescence quenching are found to depend on excitation conditions, sample quality and QW depth. The results of CL intensity dependence on the excitation intensity revealed that luminescence from good quality QW structures is dominated by radiative recombination processes even at high temperatures during thermal quenching. In contrast, in defected structures non-radiative recombination mechanisms dominate the luminescence properties at all temperatures. Secondary electron images of hexagonal growth hillocks of GaN obtained at a range of electron beam excitation energies vary because of the different signals involved in the imaging. Electron backscatter diffraction measurements have been used for phase identification and lattice constants determination in a strained GaN epilayer. This thesis presents studies on optical and structural characterisation of low dimensiona...

  1. Beam dynamics simulations in laser electron storage rings and optical stochastic cooling

    Science.gov (United States)

    Duru, Alper

    Laser-electron storage rings are potential compact X-ray sources. Longitudinal dynamics in laser-electron storage rings is studied including the effects of both laser interaction and synchrotron radiation. It is shown that the steady state energy spread can reach as high as a few percent. The main reason is the wide spread in the energy loss by electrons to laser photons. Optical stochastic cooling has been studied numerically. The effects of the finite bandwidth of the amplifier are mixing and signal distortion. Both are included in the simulations and the results are compared to theoretical results. It is shown that the beam can be cooled both in transverse and longitudinal phase phase spaces simultaneously.

  2. Optical Absorption and Electron Injection of 4-(Cyanomethylbenzoic Acid Based Dyes: A DFT Study

    Directory of Open Access Journals (Sweden)

    Yuehua Zhang

    2015-01-01

    Full Text Available Density functional theory (DFT and time-dependent density functional theory (TDDFT calculations were carried out to study the ground state geometries, electronic structures, and absorption spectra of 4-(cyanomethylbenzoic acid based dyes (AG1 and AG2 used for dye-sensitized solar cells (DSSCs. The excited states properties and the thermodynamical parameters of electron injection were studied. The results showed that (a two dyes have uncoplanar structures along the donor unit and conjugated bridge space, (b two sensitizers exhibited intense absorption in the UV-Vis region, and (c the excited state oxidation potential was higher than the conduction band edge of TiO2 photoanode. As a result, a solar cell based on the 4-(cyanomethylbenzoic acid based dyes exhibited well photovoltaic performance. Furthermore, nine dyes were designed on the basis of AG1 and AG2 to improve optical response and electron injection.

  3. Photoemission Electron Microscopy as a tool for the investigation of optical near fields

    CERN Document Server

    Cinchetti, M; Nepjiko, S A; Sch"onhense, G; Rochholz, H; Kreiter, M

    2005-01-01

    Photoemission electron microscopy was used to image the electrons photoemitted from specially tailored Ag nanoparticles deposited on a Si substrate (with its native oxide SiO$_{x}$). Photoemission was induced by illumination with a Hg UV-lamp (photon energy cutoff $\\hbar\\omega_{UV}=5.0$ eV, wavelength $\\lambda_{UV}=250$ nm) and with a Ti:Sapphire femtosecond laser ($\\hbar\\omega_{l}=3.1$ eV, $\\lambda_{l}=400$ nm, pulse width below 200 fs), respectively. While homogeneous photoelectron emission from the metal is observed upon illumination at energies above the silver plasmon frequency, at lower photon energies the emission is localized at tips of the structure. This is interpreted as a signature of the local electrical field therefore providing a tool to map the optical near field with the resolution of emission electron microscopy.

  4. First-principles characterization of the electronic and optical properties of hexagonal LiIO3

    Science.gov (United States)

    Van Troeye, B.; Gillet, Y.; Poncé, S.; Gonze, X.

    2014-07-01

    Within the density functional theory framework, we investigate the structural, electronic, vibrational, dielectric, piezoelectric and optical properties of hexagonal lithium iodate, including some nonlinear response properties, like the nonlinear dielectric (electronic) susceptibility, the electro-optic tensor and the Raman tensor. Beyond the comparison with available experimental data and the associated analysis, we predict the values of several properties or characteristics of this material, e.g. the phonon frequencies with B symmetry, that are silent in both IR and Raman experiments, the Born effective charges, for which a detailed analysis is performed, Raman susceptibilities and the decomposition of the clamped electro-optic tensor in terms of the different modes. The agreement with available experimental results is reasonable to excellent, depending on the property. The lattice parameters and macroscopic dielectric constants agree to the experimental ones within 2%. The Kohn-Sham electronic bandstructure is predicted, but suffers from the well-known DFT band gap problem. Reflectivity spectra computed with the density functional perturbation theory are in qualitative and quantitative agreements with experiments for incident light along the two main hexagonal axes. The phonon frequencies at the Brillouin zone center are, in average, 5.74% apart from the experimental one. The previous assignment of Raman features is discussed, on the basis of our computed Raman spectra, including relative peak heights. Finally, this study confirms theoretically the large nonlinear coefficients d31 and d33 of -6.6 pm/V and -7.5 pm/V as well as its noteworthy piezoelectric and electro-optic properties that make this material remarkable.

  5. Optical control of electron phase space in plasma accelerators with incoherently stacked laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kalmykov, S. Y., E-mail: skalmykov2@unl.edu; Shadwick, B. A. [Department of Physics and Astronomy, University of Nebraska – Lincoln, Lincoln, Nebraska 68588-0299 (United States); Davoine, X. [CEA, DAM, DIF, Arpajon F-91297 (France); Lehe, R.; Lifschitz, A. F. [Laboratoire d' Optique Appliquée, ENSTA-CNRS-École Polytechnique UMR 7639, Palaiseau F-91761 (France)

    2015-05-15

    It is demonstrated that synthesizing an ultrahigh-bandwidth, negatively chirped laser pulse by incoherently stacking pulses of different wavelengths makes it possible to optimize the process of electron self-injection in a dense, highly dispersive plasma (n{sub 0}∼10{sup 19} cm{sup −3}). Avoiding transformation of the driving pulse into a relativistic optical shock maintains a quasi-monoenergetic electron spectrum through electron dephasing and boosts electron energy far beyond the limits suggested by existing scaling laws. In addition, evolution of the accelerating bucket in a plasma channel is shown to produce a background-free, tunable train of femtosecond-duration, 35–100 kA, time-synchronized quasi-monoenergetic electron bunches. The combination of the negative chirp and the channel permits acceleration of electrons beyond 1 GeV in a 3 mm plasma with 1.4 J of laser pulse energy, thus offering the opportunity of high-repetition-rate operation at manageable average laser power.

  6. Energy distribution of precipitating electrons estimated from optical and cosmic noise absorption measurements

    Directory of Open Access Journals (Sweden)

    H. Mori

    2004-04-01

    Full Text Available This study is a statistical analysis on energy distribution of precipitating electrons, based on CNA (cosmic noise absorption data obtained from the 256-element imaging riometer in Poker Flat, Alaska (65.11° N, 147.42° W, and optical data measured with an MSP (Meridian Scanning Photometer over 79 days during the winter periods from 1996 to 1998. On the assumption that energy distributions of precipitating electrons represent Maxwellian distributions, CNA is estimated based on the observation data of auroral 427.8-nm and 630.0-nm emissions, as well as the average atmospheric model, and compared with the actual observation data. Although the observation data have a broad distribution, they show systematically larger CNA than the model estimate. CNA determination using kappa or double Maxwellian distributions, instead of Maxwellian distributions, better explains the distribution of observed CNA data. Kappa distributions represent a typical energy distribution of electrons in the plasma sheet of the magnetosphere, the source region of precipitating electrons. Pure kappas are more likely during quiet times – and quiet times are more likely than active times. This result suggests that the energy distribution of precipitating electrons reflects the energy distribution of electrons in the plasma sheet.

    Key words. Ionosphere (auroral ionosphere; particle precipitation; polar ionosphere

  7. Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis

    Science.gov (United States)

    Smith, A. D.; Siggel-King, M. R. F.; Holder, G. M.; Cricenti, A.; Luce, M.; Harrison, P.; Martin, D. S.; Surman, M.; Craig, T.; Barrett, S. D.; Wolski, A.; Dunning, D. J.; Thompson, N. R.; Saveliev, Y.; Pritchard, D. M.; Varro, A.; Chattopadhyay, S.; Weightman, P.

    2013-02-01

    We show that the combination of a scanning near field optical microscope and an infra-red free electron laser yields chemical images with sub-cellular spatial resolution that have the potential to provide a diagnostic for oesophageal adenocarcinoma.

  8. Improvement of optical properties of TiO2 thin film treated with electron beam.

    Science.gov (United States)

    Shin, Joong-Hyeok; Lee, Byung Cheol; Woo, Hee-Gweon; Hwang, Kwang Ha; Jun, Jin

    2013-03-01

    Nanocrystalline titanium dioxide (TiO2) thin films on silicon wafer substrates were prepared by sol-gel spin coating process. The prepared thin films were treated with electron beam (1.1 MeV, 300 kGy) at air atmosphere. The effects of electron-beam (EB) irradiation on the structural and optical properties of the TiO2 thin films were investigated. The structures of all the TiO2 thin films by XRD analysis showed an anatase phase, and the phase remained unchanged within the investigating range of EB treatment. The thickness of the titania thin film decreased slightly with EB treatment whereas the porosity increased. The EB treatment of TiO2 thin film can increase the proportion of Ti3+ in Ti2p at the thin film surface. The optical transmittance of the film in the wavelength ranges of above 380 nm increased after the EB treatment while its refractive index decreased with increasing EB dose. Therefore, improvement of the optical properties could be due to the change in both surface chemistry and morphology of the TiO2 thin films affected by EB irradiation.

  9. Electronic and optical properties of strained graphene and other strained 2D materials: a review

    Science.gov (United States)

    Naumis, Gerardo G.; Barraza-Lopez, Salvador; Oliva-Leyva, Maurice; Terrones, Humberto

    2017-09-01

    This review presents the state of the art in strain and ripple-induced effects on the electronic and optical properties of graphene. It starts by providing the crystallographic description of mechanical deformations, as well as the diffraction pattern for different kinds of representative deformation fields. Then, the focus turns to the unique elastic properties of graphene, and to how strain is produced. Thereafter, various theoretical approaches used to study the electronic properties of strained graphene are examined, discussing the advantages of each. These approaches provide a platform to describe exotic properties, such as a fractal spectrum related with quasicrystals, a mixed Dirac–Schrödinger behavior, emergent gravity, topological insulator states, in molecular graphene and other 2D discrete lattices. The physical consequences of strain on the optical properties are reviewed next, with a focus on the Raman spectrum. At the same time, recent advances to tune the optical conductivity of graphene by strain engineering are given, which open new paths in device applications. Finally, a brief review of strain effects in multilayered graphene and other promising 2D materials like silicene and materials based on other group-IV elements, phosphorene, dichalcogenide- and monochalcogenide-monolayers is presented, with a brief discussion of interplays among strain, thermal effects, and illumination in the latter material family.

  10. Tunable electronic and optical behaviors of two-dimensional germanium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhuo; Li, Yangping, E-mail: liyp@nwpu.edu.cn; Li, Chenxi; Liu, Zhengtang

    2016-03-30

    Graphical abstract: In-plane and biaxial strain effects can provide a wide band gap engineering and new options of interband transitions for 2d-GeC in application of optoelectronic devices. - Highlights: • Tunable band structures when in-plane strain is applied on monolayer GeC. • Tunable electronic and optical properties of bilayer under strain along the c axis. • Tunable band structures are observed in multilayer GeC. - Abstract: The electronic and optical properties of two-dimensional graphene-like germanium carbide (2D-GeC) are calculated using first-principle calculation based on density functional theory. Monolayer GeC has a direct band gap of 2.19 eV. The imaginary part of the dielectric function shows a wide energy range of absorption spectrum for monolayer GeC. Tunable band structures are found for monolayer GeC through in-plane strain. In addition, the band structures and optical properties of bilayer GeC under strain along the c axis are analyzed. Multilayer GeC exhibits a direct band gap like monolayer GeC, and new options of interband transitions are found between layers. The results suggest that 2D-GeC could be a good candidate for optoelectronic such as light-emitting diodes, photodiodes, and solar cells.

  11. First-principles study of the electronic, optical properties and lattice dynamics of tantalum oxynitride.

    Science.gov (United States)

    Li, Pan; Fan, Weiliu; Li, Yanlu; Sun, Honggang; Cheng, Xiufeng; Zhao, Xian; Jiang, Minhua

    2010-08-01

    First-principles calculations of the electronic, optical properties and lattice dynamics of tantalum oxynitride are performed with the density functional theory plane-wave pseudopotential method. The analysis of the electronic structure shows a covalent nature in Ta-N bonds and Ta-O bonds. The hybridization of anion 2p and Ta 5d states results in enhanced dispersion of the valence band, raising the top of the valence band and leading to the visible-light response in TaON. It has a high dielectric constant, and the anisotropy is displayed obviously in the lower energy region. Our calculation indicated that TaON has excellent dielectric properties along [010] direction. Various optical properties, including the reflectivity, absorption coefficient, refractive index, and the energy-loss spectrum are derived from the complex dielectric function. We also present phonon dispersion relation, zone-center optical mode frequency, density of phonon states, and some thermodynamic properties. The experimental IR modes (B(u) at 808 cm(-1) and A(u) at 863 cm(-1)) are reproduced well and assigned to a combination of stretching and bending vibrations for the Ta-N bond and Ta-O bond. The thermodynamic properties of TaON, such as heat capacity and Debye temperature, which were important parameters for the measurement of crystal physical properties, were first given for reference. Our investigations provide useful information for the potential application of this material.

  12. Electronic Transport Properties of a Naphthopyran-Based Optical Molecular Switch:an ab initio Study

    Institute of Scientific and Technical Information of China (English)

    XIA Cai-Juan; LIU De-Sheng; ZHANG Ying-Tang

    2011-01-01

    The electronic transport properties of a. Naphthopyran-based molecular optical switch are investigated by using the nonequilibrium Green's Function formalism combined with first-principles density functional theory. The molecule that comprises the switch can convert between its open and closed forms upon photoexcitation. Theoretical results show that the current through the open form is significantly larger than that through the closed form, which is different from other optical switches based on ring-opening reactions of the molecular bridge. The maximum on-off ratio (about 90) can be obtained at 1.4 V. The physical origin of the switching behavior is interpreted based on the spatial distributions of molecular orbitals and the HOMO-LUMO gap. Our result shows that the naphthopyran-based molecule is a good candidate for optical molecular switches and will be useful in the near future.%@@ ronic transport properties of a naphthopyran-based molecular optical switch are investigated by using the nonequilibrium Green's function formalism combined with first-principles density functional theory.The molecule that comprises the switch can convert between its open and closed forms upon photoexcitation.Theoretical results show that the current through the open form is significantly larger than that through the closed form,which is different from other optical switches based on ring-opening reactions of the molecular bridge.The maximum on-off ratio(about 90)can be obtained at 1.4 V.The physical origin of the switching behavior is interpreted based on the spatial distributions of molecular orbitals and the HOMO-LUMO gap.Our result shows that the naphthopyran-based molecule is a good candidate for optical molecular switches and will be useful in the near future.

  13. A Shocking Surprise in Stephan's Quintet

    Science.gov (United States)

    2006-01-01

    This false-color composite image of the Stephan's Quintet galaxy cluster clearly shows one of the largest shock waves ever seen (green arc). The wave was produced by one galaxy falling toward another at speeds of more than one million miles per hour. The image is made up of data from NASA's Spitzer Space Telescope and a ground-based telescope in Spain. Four of the five galaxies in this picture are involved in a violent collision, which has already stripped most of the hydrogen gas from the interiors of the galaxies. The centers of the galaxies appear as bright yellow-pink knots inside a blue haze of stars, and the galaxy producing all the turmoil, NGC7318b, is the left of two small bright regions in the middle right of the image. One galaxy, the large spiral at the bottom left of the image, is a foreground object and is not associated with the cluster. The titanic shock wave, larger than our own Milky Way galaxy, was detected by the ground-based telescope using visible-light wavelengths. It consists of hot hydrogen gas. As NGC7318b collides with gas spread throughout the cluster, atoms of hydrogen are heated in the shock wave, producing the green glow. Spitzer pointed its infrared spectrograph at the peak of this shock wave (middle of green glow) to learn more about its inner workings. This instrument breaks light apart into its basic components. Data from the instrument are referred to as spectra and are displayed as curving lines that indicate the amount of light coming at each specific wavelength. The Spitzer spectrum showed a strong infrared signature for incredibly turbulent gas made up of hydrogen molecules. This gas is caused when atoms of hydrogen rapidly pair-up to form molecules in the wake of the shock wave. Molecular hydrogen, unlike atomic hydrogen, gives off most of its energy through vibrations that emit in the infrared. This highly disturbed gas is the most turbulent molecular hydrogen ever seen. Astronomers were surprised not only by the turbulence

  14. Electron Transport, Energy Transfer, and Optical Response in Single Molecule Junctions

    Science.gov (United States)

    White, Alexander James

    The last decade has seen incredible growth in the quality of experiments being done on single molecule junctions. Contemporary experimental measurements have expanded far beyond simple electron transport. Measurement of vibronic eects, quantum interference and decoherence eects, molecular optical response (Raman spectroscopy), and molecular spintronics are just some of the continuing areas of research in single molecule junctions. Experimental advancements demand advanced theoretical treatments, which can be used accurately within appropriate physical regimes, in order to understand measured phenomena and predict interesting directions for future study. In this dissertation we will study systems with strong intra-system interactions using a many-body states based approach. We will be focused on three related processes in molecular junctions: electron transport, electronic energy transfer, and molecular excitation. Inelastic electron transport in the regime of strong and nonlinear electron-vibration coupling within and outside of the Born-Oppenheimer regime will be investigated. To understand their appropriateness, we will compare simple semi-classical approximations in molecular redox junctions and electron-counting devices to fully quantum calculations based on many-body system states. The role of coherence and quantum interference in energy and electron transfer in molecular junctions is explored. Experiments that simultaneously measure surface enhanced Raman scattering and electron conduction have revealed a strong interaction between conducting electrons and molecular excitation. We investigate the role of the molecular response to a classical surface plasmon enhanced electric eld considering the back action of the oscillating molecular dipole. Raman scattering is quantum mechanical by nature and involves strong interaction between surface plasmons in the contacts and the molecular excitation. We develop a scheme for treating strong plasmon-molecular excitation

  15. Methanogenesis: surprising molecules, microorganisms and ecosystems.

    Science.gov (United States)

    Vogels, G D; van der Drift, C; Stumm, C K; Keltjens, J T; Zwart, K B

    1984-01-01

    Methanogenesis involves a novel set of coenzymes as one-carbon and electron carriers. Consequently, metabolic processes of methanogens deviate from those present in non-methanogenic bacteria. Methanogenic bacteria can be classified on the basis of substrate utilization. Group I (24 species) grows at the expense of hydrogen plus CO2 and/or formate and group II (7 species) uses methanol and/or acetate. Hydrogen-consuming methanogens are found as epi- or endosymbionts of anaerobic ciliates.

  16. Heteroepitaxy, an Amazing Contribution of Crystal Growth to the World of Optics and Electronics

    Directory of Open Access Journals (Sweden)

    Vladimir L. Tassev

    2017-06-01

    Full Text Available Advances in Electronics and Optics are often preceded by discoveries in Crystal Growth theory and practice. This article represents in retrospect some of the most significant contributions of heteroepitaxy in these and some other areas—the strong impact of the three modes of heteroepitaxy on microelectronics and quantum optics, the big “push” of PENDEO epitaxy in development of Light Emitting Diodes, etc. A large part of the text is dedicated to heteroepitaxy of nonlinear optical materials grown on orientation-patterned templates and used in the development of new quasi-phase-matching frequency conversion laser sources. By achieving new frequency ranges such sources will result in a wide variety of applications in areas such as defense, security, industry, medicine, and science. Interesting facts from the scientific life of major contributors in the field are mixed in the text with fine details from growth experiments, chemical equations, results from material characterizations and some optical and crystallographic considerations—all these presented in a popular way but without neglecting their scientific importance and depth. The truth is that often heteroepitaxy is not just the better but the only available option. The truth is that delays in device development are usually due to gaps in materials research. In all this, miscommunication between different scientific communities always costs vain efforts, uncertainty, and years of going in a wrong scientific direction. With this article we aim to stimulate a constructive dialog that could lead to solutions of important interdisciplinary scientific and technical issues.

  17. Optical properties and electronic structure of the Cu–Zn brasses

    Energy Technology Data Exchange (ETDEWEB)

    Keast, V.J., E-mail: vicki.keast@newcastle.edu.au [School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Ewald, J. [School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); De Silva, K.S.B.; Cortie, M.B. [Institute for Nanoscale Technology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007 (Australia); Monnier, B. [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Universite de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes Cedex (France); Cuskelly, D.; Kisi, E.H. [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2015-10-25

    The color of Cu–Zn brasses range from the red of copper through bright yellow to grey-silver as the Zn content increases. Here we examine the mechanism by which these color changes occur. The optical properties of this set of alloys has been calculated using density functional theory (DFT) and compared to experimental spectroscopy measurements. The optical response of the low Zn content α-brasses is shown to have a distinctly different origin to that in the higher content β′, γ and ε-brasses. The response of β′-brass is unique in that it is strongly influenced by an overdamped plasmon excitation and this alloy will also have a strong surface plasmon response. - Highlights: • Study of the electronic structure and optical response of the Cu–Zn brasses. • Agreement between experiment and calculation of the dielectric functions. • α-brasses optical response is dominated by transitions from the top of the d-band. • In the other brasses it is transitions around the Fermi level. • β′-brass response is dominateed by an overdamped bulk plasmonic response.

  18. Engineering of electronic and optical properties of PbS thin films via Cu doping

    Science.gov (United States)

    Touati, Baligh; Gassoumi, Abdelaziz; Dobryden, Illia; Natile, Marta Maria; Vomiero, Alberto; Turki, Najoua Kamoun

    2016-09-01

    Copper-doped PbS polycrystalline thin films were deposited by chemical bath deposition by adding small amount of Cu (ysolution = [Cu2+]/[Pb2+]) between 0.5 and 2 at%. The composition, structure, morphology, optical and electrical properties of the films were investigated by means of X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoemission spectroscopy (XPS), UV-visible-near infrared (UV-Vis-NIR) spectrophotometry and Hall effect measurements. The XRD studies showed that the undoped films have PbS face centered cubic structure with (111) preferential orientation, while preferential orientation changes to (200) plane with increasing Cu doping concentration. The AFM and SEM measurements indicated that the film surfaces consisted of nanosized grains with pyramidal shape. Optical band gap was blue shifted from 0.72 eV to 1.69 eV with the increase in Cu doping concentration. The film obtained with the [Cu2+]/[Pb2+] ratio equal to 1.5 at% Cu showed the minimum resistivity of 0.16 Ω cm at room temperature and optimum value of optical band gap close to 1.5 eV. 1.5 at% Cu-doped PbS thin films exhibit the best optical and electrical properties, suitable for solar cells applications.

  19. Space-time-wavelength mapping: a new approach for electronic control of optical tweezers

    CERN Document Server

    Rahman, Shah; Zhao, Qiancheng; Atasever, Tuva; Boyraz, Ozdal

    2015-01-01

    We present a new approach for electronic control of optical tweezers. The key technique, called 'space-time-wavelength mapping', involves time-domain modulation which is translated onto spatial domain by diffraction and enables direct control of location and polarity of force hot-spots created by Lorentz force (gradient force). In this study 150 fs optical pulses are dispersed in time and space to achieve a focused elliptical beam that is ~20 {\\mu}m long and ~2 {\\mu}m wide. In order to manipulate the intensity gradient along the beam at the focal spot, we use an electro-optic modulator to modulate power spectral distribution of the femtosecond beam after temporal dispersion. The electro-optic modulator is supplied with a chosen RF waveform that dictates the manipulation of the power spectral distribution. By choosing the appropriate RF waveform, it is possible to create force fields for cell stretching and compression as well as multiple hot spots (of > 200 pN force) for attractive or repulsive forces. We pre...

  20. Optical and structural properties of ZnO for transparent electronics

    Energy Technology Data Exchange (ETDEWEB)

    Logothetidis, S. [Aristotle University of Thessaloniki, Physics Department, Lab for Thin Films-Nanosystems and Nanometrology, GR-54124 Thessaloniki (Greece); Laskarakis, A. [Aristotle University of Thessaloniki, Physics Department, Lab for Thin Films-Nanosystems and Nanometrology, GR-54124 Thessaloniki (Greece)], E-mail: alask@physics.auth.gr; Kassavetis, S.; Lousinian, S.; Gravalidis, C. [Aristotle University of Thessaloniki, Physics Department, Lab for Thin Films-Nanosystems and Nanometrology, GR-54124 Thessaloniki (Greece); Kiriakidis, G. [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, P.O. Box 1527, GR-711 10 Heraklion (Greece)

    2008-02-15

    During the last years there is has been an enormous research effort on the materials and processes for the production of transparent electronic devices grown on flexible polymeric substrates as well as on rigid substrates, such as Si and glass. The deposition of Transparent Conductive Oxides (TCOs) characterized by superior optical and electrical properties, in combination to desirable growth characteristics, compatible to polymeric substrates, is of considerable importance. Among all TCO materials, Zinc Oxide (ZnO) has emerged as one of the most promising materials due to its optical and electrical properties, its high chemical and mechanical stability and, due to its abundance, low cost compared with the most currently used TCO materials. In this work, we study the effect of the deposition parameters of ZnO thin films in terms of their optical, structural and nanomechanical properties by employing Spectroscopic Ellipsometry (SE) in the Vis-fUV spectral region, and X-Ray Diffraction techniques. The SE measurements allowed the determination of the optical properties of the ZnO thin films with deposition time and gas partial pressure, whereas the XRD measurements revealed that the ZnO thin films are preferentially grown parallel to (002) axis, in grains less than 10 nm. Furthermore, nanomechanical testing through nanoindentation indicates a thickness controlled fracture mechanism (pop-in events) affecting the durability of the deposited ZnO thin films.

  1. Domain-dependent electronic structure and optical absorption property in hybrid organic-inorganic perovskite.

    Science.gov (United States)

    Meng, Xiang; Zhang, Ruifeng; Fu, Zhongheng; Zhang, Qianfan

    2016-10-05

    Hybrid organic-inorganic perovskites, represented by materials in the CH3NH3PbI3 series, have become one of the most promising materials for solar cells with a high power conversion efficiency and low cost. The ordered Pb-I cage in such hybrid perovskites can induce the polarized cations to form a variety of polarization domains with long-range order, which will lead to the formation of specific atomic conformations or metastable crystalline phases, unique electronic band structures and optical absorption properties. Such domain-dependent characteristics play a critical role in the phase transition and service stability of such solar cells, and also open up the opportunity of tuning their electronic structure. In the present study, we systematically investigate the band structures and optical absorption properties of different electronically ordered domains in CH3NH3PbI3. By comparing different perovskites containing various cations, we have clarified the important influence of cation polarization on domain-dependent properties. Our results provide not only a possible pathway for the manipulation of band structure by applying an external field, but also a novel scheme for improving the performance and stability of hybrid perovskites.

  2. Mechanical, electronic, optical, thermodynamic properties and superconductivity of ScGa3

    Science.gov (United States)

    Parvin, F.; Hossain, M. A.; Ali, M. S.; Islam, A. K. M. A.

    2015-01-01

    The rare occurrence of type-I superconductivity in binary system ScGa3 has experimentally been shown recently. In the present paper we study the electronic, optical, thermodynamic properties and some aspects of superconductivity of this compound using first-principles calculations. The mechanical properties like elastic constants, bulk modulus, shear modulus, Pugh's ductility index, Young's modulus, Poisson's ratio, elastic anisotropy factor, Peierls stress are calculated for the first time. The material is anisotropic and brittle. Electronic band structure, density of states, Fermi surfaces and bonding nature have also been studied. The optical functions are estimated and discussed for the first time. The high reflectivity is found in the ultraviolet regions up to ~13 eV and thus ScGa3 can serve as a possible shielding material for ultraviolet radiation. Thermal effects on some macroscopic properties of ScGa3 are predicted using the quasi-harmonic Debye model and phonon approximation in the temperature and hydrostatic pressure in the ranges of 0-1000 K and 0-40 GPa, respectively. The calculated electron-phonon coupling constant λ=0.52 yields Tc=2.6 K, which is in very good agreement with the experimentally observed value. The value of the coupling constant and the Ginzburg-Landau parameter (κ=0.09) indicate that the compound is a weak-coupled type-I rare binary BCS superconductor.

  3. Sub-cycle optical phase control of nanotunnelling in the single-electron regime

    Science.gov (United States)

    Rybka, Tobias; Ludwig, Markus; Schmalz, Michael F.; Knittel, Vanessa; Brida, Daniele; Leitenstorfer, Alfred

    2016-10-01

    The high peak electric fields provided by single-cycle light pulses can be harnessed to manipulate and control charge motion in solid-state systems, resulting in electron emission out of metals and semiconductors or high harmonics generation in dielectrics. These processes are of a non-perturbative character and require precise reproducibility of the electric-field profile. Here, we vary the carrier-envelope phase of 6-fs-long near-infrared pulses with pJ-level energy to control electronic transport in a laterally confined nanoantenna with an 8 nm gap. Peak current densities of 50 MA cm-2 are achieved, corresponding to the transfer of individual electrons in a half-cycle period of 2 fs. The observed behaviours are made possible by the strong distortion of the effective tunnelling barrier due to the extreme electric fields that the nanostructure provides and sustains under sub-cycle optical biasing. Operating at room temperature and in a standard atmosphere, the performed experiments demonstrate a robust class of nanoelectronic switches gated by phase-locked optical transients of minute energy content.

  4. Reflective optical system for time-resolved electron bunch measurements at PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Rosbach, K.; Baehr, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Roensch-Schulenburg, J. [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik

    2011-01-15

    The Photo-Injector Test facility at DESY, Zeuthen site (PITZ), produces pulsed electron beams with low transverse emittance and is equipped with diagnostic devices for measuring various electron bunch properties, including the longitudinal and transverse electron phase space distributions. The longitudinal bunch structure is recorded using a streak camera located outside the accelerator tunnel, connected to the diagnostics in the beam-line stations by an optical system of about 30 m length. This system mainly consists of telescopes of achromatic lenses, which transport the light pulses and image them onto the entrance slit of the streak camera. Due to dispersion in the lenses, the temporal resolution degrades during transport. This article presents general considerations for time-resolving optical systems as well as simulations and measurements of specific candidate systems. It then describes the development of an imaging system based on mirror telescopes which will improve the temporal resolution, with an emphasis on off-axis parabolic mirror systems working at unit magnification. A hybrid system of lenses and mirrors will serve as a proof of principle. (orig.)

  5. Electrical, electronic and optical properties of amorphous indium zinc tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Denny, Yus Rama [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Department of Electrical Engineering, University of Sultan Ageng Tirtayasa, Banten, Serang, 42435 (Indonesia); Lee, Kangil; Seo, Soonjoo; Oh, Suhk Kun [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kang, Hee Jae, E-mail: hjkang@cbu.ac.kr [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Yang, Dong Seok [Department of Physics Education, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Heo, Sung; Chung, Jae Gwan; Lee, Jae Cheol [Analytical Engineering Center, Samsung Advanced Institute of Technology, Suwon 440-600 (Korea, Republic of)

    2014-10-01

    Highlights: • The electronic property of indium zinc tin oxide thin films was investigated by using XPS and REELS. • The band gap varied with different In/Zn/Sn compositions. • The EXAFS results showed that the smaller Zn–Zn separation distance led to higher electron mobility. • The Sn/Zn composition ratio played a crucial role in improving the electrical properties of a-IZTO thin films. - Abstract: The electrical and optical properties of amorphous indium zinc tin oxide (a-IZTO) thin films were examined as a function of chemical composition. Effects of Sn/Zn composition ratio and In content on the electrical and optical properties of a-IZTO thin films are discussed. The electron mobility of thin film transistors with higher Sn/Zn composition ratio was dramatically improved due to a shorter zinc–zinc separation distance. The thin film transistor with the composition of In:Zn:Sn = 20:48:32 exhibits a high mobility of 30.6 cm{sup 2} V{sup −1} s{sup −1} and a high on–off current ratio of 10{sup 9}.

  6. NaAuS chicken-wire-like semiconductor: Electronic structure and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Khan, Saleem Ayaz, E-mail: sayaz_usb@yahoo.com [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Kamarudin, H. [Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Bila, Jiri [Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, CTU in Prague, Technicka 4, 166 07 Prague 6 (Czech Republic)

    2014-01-05

    Highlights: • Chicken wire like semiconductor NaAuS was investigated. • Good agreement with experimental data was found. • Electronic charge density of chicken wire like semiconductor NaAuS was obtained. • The calculated uniaxial anisotropy is −0.0005, indicating the strong anisotropy. -- Abstract: The electronic structure, charge density and optical properties of NaAuS a chicken-wire-like semiconductor was calculated using full potential linear augmented plane wave based on density functional theory. The Ceperley-Alder local density approximation, Perdew Becke Ernzerhof Generalized gradient approximation and Engel Voskov Generalized Gradient Approximation were applied to solve the exchange correlation potential. The investigation of band structures and density of states elucidates that Engle Vasko Generalized Gradient Approximation shows close agreement to the experimental data. The calculated valence charge density shows pure ionic nature of Au–Au bond. It becomes partially covalent when Au is connected with two Na atoms. The linear optical susceptibilities of chicken-wire-like NaAuS semiconductor are calculated so as to obtain further insight into the electronic properties. The uniaxial anisotropy is −0.0005, indicating the strong anisotropy of the dielectric function in the NaAuS a chicken-wire-like semiconductor.

  7. Electronically conductive perovskite-based oxide nanoparticles and films for optical sensing applications

    Science.gov (United States)

    Ohodnicki, Jr., Paul R; Schultz, Andrew M

    2015-04-28

    The disclosure relates to a method of detecting a change in a chemical composition by contacting a electronically conducting perovskite-based metal oxide material with a monitored stream, illuminating the electronically conducting perovskite-based metal oxide with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The electronically conducting perovskite-based metal oxide has a perovskite-based crystal structure and an electronic conductivity of at least 10.sup.-1 S/cm, where parameters are specified at the gas stream temperature. The electronically conducting perovskite-based metal oxide has an empirical formula A.sub.xB.sub.yO.sub.3-.delta., where A is at least a first element at the A-site, B is at least a second element at the B-site, and where 0.8perovskite-based oxides include but are not limited to La.sub.1-xSr.sub.xCoO.sub.3, La.sub.1-xSr.sub.xMnO.sub.3, LaCrO.sub.3, LaNiO.sub.3, La.sub.1-xSr.sub.xMn.sub.1-yCr.sub.yO.sub.3, SrFeO.sub.3, SrVO.sub.3, La-doped SrTiO.sub.3, Nb-doped SrTiO.sub.3, and SrTiO.sub.3-.delta..

  8. Electronic Structure, Optical and Sensor Properties of ZnO Nanowires

    Directory of Open Access Journals (Sweden)

    O.V. Bovgyra

    2016-06-01

    Full Text Available Density functional theory calculations of structural, electronic and optical properties of nanowires ZnO were performed. The obtained results are showing that the band gap increase with the decrease of the ZnO nanowire size. The calculated ZnO nanowires dielectric function shows a significant blueshift with those of bulk ZnO. Our results give some reference to the thorough understanding of optical properties of ZnO, and also enable more precise monitoring and controlling during the growth of ZnO materials to be possible. Also theoretical calculations of adsorption of the different gases molecules on side of nanowires ZnO were performed. Their charge transfer to the nanowire sidewall is investigated in order to determine the donor or acceptor character of molecular adsorbing.

  9. Electronic structures and optical properties induced by silicon twin boundaries: The first-principle calculation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.X.; Liu, L.Z. [Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Wu, X.L., E-mail: hkxlwu@nju.edu.cn [Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Department of Physics, NingBo University, NingBo 315301 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-07-03

    The defect states and optical absorption enhancement induced by twin boundaries in silicon are investigated by first-principle calculation. The defect states in the forbidden bands are identified and based on the established electronic structures, the dielectric functions and absorption coefficients are derived. An important result of our calculations is that visible light absorption by the twinning configuration is enhanced significantly, indicating that twinning structures possibly play an important role in silicon-based photovoltaic devices. - Highlights: • Defect states and optical absorption enhancement induced by twin boundaries in silicon are investigated theoretically. • Dielectric functions and absorption coefficients are derived. • Enhanced visible light absorption by the twinning configuration is demonstrated. • Twinning structures play an important role in silicon-based photovoltaic devices.

  10. Optical response of relativistic electrons in the polar BiTeI semiconductor.

    Science.gov (United States)

    Lee, J S; Schober, G A H; Bahramy, M S; Murakawa, H; Onose, Y; Arita, R; Nagaosa, N; Tokura, Y

    2011-09-09

    The transitions between the spin-split bands by spin-orbit interaction are relevant to many novel phenomena such as the resonant dynamical magnetoelectric effect and the spin Hall effect. We perform optical spectroscopy measurements combined with first-principles calculations to study these transitions in the recently discovered giant bulk Rashba spin-splitting system BiTeI. Several novel features are observed in the optical spectra of the material including a sharp edge singularity due to the reduced dimensionality of the joint density of states and a systematic doping dependence of the intraband transitions between the Rashba-split branches. These confirm the bulk nature of the Rashba-type splitting in BiTeI and manifest the relativistic nature of the electron dynamics in a solid.

  11. Electronic structure and optical properties of (BeTen/(ZnSem superlattices

    Directory of Open Access Journals (Sweden)

    Caid M.

    2016-03-01

    Full Text Available The structural, electronic and optical properties of (BeTen/(ZnSem superlattices have been computationally evaluated for different configurations with m = n and m≠n using the full-potential linear muffin-tin method. The exchange and correlation potentials are treated by the local density approximation (LDA. The ground state properties of (BeTen/(ZnSem binary compounds are determined and compared with the available data. It is found that the superlattice band gaps vary depending on the layers used. The optical constants, including the dielectric function ε(ω, the refractive index n(ω and the refractivity R(ω, are calculated for radiation energies up to 35 eV.

  12. Electronic, optical, and thermoelectric properties of Fe2+xV1−xAl

    Directory of Open Access Journals (Sweden)

    D. P. Rai

    2017-04-01

    Full Text Available We report the electronic, optical, and thermoelectric properties of full-Heusler alloy Fe2VAl with Fe antisite doping (Fe2+xV1−xAl as obtained from the first-principles Tran-Blaha modified Becke-Johnson potential. The results are discussed in relation to the available experimental data and show good agreements for the band gap, magnetic moment, and optical spectra. Exploring our transport data for thermoelectric applicability suggest that Fe2+xV1−xAl is a good candidate with a high figure of merit (ZT 0.75(0.65 for x = 0.25(0.50 at room temperature.

  13. First-principles calculations for electronic,optical and thermodynamic properties of ZnS

    Institute of Scientific and Technical Information of China (English)

    Hu CuiE; Zeng Zhao-Yi; Cheng Yan; Chen Xiang-Rong; Cai Ling-Cang

    2008-01-01

    The electronic,optical and thermodynamic properties of ZnS in the zinc-blende(ZB)and wurtzite(WZ)structures are investigated by using the plane-wave pseudopotential density functional theory(DFT).The results obtained are consistent with other theoretical results and the available experimental data.When the pressures are above 20.5 and 27 GPa,the ZB-ZnS and the WZ-ZnS are converted into indirect gap semiconductors,respectively.The critical point structure of the frequency-dependent complex dielectric function is investigated and analysed to identify the optical transitions.Moreover,the values of heat capacity Cv and Debye temperature ⊙ at different pressures and different temperatures are also obtained successfully.

  14. Electric- and magnetic-field dependence of the electronic and optical properties of phosphorene quantum dots

    Science.gov (United States)

    Li, L. L.; Moldovan, D.; Xu, W.; Peeters, F. M.

    2017-02-01

    Recently, black phosphorus quantum dots were fabricated experimentally. Motivated by these experiments, we theoretically investigate the electronic and optical properties of rectangular phosphorene quantum dots (RPQDs) in the presence of an in-plane electric field and a perpendicular magnetic field. The energy spectra and wave functions of RPQDs are obtained numerically using the tight-binding approach. We find edge states within the band gap of the RPQD which are well separated from the bulk states. In an undoped RPQD and for in-plane polarized light, due to the presence of well-defined edge states, we find three types of optical transitions which are between the bulk states, between the edge and bulk states, and between the edge states. The electric and magnetic fields influence the bulk-to-bulk, edge-to-bulk, and edge-to-edge transitions differently due to the different responses of bulk and edge states to these fields.

  15. 1st International Conference on Opto-Electronics and Applied Optics

    CERN Document Server

    Bhattacharya, Indrani

    2015-01-01

    The Proceedings of First International Conference on Opto-Electronics and Applied Optics 2014, IEM OPTRONIX 2014 presents the research contributions presented in the conference by researchers from both India and abroad. Contributions from established scientists as well as students are included. The book is organized to enable easy access to various topics of interest.   The first part includes the Keynote addresses by Phillip Russell, Max Planck Institute of the Light Sciences, Erlangen, Germany and Lorenzo Pavesi, University of Trento, Italy.   The second part focuses on the Plenary Talks given by eminent scientists, namely, Azizur Rahman, City University London, London; Bishnu Pal, President, The Optical Society of India; Kamakhya Ghatak, National Institute of Technology, Agartala; Kehar Singh, Former Professor, India Institute of Technology Delhi; Mourad Zghal, SUPCOM, University of Carthage, Tunisia; Partha Roy Chaudhuri, IIT Kharagpur; S K. Bhadra, CSIR-Central Glass and Ceramic Research Institute, Kol...

  16. The Detection of Defects in Optical Fibers Using a Hybrid Opto-electronic Correlator

    Institute of Scientific and Technical Information of China (English)

    LIU Yange; LIU Wei; ZHANG Yimo; ZHOU Ge

    2000-01-01

    A hybrid opto-electronic correlator for detecting defects in optical fibers is proposed. After the light from a He-Ne laser being expanded and filtered it is not collimated but directly passes a Fourier transform lens and illuminates a reference fiber and a test fiber at the same input plane. The Fourier transform spectrum of the two fibers is therefore obtained at the rear focal plane of the lens, where it is sampled via a CCD array connected with a computer through a frame grabber. The computer performs filter, inverse Fourier transform and setting threshold operation on classification. The system is an equivalent of joint transform correlator with a Fourier lens of long focal length. The experiment results for optical fibers having incoordinate defects are presented. The results indicate that the system can be used for fiber defect detection, and has the advantages of high identification, compact configuration, easy adjustment and flexible manipulation.

  17. Structure-Dependent Electronic and Optical Properties of the Martensitic Alloys TiAu

    Institute of Scientific and Technical Information of China (English)

    朱梓忠; 叶亦英

    2002-01-01

    The atomic and electronic structures together with the optical properties of TiAu in the low-temperature B19 and Bll phases are calculated by using first principles local density functional approaches. Our results show that the Bll structure is more stable than B19 for the TiAu alloy in ordered equiatomic composition (Ti:Au =50:50). At Iow temperatures, the Bll structure should exist as a binary alloy from the energetic consideration.The accurate atomic positions in the unit cell have been given by fully force relaxed calculations. The calculated optical conductivities of B19 and Bll phases show a drastic change in the region of 1.5 to 3.5 e V.

  18. Electronic and optical properties of RESn3 (RE=Pr & Nd) intermetallics: A first principles study

    Science.gov (United States)

    Pagare, G.; Abraham, Jisha A.; Sanyal, S. P.

    2015-06-01

    A theoretical study of structural, electronic and optical properties of RESn3 (RE = Pr & Nd) intermetallics have been investigated systematically using first principles density functional theory. The calculations are carried out within the PBE-GGA and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a0), bulk modulus (B) and its pressure derivative (B') are calculated and the calculated lattice parameters show well agreement with the experimental results. We first time predict elastic constants for these compounds. From energy dispersion curves, it is found that these compounds are metallic in nature. The linear optical response of these compounds are also studied and the higher value of static dielectric constant shows the possibility to use them as good dielectric materials.

  19. ALTERABLE INTERVAL OPTICAL-ELECTRONIC AUTOCOLLIMATION METHOD FOR STRAIGHTNESS MEASUREMENT OF PRECISION GUIDE

    Institute of Scientific and Technical Information of China (English)

    Xue Zi; Tan Jiubin; Zhao Weiqian; Zhang Heng

    2005-01-01

    Optical-electronic autocollimation method is commonly used to measure straightness of precision guides in engineering application. However, the traditional fixed interval optical-electronic autocollimation method is not suitable for measuring straightness of an air-bearing guide with a long air-bearing bush or a precision straight guide with a long slide-carriage, because the air-bearing bush and the slide-carriage are actually taken as a big bridgeboard bigger than the length of the bridgeboard with the reflector, which is about 1/4~1/2 of total length of the measured guide. If straightness is measured according to the traditional method, only a few points are sampled so that the guide straightness can not be evaluated fully or accurately. In order to solve the problem, an alterable measuring interval method is proposed for straightness measurement based on analyzing the mutual relations and effects among the tilting angle of the reflector, the length of the bridgeboard, the measuring interval and the straightness of the guide. A straightness calculation model is also developed using the method, and the errors stemming from the method proposed are introduced in brief. A precision air-bearing guide with a long air-bearing bush is measured and evaluated using the method proposed, and the actual measurement and evaluation results prove that the method is correct in theory and practical in operation. The method proposed gives an effective and flexible solution to the straightness measurement of the precision guide with long slide-carriage or air-bearing bush in application. It is an extension of the traditional optical-electronic autocollimation method for straightness measurement.

  20. A theoretical review on electronic, magnetic and optical properties of silicene

    Science.gov (United States)

    Chowdhury, Suman; Jana, Debnarayan

    2016-12-01

    Inspired by the success of graphene, various two dimensional (2D) structures in free standing (FS) (hypothetical) form and on different substrates have been proposed recently. Silicene, a silicon counterpart of graphene, is predicted to possess massless Dirac fermions and to exhibit an experimentally accessible quantum spin Hall effect. Since the effective spin-orbit interaction is quite significant compared to graphene, buckling in silicene opens a gap of 1.55 meV at the Dirac point. This band gap can be further tailored by applying in plane stress, an external electric field, chemical functionalization and defects. In this topical theoretical review, we would like to explore the electronic, magnetic and optical properties, including Raman spectroscopy of various important derivatives of monolayer and bilayer silicene (BLS) with different adatoms (doping). The magnetic properties can be tailored by chemical functionalization, such as hydrogenation and introducing vacancy into the pristine planar silicene. Apart from some universal features of optical absorption present in all these 2D materials, the study on reflectivity modulation with doping (Al and P) concentration in silicene has indicated the emergence of some strong peaks having the robust characteristic of a doped reflective surface for both polarizations of the electromagnetic (EM) field. Besides this, attempts will be made to understand the electronic properties of silicene from some simple tight-binding Hamiltonian. We also point out the importance of shape dependence and optical anisotropy properties in silicene nanodisks and establish that a zigzag trigonal possesses the maximum magnetic moment. We also suggest future directions to be explored to make the synthesis of silicene and its various derivatives viable for verification of theoretical predictions. Although this is a fairly new route, the results obtained so far from experimental and theoretical studies in understanding silicene have shown

  1. Electronic and optical studies of pulse laser deposited ZnO/NiO bilayer film

    Science.gov (United States)

    Baraskar, P.; Dar, T. A.; Choudhary, R. J.; Sen, P. K.; Sen, P.

    2016-10-01

    We report the structural, optical and electronic properties of polycrystalline ZnO and NiO thin films and amorphous ZnO/NiO bilayer film, prepared by pulsed laser deposition technique. Despite of the presence of both Zn and Ni in +2 state in the bilayer film, the grown bilayer shows no reflections (in XRD) corresponding to ZnO or NiO. The difference in crystal structure of ZnO and NiO leads to the strain in the grown bilayer film. An increase in the band gap has been observed in bilayer film which can be attributed to the amorphous nature of the structure.

  2. Electronic structure, structural and optical properties of thermally evaporated CdTe thin films

    OpenAIRE

    S Lalitha; Karazhanov, S. Zh.; Ravindran, P.; Senthilarasu, S.; Sathyamoorthy, R.; Janabergenov, J.

    2006-01-01

    Thin films of CdTe were deposited on glass substrates by thermal evaporation. From the XRD measurements itis found that the films are of zinc-blende-type structure. Transmittance, absorption, extinction, and refractive coefficients are measured. Electronic structure, band parameters and optical spectra of CdTe were calculated from ab initio studies within the LDA and LDA+U approximations. It is shown that LDA underestimates the band gap, energy levels of the Cd-4d states, s-d coupling and ban...

  3. Single shot, temporally and spatially resolved measurements of fast electron dynamics using a chirped optical probe

    Science.gov (United States)

    Green, J. S.; Murphy, C. D.; Booth, N.; Dance, R. J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Rusby, D.; Wilson, L.

    2014-03-01

    A new approach to rear surface optical probing is presented that permits multiple, time-resolved 2D measurements to be made during a single, ultra-intense ( > 1018 W cm-2) laser-plasma interaction. The diagnostic is capable of resolving rapid changes in target reflectivity which can be used to infer valuable information on fast electron transport and plasma formation at the target rear surface. Initial results from the Astra-Gemini laser are presented, with rapid radial sheath expansion together with detailed filamentary features being observed to evolve during single shots.

  4. Structural, optical, and electronic studies of wide-bandgap lead halide perovskites

    KAUST Repository

    Comin, Riccardo

    2015-01-01

    © The Royal Society of Chemistry 2015. We investigate the family of mixed Br/Cl organolead halide perovskites which enable light emission in the blue-violet region of the visible spectrum. We report the structural, optical and electronic properties of this air-stable family of perovskites, demonstrating full bandgap tunability in the 400-550 nm range and enhanced exciton strength upon Cl substitution. We complement this study by tracking the evolution of the band levels across the gap, thereby providing a foundational framework for future optoelectronic applications of these materials.

  5. A single-electron probe for buried optically active quantum dot

    Directory of Open Access Journals (Sweden)

    T. Nakaoka

    2012-09-01

    Full Text Available We present a simple method that enables both single electron transport through a self-assembled quantum dot and photon emission from the dot. The quantum dot buried in a semiconductor matrix is electrically connected with nanogap electrodes through tunneling junctions formed by a localized diffusion of the nanogap electrode metals. Coulomb blockade stability diagrams for the optically-active dot are clearly resolved at 4.2 K. The position of the quantum dot energy levels with respect to the contact Fermi level is controlled by the kind of metal atoms diffused from the nanogap electrodes.

  6. Precision enhancement in boundary element methods with application to electron optics.

    Science.gov (United States)

    Loyd, Jody S; Gregory, Don A

    2016-08-01

    A hybrid approach is presented for obtaining electric potentials for use in electron optics modeling. An initial solution from the boundary element method (BEM) is used to derive the bounding potential of a cylindrical subdomain subsequently used in a Fourier series solution. The approach combines the inherent precision of this analytic solution with the flexibility of BEM to describe practical, non-idealized systems of electrodes. The resulting lens field in the Fourier series subdomain is of higher precision, thereby allowing smaller errors in subsequent calculations of electron ray paths. The effects of aberrations are thus easier to observe in tracing non-paraxial rays. Example ray-traces through a simple, known einzel lens are given as validation of this approach.

  7. Compact X-ray free-electron laser based on an optical undulator

    Energy Technology Data Exchange (ETDEWEB)

    Bacci, A.; Maroli, C. [Sezione di Milano INFN, Via Celoria 16, 20133 Milan (Italy); Petrillo, V. [Sezione di Milano INFN, Via Celoria 16, 20133 Milan (Italy); Universita degli Studi di Milano, Via Celoria 16, 20133 Milan (Italy)], E-mail: Petrillo@mi.infn.it; Rossi, A.R.; Serafini, L. [Sezione di Milano INFN, Via Celoria 16, 20133 Milan (Italy); Tomassini, P. [Sezione di Milano INFN, Via Celoria 16, 20133 Milan (Italy); Universita degli Studi di Pisa, Via Buonarroti, 256127 Pisa (Italy)

    2008-03-21

    The interaction between a very high-brightness electron beam and a relativistically intense optical laser pulse produces X-rays via coherent Thomson back scattering with FEL collective amplification. The phenomenon is, however, very selective, so that the characteristics of both electron and laser beam must satisfy tight requirements in terms of beam current, emittance, energy spread and laser amplitude stability within the pulse. The three-dimensional equations governing the radiation phenomena have been studied in both linear and non-linear regime and solved numerically for the particularly interesting values of wavelengths of 1 A, 1 and 12 nm. The performance of the collective Thomson source has been compared with that of an equivalent static undulator. A set of scaling laws ruling the phenomenon is also presented.

  8. Channel-optical-waveguide fabrication based on electron-beam irradiation of polyimides

    Science.gov (United States)

    Maruo, Yasuko Yamada; Sasaki, Sigekuni; Tamamura, Toshiaki

    1995-02-01

    A new-channel-waveguide-fabrication process for use with polyimide is described. The new technique uses an electron-beam-induced effect to alter the refractive index of the polyimides directly. Channel waveguides with an 8- mu m-wide, 8- mu m-deep core have been fabricated on a polyimide film by the use of electron-beam irradiation. Only one kind of polyimide (6FDA/TFDB) was used in this waveguide. The difference in refractive index between the core and the cladding was approximately 0.30% for both TE-and TM-polarized incident light when the dose was 1500 mu C/cm2, which was sufficient to produce waveguides. The optical properties of the waveguide are also demonstrated.

  9. Probing the Spin-Polarized Electronic Band Structure in Monolayer Transition Metal Dichalcogenides by Optical Spectroscopy

    Science.gov (United States)

    Wang, Zefang; Zhao, Liang; Mak, Kin Fai; Shan, Jie

    2017-02-01

    We study the electronic band structure in the K/K' valleys of the Brillouin zone of monolayer WSe2 and MoSe2 by optical reflection and photoluminescence spectroscopy on dual-gated field-effect devices. Our experiment reveals the distinct spin polarization in the conduction bands of these compounds by a systematic study of the doping dependence of the A and B excitonic resonances. Electrons in the highest-energy valence band and the lowest-energy conduction band have antiparallel spins in monolayer WSe2, and parallel spins in monolayer MoSe2. The spin splitting is determined to be hundreds of meV for the valence bands and tens of meV for the conduction bands, which are in good agreement with first principles calculations. These values also suggest that both n- and p-type WSe2 and MoSe2 can be relevant for spin- and valley-based applications

  10. Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires.

    Science.gov (United States)

    Miller, Evan W; Lin, John Y; Frady, E Paxon; Steinbach, Paul A; Kristan, William B; Tsien, Roger Y

    2012-02-07

    Fluorescence imaging is an attractive method for monitoring neuronal activity. A key challenge for optically monitoring voltage is development of sensors that can give large and fast responses to changes in transmembrane potential. We now present fluorescent sensors that detect voltage changes in neurons by modulation of photo-induced electron transfer (PeT) from an electron donor through a synthetic molecular wire to a fluorophore. These dyes give bigger responses to voltage than electrochromic dyes, yet have much faster kinetics and much less added capacitance than existing sensors based on hydrophobic anions or voltage-sensitive ion channels. These features enable single-trial detection of synaptic and action potentials in cultured hippocampal neurons and intact leech ganglia. Voltage-dependent PeT should be amenable to much further optimization, but the existing probes are already valuable indicators of neuronal activity.

  11. Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.

    1998-11-08

    We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn2+ spins.

  12. Electronic structure and optical properties of the thiolate-protected Au28(SMe)20 cluster.

    Science.gov (United States)

    Knoppe, Stefan; Malola, Sami; Lehtovaara, Lauri; Bürgi, Thomas; Häkkinen, Hannu

    2013-10-10

    The recently reported crystal structure of the Au28(TBBT)20 cluster (TBBT: p-tert-butylbenzenethiolate) is analyzed with (time-dependent) density functional theory (TD-DFT). Bader charge analysis reveals a novel trimeric Au3(SR)4 binding motif. The cluster can be formulated as Au14(Au2(SR)3)4(Au3(SR)4)2. The electronic structure of the Au14(6+) core and the ligand-protected cluster were analyzed, and their stability can be explained by formation of distorted eight-electron superatoms. Optical absorption and circular dichroism (CD) spectra were calculated and compared to the experiment. Assignment of handedness of the intrinsically chiral cluster is possible.

  13. Spectral evolution of soft x-ray emission from optically thin, high electron temperature platinum plasmas

    Directory of Open Access Journals (Sweden)

    Hiroyuki Hara

    2017-08-01

    Full Text Available The soft x-ray spectra of heavy element plasmas are frequently dominated by unresolved transition array (UTA emission. We describe the spectral evolution of an intense UTA under optically thin conditions in platinum plasmas. The UTA was observed to have a peak wavelength around 4.6 nm at line-of-sight averaged electron temperatures less than 1.4 keV at electron densities of (2.5–7.5 × 1013 cm−3. The UTA spectral structure was due to emission from 4d–4f transitions in highly charged ions with average charge states of q = 20–40. A numerical simulation successfully reproduced the observed spectral behavior.

  14. Spectral evolution of soft x-ray emission from optically thin, high electron temperature platinum plasmas

    Science.gov (United States)

    Hara, Hiroyuki; Ohashi, Hayato; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Sasaki, Akira; Suzuki, Chihiro; Tamura, Naoki; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Higashiguchi, Takeshi; LHD Experiment Group

    2017-08-01

    The soft x-ray spectra of heavy element plasmas are frequently dominated by unresolved transition array (UTA) emission. We describe the spectral evolution of an intense UTA under optically thin conditions in platinum plasmas. The UTA was observed to have a peak wavelength around 4.6 nm at line-of-sight averaged electron temperatures less than 1.4 keV at electron densities of (2.5-7.5) × 1013 cm-3. The UTA spectral structure was due to emission from 4d-4f transitions in highly charged ions with average charge states of q = 20-40. A numerical simulation successfully reproduced the observed spectral behavior.

  15. Time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. (Argonne National Lab., IL (United States)); Wilke, M.D. (Los Alamos National Lab., NM (United States))

    1992-01-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatial position and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kicks are reported as a function of charge.

  16. Time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. [Argonne National Lab., IL (United States); Wilke, M.D. [Los Alamos National Lab., NM (United States)

    1992-09-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatial position and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kicks are reported as a function of charge.

  17. Further time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. (Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.); Wilke, M.D. (Los Alamos National Lab., NM (United States))

    1992-01-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 [mu]s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatialposition and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kick effects are reported as a function of charge.

  18. Further time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. [Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.; Wilke, M.D. [Los Alamos National Lab., NM (United States)

    1992-12-31

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatialposition and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kick effects are reported as a function of charge.

  19. A tiled CCD detector with 2x2 array and tapered fibre optics for electron microscopy

    CERN Document Server

    Faruqi, A R; Cattermole, D M; Stubbings, S

    2002-01-01

    Charge coupled devices (CCD)-based detectors have made a major impact on data collection in electron microscopy over the past few years. There have been a number of successful applications of CCDs in electron crystallography of two-dimensional protein crystal arrays but high-resolution imaging has been hampered by the relatively poor spatial resolution (and fewer independent pixels) compared to film. A partial solution to this problem, presented in this paper, are to design detectors with larger effective pixel sizes and with more pixels. A CCD detector with a much greater number of 'independent' pixels, achieved by tiling a 2x2 array of CCDs, each of which has 1242x1152 pixels is described here. The sensitive area of the detector, using fibre optics with a demagnification of 2.5 : 1, is 140x130 mm sup 2; the pixel size is 56 mu m square and there is a total of approx 2500x2300 pixels.

  20. Impact of Bulk Aggregation on the Electronic Structure of Streptocyanines: Implications for the Solid-State Nonlinear Optical Properties and All-Optical Switching Applications

    KAUST Repository

    Gieseking, Rebecca L.

    2014-10-16

    Polymethine dyes in dilute solutions show many of the electronic and optical properties required for all-optical switching applications. However, in the form of thin films, their aggregation and interactions with counterions do generally strongly limit their utility. Here, we present a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations to describe the bulk molecular packing of streptocyanines (taken as representative of simple polymethines) with counterions of different hardness (Cl and BPh4 ) and understand the impact on the optical properties. The accuracy of the force field we use is verified by reproducing experimental crystal parameters as well as the configurations of polymethine/counterion complexes obtained from electronic-structure calculations. The aggregation characteristics can be understood in terms of both polymethinecounterion and polymethinepolymethine interactions. The counterions are found to localize near one end of the streptocyanine backbones, and the streptocyanines form a broad range of aggregates with significant electronic couplings between neighboring molecules. As a consequence, the linear and nonlinear optical properties are substantially modified in the bulk. By providing an understanding of the relationship between the molecular interactions and the bulk optical properties, our results point to a clear strategy for designing polymethine and counterion molecular structures and optimizing the materials properties for all-optical switching applications.

  1. Access to long-term optical memories using photon echoes retrieved from electron spins in semiconductor quantum wells

    Science.gov (United States)

    Poltavtsev, S. V.; Langer, L.; Yugova, I. A.; Salewski, M.; Kapitonov, Y. V.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.

    2016-10-01

    We use spontaneous (two-pulse) and stimulated (three-pulse) photon echoes for studying the coherent evolution of optically excited ensemble of trions which are localized in semiconductor CdTe/CdMgTe quantum well. Application of transverse magnetic field leads to the Larmor precession of the resident electron spins, which shuffles optically induced polarization between optically accessible and inaccessible states. This results in several spectacular phenomena. First, magnetic field induces oscillations of spontaneous photon echo amplitude. Second, in three-pulse excitation scheme, the photon echo decay is extended by several orders of magnitude. In this study, short-lived optical excitation which is created by the first pulse is coherently transferred into a long-lived electron spin state using the second optical pulse. This coherent spin state of electron ensemble persists much longer than any optical excitation in the system, preserving information on initial optical field, which can be retrieved as a photon echo by means of third optical pulse.

  2. Effects of cation compositions on the electronic properties and optical dispersion of indium zinc tin oxide thin films by electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Denny, Yus Rama [Department of Electrical Engineering, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Seo, Soonjoo [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-806 (Korea, Republic of); Lee, Kangil; Oh, Suhk Kun [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kang, Hee Jae, E-mail: hjkang@cbu.ac.kr [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Heo, Sung; Chung, Jae Gwan; Lee, Jae Cheol [Analytical Engineering Center, Samsung Advanced Institute of Technology, Suwon 440-600 (Korea, Republic of); Tougaard, Sven [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, DK-5230 Odense M. (Denmark)

    2015-02-15

    Highlights: • REELS analysis can provide optical dispersion and electronic properties of oxide materials. • The band gap varied with In/Zn/Sn compositions and increased after annealing. • The optical properties were examined using REELS in conjunction with the Tougaard–Yubero model. • The dispersion parameters were determined by a single-oscillator Wemple–DiDomenico model. • The Zn and Sn contents play a crucial role in determining the single-oscillator constant and dispersion energy of IZTO thin films. - Abstract: The electronic properties and optical dispersion of indium zinc tin oxide (IZTO) films with different cation compositions were investigated by reflection electron energy loss spectroscopy (REELS). The REELS spectra of IZTO films revealed that the band gap varied with different Sn/Zn ratios and In content. The optical properties were examined with REELS data using Tougaard–Yubero model and the results were compared with the envelope of the transmission spectra obtained using a UV-spectrometer. The dispersion behavior of the refractive index from REELS results was studied in terms of the single-oscillator Wemple–DiDomenico model. The results showed that the different compositions of In/Zn/Sn caused a change in the dispersion parameters of IZTO thin films in contrast to the static values of refractive indices and dielectric constant which remained the same. Our work demonstrated that REELS is an efficient tool to study the optical properties of a material by obtaining the optical parameters.

  3. First principles study for the key electronic, optical and nonlinear optical properties of novel donor-acceptor chalcones.

    Science.gov (United States)

    Muhammad, Shabbir; Al-Sehemi, Abdullah G; Su, Zhongmin; Xu, Hongliang; Irfan, Ahmad; Chaudhry, Aijaz Rasool

    2017-03-01

    Using first-principle methods, several key electronic, optical and nonlinear optical properties are calculated for two recently synthesized chalcone derivatives i.e. (2E)-3-(4-methylphenyl)-1-(3-nitrophenyl)prop-2-en-1-one (comp.1) and (2E)-3-[4-(dimethylamino)phenyl]-1-(3-nitrophenyl)prop-2-en-1-one (comp.2). The calculation of dipole moment, polarizability , anisotropy of polarizability as well as second hyperpolarizability (usually considered as a signature for two photon absorption phenomenon) are performed using density functional theory methods at PBE0/6-311G** level of theory. The linear average polarizability for comp.1 and comp.2 are found to be 32.15×10(-24) and 38.76×10(-24)esu, respectively. Similarly, the second hyperpolarizability amplitudes of comp.1 and comp.2 are found to be reasonably larger mounting to 79.31×10(-36) and 181.36×10(-36)esu, respectively. The importance of donor end is determined by comparing p-methylphenyl group of comp.1 with that of N,N-dimethylaniline group of comp.2 that results a remarkable increase in its amplitude, which is ∼2 times larger as compared with that of comp.1 owing to the stronger donor-acceptor configuration of comp.2. Interestingly, a comparison of average static third-order nonlinear polarizabilities shows that amplitudes of comp.1 and comp.2 are ∼13 times and ∼29 times larger than that of para-nitroaniline (a typical standard push-pull NLO-phore) at the same PBE0/6-311G** level of theory, which indicates a real time NLO application of our titled compounds. Time dependent density functional theory (TD-DFT) calculations along with frontier molecular orbitals, density of states (DOS), second hyperpolarizability density analysis and molecular electrostatic potential (MEP) diagrams are used to trace the origin of electro-optical as well as structure property relationships. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Growth direction of oblique angle electron beam deposited silicon monoxide thin films identified by optical second-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Vejling Andersen, Søren; Lund Trolle, Mads; Pedersen, Kjeld [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark)

    2013-12-02

    Oblique angle deposited (OAD) silicon monoxide (SiO) thin films forming tilted columnar structures have been characterized by second-harmonic generation. It was found that OAD SiO leads to a rotationally anisotropic second-harmonic response, depending on the optical angle of incidence. A model for the observed dependence of the second-harmonic signal on optical angle of incidence allows extraction of the growth direction of OAD films. The optically determined growth directions show convincing agreement with cross-sectional scanning electron microscopy images. In addition to a powerful characterization tool, these results demonstrate the possibilities for designing nonlinear optical devices through SiO OAD.

  5. Ab Initio Calculation of the Electronic and Optical Excitations in Polythiophene: Effects of Intra- and Interchain Screening

    Science.gov (United States)

    van der Horst, J.-W.; Bobbert, P. A.; Michels, M. A. J.; Brocks, G.; Kelly, P. J.

    1999-11-01

    We present an ab initio calculation of the electronic and optical excitations of an isolated polythiophene chain as well as of bulk polythiophene. We use the GW approximation for the electronic self-energy and include excitonic effects by solving the electron-hole Bethe-Salpeter equation. The inclusion of interchain screening in the case of bulk polythiophene drastically reduces both the quasiparticle band gap and the exciton binding energies, but the optical gap is hardly affected. This finding is relevant for conjugated polymers in general.

  6. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media

    Science.gov (United States)

    Woodruff, Steven D.; Mcintyre, Dustin L.

    2016-03-29

    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  7. Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid

    Directory of Open Access Journals (Sweden)

    Anders Lyngvi Fougner

    2016-04-01

    Full Text Available Rapid, accurate and robust glucose measurements are needed to make a safe artificial pancreas for the treatment of diabetes mellitus type 1 and 2. The present gold standard of continuous glucose sensing, subcutaneous (SC glucose sensing, has been claimed to have slow response and poor robustness towards local tissue changes such as mechanical pressure, temperature changes, etc. The present study aimed at quantifying glucose dynamics from central circulation to intraperitoneal (IP sensor sites, as an alternative to the SC location. Intraarterial (IA and IP sensors were tested in three anaesthetized non-diabetic pigs during experiments with intravenous infusion of glucose boluses, enforcing rapid glucose level excursions in the range 70--360 mg/dL (approximately 3.8--20 mmol/L. Optical interferometric sensors were used for IA and IP measurements. A first-order dynamic model with time delay was fitted to the data after compensating for sensor dynamics. Additionally, off-the-shelf Medtronic Enlite sensors were used for illustration of SC glucose sensing. The time delay in glucose excursions from central circulation (IA to IP sensor location was found to be in the range 0--26 s (median: 8.5 s, mean: 9.7 s, SD 9.5 s, and the time constant was found to be 0.5--10.2 min (median: 4.8 min, mean: 4.7 min, SD 2.9 min. IP glucose sensing sites have a substantially faster and more distinctive response than SC sites when sensor dynamics is ignored, and the peritoneal fluid reacts even faster to changes in intravascular glucose levels than reported in previous animal studies. This study may provide a benchmark for future, rapid IP glucose sensors.

  8. The Energetic Universe: a Nobel Surprise

    Science.gov (United States)

    Kirshner, Robert P.

    2015-01-01

    he history of cosmic expansion can be accurately traced using Type Ia supernovae (SN Ia) as standard candles. Over the past 40 years, this effort has improved its precision and extended its reach in redshift. Recently, the distances to SN Ia have been measured to a precision of ~5% using luminosity information that is encoded in the shape of the supernova's rest frame optical light curve. By combining observations of supernova distances as measured from their light curves and redshifts measured from spectra, we can detect changes in the cosmic expansion rate. This empirical approach was successfully exploited by the High-Z Supernova Team and by the Supernova Cosmology Project to detect cosmic expansion and to infer the presence of dark energy. The 2011 Nobel Prize in Physics was awarded to Perlmutter, Schmidt and Riess for this discovery. The world's sample of well-observed SN Ia light curves at high redshift and low, approaching 1000 objects, is now large enough to make statistical errors due to sample size a thing of the past. Systematic errors are now the challenge. To learn the properties of dark energy and determine, for example, whether it has an equation-of-state that is different from the cosmological constant demands higher precision and better accuracy. The largest systematic uncertainties come from light curve fitters, photometric calibration errors, and from uncertain knowledge of the scattering properties of dust along the line of sight. Efforts to use SN Ia spectra as luminosity indicators have had some success, but have not yet produced a big step forward. Fortunately, observations of SN Ia in the near infrared (NIR), from 1 to 2 microns, offer a very promising path to better knowledge of the Hubble constant and to improved constraints on dark energy. In the NIR, SN Ia are better standard candles and the effects of dust absorption are smaller. We have begun an HST program dubbed RAISIN (SN IA in the IR) to tighten our grip on dark energy properties

  9. Electronic and optical properties of dye-sensitized TiO₂ interfaces.

    Science.gov (United States)

    Pastore, Mariachiara; Selloni, Annabella; Fantacci, Simona; De Angelis, Filippo

    2014-01-01

    Dye-sensitized solar cells (DSCs) represent a promising approach to the direct conversion of sunlight to electrical energy at low cost and high efficiency. DSCs are based on a film of anatase TiO₂ nanoparticles covered by adsorbed molecular dyes and immersed in a liquid redox electrolyte. Upon photoexcitation of the chemisorbed dye, electrons are injected into the TiO₂ conduction band and can travel across the nanostructured film to reach the counter-electrode, while the oxidized dye is regenerated by the redox electrolyte. In this review we present a summary of recent computational studies of the electronic and optical properties of dye-sensitized TiO2 interfaces, with the aim of providing the basic understanding of the operation principles of DSCs and establishing the conceptual basis for their design and optimization.We start with a discussion of isolated dyes in solution, focusing on the dye's atomic structure, ground and excited state oxidation potentials, and optical absorption spectra. We examine both Ru(II)-polypyridyl complexes and organic "push-pull" dyes with a D-π-A structure, where the donor group (D) is an electron-rich unit, linked through a conjugated linker (π) to the electron-acceptor group (A). We show that a properly calibrated computational approach based on Density Functional Theory (DFT) combined with Time Dependent DFT (TD-DFT) can provide a good description of both the absorption spectra and ground and excited state oxidation potential values of the Ru(II) complexes. On the other hand, organic push-pull dyes are not well described by the standard DFT/TD-DFT approach. For these dyes, an excellent description of the electronic structure in gas phase can be obtained by the many body perturbation theory GW method, which has, however, a much higher computational cost.We next consider interacting dye/semiconductor systems. Key properties are the dye adsorption structure onto the semiconductor, the nature and localization of the dye

  10. The Influence of Negative Surprise on Hedonic Adaptation

    Directory of Open Access Journals (Sweden)

    Ana Paula Kieling

    2016-01-01

    Full Text Available After some time using a product or service, the consumer tends to feel less pleasure with consumption. This reduction of pleasure is known as hedonic adaptation. One of the emotions that interfere in this process is surprise. Based on two experiments, we suggest that negative surprise – differently to positive – influences with the level of pleasure foreseen and experienced by the consumer. Study 1 analyzes the influence of negative (vs. positive surprise on the consumer’s post-purchase hedonic adaptation expectation. Results showed that negative surprise influences the intensity of adaptation, augmenting its strength. Study 2 verifies the influence of negative (vs positive surprise over hedonic adaptation. The findings suggested that negative surprise makes adaptation happen more intensively and faster as time goes by, which brings consequences to companies and consumers in the post-purchase process, such as satisfaction and loyalty.

  11. Analysis of the structural, electronic and optic properties of Ni doped MgSiP2 semiconductor chalcopyrite compound

    Science.gov (United States)

    Kocak, Belgin; Ciftci, Yasemin Oztekin

    2016-03-01

    The structural, electronic band structure and optic properties of the Ni doped MgSiP2 chalcopyrite compound have been performed by using first-principles method in the density functional theory (DFT) as implemented in Vienna Ab-initio Simulation Package (VASP). The generalized gradient approximation (GGA) in the scheme of Perdew, Burke and Ernzerhof (PBE) is used for the exchange and correlation functional. The present lattice constant (a) follows generally the Vegard's law. The electronic band structure, total and partial density of states (DOS and PDOS) are calculated. We present data for the frequency dependence of imaginary and real parts of dielectric functions of Ni doped MgSiP2. For further investigation of the optical properties the reflectivity, refractive index, extinction coefficient and electron energy loss function are also predicted. Our obtained results indicate that the lattice constants, electronic band structure and optical properties of this compound are dependent on the substitution concentration of Ni.

  12. Comparison of Electronic and Optical Properties of GaN Monolayer and Bulk Structure: a First Principle Study

    Science.gov (United States)

    Imran, Muhammad; Hussain, Fayyaz; Rashid, Muhammad; Ullah, Hafeez; Sattar, Atif; Iqbal, Faisal; Ahmad, Ejaz

    2016-03-01

    The semiconducting two-dimensional (2D) architectures materials have potential applications in electronics and optics. The design and search of new 2D materials have attracted extensive attention recently. In this study, first principle calculation has been done on 2D gallium nitride (GaN) monolayer with respect to its formation and binding energies. The electronic and optical properties are also investigated. It is found that the single isolated GaN sheet is forming mainly ionic GaN bonds despite a slightly weaker GaN interaction as compared with its bulk counterpart. The dielectric constant value of 2D GaN is smaller as compared to 3D GaN due to less effective electronic screening effect in the layer, which is accompanied by lesser optical adsorption range and suggested to be a promising candidate in electronic and optoelectronic devices.

  13. Studies of thin films and surfaces with optical harmonic generation and electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wilk, Dieter Emre [Univ. of California, Berkeley, CA (United States)

    1996-01-01

    Optical second harmonic generation (SHG) and sum frequency generation (SFG) were used to study C60 thin solid films (low energy ED forbidden electronic excitations), and electron spectroscopy was used to study organic overlayers (xylenes) on Pt(111). Theory of SHG from a thin film is described in terms of surface and bulk contributions as well as local and nonlocal contributions to the optical nonlinearities. (1)In situ SHG data on C60 films during UHV film growth can be described in terms of only nonlocal contributions to both surface and bulk nonlinear susceptibilities. Microscopic origin of SHG response is discussed in terms of electric quadrupole and ED transitions of C60. (2)Adsorption and thermal decomposition of ortho- and para-xylene on Pt(111) is studied using HREELS, LEED, AES, and thermal desorption spectroscopy. We have observed preferential decomposition of the methyl groups which leads to distinct decomposition pathways for ortho- and para-xylene on Pt(111).

  14. The study of electronic structures and optical properties of Al-doped GaN

    Energy Technology Data Exchange (ETDEWEB)

    Li Enling; Hou Liping; Liu Mancang; Xi Meng; Wang Xiqiang; Dai Yuanbin [Sciences School, Xi' an University of Technology, Xi' an, China 710054 (China); Li Lisha, E-mail: lienling@xaut.edu.cn, E-mail: ping4917305@163.com [Physics, Northwest University, Xi' an, China 710068 (China)

    2011-02-01

    The electronic structures and optical properties of undoped and Al-doped GaN (Al{sub x}Ga{sub 1-x}N, x=0.0625, 0.125, 0.25) have been studied based on generalized gradient approximation (GGA) method of density functional theory (DFT). The differences of the electronic structures and optical properties of undoped and Al-doped GaN have been discussed in detail. The result shows: according to total density of state of undoped and Al-doped GaN, the conduction band becomes width and moves to high energy level with gradual increase concentration of Al impurity. Impurity energy band isn't found in energy band structures of Al{sub x}Ga{sub 1-x}N, the same as energy band structures of undoped GaN, but the band gaps gradually become wide with increase of Al impurity. Absorption spectra of undoped and Al-doped GaN of main absorption peak moves to high energy level with increase of Al impurity.

  15. Structural, electronic, linear, and nonlinear optical properties of ZnCdTe{sub 2} chalcopyrite

    Energy Technology Data Exchange (ETDEWEB)

    Ouahrani, Tarik [Laboratoire de Physique Theorique, Universite de Tlemcen, B.P. 230, Tlemcen 13000 (Algeria); Reshak, Ali H. [Institute of Physical Biology, South Bohemia University, Nove Hrady 37333 (Czech Republic); School of Microelectronic Engineering, University of Malaysia Perlis (UniMAP), Block A, Kompleks Pusat Pengajian, 02600 Arau Jejawi, Perlis (Malaysia); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique, Universite de Mascara, Mascara 29000 (Algeria); Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Baltache, H.; Amrani, B. [Laboratoire de Physique Quantique et de Modelisation Mathematique, Universite de Mascara, Mascara 29000 (Algeria); Bouhemadou, A. [Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Faculty of Sciences, Department of Physics, University of Setif, Setif 19000 (Algeria)

    2011-03-15

    We report results of first-principles density functional calculations using the full-potential linearized augmented plane wave method. The generalized gradient approximation (GGA) and the Engel-Vosko-GGA (EV-GGA) formalism were used for the exchange-correlation energy to calculate the structural, electronic, linear, and nonlinear optical properties of the chalcopyrite ZnCdTe{sub 2} compound. The valence band maximum and the conduction band minimum are located at the {gamma}-point, resulting in a direct band gap of about 0.71 eV for GGA and 1.29 eV for EV-GGA. The results of bulk properties, such as lattice parameters (a, c, and u), bulk modulus B, and its pressure derivative B' are evaluated. The optical properties of this compound, namely the real and the imaginary parts of the dielectric function, reflectivity, and refractive index, show a considerable anisotropy as a consequence ZnCdTe{sub 2} posseses a strong birefringence. In addition, the extinction coefficient, the electron energy loss function, and the nonlinear susceptibility are calculated and their spectra are analyzed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Mechanical, electronic, optical, thermodynamic properties and superconductivity of ScGa{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Parvin, F. [Department of Physics, Rajshahi University, Rajshahi (Bangladesh); Hossain, M.A. [Department of Physics, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902 (Bangladesh); Ali, M.S. [Department of Physics, Rajshahi University, Rajshahi (Bangladesh); Islam, A.K.M.A., E-mail: azi46@ru.ac.bd [International Islamic University Chittagong, 154/A College Road, Chittagong 4203 (Bangladesh)

    2015-01-15

    The rare occurrence of type-I superconductivity in binary system ScGa{sub 3} has experimentally been shown recently. In the present paper we study the electronic, optical, thermodynamic properties and some aspects of superconductivity of this compound using first-principles calculations. The mechanical properties like elastic constants, bulk modulus, shear modulus, Pugh's ductility index, Young's modulus, Poisson's ratio, elastic anisotropy factor, Peierls stress are calculated for the first time. The material is anisotropic and brittle. Electronic band structure, density of states, Fermi surfaces and bonding nature have also been studied. The optical functions are estimated and discussed for the first time. The high reflectivity is found in the ultraviolet regions up to ∼13 eV and thus ScGa{sub 3} can serve as a possible shielding material for ultraviolet radiation. Thermal effects on some macroscopic properties of ScGa{sub 3} are predicted using the quasi-harmonic Debye model and phonon approximation in the temperature and hydrostatic pressure in the ranges of 0–1000 K and 0–40 GPa, respectively. The calculated electron–phonon coupling constant λ=0.52 yields T{sub c}=2.6 K, which is in very good agreement with the experimentally observed value. The value of the coupling constant and the Ginzburg–Landau parameter (κ=0.09) indicate that the compound is a weak-coupled type-I rare binary BCS superconductor.

  17. Study of fuzzy PID controller for velocity circuit of optical-electronic theodolite

    Science.gov (United States)

    Li, GengXin; Yang, XiaoJun; He, SaiXian

    2017-02-01

    Two-axis stabilized turntable is an important part of optical-electronic theodolite, it carries various of measuring instruments. In order to improve the response speed of the optical-electronic theodolite when tracking high speed target. In the same time, improve the stability and precision when tracking low speed target. The traditional servo controller is double close-loop structure. On the basis of traditional structure, we use the fuzzy control theory to design the servo control speed loop adjuster as a fuzzy PID controller, and the position loop is designed as a traditional first order adjuster. We introduce the theory and characteristics of PID control and fuzzy control, and discussed the structure of the speed loop fussy controller and the tuning method of the PID parameters. The fuzzy PID controller was studied with simulation on the MATLAB/Simulink platform, the performance indexes and the anti-jamming abilities of the fussy PID controller and the traditional PID controller were compared. The experiment results show that the fussy PID controller has the ability of parameter self-tuning, and its tacking ability is much better than the traditional PID controller.

  18. Electronic and optical properties of the narrowest armchair graphene nanoribbons studied by density functional methods

    CERN Document Server

    Yeh, Chia-Nan; Chai, Jeng-Da

    2016-01-01

    In the present study, a series of planar poly(p-phenylene) (PPP) oligomers with n phenyl rings (n = 1 - 20), designated as n-PP, are taken as finite-size models of the narrowest armchair graphene nanoribbons with hydrogen passivation. The singlet-triplet energy gap, vertical ionization potential, vertical electron affinity, fundamental gap, optical gap, and exciton binding energy of n-PP are calculated using Kohn-Sham density functional theory and time-dependent density functional theory with various exchange-correlation density functionals. The ground state of n-PP is shown to be singlet for all the chain lengths studied. In contrast to the lowest singlet state (i.e., the ground state), the lowest triplet state and the ground states of the cation and anion of n-PP are found to exhibit some multi-reference character. Overall, the electronic and optical properties of n-PP obtained from the omegaB97 and omegaB97X functionals are in excellent agreement with the available experimental data.

  19. Electronic and optical properties of AlN under pressure: DFT calculations

    Science.gov (United States)

    Javaheri, Sahar; Boochani, Arash; Babaeipour, Manuchehr; Naderi, Sirvan

    2017-01-01

    Structural, elastic, optical, and electronic properties of wurtzite (WZ), zinc-blende (ZB), and rocksalt (RS) structures of AlN are investigated using the first-principles method and within the framework of density functional theory (DFT). Lattice parameters, bulk modulus, shear modulus, Young’s modulus, and elastic constants are calculated at zero pressure and compared with other experimental and theoretical results. The wurtzite and zinc-blende structures have a transition to rocksalt phase at the pressures of 12.7 GPa and 14 GPa, respectively. The electronic properties are calculated using both GGA and EV-GGA approximations; the obtained results by EV-GGA approximation are in much better agreement with the available experimental data. The RS phase has the largest bandgap with an amount of 4.98 eV; by increasing pressure, this amount is also increased. The optical properties like dielectric function, energy loss function, refractive index, and extinction coefficient are calculated under pressure using GGA approximation. Inter-band transitions are investigated using the peaks of imaginary part of the dielectric function and these transitions mainly occur from N-2p to Al-3p levels. The results show that the RS structure has more different properties than the WZ and ZB structures.

  20. Electronic and Optical Properties of Substitutional and Interstitial Si-Doped ZnO

    Directory of Open Access Journals (Sweden)

    Tsu-Ping Shen

    2012-10-01

    Full Text Available This study investigates the formation energies, electronic structures, and optical properties of pure and Si-doped ZnO using density functional theory and the Hubbard U (DFT + Ud + Up method. The difference in lattice constants between calculated results and experimental measurements is within 1%, and the calculated band gap of pure ZnO is in excellent agreement with experimental values. This study considers three possible Si-doped ZnO structures including the substitution of Si for Zn (Sis(Zn, interstitial Si in an octahedron (Sii(oct, and interstitial Si in a tetrahedron (Sii(tet. Results show that the formation energy of Sis(Zn defects is the lowest, indicating that Sis(Zn defects are formed more easily than Sii(oct and Sii(tet. All three of the Si defect models exhibited n-type conductive characteristics, and except for the Sii(oct mode the optical band gap expanded beyond that of pure ZnO. In both the Sii(oct and Sii(tet models, a heavier effective mass decreased carrier mobility, and deeper donor states significantly decreased transmittance. Therefore, the existence of interestitial Si atoms was bad for the electric and optical properties of ZnO.

  1. Electronic band structure and optical properties of the cubic, Sc, Y and La hydride systems

    Energy Technology Data Exchange (ETDEWEB)

    Peterman, D.J.

    1980-01-01

    Electronic band structure calculations are used to interpret the optical spectra of the cubic Sc, Y and La hydride systems. Self-consistent band calculations of ScH/sub 2/ and YH/sub 2/ were carried out. The respective joint densities of states are computed and compared to the dielectric functions determined from the optical measurements. Additional calculations were performed in which the Fermi level or band gap energies are rigidly shifted by a small energy increment. These calculations are then used to simulate the derivative structure in thermomodulation spectra and relate the origin of experimental interband features to the calculated energy bands. While good systematic agreement is obtained for several spectral features, the origin of low-energy interband transitions in YH/sub 2/ cannot be explained by these calculated bands. A lattice-size-dependent premature occupation of octahedral sites by hydrogen atoms in the fcc metal lattice is suggested to account for this discrepancy. Various non-self-consistent calculations are used to examine the effect of such a premature occupation. Measurements of the optical absorptivity of LaH/sub x/ with 1.6 < x < 2.9 are presented which, as expected, indicate a more premature occupation of the octahedral sites in the larger LaH/sub 2/ lattice. These experimental results also suggest that, in contrast to recent calculations, LaH/sub 3/ is a small-band-gap semiconductor.

  2. Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation.

    Science.gov (United States)

    Tekavec, Patrick F; Lott, Geoffrey A; Marcus, Andrew H

    2007-12-07

    Two-dimensional electronic coherence spectroscopy (ECS) is an important method to study the coupling between distinct optical modes of a material system. Such studies often involve excitation using a sequence of phased ultrashort laser pulses. In conventional approaches, the delays between pulse temporal envelopes must be precisely monitored or maintained. Here, we introduce a new experimental scheme for phase-selective nonlinear ECS, which combines acousto-optic phase modulation with ultrashort laser excitation to produce intensity modulated nonlinear fluorescence signals. We isolate specific nonlinear signal contributions by synchronous detection, with respect to appropriately constructed references. Our method effectively decouples the relative temporal phases from the pulse envelopes of a collinear train of four sequential pulses. We thus achieve a robust and high signal-to-noise scheme for phase-selective ECS to investigate the resonant nonlinear optical response of photoluminescent systems. We demonstrate the validity of our method using a model quantum three-level system-atomic Rb vapor. Moreover, we show how our measurements determine the resonant complex-valued third-order susceptibility.

  3. Single-shot electron bunch length measurements using a spatial electro-optical autocorrelation interferometer.

    Science.gov (United States)

    Sütterlin, Daniel; Erni, Daniel; Schlott, Volker; Sigg, Hans; Jäckel, Heinz; Murk, Axel

    2010-10-01

    A spatial, electro-optical autocorrelation (EOA) interferometer using the vertically polarized lobes of coherent transition radiation (CTR) has been developed as a single-shot electron bunch length monitor at an optical beam port downstream the 100 MeV preinjector LINAC of the Swiss Light Source. This EOA monitor combines the advantages of step-scan interferometers (high temporal resolution) [D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006) and T. Takahashi and K. Takami, Infrared Phys. Technol. 51, 363 (2008)] and terahertz-gating technologies [U. Schmidhammer et al., Appl. Phys. B: Lasers Opt. 94, 95 (2009) and B. Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009)] (fast response), providing the possibility to tune the accelerator with an online bunch length diagnostics. While a proof of principle of the spatial interferometer was achieved by step-scan measurements with far-infrared detectors, the single-shot capability of the monitor has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with fairly long (500 ps) neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pulses in a ZnTe crystal. In single-shot operation, variations of the bunch length between 1.5 and 4 ps due to different phase settings of the LINAC bunching cavities have been measured with subpicosecond time resolution.

  4. Combination of optical and electronic logic gates for error correction in multipath differential demodulation.

    Science.gov (United States)

    Lize, Yannick K; Christen, Louis; Nazarathy, Moshe; Nuccio, Scott; Wu, Xiaoxia; Willner, Alan E; Kashyap, Raman

    2007-05-28

    We present an optical multipath error correction technique for differentially encoded modulation formats such as differential-phase-shift-keying (DPSK) and differential polarization shift keying (DPolSK) for fiber-based and free-space communication. This multipath error correction method combines optical and electronic logic gates. The scheme can easily be implemented using commercially available interferometers and high speed logic gates and does not require any data overhead therefore does not affect the effective bandwidth of the transmitted data. It is not merely compatible but also complementary to error correction codes commonly used in optical transmission systems such as forward-error-correction (FEC). The technique consists of separating the demodulation at the receiver in multiple paths. Each path consists of a Mach-Zehnder interferometer with a different integer bit delay used in each path. Some basic logic operations follow and the three paths are compared using a simple majority vote algorithm. Experimental results show that the scheme improves receiver sensitivity by 1.5 dB at BER of 10(-3),in back-to-back configuration. Numerical results indicate a 1.6 dB improvement in the presence of Chromatic Dispersion for a 25% increase in tolerance for a 3dB penalty from +/-1220 ps/nm to +/-1520 ps/nm. and a 0.35 dB improvement for back-to-back operation.

  5. Development of an optical character recognition pipeline for handwritten form fields from an electronic health record.

    Science.gov (United States)

    Rasmussen, Luke V; Peissig, Peggy L; McCarty, Catherine A; Starren, Justin

    2012-06-01

    Although the penetration of electronic health records is increasing rapidly, much of the historical medical record is only available in handwritten notes and forms, which require labor-intensive, human chart abstraction for some clinical research. The few previous studies on automated extraction of data from these handwritten notes have focused on monolithic, custom-developed recognition systems or third-party systems that require proprietary forms. We present an optical character recognition processing pipeline, which leverages the capabilities of existing third-party optical character recognition engines, and provides the flexibility offered by a modular custom-developed system. The system was configured and run on a selected set of form fields extracted from a corpus of handwritten ophthalmology forms. The processing pipeline allowed multiple configurations to be run, with the optimal configuration consisting of the Nuance and LEADTOOLS engines running in parallel with a positive predictive value of 94.6% and a sensitivity of 13.5%. While limitations exist, preliminary experience from this project yielded insights on the generalizability and applicability of integrating multiple, inexpensive general-purpose third-party optical character recognition engines in a modular pipeline.

  6. Electron Spin Resonance and optical absorption spectroscopic studies of manganese centers in aluminium lead borate glasses

    Science.gov (United States)

    SivaRamaiah, G.; LakshmanaRao, J.

    2012-12-01

    Electron Spin Resonance (ESR) and optical absorption studies of 5Al2O3 + 75H3BO3 + (20-x)PbO + xMnSO4 (where x = 0.5, 1,1.5 and 2 mol% of MnSO4) glasses at room temperature have been studied. The ESR spectrum of all the glasses exhibits resonance signals with effective isotropic g values at ≈2.0, 3.3 and 4.3. The ESR resonance signal at isotropic g ≈ 2.0 has been attributed to Mn2+ centers in an octahedral symmetry. The ESR resonance signals at isotropic g ≈ 3.3 and 4.3 have been attributed to the rhombic symmetry of the Mn2+ ions. The zero-field splitting parameter (zfs) has been calculated from the intensities of the allowed hyperfine lines. The optical absorption spectrum exhibits an intense band in the visible region and it has been attributed to 5Eg → 5T2g transition of Mn3+centers in an octahedral environment. The optical band gap and the Urbach energies have been calculated from the ultraviolet absorption edges.

  7. Microscopic kinetic analysis of space-charge induced optical microbunching in a relativistic electron beam

    Directory of Open Access Journals (Sweden)

    Agostino Marinelli

    2010-11-01

    Full Text Available Longitudinal space-charge forces from density fluctuations generated by shot noise can be a major source of microbunching instability in relativistic high brightness electron beams. The gain in microbunching due to this effect is broadband, extending at least up to optical frequencies, where the induced structure on the beam distribution gives rise to effects such as coherent optical transition radiation. In the high-frequency regime, theoretical and computational analyses of microbunching formation require a full three-dimensional treatment. In this paper we address the problem of space-charge induced optical microbunching formation in the high-frequency limit when transverse thermal motion due to finite emittance is included for the first time. We derive an analytical description of this process based on the beam’s plasma dielectric function. We discuss the effect of transverse temperature on the angular distribution of microbunching gain and its connection to the physics of Landau damping in longitudinal plasma oscillations. Application of the theory to a relevant experimental scenario is discussed. The analytical results obtained are then compared to the predictions arising from high resolution three-dimensional molecular dynamics simulations.

  8. Electronic, elastic, acoustic and optical properties of cubic TiO{sub 2}: A DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Tariq, E-mail: tariq_mahmood78@hotmail.com [Research Center of Materials Science, School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Centre for High Energy Physics, University of the Punjab, Lahore 54590 (Pakistan); Cao, Chuanbao, E-mail: cbcao@bit.edu.cn [Research Center of Materials Science, School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Tahir, Muhammad; Idrees, Faryal [Research Center of Materials Science, School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Ahmed, Maqsood [Centre for High Energy Physics, University of the Punjab, Lahore 54590 (Pakistan); Tanveer, M.; Aslam, Imran; Usman, Zahid; Ali, Zulfiqar; Hussain, Sajad [Research Center of Materials Science, School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2013-07-01

    The electronic, elastic, acoustic and optical properties of cubic phases TiO{sub 2} fluorite and pyrite are investigated using the first principles calculations. We have employed five different exchange–correlation functions within the local density and generalized gradient approximations using the ultrasoft plane wave pseudopotential method. The calculated band structures of cubic-TiO{sub 2} elucidate that the TiO{sub 2} fluorite and pyrite are direct and indirect semiconductors in contrast to the previous findings. From our studied properties such as bulk and shear moduli, elastic constants C{sub 44} and Debye temperature for TiO{sub 2} fluorite and pyrite, we infer that both the cubic phases are not superhard materials and the pyrite phase is harder than fluorite. The longitudinal and transversal acoustic wave speeds for both phases in the directions [100], [110] and [111] are determined using the pre-calculated elastic constants. In addition, we also calculate the optical properties such as dielectric function, absorption spectrum, refractive index and energy loss function using the pre-optimized structure. On the observation of optical properties TiO{sub 2} fluorite phase turn out to be more photocatalytic than pyrite.

  9. Electronic and optical response of functionalized Ru(II) complexes: joint theoretical and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kilina, Svetlana [Los Alamos National Laboratory; Tretiak, Sergei [Los Alamos National Laboratory; Sykora, Milan [Los Alamos National Laboratory; Albert, Victor [UNIV OF FLORIDA; Badaeva, Ekaterina [UNIV OF WASHINGTON; Koposov, Alexey [UNIV OF WASHINGTON

    2008-01-01

    New photovoltaic and photocatalysis applications have been recently proposed based on the hybrid Ru(II)-bipyridine-complex/semiconductor quantum dot systems. In order to attach the Ru(II) complex to the surface of a semiconductor, a linking bridge -- a carboxyl group -- needs to be added to one or two of the 2,2'-bipyridine (bpy) ligands. Such changes in the ligand structure affect electronic and optical properties and, consequently, the charge transfer reactivity of Ru(II)-systems. In this study, we analyze the effects brought by functionalization of bipyridine ligands with the methyl, carboxyl, and carboxilate groups on the electronic structure and optical response of the [Ru(bpy){sub 3}]{sup 2+} complex. First principle calculations based on density functional theory (DFT) and time dependent DFT (TDDFT) are used to simulate the ground and excited-state properties, respectively, of functionalized Ru-complexes in the gas phase and acetonitrile solution. In addition, an effective Frenkel exciton model is used to explain the optical activity and splitting patterns of the low-energy excited states in all molecules. All theoretical results nicely complement and allow for detailed interpretation of experimental absorption spectra of Ru-complexes that have been done in parallel with our theoretical investigations. We found that the carboxyl group breaks the degeneracy of two low-energy optically bright excited states and red-shifts the absorption spectrum, while leaves ionization and affinity energies of complexes almost unchanged. Experimental studies show that deprotonation of the carboxyl group in the Ru-complexes results in a slight blue shift and decrease of oscillator strengths of the low energy absorption peaks. Comparison of experimental and theoretical linear response spectra of deprotonated complexes demonstrate strong agreement if the theoretical calculations are performed with the addition of a dielectric continuum model. A polar solvent is found to

  10. Effects of Surprisal and Locality on Danish Sentence Processing

    DEFF Research Database (Denmark)

    Balling, Laura Winther; Kizach, Johannes

    2017-01-01

    An eye-tracking experiment in Danish investigates two dominant accounts of sentence processing: locality-based theories that predict a processing advantage for sentences where the distance between the major syntactic heads is minimized, and the surprisal theory which predicts that processing time...... constructions with two postverbal NP-objects. An eye-tracking experiment showed a clear advantage for local syntactic relations, with only a marginal effect of lexicalised surprisal and no effect of syntactic surprisal. We conclude that surprisal has a relatively marginal effect, which may be clearest for verbs...

  11. Electronic theoretical study of the influences of O adsorption on the electronic structure and optical properties of graphene

    Science.gov (United States)

    Shuang, Zhou; Guili, Liu; Dazhi, Fan

    2017-02-01

    The electronic structure and optical properties of adsorbing O atoms on graphene with different O coverage are researched using the density functional theory based upon the first-principle study to obtain further insight into properties of graphene. The adsorption energies, band structures, the density of states, light absorption coefficient and reflectivity of each system are calculated theoretically after optimizing structures of each system with different O coverage. Our calculations show that adsorption of O atoms on graphene increases the bond length of C-C which adjacent to the O atoms. When the O coverage is 9.4%, the adsorption energy (3.91 eV) is the maximum, which only increases about 1.6% higher than that of 3.1% O coverage. We find that adsorbed O atoms on pristine graphene opens up indirect gap of about 0.493-0.952 eV. Adsorbing O atoms make pristine graphene from metal into a semiconductor. When the O coverage is 9.4%, the band gap (0.952 eV) is the maximum. Comparing with pristine graphene, we find the density of states at Fermi level of O atoms adsorbing on graphene with different coverage are significantly increased. We also find that light absorption coefficient and reflectivity peaks are significantly reduced, and the larger the coverage, the smaller the absorption coefficient and reflectivity peaks are. And the blue shift phenomenon appears.

  12. Electronic theoretical study of the influences of O adsorption on the electronic structure and optical properties of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Shuang, Zhou; Guili, Liu, E-mail: LGL63@sina.cn; Dazhi, Fan

    2017-02-01

    The electronic structure and optical properties of adsorbing O atoms on graphene with different O coverage are researched using the density functional theory based upon the first-principle study to obtain further insight into properties of graphene. The adsorption energies, band structures, the density of states, light absorption coefficient and reflectivity of each system are calculated theoretically after optimizing structures of each system with different O coverage. Our calculations show that adsorption of O atoms on graphene increases the bond length of C-C which adjacent to the O atoms. When the O coverage is 9.4%, the adsorption energy (3.91 eV) is the maximum, which only increases about 1.6% higher than that of 3.1% O coverage. We find that adsorbed O atoms on pristine graphene opens up indirect gap of about 0.493–0.952 eV. Adsorbing O atoms make pristine graphene from metal into a semiconductor. When the O coverage is 9.4%, the band gap (0.952 eV) is the maximum. Comparing with pristine graphene, we find the density of states at Fermi level of O atoms adsorbing on graphene with different coverage are significantly increased. We also find that light absorption coefficient and reflectivity peaks are significantly reduced, and the larger the coverage, the smaller the absorption coefficient and reflectivity peaks are. And the blue shift phenomenon appears.

  13. Electronic excitation induced modifications of optical and morphological properties of PCBM thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, T. [Department of Physics and Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017 (India); Singhal, R., E-mail: rsinghal.phy@mnit.ac.in [Department of Physics and Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017 (India); Vishnoi, R. [Department of Physics and Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017 (India); Department of Physics, Vardhman (P.G.) College, Bijnor 246701, U.P. (India); Sharma, P. [Department of Physics and Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017 (India); Patra, A.; Chand, S. [National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Lakshmi, G.B.V.S. [Inter University Accelerator Centre, Post Box No. 10502, New Delhi 110067 (India); Biswas, S.K. [Department of Metallurgical and Materials Engineering, Malaviya National Institute of Technology, Jaipur 302017 (India)

    2016-07-15

    Highlights: • Spin casted PCBM thin films are irradiated by 90 MeV Ni{sup 7+} ion beam. • The decrease in band gap was found after irradiation. • There is a decomposition of molecular bond due to ion irradiation. • Roughness is also found to be dependent on incident ion fluence. - Abstract: Phenyl C{sub 61} butyric acid methyl ester (PCBM) is a fullerene derivative and most commonly used in organic photovoltaic devices both as electron acceptor and transporting material due to high electron mobility. PCBM is easy to spin caste on some substrate as it is soluble in chlorobenzene. In this study, the spin coated thin films of PCBM (on two different substrate, glass and double sided silicon) were irradiated using 90 MeV Ni{sup 7+} swift heavy ion beam at low fluences ranging from 1 × 10{sup 9} to 1 × 10{sup 11} ions/cm{sup 2} to study the effect of ion beam irradiation. The pristine and irradiated PCBM thin films were characterized by UV–visible absorption spectroscopy and fourier transform infrared spectroscopy (FTIR) to investigate the optical properties before and after irradiation. These thin films were further analyzed using atomic force microscopy (AFM) to investigate the morphological modifications which are induced by energetic ions. The variation in optical band gap after irradiation was measured using Tauc’s relation from UV–visible absorption spectra. A considerable change was observed with increasing fluence in optical band gap of irradiated thin films of PCBM with respect to the pristine film. The decrease in FTIR band intensity of C{sub 60} cage reveals the polymerization reaction due to high energy ion impact. The roughness is also found to be dependent on incident fluences. This study throws light for the application of PCBM in organic solar cells in form of ion irradiation induced nanowires of PCBM for efficient charge carrier transportation in active layer.

  14. Multisectional linear ion trap and novel loading method for optical spectroscopy of electron and nuclear transitions.

    Science.gov (United States)

    Sysoev, Alexey A; Troyan, Victor I; Borisyuk, Peter V; Krasavin, Andrey V; Vasiliev, Oleg S; Palchikov, Vitaly G; Avdeev, Ivan A; Chernyshev, Denis M; Poteshin, Sergey S

    2015-01-01

    There is a growing need for the development of atomic and nuclear frequency standards because of the important contribution of methods for precision time and frequency measurements to the development of fundamental science, technology, and the economy. It is also conditioned by their potential use in optical clocks and quantum logic applications. It is especially important to develop a universal method that could allow one to use ions of most elements effectively (including ones that are not easily evaporated) proposed for the above-mentioned applications. A linear quadrupole ion trap for the optical spectroscopy of electron and nuclear transitions has been developed and evaluated experimentally. An ion source construction is based on an ultra-high vacuum evaporator in which a metal sample is subjected to an electron beam of energy up to 1 keV, resulting in the appearance of gaseous atoms and ions of various charge state. The linear ion trap consists of five successive quadrupole sections including an entrance quadrupole section, quadrupole mass filter, quadrupole ion guide, ion-trap section, and exit quadrupole section. The same radiofrequency but a different direct current voltage feeds the quadrupole sections. The instrument allows the mass and energy selected trapping of ions from ion beams of various intensities and their localization in the area of laser irradiation. The preliminary results presented show that the proposed instrument and methods allow one to produce effectively up to triply charged thorium ions as well as to trap ions for future spectroscopic study. The instrument is proposed for future use in optical clocks and quantum logic application development.

  15. Electronic excitation induced modifications of optical and morphological properties of PCBM thin films

    Science.gov (United States)

    Sharma, T.; Singhal, R.; Vishnoi, R.; Sharma, P.; Patra, A.; Chand, S.; Lakshmi, G. B. V. S.; Biswas, S. K.

    2016-07-01

    Phenyl C61 butyric acid methyl ester (PCBM) is a fullerene derivative and most commonly used in organic photovoltaic devices both as electron acceptor and transporting material due to high electron mobility. PCBM is easy to spin caste on some substrate as it is soluble in chlorobenzene. In this study, the spin coated thin films of PCBM (on two different substrate, glass and double sided silicon) were irradiated using 90 MeV Ni7+ swift heavy ion beam at low fluences ranging from 1 × 109 to 1 × 1011 ions/cm2 to study the effect of ion beam irradiation. The pristine and irradiated PCBM thin films were characterized by UV-visible absorption spectroscopy and fourier transform infrared spectroscopy (FTIR) to investigate the optical properties before and after irradiation. These thin films were further analyzed using atomic force microscopy (AFM) to investigate the morphological modifications which are induced by energetic ions. The variation in optical band gap after irradiation was measured using Tauc's relation from UV-visible absorption spectra. A considerable change was observed with increasing fluence in optical band gap of irradiated thin films of PCBM with respect to the pristine film. The decrease in FTIR band intensity of C60 cage reveals the polymerization reaction due to high energy ion impact. The roughness is also found to be dependent on incident fluences. This study throws light for the application of PCBM in organic solar cells in form of ion irradiation induced nanowires of PCBM for efficient charge carrier transportation in active layer.

  16. Structural, electronic and optical properties of well-known primary explosive: Mercury fulminate

    Energy Technology Data Exchange (ETDEWEB)

    Yedukondalu, N.; Vaitheeswaran, G., E-mail: gvsp@uohyd.ernet.in [Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, Telangana 500046 (India)

    2015-11-28

    Mercury Fulminate (MF) is one of the well-known primary explosives since 17th century and it has rendered invaluable service over many years. However, the correct molecular and crystal structures are determined recently after 300 years of its discovery. In the present study, we report pressure dependent structural, elastic, electronic and optical properties of MF. Non-local correction methods have been employed to capture the weak van der Waals interactions in layered and molecular energetic MF. Among the non-local correction methods tested, optB88-vdW method works well for the investigated compound. The obtained equilibrium bulk modulus reveals that MF is softer than the well known primary explosives Silver Fulminate (SF), silver azide and lead azide. MF exhibits anisotropic compressibility (b > a > c) under pressure, consequently the corresponding elastic moduli decrease in the following order: C{sub 22} > C{sub 11} > C{sub 33}. The structural and mechanical properties suggest that MF is more sensitive to detonate along c-axis (similar to RDX) due to high compressibility of Hg⋯O non-bonded interactions along that axis. Electronic structure and optical properties were calculated including spin-orbit (SO) interactions using full potential linearized augmented plane wave method within recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The calculated TB-mBJ electronic structures of SF and MF show that these compounds are indirect bandgap insulators. Also, SO coupling is found to be more pronounced for 4d and 5d-states of Ag and Hg atoms of SF and MF, respectively. Partial density of states and electron charge density maps were used to describe the nature of chemical bonding. Ag—C bond is more directional than Hg—C bond which makes SF to be more unstable than MF. The effect of SO coupling on optical properties has also been studied and found to be significant for both (SF and MF) of the compounds.

  17. The Orion Nebula: Still Full of Surprises

    Science.gov (United States)

    2011-01-01

    shows the glowing hydrogen gas, were coloured red. Light in the yellow-green part of the spectrum is coloured green, blue light is coloured blue and light that passed through an ultraviolet filter has been coloured purple. The exposure times were about 52 minutes through each filter. This image was processed by ESO using the observational data found by Igor Chekalin (Russia) [1], who participated in ESO's Hidden Treasures 2010 astrophotography competition [2], organised by ESO in October-November 2010, for everyone who enjoys making beautiful images of the night sky using real astronomical data. Notes [1] Igor searched through ESO's archive and identified datasets that he used to compose his image of Messier 42, which was the seventh highest ranked entry in the competition, out of almost 100 entries. His original work can be seen here. Igor Chekalin was awarded the first prize of the competition for his composition of Messier 78, and he also submitted an image of NGC3169, NGC3166 and SN 2003cg, which was ranked second highest. [2] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. Participants submitted nearly 100 entries and ten skilled people were awarded some extremely attractive prizes, including an all expenses paid trip for the overall winner to ESO's Very Large Telescope (VLT) on Cerro Paranal, in Chile, the world's most advanced optical telescope. The ten winners submitted a total of 20 images that were ranked as the highest entries in the competition out of the near 100 images. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal

  18. The outlook of innovative optical-electronic technologies implementation in transportation

    Science.gov (United States)

    Shilina, Elena V.; Ryabichenko, Roman B.

    2005-06-01

    Information and telecommunication technologies (ITT) are already tool economic development of society and their role will grow. The first task is providing of information security of ITT that is necessary for it distribution in "information" society. The state policy of the leading world countries (USA, France, Japan, Great Britain and China) is focused on investment huge funds in innovative technologies development. Within the next 4-6 years the main fiber-optic transfer lines will have data transfer speed 40 Gbit/s, number of packed channels 60-200 that will provide effective data transfer speed 2,4-8 Tbit/s. Photonic-crystalline fibers will be promising base of new generation fiber-optic transfer lines. The market of information imaging devices and digital photo cameras will be grown in 3-5 times. Powerful lasers based on CO2 and Nd:YAG will be actively used in transport machinery construction when producing aluminum constructions of light rolling-stock. Light-emitting diodes (LEDs) will be base for energy saving and safety light sources used for vehicles and indoor lighting. For example, in the USA cost reducing for lighting will be 200 billion dollars. Implementation analysis of optic electronic photonic technologies (OPT) in ground and aerospace systems shows that they provide significant increasing of traffic safety, crew and passengers comfort with help of smart vehicles construction and non-contact dynamic monitoring both transport facilities (for example, wheel flanges) and condition of rail track (road surface), equipping vehicles with night vision equipment. Scientific-technical programs of JSC "RZD" propose application of OPT in new generation systems: axle-box units for coaches and freight cars monitoring when they are moved, track condition analysis, mechanical stress and permanent way irregularity detection, monitoring geometric parameters of aerial contact wire, car truck, rail and wheel pair roll surface, light signals automatic detection from

  19. Piloting a fiber optics and electronic theory curriculum with high school students

    Science.gov (United States)

    Gilchrist, Pamela O.; Carpenter, Eric D.; Gray-Battle, Asia

    2014-07-01

    Previous participants from a multi-year blended learning intervention focusing on science, technology, engineering and mathematics (STEM) content knowledge, technical, college, and career preparatory skills were recruited to pilot a new module designed by the project staff. Participants met for a total of 22 contact hours receiving lectures from staff and two guest speakers from industries relevant to photonics, fiber optics hands-on experimentation, and practice with documenting progress. Activities included constructing a fiber optics communication system, troubleshooting breadboard circuits and diagrammed circuits as well as hypothesis testing to discover various aspects of fiber optic cables. Participants documented their activities, wrote reflections on the content and learning endeavor and gave talks about their research experiences to staff, peers, and relatives during the last session. Overall, it was found that a significant gain in content knowledge occurred between the time of pre-testing (Mean=0.54) and post-testing time points for the fiber optics portion of the curriculum via the use of a paired samples t-test (Mean=0.71), t=-2.72, preason non-parametric testing was used, specifically a Wilcoxon signed-ranks test. Results indicated a significant increase in content knowledge occurred over time between the pre- (Mdn=0.35) and post-testing time points (Mdn=0.80) z=-2.49, p<,05, r=-0.59 for the electronic theory portion of the curriculum. An equivalent control group was recruited from the remaining participant pool, allowing for comparison between groups. The program design, findings, and lessons learned will be reported in this paper.

  20. First principles study of electronic structure dependent optical properties of oxychalcogenides BiOCu Ch ( Ch = S, Se, Te)

    Science.gov (United States)

    Ul Islam, A. K. M. Farid; Helal, M. A.; Liton, M. N. H.; Kamruzzaman, M.; Islam, H. M. Tariqul

    2017-04-01

    The optical properties of BiOCu Ch and their dependency on the electronic structures are investigated using first principles study. Modified Perdew-Burke-Ernzerhof generalized gradient approximation functional for solids are used to optimize lattice parameters. These optimized lattice parameters are used to calculate the electronic energy band, density of state and optical properties. It is observed that the optical constants are dependent on the energy band gap and also on the contribution of Copper and Chalcogen atoms in the formation of electronic band structure. The obtained results reveal that the optical constants are dominated by the inter-band transitions. In the case of higher incident photon energy these materials behave like metal, where optical constants are dominated by the free carriers. The obtained optical band gaps 0.60, 0.56 and 0.55 eV for BiOCuS, BiOCuSe and BiOCuTe, respectively are consistent with available theoretical results. We also calculate the carrier concentration, electrical conductivity, effective mass of the carrier and their temperature dependency using semi-classical BoltzTraP package. Among these three materials BiOCuTe shows higher electrical conductivity. Analyzing their optical properties, we conclude that these materials are useful in the optoelectronic devices such as coating materials, high frequency reflector, infrared radiation detector and emitter and also important to design quantum devices.

  1. First principles study of electronic structure dependent optical properties of oxychalcogenides BiOCuCh (Ch = S, Se, Te)

    Science.gov (United States)

    Ul Islam, A. K. M. Farid; Helal, M. A.; Liton, M. N. H.; Kamruzzaman, M.; Islam, H. M. Tariqul

    2016-11-01

    The optical properties of BiOCuCh and their dependency on the electronic structures are investigated using first principles study. Modified Perdew-Burke-Ernzerhof generalized gradient approximation functional for solids are used to optimize lattice parameters. These optimized lattice parameters are used to calculate the electronic energy band, density of state and optical properties. It is observed that the optical constants are dependent on the energy band gap and also on the contribution of Copper and Chalcogen atoms in the formation of electronic band structure. The obtained results reveal that the optical constants are dominated by the inter-band transitions. In the case of higher incident photon energy these materials behave like metal, where optical constants are dominated by the free carriers. The obtained optical band gaps 0.60, 0.56 and 0.55 eV for BiOCuS, BiOCuSe and BiOCuTe, respectively are consistent with available theoretical results. We also calculate the carrier concentration, electrical conductivity, effective mass of the carrier and their temperature dependency using semi-classical BoltzTraP package. Among these three materials BiOCuTe shows higher electrical conductivity. Analyzing their optical properties, we conclude that these materials are useful in the optoelectronic devices such as coating materials, high frequency reflector, infrared radiation detector and emitter and also important to design quantum devices.

  2. FINAL REPORT: Scalable Methods for Electronic Excitations and Optical Responses of Nanostructures: Mathematics to Algorithms to Observables

    Energy Technology Data Exchange (ETDEWEB)

    Chelikowsky, James R. [Univ. of Texas, Austin, TX (United States)

    2013-04-01

    Work in nanoscience has increased substantially in recent years owing to its potential technological applications and to fundamental scientific interest. A driving force for this activity is to capitalize on new phenomena that occurs at the nanoscale. For example, the physical confinement of electronic states, i.e., quantum confinement, can dramatically alter the electronic and optical properties of matter. A prime example of this occurs for the optical properties of nanoscale crystals such as those composed of elemental silicon. Silicon in the bulk state is optically inactive due to the small size of the optical gap, which can only be accessed by indirect transitions. However, at the nanoscale, this material becomes optically active. The size of the optical gap is increased by confinement and the conservation of crystal momentum ceases to hold, resulting in the viability of indirect transitions. Our work associated with this grant has focused on developing new scalable algorithms for describing the electronic and optical properties of matter at the nanoscale such as nano structures of silicon and related semiconductor properties.

  3. Investigations on nonlinear optical properties of electron beam treated Gd:ZnO thin films for photonic device applications

    Science.gov (United States)

    Spoorthi, K.; Pramodini, S.; Kityk, I. V.; Abd-Lefdil, M.; Sekkati, M.; El Fakir, A.; Rao, Ashok; Sanjeev, Ganesh; Poornesh, P.

    2017-06-01

    In this article, we report the third-order nonlinear optical properties of electron beam irradiated gadolinium-doped zinc oxide (GZO) thin films prepared using the spray pyrolysis deposition technique. GZO thin films were treated with an electron beam from a variable energy microtron accelerator at dose rates ranging from 1-5 kGy. Nonlinear optical measurements were conducted by employing the single beam Z-scan technique. A continuous wave He-Ne laser operating at 633 nm was used as the source of excitation. Closed aperture Z-scan results reveal that the films exhibit self-defocusing nonlinearity. Open aperture Z-scan results exhibit a switching over phenomena of reverse saturable absorption to saturable absorption for thin film irradiated at 3 kGy, indicating the influence of electron beams on optical nonlinearity. The significant change in third-order nonlinear optical susceptibility χ (3) ranging from 2.14  ×  10-3 to 3.12  ×  10-3 esu is attributed to the effect of electron beam irradiation. The study shows that the nonlinear coefficients of GZO films can be tuned by electron beams for use in nonlinear optical device applications.

  4. SYNTHESIS AND OPTICAL-ELECTRONIC PROPERTIES OF POLY[METHYLTETRAPHENYLPHENYLSILYLENE-CO-BIS(METHYLPHENYLSILYL)ACETYLENE

    Institute of Scientific and Technical Information of China (English)

    Mei-jiang Li; Sheng-yu Feng; Shi-jie Xie

    2004-01-01

    Poly(methyltetraphenylphenylsilylene-co-bis(methylphenylsilyl)acetylene) (PSA) was synthesized by the cocondensation reaction of methyltetraphenylphenyldichlorosilane and bis(chloromethylphenylsilyl)acetylene with sodium in toluene. The PSA thus obtained was soluble in most organic solvents, and its molecular weight was smaller than that of poly[(disilanylene)acetylenes] with alkyl- or aryl-substitution because of the great steric congestion of tetraphenylphenyl groups. The optical and electronic properties of the polymer were investigated. The results show that PSA has strong UV absorption and fluorescence emission, the maximum UV absorption wavelength of PSA is 330 nm, which shows a considerable red-shift in comparison with that of poly(methylphenylsilylene-co-methylphenylsilylacetylene) (PSI) and alkylsubstituted poly[(disilanylene)acetylenes]. A strong photoluminescence band at 470 nm in THF and 432 nm in benzene can be observed in the visible region, respectively. Treatment of the films of PSA with I2 vapor afforded conducting films. The conductivity of PSA thin film doped with I2 was measured to be 0.35 Scm-1 in the air which is lower than that of poly(methyltetraphenylphenylsilylene-co-bis(methylphenylsilyl)phenylene), but higher than that of σ-π polymers without tetraphenylphenyl groups. As an explanation, the tetraphenylphenyl group is a large π-electron-conjugated group; after being introduced to the Si atoms of the polysilanes, the interaction between π-electrons of the tetraphenylphenyl groups and the σ-electrons conjugated along the Si-Si bonds is increased strongly, and the σ-electrons can be conjugated more extensively along the main chain of the polysilanes.

  5. Characterization and testing of 30 kV, 60 kW electron optical column for melting applications

    Energy Technology Data Exchange (ETDEWEB)

    Baibhaw, Prakash; Gupta, Sachin; Malik, Pravanjan, E-mail: bprakash@barc.gov.in [Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    High energy electron beams (30-150 keV) are widely used as intense heat source in welding, melting and evaporation of refractory metals. These operations are mostly carried out in high vacuum (10{sup -4}-10{sup -5} mbar) to aid unimpeded flow of electrons from generation to the point of application. A 30 kV, 60 kW Electron beam optical column (EOC) is designed and developed under the high power beam technology programme. The optical column consists of an electron gun and twin electromagnetic focusing lenses. The heating power of emitter, gun perveance, grid voltage control, beam focusing with the twin electromagnetic lenses and beam spot size measurements are reported in this paper. The results are compared with the design values. Operational issues during the high power melting and the strategy for automation of the electron gun are discussed. (author)

  6. Optical Coating Performance and Thermal Structure Design for Heat Reflectors of JWST Electronic Control Unit

    Science.gov (United States)

    Quijada, Manuel A.; Threat, Felix; Garrison, Matt; Perrygo, Chuck; Bousquet, Robert; Rashford, Robert

    2008-01-01

    The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling system.

  7. A new positron source with high flux and excellent electron-optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Manfred [Physics Department, University of Texas at Austin, 1 University Station, C1600, Austin, TX 78712 (United States)]. E-mail: Fink@physics.utexas.edu; Wellenstein, Hermann [Physics Department, Brandeis University, Waltham, MA 02454 (United States); Nguyen, Scott V. [Physics Department, Harvard University, Cambridge, MA 02138 (United States)

    2007-08-15

    Positron annihilation spectroscopy is a well established research tool to study the surface and bulk electron distributions of solids and liquids. These are extracted from the energy and angular distributions of the two 511 keV X-rays, produced during the annihilation of a thermal positron and an electron from the sample. Positron investigations and monitoring, however are currently not used in an industrial environment due to the lack of a sufficiently intense positron sources to record distribution functions with good statistics within minutes. Most positron spectrometers have radioactive sources which produce only modest intensities (10{sup 6} e{sup +}/s). An improvement by at least a factor of 100 is needed to become viable for on-line positron metrology. We propose to combine several technologies to generate a positron beam with good electron-optical properties, such as a small divergence angle and small beam diameter and a flux of 10{sup 8} e{sup +}/s or more. Positrons from a 10 Ci beta source will be moderated with a stack of 12 layers of tungsten meshes. The thermalized positrons will be accelerated into a deflection focusing analyzer (DFA) which focuses the positrons into a small (1-2 mm{sup 2}) area of a second moderator. A rare gas solid will be used to thermalize the positrons once more. The moderating area forms the small emitter source for a accelerating gun that generate a beam of mono-energetic positrons of any desired energy.

  8. Electronic and optical properties study on Fesbnd B co-doped anatase TiO2

    Science.gov (United States)

    Li, Xuechao; Shi, Jianhao; Chen, Hao; Wan, Rundong; Leng, Chongyan; Lei, Ying

    2016-09-01

    We investigate the density of states and optical properties for Fe, 2B and (Fe, 2B) doped TiO2 with DFT calculations. The calculated results reveal mono-doping introduces midgap states which are half-occupied and easy to become the recombination centers of charge carriers, thus inhibiting the enhancement of photocatalystic activity. The coupling of 2p-3d states in the (Fe, 2B) compensated co-doped TiO2 makes gap states couple with the valence bands edge, thus greatly causing the band gap narrowing and higher visible light absorption. Moreover, the gap states cannot become recombination centers of the photoexcited carriers, thus promoting the separation of electron-hole pairs, prolonging the lifetime of carriers. The analysis of electron density indicates more electrons from Fe transfer to adjacent B, realizing the charge compensation and forming a stronger Fesbnd B bond. Therefore, the (Fe, 2B) compensated co-doped TiO2 exhibits the higher visible-light photocatalystic activity than those of pure and solely doped TiO2.

  9. Electronic structure and optical properties of doped gallium phosphide: A first-principles simulation

    Science.gov (United States)

    Lu, Xuefeng; Gao, Xu; Li, Cuixia; Ren, Junqiang; Guo, Xin; La, Peiqing

    2017-09-01

    Using DFT-GGA-PW91 calculations we investigate the electronic structures and optical properties of doped GaP. It is found that the lattice constants and volume increase slightly for Al, In, As and Sb doped systems and EG distinctly decrease after doping. The formation energies are 0.587 and 0.273 eV for As and Sb doped systems, respectively, and lower remarkably than those in other systems, indicating that the stability of the two systems is higher. The direct band gap transition occurs when doped with In, As and Sb elements. The charge density difference images reveal that electron loss near Al atom is observed accompanying the enhancement of covalent bond feature, and then electron enrichment is present around N atom demonstrating that the ionic bond characteristic is obvious. The Sb-doped system has the higher static dielectric constant illustrating the applications in semiconductor devices. The absorption peak value is located at 194.7 nm for Al-doped system and this shows that the system can absorb a large amount of light and displays ;Barrier-type; characteristics in UV region. In the visible region, the doped systems have lower reflectivity coefficient, indicating that the systems all have ;clear-type; properties. This is conducive to fundamentally insights to a tunable band gap semiconductor with enormous potential in device fields.

  10. Surprise and Sense Making: Undergraduate Placement Experiences in SMEs

    Science.gov (United States)

    Walmsley, Andreas; Thomas, Rhodri; Jameson, Stephanie

    2006-01-01

    Purpose: This paper seeks to explore undergraduate placement experiences in tourism and hospitality SMEs, focusing on the notions of surprise and sense making. It aims to argue that surprises and sense making are important elements not only of the adjustment process when entering new work environments, but also of the learning experience that…

  11. Neural Responses to Rapid Facial Expressions of Fear and Surprise

    Directory of Open Access Journals (Sweden)

    Ke Zhao

    2017-05-01

    Full Text Available Facial expression recognition is mediated by a distributed neural system in humans that involves multiple, bilateral regions. There are six basic facial expressions that may be recognized in humans (fear, sadness, surprise, happiness, anger, and disgust; however, fearful faces and surprised faces are easily confused in rapid presentation. The functional organization of the facial expression recognition system embodies a distinction between these two emotions, which is investigated in the present study. A core system that includes the right parahippocampal gyrus (BA 30, fusiform gyrus, and amygdala mediates the visual recognition of fear and surprise. We found that fearful faces evoked greater activity in the left precuneus, middle temporal gyrus (MTG, middle frontal gyrus, and right lingual gyrus, whereas surprised faces were associated with greater activity in the right postcentral gyrus and left posterior insula. These findings indicate the importance of common and separate mechanisms of the neural activation that underlies the recognition of fearful and surprised faces.

  12. Damage investigation on tungsten and diamond diffractive optics at a hard x-ray free-electron laser.

    Science.gov (United States)

    Uhlén, Fredrik; Nilsson, Daniel; Holmberg, Anders; Hertz, Hans M; Schroer, Christian G; Seiboth, Frank; Patommel, Jens; Meier, Vivienne; Hoppe, Robert; Schropp, Andreas; Lee, Hae Ja; Nagler, Bob; Galtier, Eric; Krzywinski, Jacek; Sinn, Harald; Vogt, Ulrich

    2013-04-08

    Focusing hard x-ray free-electron laser radiation with extremely high fluence sets stringent demands on the x-ray optics. Any material placed in an intense x-ray beam is at risk of being damaged. Therefore, it is crucial to find the damage thresholds for focusing optics. In this paper we report experimental results of exposing tungsten and diamond diffractive optics to a prefocused 8.2 keV free-electron laser beam in order to find damage threshold fluence levels. Tungsten nanostructures were damaged at fluence levels above 500 mJ/cm(2). The damage was of mechanical character, caused by thermal stress variations. Diamond nanostructures were affected at a fluence of 59 000 mJ/cm(2). For fluence levels above this, a significant graphitization process was initiated. Scanning Electron Microscopy (SEM) and µ-Raman analysis were used to analyze exposed nanostructures.

  13. Optical Coating Performance for Heat Reflectors of the JWST-ISIM Electronic Component

    Science.gov (United States)

    Rashford, Robert A.; Perrygo, Charles M.; Garrison, Matthew B.; White, Bryant K.; Threat, Felix T.; Quijada, Manuel A.; Jeans, James W.; Huber, Frank K.; Bousquet, Robert R.; Shaw, Dave

    2011-01-01

    A document discusses a thermal radiator design consisting of lightweight composite materials and low-emittance metal coatings for use on the James Webb Space Telescope (JWST) structure. The structure will have a Thermal Subsystem unit to provide passive cooling to the Integrated Science Instrument Module (ISIM) control electronics. The ISIM, in the JWST observatory, is the platform that provides the mounting surfaces for the instrument control electronics. Dissipating the control electronic generated-heat away from JWST is of paramount importance so that the spacecraft s own heat does not interfere with the infrared-light gathering of distant cosmic sources. The need to have lateral control in the emission direction of the IEC (ISIM Electronics Compartment) radiators led to the development of a directional baffle design that uses multiple curved mirrorlike surfaces. This concept started out from the so-called Winston non-imaging optical concentrators that use opposing parabolic reflector surfaces, where each parabola has its focus at the opposite edge of the exit aperture. For this reason they are often known as compound parabolic concentrators or CPCs. This radiator system with the circular section was chosen for the IEC reflectors because it offers two advantages over other designs. The first is that the area of the reflector strips for a given radiator area is less, which results in a lower mass baffle assembly. Secondly, the fraction of energy emitted by the radiator strips and subsequently reflected by the baffle is less. These fewer reflections reduced the amount of energy that is absorbed and eventually re-emitted, typically in a direction outside the design emission range angle. A baffle frame holds the mirrors in position above a radiator panel on the IEC. Together, these will direct the majority of the heat from the IEC above the sunshield away towards empty space.

  14. All-optical radiation reaction in head-on laser electron interaction

    Science.gov (United States)

    Vranic, Marija; Grismayer, Thomas; Martins, Joana L.; Fonseca, Ricardo A.; Silva, Luis O.

    2016-10-01

    Radiation reaction (RR) accounts for the slowdown of a charged particle that occurs when a significant fraction of its kinetic energy is emitted as radiation. Here we show that this effect could be measured in an all-optical setup using a laser wakefield accelerated electron beam colliding with an intense laser pulse. We employ full-scale 3D PIC simulations to show that one can enter a radiation reaction dominated regime with a GeV electron beam and a 30 fs laser of I = 1021W/cm2. The electrons can lose up to 40% of their initial energy, which can be used as an experimental signature in the spectra. Our results indicate that modern laser facilities provide an exciting opportunity to explore classical RR and the near-future laser facilities can be employed to study the RR beyond classical description. By using higher laser intensities (1022-1023W/cm2) , quantum effects such as Compton scattering and Breit-Wheeler pair production become relevant. We have included these quantum effects in our PIC code OSIRIS through a Monte Carlo module, and performed a detailed numerical study of the transition from classical to quantum RR dominated regime. We identified the distinct features in the electron distribution function that could serve as signatures of quantum radiation reaction, and showed that large-scale infrastructures (e.g. NIF and ELI and next generation of PW-class lasers (e. g. CoReLS, Bella-i, Texas Petawatt, Apollon 10 PW) could be employed to test the physics in these extreme scenarios.

  15. Electronic and optical properties of rare earth trifluorides RF{sub 3} (R La, Ce, Pr, Nd, Gd and Dy)

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Sapan Mohan [National Institute of Technology Raipur (C.G.) (India); Nautiyal, Tashi, E-mail: tashifph@iitr.ernet.in [Indian Institute of Technology Roorkee, Roorkee (U.K.) (India); Auluck, Sushil [Indian Institute of Technology Roorkee, Roorkee (U.K.) (India)

    2011-09-15

    Highlights: {yields} The electronic structure and optical properties of some rare earth trifluorides. {yields} Band structure and optical properties indicate these are large band gap insulators. {yields} The 4f electrons do not play a decisive role in the optical properties of these. - Abstract: This work presents the electronic structure and optical properties of some rare earth trifluorides (RF{sub 3}) coarsely covering a large range of rare-earths with R La, Ce, Pr, Nd, Gd and Dy. Our theoretical investigations are based on the first principles, using the full potential linearized augmented plane wave method with the inclusion of spin orbit coupling. The local spin density approximation (LSDA) and the Coulomb-corrected LSDA + U method have been employed. We find that the standard LSDA approach is incapable of correctly describing the electronic properties of such materials since it positions the f-bands incorrectly resulting in an incorrect metallic ground state. On the other hand, LSDA + U approximation, known for treating the highly correlated 4f electrons properly, is able to reproduce the correct insulating ground state. Interestingly, however, we do not find any significant differences in the optical properties calculated using LSDA and LSDA + U suggesting that the 4f electrons do not play a decisive role in the optical properties of these compounds. The reflectivity for all the compounds stays low till {approx}7 eV which is consistent with their large energy gaps. The calculated energy gaps are in good agreement with experiments. Our calculated reflectivity compares well with the experimental data and the results are analyzed in the light of band to band transitions.

  16. All-optical photochromic spatial light modulators based on photoinduced electron transfer in rigid matrices

    Science.gov (United States)

    Beratan, David N. (Inventor); Perry, Joseph W. (Inventor)

    1991-01-01

    A single material (not a multi-element structure) spatial light modulator may be written to, as well as read out from, using light. The device has tailorable rise and hold times dependent on the composition and concentration of the molecular species used as the active components. The spatial resolution of this device is limited only by light diffraction as in volume holograms. The device may function as a two-dimensional mask (transmission or reflection) or as a three-dimensional volume holographic medium. This device, based on optically-induced electron transfer, is able to perform incoherent to coherent image conversion or wavelength conversion over a wide spectral range (ultraviolet, visible, or near-infrared regions).

  17. First principle electronic, structural, elastic, and optical properties of strontium titanate

    Directory of Open Access Journals (Sweden)

    Chinedu E. Ekuma

    2012-03-01

    Full Text Available We report self-consistent ab-initio electronic, structural, elastic, and optical properties of cubic SrTiO3 perovskite. Our non-relativistic calculations employed a generalized gradient approximation (GGA potential and the linear combination of atomic orbitals (LCAO formalism. The distinctive feature of our computations stem from solving self-consistently the system of equations describing the GGA, using the Bagayoko-Zhao-Williams (BZW method. Our results are in agreement with experimental ones where the later are available. In particular, our theoretical, indirect band gap of 3.24 eV, at the experimental lattice constant of 3.91 Å, is in excellent agreement with experiment. Our predicted, equilibrium lattice constant is 3.92 Å, with a corresponding indirect band gap of 3.21 eV and bulk modulus of 183 GPa.

  18. Theoretical Study on Electronic, Optical Properties and Hardness of Technetium Phosphides under High Pressure

    Directory of Open Access Journals (Sweden)

    Shiquan Feng

    2017-06-01

    Full Text Available In this paper, the structural properties of technetium phosphides Tc3P and TcP4 are investigated by first principles at zero pressure and compared with the experimental values. In addition, the electronic properties of these two crystals in the pressure range of 0–40 GPa are investigated. Further, we discuss the change in the optical properties of technetium phosphides at high pressures. At the end of our study, we focus on the research of the hardness of TcP4 at different pressures by employing a semiempirical method, and the effect of pressure on the hardness is studied. Results show that the hardness of TcP4 increases with the increasing pressure, and the influence mechanism of pressure effect on the hardness of TcP4 is also discussed.

  19. Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers

    CERN Document Server

    Karbstein, Felix

    2016-01-01

    Vacuum birefringence is one of the most striking predictions of strong field quantum electrodynamics: Probe photons traversing a strong field region can indirectly sense the applied "pump" electromagnetic field via quantum fluctuations of virtual charged particles which couple to both pump and probe fields. This coupling is sensitive to the field alignment and can effectively result in two different indices of refraction for the probe photon polarization modes giving rise to a birefringence phenomenon. In this article we perform a dedicated theoretical analysis of the proposed discovery experiment of vacuum birefringence at a x-ray free electron laser/optical high-intensity laser facility. Describing both pump and probe laser pulses realistically in terms of their macroscopic electromagnetic fields, we go beyond previous analyses by accounting for various effects not considered before in this context. Our study facilitates stringent quantitative predictions and optimizations of the signal in an actual experim...

  20. Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers

    Science.gov (United States)

    Karbstein, Felix; Sundqvist, Chantal

    2016-07-01

    Vacuum birefringence is one of the most striking predictions of strong field quantum electrodynamics: Probe photons traversing a strong field region can indirectly sense the applied "pump" electromagnetic field via quantum fluctuations of virtual charged particles which couple to both pump and probe fields. This coupling is sensitive to the field alignment and can effectively result in two different indices of refraction for the probe photon polarization modes giving rise to a birefringence phenomenon. In this article, we perform a dedicated theoretical analysis of the proposed discovery experiment of vacuum birefringence at an x-ray free electron laser/optical high-intensity laser facility. Describing both pump and probe laser pulses realistically in terms of their macroscopic electromagnetic fields, we go beyond previous analyses by accounting for various effects not considered before in this context. Our study facilitates stringent quantitative predictions and optimizations of the signal in an actual experiment.

  1. Comparison endpoint study of process plasma and secondary electron beam exciter optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stephan Thamban, P. L.; Yun, Stuart; Padron-Wells, Gabriel; Hosch, Jimmy W.; Goeckner, Matthew J. [Department of Mechanical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Department of Electrical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Verity Instruments, Inc., 2901 Eisenhower Street, Carrollton, Texas 75007 (United States); Department of Mathematical Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080 (United States)

    2012-11-15

    Traditionally process plasmas are often studied and monitored by optical emission spectroscopy. Here, the authors compare experimental measurements from a secondary electron beam excitation and direct process plasma excitation to discuss and illustrate its distinctiveness in the study of process plasmas. They present results that show excitations of etch process effluents in a SF{sub 6} discharge and endpoint detection capabilities in dark plasma process conditions. In SF{sub 6} discharges, a band around 300 nm, not visible in process emission, is observed and it can serve as a good indicator of etch product emission during polysilicon etches. Based on prior work reported in literature the authors believe this band is due to SiF{sub 4} gas phase species.

  2. Optical vortices discern attosecond time delay in electron emission from magnetic sublevels

    CERN Document Server

    Wätzel, Jonas

    2016-01-01

    Photoionization from energetically distinct electronic states may have a relative time delay of tens of attoseconds. Here we demonstrate that pulses of optical vortices allow measuring such attoseconds delays from magnetic sublevels, even from a spherically symmetric target. The di?erence in the time delay is substantial and exhibits a strong angular dependence. Furthermore, we find an atomic scale variation in the time delays depending on the target orbital position in the laser spot. The findings o?er thus a qualitatively new way for a spatio-temporal sensing of the magnetic states from which the photoelectrons originate, with a spatial resolution way below the di?raction limit of the vortex beam. Our conclusions follow from analytical considerations based on symmetry, complemented and confirmed with full numerical simulations of the quantum dynamics.

  3. Optical Response of Strained- and Unstrained-Silicon Cold-Electron Bolometers

    CERN Document Server

    Brien, T L R; Barry, P S; Dunscombe, C J; Leadley, D R; Morozov, D V; Myronov, M; Parker, E H C; Prest, M J; Prunnila, M; Sudiwala, R V; Whall, T E; Mauskopf, P D

    2016-01-01

    We describe the optical characterisation of two silicon cold-electron bolometers each consisting of a small ($32 \\times 14~\\mathrm{\\mu m}$) island of degenerately doped silicon with superconducting aluminium contacts. Radiation is coupled into the silicon absorber with a twin-slot antenna designed to couple to 160-GHz radiation through a silicon lens.The first device has a highly doped silicon absorber, the second has a highly doped strained-silicon absorber.Using a novel method of cross-correlating the outputs from two parallel amplifiers, we measure noise-equivalent powers of $3.0 \\times 10^{-16}$ and $6.6 \\times 10^{-17}~\\mathrm{W\\,Hz^{-1/2}}$ for the control and strained device, respectively, when observing radiation from a 77-K source. In the case of the strained device, the noise-equivalent power is limited by the photon noise.

  4. Thermodynamic, electronic, and optical properties of graphene oxide: A statistical ab initio approach

    Science.gov (United States)

    Guilhon, I.; Bechstedt, F.; Botti, Silvana; Marques, M.; Teles, L. K.

    2017-06-01

    We study the incomplete oxidation of graphene or reduction of graphene oxide for hydroxyl and epoxy oxidant groups. While in wet oxidation hydroxyl groups are favorable, in a drier environment an oxygen atom can bridge two neighboring carbon atoms. We model composition variations and structural disorder within a statistical theory, the generalized quasichemical approximation, combined with density functional theory calculations of the local atomic geometries. A generalization of the statistical approach is developed to account for the antiparallel orientation of hydroxyl groups and a fourfold coordination of C atoms. The theoretical framework enables a thermodynamic treatment of graphene oxide as a function of oxygen content, allowing us to derive temperature-composition phase diagrams and investigate possible clustering and segregation. The resulting geometries, local and average electronic structures, and optical absorption spectra are discussed and compared with available experimental data.

  5. Characterization of a circular optical nanoantenna by nonlinear photoemission electron microscopy

    CERN Document Server

    Kaiser, Thomas; Qi, Jing; Klein, Angela; Steinert, Michael; Menzel, Christoph; Rockstuhl, Carsten; Pertsch, Thomas

    2015-01-01

    We report on the investigation of an advanced circular plasmonic nanoantenna under ultrafast excitation using nonlinear photoemission electron microscopy (PEEM) under near-normal incidence. The circular nanoantenna is enhanced in its performance by a supporting grating and milled out from a gold film. The considered antenna shows a sophisticated physical resonance behavior that is ideal to demonstrate the possibilities of PEEM for the experimental investigations of plasmonic effects on the nanoscale. Field profiles of the antenna resonance for both possible linear polarizations of the incident field are measured with high spatial resolution. In addition, outward propagating Hankel plasmons, which are also excited by the structure, are measured and analyzed. We compare our findings to measurements of an isolated plasmonic nanodisc resonator and scanning near-field optical microscopy (SNOM) measurements of both structures. All results are in very good agreement with numerical simulations as well as analytial mo...

  6. Optical and electronic properties of double perovskite Ba2ScSbO6

    Science.gov (United States)

    Ray, Rajyavardhan; Himanshu, A. K.; Lahiri, J.; Kumar, Uday; Sen, Pintu; Bandyopadhyay, S. K.; Sinha, T. P.

    2016-05-01

    The ordered double perovskite Ba2ScSbO6 (BSS) has been synthesized in polycrystalline form by solid state reaction at 1400 C for 72 Hrs. Structural characterization of the compound was done through X-ray diffraction (XRD) followed by Rietveld analysis. The crystal structure is cubic, with space group Fm-3m (No. 225) and lattice parameter, a = 8.20 Ǻ. Optical band-gap has been calculated using UV-Vis Spectroscopy and Kubelka-Munk (KM) function, yielding 4.23 eV. A detailed Ab-initio Density Functional Theory (DFT) study of the electronic properties has been carried out using the Full-Potential Linear Augmented Plane Wave (FP-LAPW) as implemented in WIEN2k. BSS is found to be a large band-gap insulator with potential technological applications.

  7. Morphology, surface topography and optical studies on electron beam evaporated MgO thin films

    Indian Academy of Sciences (India)

    A Chowdhury; J Kumar

    2006-10-01

    Electron beam evaporated thin films of MgO powder synthesized by burning of magnesium ribbon in air and sol–gel technique are studied for their microstructure (SEM), surface topography (AFM), and optical transmission behaviour (UV-visible spectroscopy). MgO thin films are shown to be either continuous or have mesh like morphology. The bar regions are believed to be of magnesium hydroxide formed due to absorption of moisture. Their AFM images exhibit columnar/pyramidal/truncated cone structure, providing support to the 3D Stranski–Krastanov model for film growth. Further, they are shown to have high transmittance (∼90%) in the wavelength range 400–600 nm, but absorb radiation below 350 nm substantially giving signature of a band transition.

  8. Optical control and spectroscopic studies of collisional population transfer in molecular electronic states

    Science.gov (United States)

    Ahmed, Ergin; Pan, Xinhua; Huennekens, John; Lyyra, Marjatta

    2015-05-01

    Understanding the basic physics of collision processes between atoms and molecules is of fundamental importance for large number of areas of research including chemical reactivity, ultra cold atoms and molecules, and astrophysics of the interstellar medium. We have experimentally demonstrated optical control of the singlet/triplet probability distribution in the outcome of collisions involving lithium dimer molecules and argon atoms. The control is achieved using the Autler-Townes (AT) effect to manipulate the spin character of a spin-orbit coupled pair of levels serving as a ``gateway'' between the singlet and triplet electronic state manifolds. As a result we show that the rate coefficient of a collisional process between excited molecules (7Li2) and atoms (Ar) leading to internal quantum state changes in the molecules can be effectively manipulated with a laser. In addition, as an extension of these results new gateway levels can be created from singlet and triplet levels that hardly interact to begin with.

  9. Determination of Electron Optical Properties for Aperture Zoom Lenses Using an Artificial Neural Network Method.

    Science.gov (United States)

    Isik, Nimet

    2016-04-01

    Multi-element electrostatic aperture lens systems are widely used to control electron or charged particle beams in many scientific instruments. By means of applied voltages, these lens systems can be operated for different purposes. In this context, numerous methods have been performed to calculate focal properties of these lenses. In this study, an artificial neural network (ANN) classification method is utilized to determine the focused/unfocused charged particle beam in the image point as a function of lens voltages for multi-element electrostatic aperture lenses. A data set for training and testing of ANN is taken from the SIMION 8.1 simulation program, which is a well known and proven accuracy program in charged particle optics. Mean squared error results of this study indicate that the ANN classification method provides notable performance characteristics for electrostatic aperture zoom lenses.

  10. Electronic structures and optical properties of a SiC nanotube with vacancy defects

    Institute of Scientific and Technical Information of China (English)

    Song Jiuxu; Yang Yintang; Wang Ping; Guo Lixin; Zhang Zhiyong

    2013-01-01

    Based on first-principle calculations,the electronic structures and optical properties of a single-walled (7,0) SiC nanotube (SiCNT) with a carbon vacancy defect or a silicon vacancy defect are investigated.In the three silicon atoms around the carbon vacancy,two atoms form a stable bond and the other is a dangling bond.A similar structure is found in the nanotube with a silicon vacancy.A carbon vacancy results in a defect level near the top of the valence band,while a silicon vacancy leads to the formation of three defect levels in the band gap of the nanotube.Transitions between defect levels and energy levels near the bottom of the conduction band have a close relationship with the formation of the novel dielectric peaks in the lower energy range of the dielectric function.

  11. Electron optics design of an 8-in. spherical MCP-PMT

    Science.gov (United States)

    Chen, Ping; Tian, Jinshou; Qian, Sen; Zhao, Tianchi; Liu, Hulin; Wei, Yonglin; Sai, Xiaofeng; He, Jianping; Wang, Xing; Lu, Yu; Chen, Lin; Guo, Lehui; Pei, Chengquan; Hui, Dandan

    2017-03-01

    This paper discusses the electron optical system of an 8-in. spherical MCP-PMT. The MCP assembly, the supporting pole and the supply voltages are carefully designed to optimize the photoelectron collection efficiency and the transit time spread. Coating the MCP nickel-chromium electrode with an additional high secondary emission material is employed to make a breakthrough on the collection efficiency. With the simulation software CST, the Finite Integration method and the Monte Carlo method are combined to evaluate the collection efficiency, the time properties and the Earth's magnetic field effects. Simulation results show that the photocathode active solid angle is over 3.5 πsr, the average collection efficiency can exceed 95% with the coated MCP and the mean transit time spread is 2.2 ns for a typical electric potential of 500 V applied between the photocathode and the MCP input facet. The prototype and the measured single photoelectron spectrum are also presented.

  12. Microstructure, electronic structure and optical properties of combustion synthesized Co doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Srinatha, N. [Department of Physics, JB Campus, Bangalore University, Bangalore 560056 (India); Nair, K.G.M. [UGC-DAE-CSR, Kalpakkam Node, Kalpakkam, Kokilamedu 603102 (India); Angadi, Basavaraj, E-mail: brangadi@gmail.com [Department of Physics, JB Campus, Bangalore University, Bangalore 560056 (India)

    2015-10-01

    We report on the microstructure, electronic structure and optical properties of nanocrystalline Zn{sub 1−x}Co{sub x}O (x=0, 0.01, 0.03, 0.05 and 0.07) particles prepared by solution combustion technique using L-Valine as fuel. The detailed structural and micro-structural studies were carried out by XRD, HRTEM and TEM-SAED respectively, which confirms the formation of single phased, nano-sized particles. The electronic structure was determined through NEXAFS and atomic multiplet calculations/simulations performed for various symmetries and valence states of ‘Co’ to determine the valance state, symmetry and crystal field splitting. The correlations between the experimental NEXAFS spectra and atomic multiplet simulations, confirms that, ‘Co’ present is in the 2+ valence state and substituted at the ‘Zn’ site in tetrahedral symmetry with crystal field splitting, 10Dq =−0.6 eV. The optical properties and ‘Co’ induced defect formation of as-synthesized materials were examined by using diffuse reflectance and Photoluminescence spectroscopy, respectively. Red-shift of band gap energy (E{sub g}) was observed in Zn{sub 1−x}Co{sub x}O samples due to Co (0.58 Å) substitution at Zn (0.60 Å) site of the host ZnO. Also, in PL spectra, a prominent pre-edge peak corresponds to ultraviolet (UV) emission around 360–370 nm was observed with Co concentration along with near band edge emission (NBE) of the wide band gap ZnO and all samples show emission in the blue region.

  13. Electronic and optical properties of CdS/CdZnS nanocrystals

    Institute of Scientific and Technical Information of China (English)

    A. John Peter; Chang Woo Lee

    2012-01-01

    Cd1-xZnxS nanocrystals are prepared by a co-precipitation method with different atomic fractions of Zn.The texture,structural transformation and optical properties with increasing x value in Cd1-xZnxS are studied with scanning electron microscopy,electron diffraction patterning,and absorption spectra respectively.Quantum confinement in a strained CdS/Cd1-xZnxS related nanodot with various Zn content values is investigated theoretically.Binding energies on exciton bound CdS/CdxZn1-xS quantum dot are computed,with consideration of the internal electric field induced by the spontaneous and piezoelectric polarizations,and thereby the interband emission energy is calculated as a function of the dot radius.The optical band gap from the UV absorption spectrum is compared with the interband emission energy computed theoretically.Our results show that the average diameter of composite nanoparticles ranges from 3 nm to 6 nm.The X-ray diffraction pattern shows that all the peaks shift towards the higher diffracting angles with an increase in Zn content.The lattice constant gradually decreases as the Zn content increases.The strong absorption edge shifts towards the lower wavelength region and hence the band gap of the films increases as the Zn content increases.The values of the absorption edge are found to shift towards the shorter wave length region and hence the direct band gap energy varies from 2.5 eV for the CdS film and 3.5 eV for the ZnS film.Our numerical results are in good agreement with the experimental results.

  14. Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Kazumi; Kinoshita, Takaaki [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577 (Japan); Uemura, Takeshi [Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Motohashi, Hozumi [Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Watanabe, Yohei; Ebihara, Tatsuhiko [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Nishiyama, Hidetoshi [JEOL Ltd., 1-2 Musashino 3-chome, Akishima, Tokyo 196-8558 (Japan); Sato, Mari [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Suga, Mitsuo [JEOL Ltd., 1-2 Musashino 3-chome, Akishima, Tokyo 196-8558 (Japan); Maruyama, Yuusuke; Tsuji, Noriko M. [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Yamamoto, Masayuki [Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Nishihara, Shoko, E-mail: shoko@soka.ac.jp [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577 (Japan); Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan)

    2014-08-01

    Correlative light-electron microscopy of cells in a natural environment of aqueous liquid facilitates high-throughput observation of protein complex formation. ASEM allows the inverted SEM to observe the wet sample from below, while an optical microscope observes it from above quasi-simultaneously. The disposable ASEM dish with a silicon nitride (SiN) film window can be coated variously to realize the primary-culture of substrate-sensitive cells in a few milliliters of culture medium in a stable incubator environment. Neuron differentiation, neural networking, proplatelet-formation and phagocytosis were captured by optical or fluorescence microscopy, and imaged at high resolution by gold-labeled immuno-ASEM with/without metal staining. Fas expression on the cell surface was visualized, correlated to the spatial distribution of F-actin. Axonal partitioning was studied using primary-culture neurons, and presynaptic induction by GluRδ2-N-terminus-linked fluorescent magnetic beads was correlated to the presynaptic-marker Bassoon. Further, megakaryocytes secreting proplatelets were captured, and P-selectins with adherence activity were localized to some of the granules present by immuno-ASEM. The phagocytosis of lactic acid bacteria by dendritic cells was also imaged. Based on these studies, ASEM correlative microscopy promises to allow the study of various mesoscopic-scale dynamics in the near future. - Highlights: • In situ correlative light electron microscopy of samples in open solution by ASEM. • Primary cultures for in-solution CLEM by developing SiN-film coating methods • First visualization of fluorescent magnetic beads in aqueous solution by CLEM. • Presynaptic induction of neurons by GluRδ2-N-terminus-coated beads studied by CLEM. • Axonal partitioning, bacterial phagocytosis, platelet formation imaged by CLEM.

  15. Electronic and optical properties of titanium nitride bulk and surfaces from first principles calculations

    Science.gov (United States)

    Mehmood, Faisal; Pachter, Ruth; Murphy, Neil R.; Johnson, Walter E.

    2015-11-01

    Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by spectroscopic ellipsometry remains difficult to interpret because of changes in stoichiometry and surface morphology, temperature, thickness of the film, or substrate. In this work, we report calculations for titanium nitride (TiN), a promising material for plasmonic applications because of less loss and other practical advantages compared to noble metals. We investigated structural, electronic, and optical properties of stoichiometric bulk TiN, as well as of the TiN(100), TiN(110), and TiN(111) outermost surfaces. Density functional theory (DFT) and many-body GW methods (Green's (G) function-based approximation with screened Coulomb interaction (W)) were used, ranging from G0W0, GW0 to partially self-consistent sc-GW0, as well as the GW-BSE (Bethe-Salpeter equation) and time-dependent DFT (TDDFT) methods for prediction of the optical properties. Structural parameters and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity, and the electron energy loss spectrum demonstrated consistency with experiment at the GW0-BSE level. Deviations from experimental data are expected due to varying experimental conditions. Comparison of our results to spectroscopic ellipsometry data for realistic nanostructures has shown that although TDDFT may provide a computationally feasible level of theory in evaluation of the dielectric function, application is subject to validation with GW-BSE calculations.

  16. Evolution of Structural, Electronic and Optical Properties of Monoclinic ZrO2 under High Pressure: A First Principles Study

    Institute of Scientific and Technical Information of China (English)

    HOU Ming-Xiu; HE Kai-Hua; ZHENG Guang; HOU Shu-En

    2008-01-01

    The structural, electronic and optical properties of the monoclinic ZrO2 were studied by ab initio calculations based on the density functional theory and pseudopotential method. The calculated lattice parameters and band gap are in agreement with the experimental and other theo- retical values. The evolution of lattice parameters and electronic properties were illustrated under high pressure. Meanwhile, the optical properties, such as adsorption coefficients, imaginary part of dielectric function, and energy loss function, were investigated under both ambient and high pressures.

  17. pH-Induced Surface Modification of Atomically Precise Silver Nanoclusters: An Approach for Tunable Optical and Electronic Properties

    KAUST Repository

    AbdulHalim, Lina G.

    2016-10-24

    Noble metal nanoclusters (NCs) play a pivotal role in bridging the gap between molecules and quantum dots. Fundamental understanding of the evolution of the structural, optical, and electronic properties of these materials in various environments is of paramount importance for many applications. Using state-of-the-art spectroscopy, we provide the first decisive experimental evidence that the structural, electronic, and optical properties of Ag-44(MNBA)(30) NCs can now be tailored by controlling the chemical environment. Infrared and photoelectron spectroscopies clearly indicate that there is a dimerization between two adjacent ligands capping the NCs that takes place upon lowering the pH from 13 to 7.

  18. Structural, electronic and optical properties of La{sub x}Sc{sub 1-x}Sb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghezali, M. [Department of science and technology, University of bechar, BP 417 rue de kanadissa, 08000 bechar (Algeria); Microphysics and nanophysics laboratory (LaMiN), ENP-oran, BP 1523 ElM’Naouer, oran 31000, Algeria ghezali-mohamed75@yahoo.fr (Algeria)

    2015-03-30

    We present calculations of the structural, electronic and optic properties of LaxSc1-xSb ternary alloys for 0≤x≤1, by using the first principle full potential linear muffin-tin orbital (FPLMTO) method based on the local density approximation (LDA). the lattice constant, bulk modulus, electronic band structures, density of state and optical properties such as dielectric functions, refractive index and extinction coefficient are calculated and discussed for (x=0.25, 0.5 and 0.75). Our results agree well with the available data in the literature.

  19. Tracking lung tumour motion using a dynamically weighted optical flow algorithm and electronic portal imaging device

    Science.gov (United States)

    Teo, P. T.; Crow, R.; Van Nest, S.; Sasaki, D.; Pistorius, S.

    2013-07-01

    This paper investigates the feasibility and accuracy of using a computer vision algorithm and electronic portal images to track the motion of a tumour-like target from a breathing phantom. A multi-resolution optical flow algorithm that incorporates weighting based on the differences between frames was used to obtain a set of vectors corresponding to the motion between two frames. A global value representing the average motion was obtained by computing the average weighted mean from the set of vectors. The tracking accuracy of the optical flow algorithm as a function of the breathing rate and target visibility was investigated. Synthetic images with different contrast-to-noise ratios (CNR) were created, and motions were tracked. The accuracy of the proposed algorithm was compared against potentiometer measurements giving average position errors of 0.6 ± 0.2 mm, 0.2 ± 0.2 mm and 0.1 ± 0.1 mm with average velocity errors of 0.2 ± 0.2 mm s-1, 0.4 ± 0.3 mm s-1 and 0.6 ± 0.5 mm s-1 for 6, 12 and 16 breaths min-1 motions, respectively. The cumulative average position error reduces more rapidly with the greater number of breathing cycles present in higher breathing rates. As the CNR increases from 4.27 to 5.6, the average relative error approaches zero and the errors are less dependent on the velocity. When tracking a tumour on a patient's digitally reconstructed radiograph images, a high correlation was obtained between the dynamically weighted optical flow algorithm, a manual delineation process and a centroid tracking algorithm. While the accuracy of our approach is similar to that of other methods, the benefits are that it does not require manual delineation of the target and can therefore provide accurate real-time motion estimation during treatment.

  20. Consumer electronic optics: how small can a lens be: the case of panomorph lenses

    Science.gov (United States)

    Thibault, Simon; Parent, Jocelyn; Zhang, Hu; Du, Xiaojun; Roulet, Patrice

    2014-09-01

    In 2014, miniature camera modules are applied to a variety of applications such as webcam, mobile phone, automotive, endoscope, tablets, portable computers and many other products. Mobile phone cameras are probably one of the most challenging parts due to the need for smaller and smaller total track length (TTL) and optimized embedded image processing algorithms. As the technology is developing, higher resolution and higher image quality, new capabilities are required to fulfil the market needs. Consequently, the lens system becomes more complex and requires more optical elements and/or new optical elements. What is the limit? How small an injection molded lens can be? We will discuss those questions by comparing two wide angle lenses for consumer electronic market. The first lens is a 6.56 mm (TTL) panoramic (180° FOV) lens built in 2012. The second is a more recent (2014) panoramic lens (180° FOV) with a TTL of 3.80 mm for mobile phone camera. Both optics are panomorph lenses used with megapixel sensors. Between 2012 and 2014, the development in design and plastic injection molding allowed a reduction of the TTL by more than 40%. This TTL reduction has been achieved by pushing the lens design to the extreme (edge/central air and material thicknesses as well as lens shape). This was also possible due to a better control of the injection molding process and material (low birefringence, haze and thermal stability). These aspects will be presented and discussed. During the next few years, we don't know if new material will come or new process but we will still need innovative people and industries to push again the limits.