WorldWideScience

Sample records for surprisingly glucose increased

  1. Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid

    Directory of Open Access Journals (Sweden)

    Anders Lyngvi Fougner

    2016-04-01

    Full Text Available Rapid, accurate and robust glucose measurements are needed to make a safe artificial pancreas for the treatment of diabetes mellitus type 1 and 2. The present gold standard of continuous glucose sensing, subcutaneous (SC glucose sensing, has been claimed to have slow response and poor robustness towards local tissue changes such as mechanical pressure, temperature changes, etc. The present study aimed at quantifying glucose dynamics from central circulation to intraperitoneal (IP sensor sites, as an alternative to the SC location. Intraarterial (IA and IP sensors were tested in three anaesthetized non-diabetic pigs during experiments with intravenous infusion of glucose boluses, enforcing rapid glucose level excursions in the range 70--360 mg/dL (approximately 3.8--20 mmol/L. Optical interferometric sensors were used for IA and IP measurements. A first-order dynamic model with time delay was fitted to the data after compensating for sensor dynamics. Additionally, off-the-shelf Medtronic Enlite sensors were used for illustration of SC glucose sensing. The time delay in glucose excursions from central circulation (IA to IP sensor location was found to be in the range 0--26 s (median: 8.5 s, mean: 9.7 s, SD 9.5 s, and the time constant was found to be 0.5--10.2 min (median: 4.8 min, mean: 4.7 min, SD 2.9 min. IP glucose sensing sites have a substantially faster and more distinctive response than SC sites when sensor dynamics is ignored, and the peritoneal fluid reacts even faster to changes in intravascular glucose levels than reported in previous animal studies. This study may provide a benchmark for future, rapid IP glucose sensors.

  2. Glucose control in critically ill patients in 2009: no alarms and no surprises.

    Science.gov (United States)

    Pitrowsky, Melissa; Shinotsuka, Cassia Righy; Soares, Márcio; Salluh, Jorge Ibrain Figueira

    2009-08-01

    Glucose control is a major issue in critical care since landmark publications from the last decade leading to widespread use of strict glucose control in the clinical practice. Subsequent trials showed discordant results that lead to several questions and concerns about benefits and risks of implementing an intensive glucose control protocol. In the midst of all recent controversy, we propose that a new glycemic target -150mg/dl) should be aimed. This target glucose level could offer protection against the deleterious effects of hyperglycemia and at the same time keep patient's safety avoiding hypoglicemia. The article presents a critical review of the current literature on intensive insulin therapy in critically ill patients.

  3. Increased muscle glucose uptake during contractions

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Galbo, H; Richter, E A

    1984-01-01

    We reinvestigated the prevailing concept that muscle contractions only elicit increased muscle glucose uptake in the presence of a so-called "permissive" concentration of insulin (Berger et al., Biochem. J. 146: 231-238, 1975; Vranic and Berger, Diabetes 28: 147-163, 1979). Hindquarters from rats......-methylglucose uptake increased during contractions and glucose uptake was negative at rest and zero during contractions. An increase in muscle transport and uptake of glucose during contractions does not require the presence of insulin. Furthermore, glucose transport in contracting muscle may only increase if glycogen...

  4. Dexamethasone increases glucose cycling, but not glucose production, in healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Wajngot, A.; Khan, A.; Giacca, A.; Vranic, M.; Efendic, S. (Karolinska Hospital, Stockholm (Sweden))

    1990-11-01

    We established that measurement of glucose fluxes through glucose-6-phosphatase (G-6-Pase; hepatic total glucose output, HTGO), glucose cycling (GC), and glucose production (HGP), reveals early diabetogenic changes in liver metabolism. To elucidate the mechanism of the diabetogenic effect of glucocorticoids, we treated eight healthy subjects with oral dexamethasone (DEX; 15 mg over 48 h) and measured HTGO with (2-3H)glucose and HGP with (6-3H)glucose postabsorptively and during a 2-h glucose infusion (11.1 mumol.kg-1.min-1). (2-3H)- minus (6-3H)glucose equals GC. DEX significantly increased plasma glucose, insulin, C peptide, and HTGO, while HGP was unchanged. In controls and DEX, glucose infusion suppressed HTGO (82 vs. 78%) and HGP (87 vs. 91%). DEX increased GC postabsorptively (three-fold) P less than 0.005 and during glucose infusion (P less than 0.05) but decreased metabolic clearance and glucose uptake (Rd), which eventually normalized, however. Because DEX increased HTGO (G-6-Pase) and not HGP (glycogenolysis + gluconeogenesis), we assume that DEX increases HTGO and GC in humans by activating G-6-Pase directly, rather than by expanding the glucose 6-phosphate pool. Hyperglycemia caused by peripheral effects of DEX can also contribute to an increase in GC by activating glucokinase. Therefore, measurement of glucose fluxes through G-6-Pase and GC revealed significant early effects of DEX on hepatic glucose metabolism, which are not yet reflected in HGP.

  5. Canagliflozin Lowers Postprandial Glucose and Insulin by Delaying Intestinal Glucose Absorption in Addition to Increasing Urinary Glucose Excretion

    Science.gov (United States)

    Polidori, David; Sha, Sue; Mudaliar, Sunder; Ciaraldi, Theodore P.; Ghosh, Atalanta; Vaccaro, Nicole; Farrell, Kristin; Rothenberg, Paul; Henry, Robert R.

    2013-01-01

    OBJECTIVE Canagliflozin, a sodium glucose cotransporter (SGLT) 2 inhibitor, is also a low-potency SGLT1 inhibitor. This study tested the hypothesis that intestinal canagliflozin levels postdose are sufficiently high to transiently inhibit intestinal SGLT1, thereby delaying intestinal glucose absorption. RESEARCH DESIGN AND METHODS This two-period, crossover study evaluated effects of canagliflozin on intestinal glucose absorption in 20 healthy subjects using a dual-tracer method. Placebo or canagliflozin 300 mg was given 20 min before a 600-kcal mixed-meal tolerance test. Plasma glucose, 3H-glucose, 14C-glucose, and insulin were measured frequently for 6 h to calculate rates of appearance of oral glucose (RaO) in plasma, endogenous glucose production, and glucose disposal. RESULTS Compared with placebo, canagliflozin treatment reduced postprandial plasma glucose and insulin excursions (incremental 0- to 2-h area under the curve [AUC0–2h] reductions of 35% and 43%, respectively; P Canagliflozin reduced AUC RaO by 31% over 0 to 1 h (geometric means, 264 vs. 381 mg/kg; P canagliflozin increased RaO such that total AUC RaO over 0 to 6 h was Canagliflozin reduces postprandial plasma glucose and insulin by increasing UGE (via renal SGLT2 inhibition) and delaying RaO, likely due to intestinal SGLT1 inhibition. PMID:23412078

  6. Ontological Surprises

    DEFF Research Database (Denmark)

    Leahu, Lucian

    2016-01-01

    This paper investigates how we might rethink design as the technological crafting of human-machine relations in the context of a machine learning technique called neural networks. It analyzes Google’s Inceptionism project, which uses neural networks for image recognition. The surprising output of...... a hybrid approach where machine learning algorithms are used to identify objects as well as connections between them; finally, it argues for remaining open to ontological surprises in machine learning as they may enable the crafting of different relations with and through technologies....

  7. Surprise Trips

    DEFF Research Database (Denmark)

    Korn, Matthias; Kawash, Raghid; Andersen, Lisbet Møller

    We report on a platform that augments the natural experience of exploration in diverse indoor and outdoor environments. The system builds on the theme of surprises in terms of user expectations and finding points of interest. It utilizes physical icons as representations of users' interests and a...

  8. Glucose-deprivation increases thyroid cancer cells sensitivity to metformin.

    Science.gov (United States)

    Bikas, Athanasios; Jensen, Kirk; Patel, Aneeta; Costello, John; McDaniel, Dennis; Klubo-Gwiezdzinska, Joanna; Larin, Olexander; Hoperia, Victoria; Burman, Kenneth D; Boyle, Lisa; Wartofsky, Leonard; Vasko, Vasyl

    2015-12-01

    Metformin inhibits thyroid cancer cell growth. We sought to determine if variable glucose concentrations in medium alter the anti-cancer efficacy of metformin. Thyroid cancer cells (FTC133 and BCPAP) were cultured in high-glucose (20 mM) and low-glucose (5 mM) medium before treatment with metformin. Cell viability and apoptosis assays were performed. Expression of glycolytic genes was examined by real-time PCR, western blot, and immunostaining. Metformin inhibited cellular proliferation in high-glucose medium and induced cell death in low-glucose medium. In low-, but not in high-glucose medium, metformin induced endoplasmic reticulum stress, autophagy, and oncosis. At micromolar concentrations, metformin induced phosphorylation of AMP-activated protein kinase and blocked p-pS6 in low-glucose medium. Metformin increased the rate of glucose consumption from the medium and prompted medium acidification. Medium supplementation with glucose reversed metformin-inducible morphological changes. Treatment with an inhibitor of glycolysis (2-deoxy-d-glucose (2-DG)) increased thyroid cancer cell sensitivity to metformin. The combination of 2-DG with metformin led to cell death. Thyroid cancer cell lines were characterized by over-expression of glycolytic genes, and metformin decreased the protein level of pyruvate kinase muscle 2 (PKM2). PKM2 expression was detected in recurrent thyroid cancer tissue samples. In conclusion, we have demonstrated that the glucose concentration in the cellular milieu is a factor modulating metformin's anti-cancer activity. These data suggest that the combination of metformin with inhibitors of glycolysis could represent a new strategy for the treatment of thyroid cancer.

  9. A mechanistic study to increase understanding of titanium dioxide nanoparticles-increased plasma glucose in mice.

    Science.gov (United States)

    Hu, Hailong; Li, Li; Guo, Qian; Jin, Sanli; Zhou, Ying; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2016-09-01

    Titanium dioxide nanoparticle (TiO2 NP) is an authorized food additive. Previous studies determined oral administration of TiO2 NPs increases plasma glucose in mice via inducing insulin resistance. An increase in reactive oxygen species (ROS) has been considered the possible mechanism of increasing plasma glucose. However, persistently high plasma glucose is also a mechanism of increasing ROS. This study aims to explore whether TiO2 NPs increase plasma glucose via ROS. We found after oral administration of TiO2 NPs, an increase in ROS preceded an increase in plasma glucose. Subsequently, mice were treated with two antioxidants (resveratrol and vitamin E) at the same time as oral administration of TiO2 NPs. Results showed resveratrol and vitamin E reduced TiO2 NPs-increased ROS. An increase in plasma glucose was also inhibited. Further research showed resveratrol and vitamin E inhibited the secretion of TNF-α and IL-6, and the phosphorylation of JNK and p38 MAPK, resulting in improved insulin resistance. These results suggest TiO2 NPs increased ROS levels, and then ROS activated inflammatory cytokines and phosphokinases, and thus induced insulin resistance, resulting in an increase in plasma glucose. Resveratrol and vitamin E can reduce TiO2 NPs-increased ROS and thereby inhibit an increase in plasma glucose in mice.

  10. Charming surprise

    CERN Multimedia

    Antonella Del Rosso

    2011-01-01

    The CP violation in charm quarks has always been thought to be extremely small. So, looking at particle decays involving matter and antimatter, the LHCb experiment has recently been surprised to observe that things might be different. Theorists are on the case.   The study of the physics of the charm quark was not in the initial plans of the LHCb experiment, whose letter “b” stands for “beauty quark”. However, already one year ago, the Collaboration decided to look into a wider spectrum of processes that involve charm quarks among other things. The LHCb trigger allows a lot of these processes to be selected, and, among them, one has recently shown interesting features. Other experiments at b-factories have already performed the same measurement but this is the first time that it has been possible to achieve such high precision, thanks to the huge amount of data provided by the very high luminosity of the LHC. “We have observed the decay modes of t...

  11. Charming surprise

    CERN Multimedia

    Antonella Del Rosso

    2011-01-01

    The CP violation in charm quarks has always been thought to be extremely small. So, looking at particle decays involving matter and antimatter, the LHCb experiment has recently been surprised to observe that things might be different. Theorists are on the case. The study of the physics of the charm quark was not in the initial plans of the LHCb experiment, whose letter “b” stands for “beauty quark”. However, already one year ago, the Collaboration decided to look into a wider spectrum of processes that involve charm quarks among other things. The LHCb trigger allows a lot of these processes to be selected, and, among them, one has recently shown interesting features. Other experiments at b-factories have already performed the same measurement but this is the first time that it has been possible to achieve such high precision, thanks to the huge amount of data provided by the very high luminosity of the LHC. “We have observed the decay modes of the D0, a pa...

  12. Oxytocin increases extrapancreatic glucagon secretion and glucose production in pancreatectomized dogs

    Energy Technology Data Exchange (ETDEWEB)

    Altszuler, N.; Puma, F.; Winkler, B.; Fontan, N.; Saudek, C.D.

    1986-05-01

    Infusion of oxytocin into normal dogs increases plasma levels of insulin and glucagon and glucose production and uptake. To determine whether infused oxytocin also increases glucagon secretion from extrapancreatic sites, pancreatectomized dogs, off insulin of 18 hr, were infused with oxytocin and plasma glucagon, and glucose production and uptake were measured using the (6-/sup 3/H)glucose primer-infusion technique. The diabetic dogs, in the control period, had elevated plasma glucose and glucagon levels, an increased rate of glucose production, and a relative decrease in glucose uptake (decreased clearance). Infusion of oxytocin (500 ..mu..U/kg/min) caused a rise in plasma glucagon and glucose levels, increased glucose production, and further decreased glucose clearance. it is concluded that oxytocin can stimulate secretion of extrapancreatic glucagon, which contributes to the increased glucose production.

  13. PACSIN3 Overexpression Increases Adipocyte Glucose Transport through GLUT1

    Science.gov (United States)

    Roach, William; Plomann, Markus

    2007-01-01

    PACSIN family members regulate intracellular vesicle trafficking via their ability to regulate cytoskeletal rearrangement. These processes are known to be involved in trafficking of GLUT1 and GLUT4 in adipocytes. In this study PACSIN3 was observed to be the only PACSIN isoform that increases in expression during 3T3-L1 adipocyte differentiation. Overexpression of PACSIN3 in 3T3-L1 adipocytes caused an elevation of glucose uptake. Subcellular fractionation revealed that PACSIN3 overexpression elevated GLUT1 plasma membrane localization without effecting GLUT4 distribution. In agreement with this result, examination of GLUT exofacial presentation at the cell surface by photoaffinity labeling revealed significantly increased GLUT1, but not GLUT4, after overexpression of PACSIN3. These results establish a role for PACSIN3 in regulating glucose uptake in adipocytes via its preferential participation in GLUT1 trafficking. They are consistent with the proposal, which is supported by a recent study, that GLUT1, but not GLUT4, is predominantly endocytosed via the coated pit pathway in unstimulated 3T3-L1 adipocytes. PMID:17320047

  14. Leukemia inhibitory factor increases glucose uptake in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina; O'Neill, Hayley M; Kleinert, Maximilian;

    2015-01-01

    abolished LIF-induced glucose uptake and STAT3 Tyr705-P, whereas, incubation with LY-294002 and Wortmannin suppressed both basal and LIF-induced glucose uptake and Akt Ser473-P, indicating that JAK- and PI3-kinase signaling is required for LIF-stimulated glucose uptake. Incubation with Rapamycin and AZD8055...... indicated that Mammalian Target of Rapamycin complex (mTORC) 2, but not mTORC1, also is required for LIF-stimulated glucose uptake. In contrast to CNTF, LIF-stimulation did not alter palmitate oxidation. LIF-stimulated glucose uptake was maintained in EDL from obese insulin resistant mice, whereas soleus...

  15. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results of a randomized, placebo-controlled study.

    Science.gov (United States)

    Polidori, David; Sha, Sue; Mudaliar, Sunder; Ciaraldi, Theodore P; Ghosh, Atalanta; Vaccaro, Nicole; Farrell, Kristin; Rothenberg, Paul; Henry, Robert R

    2013-08-01

    Canagliflozin, a sodium glucose cotransporter (SGLT) 2 inhibitor, is also a low-potency SGLT1 inhibitor. This study tested the hypothesis that intestinal canagliflozin levels postdose are sufficiently high to transiently inhibit intestinal SGLT1, thereby delaying intestinal glucose absorption. This two-period, crossover study evaluated effects of canagliflozin on intestinal glucose absorption in 20 healthy subjects using a dual-tracer method. Placebo or canagliflozin 300 mg was given 20 min before a 600-kcal mixed-meal tolerance test. Plasma glucose, (3)H-glucose, (14)C-glucose, and insulin were measured frequently for 6 h to calculate rates of appearance of oral glucose (RaO) in plasma, endogenous glucose production, and glucose disposal. Compared with placebo, canagliflozin treatment reduced postprandial plasma glucose and insulin excursions (incremental 0- to 2-h area under the curve [AUC0-2h] reductions of 35% and 43%, respectively; P Canagliflozin reduced AUC RaO by 31% over 0 to 1 h (geometric means, 264 vs. 381 mg/kg; P canagliflozin increased RaO such that total AUC RaO over 0 to 6 h was Canagliflozin reduces postprandial plasma glucose and insulin by increasing UGE (via renal SGLT2 inhibition) and delaying RaO, likely due to intestinal SGLT1 inhibition.

  16. Canagliflozin Lowers Postprandial Glucose and Insulin by Delaying Intestinal Glucose Absorption in Addition to Increasing Urinary Glucose Excretion

    OpenAIRE

    Polidori, David; Sha, Sue; Mudaliar, Sunder; Ciaraldi, Theodore P.; Ghosh, Atalanta; Vaccaro, Nicole; Farrell, Kristin; Rothenberg, Paul; Henry, Robert R.

    2013-01-01

    OBJECTIVE Canagliflozin, a sodium glucose cotransporter (SGLT) 2 inhibitor, is also a low-potency SGLT1 inhibitor. This study tested the hypothesis that intestinal canagliflozin levels postdose are sufficiently high to transiently inhibit intestinal SGLT1, thereby delaying intestinal glucose absorption. RESEARCH DESIGN AND METHODS This two-period, crossover study evaluated effects of canagliflozin on intestinal glucose absorption in 20 healthy subjects using a dual-tracer method. Placebo or c...

  17. Canagliflozin Lowers Postprandial Glucose and Insulin by Delaying Intestinal Glucose Absorption in Addition to Increasing Urinary Glucose Excretion

    OpenAIRE

    Polidori, David; Sha, Sue; Mudaliar, Sunder; Ciaraldi, Theodore P.; Ghosh, Atalanta; Vaccaro, Nicole; Farrell, Kristin; Rothenberg, Paul; Henry, Robert R.

    2013-01-01

    OBJECTIVE Canagliflozin, a sodium glucose cotransporter (SGLT) 2 inhibitor, is also a low-potency SGLT1 inhibitor. This study tested the hypothesis that intestinal canagliflozin levels postdose are sufficiently high to transiently inhibit intestinal SGLT1, thereby delaying intestinal glucose absorption. RESEARCH DESIGN AND METHODS This two-period, crossover study evaluated effects of canagliflozin on intestinal glucose absorption in 20 healthy subjects using a dual-tracer method. Placebo or c...

  18. Moderate Glucose Control Is Associated With Increased Mortality Compared With Tight Glucose Control in Critically Ill Patients Without Diabetes

    Science.gov (United States)

    Hirshberg, Eliotte L.; Phillips, Gregory D.; Holmen, John; Stoddard, Gregory; Orme, James

    2013-01-01

    Background: Optimal glucose management in the ICU remains unclear. In 2009, many clinicians at Intermountain Healthcare selected a moderate glucose control (90-140 mg/dL) instead of tight glucose control (80-110 mg/dL). We hypothesized that moderate glucose control would affect patients with and without preexisting diabetes differently. Methods: We performed a retrospective cohort analysis of all patients treated with eProtocol-insulin from November 2006 to March 2011, stratifying for diabetes. We performed multivariate logistic regression for 30-day mortality with covariates of age, modified APACHE (Acute Physiology and Chronic Health Evaluation) II score, Charlson Comorbidity score, and target glucose. Results: We studied 3,529 patients in 12 different ICUs in eight different hospitals. Patients with diabetes had higher mean glucose (132 mg/dL vs 124 mg/dL) and greater glycemic variability (SD = 41 mg/dL vs 29 mg/dL) than did patients without diabetes (P < .01 for both comparisons). Tight glucose control was associated with increased frequency of moderate and severe hypoglycemia (30.3% and 3.6%) compared with moderate glucose control (14.3% and 2.0%, P < .01 for both). Multivariate analysis demonstrated that the moderate glucose target was independently associated with increased risk of mortality in patients without diabetes (OR, 1.36; 95% CI, 1.01-1.84; P = .05) but decreased risk of mortality in patients with diabetes (OR, 0.65; 95% CI, 0.45-0.93; P = .01). Conclusions: Moderate glucose control (90-140 mg/dL) may confer greater mortality in critically ill patients without diabetes compared with tight glucose control (80-110 mg/dL). A single glucose target does not appear optimal for all critically ill patients. These data have important implications for the design of future interventional trials as well as for the glycemic management of critically ill patients. PMID:23238456

  19. Controle glicêmico em terapia intensiva 2009: sem sustos e sem surpresas Glucose control in critically ill patients in 2009: no alarms and no surprises

    Directory of Open Access Journals (Sweden)

    Melissa Pitrowsky

    2009-08-01

    Full Text Available Na última década o controle glicêmico em pacientes críticos foi alvo de grande polêmica. Apesar de ter sido amplamente implementado na prática médica, os grandes estudos randomizados controlados obtiveram resultados bastante conflitantes, pois além de controlar a hiperglicemia, foi identificada a necessidade de se evitar os riscos da hipoglicemia, evento potencialmente grave nessa população. Dessa forma, o presente artigo se propõe a rever e avaliar de forma crítica os estudos publicados sobre controle glicêmico em terapia intensiva, propondo um novo alvo glicêmico (150 mg / dl que seja capaz de minimizar os malefícios da hiperglicemia e ao mesmo tempo minimizar os riscos potenciais do uso de insulina de forma intensiva.Glucose control is a major issue in critical care since landmark publications from the last decade leading to widespread use of strict glucose control in the clinical practice. Subsequent trials showed discordant results that lead to several questions and concerns about benefits and risks of implementing an intensive glucose control protocol. In the midst of all recent controversy, we propose that a new glycemic target -150mg/dl should be aimed. This target glucose level could offer protection against the deleterious effects of hyperglycemia and at the same time keep patient's safety avoiding hypoglicemia. The article presents a critical review of the current literature on intensive insulin therapy in critically ill patients.

  20. Tolerance by surprise: evidence for a generalized reduction in prejudice and increased egalitarianism through novel category combination.

    Science.gov (United States)

    Vasiljevic, Milica; Crisp, Richard J

    2013-01-01

    Prejudices towards different groups are interrelated, but research has yet to find a way to promote tolerance towards multiple outgroups. We devise, develop and implement a new cognitive intervention for achieving generalized tolerance based on scientific studies of social categorization. In five laboratory experiments and one field study the intervention led to a reduction of prejudice towards multiple outgroups (elderly, disabled, asylum seekers, HIV patients, gay men), and fostered generalized tolerance and egalitarian beliefs. Importantly, these effects persisted outside the laboratory in a context marked by a history of violent ethnic conflict, increasing trust and reconciliatory tendencies towards multiple ethnic groups in the Former Yugoslav Republic of Macedonia. We discuss the implications of these findings for intervention strategies focused on reducing conflict and promoting peaceful intergroup relations.

  1. Increased glucocorticoid sensitivity in pancreatic beta-cells : Effects on glucose metabolism and insulin release

    OpenAIRE

    Davani, Behrous

    2003-01-01

    Type 2 diabetes mellitus (T2DM) is characterized by three pathological alterations: (1) insulin resistance in peripheral tissues, (2) increased hepatic glucose production and (3) impaired insulin secretion from the pancreatic beta-cells. Glucocorticoids (GCs) exert profound effects on glucose homeostasis. They decrease glucose uptake and increase hepatic glucose production. In addition, they may directly inhibit insulin release. The main aim of this thesis was to investigate...

  2. High-normal fasting glucose levels are associated with increased prevalence of impaired glucose tolerance in obese children.

    Science.gov (United States)

    Grandone, A; Amato, A; Luongo, C; Santoro, N; Perrone, L; del Giudice, E Miraglia

    2008-12-01

    The natural history of impaired glucose tolerance (IGT) and Type 2 diabetes among obese children is not clear. Although the cut-off for impaired fasting glucose (IFG) has recently been changed from 110 (6.1 mmol/l) to 100 mg/dl (5.6 mmol/l), it does not seem a reliable way to find all subjects with impaired glucose homeostasis. The aim of our study was to determine whether high-normal fasting glucose level could predict the occurrence of IGT and metabolic syndrome. Three hundred and twenty-three Italian obese children and adolescents were included in the study (176 females, mean age 11+/-2.9 yr; mean body mass index z-score: 3+/-0.6). Waist circumference, serum glucose, insulin, triglyceride, cholesterol HDL, blood pressure were evaluated and an oral glucose tolerance test (OGTT) was performed. The prevalence of IFG and IGT were respectively 1.5% (5 subjects) and 5% (18 patients); no diabetic patients were found. Metabolic syndrome was diagnosed in 20% of patients. Fasting glycemia values youths. Interestingly high-normal fasting plasma glucose levels constitute an independent risk factor for IGT among obese children and adolescents; therefore, this very easy-to-use parameter may help to identify obese patients at increased risk of diabetes or at least could suggest in which subjects to perform an OGTT.

  3. Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle

    DEFF Research Database (Denmark)

    Glund, Stephan; Deshmukh, Atul; Long, Yun Chau

    2007-01-01

    suggested to promote insulin-mediated glucose utilization. In this study, we determined the direct effects of IL-6 on glucose transport and signal transduction in human skeletal muscle. Skeletal muscle strips were prepared from vastus lateralis biopsies obtained from 22 healthy men. Muscle strips were...... incubated with or without IL-6 (120 ng/ml). We found that IL-6 increased glucose transport in human skeletal muscle 1.3-fold (P ... exposure increases glucose metabolism in resting human skeletal muscle. Insulin-stimulated glucose transport and insulin signaling were unchanged after IL-6 exposure....

  4. Pulsatile hyperglucagonemia fails to increase hepatic glucose production in normal man

    Energy Technology Data Exchange (ETDEWEB)

    Paolisso, G.; Scheen, A.J.; Luyckx, A.S.; Lefebvre, P.J.

    1987-01-01

    To study the metabolic effects of pulsatile glucagon administration, six male volunteers were submitted to a 260-min glucose-controlled glucose intravenous infusion using the Biostator. The endogenous secretion of the pancreatic hormones was inhibited by somatostatin, basal insulin secretion was replaced by a continuous insulin infusion, and glucagon was infused intravenously in two conditions at random: either continuously or intermittently. Blood glucose levels and glucose infusion rate were monitored continuously by the Biostator, and classical methodology using a D-(3-/sup 3/H)glucose infusion allowed the authors to study glucose turnover. While basal plasma glucagon levels were similar in both conditions, they plateaued at 189 +/- 38 pg ml/sup -1/ during continuous infusion and varied between 95 and 501 pg x ml/sup -1/ during pulsatile infusion. When compared with continuous administration, pulsatile glucagon infusion 1) initially induced a similar increase in endogenous (hepatic) glucose production and blood glucose, 2) did not prevent the so-called evanescent effect of glucagon on blood glucose, and 3) after 3 h tended to reduce rather than increase hepatic glucose production. In conclusion, in vivo pulsatile hyperglucanemia in normal man fails to increase hepatic glucose production.

  5. Increasing Thermal Stability of Gelatin by UV-Induced Cross-Linking with Glucose

    Directory of Open Access Journals (Sweden)

    Evan M. Masutani

    2014-01-01

    Full Text Available The effects of ultraviolet (254 nm radiation on a hydrated gelatin-glucose matrix were investigated for the development of a physiologically thermostable substrate for potential use in cell scaffold production. Experiments conducted with a differential scanning calorimeter indicate that ultraviolet irradiation of gelatin-glucose hydrogels dramatically increases thermal stability such that no melting is observed at temperatures of at least 90°C. The addition of glucose significantly increases the yield of cross-linked product, suggesting that glucose has a role in cross-link formation. Comparisons of lyophilized samples using scanning electron microscopy show that irradiated materials have visibly different densities.

  6. Paradoxical effects of increased expression of PGC-1α on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism

    Science.gov (United States)

    Choi, Cheol Soo; Befroy, Douglas E.; Codella, Roberto; Kim, Sheene; Reznick, Richard M.; Hwang, Yu-Jin; Liu, Zhen-Xiang; Lee, Hui-Young; Distefano, Alberto; Samuel, Varman T.; Zhang, Dongyan; Cline, Gary W.; Handschin, Christoph; Lin, Jiandie; Petersen, Kitt F.; Spiegelman, Bruce M.; Shulman, Gerald I.

    2008-01-01

    Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α has been shown to play critical roles in regulating mitochondria biogenesis, respiration, and muscle oxidative phenotype. Furthermore, reductions in the expression of PGC-1α in muscle have been implicated in the pathogenesis of type 2 diabetes. To determine the effect of increased muscle-specific PGC-1α expression on muscle mitochondrial function and glucose and lipid metabolism in vivo, we examined body composition, energy balance, and liver and muscle insulin sensitivity by hyperinsulinemic-euglycemic clamp studies and muscle energetics by using 31P magnetic resonance spectroscopy in transgenic mice. Increased expression of PGC-1α in muscle resulted in a 2.4-fold increase in mitochondrial density, which was associated with an ≈60% increase in the unidirectional rate of ATP synthesis. Surprisingly, there was no effect of increased muscle PGC-1α expression on whole-body energy expenditure, and PGC-1α transgenic mice were more prone to fat-induced insulin resistance because of decreased insulin-stimulated muscle glucose uptake. The reduced insulin-stimulated muscle glucose uptake could most likely be attributed to a relative increase in fatty acid delivery/triglyceride reesterfication, as reflected by increased expression of CD36, acyl-CoA:diacylglycerol acyltransferase1, and mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase, that may have exceeded mitochondrial fatty acid oxidation, resulting in increased intracellular lipid accumulation and an increase in the membrane to cytosol diacylglycerol content. This, in turn, caused activation of PKCθ, decreased insulin signaling at the level of insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, and skeletal muscle insulin resistance. PMID:19066218

  7. Metabolic alterations in the human erythrocyte produced by increases in glucose concentration

    Science.gov (United States)

    Travis, Susan F.; Morrison, Anthony D.; Clements, Rex S.; Winegrad, Albert I.; Oski, Frank A.

    1971-01-01

    Human erythrocytes incubated in medium containing 50 mM glucose have increased intracellular sorbitol and fructose concentrations as compared with samples incubated with 5 mM glucose. Increased medium glucose concentration did not significantly alter total glucose consumption or lactate production. However, the intracellular lactate:pyruvate ratio rose, the concentrations of fructose diphosphate, and triose phosphates increased, and the 2,3-diphosphoglycerate concentration fell. [14C]O2 production from glucose-1-14C also increased with increased medium glucose concentration. These changes are believed to reflect changes in the redox states of the diphosphopyridine nucleotide/reduced form of diphosphopyridine nucleotide (NAD/NADH) and nicotinamide—adenine dinucleotide phosphate/reduced form of nicotinamide—adenine dinucleotide phosphate (NADP/NADPH) couples resulting from increased activity of the polyol pathway. Addition of pyruvate to the incubation media prevented these changes. These studies illustrate that an increase in the red cell's normal substrate, glucose, can produce changes in red cell metabolism. PMID:4398937

  8. Energized by love: thinking about romantic relationships increases positive affect and blood glucose levels.

    Science.gov (United States)

    Stanton, Sarah C E; Campbell, Lorne; Loving, Timothy J

    2014-10-01

    We assessed the impact of thinking of a current romantic partner on acute blood glucose responses and positive affect over a short period of time. Participants in romantic relationships were randomly assigned to reflect on their partner, an opposite-sex friend, or their morning routine. Blood glucose levels were assessed prior to reflection, as well as at 10 and 25 min postreflection. Results revealed that individuals in the routine and friend conditions exhibited a decline in glucose over time, whereas individuals in the partner condition did not exhibit this decline (rather, a slight increase) in glucose over time. Reported positive affect following reflection was positively associated with increases in glucose, but only for individuals who reflected on their partner, suggesting this physiological response reflects eustress. These findings add to the literature on eustress in relationships and have implications for relationship processes.

  9. Hepatic autoregulation: response of glucose production and gluconeogenesis to increased glycogenolysis.

    Science.gov (United States)

    Staehr, Peter; Hother-Nielsen, Ole; Beck-Nielsen, Henning; Roden, Michael; Stingl, Harald; Holst, Jens J; Jones, Paul K; Chandramouli, Visvanathan; Landau, Bernard R

    2007-05-01

    The effect of increased glycogenolysis, simulated by galactose's conversion to glucose, on the contribution of gluconeogenesis (GNG) to hepatic glucose production (GP) was determined. The conversion of galactose to glucose is by the same pathway as glycogen's conversion to glucose, i.e., glucose 1-phosphate --> glucose 6-phosphate --> glucose. Healthy men (n = 7) were fasted for 44 h. At 40 h, hepatic glycogen stores were depleted. GNG then contributed approximately 90% to a GP of approximately 8 micromol.kg(-1).min(-1). Galactose, 9 g/h, was infused over the next 4 h. The contribution of GNG to GP declined from approximately 90% to 65%, i.e., by approximately 2 micromol.kg(-1).min(-1). The rate of galactose conversion to blood glucose, measured by labeling the infused galactose with [1-(2)H]galactose (n = 4), was also approximately 2 micromol.kg(-1).min(-1). The 41st h GP rose by approximately 1.5 micromol.kg(-1).min(-1) and then returned to approximately 9 micromol.kg(-1).min(-1), while plasma glucose concentration increased from approximately 4.5 to 5.3 mM, accompanied by a rise in plasma insulin concentration. Over 50% of the galactose infused was accounted for in blood glucose and hepatic glycogen formation. Thus an increase in the rate of GP via the glycogenolytic pathway resulted in a concomitant decrease in the rate of GP via GNG. While the compensatory response to the galactose administration was not complete, since GP increased, hepatic autoregulation is operative in healthy humans during prolonged fasting.

  10. More Supernova Surprises

    Science.gov (United States)

    2010-09-24

    SEP 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE More Supernova Surprises 5a. CONTRACT NUMBER 5b. GRANT...PERSPECTIVES More Supernova Surprises ASTRONOMY J. Martin Laming Spectroscopic observations of the supernova SN1987A are providing a new window into high...a core-collapse supernova ) have stretched and motivated research that has expanded our knowledge of astrophysics. The brightest such event in

  11. The surprisingly small but increasing role of international agricultural trade on the European Union’s dependence on mineral phosphorus fertiliser

    Science.gov (United States)

    Nesme, Thomas; Roques, Solène; Metson, Geneviève S.; Bennett, Elena M.

    2016-02-01

    Phosphorus (P) is subject to global management challenges due to its importance to both food security and water quality. The European Union (EU) has promoted policies to limit fertiliser over-application and protect water quality for more than 20 years, helping to reduce European P use. Over this time period, the EU has, however, become more reliant on imported agricultural products. These imported products require fertiliser to be used in distant countries to grow crops that will ultimately feed European people and livestock. As such, these imports represent a displacement of European P demand, possibly allowing Europe to decrease its apparent P footprint by moving P use to locations outside the EU. We investigated the effect of EU imports on the European P fertiliser footprint to better understand whether the EU’s decrease in fertiliser use over time resulted from P demand being ‘outsourced’ to other countries or whether it truly represented a decline in P demand. To do this, we quantified the ‘virtual P flow’ defined as the amount of mineral P fertiliser applied to agricultural soils in non-EU countries to support agricultural product imports to the EU. We found that the EU imported a virtual P flow of 0.55 Tg P/yr in 1995 that, surprisingly, decreased to 0.50 Tg P/yr in 2009. These results were contrary to our hypothesis that trade increases would be used to help the EU reduce its domestic P fertiliser use by outsourcing its P footprint abroad. Still, the contribution of virtual P flows to the total P footprint of the EU has increased by 40% from 1995 to 2009 due to a dramatic decrease in domestic P fertiliser use in Europe: in 1995, virtual P was equivalent to 32% of the P used as fertiliser domestically to support domestic consumption but jumped to 53% in 2009. Soybean and palm tree products from South America and South East Asia contributed most to the virtual P flow. These results demonstrate that, although policies in the EU have successfully

  12. High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    Full Text Available Astrocytes are macroglial cells that have a crucial role in development of the retinal vasculature and maintenance of the blood-retina-barrier (BRB. Diabetes affects the physiology and function of retinal vascular cells including astrocytes (AC leading to breakdown of BRB. However, the detailed cellular mechanisms leading to retinal AC dysfunction under high glucose conditions remain unclear. Here we show that high glucose conditions did not induce the apoptosis of retinal AC, but instead increased their rate of DNA synthesis and adhesion to extracellular matrix proteins. These alterations were associated with changes in intracellular signaling pathways involved in cell survival, migration and proliferation. High glucose conditions also affected the expression of inflammatory cytokines in retinal AC, activated NF-κB, and prevented their network formation on Matrigel. In addition, we showed that the attenuation of retinal AC migration under high glucose conditions, and capillary morphogenesis of retinal endothelial cells on Matrigel, was mediated through increased oxidative stress. Antioxidant proteins including heme oxygenase-1 and peroxiredoxin-2 levels were also increased in retinal AC under high glucose conditions through nuclear localization of transcription factor nuclear factor-erythroid 2-related factor-2. Together our results demonstrated that high glucose conditions alter the function of retinal AC by increased production of inflammatory cytokines and oxidative stress with significant impact on their proliferation, adhesion, and migration.

  13. Lipogenesis in Huh7 cells is promoted by increasing the fructose: Glucose molar ratio

    Institute of Scientific and Technical Information of China (English)

    Fernando; Windemuller; Jiliu; Xu; Simon; S; Rabinowitz; M; Mahmood; Hussain; Steven; M; Schwarz

    2016-01-01

    AIM: To determine whether hepatocyte lipogenesis, in an in vitro cell culture model, is modulated by adjusting culture media monosaccharide content and concentration.METHODS: Hepatocytes(Huh7), demonstrating glucose and fructose uptake and lipid biosynthesis, were incubated in culture media containing either glucose alone(0.65-0.72 mmol/L) or isosmolar monosaccharide(0.72 mmol/L) comprising fructose:glucose(F:G) molar ratios ranging from 0.58-0.67. Following a 24-h incubation, cells were harvested and analyzed for total protein, triglyceride(TG) and cholesterol(C) content. Significant differences(P < 0.05) among groups were determined using analysis of variance followed by Dunnett’s test for multiple comparisons.RESULTS: After a 24 h incubation period, Huh7 cell mass and viability among all experimental groups were not different. Hepatocytes cultured with increasing concentrations of glucose alone did not demonstrate a significant change either in C or in TG content. However, when the culture media contained increasing F:G molar ratios, at a constant total monosaccharideconcentration, synthesis both of C and of TG increased significantly [F:G ratio = 0.58, C/protein(μg/μg) = 0.13;F:G = 0.67, C/protein = 0.18, P < 0.01; F:G ratio = 0.58,TG/protein(μg/μg) = 0.06; F:G ratio = 0.67, TG/protein= 0.11, P < 0.01]. CONCLUSION: In an in vitro hepatocyte model, glucose or fructose plus glucose support total cell mass and lipogenic activity. Increasing the fructose:glucose molar ratio(but not glucose alone) enhances triglyceride and cholesterol synthesis. These investigations demonstrate fructose promotes hepatocellular lipogenesis, and they provide evidence supporting future, in vivo studies of fructose’s role in the development of hepatic steatosis and non-alcoholic fatty liver disease.

  14. Correlation of reversely increased level of plasma glucose during pregnancy to the pregnancy outcome

    Directory of Open Access Journals (Sweden)

    Xiao-ya SHEN

    2017-02-01

    Full Text Available Objective To explore the correlation of the reversely increased results of 75g oral glucose tolerance test (OGTT during pregnancy to the pregnancy outcome, so as to provide a reliable theoretical basis of the early intervention for the pregnant women with high plasma glucose. Methods The clinical data of 461 cases were retrospectively analyzed. Patients were chosen from the pregnant women undergoing routine antenatal examination in our hospital during 2014. According to the results of 75g OGTT, 226 patients were analyzed as the observation group, in whom the level of postprandial 2-hour plasma glucose was higher than that of postprandial 1-hour plasma glucose. Meanwhile 235 pregnant women with or without gestational diabetes mellitus (GDM were randomly selected as the control group. Results The levels of fasting plasma glucose and 1-hour postprandial plasma glucose were lower, but those of 2-hour postprandial plasma glucose was higher in observation group than in control group (P0.05 in the incidences of polyhydramnios, oligohydramnios, fetal growth restriction (FGR, premature labor (PTL, pregnancy induced hypertension (PIH, complicated with premature rupture of membrane (PROM, intrauterine fetal death (IUFD and non scar uterus cesarean section rate (CSR. Compared with the observation group, the rates of neonatal dysplasia and neonatal asphyxia and the newborn transfer rate were lower in the control group, of which the newborn transfer rate was statistically different (P<0.01. Conclusions There might be a delayed plasma glucose metabolism in the patients with reversely increased result of 75g OGTT during pregnancy, which may affect the long-term prognosis of the newborn. Therefore, more attention should be paid to such patients with reversely increased result of 75g OGTT. DOI: 10.11855/j.issn.0577-7402.2017.01.09

  15. Metabolites produced by probiotic Lactobacilli rapidly increase glucose uptake by Caco-2 cells

    Directory of Open Access Journals (Sweden)

    Buddington Randal K

    2010-01-01

    Full Text Available Abstract Background Although probiotic bacteria and their metabolites alter enterocyte gene expression, rapid, non-genomic responses have not been examined. The present study measured accumulation of tracer (2 μM glucose by Caco-2 cells after exposure for 10 min or less to a chemically defined medium (CDM with different monosaccharides before and after anaerobic culture of probiotic Lactobacilli. Results Growth of L. acidophilus was supported by CDM with 110 mM glucose, fructose, and mannose, but not with arabinose, ribose, and xylose or the sugar-free CDM. Glucose accumulation was reduced when Caco-2 cells were exposed for 10 min to sterile CDM with glucose (by 92%, mannose (by 90%, fructose (by 55%, and ribose (by 16%, but not with arabinose and xylose. Exposure of Caco-2 cells for 10 min to bacteria-free supernatants prepared after exponential (48 h and stationary (72 h growth phases of L. acidophilus cultured in CDM with 110 mM fructose increased glucose accumulation by 83% and 45%, respectively; exposure to a suspension of the bacteria had no effect. The increase in glucose accumulation was diminished by heat-denaturing the supernatant, indicating the response of Caco-2 cells is triggered by as yet unknown heat labile bacterial metabolites, not by a reduction in CDM components that decrease glucose uptake. Supernatants prepared after anaerobic culture of L. gasseri, L. amylovorus, L. gallinarum, and L. johnsonii in the CDM with fructose increased glucose accumulation by 83%, 32%, 27%, and 14%, respectively. Conclusion The rapid, non-genomic upregulation of SGLT1 by bacterial metabolites is a heretofore unrecognized interaction between probiotics and the intestinal epithelium.

  16. IS IMPAIRED FASTING GLUCOSE ASSOCIATED WITH INCREASED RISK OF CORONARY ATEROSCLEROSIS?

    Directory of Open Access Journals (Sweden)

    M. Hashemi

    2008-04-01

    Full Text Available Impaired fasting glucose identifies individuals at high risk of progression to diabetes but the role of IFG as a coronary artery disease risk factor, independent of its progression to diabetes and its association with other coronary artery disease risk factors ,is unclear. A cross-sectional study was conducted to evaluate the hypothesis that impaired fasting glucose increased the likelihood of atherosclerotic plaque formation. Blood chemistry data as well as traditional coronary artery disease risk factors from 812 patients referred for coronary angiography to heart centers in Shahid- Chamran and Sina hospital, Isfahan, Iran were recorded. The population were stratified into three groups according to American Diabetes Association criteria: normal fasting glucose (n=608, impaired fasting glucose(n=92 and diabetes mellitus(n=112.We use extent, Vessel and stenosis scores to indicate the coronary artery involvement. KrusKal-Wallis test showed that the means of extent, Vessel and stenosis scores are not significantly different between three groups(P> 0.05. Multivariate linear regression analysis, using extent score of coronary artery disease as dependent variable and traditional risk factors and impaired fasting glucose as independent variables did not show any significant difference either. Our data suggested that impaired fasting glucose is not associated with increased risk of coronary atherosclerosis.

  17. A PERITONEAL DIALYSIS REGIMEN LOW IN GLUCOSE AND GLUCOSE DEGRADATION PRODUCTS RESULTS IN INCREASED CANCER ANTIGEN 125 AND PERITONEAL ACTIVATION

    NARCIS (Netherlands)

    le Poole, Caatje Y.; Welten, Angelique G. A.; ter Wee, Piet M.; Paauw, Nanne J.; Djorai, Amina N.; Valentijn, Rob M.; Beelen, Robert H. J.; van den Born, Jacob; van Ittersum, Frans J.

    2012-01-01

    Background: Glucose and glucose degradation products (GDPs) in peritoneal dialysis fluids (PDFs) are both thought to mediate progressive peritoneal worsening. Methods: In a multicenter, prospective, randomized crossover study, incident continuous ambulatory peritoneal dialysis patients were treated

  18. Carob pulp preparation rich in insoluble dietary fibre and polyphenols increases plasma glucose and serum insulin responses in combination with a glucose load in humans.

    Science.gov (United States)

    Gruendel, Sindy; Otto, Baerbel; Garcia, Ada L; Wagner, Karen; Mueller, Corinna; Weickert, Martin O; Heldwein, Walter; Koebnick, Corinna

    2007-07-01

    Dietary fibre consumption is associated with improved glucose homeostasis. In contrast, dietary polyphenols have been suggested to exert both beneficial and detrimental effects on glucose and insulin metabolism. Recently, we reported that a polyphenol-rich insoluble dietary fibre preparation from carob pulp (carob fibre) resulted in lower postprandial acylated ghrelin levels after a liquid meal challenge test compared with a control meal without supplementation. The effects may, however, differ when a different food matrix is used. Thus, we investigated the effects of carob fibre on glucose, insulin and ghrelin responses in healthy humans in combination with a glucose load. In a randomized single-blind cross-over study involving twenty healthy subjects (aged 22-62 years), plasma glucose, total and acylated ghrelin, and serum insulin were repeatedly assessed before and after the ingestion of 200 ml water with 50 g glucose and 0, 5, 10 or 20 g carob fibre over a period of 180 min. The intake of 5 and 10 g carob fibre increased the plasma glucose by 47 % and 64 % (P carob-enriched glucose solution. Total ghrelin decreased only after 10 g carob fibre (P carob fibre, administered within a water-glucose solution, increases postprandial glucose and insulin responses, suggesting a deterioration in glycaemic control.

  19. Three hours of intermittent hypoxia increases circulating glucose levels in healthy adults.

    Science.gov (United States)

    Newhouse, Lauren P; Joyner, Michael J; Curry, Timothy B; Laurenti, Marcello C; Man, Chiara Dalla; Cobelli, Claudio; Vella, Adrian; Limberg, Jacqueline K

    2017-01-01

    An independent association exists between sleep apnea and diabetes. Animal models suggest exposure to intermittent hypoxia, a consequence of sleep apnea, results in altered glucose metabolism and fasting hyperglycemia. However, it is unknown if acute exposure to intermittent hypoxia increases glucose concentrations in nondiabetic humans. We hypothesized plasma glucose would be increased from baseline following 3 h of intermittent hypoxia in healthy humans independent of any effect on insulin sensitivity. Eight (7M/1F, 21-34 years) healthy subjects completed two study visits randomized to 3 h of intermittent hypoxia or continuous normoxia, followed by an oral glucose tolerance test. Intermittent hypoxia consisted of 25 hypoxic events per hour where oxygen saturation (SpO2) was significantly reduced (Normoxia: 97 ± 1%, Hypoxia: 90 ± 2%, P  0.05). In contrast, circulating glucose concentrations were increased after 3 h of intermittent hypoxia when compared to baseline (5.0 ± 0.2 vs. 5.3 ± 0.2 mmol/L, P = 0.01). There were no detectable changes in insulin sensitivity following intermittent hypoxia when compared to continuous normoxia, as assessed by the oral glucose tolerance test (P > 0.05). Circulating glucose is increased after 3 h of intermittent hypoxia in healthy humans, independent of any lasting changes in insulin sensitivity. These novel findings could explain, in part, the high prevalence of diabetes in patients with sleep apnea and warrant future studies to identify underlying mechanisms.

  20. Plasma insulin levels are increased by sertraline in rats under oral glucose overload

    Directory of Open Access Journals (Sweden)

    Gomez R.

    2001-01-01

    Full Text Available Recognition and control of depression symptoms are important to increase patient compliance with treatment and to improve the quality of life of diabetic patients. Clinical studies indicate that selective serotonin reuptake inhibitors (SSRI are better antidepressants for diabetic patients than other drugs. However, preclinical trials have demonstrated that not all SSRI reduce plasma glucose levels. In fact, fluoxetine increases and sertraline decreases glycemia in diabetic and non-diabetic rats. In the present study we evaluated plasma insulin levels during fasting and after glucose overload after treatment with sertraline. Adult male Wistar rats were fasted and treated with saline or 30 mg/kg sertraline and submitted or not to glucose overload (N = 10. Blood was collected and plasma insulin was measured. The mean insulin levels were: fasting group: 25.9 ± 3.86, sertraline + fasting group: 31.10 ± 2.48, overload group: 34.1 ± 3.40, and overload + sertraline group: 43.73 ± 5.14 µU/ml. Insulinemia was significantly increased in the overload + sertraline group. There were no differences between the other groups. No difference in glucose/insulin ratios could be detected between groups. The overload + sertraline group was the only one in which a significant number of individuals exceeded the upper confidence limit of insulin levels. This study demonstrates that sertraline increases glucose-stimulated insulin secretion without any change in peripheral insulin sensitivity.

  1. High environmental temperature increases glucose requirement in the developing chicken embryo.

    Directory of Open Access Journals (Sweden)

    Roos Molenaar

    Full Text Available Environmental conditions during the perinatal period influence metabolic and developmental processes in mammals and avian species, which could impact pre- and postnatal survival and development. The current study investigated the effect of eggshell temperature (EST on glucose metabolism in broiler chicken embryos. Broiler eggs were incubated at a high (38.9°C or normal (37.8°C EST from day 10.5 of incubation onward and were injected with a bolus of [U-(13C]glucose in the chorio-allantoic fluid at day 17.5 of incubation. After [U-(13C]glucose administration, (13C enrichment was determined in intermediate pools and end-products of glucose metabolism. Oxidation of labeled glucose occurred for approximately 3 days after injection. Glucose oxidation was higher in the high than in the normal EST treatment from day 17.6 until 17.8 of incubation. The overall recovery of (13CO2 tended to be 4.7% higher in the high than in the normal EST treatment. An increase in EST (38.9°C vs 37.8°C increased (13C enrichment in plasma lactate at day 17.8 of incubation and (13C in hepatic glycogen at day 18.8 of incubation. Furthermore, high compared to normal EST resulted in a lower yolk-free body mass at day 20.9 (-2.74 g and 21.7 (-3.81 g of incubation, a lower hepatic glycogen concentration at day 18.2 (-4.37 mg/g and 18.8 (-4.59 mg/g of incubation, and a higher plasma uric acid concentration (+2.8 mg/mL/+43% at day 21.6 of incubation. These results indicate that the glucose oxidation pattern is relatively slow, but the intensity increased consistently with an increase in developmental stage of the embryo. High environmental temperatures in the perinatal period of chicken embryos increased glucose oxidation and decreased hepatic glycogen prior to the hatching process. This may limit glucose availability for successful hatching and could impact body development, probably by increased gluconeogenesis from glucogenic amino acids to allow anaerobic glycolysis.

  2. Increased adiposity, dysregulated glucose metabolism and systemic inflammation in Galectin-3 KO mice.

    Directory of Open Access Journals (Sweden)

    Jingbo Pang

    Full Text Available Obesity and type 2 diabetes are associated with increased production of Galectin-3 (Gal-3, a protein that modulates inflammation and clearance of glucose adducts. We used Lean and Diet-induced Obese (DIO WT and Gal-3 KO mice to investigate the role of Gal-3 in modulation of adiposity, glucose metabolism and inflammation. Deficiency of Gal-3 lead to age-dependent development of excess adiposity and systemic inflammation, as indicated by elevated production of acute-phase proteins, number of circulating pro-inflammatory Ly6C(high monocytes and development of neutrophilia, microcytic anemia and thrombocytosis in 20-week-old Lean and DIO male Gal-3 KO mice. This was associated with impaired fasting glucose, heightened response to a glucose tolerance test and reduced adipose tissue expression of adiponectin, Gal-12, ATGL and PPARγ, in the presence of maintained insulin sensitivity and hepatic expression of gluconeogenic enzymes in 20-week-old Gal-3 KO mice compared to their diet-matched WT controls. Expression of PGC-1α and FGF-21 in the liver of Lean Gal-3 KO mice was comparable to that observed in DIO animals. Impaired fasting glucose and altered responsiveness to a glucose load preceded development of excess adiposity and systemic inflammation, as demonstrated in 12-week-old Gal-3 KO mice. Finally, a role for the microflora in mediating the fasting hyperglycemia, but not the excessive response to a glucose load, of 12-week-old Gal-3 KO mice was demonstrated by administration of antibiotics. In conclusion, Gal-3 is an important modulator of glucose metabolism, adiposity and inflammation.

  3. Surprises with Nonrelativistic Naturalness

    CERN Document Server

    Horava, Petr

    2016-01-01

    We explore the landscape of technical naturalness for nonrelativistic systems, finding surprises which challenge and enrich our relativistic intuition already in the simplest case of a single scalar field. While the immediate applications are expected in condensed matter and perhaps in cosmology, the study is motivated by the leading puzzles of fundamental physics involving gravity: The cosmological constant problem and the Higgs mass hierarchy problem.

  4. Chronic glucose infusion causes sustained increases in tubular sodium reabsorption and renal blood flow in dogs.

    Science.gov (United States)

    Brands, Michael W; Bell, Tracy D; Rodriquez, Nancy A; Polavarapu, Praveen; Panteleyev, Dmitriy

    2009-02-01

    This study tested the hypothesis that inducing hyperinsulinemia and hyperglycemia in dogs, by infusing glucose chronically intravenously, would increase tubular sodium reabsorption and cause hypertension. Glucose was infused for 6 days (14 mg.kg(-1).min(-1) iv) in five uninephrectomized (UNX) dogs. Mean arterial pressure (MAP) and renal blood flow (RBF) were measured 18 h/day using DSI pressure units and Transonic flow probes, respectively. Urinary sodium excretion (UNaV) decreased significantly on day 1 and remained decreased over the 6 days, coupled with a significant, sustained increase in RBF, averaging approximately 20% above control on day 6. Glomerular filtration rate and plasma renin activity (PRA) also increased. However, although MAP tended to increase, this was not statistically significant. Therefore, the glucose infusion was repeated in six dogs with 70% surgical reduction in kidney mass (RKM) and high salt intake. Blood glucose and plasma insulin increased similar to the UNX dogs, and there was significant sodium retention, but MAP still did not increase. Interestingly, the increases in PRA and RBF were prevented in the RKM dogs. The decrease in UNaV, increased RBF, and slightly elevated MAP show that glucose infusion in dogs caused a sustained increase in tubular sodium reabsorption by a mechanism independent of pressure natriuresis. The accompanying increase in PRA, together with the failure of either RBF or PRA to increase in the RKM dogs, suggests the site of tubular reabsorption was before the macula densa. However, the volume retention and peripheral edema suggest that systemic vasodilation offsets any potential renal actions to increase MAP in this experimental model in dogs.

  5. Increased maternal nighttime cortisol concentrations in late gestation alter glucose and insulin in the neonatal lamb

    Science.gov (United States)

    Antolic, Andrew; Feng, Xiaodi; Wood, Charles E; Richards, Elaine M; Keller-Wood, Maureen

    2015-01-01

    Previous studies in our laboratory have shown that a modest chronic increase in maternal cortisol concentrations impairs maternal glucose metabolism and increases the incidence of perinatal stillbirth. The dramatic outcomes prevented our ability to study the effects of maternal hypercortisolemia on neonatal growth, glucose metabolism, and hypothalamo–pituitary–adrenal axis response. Therefore, we developed a model in which pregnant ewes are infused for 12 h/day at 0.5 mg·kg–1·day–1 from day 115 of gestation until delivery (˜145), elevating nighttime plasma cortisol concentrations. This pattern of elevation of cortisol mimics that in patients with elevated evening cortisol concentrations, as in Cushing’s syndrome or chronic depression. Plasma cortisol, glucose, insulin, and electrolytes were measured during pregnancy and postpartum in control and cortisol-infused ewes and their postnatal lambs for the first 14 days after delivery. Neonatal growth and plasma ACTH, aldosterone, renin activity, and electrolytes, and organ weights at 14 days of age were also measured. Infusion of cortisol increased maternal plasma cortisol during pregnancy but not postpartum, and did not alter neonatal ACTH or cortisol. Although maternal glucose and insulin concentrations were not changed by the maternal infusion of cortisol, neonatal plasma glucose was increased and plasma insulin was decreased compared to those in the control group. Neonatal ponderal index and kidney weight were reduced, left ventricular wall thickness was increased, and plasma sodium and creatinine were increased after maternal cortisol infusion. These results suggest that excess maternal cortisol concentrations in late gestation alter growth, glucose and insulin regulation, and organ maturation in the neonate. PMID:26371232

  6. Magnesium enhances exercise performance via increasing glucose availability in the blood, muscle, and brain during exercise.

    Directory of Open Access Journals (Sweden)

    Hsuan-Ying Chen

    Full Text Available Glucose mobilization and utilization in the periphery and central nervous system are important during exercise and are responsible for exercise efficacy. Magnesium (Mg is involved in energy production and plays a role in exercise performance. This study aimed to explore the effects of Mg on the dynamic changes in glucose and lactate levels in the muscle, blood and brain of exercising rats using a combination of auto-blood sampling and microdialysis. Sprague-Dawley rats were pretreated with saline or magnesium sulfate (MgSO4, 90 mg/kg, i.p. 30 min before treadmill exercise (20 m/min for 60 min. Our results indicated that the muscle, blood, and brain glucose levels immediately increased during exercise, and then gradually decreased to near basal levels in the recovery periods of both groups. These glucose levels were significantly enhanced to approximately two-fold (P<0.05 in the Mg group. Lactate levels in the muscle, blood, and brain rapidly and significantly increased in both groups during exercise, and brain lactate levels in the Mg group further elevated (P<0.05 than those in the control group during exercise. Lactate levels significantly decreased after exercise in both groups. In conclusion, Mg enhanced glucose availability in the peripheral and central systems, and increased lactate clearance in the muscle during exercise.

  7. Glucose transporters and maximal transport are increased in endurance-trained rat soleus

    Science.gov (United States)

    Slentz, C. A.; Gulve, E. A.; Rodnick, K. J.; Henriksen, E. J.; Youn, J. H.; Holloszy, J. O.

    1992-01-01

    Voluntary wheel running induces an increase in the concentration of the regulatable glucose transporter (GLUT4) in rat plantaris muscle but not in soleus muscle (K. J. Rodnick, J. O. Holloszy, C. E. Mondon, and D. E. James. Diabetes 39: 1425-1429, 1990). Wheel running also causes hypertrophy of the soleus in rats. This study was undertaken to ascertain whether endurance training that induces enzymatic adaptations but no hypertrophy results in an increase in the concentration of GLUT4 protein in rat soleus (slow-twitch red) muscle and, if it does, to determine whether there is a concomitant increase in maximal glucose transport activity. Female rats were trained by treadmill running at 25 m/min up a 15% grade, 90 min/day, 6 days/wk for 3 wk. This training program induced increases of 52% in citrate synthase activity, 66% in hexokinase activity, and 47% in immunoreactive GLUT4 protein concentration in soleus muscles without causing hypertrophy. Glucose transport activity stimulated maximally with insulin plus contractile activity was increased to roughly the same extent (44%) as GLUT4 protein content in soleus muscle by the treadmill exercise training. In a second set of experiments, we examined whether a swim-training program increases glucose transport activity in the soleus in the presence of a maximally effective concentration of insulin. The swimming program induced a 44% increase in immunoreactive GLUT4 protein concentration. Glucose transport activity maximally stimulated with insulin was 62% greater in soleus muscle of the swimmers than in untrained controls. Training did not alter the basal rate of 2-deoxyglucose uptake.(ABSTRACT TRUNCATED AT 250 WORDS).

  8. Remifentanil Prevents Increases of Blood Glucose and Lactate Levels during Cardiopulmonary Bypass in Pediatric Cardiac Surgery

    Science.gov (United States)

    Chaki, Tomohiro; Nawa, Yuko; Tamashiro, Keishi; Mizuno, Eri; Hirata, Naoyuki; Yamakage, Michiaki

    2017-01-01

    Introduction: Cardiopulmonary bypass (CPB) can cause stress response that increases levels of cytokine and catecholamine in plasma, resulting in hyperglycemia. In adults, it has been demonstrated that remifentanil infusion during CPB could prevent increases of cytokine, catecholamine, and blood glucose levels, but such effects of remifentanil in children have not been elucidated. Aim: In this study, we investigated the preventive effects of remifentanil on blood glucose and lactate levels during CPB in children. Materials and Methods: This retrospective study included children who underwent ventricular septal defect or atrial septal defect closure. Data for patients who did not receive, during CPB period, remifentanil infusion (non-Remi group) and patients who received remifentanil infusion at 0.5 μg/kg/min (Remi group) during CPB were used for analysis. Primary outcomes were lactate and blood glucose levels just before and after CPB. Data are presented as medians and interquartile ranges. Data were analyzed by the Mann–Whitney U-test and Chi-square test. A P < 0.05 was considered statistically significant. Results: During CPB, 13 and 11 patients were allocated into Remi and non-Remi groups, respectively. Pre-CPB lactate and blood glucose levels were not significantly different between the two groups, but post-CPB lactate and blood glucose levels in the Remi group were significantly lower than that in the non-Remi group. Conclusion: 0.5 μg/kg/min remifentanil infusion during CPB suppresses the increases of blood glucose and lactate levels in children. PMID:28074792

  9. Ursolic acid increases glucose uptake through the PI3K signaling pathway in adipocytes.

    Directory of Open Access Journals (Sweden)

    Yonghan He

    Full Text Available BACKGROUND: Ursolic acid (UA, a triterpenoid compound, is reported to have a glucose-lowering effect. However, the mechanisms are not fully understood. Adipose tissue is one of peripheral tissues that collectively control the circulating glucose levels. OBJECTIVE: The objective of the present study was to determine the effect and further the mechanism of action of UA in adipocytes. METHODS AND RESULTS: The 3T3-L1 preadipocytes were induced to differentiate and treated with different concentrations of UA. NBD-fluorescent glucose was used as the tracer to measure glucose uptake and Western blotting used to determine the expression and activity of proteins involved in glucose transport. It was found that 2.5, 5 and 10 µM of UA promoted glucose uptake in a dose-dependent manner (17%, 29% and 35%, respectively. 10 µM UA-induced glucose uptake with insulin stimulation was completely blocked by the phosphatidylinositol (PI 3-kinase (PI3K inhibitor wortmannin (1 µM, but not by SB203580 (10 µM, the inhibitor of mitogen-activated protein kinase (MAPK, or compound C (2.5 µM, the inhibitor of AMP-activated kinase (AMPK inhibitor. Furthermore, the downstream protein activities of the PI3K pathway, phosphoinositide-dependent kinase (PDK and phosphoinositide-dependent serine/threoninekinase (AKT were increased by 10 µM of UA in the presence of insulin. Interestingly, the activity of AS160 and protein kinase C (PKC and the expression of glucose transporter 4 (GLUT4 were stimulated by 10 µM of UA under either the basal or insulin-stimulated status. Moreover, the translocation of GLUT4 from cytoplasm to cell membrane was increased by UA but decreased when the PI3K inhibitor was applied. CONCLUSIONS: Our results suggest that UA stimulates glucose uptake in 3T3-L1 adipocytes through the PI3K pathway, providing important information regarding the mechanism of action of UA for its anti-diabetic effect.

  10. GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Holst, Jens Juul; Rattigan, Stephen

    2014-01-01

    The insulinotropic gut hormone, glucagon-like-peptide-1 (GLP-1) has been proposed to have effects on vascular function and glucose disposal. However, whether GLP-1 is able to increase microvascular recruitment (MVR) in humans has not been investigated. GLP-1 was infused in the femoral artery...... in overnight fasted healthy young men. Microvascular recruitment was measured with real time contrast-enhanced ultrasound and leg glucose uptake by the leg balance technique with and without inhibition of the insulinotropic response of GLP-1 by co-infusion of octreotide. As a positive control, MVR and leg...

  11. Methylglyoxal alters glucose metabolism and increases AGEs content in C6 glioma cells.

    Science.gov (United States)

    Hansen, Fernanda; de Souza, Daniela Fraga; Silveira, Simone da Luz; Hoefel, Ana Lúcia; Fontoura, Júlia Bijoldo; Tramontina, Ana Carolina; Bobermin, Larissa Daniele; Leite, Marina Concli; Perry, Marcos Luiz Santos; Gonçalves, Carlos Alberto

    2012-12-01

    Methylglyoxal is a dicarbonyl compound that is physiologically produced by enzymatic and non-enzymatic reactions. It can lead to cytotoxicity, which is mainly related to Advanced Glycation End Products (AGEs) formation. Methylglyoxal and AGEs are involved in the pathogenesis of Neurodegenerative Diseases (ND) and, in these situations, can cause the impairment of energetic metabolism. Astroglial cells play critical roles in brain metabolism and the appropriate functioning of astrocytes is essential for the survival and function of neurons. However, there are only a few studies evaluating the effect of methylglyoxal on astroglial cells. The aim of this study was to evaluate the effect of methylglyoxal exposure, over short (1 and 3 h) and long term (24 h) periods, on glucose, glycine and lactate metabolism in C6 glioma cells, as well as investigate the glyoxalase system and AGEs formation. Glucose uptake and glucose oxidation to CO(2) increased in 1 h and the conversion of glucose to lipids increased at 3 h. In addition, glycine oxidation to CO(2) and conversion of glycine to lipids increased at 1 h, whereas the incorporation of glycine in proteins decreased at 1 and 3 h. Methylglyoxal decreased glyoxalase I and II activities and increased AGEs content within 24 h. Lactate oxidation and lactate levels were not modified by methylglyoxal exposure. These data provide evidence that methylglyoxal may impair glucose metabolism and can affect glyoxalase activity. In periods of increased methylglyoxal exposure, such alterations could be exacerbated, leading to further increases in intracellular methylglyoxal and AGEs, and therefore triggering and/or worsening ND.

  12. Insoluble Fiber in Young Barley Leaf Suppresses the Increment of Postprandial Blood Glucose Level by Increasing the Digesta Viscosity

    Directory of Open Access Journals (Sweden)

    Akira Takano

    2013-01-01

    Full Text Available Barley (Hordeum vulgare L. is a well-known cereal plant. Young barley leaf is consumed as a popular green-colored drink, which is named “Aojiru” in Japan. We examined the effects of barley leaf powder (BLP and insoluble fibers derived from BLP on postprandial blood glucose in rats and healthy Japanese volunteers. BLP and insoluble fibers derived from BLP suppressed the increment of postprandial blood glucose levels in rats (, and increased the viscosity of their digesta. The insoluble fibers present in BLP might play a role in controlling blood glucose level by increasing digesta viscosity. In human, BLP suppressed the increment of postprandial blood glucose level only in those which exhibited higher blood glucose levels after meals (. BLP might suppress the increment of postprandial blood glucose level by increasing digesta viscosity in both of rats and humans who require blood glucose monitoring.

  13. Surprises in astrophysical gasdynamics

    CERN Document Server

    Balbus, Steven A

    2016-01-01

    Much of astrophysics consists of the study of ionised gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetised fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one's a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosynchratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out import...

  14. Evaluative Appraisals of Environmental Mystery and Surprise

    Science.gov (United States)

    Nasar, Jack L.; Cubukcu, Ebru

    2011-01-01

    This study used a desktop virtual environment (VE) of 15 large-scale residential streets to test the effects of environmental mystery and surprise on response. In theory, mystery and surprise should increase interest and visual appeal. For each VE, participants walked through an approach street and turned right onto a post-turn street. We designed…

  15. Evaluative Appraisals of Environmental Mystery and Surprise

    Science.gov (United States)

    Nasar, Jack L.; Cubukcu, Ebru

    2011-01-01

    This study used a desktop virtual environment (VE) of 15 large-scale residential streets to test the effects of environmental mystery and surprise on response. In theory, mystery and surprise should increase interest and visual appeal. For each VE, participants walked through an approach street and turned right onto a post-turn street. We designed…

  16. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster.

    Science.gov (United States)

    Wagner, Anika E; Piegholdt, Stefanie; Rabe, Doerte; Baenas, Nieves; Schloesser, Anke; Eggersdorfer, Manfred; Stocker, Achim; Rimbach, Gerald

    2015-10-13

    In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies.

  17. Adiponectin increases glucose-induced insulin secretion through the activation of lipid oxidation.

    Science.gov (United States)

    Patané, G; Caporarello, N; Marchetti, P; Parrino, C; Sudano, D; Marselli, L; Vigneri, R; Frittitta, L

    2013-12-01

    The expression of adiponectin receptors has been demonstrated in human and rat pancreatic beta cells, where globular (g) adiponectin rescues rat beta cells from cytokine and fatty acid-induced apoptosis. The aim of our study was to evaluate whether adiponectin has a direct effect on insulin secretion and the metabolic pathways involved. Purified human pancreatic islets and rat beta cells (INS-1E) were exposed (1 h) to g-adiponectin, and glucose-induced insulin secretion was measured. A significant increase in glucose-induced insulin secretion was observed in the presence of g-adiponectin (1 nmol/l) with respect to control cells in both human pancreatic islets (n = 5, p < 0.05) and INS-1E cells (n = 5, p < 0.001). The effect of globular adiponectin on insulin secretion was independent of AMP-dependent protein kinase (AMPK) activation or glucose oxidation. In contrast, g-adiponectin significantly increased oleate oxidation (n = 5, p < 0.05), and the effect of g-adiponectin (p < 0.001) on insulin secretion by INS-1E was significantly reduced in the presence of etomoxir (1 μmol/l), an inhibitor of fatty acid beta oxidation. g-Adiponectin potentiates glucose-induced insulin secretion in both human pancreatic islets and rat beta cells via an AMPK independent pathway. Increased fatty acid oxidation rather than augmented glucose oxidation is the mechanism responsible. Overall, our data indicate that, in addition to its anti-apoptotic action, g-adiponectin has another direct effect on beta cells by potentiating insulin secretion. Adiponectin, therefore, in addition to its well-known effect on insulin sensitivity, has important effects at the pancreatic level.

  18. Impaired Increase of Plasma Abscisic Acid in Response to Oral Glucose Load in Type 2 Diabetes and in Gestational Diabetes

    OpenAIRE

    Pietro Ameri; Santina Bruzzone; Elena Mannino; Giovanna Sociali; Gabriella Andraghetti; Annalisa Salis; Monica Laura Ponta; Lucia Briatore; Adami, Giovanni F.; Antonella Ferraiolo; Pier Luigi Venturini; Davide Maggi; Renzo Cordera; Giovanni Murialdo; Elena Zocchi

    2015-01-01

    The plant hormone abscisic acid (ABA) is present and active in humans, regulating glucose homeostasis. In normal glucose tolerant (NGT) human subjects, plasma ABA (ABAp) increases 5-fold after an oral glucose load. The aim of this study was to assess the effect of an oral glucose load on ABAp in type 2 diabetes (T2D) subjects. We chose two sub-groups of patients who underwent an oral glucose load for diagnostic purposes: i) 9 treatment-naive T2D subjects, and ii) 9 pregnant women with gestati...

  19. Mice deficient in Sfrp1 exhibit increased adiposity, dysregulated glucose metabolism, and enhanced macrophage infiltration.

    Directory of Open Access Journals (Sweden)

    Kelly J Gauger

    Full Text Available The molecular mechanisms involved in the development of obesity and related complications remain unclear. Wnt signaling plays an important role in preadipocyte differentiation and adipogenesis. The expression of a Wnt antagonist, secreted frizzled related protein 1 (SFRP1, is increased in response to initial weight gain, then levels are reduced under conditions of extreme obesity in both humans and animals. Here we report that loss of Sfrp1 exacerbates weight gain, glucose homeostasis and inflammation in mice in response to diet induced obesity (DIO. Sfrp1(-/- mice fed a high fat diet (HFD exhibited an increase in body mass accompanied by increases in body fat percentage, visceral white adipose tissue (WAT mass, and adipocyte size. Moreover, Sfrp1 deficiency increases the mRNA levels of key de novo lipid synthesis genes (Fasn, Acaca, Acly, Elovl, Scd1 and the transcription factors that regulate their expression (Lxr-α, Srebp1, Chreb, and Nr1h3 in WAT. Fasting glucose levels are elevated, glucose clearance is impaired, hepatic gluconeogenesis regulators are aberrantly upregulated (G6pc and Pck1, and glucose transporters are repressed (Slc2a2 and Slc2a4 in Sfrp1(-/- mice fed a HFD. Additionally, we observed increased steatosis in the livers of Sfrp1(-/- mice. When there is an expansion of adipose tissue there is a sustained inflammatory response accompanied by adipokine dysregulation, which leads to chronic subclinical inflammation. Thus, we assessed the inflammatory state of different tissues and revealed that Sfrp1(-/- mice fed a HFD exhibited increased macrophage infiltration and expression of pro-inflammatory markers including IL-6, Nmnat, Tgf-β2, and SerpinE1. Our findings demonstrate that the expression of Sfrp1 is a critical factor required for maintaining appropriate cellular signaling in response to the onset of obesity.

  20. The Proton-Activated Receptor GPR4 Modulates Glucose Homeostasis by Increasing Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Luca Giudici

    2013-11-01

    Full Text Available Background: The proton-activated G protein-coupled receptor GPR4 is expressed in many tissues including white adipose tissue. GPR4 is activated by extracellular protons in the physiological pH range (i.e. pH 7.7 - 6.8 and is coupled to the production of cAMP. Methods: We examined mice lacking GPR4 and examined glucose tolerance and insulin sensitivity in young and aged mice as well as in mice fed with a high fat diet. Expression profiles of pro- and anti-inflammatory cytokines in white adipose tissue, liver and skeletal muscle was assessed. Results: Here we show that mice lacking GPR4 have an improved intraperitoneal glucose tolerance test and increased insulin sensitivity. Insulin levels were comparable but leptin levels were increased in GPR4 KO mice. Gpr4-/- showed altered expression of PPARα, IL-6, IL-10, TNFα, and TGF-1β in skeletal muscle, white adipose tissue, and liver. High fat diet abolished the differences in glucose tolerance and insulin sensitivity between Gpr4+/+ and Gpr4-/- mice. In contrast, in aged mice (12 months old, the positive effect of GPR4 deficiency on glucose tolerance and insulin sensitivity was maintained. Liver and adipose tissue showed no major differences in the mRNA expression of pro- and anti-inflammatory factors between aged mice of both genotypes. Conclusion: Thus, GPR4 deficiency improves glucose tolerance and insulin sensitivity. The effect may involve an altered balance between pro- and anti-inflammatory factors in insulin target tissues.

  1. Biorefining of waste paper biomass: increasing the concentration of glucose by optimising enzymatic hydrolysis.

    Science.gov (United States)

    Elliston, Adam; Collins, Samuel R A; Faulds, Craig B; Roberts, Ian N; Waldron, Keith W

    2014-04-01

    Waste copier paper is a potential substrate for the production of glucose relevant for manufacture of platform chemicals and intermediates, being composed of 51 % glucan. The yield and concentration of glucose arising from the enzymatic saccharification of solid ink-free copier paper as cellulosic substrate was studied using a range of commercial cellulase preparations. The results show that in all cellulase preparations examined, maximum hydrolysis was only achieved with the addition of beta-glucosidase, despite its presence in the enzyme mixtures. With the use of Accellerase® (cellulase), high substrate loading decreased conversion yield. However, this was overcome if the enzyme was added between 12.5 and 20 FPU g substrate(-1). Furthermore, this reaction condition facilitated continual stirring and enabled sequential additions (up to 50 % w/v) of paper to be made to the hydrolysis reaction, degrading nearly all (99 %) of the cellulose fibres and increasing the final concentration of glucose whilst simultaneously making high substrate concentrations achievable. Under optimal conditions (50 °C, pH 5.0, 72 h), digestions facilitate the production of glucose to much improved concentrations of up to 1.33 mol l(-1).

  2. Simultaneous Voltammetric Measurements of Glucose and Dopamine Demonstrate the Coupling of Glucose Availability with Increased Metabolic Demand in the Rat Striatum.

    Science.gov (United States)

    Smith, Samantha K; Lee, Christie A; Dausch, Matthew E; Horman, Brian M; Patisaul, Heather B; McCarty, Gregory S; Sombers, Leslie A

    2017-02-15

    Cerebral blood flow ensures delivery of nutrients, such as glucose, to brain sites with increased metabolic demand. However, little is known about rapid glucose dynamics at discrete locations during neuronal activation in vivo. Acute exposure to many substances of abuse elicits dopamine release and neuronal activation in the striatum; however, the concomitant changes in striatal glucose remain largely unknown. Recent developments have combined fast-scan cyclic voltammetry with glucose oxidase enzyme modified carbon-fiber microelectrodes to enable the measurement of glucose dynamics with subsecond temporal resolution in the mammalian brain. This work evaluates several waveforms to enable the first simultaneous detection of endogenous glucose and dopamine at single recording sites. These molecules, one electroactive and one nonelectroactive, were found to fluctuate in the dorsal striatum in response to electrical stimulation of the midbrain and systemic infusion of cocaine/raclopride. The data reveal the second-by-second dynamics of these species in a striatal microenvironment, and directly demonstrate the coupling of glucose availability with increased metabolic demand. This work provides a foundation that will enable detailed investigation of local mechanisms that regulate the coupling of cerebral blood flow with metabolic demand under normal conditions, and in animal studies of drug abuse and addiction.

  3. Surprises in astrophysical gasdynamics

    Science.gov (United States)

    Balbus, Steven A.; Potter, William J.

    2016-06-01

    Much of astrophysics consists of the study of ionized gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetized fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one’s a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosyncratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out important assumptions, and to describe carefully whatever novel techniques may be appropriate to the problem at hand. By beginning at the beginning, and analysing a wide variety of astrophysical settings, we seek not only to make this review suitable for fluid dynamic veterans, but to engage novice recruits as well with what we hope will be an unusual and instructive introduction to the subject.

  4. Surprises in astrophysical gasdynamics.

    Science.gov (United States)

    Balbus, Steven A; Potter, William J

    2016-06-01

    Much of astrophysics consists of the study of ionized gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetized fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one's a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosyncratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out important assumptions, and to describe carefully whatever novel techniques may be appropriate to the problem at hand. By beginning at the beginning, and analysing a wide variety of astrophysical settings, we seek not only to make this review suitable for fluid dynamic veterans, but to engage novice recruits as well with what we hope will be an unusual and instructive introduction to the subject.

  5. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH.

    Directory of Open Access Journals (Sweden)

    Mikael Bjursell

    Full Text Available Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1, the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.

  6. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella

    DEFF Research Database (Denmark)

    Kovatcheva-Datchary, Petia; Nilsson, Anne; Akrami, Rozita

    2015-01-01

    The gut microbiota plays an important role in human health by interacting with host diet, but there is substantial inter-individual variation in the response to diet. Here we compared the gut microbiota composition of healthy subjects who exhibited improved glucose metabolism following 3-day...... consumption of barley kernel-based bread (BKB) with those who responded least to this dietary intervention. The Prevotella/Bacteroides ratio was higher in responders than non-responders after BKB. Metagenomic analysis showed that the gut microbiota of responders was enriched in Prevotella copri and had...... increased potential to ferment complex polysaccharides after BKB. Finally, germ-free mice transplanted with microbiota from responder human donors exhibited improved glucose metabolism and increased abundance of Prevotella and liver glycogen content compared with germ-free mice that received non...

  7. Endogenous glucose production increases in response to metformin treatment in the glycogen-depleted state in humans

    DEFF Research Database (Denmark)

    Christensen, Mette Marie H; Højlund, Kurt; Hother-Nielsen, Ole

    2015-01-01

    had two reduced-function alleles in OCT1). Three were excluded from the analysis because of early dropout. Metformin significantly stimulated glucose disposal rates and non-oxidative glucose metabolism with no effect on glucose oxidation. This increase in glucose utilisation was explained...... of metformin on glucose metabolism in humans after a glycogen-depleting fast and the role of reduced-function alleles in OCT1 (also known as SLC22A1). METHODS: In a randomised, crossover trial, healthy individuals with or without reduced-function alleles in OCT1 were fasted for 42 h twice, either...... metabolism were assessed using [3-(3)H]glucose, indirect calorimetry and measurement of substrates and counter-regulatory hormones. The primary outcome was endogenous glucose production (EGP). RESULTS: Thirty-seven individuals were randomised. Thirty-four completed the study (12 had none, 13 had one and nine...

  8. Preconditioning L6 Muscle Cells with Naringin Ameliorates Oxidative Stress and Increases Glucose Uptake

    OpenAIRE

    R. Dhanya; K B Arun; Nisha, V. M.; H P Syama; Nisha, P.; T R Santhosh Kumar; Jayamurthy, P.

    2015-01-01

    Enhanced oxidative stress contributes to pathological changes in diabetes and its complications. Thus, strategies to reduce oxidative stress may alleviate these pathogenic processes. Herein, we have investigated Naringin mediated regulation of glutathione (GSH) & intracellular free radical levels and modulation of glucose uptake under oxidative stress in L6 cell lines. The results from the study demonstrated a marked decrease in glutathione with a subsequent increase in free radical levels, w...

  9. High glucose levels reduce fatty acid oxidation and increase triglyceride accumulation in human placenta

    OpenAIRE

    Visiedo, Francisco; Bugatto, Fernando; Sánchez, Viviana; Cózar-Castellano, Irene; Bartha, Jose L.; Perdomo, Germán

    2013-01-01

    Placentas of women with gestational diabetes mellitus (GDM) exhibit an altered lipid metabolism. The mechanism by which GDM is linked to alterations in placental lipid metabolism remains obscure. We hypothesized that high glucose levels reduce mitochondrial fatty acid oxidation (FAO) and increase triglyceride accumulation in human placenta. To test this hypothesis, we measured FAO, fatty acid esterification, de novo fatty acid synthesis, triglyceride levels, and carnitine palmitoyltransferase...

  10. Methylglyoxal impairs GLUT4 trafficking and leads to increased glucose uptake in L6 myoblasts.

    Science.gov (United States)

    Engelbrecht, B; Mattern, Y; Scheibler, S; Tschoepe, D; Gawlowski, T; Stratmann, B

    2014-02-01

    Methylglyoxal (MG) is a highly reactive dicarbonyl compound derived mainly from glucose degradation pathways, but also from protein and fatty acid metabolism. MG modifies structure and function of different biomolecules and thus plays an important role in the pathogenesis of diabetic complications. Hyperglycemia-associated accumulation of MG might be associated with generation of oxidative stress and subsequently insulin resistance. Therefore, the effects of MG on insulin signaling and on translocation of glucose transporter 4 (GLUT4) were investigated in the rat skeletal muscle cell line L6-GLUT4myc stably expressing myc-tagged GLUT4. Twenty four-hour MG treatment resulted in elevated GLUT4 presentation on the surface of L6 myoblasts and in an increased uptake of glucose even without insulin stimulation. Exogenously added MG neither effected IRS-1 expression nor IRS-1 phosphorylation. A decreased expression of Akt1 but not Akt2 and concomitantly increased apoptosis were detected following MG treatment. To exclude that oxidative stress caused by MG treatment leads to increased GLUT4 translocation, effects of pretreatment with 2 antioxidants were investigated. The antioxidant and MG scavenger NAC prevented the MG-induced GLUT4 translocation. In contrast, tiron, a well-known antioxidant that does not exert MG-scavenger function, had no impact on MG-induced GLUT4 translocation supporting the hypothesis of a direct effect of MG on GLUT4 trafficking. In conclusion, prolonged treatment with MG augments GLUT4 level on the surface of L6 myoblasts, at least in part through a higher translocation of GLUT4 from the intracellular compartment as well as a reduction of GLUT4 internalization, resulting in increased glucose uptake.

  11. High Glucose-Induced Oxidative Stress Increases the Copy Number of Mitochondrial DNA in Human Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Ghada Al-Kafaji

    2013-01-01

    Full Text Available Oxidative damage to mitochondrial DNA (mtDNA has been linked to the pathogenicity of diabetic nephropathy. We tested the hypothesis that mtDNA copy number may be increased in human mesangial cells in response to high glucose-induced reactive oxygen species (ROS to compensate for damaged mtDNA. The effect of manganese superoxide dismutase mimetic (MnTBAP on glucose-induced mtDNA copy number was also examined. The copy number of mtDNA was determined by real-time PCR in human mesangial cells cultured in 5 mM glucose, 25 mM glucose, and mannitol (osmotic control, as well as in cells cultured in 25 mM glucose in the presence and absence of 200 μM MnTBAP. Intracellular ROS was assessed by confocal microscopy and flow cytometry in human mesangial cells. The copy number of mtDNA was significantly increased when human mesangial cells were incubated with 25 mM glucose compared to 5 mM glucose and mannitol. In addition, 25 mM glucose rapidly generated ROS in the cells, which was not detected in 5 mM glucose. Furthermore, mtDNA copy number was significantly decreased and maintained to normal following treatment of cells with 25 mM glucose and MnTBAP compared to 25 mM glucose alone. Inclusion of MnTBAP during 25 mM glucose incubation inhibited mitochondrial superoxide in human mesangial cells. Increased mtDNA copy number in human mesangial cells by high glucose could contribute to increased mitochondrial superoxide, and prevention of mtDNA copy number could have potential in retarding the development of diabetic nephropathy.

  12. Block of Kv1.7 potassium currents increases glucose-stimulated insulin secretion.

    Science.gov (United States)

    Finol-Urdaneta, Rocio K; Remedi, Maria S; Raasch, Walter; Becker, Stefan; Clark, Robert B; Strüver, Nina; Pavlov, Evgeny; Nichols, Colin G; French, Robert J; Terlau, Heinrich

    2012-05-01

    Glucose-stimulated insulin secretion (GSIS) relies on repetitive, electrical spiking activity of the beta cell membrane. Cyclic activation of voltage-gated potassium channels (K(v) ) generates an outward, 'delayed rectifier' potassium current, which drives the repolarizing phase of each spike and modulates insulin release. Although several K(v) channels are expressed in pancreatic islets, their individual contributions to GSIS remain incompletely understood. We take advantage of a naturally occurring cone-snail peptide toxin, Conkunitzin-S1 (Conk-S1), which selectively blocks K(v) 1.7 channels to provide an intrinsically limited, finely graded control of total beta cell delayed rectifier current and hence of GSIS. Conk-S1 increases GSIS in isolated rat islets, likely by reducing K(v) 1.7-mediated delayed rectifier currents in beta cells, which yields increases in action potential firing and cytoplasmic free calcium. In rats, Conk-S1 increases glucose-dependent insulin secretion without decreasing basal glucose. Thus, we conclude that K(v) 1.7 contributes to the membrane-repolarizing current of beta cells during GSIS and that block of this specific component of beta cell K(v) current offers a potential strategy for enhancing GSIS with minimal risk of hypoglycaemia during metabolic disorders such as Type 2 diabetes.

  13. Increasing glucose concentrations and prevalence of diabetes mellitus in northern Sweden, 1990–2007

    Directory of Open Access Journals (Sweden)

    Bernt Lindahl

    2010-10-01

    Full Text Available Background: The prevalence of diabetes in the world is projected to rise from 2.8% in the year 2000 to 4.4% in 2030, an increase suggesting an ongoing global epidemic of diabetes. Objective: To examine time trends in fasting and 2-h glucose concentrations, prevalence and 10-year cumulative incidence of diabetes, and the role of education in these trends. Design: Each year the Västerbotten Intervention Programme invites all 40, 50, and 60-year-old individuals to a health survey, which includes a cardiovascular risk factor screening and oral glucose tolerance test. The cross-sectional part of the study is based on health examinations conducted between 1990 and 2007 (n=102,822. The prospective subset (panel dataset of the study is based on individuals who have had two health examinations 10 years apart and were not defined as having diabetes at their first health examination (n=23,546. Results: Between 1990 and 2007, the mean population fasting glucose concentration increased 0.5 mmol/L. Comparing the prevalence in 1990–1995 with 2002–2007 demonstrated a significant 44% increase in men (p < 0.001 and a significant 17% increase in women (p<0.001. Socioeconomic status, here represented by education, clearly influenced both prevalence and incidence of diabetes and glucose concentration. In all time periods and in all age groups, individuals with low education were more likely to have or get diabetes. The 10-year risk of developing diabetes was four to five times higher in the oldest age group (50–60 years compared with the youngest (30–40 years. A 30% reduction in the 10-year risk of developing diabetes was found in women (p<0.001 between 2000–2003 and 2004–2007.Conclusions: Despite a clear increase in glucose concentrations and diabetes prevalence between 1990 and 2007, especially in men, there was a decline in the 10-year risk of developing diabetes in women between 2000–2003 and 2004–2007.

  14. Bile acid sequestration reduces plasma glucose levels in db/db mice by increasing its metabolic clearance rate.

    Directory of Open Access Journals (Sweden)

    Maxi Meissner

    Full Text Available AIMS/HYPOTHESIS: Bile acid sequestrants (BAS reduce plasma glucose levels in type II diabetics and in murine models of diabetes but the mechanism herein is unknown. We hypothesized that sequestrant-induced changes in hepatic glucose metabolism would underlie reduced plasma glucose levels. Therefore, in vivo glucose metabolism was assessed in db/db mice on and off BAS using tracer methodology. METHODS: Lean and diabetic db/db mice were treated with 2% (wt/wt in diet Colesevelam HCl (BAS for 2 weeks. Parameters of in vivo glucose metabolism were assessed by infusing [U-(13C]-glucose, [2-(13C]-glycerol, [1-(2H]-galactose and paracetamol for 6 hours, followed by mass isotopologue distribution analysis, and related to metabolic parameters as well as gene expression patterns. RESULTS: Compared to lean mice, db/db mice displayed an almost 3-fold lower metabolic clearance rate of glucose (p = 0.0001, a ∼300% increased glucokinase flux (p = 0.001 and a ∼200% increased total hepatic glucose production rate (p = 0.0002. BAS treatment increased glucose metabolic clearance rate by ∼37% but had no effects on glucokinase flux nor total hepatic or endogenous glucose production. Strikingly, BAS-treated db/db mice displayed reduced long-chain acylcarnitine content in skeletal muscle (p = 0.0317 but not in liver (p = 0.189. Unexpectedly, BAS treatment increased hepatic FGF21 mRNA expression 2-fold in lean mice (p = 0.030 and 3-fold in db/db mice (p = 0.002. CONCLUSIONS/INTERPRETATION: BAS induced plasma glucose lowering in db/db mice by increasing metabolic clearance rate of glucose in peripheral tissues, which coincided with decreased skeletal muscle long-chain acylcarnitine content.

  15. Increased prevalence of impaired glucose tolerance in a representative rural population from Deleni, Romania

    Directory of Open Access Journals (Sweden)

    Popescu Dana Stefana

    2013-01-01

    Full Text Available The aim of this study was to determine the frequency of impaired glucose tolerance (IGT in a cross-section of the adult rural population of the village Deleni in northeast Romania. We observed a IGT in 25.9% and diabetes in 14.55% of the general population, and only 60% of randomly selected subjects with a normal glucose tolerance. With regards to gender, we observed slightly higher values in female patients (28.3% with IGT, 17.3% with diabetes, as compared to 10.47% with diabetes and 20.95% with IGT in males. Our report reveals a high prevalence of diabetes and IGT among the rural population of Deleni, Romania. Therefore, there is an urgent need for an increased awareness of diabetes and for an energetic intervention against diabetes and similar lifestyle-related diseases in the rural areas of Romania.

  16. Preconditioning L6 Muscle Cells with Naringin Ameliorates Oxidative Stress and Increases Glucose Uptake.

    Directory of Open Access Journals (Sweden)

    R Dhanya

    Full Text Available Enhanced oxidative stress contributes to pathological changes in diabetes and its complications. Thus, strategies to reduce oxidative stress may alleviate these pathogenic processes. Herein, we have investigated Naringin mediated regulation of glutathione (GSH & intracellular free radical levels and modulation of glucose uptake under oxidative stress in L6 cell lines. The results from the study demonstrated a marked decrease in glutathione with a subsequent increase in free radical levels, which was reversed by the pretreatment of Naringin. We also observed that the increased malondialdehyde level, the marker of lipid peroxidation on induction of oxidative stress was retrieved on Naringin pretreatment. Addition of Naringin (100 μM showed approximately 40% reduction in protein glycation in vitro. Furthermore, we observed a twofold increase in uptake of fluorescent labeled glucose namely 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-ylAmino-2-Deoxyglucose (2-NBDG on Naringin treatment in differentiated L6 myoblast. The increased uptake of 2-NBDG by L6 myotubes may be attributed due to the enhanced translocation of GLUT4. Our results demonstrate that Naringin activate GSH synthesis through a novel antioxidant defense mechanism against excessive Reactive Oxygen Species (ROS production, contributing to the prevention of oxidative damage in addition to its effect on glycemic control.

  17. Preconditioning L6 Muscle Cells with Naringin Ameliorates Oxidative Stress and Increases Glucose Uptake.

    Science.gov (United States)

    Dhanya, R; Arun, K B; Nisha, V M; Syama, H P; Nisha, P; Santhosh Kumar, T R; Jayamurthy, P

    2015-01-01

    Enhanced oxidative stress contributes to pathological changes in diabetes and its complications. Thus, strategies to reduce oxidative stress may alleviate these pathogenic processes. Herein, we have investigated Naringin mediated regulation of glutathione (GSH) & intracellular free radical levels and modulation of glucose uptake under oxidative stress in L6 cell lines. The results from the study demonstrated a marked decrease in glutathione with a subsequent increase in free radical levels, which was reversed by the pretreatment of Naringin. We also observed that the increased malondialdehyde level, the marker of lipid peroxidation on induction of oxidative stress was retrieved on Naringin pretreatment. Addition of Naringin (100 μM) showed approximately 40% reduction in protein glycation in vitro. Furthermore, we observed a twofold increase in uptake of fluorescent labeled glucose namely 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2-NBDG) on Naringin treatment in differentiated L6 myoblast. The increased uptake of 2-NBDG by L6 myotubes may be attributed due to the enhanced translocation of GLUT4. Our results demonstrate that Naringin activate GSH synthesis through a novel antioxidant defense mechanism against excessive Reactive Oxygen Species (ROS) production, contributing to the prevention of oxidative damage in addition to its effect on glycemic control.

  18. Increasing palmitic acid intake enhances milk production and prevents glucose-stimulated fatty acid disappearance without modifying systemic glucose tolerance in mid-lactation dairy cows.

    Science.gov (United States)

    Mathews, A T; Rico, J E; Sprenkle, N T; Lock, A L; McFadden, J W

    2016-11-01

    Feeding saturated fatty acids may enhance milk yield in part by decreasing insulin sensitivity and shifting glucose utilization toward the mammary gland. Our objective was to evaluate the effects of palmitic acid (C16:0) on milk production and insulin sensitivity in cows. Twenty multiparous mid-lactation Holstein cows were enrolled in a study consisting of a 5-d covariate, 49-d treatment, and 14-d posttreatment period. All cows received a common sorghum silage-based diet and were randomly assigned to a diet containing no supplemental fat (control; n=10; 138±45d in milk) or C16:0 at 4% of ration DM (PALM; 98% C16:0; n=10; 136±44d in milk). Blood and milk were collected at routine intervals. Intravenous glucose tolerance tests (300mg/kg of body weight) were performed at d -1, 24, and 49 relative to start of treatment. Data were analyzed as repeated measures using a mixed model with fixed effects of treatment and time, and milk yield served as a covariate. The PALM treatment increased milk yield by wk 7. Furthermore, PALM increased milk fat yield and energy-corrected milk at wk 3 and 7. Changes in milk production occurred in parallel with enhanced energy intake. Increased milk fat yield during PALM treatment was due to increased C16:0 and C16:1 incorporation; PALM had no effect on concentration of milk components, BW, or body condition score. Two weeks posttreatment, energy-corrected milk and milk fat yield remained elevated in PALM-fed cows whereas yields of milk were similar between treatments. Increased milk fat yield after PALM treatment was due to increased de novo lipogenesis and uptake of preformed fatty acids. The basal concentration of nonesterified fatty acids (NEFA) in plasma increased by d 4, 6, and 8 of PALM treatment, a response not observed thereafter. Although PALM supplementation did not modify insulin, glucose, or triacylglycerol levels in plasma, total cholesterol in plasma was elevated by wk 3. Estimated insulin sensitivity was lower during the

  19. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Koji Sode

    2012-11-01

    Full Text Available Mutagenesis studies on glucose oxidases (GOxs were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe and Aspergillus niger GOx (PDB ID; 1cf3. We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  20. Increase of glucose consumption in basal ganglia, thalamus and frontal cortex of patients with spasmodic torticollis

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, F.; Bressi, S.; Antoni, M. [Univ. of Milan (Italy)] [and others

    1994-05-01

    The pathophysiology of spasmodic torticollis, a focal dystonia involving neck muscles, is still unclear. Positron emission tomography (PET) studies showed either an increase as well as a decrease of regional cerebral metabolic rate of glucose (rCMRglu) in basal ganglia. In the present study, [18F]FDG and PET was used to measure rCMRglu in 10 patients with spasmodic torticollis (mean age 50.37 {plus_minus} 11.47) and 10 age matched controls. All cases with a short disease duration, were untreated. A factorial analysis of variance revealed a significant bilateral increase of glucose consumption in caudate nucleus and pallidum/putamen complex (p>0.004) and in the cerebellum (p>0.001). The rCMRglu increase in the motor/premotor cortex and in the thalamus reached a trend towards significance (p<0.05). These preliminary data show enhanced metabolism in basal ganglia and cerebellum as the functional correlate of focal dystonia. A recently proposed model suggests that dystonia would be the consequence of a putaminal hyperactivity, leading to the breakdown of the pallidal inhibitory control on thalamus and thalamo-cortical projections.

  1. An acute increase in fructose concentration increases hepatic glucose-6-phosphatase mRNA via mechanisms that are independent of glycogen synthase kinase-3 in rats.

    Science.gov (United States)

    Wei, Yuren; Bizeau, Michael E; Pagliassotti, Michael J

    2004-03-01

    It appears that low amounts of fructose improve, whereas increased concentrations impair glucose tolerance and hepatic glucose metabolism. In this study, we compared directly the effects of low vs. high portal vein fructose concentrations on hepatic glucose metabolism in rats, using glucose-6-phosphatase gene expression as an endpoint. In the control group (C; n = 7), pancreatic clamps were performed using somatostatin and replacement of insulin such that basal glucose levels were maintained. In the experimental groups (n = 8/group), hyperglycemic, hyperinsulinemic pancreatic clamps were performed in which glucose (G) or glucose + fructose was infused into a jejunal vein. Fructose was infused to achieve either low (F1; 1.0 mmol/L) portal vein concentrations. Total sugar load to the liver was equalized among the 3 experimental groups. Compared with C, liver glucose-6-phosphatase catalytic subunit mRNA was reduced by approximately 55% in G and F1, whereas it was increased approximately 180% in F2. F2 did not differentially affect glucose-6-phosphate translocase or phosphoenolpyruvate carboxykinase mRNA levels in liver, nor kidney glucose-6-phosphatase catalytic subunit mRNA. Livers from the F2 group were characterized by an accumulation of pentose phosphate intermediates and reduced phosphorylation of glycogen synthase kinase-3 (active form). However, in separate studies (n = 5/group), the infusion of a glycogen synthase kinase-3 inhibitor did not prevent the effects of F2 on glucose-6-phosphatase gene expression. We hypothesize that elevated fructose concentrations, similar to levels achieved after ingestion of sucrose- or fructose-enriched meals, initiate signals within the liver that elicit selective changes in hepatic gene expression.

  2. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolado-Carrancio, A. [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain); Riancho, J.A. [Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, RETICEF, Santander (Spain); Sainz, J. [Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC-University of Cantabria, Santander (Spain); Rodríguez-Rey, J.C., E-mail: rodriguj@unican.es [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain)

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  3. Impaired increase of plasma abscisic Acid in response to oral glucose load in type 2 diabetes and in gestational diabetes.

    Science.gov (United States)

    Ameri, Pietro; Bruzzone, Santina; Mannino, Elena; Sociali, Giovanna; Andraghetti, Gabriella; Salis, Annalisa; Ponta, Monica Laura; Briatore, Lucia; Adami, Giovanni F; Ferraiolo, Antonella; Venturini, Pier Luigi; Maggi, Davide; Cordera, Renzo; Murialdo, Giovanni; Zocchi, Elena

    2015-01-01

    The plant hormone abscisic acid (ABA) is present and active in humans, regulating glucose homeostasis. In normal glucose tolerant (NGT) human subjects, plasma ABA (ABAp) increases 5-fold after an oral glucose load. The aim of this study was to assess the effect of an oral glucose load on ABAp in type 2 diabetes (T2D) subjects. We chose two sub-groups of patients who underwent an oral glucose load for diagnostic purposes: i) 9 treatment-naive T2D subjects, and ii) 9 pregnant women with gestational diabetes (GDM), who underwent the glucose load before and 8-12 weeks after childbirth. Each group was compared with matched NGT controls. The increase of ABAp in response to glucose was found to be abrogated in T2D patients compared to NGT controls. A similar result was observed in the women with GDM compared to pregnant NGT controls; 8-12 weeks after childbirth, however, fasting ABAp and ABAp response to glucose were restored to normal in the GDM subjects, along with glucose tolerance. We also retrospectively compared fasting ABAp before and after bilio-pancreatic diversion (BPD) in obese, but not diabetic subjects, and in obese T2D patients, in which BPD resulted in the resolution of diabetes. Compared to pre-BPD values, basal ABAp significantly increased 1 month after BPD in T2D as well as in NGT subjects, in parallel with a reduction of fasting plasma glucose. These results indicate an impaired hyperglycemia-induced ABAp increase in T2D and in GDM and suggest a beneficial effect of elevated ABAp on glycemic control.

  4. Impaired increase of plasma abscisic Acid in response to oral glucose load in type 2 diabetes and in gestational diabetes.

    Directory of Open Access Journals (Sweden)

    Pietro Ameri

    Full Text Available The plant hormone abscisic acid (ABA is present and active in humans, regulating glucose homeostasis. In normal glucose tolerant (NGT human subjects, plasma ABA (ABAp increases 5-fold after an oral glucose load. The aim of this study was to assess the effect of an oral glucose load on ABAp in type 2 diabetes (T2D subjects. We chose two sub-groups of patients who underwent an oral glucose load for diagnostic purposes: i 9 treatment-naive T2D subjects, and ii 9 pregnant women with gestational diabetes (GDM, who underwent the glucose load before and 8-12 weeks after childbirth. Each group was compared with matched NGT controls. The increase of ABAp in response to glucose was found to be abrogated in T2D patients compared to NGT controls. A similar result was observed in the women with GDM compared to pregnant NGT controls; 8-12 weeks after childbirth, however, fasting ABAp and ABAp response to glucose were restored to normal in the GDM subjects, along with glucose tolerance. We also retrospectively compared fasting ABAp before and after bilio-pancreatic diversion (BPD in obese, but not diabetic subjects, and in obese T2D patients, in which BPD resulted in the resolution of diabetes. Compared to pre-BPD values, basal ABAp significantly increased 1 month after BPD in T2D as well as in NGT subjects, in parallel with a reduction of fasting plasma glucose. These results indicate an impaired hyperglycemia-induced ABAp increase in T2D and in GDM and suggest a beneficial effect of elevated ABAp on glycemic control.

  5. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruizhao, E-mail: liruizhao1979@126.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Li, E-mail: Zhanglichangde@163.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Southern Medical University, Guangzhou, Guangdong (China); Shi, Wei, E-mail: shiwei.gd@139.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Bin, E-mail: zhangbinyes@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liang, Xinling, E-mail: xinlingliang@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liu, Shuangxin, E-mail: mplsxi@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Wang, Wenjian, E-mail: wwjph@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China)

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  6. PTP1B deficiency increases glucose uptake in neonatal hepatocytes: involvement of IRA/GLUT2 complexes.

    Science.gov (United States)

    González-Rodriguez, Agueda; Nevado, Carmen; Escrivá, Fernando; Sesti, Giorgio; Rondinone, Cristina M; Benito, Manuel; Valverde, Angela M

    2008-08-01

    The contribution of the liver to glucose utilization is essential to maintain glucose homeostasis. Previous data from protein tyrosine phosphatase (PTP) 1B-deficient mice demonstrated that the liver is a major site for PTP1B action in the periphery. In this study, we have investigated the consequences of PTP1B deficiency in glucose uptake in hepatocytes from neonatal and adult mice. The lack of PTP1B increased basal glucose uptake in hepatocytes from neonatal (3-5 days old) but not adult (10-12 wk old) mice. This occurs without changes in hexokinase, glucokinase, and glucose 6-phosphatase enzymatic activities. By contrast, the glucose transporter GLUT2 was upregulated at the protein level in neonatal hepatocytes and livers from PTP1B-deficient neonates. These results were accompanied by a significant increase in the net free intrahepatic glucose levels in the livers of PTP1B(-/-) neonates. The association between GLUT2 and insulin receptor (IR) A isoform was increased in PTP1B(-/-) neonatal hepatocytes compared with the wild-type. Indeed, PTP1B deficiency in neonatal hepatocytes shifted the ratio of isoforms A and B of the IR by increasing the amount of IRA and decreasing IRB. Moreover, overexpression of IRA in PTP1B(-/-) neonatal hepatocytes increased the amount of IRA/GLUT2 complexes. Conversely, hepatocytes from adult mice only expressed IRB. Since IRA plays a direct role in the regulation of glucose uptake in neonatal hepatocytes through its specific association with GLUT2, we propose the increase in IRA/GLUT2 complexes due to PTP1B deficiency as the molecular mechanism of the increased glucose uptake in the neonatal stage.

  7. Increased T cell glucose uptake reflects acute rejection in lung grafts

    OpenAIRE

    Chen, Delphine L.; Wang, Xingan; Yamamoto, Sumiharu; Carpenter, Danielle; Engle, Jacquelyn T.; Li, Wenjun; Lin, Xue; Kreisel, Daniel; Krupnick, Alexander S.; Huang, Howard J.; Gelman, Andrew E.

    2013-01-01

    Although T cells are required for acute lung rejection, other graft-infiltrating cells such as neutrophils accumulate in allografts and are also high glucose utilizers. Positron emission tomography (PET) with the glucose probe [18F]fluorodeoxyglucose ([18F]FDG) has been employed to image solid organ acute rejection, but the sources of glucose utilization remain undefined. Using a mouse model of orthotopic lung transplantation, we analyzed glucose probe uptake in the graft...

  8. Interleukin 1 stimulates hexose transport in fibroblasts by increasing the expression of glucose transporters.

    Science.gov (United States)

    Bird, T A; Davies, A; Baldwin, S A; Saklatvala, J

    1990-08-15

    Exposure of quiescent cultures of human gingival fibroblasts (HuGi) and porcine synovicocytes (PSF) to human recombinant interleukin 1 alpha or -beta (IL1 alpha and -beta) enhanced the rate of glycolysis as judged by increased lactate production. The cytokines also increased uptake of [3H]2-deoxyglucose (DG) in a time- and dose-dependent manner. Stimulation of DG uptake was first evident 6-8 h following addition of IL1 and was maximal by 24-30 h. IL1 alpha and -beta were equipotent. Half-maximal stimulation occurred at approximately 1 pM IL1; maximal stimulation (2.5-4.5-fold in HuGi, 3-7-fold in PSF) was obtained with approximately 80 pM IL1. The dose-response curves for lactate production and DG uptake were similar. Increased DG uptake was blocked by specific antisera to IL1 and by inhibitors of protein and RNA synthesis but not by indomethacin, an inhibitor of prostaglandin production. DG uptake was enhanced by IL1 in serum-starved cells in the presence of neutralizing anti-platelet-derived growth factor serum. The effect was therefore not secondary to prostaglandin or platelet-derived growth factor production. No increase in cell cycling was detected in IL1-treated cells under the experimental conditions. Kinetic analysis revealed that the Vmax for DG uptake was increased by IL1 (from 36 to 144 pmol/min/mg of cell protein), whereas the Km was unchanged. HuGi cells were pulse-labeled with [35S]methionine following exposure to IL1. Cell lysates were immunoprecipitated using a specific antiserum raised against human erythrocyte glucose transporter. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis/autoradiography of these immunoprecipitates revealed dose- and time-dependent increases in the net rate of glucose transporter synthesis which mirrored the changes in DG uptake.

  9. Conditioning causes an increase in glucose transporter-4 levels in mononuclear cells in sled dogs.

    Science.gov (United States)

    Schnurr, Theresia M; Reynolds, Arleigh J; Gustafson, Sally J; Duffy, Lawrence K; Dunlap, Kriya L

    2014-10-01

    This study was designed to investigate the effects of physical conditioning on the expression of the insulin sensitive glucose transporter-4 protein (GLUT4) on mononuclear cells and HOMA-IR levels in dogs and compared to results reported in human skeletal muscle and the skeletal muscle of rodent models. Blood was sampled from conditioned dogs (n = 8) and sedentary dogs (n = 8). The conditioned dogs were exercised four months prior the experiment and were following a uniform training protocol, whereas the sedentary dogs were not. GLUT4 expression in mononuclear cells and plasma insulin levels were measured using commercially available enzyme-linked immunosorbent assay (ELISA). Blood glucose levels were determined using blood plasma. HOMA-IR was calculated using plasma insulin and blood glucose levels using the linear approximation formula. Our results indicate that the state of conditioning had a significant effect on the GLUT4 expression at the surface of mononuclear cells. HOMA-IR was also affected by conditioning in dogs. GLUT4 levels in mononuclear cells of sled dogs were inversely correlated with the homeostasis model assessment of insulin sensitivity. This study demonstrates that conditioning increases GLUT4 levels in mononuclear cells of sled dogs as it has been previously reported in skeletal muscle. Our results support the potential of white blood cells as a proxy tissue for studying insulin signaling and may lead to development of a minimally invasive and direct marker of insulin resistance. This may be the first report of GLUT4 in mononuclear cells in response to exercise and measured with ELISA.

  10. Inhibition of protein kinase CbetaII increases glucose uptake in 3T3-L1 adipocytes through elevated expression of glucose transporter 1 at the plasma membrane.

    NARCIS (Netherlands)

    Bosch, R.R.; Bazuine, M.; Wake, M.M.; Span, P.N.; Olthaar, A.J.; Schurmann, A.; Maassen, J.A.; Hermus, A.R.M.M.; Willems, P.H.G.M.; Sweep, C.G.J.

    2003-01-01

    The mechanism via which diacylglycerol-sensitive protein kinase Cs (PKCs) stimulate glucose transport in insulin-sensitive tissues is poorly defined. Phorbol esters, such as phorbol-12-myristate-13-acetate (PMA), are potent activators of conventional and novel PKCs. Addition of PMA increases the rat

  11. Monotony and Surprise

    Science.gov (United States)

    Apostolico, Alberto

    This paper reviews models and tools emerged in recent years in the author’s work in connection with the discovery of interesting or anomalous patterns in sequences. Whereas customary approaches to pattern discovery proceed from either a statistical or a syntactic characterization alone, the approaches described here present the unifying feature of combining these two descriptors in a solidly intertwined, composite paradigm, whereby both syntactic structure and occurrence lists concur to define and identify a pattern in a subject. In turn, this supports a natural notion of pattern saturation, which enables one to partition patterns into equivalence classes over intervals of monotonicity of commonly adopted scores, in such a way that the subset of class representatives, consisting solely of saturated patterns, suffices to account for all patterns in the subject. The benefits at the outset consist not only of an increased descriptive power, but especially of a mitigation of the often unmanageable roster of candidates unearthed in a discovery attempt, and of the daunting computational burden that goes with it.

  12. Aniseed oil increases glucose absorption and reduces urine output in the rat.

    Science.gov (United States)

    Kreydiyyeh, Sawsan Ibrahim; Usta, Julnar; Knio, Khuzama; Markossian, Sarine; Dagher, Shawky

    2003-12-19

    Anise (Pimpinella anisum) has been used as a traditional aromatic herb in many drinks and baked foods because of the presence of volatile oils in its fruits commonly known as seeds. Hot water extracts of the seeds have been used also in folk medicine for their diuretic and laxative effect, expectorant and anti-spasmodic action, and their ability to ease intestinal colic and flatulence. The aim of this work was to study the effect of aniseed oil on transport processes through intestinal and renal epithelia and determine its mechanism of action. The essential oils were extracted from the seeds by hydrodistillation and analyzed by gas chromatography. Aniseed oil enhanced significantly glucose absorption from the rat jejunum and increased the Na+-K+ ATPase activity in a jejunal homogenate in a dose dependent manner. The oil, however, exerted no effect on water absorption from the colon and did not alter the activity of the colonic Na+-K+ ATPase. When added to drinking water, it reduced the volume of urine produced in the rat and increased the activity of the renal Na+-K+ ATPase even at extremely low concentrations. It was concluded that aniseed oil increases glucose absorption by increasing the activity of the Na+-K+ ATPase and consequently the sodium gradient needed for the sugar transport. Its anti-diuretic effect is also mediated through a similar mechanism in the kidney whereby a stimulation of the Na+-K+ pump increases tubular sodium reabsorption and osmotic water movement. The colonic Na+-K+ ATPase was however, resistant to the oil.

  13. Glucagon-like-peptide-1 secretion from canine L-cells is increased by glucose-dependent-insulinotropic peptide but unaffected by glucose

    DEFF Research Database (Denmark)

    Damholt, A B; Buchan, A M; Kofod, Hans

    1998-01-01

    Glucagon-like peptide-1(7-36)amide (GLP-1) is a potent insulinotropic peptide released from the small intestine. To investigate the regulation of GLP-1 secretion, we established a GLP-1 release assay based on primary canine intestinal L-cells. The ileal mucosa was digested with collagenase...... but not by staurosporine. These results indicate that glucose does not directly stimulate canine L-cells. It is more probable that glucose releases GIP from the upper intestine that in turn stimulates GLP-1 secretion. The ability of GIP to stimulate GLP-1 secretion is probably mediated through activation of protein kinase...... dependently stimulated the release of GLP-1 and resulted in a 2-fold increase at 100 nM GIP. This effect was fully inhibited by 10 nM somatostatin. However, neither basal or GIP stimulated GLP-1 secretion were affected by ambient glucose concentrations from 5-25 mM. The receptor-independent secretagogues beta...

  14. Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sertié, R.A.L.; Andreotti, S. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Proença, A.R.G. [Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP (Brazil); Campaña, A.B.; Lima, F.B. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2015-05-26

    As it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10): group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes.

  15. Chloroquine Increases Glucose Uptake via Enhancing GLUT4 Translocation and Fusion with the Plasma Membrane in L6 Cells

    Directory of Open Access Journals (Sweden)

    Qi Zhou

    2016-05-01

    Full Text Available Background/Aims: Chloroquine can induce an increase in the cellular uptake of glucose; however, the underlying mechanism is unclear. Methods: In this study, translocation of GLUT4 and intracellular Ca2+ changes were simultaneously observed by confocal microscope in L6 cells stably over-expressing IRAP-mOrange. The GLUT4 fusion with the plasma membrane (PM was traced using HA-GLUT4-GFP. Glucose uptake was measured using a cell-based glucose uptake assay. GLUT4 protein was detected by Western blotting and mRNA level was detected by RT-PCR. Results: We found that chloroquine induced significant increases in glucose uptake, glucose transporter GLUT4 translocation to the plasma membrane (GTPM, GLUT4 fusion with the PM, and intracellular Ca2+ in L6 muscle cells. Chloroquine-induced increases of GTPM and intracellular Ca2+ were inhibited by Gallein (Gβγ inhibitor and U73122 (PLC inhibitor. However, 2-APB (IP3R blocker only blocked the increase in intracellular Ca2+ but did not inhibit GTPM increase. These results indicate that chloroquine, via the Gβγ-PLC-IP3-IP3R pathway, induces elevation of Ca2+, and this Ca2+ increase does not play a role in chloroqui-ne-evoked GTPM increase. However, GLUT4 fusion with the PM and glucose uptake were significantly inhibited with BAPTA-AM. This suggests that Ca2+ enhances GLUT4 fusion with the PM resulting in glucose uptake increase. Conclusion: Our data indicate that chloroquine via Gβγ-PLC-IP3-IP3R induces Ca2+ elevation, which in turn promotes GLUT4 fusion with the PM. Moreover, chloroquine can enhance GLUT4 trafficking to the PM. These mechanisms eventually result in glucose uptake increase in control and insulin-resistant L6 cells. These findings suggest that chloroquine might be a potential drug for improving insulin tolerance in diabetic patients.

  16. Schisandra polysaccharide increased glucose consumption by up-regulating the expression of GLUT-4.

    Science.gov (United States)

    Jin, Dun; Zhao, Ting; Feng, Wei-Wei; Mao, Guang-Hua; Zou, Ye; Wang, Wei; Li, Qian; Chen, Yao; Wang, Xin-Tong; Yang, Liu-Qing; Wu, Xiang-Yang

    2016-06-01

    In our previous study, a polysaccharide was extracted from Schisandra Chinensis (Trucz.) Baill and found with anti-diabetic effects. The aim of this study was to investigate the anti-diabetic effects of the low weight molecular polysaccharide (SCPP11) purified from crude Schisandra polysaccharide and illustrate the underlying mechanism in buffalo rat liver cells. The insulin resistance model of BRL cells was established by incubating with insulin solution for 24h. The effects of SCPP11 on regulating related protein and mRNA expression in an insulin and AMPK signal pathway were investigated by western blot and RT-PCR analysis. SCPP11 showed no cytotoxicity to BRL cells and could improve the glucose consumption in BRL cells. SCPP11 increased the protein expression of Akt, p-AMPK and GLUT-4 in BRL cells. Moreover, SCPP11 could enhance the mRNA expression levels of IRS-1, PI3K, Akt, GLUT-4, AMPKα and PPAR-γ in BRL cells at the same time. In conclusion, SCPP11 possessed effects in improving glucose consumption by up-regulating the expression of GLUT-4 which might occur via insulin and AMPK signal pathway and could be a potential functional food to prevent and mitigate the insulin resistance condition.

  17. Increased glucose metabolism and alpha-glucosidase inhibition in Cordyceps militaris water extract-treated HepG2 cells.

    Science.gov (United States)

    Kim, Dae Jung; Kang, Yun Hwan; Kim, Kyoung Kon; Kim, Tae Woo; Park, Jae Bong; Choe, Myeon

    2017-06-01

    Recent living condition improvements, changes in dietary habits, and reductions in physical activity are contributing to an increase in metabolic syndrome symptoms including diabetes and obesity. Through such societal developments, humankind is continuously exposed to metabolic diseases such as diabetes, and the number of the victims is increasing. This study investigated Cordyceps militaris water extract (CMW)-induced glucose uptake in HepG2 cells and the effect of CMW treatment on glucose metabolism. Colorimetric assay kits were used to determine the glucokinase (GK) and pyruvate dehydrogenase (PDH) activities, glucose uptake, and glycogen content. Either RT-PCR or western blot analysis was performed for quantitation of glucose transporter 2 (GLUT2), hepatocyte nuclear factor 1 alpha (HNF-1α), phosphatidylinositol 3-kinase (PI3k), protein kinase B (Akt), phosphorylated AMP-activated protein kinase (pAMPK), phosphoenolpyruvate carboxykinase, GK, PDH, and glycogen synthase kinase 3 beta (GSK-3β) expression levels. The α-glucosidase inhibitory activities of acarbose and CMW were evaluated by absorbance measurement. CMW induced glucose uptake in HepG2 cells by increasing GLUT2 through HNF-1α expression stimulation. Glucose in the cells increased the CMW-induced phosphorylation of AMPK. In turn, glycolysis was stimulated, and glyconeogenesis was inhibited. Furthermore, by studying the mechanism of action of PI3k, Akt, and GSK-3β, and measuring glycogen content, the study confirmed that the glucose was stored in the liver as glycogen. Finally, CMW resulted in a higher level of α-glucosidase inhibitory activity than that from acarbose. CMW induced the uptake of glucose into HepG2 cells, as well, it induced metabolism of the absorbed glucose. It is concluded that CMW is a candidate or potential use in diabetes prevention and treatment.

  18. Surprise... Surprise..., An Empirical Investigation on How Surprise is Connected to Customer Satisfaction

    NARCIS (Netherlands)

    J. Vanhamme (Joëlle)

    2003-01-01

    textabstractThis research investigates the specific influence of the emotion of surprise on customer transaction-specific satisfaction. Four empirical studies-two field studies (a diary study and a cross section survey) and two experiments-were conducted. The results show that surprise positively

  19. Surprise... Surprise..., An Empirical Investigation on How Surprise is Connected to Customer Satisfaction

    NARCIS (Netherlands)

    J. Vanhamme (Joëlle)

    2003-01-01

    textabstractThis research investigates the specific influence of the emotion of surprise on customer transaction-specific satisfaction. Four empirical studies-two field studies (a diary study and a cross section survey) and two experiments-were conducted. The results show that surprise positively [n

  20. Mitochondrial Fission Increases Apoptosis and Decreases Autophagy in Renal Proximal Tubular Epithelial Cells Treated with High Glucose.

    Science.gov (United States)

    Lee, Wen-Chin; Chiu, Chien-Hua; Chen, Jin-Bor; Chen, Chiu-Hua; Chang, Hsueh-Wei

    2016-11-01

    The aim of this study was to examine the effect of mitochondrial morphogenesis changes on apoptosis and autophagy of high-glucose-treated proximal tubular epithelial cells (HK2). Cell viability, apoptosis, and mitochondrial morphogenesis were examined using crystal violet, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), and mitotracker staining, respectively. High glucose inhibited cell viability and induced mitochondrial fission in HK2 cells. After depleting mitofusin 1 (MFN1), the MFN1(-) HK2 cells (fission type) became more susceptible to high-glucose-induced apoptosis and mitochondrial fragmentation observed by TUNEL and mitotracker assays. In siMFN2 HK2 cells (fission type), mitochondria were highly fragmented (>80% fission rate) with or without high-glucose treatment; however, siFIS1 (mitochondrial fission protein 1) HK2 cells (fusion type) exhibited little fragmentation (High-glucose treatment induced autophagy, characterized by the formation of autophagosome and microtubule-associated protein light chain 3 (LC3) B-II, as observed by transmission electron microscopy and western blotting, respectively. LC3B-II levels decreased in both MFN1(-) and siMFN2 HK2 cells, but increased in siFIS1 HK2 cells. Moreover, autophagy displays a protective role against high-glucose-induced cell death based on cotreatment with autophagy inhibitors (3-methyladenine and chloroquine). Mitochondrial fission may increase apoptosis and decrease autophagy of high-glucose-treated HK2 cells.

  1. SIRT1 Disruption in Human Fetal Hepatocytes Leads to Increased Accumulation of Glucose and Lipids.

    Directory of Open Access Journals (Sweden)

    Takamasa Tobita

    Full Text Available There are unprecedented epidemics of obesity, such as type II diabetes and non-alcoholic fatty liver diseases (NAFLD in developed countries. A concerning percentage of American children are being affected by obesity and NAFLD. Studies have suggested that the maternal environment in utero might play a role in the development of these diseases later in life. In this study, we documented that inhibiting SIRT1 signaling in human fetal hepatocytes rapidly led to an increase in intracellular glucose and lipids levels. More importantly, both de novo lipogenesis and gluconeogenesis related genes were upregulated upon SIRT1 inhibition. The AKT/FOXO1 pathway, a major negative regulator of gluconeogenesis, was decreased in the human fetal hepatocytes inhibited for SIRT1, consistent with the higher level of gluconeogenesis. These results indicate that SIRT1 is an important regulator of lipid and carbohydrate metabolisms within human fetal hepatocytes, acting as an adaptive transcriptional response to environmental changes.

  2. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia

    OpenAIRE

    Rieg, Timo; Masuda, Takahiro; Gerasimova, Maria; Mayoux, Eric; Platt, Kenneth; Powell, David R.; Thomson, Scott C.; Koepsell, Hermann; Vallon, Volker

    2013-01-01

    In the kidney, the sodium-glucose cotransporters SGLT2 and SGLT1 are thought to account for >90 and ∼3% of fractional glucose reabsorption (FGR), respectively. However, euglycemic humans treated with an SGLT2 inhibitor maintain an FGR of 40–50%, mimicking values in Sglt2 knockout mice. Here, we show that oral gavage with a selective SGLT2 inhibitor (SGLT2-I) dose dependently increased urinary glucose excretion (UGE) in wild-type (WT) mice. The dose-response curve was shifted leftward and the ...

  3. Hepatic Glucose Production Increases in Response to Metformin Treatment in the Glycogen-depleted State

    DEFF Research Database (Denmark)

    Christensen, Mette Marie Hougaard; Højlund, Kurt; Hother-Nielsen, Ole;

    Metformin is believed to reduce glucose levels primarily by inhibiting hepatic glucose production, but at the same time do not cause hypoglycemia. Recent data indicate that metformin antagonizes the major glucose counterregulatory hormone, glucagon suggesting that other mechanisms protect against...... hypoglycemia. Here, we examined the effect of metformin on whole-body glucose metabolism after a glycogen-depleting 40 h fast and the role of reduced-function alleles in OCT1. In a randomized cross-over trial, 34 healthy volunteers with known OCT1 genotypes (12 with two wild-type alleles, 13 with one and 9...... with two reduced-function alleles) were fasted for 42 h twice. In one of the periods, before the fasting, the volunteers were titrated to steady-state with 1 g metformin twice daily for seven days. Parameters of whole-body glucose metabolism were assessed using [3-3^H] glucose, indirect calorimetry...

  4. In uncontrolled diabetes, thyroid hormone and sympathetic activators induce thermogenesis without increasing glucose uptake in brown adipose tissue.

    Science.gov (United States)

    Matsen, Miles E; Thaler, Joshua P; Wisse, Brent E; Guyenet, Stephan J; Meek, Thomas H; Ogimoto, Kayoko; Cubelo, Alex; Fischer, Jonathan D; Kaiyala, Karl J; Schwartz, Michael W; Morton, Gregory J

    2013-04-01

    Recent advances in human brown adipose tissue (BAT) imaging technology have renewed interest in the identification of BAT activators for the treatment of obesity and diabetes. In uncontrolled diabetes (uDM), activation of BAT is implicated in glucose lowering mediated by intracerebroventricular (icv) administration of leptin, which normalizes blood glucose levels in streptozotocin (STZ)-induced diabetic rats. The potent effect of icv leptin to increase BAT glucose uptake in STZ-diabetes is accompanied by the return of reduced plasma thyroxine (T4) levels and BAT uncoupling protein-1 (Ucp1) mRNA levels to nondiabetic controls. We therefore sought to determine whether activation of thyroid hormone receptors is sufficient in and of itself to lower blood glucose levels in STZ-diabetes and whether this effect involves activation of BAT. We found that, although systemic administration of the thyroid hormone (TR)β-selective agonist GC-1 increases energy expenditure and induces further weight loss in STZ-diabetic rats, it neither increased BAT glucose uptake nor attenuated diabetic hyperglycemia. Even when GC-1 was administered in combination with a β(3)-adrenergic receptor agonist to mimic sympathetic nervous system activation, glucose uptake was not increased in STZ-diabetic rats, nor was blood glucose lowered, yet this intervention potently activated BAT. Similar results were observed in animals treated with active thyroid hormone (T3) instead of GC-1. Taken together, our data suggest that neither returning normal plasma thyroid hormone levels nor BAT activation has any impact on diabetic hyperglycemia, and that in BAT, increases of Ucp1 gene expression and glucose uptake are readily dissociated from one another in this setting.

  5. Glucose, Lactate and Glutamine but not Glutamate Support Depolarization-Induced Increased Respiration in Isolated Nerve Terminals.

    Science.gov (United States)

    Hohnholt, Michaela C; Andersen, Vibe H; Bak, Lasse K; Waagepetersen, Helle S

    2017-01-01

    Synaptosomes prepared from various aged and gene modified experimental animals constitute a valuable model system to study pre-synaptic mechanisms. Synaptosomes were isolated from whole brain and the XFe96 extracellular flux analyzer (Seahorse Bioscience) was used to study mitochondrial respiration and glycolytic rate in presence of different substrates. Mitochondrial function was tested by sequentially exposure of the synaptosomes to the ATP synthase inhibitor, oligomycin, the uncoupler FCCP (carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone) and the electron transport chain inhibitors rotenone and antimycin A. The synaptosomes exhibited intense respiratory activity using glucose as substrate. The FCCP-dependent respiration was significantly higher with 10 mM glucose compared to 1 mM glucose. Synaptosomes also readily used pyruvate as substrate, which elevated basal respiration, activity-dependent respiration induced by veratridine and the respiratory response to uncoupling compared to that obtained with glucose as substrate. Also lactate was used as substrate by synaptosomes but in contrast to pyruvate, mitochondrial lactate mediated respiration was comparable to respiration using glucose as substrate. Synaptosomal respiration using glutamate and glutamine as substrates was significantly higher compared to basal respiration, whereas oligomycin-dependent and FCCP-induced respiration was lower compared to the responses obtained in the presence of glucose as substrate. We provide evidence that synaptosomes are able to use besides glucose and pyruvate also the substrates lactate, glutamate and glutamine to support their basal respiration. Veratridine was found to increase respiration supported by glucose, pyruvate, lactate and glutamine and FCCP was found to increase respiration supported by glucose, pyruvate and lactate. This was not the case when glutamate was the only energy substrate.

  6. Gcg-XTEN: an improved glucagon capable of preventing hypoglycemia without increasing baseline blood glucose.

    Directory of Open Access Journals (Sweden)

    Nathan C Geething

    Full Text Available OBJECTIVE: While the majority of current diabetes treatments focus on reducing blood glucose levels, hypoglycemia represents a significant risk associated with insulin treatment. Glucagon plays a major regulatory role in controlling hypoglycemia in vivo, but its short half-life and hyperglycemic effects prevent its therapeutic use for non-acute applications. The goal of this study was to identify a modified form of glucagon suitable for prophylactic treatment of hypoglycemia without increasing baseline blood glucose levels. METHODOLOGY/PRINCIPAL FINDINGS: Through application of the XTEN technology, we report the construction of a glucagon fusion protein with an extended exposure profile (Gcg-XTEN. The in vivo half-life of the construct was tuned to support nightly dosing through design and testing in cynomolgus monkeys. Efficacy of the construct was assessed in beagle dogs using an insulin challenge to induce hypoglycemia. Dose ranging of Gcg-XTEN in fasted beagle dogs demonstrated that the compound was biologically active with a pharmacodynamic profile consistent with the designed half-life. Prophylactic administration of 0.6 nmol/kg Gcg-XTEN to dogs conferred resistance to a hypoglycemic challenge at 6 hours post-dose without affecting baseline blood glucose levels. Consistent with the designed pharmacokinetic profile, hypoglycemia resistance was not observed at 12 hours post-dose. Importantly, the solubility and stability of the glucagon peptide were also significantly improved by fusion to XTEN. CONCLUSIONS/SIGNIFICANCE: The data show that Gcg-XTEN is effective in preventing hypoglycemia without the associated hyperglycemia expected for unmodified glucagon. While the plasma clearance of this Gcg-XTEN has been optimized for overnight dosing, specifically for the treatment of nocturnal hypoglycemia, constructs with significantly longer exposure profiles are feasible. Such constructs may have multiple applications such as allowing for more

  7. Increased levels of lipid metabolism and cystatin-C,but not glucose, affect virtual P vector

    Institute of Scientific and Technical Information of China (English)

    CHEN Jia; LIN Yu-bi; ZENG Chu-qian; YANG Zhen-zhen; LAI Xiao-shu; LU Qi-ji; ZHOU Jing-wen

    2016-01-01

    Background In this study,we aimed to evaluate the impact of abnormal glucose,lipid and Cystatin-C on the virtual P vector characteristics,which haven' t been reported in previous studies.Methods 204 of non-diabetes mellitus (NDM),130 of DM (type 2) and 39 of impaired glucose tolerance (IGT) patients were consecutively and retrospectively recruited.We selected a one-minute length of electrocardiogram at 4AM for analysis.After a series of calculating algorisms,we obtained the virtual planar P vector parameters.Results There were no significant differences in FPV,FPA,RSPV,RSPA,HPV and HPA groups.After adjusting confounding factors,the regression coefficients (RC) were estimated as follow:for FPV,female gender (RC-0.21,P =0.02),triglyceride (RC-0.09,P < 0.01),RVOT (RC 0.03,P =0.02);for RSPV,female gender (RC-0.21,P < 0.01),triglyceride (RC-0.10,P < 0.01),average heart rate (RC 0.01,P =0.02);for HPV,triglyceride (RC-0.08,P < 0.001),LDL (RC-0.19,P < 0.01),Apo B (RC 0.67,P < 0.01);for RSPA,B type of blood (RC-22.06,P =0.02),Cystatin-C (RC-72.79,P =0.02),thickness of interventricular septum (RC 3.70,P =0.01).Cystatin-C was suggested as a cure related to RSPA,and the cut-off point was 1.6 mg/L.There were no significant risk factors associated with FPA and HPA.There was no difference in virtual P vector among DM,IGT and NDM groups.Conclusion Increased levels of lipid and Cystatin-C significantly impact the characteristics of virtual P vector,whereas glucose does not.These changes may come from a higher low voltage atrial area and abnormal orientation of atrial depolarization.

  8. Direct neuronal glucose uptake Heralds activity-dependent increases in cerebral metabolism

    DEFF Research Database (Denmark)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two...

  9. Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane.

    Science.gov (United States)

    Marks, Joanne; Carvou, Nicolas J C; Debnam, Edward S; Srai, Surjit K; Unwin, Robert J

    2003-11-15

    The mechanism of renal glucose transport involves the reabsorption of filtered glucose from the proximal tubule lumen across the brush border membrane (BBM) via a sodium-dependent transporter, SGLT, and exit across the basolateral membrane via facilitative, GLUT-mediated, transport. The aim of the present study was to determine the effect of streptozotocin-induced diabetes on BBM glucose transport. We found that diabetes increased facilitative glucose transport at the BBM by 67.5 % (P < 0.05)--an effect that was abolished by overnight fasting. Western blotting and immunohistochemistry demonstrated GLUT2 expression at the BBM during diabetes, but the protein was undetectable at the BBM of control animals or diabetic animals that had been fasted overnight. Our findings indicate that streptozotocin-induced diabetes causes the insertion of GLUT2 into the BBM and this may provide a low affinity/high capacity route of entry into proximal tubule cells during hyperglycaemia.

  10. Identification and Structural Analysis of Amino Acid Substitutions that Increase the Stability and Activity of Aspergillus niger Glucose Oxidase.

    Directory of Open Access Journals (Sweden)

    Julia Marín-Navarro

    Full Text Available Glucose oxidase is one of the most conspicuous commercial enzymes due to its many different applications in diverse industries such as food, chemical, energy and textile. Among these applications, the most remarkable is the manufacture of glucose biosensors and in particular sensor strips used to measure glucose levels in serum. The generation of ameliorated versions of glucose oxidase is therefore a significant biotechnological objective. We have used a strategy that combined random and rational approaches to isolate uncharacterized mutations of Aspergillus niger glucose oxidase with improved properties. As a result, we have identified two changes that increase significantly the enzyme's thermal stability. One (T554M generates a sulfur-pi interaction and the other (Q90R/Y509E introduces a new salt bridge near the interphase of the dimeric protein structure. An additional double substitution (Q124R/L569E has no significant effect on stability but causes a twofold increase of the enzyme's specific activity. Our results disclose structural motifs of the protein which are critical for its stability. The combination of mutations in the Q90R/Y509E/T554M triple mutant yielded a version of A. niger glucose oxidase with higher stability than those previously described.

  11. Gingerols of Zingiber officinale enhance glucose uptake by increasing cell surface GLUT4 in cultured L6 myotubes.

    Science.gov (United States)

    Li, Yiming; Tran, Van H; Duke, Colin C; Roufogalis, Basil D

    2012-09-01

    In this study we investigate the active constituents of the rhizome of Zingiber officinale, Roscoe (ginger) and determine their activity on glucose uptake in cultured L6 myotubes and the molecular mechanism underlying this action. Freeze-dried ginger powder was extracted with ethyl acetate (1 kg/3 L) to give the total ginger extract, which was then separated into seven fractions, consisting of nonpolar to moderately polar compounds, using a short-column vacuum chromatographic method. The most active fraction (F7) was further purified for identification of its active components. The effect of the extract, fractions, and purified compounds on glucose uptake was evaluated using radioactive labelled 2-[1,2-³H]-deoxy-D-glucose in L6 myotubes. The pungent phenolic gingerol constituents were identified as the major active compounds in the ginger extract enhancing glucose uptake. (S)-[6]-Gingerol was the most abundant component among the gingerols, however, (S)-[8]-gingerol was the most potent on glucose uptake. The activity of (S)-[8]-gingerol was found to be associated primarily with an increase in surface distribution of GLUT4 protein on the L6 myotube plasma membrane, as detected by expression of hemagglutinin epitope-tagged GLUT4 in L6 muscle cells. The enhancement of glucose uptake in L6 rat skeletal muscle cells by the gingerol pungent principles of the ginger extract supports the potential of ginger and its pungent components for the prevention and management of hyperglycemia and type 2 diabetes.

  12. The flavanone homoeriodictyol increases SGLT-1-mediated glucose uptake but decreases serotonin release in differentiated Caco-2 cells

    Science.gov (United States)

    Hoi, Julia Katharina; Holik, Ann-Katrin; Geissler, Katrin; Hans, Joachim; Friedl, Barbara; Liszt, Kathrin; Krammer, Gerhard E.; Ley, Jakob P.; Somoza, Veronika

    2017-01-01

    Flavanoids and related polyphenols, among them hesperitin, have been shown to modulate cellular glucose transport by targeting SGLT-1 and GLUT-2 transport proteins. We aimed to investigate whether homoeriodictyol, which is structurally related to hesperitin, affects glucose uptake in differentiated Caco-2 cells as a model for the intestinal barrier. The results revealed that, in contrast to other polyphenols, the flavanon homoeriodictyol promotes glucose uptake by 29.0 ± 3.83% at a concentration of 100 μM. The glucose uptake stimulating effect was sensitive to phloridzin, but not to phloretin, indicating an involvement of the sodium-coupled glucose transporter SGLT-1, but not of sodium-independent glucose transporters (GLUT). In addition, in contrast to the increased extracellular serotonin levels by stimulation with 500 mM D-(+)-glucose, treatment with 100 μM homoeriodictyol decreased serotonin release by –48.8 ± 7.57% in Caco-2 cells via a phloridzin-sensitive signaling pathway. Extracellular serotonin levels were also reduced by –57.1 ± 5.43% after application of 0.01 μM homoeriodictyol to human neural SH-SY5Y cells. In conclusion, we demonstrate that homoeriodictyol affects both the glucose metabolism and the serotonin system in Caco-2 cells via a SGLT-1-meditated pathway. Furthermore, the results presented here support the usage of Caco-2 cells as a model for peripheral serotonin release. Further investigations may address the value of homoeriodictyol in the treatment of anorexia and malnutrition through the targeting of SGLT-1. PMID:28192456

  13. PPARalpha activation and increased dietary lipid oppose thyroid hormone signaling and rescue impaired glucose-stimulated insulin secretion in hyperthyroidism.

    Science.gov (United States)

    Holness, Mark J; Greenwood, Gemma K; Smith, Nicholas D; Sugden, Mary C

    2008-12-01

    The aim of the study was to investigate the impact of hyperthyroidism on the characteristics of the islet insulin secretory response to glucose, particularly the consequences of competition between thyroid hormone and peroxisome proliferator-activated receptor (PPAR)alpha in the regulation of islet adaptations to starvation and dietary lipid-induced insulin resistance. Rats maintained on standard (low-fat/high-carbohydrate) diet or high-fat/low-carbohydrate diet were rendered hyperthyroid (HT) by triiodothyronine (T(3)) administration (1 mg.kg body wt(-1).day(-1) sc, 3 days). The PPARalpha agonist WY14643 (50 mg/kg body wt ip) was administered 24 h before sampling. Glucose-stimulated insulin secretion (GSIS) was assessed during hyperglycemic clamps or after acute glucose bolus injection in vivo and with step-up and step-down islet perifusions. Hyperthyroidism decreased the glucose responsiveness of GSIS, precluding sufficient enhancement of insulin secretion for the degree of insulin resistance, in rats fed either standard diet or high-fat diet. Hyperthyroidism partially opposed the starvation-induced increase in the glucose threshold for GSIS and decrease in glucose responsiveness. WY14643 administration restored glucose tolerance by enhancing GSIS in fed HT rats and relieved the impact of hyperthyroidism to partially oppose islet starvation adaptations. Competition between thyroid hormone receptor (TR) and PPARalpha influences the characteristics of GSIS, such that hyperthyroidism impairs GSIS while PPARalpha activation (and increased dietary lipid) opposes TR signaling and restores GSIS in the fed hyperthyroid state. Increased islet PPARalpha signaling and decreased TR signaling during starvation facilitates appropriate modification of islet function.

  14. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Steven D Kunkel

    Full Text Available Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II, blood vessel recruitment (Vegfa and autocrine/paracrine IGF-I signaling (Igf1. As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness.

  15. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease.

    Science.gov (United States)

    Kunkel, Steven D; Elmore, Christopher J; Bongers, Kale S; Ebert, Scott M; Fox, Daniel K; Dyle, Michael C; Bullard, Steven A; Adams, Christopher M

    2012-01-01

    Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II), blood vessel recruitment (Vegfa) and autocrine/paracrine IGF-I signaling (Igf1). As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness.

  16. Overexpression of UDP-glucose pyrophosphorylase gene could increase cellulose content in Jute (Corchorus capsularis L.).

    Science.gov (United States)

    Zhang, Gaoyang; Qi, Jianmin; Xu, Jiantang; Niu, Xiaoping; Zhang, Yujia; Tao, Aifen; Zhang, Liwu; Fang, Pingping; Lin, Lihui

    2013-12-13

    In this study, the full-length cDNA of the UDP-glucose pyrophosphorylase gene was isolated from jute by homologous cloning (primers were designed according to the sequence of UGPase gene of other plants) and modified RACE techniques; the cloned gene was designated CcUGPase. Using bioinformatic analysis, the gene was identified as a member of the UGPase gene family. Real-time PCR analysis revealed differential spatial and temporal expression of the CcUGPase gene, with the highest expression levels at 40 and 120d. PCR and Southern hybridization results indicate that the gene was integrated into the jute genome. Overexpression of CcUGPase gene in jute revealed increased height and cellulose content compared with control lines, although the lignin content remained unchanged. The results indicate that the jute UGPase gene participates in cellulose biosynthesis. These data provide an important basis for the application of the CcUGPase gene in the improvement of jute fiber quality. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Weight cycling increases T-cell accumulation in adipose tissue and impairs systemic glucose tolerance.

    Science.gov (United States)

    Anderson, Emily K; Gutierrez, Dario A; Kennedy, Arion; Hasty, Alyssa H

    2013-09-01

    Obesity is one of the leading causes of morbidity in the U.S. Accumulation of proinflammatory immune cells in adipose tissue (AT) contributes to the development of obesity-associated disorders. Weight loss is the ideal method to counteract the negative consequences of obesity; however, losses are rarely maintained, leading to bouts of weight cycling. Fluctuations in weight have been associated with worsened metabolic and cardiovascular outcomes; yet, the mechanisms explaining this potential correlation are not known. For determination of whether weight cycling modulates AT immune cell populations, inflammation, and insulin resistance, mice were subjected to a diet-switch protocol designed to induce weight cycling. Weight-cycled mice displayed decreased systemic glucose tolerance and impaired AT insulin sensitivity when compared with mice that gained weight but did not cycle. AT macrophage number and polarization were not modulated by weight cycling. However, weight cycling did increase the number of CD4(+) and CD8(+) T cells in AT. Expression of multiple T helper 1-associated cytokines was also elevated subsequent to weight cycling. Additionally, CD8(+) effector memory T cells were present in AT of both obese and weight-cycled mice. These studies indicate that an exaggerated adaptive immune response in AT may contribute to metabolic dysfunction during weight cycling.

  18. Iron overload alters glucose homeostasis, causes liver steatosis, and increases serum triacylglycerols in rats.

    Science.gov (United States)

    Silva, Maísa; Silva, Marcelo E; de Paula, Heberth; Carneiro, Cláudia Martins; Pedrosa, Maria Lucia

    2008-06-01

    The objective of this study was to investigate the effect of iron overload with a hyperlipidemic diet on the histologic feature of hepatic tissue, the lipid and glycemic serum profiles, and the markers of oxidative damage and stress in a rat model. Twenty-four male Fischer rats, purchased from Experimental Nutrition Laboratory, Federal University of Ouro Preto, were assigned to 4 equal groups, 2 were fed a standard cholesterol-free diet (group C or control and CI or control with iron) containing 8.0% soybean oil and 2 were fed a hyperlipidemic diet (group H or hyperlipidemic and HI or hyperlipidemic with iron) containing 1.0% cholesterol and 25.0% soybean oil. A total of 50 mg of iron was administered to rats in groups CI and HI in 5 equal doses (1 every 3 weeks for a 16-week period) by intraperitoneal injections of 0.1 mL of iron dextran solution (100 g Fe(2+)/L; Sigma, St Louis, Mo). The other rats in groups C and H were treated in a similar manner but with sterile saline (0.1 mL). Irrespective of the diet, iron excess enhanced serum triacylglycerols (P .05) were observed in paraoxonase activities or in serum levels of free or total sulfhydryl radicals, malondialdehyde, or total antioxidants. The findings suggest that iron excess in the rat probably modifies lipid metabolism and, as a consequence, alters glucose homeostasis and increases the level of serum triacylglycerols but not of cholesterol.

  19. Dose-dependent increase and decrease in active glucose uptake in jejunal epithelium of broilers after acute exposure to ethanol.

    Science.gov (United States)

    Yunus, Agha Waqar; Awad, Wageha A; Kröger, Susan; Zentek, Jürgen; Böhm, Josef

    2011-06-01

    Little is known about the effects of ethanol on gastrointestinal tract of chicken. In this study, we investigated the effects of low levels of ethanol on electrophysiological variables of jejunal epithelium of commercial broilers. Jejunal tissues from 35- to 39-day-old broilers were exposed to either 0 or 0.1% ethanol in Ussing chambers, and electrophysiological variables were monitored for 40 min. After 40 and 60 min of incubation, glucose (20 mM) and carbamoylcholine (200 μM), respectively, were introduced into the chambers. The absolute and percent increase in short-circuit current (Isc) and potential difference (Vt) induced by glucose were increased significantly with 0.1% ethanol. There was no significant effect of 0.1% ethanol on carbamoylcholine-induced electrophysiological variables. To investigate if higher levels of ethanol have similar effects, we tested the effects of 0, 0.33, and 0.66% ethanol under similar experimental conditions until the glucose-addition step. Contrary to 0.1% ethanol, both the 0.33 and 0.66% ethanol levels significantly decreased the basal and glucose-induced Isc and Vt. Tissue conductivity remained unaffected in all cases. These results indicate that intestinal epithelia of chicken may be more sensitive to the effects of ethanol as compared with other species. This is the first report indicating dose-dependent increase and decrease in active glucose absorption in intestinal epithelia in the presence of ethanol.

  20. Surprise as a design strategy

    NARCIS (Netherlands)

    Ludden, G.D.S.; Schifferstein, H.N.J.; Hekkert, P.P.M.

    2008-01-01

    Imagine yourself queuing for the cashier’s desk in a supermarket. Naturally, you have picked the wrong line, the one that does not seem to move at all. Soon, you get tired of waiting. Now, how would you feel if the cashier suddenly started to sing? Many of us would be surprised and, regardless of

  1. Surprise as a design strategy

    NARCIS (Netherlands)

    Ludden, G.D.S.; Schifferstein, H.N.J.; Hekkert, P.P.M.

    2008-01-01

    Imagine yourself queuing for the cashier’s desk in a supermarket. Naturally, you have picked the wrong line, the one that does not seem to move at all. Soon, you get tired of waiting. Now, how would you feel if the cashier suddenly started to sing? Many of us would be surprised and, regardless of th

  2. Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle

    DEFF Research Database (Denmark)

    Kristiansen, S; Hargreaves, Mark; Richter, Erik

    1996-01-01

    ) and then to fatigue at 100% Vo2max (5.7 +/- 0.2 min). Vesicle glucose transport at 5 mM increased from 3.3 +/- 0.6 pmol.microgram-1.min-1 at rest to 6.6 +/- 1.0 pmol.microgram-1.min-1 at fatigue (mean +/- SE, n = 6, P increase in glucose transport was associated with a 1.6-fold increase in vesicle GLUT......A major effect of muscle contractions is an increase in sarcolemmal glucose transport. We have used a recently developed technique to produce sarcolemmal giant vesicles from human muscle biopsy samples obtained before and after exercise. Six men exercised for 10 min at 50% maximal O2 uptake (Vo2max......-4 protein content. Glucose transport normalized to GLUT-4 protein content also increased with exercise, suggesting increased intrinsic activity of GLUT-4. Furthermore, exercise resulted in a 1.4-fold increase in sarcolemmal vesicle-associated membrane protein (VAMP-2) content, suggesting that muscle...

  3. Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle

    DEFF Research Database (Denmark)

    Kristiansen, S; Hargreaves, Mark; Richter, Erik

    1996-01-01

    contractions may induce trafficking of GLUT-4-containing vesicles via a mechanism similar to neurotransmitter release. Our results demonstrate for the first time exercise-induced translocation of GLUT-4 and VAMP-2 to the plasma membrane of human muscle and increased sarcolemmal glucose transport.......A major effect of muscle contractions is an increase in sarcolemmal glucose transport. We have used a recently developed technique to produce sarcolemmal giant vesicles from human muscle biopsy samples obtained before and after exercise. Six men exercised for 10 min at 50% maximal O2 uptake (Vo2max...

  4. PPARgamma agonist induced cardiac enlargement is associated with reduced fatty acid and increased glucose utilization in myocardium of Wistar rats.

    Science.gov (United States)

    Edgley, Amanda J; Thalén, Pia G; Dahllöf, Björn; Lanne, Boel; Ljung, Bengt; Oakes, Nicholas D

    2006-05-24

    In toxicological studies, high doses of peroxisome proliferator-activated receptor-gamma (PPARgamma) agonists cause cardiac enlargement. To investigate whether this could be explained by a large shift from free fatty acid to glucose utilization by the heart, Wistar rats were treated for 2-3 weeks with a potent, selective PPARgamma agonist (X334, 3 micromol/kg/d), or vehicle. X334 treatment increased body-weight gain and ventricular mass. Treatment lowered plasma triglycerides by 61%, free fatty acid levels by 72%, insulin levels by 45%, and reduced total plasma protein concentration by 7% (indicating plasma volume expansion) compared to vehicle animals. Fasting plasma glucose levels were unaltered. To assess cardiac free fatty acid and glucose utilization in vivo we used simultaneous infusions of non-beta-oxidizable free fatty acid analogue, [9,10-(3)H](R)-2-bromopalmitate and [U-(14)C]2-deoxy-d-glucose tracers, which yield indices of local free fatty acid and glucose utilization. In anesthetized, 7 h fasted animals, left ventricular glucose utilization was increased to 182% while free fatty acid utilization was reduced by 28% (P<0.05) compared to vehicle. In separate studies we attempted to prevent the X334-induced hypolipidemia. Various dietary fat supplements were unsuccessful. By contrast, restricting the time during which the treated animals had access to food (promoting endogenous lipolysis), restored plasma free fatty acid from 27% to 72% of vehicle control levels and prevented the cardiac enlargement. Body-weight gain in these treated-food restricted rats was not different from vehicle controls. In conclusion, the cardiac enlargement caused by intense PPARgamma activation in normal animals is associated with marked changes in free fatty acid/glucose utilization and the enlargement can be prevented by restoring free fatty acid availability.

  5. Growth hormone administration increases glucose production by preventing the expected decrease in glycogenolysis seen with fasting in healthy volunteers.

    Science.gov (United States)

    Ghanaat, Farhad; Tayek, John A

    2005-05-01

    Twelve volunteers were fasted overnight and infused with [ 13 C]glucose (ul) to measure glucose production (GP), gluconeogenesis, and by subtraction, glycogenolysis. Glucose production, gluconeogenesis, and glycogenolysis were measured after a 3-hour baseline infusion and two 4-hour infusions. The first 4 hours of the pituitary-pancreatic clamp study (PPCS) with replacement insulin, cortisol, and glucagon was without growth hormone (GH) administration. The second 4 hours of the PPCS was with high-dose GH administration. Six fasting volunteers acted as controls over the 11-hour study period. Overnight 12-hour fasting measurements of hormones, glucose, GP, gluconeogenesis, and glycogenolysis were similar in both groups. The PPCS had no significant effect on GP (2.43 +/- 0.19 vs 2.07 +/- 0.11 mg/kg per minute, PPCS vs controls, mean +/- SEM). Glycogenolysis, as a percent of GP (43%-49%), was similar between PPCS and controls (43% +/- 3% vs 49% +/- 4%). High-dose GH for 4 hours increased GH (20.8 +/- 3.8 vs 2.0 +/- 0.9 ng/mL), blood glucose (127 +/- 28 vs 86 +/- 4 mg/dL, P glycogenolysis as compared to the observed fall in glycogenolysis seen with fasting alone (0.94 +/- 0.21 vs 0.53 +/- 0.07 mg/kg per minute, P Glycogenolysis, as a percent of GP, was significantly increased with high-dose GH (43 +/- 5% vs 29 +/- 3%, P glycogenolysis observed with fasting alone.

  6. Increased T cell glucose uptake reflects acute rejection in lung grafts

    Science.gov (United States)

    Chen, Delphine L.; Wang, Xingan; Yamamoto, Sumiharu; Carpenter, Danielle; Engle, Jacquelyn T.; Li, Wenjun; Lin, Xue; Kreisel, Daniel; Krupnick, Alexander S.; Huang, Howard J.; Gelman, Andrew E.

    2013-01-01

    Although T cells are required for acute lung rejection, other graft-infiltrating cells such as neutrophils accumulate in allografts and are also high glucose utilizers. Positron emission tomography (PET) with the glucose probe [18F]fluorodeoxyglucose ([18F]FDG) has been employed to image solid organ acute rejection, but the sources of glucose utilization remain undefined. Using a mouse model of orthotopic lung transplantation, we analyzed glucose probe uptake in the grafts of syngeneic and allogeneic recipients with or without immunosuppression treatment. Pulmonary microPET scans demonstrated significantly higher [18F]FDG uptake in rejecting allografts when compared to transplanted lungs of either immunosuppressed or syngeneic recipients. [18F]FDG uptake was also markedly attenuated following T cell depletion therapy in lung recipients with ongoing acute rejection. Flow-cytometric analysis using the fluorescent deoxyglucose analog 2-NBDG revealed that T cells, and in particular CD8+ T cells, were the largest glucose utilizers in acutely rejecting lung grafts followed by neutrophils and antigen presenting cells. These data indicate that imaging modalities tailored toward assessing T cell metabolism may be useful in identifying acute rejection in lung recipients PMID:23927673

  7. The relationship between HbA(1c) and fasting plasma glucose in patients with increased plasma liver enzyme measurements

    DEFF Research Database (Denmark)

    Christiansen, R; Rasmussen, L Melholt; Nybo, H;

    2012-01-01

    levels of increased liver enzyme concentrations. Methods:  Data from 10 065 patients with simultaneous measurement of HbA(1c) , venous fasting plasma glucose, alanine aminotransferase and γ-glutamyl transferase were extracted from our laboratory database. Correlations were investigated in four patient...

  8. High glucose modifies transient receptor potential canonical type 6 channels via increased oxidative stress and syndecan-4 in human podocytes

    DEFF Research Database (Denmark)

    Thilo, Florian; Lee, Marlene; Xia, Shengqiang

    2014-01-01

    Transient receptor potential canonical (TRPC) channels type 6 play an important role in the function of human podocytes. Diabetic nephropathy is characterized by altered TRPC6 expression and functions of podocytes. Thus, we hypothesized that high glucose modifies TRPC6 channels via increased oxid...

  9. Glycemic increase induced by intravenous glucose infusion fails to affect hunger, appetite, or satiety following breakfast in healthy men.

    Science.gov (United States)

    Schultes, Bernd; Panknin, Ann-Kristin; Hallschmid, Manfred; Jauch-Chara, Kamila; Wilms, Britta; de Courbière, Felix; Lehnert, Hendrik; Schmid, Sebastian M

    2016-10-01

    Meal-dependent fluctuations of blood glucose and corresponding endocrine signals such as insulin are thought to provide important regulatory input for central nervous processing of hunger and satiety. Since food intake also triggers the release of numerous gastrointestinal signals, the specific contribution of changes in blood glucose to appetite regulation in humans has remained unclear. Here we tested the hypothesis that inducing glycemic fluctuations by intravenous glucose infusion is associated with concurrent changes in hunger, appetite, and satiety. In a single blind, counter-balanced crossover study 15 healthy young men participated in two experimental conditions on two separate days. 500 ml of a solution containing 50 g glucose or 0.9% saline, respectively, was intravenously infused over a 1-h period followed by a 1-h observation period. One hour before start of the respective infusion subjects had a light breakfast (284 kcal). Blood glucose and serum insulin concentrations as well as self-rated feelings of hunger, appetite, satiety, and fullness were assessed during the entire experiment. Glucose as compared to saline infusion markedly increased glucose and insulin concentrations (peak glucose level: 9.7 ± 0.8 vs. 5.3 ± 0.3 mmol/l; t(14) = -5.159, p < 0.001; peak insulin level: 370.4 ± 66.5 vs. 109.6 ± 21.5 pmol/l; t(14) = 4.563, p < 0.001) followed by a sharp decline in glycaemia to a nadir of 3.0 ± 0.2 mmol/l (vs. 3.9 ± 0.1 mmol/l at the corresponding time in the control condition; t(14) = -3.972, p = 0.001) after stopping the infusion. Despite this wide glycemic fluctuation in the glucose infusion condition subjective feelings of hunger, appetite satiety, and fullness did not differ from the control condition throughout the experiment. These findings clearly speak against the notion that fluctuations in glycemia and also insulinemia represent major signals in the short-term regulation of hunger and satiety.

  10. High glucose-induced oxidative stress increases transient receptor potential channel expression in human monocytes

    DEFF Research Database (Denmark)

    Wuensch, Tilo; Thilo, Florian; Krueger, Katharina;

    2010-01-01

    Transient receptor potential (TRP) channel-induced cation influx activates human monocytes, which play an important role in the pathogenesis of atherosclerosis. In the present study, we investigated the effects of high glucose-induced oxidative stress on TRP channel expression in human monocytes....

  11. Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms.

    Science.gov (United States)

    Kang, Changkeun; Lee, Hyunkyoung; Jung, Eun-Sun; Seyedian, Ramin; Jo, MiNa; Kim, Jehein; Kim, Jong-Shu; Kim, Euikyung

    2012-12-15

    Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including anti-cancer, anti-inflammatory, and anti-atherosclerotic activities. On the other hand, the molecular bases of its actions have been scarcely understood. Here, we elucidated the mechanism of the hypoglycemic actions of saffron through investigating its signaling pathways associated with glucose metabolism in C(2)C(12) skeletal muscle cells. Saffron strongly enhanced glucose uptake and the phosphorylation of AMPK (AMP-activated protein kinase)/ACC (acetyl-CoA carboxylase) and MAPKs (mitogen-activated protein kinases), but not PI 3-kinase (Phosphatidylinositol 3-kinase)/Akt. Interestingly, the co-treatment of saffron and insulin further improved the insulin sensitivity via both insulin-independent (AMPK/ACC and MAPKs) and insulin-dependent (PI 3-kinase/Akt and mTOR) pathways. It also suggested that there is a crosstalk between the two signaling pathways of glucose metabolism in skeletal muscle cells. These results could be confirmed from the findings of GLUT4 translocation. Taken together, AMPK plays a major role in the effects of saffron on glucose uptake and insulin sensitivity in skeletal muscle cells. Our study provides important insights for the possible mechanism of action of saffron and its potential as a therapeutic agent in diabetic patients.

  12. Hypoxia in high glucose followed by reoxygenation in normal glucose reduces the viability of cortical astrocytes through increased permeability of connexin 43 hemichannels

    Science.gov (United States)

    Orellana, Juan A.; Hernández, Diego E.; Ezan, Pascal; Velarde, Victoria; Bennett, Michael V. L.; Giaume, Christian; Sáez, Juan C.

    2009-01-01

    Brain ischemia causes more extensive injury in hyperglycemic than normoglycemic subjects, and the increased damage is to astroglia as well as neurons. In the present work, we found that in cortical astrocytes from rat or mouse, reoxygenation after hypoxia in a medium mimicking interstitial fluid during ischemia increases hemichannel activity and decreases cell-cell communication via gap junctions as indicated by dye uptake and dye coupling, respectively. These effects were potentiated by high glucose during the hypoxia in a concentration-dependent manner (and by zero glucose) and were not observed in connexin 43−/− astrocytes. The responses were transient or persistent after short and long periods of hypoxia, respectively. The persistent responses were associated with a progressive reduction in cell viability that was prevented by La3+ or peptides that block connexin 43 (Cx43) hemichannels or by inhibition of p38 MAP kinase prior to hypoxia-reoxygenation but not by treatments that block pannexin hemichannels. Block of Cx43 hemichannels did not affect the reduction in gap junction mediated dye coupling observed during reoxygenation. Cx43 hemichannels may be a novel therapeutic target to reduce cell death following stroke, particularly in hyperglycemic conditions. PMID:19705457

  13. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects.

    Science.gov (United States)

    Yu, Jingwen; Wu, Yanqing; Yang, Peixin

    2016-05-01

    Aberrant epigenetic modifications are implicated in maternal diabetes-induced neural tube defects (NTDs). Because cellular stress plays a causal role in diabetic embryopathy, we investigated the possible role of the stress-resistant sirtuin (SIRT) family histone deacetylases. Among the seven sirtuins (SIRT1-7), pre-gestational maternal diabetes in vivo or high glucose in vitro significantly reduced the expression of SIRT 2 and SIRT6 in the embryo or neural stem cells, respectively. The down-regulation of SIRT2 and SIRT6 was reversed by superoxide dismutase 1 (SOD1) over-expression in the in vivo mouse model of diabetic embryopathy and the SOD mimetic, tempol and cell permeable SOD, PEGSOD in neural stem cell cultures. 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), a superoxide generating agent, mimicked high glucose-suppressed SIRT2 and SIRT6 expression. The acetylation of histone 3 at lysine residues 56 (H3K56), H3K14, H3K9, and H3K27, putative substrates of SIRT2 and SIRT6, was increased by maternal diabetes in vivo or high glucose in vitro, and these increases were blocked by SOD1 over-expression or tempol treatment. SIRT2 or SIRT6 over-expression abrogated high glucose-suppressed SIRT2 or SIRT6 expression, and prevented the increase in acetylation of their histone substrates. The potent sirtuin activator (SRT1720) blocked high glucose-increased histone acetylation and NTD formation, whereas the combination of a pharmacological SIRT2 inhibitor and a pan SIRT inhibitor mimicked the effect of high glucose on increased histone acetylation and NTD induction. Thus, diabetes in vivo or high glucose in vitro suppresses SIRT2 and SIRT6 expression through oxidative stress, and sirtuin down-regulation-induced histone acetylation may be involved in diabetes-induced NTDs. The mechanism underlying pre-gestational diabetes-induced neural tube defects (NTDs) is still elusive. Our study unravels a new epigenetic mechanism in which maternal diabetes-induced oxidative stress represses

  14. High glucose increases Cdk5 activity in podocytes via transforming growth factor-β1 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yue [Department of Diagnostics, Hebei Medical University, Shijiazhuang 050017 (China); Li, Hongbo; Hao, Jun [Department of Pathology, Hebei Medical University, Shijiazhuang 050017 (China); Zhou, Yi [Department of Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000 (China); Liu, Wei, E-mail: lwei929@126.com [Department of Pathology, Hebei Medical University, Shijiazhuang 050017 (China)

    2014-08-15

    Podocytes are highly specialized and terminally differentiated glomerular cells that play a vital role in the development and progression of diabetic nephropathy (DN). Cyclin-dependent kinase 5 (Cdk5), who is an atypical but essential member of the Cdk family of proline-directed serine/threonine kinases, has been shown as a key regulator of podocyte differentiation, proliferation and morphology. Our previous studies demonstrated that the expression of Cdk5 was significantly increased in podocytes of diabetic rats, and was closely related with podocyte injury of DN. However, the mechanisms of how expression and activity of Cdk5 are regulated under the high glucose environment have not yet been fully elucidated. In this study, we showed that high glucose up-regulated the expression of Cdk5 and its co-activator p35 with a concomitant increase in Cdk5 kinase activity in conditionally immortalized mouse podocytes in vitro. When exposed to 30 mM glucose, transforming growth factor-β1 (TGF-β1) was activated. Most importantly, we found that SB431542, the Tgfbr1 inhibitor, significantly decreased the expression of Cdk5 and p35 and Cdk5 kinase activity in high glucose-treated podocytes. Moreover, high glucose increased the expression of early growth response-1 (Egr-1) via TGF-β1-ERK1/2 pathway in podocytes and inhibition of Egr-1 by siRNA decreased p35 expression and Cdk5 kinase activity. Furthermore, inhibition of Cdk5 kinase activity effectively alleviated podocyte apoptosis induced by high glucose or TGF-β1. Thus, the TGF-β1-ERK1/2-Egr-1 signaling pathway may regulate the p35 expression and Cdk5 kinase activity in high glucose-treated podocytes, which contributes to podocyte injury of DN. - Highlights: • HG up-regulated the expression of Cdk5 and p35, and Cdk5 activity in podocytes. • HG activated TGF-β1 pathway and SB431542 inhibited Cdk5 expression and activity. • HG increased the expression of Egr-1 via TGF-β1-ERK1/2 pathway. • Inhibition of Egr-1

  15. Jicama (Pachyrhizus erosus) extract increases insulin sensitivity and regulates hepatic glucose in C57BL/Ksj-db/db mice.

    Science.gov (United States)

    Park, Chan Joo; Lee, Hyun-Ah; Han, Ji-Sook

    2016-01-01

    This study investigated the effect of jicama extract on hyperglycemia and insulin sensitivity in an animal model of type 2 diabetes. Male C57BL/Ksj-db/db mice were divided into groups subsequently fed a regular diet (controls), or diet supplemented with jicama extract, and rosiglitazone. After 6 weeks, blood levels of glucose and glycosylated hemoglobin were significantly lower in animals administered the jicama extract than the control group. Additionally, glucose and insulin tolerance tests showed that jicama extract increased insulin sensitivity. The homeostatic index of insulin resistance was lower in the jicama extract-treated group than in the diabetic control group. Administration of jicama extract significantly enhanced the expressions of the phosphorylated AMP-activated protein kinase and Akt substrate of 160 kDa, and plasma membrane glucose transporter type 4 in skeletal muscle. Jicama extract administration also decreased the expressions of glucose 6-phosphatase and phosphoenol pyruvate carboxykinase in the liver. Jicama extract may increases insulin sensitivity and inhibites the gluconeogenesis in the liver.

  16. Brazilian rescue plan sparks surprise

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    According to Financial Times,when Guido Mantega,Brazil's finance minister,suddenly proposed a “Bric” rescue package for the eurozone this week,he caught not only other world leaders by surprise but also many of his fellow countrymen.Even as officials from other members of the so-called Bric grouping,Russia,India and China,said it was the first they heard of the idea,many ordinary Brazilians expressed shock at the notion of bailing out the world's richest trading bloc.

  17. Increases in extracellular fluid glucose levels in the rat hippocampus following an anesthetic dose of pentobarbital or ketamine-xylazine: an in vivo microdialysis study.

    Science.gov (United States)

    Canal, Clinton E; McNay, Ewan C; Gold, Paul E

    2005-02-15

    Using in vivo microdialysis, we examined glucose levels in the extracellular fluid (ECF) of the hippocampus and in the blood prior to and during pentobarbital (45 mg/kg) or ketamine-xylazine (66 mg/kg, 7 mg/kg) anesthesia. Anesthesia with either pentobarbital or ketamine-xylazine significantly increased hippocampal ECF glucose levels (mean peak increases of +71% and +85%, respectively). In addition, there were substantial increases in blood glucose levels (mean peak increases of +24% and +30%, respectively). The increased levels of hippocampal ECF glucose during anesthesia complement past evidence for decreases in ECF glucose in the hippocampus observed while rats perform a memory task sensitive to hippocampal damage, providing further support for the view that ECF glucose levels in the hippocampus are dynamically coupled to local neural activity.

  18. Block of Kv1.7 potassium currents increases glucose-stimulated insulin secretion

    OpenAIRE

    Finol-Urdaneta, R.; Remedi, M.; Raasch, W.; Becker, S; Clark, R; Struever, N.; Pavlov, E.; Nichols, C.; French, R; Terlau, H

    2012-01-01

    Glucose-stimulated insulin secretion (GSIS) relies on repetitive, electrical spiking activity of the beta cell membrane. Cyclic activation of voltage-gated potassium channels (K v ) generates an outward, ‘delayed rectifier’ potassium current, which drives the repolarizing phase of each spike and modulates insulin release. Although several K v channels are expressed in pancreatic islets, their individual contributions to GSIS remain incompletely understood. We take advantage of a naturally occ...

  19. Lifelong Physical Activity Prevents Aging-Associated Insulin Resistance in Human Skeletal Muscle Myotubes via Increased Glucose Transporter Expression

    DEFF Research Database (Denmark)

    Bunprajun, Tipwadee; Henriksen, Tora Ida; Scheele, Camilla

    2013-01-01

    chain protein expression. Interestingly MHCIIa was increased only in myotubes from middle-aged active individuals. Middle-aged sedentary cells had intact insulin-stimulated Akt phosphorylation however, the same cell showed ablated insulin-stimulated glucose uptake and GLUT4 translocation to the plasma...... membrane. On the other hand, middle-aged active cells retained both insulin-stimulated increases in glucose uptake and GLUT4 translocation to the plasma membrane. Middle-aged active cells also had significantly higher mRNA expression of GLUT1 and GLUT4 compared to middle-aged sedentary cells......, and significantly higher GLUT4 protein. It is likely that physical activity induces a number of stable adaptations, including increased GLUT4 expression that are retained in cells ex vivo and protect, or delay the onset of middle-aged-associated insulin resistance. Additionally, a sedentary lifestyle has an impact...

  20. HIF-1 and c-Src mediate increased glucose uptake induced by endothelin-1 and connexin43 in astrocytes.

    Directory of Open Access Journals (Sweden)

    José Carlos Valle-Casuso

    Full Text Available In previous work we showed that endothelin-1 (ET-1 increases the rate of glucose uptake in astrocytes, an important aspect of brain function since glucose taken up by astrocytes is used to supply the neurons with metabolic substrates. In the present work we sought to identify the signalling pathway responsible for this process in primary culture of rat astrocytes. Our results show that ET-1 promoted an increase in the transcription factor hypoxia-inducible factor-1α (HIF-1α in astrocytes, as shown in other cell types. Furthermore, HIF-1α-siRNA experiments revealed that HIF-1α participates in the effects of ET-1 on glucose uptake and on the expression of GLUT-1, GLUT-3, type I and type II hexokinase. We previously reported that these effects of ET-1 are mediated by connexin43 (Cx43, the major gap junction protein in astrocytes. Indeed, our results show that silencing Cx43 increased HIF-1α and reduced the effect of ET-1 on HIF-1α, indicating that the effect of ET-1 on HIF-1α is mediated by Cx43. The activity of oncogenes such as c-Src can up-regulate HIF-1α. Since Cx43 interacts with c-Src, we investigated the participation of c-Src in this pathway. Interestingly, both the treatment with ET-1 and with Cx43-siRNA increased c-Src activity. In addition, when c-Src activity was inhibited neither ET-1 nor silencing Cx43 were able to up-regulate HIF-1α. In conclusion, our results suggest that ET-1 by down-regulating Cx43 activates c-Src, which in turn increases HIF-1α leading to the up-regulation of the machinery required to take up glucose in astrocytes. Cx43 expression can be reduced in response not only to ET-1 but also to various physiological and pathological stimuli. This study contributes to the identification of the signalling pathway evoked after Cx43 down-regulation that results in increased glucose uptake in astrocytes. Interestingly, this is the first evidence linking Cx43 to HIF-1, which is a master regulator of glucose metabolism.

  1. Surprise Leads to Noisier Perceptual Decisions

    Directory of Open Access Journals (Sweden)

    Marta I Garrido

    2011-02-01

    Full Text Available Surprising events in the environment can impair task performance. This might be due to complete distraction, leading to lapses during which performance is reduced to guessing. Alternatively, unpredictability might cause a graded withdrawal of perceptual resources from the task at hand and thereby reduce sensitivity. Here we attempt to distinguish between these two mechanisms. Listeners performed a novel auditory pitch—duration discrimination, where stimulus loudness changed occasionally and incidentally to the task. Responses were slower and less accurate in the surprising condition, where loudness changed unpredictably, than in the predictable condition, where the loudness was held constant. By explicitly modelling both lapses and changes in sensitivity, we found that unpredictable changes diminished sensitivity but did not increase the rate of lapses. These findings suggest that background environmental uncertainty can disrupt goal-directed behaviour. This graded processing strategy might be adaptive in potentially threatening contexts, and reflect a flexible system for automatic allocation of perceptual resources.

  2. Two weeks of moderate intensity continuous training, but not high intensity interval training increases insulin-stimulated intestinal glucose uptake.

    Science.gov (United States)

    Motiani, Kumail Kumar; Savolainen, Anna M; Eskelinen, Jari-Joonas; Toivanen, Jussi; Ishizu, Tamiko; Yli-Karjanmaa, Minna; Virtanen, Kirsi A; Parkkola, Riitta; Kapanen, Jukka; Gronroos, Tove J; Haaparanta-Solin, Merja; Solin, Olof; Savisto, Nina; Ahotupa, Markku; Löyttyniemi, Eliisa; Knuuti, Juhani; Nuutila, Pirjo; Kalliokoski, Kari K; Hannukainen, Jarna C

    2017-02-09

    Similar to muscles, the intestine is also insulin resistant in obese subjects and subjects with impaired glucose tolerance. Exercise training improves muscle insulin sensitivity, but its effects on intestinal metabolism are not known. We studied the effects of high intensity interval training (HIIT) and moderate intensity continuous training (MICT) on intestinal glucose and free fatty acid uptake from circulation in humans. Twenty-eight healthy middle-aged sedentary men were randomized for two weeks of HIIT or MICT. Intestinal insulin-stimulated glucose uptake and fasting free fatty acid uptake from circulation were measured using positron emission tomography and [(18)F]FDG and [(18)F]FTHA. In addition, effects of HIIT and MICT on intestinal Glut2 and CD36 protein expression were studied in rats. Training improved aerobic capacity (p=0.001) and whole-body insulin sensitivity (p=0.04), but not differently between HIIT and MICT. Insulin-stimulated glucose uptake increased only after the MICT in the colon [HIIT=0%; MICT=37%] (p=0.02 for time*training) and tended to increase in the jejunum [HIIT=-4%; MICT=13%] (p=0.08 for time*training). Fasting free fatty acid uptake decreased in the duodenum in both groups [HIIT=-6%; MICT=-48%] (p=0.001 time) and tended to decrease in the colon in the MICT group [HIIT=0%; MICT=-38%] (p=0.08 for time*training). In rats, both training groups had higher Glut2 and CD36 expression compared to control animals. This study shows that already two weeks of MICT enhances insulin-stimulated glucose uptake while both training modes reduce fasting free fatty acid uptake in the intestine in healthy middle-aged men, providing an additional mechanism by which exercise training can improve whole body metabolism.

  3. The Na+/Glucose Cotransporter Inhibitor Canagliflozin Activates AMPK by Inhibiting Mitochondrial Function and Increasing Cellular AMP Levels.

    Science.gov (United States)

    Hawley, Simon A; Ford, Rebecca J; Smith, Brennan K; Gowans, Graeme J; Mancini, Sarah J; Pitt, Ryan D; Day, Emily A; Salt, Ian P; Steinberg, Gregory R; Hardie, D Grahame

    2016-09-01

    Canagliflozin, dapagliflozin, and empagliflozin, all recently approved for treatment of type 2 diabetes, were derived from the natural product phlorizin. They reduce hyperglycemia by inhibiting glucose reuptake by sodium/glucose cotransporter (SGLT) 2 in the kidney, without affecting intestinal glucose uptake by SGLT1. We now report that canagliflozin also activates AMPK, an effect also seen with phloretin (the aglycone breakdown product of phlorizin), but not to any significant extent with dapagliflozin, empagliflozin, or phlorizin. AMPK activation occurred at canagliflozin concentrations measured in human plasma in clinical trials and was caused by inhibition of Complex I of the respiratory chain, leading to increases in cellular AMP or ADP. Although canagliflozin also inhibited cellular glucose uptake independently of SGLT2, this did not account for AMPK activation. Canagliflozin also inhibited lipid synthesis, an effect that was absent in AMPK knockout cells and that required phosphorylation of acetyl-CoA carboxylase (ACC) 1 and/or ACC2 at the AMPK sites. Oral administration of canagliflozin activated AMPK in mouse liver, although not in muscle, adipose tissue, or spleen. Because phosphorylation of ACC by AMPK is known to lower liver lipid content, these data suggest a potential additional benefit of canagliflozin therapy compared with other SGLT2 inhibitors. © 2016 by the American Diabetes Association.

  4. Some Surprises in Relativistic Gravity

    CERN Document Server

    Santos, N O

    2016-01-01

    General Relativity has had tremendous success both on the theoretical and the experimental fronts for over a century now. However, the contents of the theory are far from exhausted. Only very recently, with the detection of gravitational waves from colliding black holes, we have started probing the behavior of gravity in the strongly non-linear regime. Even today, the studies of black holes keep revealing more and more paradoxes and bizarre results. In this paper, inspired by David Hilbert's startling observation, we show that, contrary to the conventional wisdom, a freely falling test particle feels gravitational repulsion by a black hole as seen by the asymptotic observer. We dig deeper into this surprising behavior of relativistic gravity and offer some explanations.

  5. Increased amino acid supply potentiates glucose-stimulated insulin secretion but does not increase β-cell mass in fetal sheep.

    Science.gov (United States)

    Gadhia, Monika M; Maliszewski, Anne M; O'Meara, Meghan C; Thorn, Stephanie R; Lavezzi, Jinny R; Limesand, Sean W; Hay, William W; Brown, Laura D; Rozance, Paul J

    2013-02-15

    Amino acids and glucose acutely stimulate fetal insulin secretion. In isolated adult pancreatic islets, amino acids potentiate glucose-stimulated insulin secretion (GSIS), but whether amino acids have this same effect in the fetus is unknown. Therefore, we tested the effects of increased fetal amino acid supply on GSIS and morphology of the pancreas. We hypothesized that increasing fetal amino acid supply would potentiate GSIS. Singleton fetal sheep received a direct intravenous infusion of an amino acid mixture (AA) or saline (CON) for 10-14 days during late gestation to target a 25-50% increase in fetal branched-chain amino acids (BCAA). Early-phase GSIS increased 150% in the AA group (P < 0.01), and this difference was sustained for the duration of the hyperglycemic clamp (105 min) (P < 0.05). Glucose-potentiated arginine-stimulated insulin secretion (ASIS), pancreatic insulin content, and pancreatic glucagon content were similar between groups. β-Cell mass and area were unchanged between groups. Baseline and arginine-stimulated glucagon concentrations were increased in the AA group (P < 0.05). Pancreatic α-cell mass and area were unchanged. Fetal and pancreatic weights were similar. We conclude that a sustained increase of amino acid supply to the normally growing late-gestation fetus potentiated fetal GSIS but did not affect the morphology or insulin content of the pancreas. We speculate that increased β-cell responsiveness (insulin secretion) following increased amino acid supply may be due to increased generation of secondary messengers in the β-cell. This may be enhanced by the paracrine action of glucagon on the β-cell.

  6. Aspirin-mediated acetylation of haemoglobin increases in presence of high glucose concentration and decreases protein glycation

    OpenAIRE

    Francesco Finamore; Feliciano Priego-Capote; Severine Nolli; Pierre Fontana; Jean-Charles Sanchez

    2015-01-01

    Glycation represents the first stage in the development of diabetic complications. Aspirin was shown to prevent sugars reacting with proteins, but the exact mechanism of this interaction was not well defined. We performed a quantitative analysis to calculate the levels of acetylation and glycation of haemoglobin, among others red blood cell (RBC) proteins, using a label free approach. After glucose incubation, increases in the acetylation levels were seen for several haemoglobin subunits, whi...

  7. The mitochondrial Ca2+ uniporter MCU is essential for glucose-induced ATP increases in pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Andrei I Tarasov

    Full Text Available Glucose induces insulin release from pancreatic β-cells by stimulating ATP synthesis, membrane depolarisation and Ca(2+ influx. As well as activating ATP-consuming processes, cytosolic Ca(2+ increases may also potentiate mitochondrial ATP synthesis. Until recently, the ability to study the role of mitochondrial Ca(2+ transport in glucose-stimulated insulin secretion has been hindered by the absence of suitable approaches either to suppress Ca(2+ uptake into these organelles, or to examine the impact on β-cell excitability. Here, we have combined patch-clamp electrophysiology with simultaneous real-time imaging of compartmentalised changes in Ca(2+ and ATP/ADP ratio in single primary mouse β-cells, using recombinant targeted (Pericam or Perceval, respectively as well as entrapped intracellular (Fura-Red, probes. Through shRNA-mediated silencing we show that the recently-identified mitochondrial Ca(2+ uniporter, MCU, is required for depolarisation-induced mitochondrial Ca(2+ increases, and for a sustained increase in cytosolic ATP/ADP ratio. By contrast, silencing of the mitochondrial Na(+-Ca(2+ exchanger NCLX affected the kinetics of glucose-induced changes in, but not steady state values of, cytosolic ATP/ADP. Exposure to gluco-lipotoxic conditions delayed both mitochondrial Ca(2+ uptake and cytosolic ATP/ADP ratio increases without affecting the expression of either gene. Mitochondrial Ca(2+ accumulation, mediated by MCU and modulated by NCLX, is thus required for normal glucose sensing by pancreatic β-cells, and becomes defective in conditions mimicking the diabetic milieu.

  8. The mitochondrial Ca2+ uniporter MCU is essential for glucose-induced ATP increases in pancreatic β-cells.

    Science.gov (United States)

    Tarasov, Andrei I; Semplici, Francesca; Ravier, Magalie A; Bellomo, Elisa A; Pullen, Timothy J; Gilon, Patrick; Sekler, Israel; Rizzuto, Rosario; Rutter, Guy A

    2012-01-01

    Glucose induces insulin release from pancreatic β-cells by stimulating ATP synthesis, membrane depolarisation and Ca(2+) influx. As well as activating ATP-consuming processes, cytosolic Ca(2+) increases may also potentiate mitochondrial ATP synthesis. Until recently, the ability to study the role of mitochondrial Ca(2+) transport in glucose-stimulated insulin secretion has been hindered by the absence of suitable approaches either to suppress Ca(2+) uptake into these organelles, or to examine the impact on β-cell excitability. Here, we have combined patch-clamp electrophysiology with simultaneous real-time imaging of compartmentalised changes in Ca(2+) and ATP/ADP ratio in single primary mouse β-cells, using recombinant targeted (Pericam or Perceval, respectively) as well as entrapped intracellular (Fura-Red), probes. Through shRNA-mediated silencing we show that the recently-identified mitochondrial Ca(2+) uniporter, MCU, is required for depolarisation-induced mitochondrial Ca(2+) increases, and for a sustained increase in cytosolic ATP/ADP ratio. By contrast, silencing of the mitochondrial Na(+)-Ca(2+) exchanger NCLX affected the kinetics of glucose-induced changes in, but not steady state values of, cytosolic ATP/ADP. Exposure to gluco-lipotoxic conditions delayed both mitochondrial Ca(2+) uptake and cytosolic ATP/ADP ratio increases without affecting the expression of either gene. Mitochondrial Ca(2+) accumulation, mediated by MCU and modulated by NCLX, is thus required for normal glucose sensing by pancreatic β-cells, and becomes defective in conditions mimicking the diabetic milieu.

  9. Glucose alleviates cadmium toxicity by increasing cadmium fixation in root cell wall and sequestration into vacuole in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yuan-Zhi Shi; Xiao-Fang Zhu; Jiang-Xue Wan; Gui-Xin Li; Shao-Jian Zheng

    2015-01-01

    Glucose (Glu) is involved in not only plant physiological and developmental events but also plant responses to abiotic stresses. Here, we found that the exogenous Glu improved root and shoot growth, reduced shoot cadmium (Cd) concentration, and rescued Cd-induced chlorosis in Arabidopsis thaliana (Columbia ecotype, Col-0) under Cd stressed conditions. Glucose increased Cd retained in the roots, thus reducing its translocation from root to shoot significantly. The most Cd retained in the roots was found in the hemicellulose 1. Glucose combined with Cd (Glu þ Cd) treatment did not affect the content of pectin and its binding capacity of Cd while it increased the content of hemicelluloses 1 and the amount of Cd retained in it significantly. Furthermore, Leadmium Green staining indicated that more Cd was compartmented into vacuoles in Glu þ Cd treatment compared with Cd treatment alone, which was in accordance with the significant upregulation of the expression of tonoplast-localized metal transporter genes, suggesting that com-partmentation of Cd into vacuoles also contributes to the Glu-alleviated Cd toxicity. Taken together, we demonstrated that Glu-alleviated Cd toxicity is mediated through increas-ing Cd fixation in the root cell wall and sequestration into the vacuoles.

  10. Intracerebroventricular administration of chicken oxyntomodulin suppresses food intake and increases plasma glucose and corticosterone concentrations in chicks.

    Science.gov (United States)

    Honda, Kazuhisa; Saneyasu, Takaoki; Yamaguchi, Takuya; Shimatani, Tomohiko; Aoki, Koji; Nakanishi, Kiwako; Kamisoyama, Hiroshi

    2014-04-03

    Central administration of proglucagon-derived peptides, glucagon, glucagon-like peptide-1 (GLP-1), and oxyntomodulin (OXM), suppresses food intake in both mammals and birds. Recent findings suggest that GLP-1 receptor is involved in the anorexigenic action of OXM in both species. However, mammalian (bovine) OXM was used in chicken studies, even though the amino acid sequence and peptide length of chicken OXM differ from those of bovine OXM. In the present study, we examined the effect of chicken OXM on food intake and plasma components in chicks to investigate the mechanisms underlying the OXM effect. Male 8-day-old chicks (Gallus gallus domesticus) were used in all experiments. Intracerebroventricular administration of chicken OXM significantly suppressed food intake in chicks. Plasma concentrations of glucose and corticosterone were significantly increased by chicken OXM. These phenomena were also observed after bovine OXM injection in chicks. In contrast, central administration of chicken GLP-1 significantly decreased plasma glucose concentration and did not affect plasma corticosterone concentration. We previously showed that central administration of chicken glucagon significantly increased plasma concentrations of glucose and corticosterone in chicks. All our findings suggest that the mechanism underlying the anorexigenic action of OXM is similar to that of glucagon in chicks.

  11. Increased adrenergic signaling is responsible for decreased glucose-stimulated insulin secretion in the chronically hyperinsulinemic ovine fetus.

    Science.gov (United States)

    Andrews, Sasha E; Brown, Laura D; Thorn, Stephanie R; Limesand, Sean W; Davis, Melissa; Hay, William W; Rozance, Paul J

    2015-01-01

    Insulin may stimulate its own insulin secretion and is a potent growth factor for the pancreatic β-cell. Complications of pregnancy, such as diabetes and intrauterine growth restriction, are associated with changes in fetal insulin concentrations, secretion, and β-cell mass. However, glucose concentrations are also abnormal in these conditions. The direct effect of chronic fetal hyperinsulinemia with euglycemia on fetal insulin secretion and β-cell mass has not been tested. We hypothesized that chronic fetal hyperinsulinemia with euglycemia would increase glucose-stimulated insulin secretion (GSIS) and β-cell mass in the ovine fetus. Singleton ovine fetuses were infused with iv insulin to produce high physiological insulin concentrations, or saline for 7-10 days. The hyperinsulinemic animals also received a direct glucose infusion to maintain euglycemia. GSIS, measured at 133 ± 1 days of gestation, was significantly attenuated in the hyperinsulinemic fetuses (P < .05). There was no change in β-cell mass. The hyperinsulinemic fetuses also had decreased oxygen (P < .05) and higher norepinephrine (1160 ± 438 vs 522 ± 106 pg/mL; P < .005). Acute pharmacologic adrenergic blockade restored GSIS in the hyperinsulinemic-euglycemic fetuses, demonstrating that increased adrenergic signaling mediates decreased GSIS in these fetuses.

  12. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    Science.gov (United States)

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction.

  13. Increased interictal cerebral glucose metabolism in a cortical-subcortical network in drug naive patients with cryptogenic temporal lobe epilepsy.

    Science.gov (United States)

    Franceschi, M; Lucignani, G; Del Sole, A; Grana, C; Bressi, S; Minicucci, F; Messa, C; Canevini, M P; Fazio, F

    1995-01-01

    Positron emission tomography with [18F]-2-fluoro-2-deoxy-D-glucose ([18F]FDG) has been used to assess the pattern of cerebral metabolism in different types of epilepsies. However, PET with [18F]FDG has never been used to evaluate drug naive patients with cryptogenic temporal lobe epilepsy, in whom the mechanism of origin and diffusion of the epileptic discharge may differ from that underlying other epilepsies. In a group of patients with cryptogenic temporal lobe epilepsy, never treated with antiepileptic drugs, evidence has been found of significant interictal glucose hypermetabolism in a bilateral neural network including the temporal lobes, thalami, basal ganglia, and cingular cortices. The metabolism in these areas and frontal lateral cortex enables the correct classification of all patients with temporal lobe epilepsy and controls by discriminant function analysis. Other cortical areas--namely, frontal basal and lateral, temporal mesial, and cerebellar cortices--had bilateral increases of glucose metabolism ranging from 10 to 15% of normal controls, although lacking stringent statistical significance. This metabolic pattern could represent a pathophysiological state of hyperactivity predisposing to epileptic discharge generation or diffusion, or else a network of inhibitory circuits activated to prevent the diffusion of the epileptic discharge. PMID:7561924

  14. Some Surprising Introductory Physics Facts and Numbers

    Science.gov (United States)

    Mallmann, A. James

    2016-01-01

    In the entertainment world, people usually like, and find memorable, novels, short stories, and movies with surprise endings. This suggests that classroom teachers might want to present to their students examples of surprising facts associated with principles of physics. Possible benefits of finding surprising facts about principles of physics are…

  15. Optimization of tumor radiotherapy. Pt. 6. Modification of tumor glucose metabolism for increasing the bioavailability of 2-deoxy-D-glucose (2-DG) in a murine tumor model

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R.K.; Singh, S. [All India Inst. of Medical Sciences, New Delhi (India). Inst. of Nuclear Medicine and Allied Sciences; Degaonkar, M.; Raghunathan, P. [All India Inst. of Medical Sciences, New Delhi (India). Dept. of NMR; Maitra, A. [Delhi Univ. (India). Dept. of Chemistry; Jain, V. [Delhi Univ. (India). BR Ambedker Center for Biomedical Research

    2000-03-01

    Aim: Differential radiomodification induced by 2-deoxy-D-glucose (2-DG) is proving to be a feasible modality for optimizing tumor radiotherapy. Our earlier work on Ehrlich ascites tumor cells has shown that pretreatment with hematoporphyrin derivatives increases the uptake and phosphorylation of 2-DG. Moreover, the alteration induced in bioenergetic profile was more drastic and less reversible. The promising combination of hematoporphyrin derivatives and 2-DG has been further evaluated in the Ehrlich ascites tumor bearing mice for determining the effects on radiotherapeutic response. Materials and methods: Solid tumors (average volume=0.9{+-}0.1 cm{sup 3}) implanted in Swiss-albino strain 'A' mice were focally irradiated (10 Gy) using {sup 60}Co teletherapy. Drugs were administered intravenously. Tumor bioenergetics was assessed by {sup 31}P MR spectroscopy. Results: The uptake and phosphorylation of 2-DG was observed to be increased following pretreatment with hematoporphyrin derivatives. Upon hematoporphyrin derivatives +2-DG treatment followed by irradiation, the intracellular pH reduced and a remarkable increase in glycerophosphorylcholine and inorganic phosphate levels was observed. Conclusion: The present study demonstrates the potential of hematoporphyrin derivative pretreatment in increasing the bioavailability of 2-DG in a mice Ehrlich ascites tumor model. The finding may have interesting clinical implications in the form of increased manifestation of the radiation-induced damage in the case of use of these drugs as a potential adjuvant in radiotherapy of tumors. (orig.) [German] Hintergrund: Die durch 2-Deoxy-D-Glucose (2-DG) induzierte differentielle Radiomodifikation kann zur Optimierung der Radiotherapie bei Tumoren benutzt werden. Unsere frueheren Arbeiten mit Ehrlich-Aszites-Tumorzellen haben gezeigt, dass die Vorbehandlung mit Haematoporphyrinderivaten die Aufnahme und Phosphorylierung von 2-DG erhoeht. Die Veraenderungen des

  16. Aspirin-mediated acetylation of haemoglobin increases in presence of high glucose concentration and decreases protein glycation

    Directory of Open Access Journals (Sweden)

    Francesco Finamore

    2015-09-01

    Full Text Available Glycation represents the first stage in the development of diabetic complications. Aspirin was shown to prevent sugars reacting with proteins, but the exact mechanism of this interaction was not well defined. We performed a quantitative analysis to calculate the levels of acetylation and glycation of haemoglobin, among others red blood cell (RBC proteins, using a label free approach. After glucose incubation, increases in the acetylation levels were seen for several haemoglobin subunits, while a parallel decrease of their glycation levels was observed after aspirin incubation. These results suggest that, a mutual influence between these two modifications, occur at protein level.

  17. Increased Short-Term Beat-to-Beat QT Interval Variability in Patients with Impaired Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Andrea Orosz

    2017-06-01

    Full Text Available Prediabetic states and diabetes are important risk factors for cardiovascular morbidity and mortality. Determination of short-term QT interval variability (STVQT is a non-invasive method for assessment of proarrhythmic risk. The aim of the study was to evaluate the STVQT in patients with impaired glucose tolerance (IGT. 18 IGT patients [age: 63 ± 11 years, body mass index (BMI: 31 ± 6 kg/m2, fasting glucose: 6.0 ± 0.4 mmol/l, 120 min postload glucose: 9.0 ± 1.0 mmol/l, hemoglobin A1c (HbA1c: 5.9 ± 0.4%; mean ± SD] and 18 healthy controls (age: 56 ± 9 years, BMI: 27 ± 5 kg/m2, fasting glucose: 5.2 ± 0.4 mmol/l, 120 min postload glucose: 5.5 ± 1.3 mmol/l, HbA1c: 5.4 ± 0.3% were enrolled into the study. ECGs were recorded, processed, and analyzed off-line. The RR and QT intervals were expressed as the average of 30 consecutive beats, the temporal instability of beat-to-beat repolarization was characterized by calculating STVQT as follows: STVQT = Σ|QTn + 1 − QTn| (30x√2−1. Autonomic function was assessed by means of standard cardiovascular reflex tests. There were no differences between IGT and control groups in QT (411 ± 43 vs 402 ± 39 ms and QTc (431 ± 25 vs 424 ± 19 ms intervals or QT dispersion (44 ± 13 vs 42 ± 17 ms. However, STVQT was significantly higher in IGT patients (5.0 ± 0.7 vs 3.7 ± 0.7, P < 0.0001. The elevated temporal STVQT in patients with IGT may be an early indicator of increased instability of cardiac repolarization during prediabetic conditions.

  18. Decreased [{sup 18}F]fluoro-2-deoxy-D-glucose incorporation and increased glucose transport are associated with resistance to 5FU in MCF7 cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tim A.D. [PET Unit, Department of Biomedical Physics, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom)], E-mail: t.smith@biomed.abdn.ac.uk; Sharma, Rituka I. [PET Unit, Department of Biomedical Physics, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom); Wang, Weiguang G. [Department of Medicine and Therapeutics, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom); School of Applied Sciences, University of Wolverhampton, City Campus-South, Wolverhampton WV1 1SB (United Kingdom); Welch, Andy E.; Schweiger, Lutz F. [PET Unit, Department of Biomedical Physics, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom); Collie-Duguid, Elaina S.R. [Department of Medicine and Therapeutics, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom)

    2007-11-15

    Introduction: Tumor refractoriness to chemotherapy is frequently due to the acquisition of resistance. Resistant cells selected by exposure to chemotherapy agents may exhibit differences in [{sup 18}F]fluoro-2-deoxy-D-glucose (FDG) incorporation, as compared with sensitive cells. Methods: FDG incorporation, hexokinase (HK) activity, glucose transport and ATP content were determined in clones of 5-fluorouracil (5FU)-resistant MCF7 cells, established by long-term exposure to increasing 5FU concentrations, and in parental MCF7 cells. Results: FDG incorporation was decreased in MCF7 cells resistant to 5FU; HK activity was similar in the resistant and sensitive cells, while glucose transport was increased, as compared with sensitive cells. Treatment of cells with the glucose efflux inhibitor phloretin increased FDG incorporation to similar levels in the resistant and sensitive cells. Analysis of microarray data demonstrated the expression of GLUT1, 8 and 10 transporters in MCF7 cells. GLUT8 and 10 expression was decreased in the resistant cells, while GLUT1 was only increased in cells resistant to the lowest 5FU concentration. Conclusion: FDG incorporation in 5FU-resistant MCF7 cells is decreased, as compared with sensitive cells. Our findings also suggest that this may be due to high rates of membrane glucose transport in the resistant cells resulting in enhanced efflux of FDG. We believe that this is the first demonstration that facilitative glucose transporters can actually decrease the incorporation of FDG.

  19. Cumulative increased risk of incident type 2 diabetes mellitus with increasing triglyceride glucose index in normal-weight people: The Rural Chinese Cohort Study.

    Science.gov (United States)

    Zhang, Ming; Wang, Bingyuan; Liu, Yu; Sun, Xizhuo; Luo, Xinping; Wang, Chongjian; Li, Linlin; Zhang, Lu; Ren, Yongcheng; Zhao, Yang; Zhou, Junmei; Han, Chengyi; Zhao, Jingzhi; Hu, Dongsheng

    2017-03-01

    Risk of type 2 diabetes mellitus (T2DM) is increased in metabolically obese but normal-weight people. However, we have limited knowledge of how to prevent T2DM in normal-weight people. We aimed to evaluate the association between triglyceride glucose (TyG) index and incident T2DM among normal-weight people in rural China. We included data from 5706 people with normal body mass index (BMI) (18.5-23.9 kg/m(2)) without baseline T2DM in a rural Chinese cohort followed for a median of 6.0 years. A Cox proportional-hazard model was used to assess the risk of incident T2DM by quartiles of TyG index and difference in TyG index between follow-up and baseline (TyG-D), estimating hazard ratios (HRs) and 95% confidence intervals (CIs). A generalized additive plot was used to show the nonparametric smoothed exposure-response association between risk of T2DM and TyG index as a continuous variable. TyG was calculated as ln [fasting triglyceride level (mg/dl) × fasting plasma glucose level (mg/dl)/2]. Risk of incident T2DM was increased with quartiles 2, 3 and 4 versus quartile 1 of TyG index (adjusted HR [aHR] 2.48 [95% CI 1.20-5.11], 3.77 [1.83-7.79], and 5.30 [2.21-12.71], P trend Risk of incident T2DM was increased with quartile 4 versus quartile 1 of TyG-D (aHR 3.91 [2.22-6.87]). The results were consistent when analyses were restricted to participants without baseline metabolic syndrome and impaired fasting glucose level. The generalized additive plot showed cumulative increased risk of T2DM with increasing TyG index. Risk of incident T2DM is increased with increasing TyG index among rural Chinese people, so the index might be an important indicator for identifying people at high risk of T2DM.

  20. Young Galaxy's Magnetism Surprises Astronomers

    Science.gov (United States)

    2008-10-01

    Astronomers have made the first direct measurement of the magnetic field in a young, distant galaxy, and the result is a big surprise. Looking at a faraway protogalaxy seen as it was 6.5 billion years ago, the scientists measured a magnetic field at least 10 times stronger than that of our own Milky Way. They had expected just the opposite. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF The scientists made the discovery using the National Science Foundation's ultra-sensitive Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. "This new measurement indicates that magnetic fields may play a more important role in the formation and evolution of galaxies than we have realized," said Arthur Wolfe, of the University of California-San Diego (UCSD). At its great distance, the protogalaxy is seen as it was when the Universe was about half its current age. According to the leading theory, cosmic magnetic fields are generated by the dynamos of rotating galaxies -- a process that would produce stronger fields with the passage of time. In this scenario, the magnetic fields should be weaker in the earlier Universe, not stronger. The new, direct magnetic-field measurement comes on the heels of a July report by Swiss and American astronomers who made indirect measurements that also implied strong magnetic fields in the early Universe. "Our results present a challenge to the dynamo model, but they do not rule it out," Wolfe said. There are other possible explanations for the strong magnetic field seen in the one protogalaxy Wolfe's team studied. "We may be seeing the field close to the central region of a massive galaxy, and we know such fields are stronger toward the centers of nearby galaxies. Also, the field we see may have been amplified by a shock wave caused by the collision of two galaxies," he said. The protogalaxy studied with the GBT, called DLA-3C286, consists of gas with little or no star formation occurring in it. The astronomers suspect that

  1. Role of serotonin and/or norepinephrine in the MDMA-induced increase in extracellular glucose and glycogenolysis in the rat brain

    OpenAIRE

    Pachmerhiwala, Rashida; Bhide, Nirmal; Straiko, Megan; Gudelsky, Gary A.

    2010-01-01

    The acute administration of MDMA has been shown to promote glycogenolysis and increase the extracellular concentration of glucose in the striatum. In the present study the role of serotonergic and/or noradrenergic mechanisms in the MDMA-induced increase in extracellular glucose and glycogenolysis was assessed. The relationship of these responses to the hyperthermia produced by MDMA also was examined. The administration of MDMA (10 mg/kg, i.p.) resulted in a significant and sustained increase ...

  2. Increased glucose transport in ras-transformed fibroblasts: a possible role for N-glycosylation of GLUT1.

    Science.gov (United States)

    Onetti, R; Baulida, J; Bassols, A

    1997-05-05

    2-Deoxyglucose uptake was enhanced in ts371 KiMuSV-NRK cells when growing at the permissive temperature to allow the expression of a transforming p21 ras protein. This change is due to a decrease in the K(m) by approximately 2.5-fold without affecting the V(max) of the transporter. The amount of the GLUT1 glucose transporter dit not increase as deduced from immunoblot experiments on total membranes. Nevertheless, ras-transformed GLUT1 displays a higher molecular mass due to an increased N-glycosylation of the protein. Experiments made in tunicamycin-treated cells indicates that a higher glycosylation is responsible for the increase in 2-deoxyglucose uptake in ras-transformed cells.

  3. Aqueous extract of tamarind seeds selectively increases glucose transporter-2, glucose transporter-4, and islets' intracellular calcium levels and stimulates β-cell proliferation resulting in improved glucose homeostasis in rats with streptozotocin-induced diabetes mellitus.

    Science.gov (United States)

    Sole, Sushant Shivdas; Srinivasan, B P

    2012-08-01

    Tamarindus indica Linn. has been in use for a long time in Asian food and traditional medicine for different diseases including diabetes and obesity. However, the molecular mechanisms of these effects have not been fully understood. In view of the multidimensional activity of tamarind seeds due to their having high levels of polyphenols and flavonoids, we hypothesized that the insulin mimetic effect of aqueous tamarind seed extract (TSE) might increase glucose uptake through improvement in the expression of genes of the glucose transporter (GLUT) family and sterol regulatory element-binding proteins (SREBP) 1c messenger RNA (mRNA) in the liver. Daily oral administration of TSE to streptozotocin (STZ)-induced (90 mg/kg intraperitoneally) type 2 diabetic male Wistar rats at different doses (120 and 240 mg/kg body weight) for 4 weeks showed positive correlation with intracellular calcium and insulin release in isolated islets of Langerhans. Tamarind seed extract supplementation significantly improved the GLUT-2 protein and SREBP-1c mRNA expression in the liver and GLUT-4 protein and mRNA expression in the skeletal muscles of diabetic rats. The elevated levels of serum nitric oxide (NO), glycosylated hemoglobin level (hemoglobin (A1c)) and tumor necrosis factor α (TNF-α) decreased after TSE administration. Immunohistochemical findings revealed that TSE abrogated STZ-induced apoptosis and increased β-cell neogenesis, indicating its effect on islets and β-cell mass. In conclusion, it was found that the antidiabetic effect of TSE on STZ-induced diabetes resulted from complex mechanisms of β-cell neogenesis, calcium handling, GLUT-2, GLUT-4, and SREBP-1c. These findings show the scope for formulating a new herbal drug for diabetes therapy.

  4. Role of serotonin and/or norepinephrine in the MDMA-induced increase in extracellular glucose and glycogenolysis in the rat brain.

    Science.gov (United States)

    Pachmerhiwala, Rashida; Bhide, Nirmal; Straiko, Megan; Gudelsky, Gary A

    2010-10-10

    The acute administration of MDMA has been shown to promote glycogenolysis and increase the extracellular concentration of glucose in the striatum. In the present study the role of serotonergic and/or noradrenergic mechanisms in the MDMA-induced increase in extracellular glucose and glycogenolysis was assessed. The relationship of these responses to the hyperthermia produced by MDMA also was examined. The administration of MDMA (10mg/kg, i.p.) resulted in a significant and sustained increase of 65-100% in the extracellular concentration of glucose in the striatum, as well as in the prefrontal cortex and hippocampus, and a 35% decrease in brain glycogen content. Peripheral blood glucose was modestly increased by 32% after MDMA treatment. Treatment of rats with fluoxetine (10mg/kg, i.p.) significantly attenuated the MDMA-induced increase in extracellular glucose in the striatum but had no effect on MDMA-induced glycogenolysis or hyperthermia. Treatment with prazosin (1mg/kg, i.p.) did not alter the glucose or glycogen responses to MDMA but completely suppressed MDMA-induced hyperthermia. Finally, propranolol (3mg/kg, i.p.) significantly attenuated the MDMA-induced increase in extracellular glucose and glycogenolysis but did not alter MDMA-induced hyperthermia. The present results suggest that MDMA increases extracellular glucose in multiple brain regions, and that this response involves both serotonergic and noradrenergic mechanisms. Furthermore, beta-adrenergic and alpha-adrenergic receptors appear to contribute to MDMA-induced glycogenolysis and hyperthermia, respectively. Finally, hyperthermia, glycogenolysis and elevated extracellular glucose appear to be independent, unrelated responses to acute MDMA administration.

  5. Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Hyun-Young [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States); Miyashita, Michio [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States); Department of Pediatrics, Nihon University School of Medicine, Itabashi, Tokyo (Japan); Simon Cho, B.H. [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States); Harlan E. Moore Heart Research Foundation, 503 South Sixth Street, Champaign, IL 61820 (United States); Nakamura, Manabu T., E-mail: mtnakamu@illinois.edu [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States)

    2009-12-11

    Diets high in fructose cause hypertriglyceridemia and insulin resistance in part due to simultaneous induction of gluconeogenic and lipogenic genes in liver. We investigated the mechanism underlying the unique pattern of gene induction by dietary fructose. Male Sprague-Dawley rats (n = 6 per group) were meal-fed (4 h/d) either 63% (w/w) glucose or 63% fructose diet. After two weeks, animals were killed at the end of the last meal. Nuclear SREBP-1 was 2.2 times higher in fructose-fed rats than glucose-fed rats. Nuclear FoxO1 was elevated 1.7 times in fructose group, but did not reach significance (P = 0.08). Unexpectedly, no difference was observed in nuclear ChREBP between two groups. However, ChREBP DNA binding was 3.9x higher in fructose-fed animals without an increase in xylulose-5-phospate, a proposed ChREBP activator. In conclusion, the gene induction by dietary fructose is likely to be mediated in part by simultaneously increased ChREBP activity, SREBP-1 and possibly FoxO1 protein in nucleus.

  6. Lifelong Physical Activity Prevents Aging-Associated Insulin Resistance in Human Skeletal Muscle Myotubes via Increased Glucose Transporter Expression.

    Directory of Open Access Journals (Sweden)

    Tipwadee Bunprajun

    Full Text Available Both aging and physical inactivity are associated with increased development of insulin resistance whereas physical activity has been shown to promote increased insulin sensitivity. Here we investigated the effects of physical activity level on aging-associated insulin resistance in myotubes derived from human skeletal muscle satellite cells. Satellite cells were obtained from young (22 yrs normally active or middle-aged (56.6 yrs individuals who were either lifelong sedentary or lifelong active. Both middle-aged sedentary and middle-aged active myotubes had increased p21 and myosin heavy chain protein expression. Interestingly MHCIIa was increased only in myotubes from middle-aged active individuals. Middle-aged sedentary cells had intact insulin-stimulated Akt phosphorylation however, the same cell showed ablated insulin-stimulated glucose uptake and GLUT4 translocation to the plasma membrane. On the other hand, middle-aged active cells retained both insulin-stimulated increases in glucose uptake and GLUT4 translocation to the plasma membrane. Middle-aged active cells also had significantly higher mRNA expression of GLUT1 and GLUT4 compared to middle-aged sedentary cells, and significantly higher GLUT4 protein. It is likely that physical activity induces a number of stable adaptations, including increased GLUT4 expression that are retained in cells ex vivo and protect, or delay the onset of middle-aged-associated insulin resistance. Additionally, a sedentary lifestyle has an impact on the metabolism of human myotubes during aging and may contribute to aging-associated insulin resistance through impaired GLUT4 localization.

  7. Increased glucose-stimulated FGF21 response to oral glucose in obese non-diabetic subjects after Roux-en-Y Gastric Bypass

    DEFF Research Database (Denmark)

    Vienberg, Sara Gry; Jacobsen, Siv Hesse; Worm, Dorte

    2017-01-01

    OBJECTIVE: The positive metabolic outcome of Roux-en-Y Gastric Bypass (RYGB) surgery may involve Fibroblast Growth Factor 21 (FGF21), both in the fasting state and postprandially. We measured the fasting levels of FGF21 before and after bariatric surgery as well as the postprandial FGF21 responses...... after a glucose load and after a mixed meal. DESIGN: Observational intervention trial. PATIENTS AND MEASUREMENTS: Eight obese, non-diabetics patients underwent RYGB. Plasma FGF21 was measured both before and after surgery on three different days during oral glucose loads (25 g or 50 g glucose......) or a mixed meal. Blood samples were taken right before the meal and at 15 min intervals until 90 min and at 150 min and 210 min relative to the start of the meal. RESULTS: Overall, fasting plasma FGF21 did not change significantly before and after surgery (262±71 vs 411±119 pg/ml), but for three subjects...

  8. Bile Acid Sequestration Reduces Plasma Glucose Levels in db/db Mice by Increasing Its Metabolic Clearance Rate

    NARCIS (Netherlands)

    Meissner, M.; Herrema, H.J.; Dijk, van Th.; Gerding, A.; Havinga, R.; Boer, T.; Müller, M.R.; Reijngoud, D.J.; Groen, A.K.; Kuipers, F.

    2011-01-01

    Aims/Hypothesis: Bile acid sequestrants (BAS) reduce plasma glucose levels in type II diabetics and in murine models of diabetes but the mechanism herein is unknown. We hypothesized that sequestrant-induced changes in hepatic glucose metabolism would underlie reduced plasma glucose levels.

  9. A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly

    Science.gov (United States)

    Shah, T; Verdile, G; Sohrabi, H; Campbell, A; Putland, E; Cheetham, C; Dhaliwal, S; Weinborn, M; Maruff, P; Darby, D; Martins, R N

    2014-01-01

    Physical exercise interventions and cognitive training programs have individually been reported to improve cognition in the healthy elderly population; however, the clinical significance of using a combined approach is currently lacking. This study evaluated whether physical activity (PA), computerized cognitive training and/or a combination of both could improve cognition. In this nonrandomized study, 224 healthy community-dwelling older adults (60–85 years) were assigned to 16 weeks home-based PA (n=64), computerized cognitive stimulation (n=62), a combination of both (combined, n=51) or a control group (n=47). Cognition was assessed using the Rey Auditory Verbal Learning Test, Controlled Oral Word Association Test and the CogState computerized battery at baseline, 8 and 16 weeks post intervention. Physical fitness assessments were performed at all time points. A subset (total n=45) of participants underwent [18F] fluorodeoxyglucose positron emission tomography scans at 16 weeks (post-intervention). One hundred and ninety-one participants completed the study and the data of 172 participants were included in the final analysis. Compared with the control group, the combined group showed improved verbal episodic memory and significantly higher brain glucose metabolism in the left sensorimotor cortex after controlling for age, sex, premorbid IQ, apolipoprotein E (APOE) status and history of head injury. The higher cerebral glucose metabolism in this brain region was positively associated with improved verbal memory seen in the combined group only. Our study provides evidence that a specific combination of physical and mental exercises for 16 weeks can improve cognition and increase cerebral glucose metabolism in cognitively intact healthy older adults. PMID:25463973

  10. Improved glucose metabolism in vitro and in vivo by an allosteric monoclonal antibody that increases insulin receptor binding affinity.

    Directory of Open Access Journals (Sweden)

    John A Corbin

    Full Text Available Previously we reported studies of XMetA, an agonist antibody to the insulin receptor (INSR. We have now utilized phage display to identify XMetS, a novel monoclonal antibody to the INSR. Biophysical studies demonstrated that XMetS bound to the human and mouse INSR with picomolar affinity. Unlike monoclonal antibody XMetA, XMetS alone had little or no agonist effect on the INSR. However, XMetS was a strong positive allosteric modulator of the INSR that increased the binding affinity for insulin nearly 20-fold. XMetS potentiated insulin-stimulated INSR signaling ∼15-fold or greater including; autophosphorylation of the INSR, phosphorylation of Akt, a major enzyme in the metabolic pathway, and phosphorylation of Erk, a major enzyme in the growth pathway. The enhanced signaling effects of XMetS were more pronounced with Akt than with Erk. In cultured cells, XMetS also enhanced insulin-stimulated glucose transport. In contrast to its effects on the INSR, XMetS did not potentiate IGF-1 activation of the IGF-1 receptor. We studied the effect of XMetS treatment in two mouse models of insulin resistance and diabetes. The first was the diet induced obesity mouse, a hyperinsulinemic, insulin resistant animal, and the second was the multi-low dose streptozotocin/high-fat diet mouse, an insulinopenic, insulin resistant animal. In both models, XMetS normalized fasting blood glucose levels and glucose tolerance. In concert with its ability to potentiate insulin action at the INSR, XMetS reduced insulin and C-peptide levels in both mouse models. XMetS improved the response to exogenous insulin without causing hypoglycemia. These data indicate that an allosteric monoclonal antibody can be generated that markedly enhances the binding affinity of insulin to the INSR. These data also suggest that an INSR monoclonal antibody with these characteristics may have the potential to both improve glucose metabolism in insulinopenic type 2 diabetes mellitus and correct

  11. Worsening diastolic function is associated with elevated fasting plasma glucose and increased left ventricular mass in a supra-additive fashion in an elderly, healthy, Swedish population

    DEFF Research Database (Denmark)

    Pareek, Manan; Nielsen, Mette Lundgren; Gerke, Oke;

    2015-01-01

    AIMS: To examine whether increasing fasting plasma glucose (FPG) levels were associated with worsening left ventricular (LV) diastolic function, independently of LV mass index (LVMI) in elderly, otherwise healthy subjects. METHODS AND RESULTS: We tested cross-sectional associations between...

  12. Factors related to colonic fermentation of nondigestible carbohydrates of a previous evening meal increase tissue glucose uptake and moderate glucose-associated inflammation

    NARCIS (Netherlands)

    Priebe, Marion G.; Wang, Hongwei; Weening, Desiree; Schepers, Marianne; Preston, Tom; Vonk, Roel J.

    2010-01-01

    Background: Evening meals that are rich in nondigestible carbohydrates have been shown to lower postprandial glucose concentrations after ingestion of high-glycemic-index breakfasts. This phenomenon is linked to colonic fermentation of nondigestible carbohydrates, but the underlying mechanism is not

  13. Modification of a traditional breakfast leads to increased satiety along with attenuated plasma increments of glucose, C-peptide, insulin, and glucose-dependent insulinotropic polypeptide in humans.

    Science.gov (United States)

    Ohlsson, Bodil; Höglund, Peter; Roth, Bodil; Darwiche, Gassan

    2016-04-01

    Our hypothesis was that carbohydrate, fat, and protein contents of meals affect satiety, glucose homeostasis, and hormone secretion. The objectives of this crossover trial were to examine satiety, glycemic-insulinemic response, and plasma peptide levels in response to 2 different recommended diabetes diets with equivalent energy content. One traditional reference breakfast and one test breakfast, with lower carbohydrate and higher fat and protein content, were randomly administered to healthy volunteers (8 men, 12 women). Blood samples were collected, and satiety was scored on a visual analog scale before and 3 hours after meals. Plasma glucose was measured, and levels of C-peptide, ghrelin, glucagon, glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide (GIP), insulin, plasminogen activator inhibitor-1, and adipokines were analyzed by Luminex. Greater satiety, visual analog scale, and total and delta area under the curve (P satiety and attenuation of C-peptide, glucose, insulin, and GIP responses compared with the reference breakfast but does not affect adipokines, ghrelin, glucagon, glucagon-like peptide-1, and plasminogen activator inhibitor-1.

  14. Loss of Cyp8b1 Improves Glucose Homeostasis by Increasing GLP-1

    NARCIS (Netherlands)

    Kaur, Achint; Patankar, Jay V.; de Haan, Willeke; Ruddle, Piers; Wijesekara, Nadeeja; Groen, Albert K.; Verchere, C. Bruce; Singaraja, Roshni R.; Hayden, Michael R.

    Besides their role in facilitating lipid absorption, bile acids are increasingly being recognized as signaling molecules that activate cell-signaling receptors. Targeted disruption of the sterol 12-hydroxylase gene (Cyp8b1) results in complete absence of cholic acid (CA) and its derivatives. Here we

  15. Acute ingestion of catechin-rich green tea improves postprandial glucose status and increases serum thioredoxin concentrations in postmenopausal women.

    Science.gov (United States)

    Takahashi, Masaki; Miyashita, Masashi; Suzuki, Katsuhiko; Bae, Seong-Ryu; Kim, Hyeon-Ki; Wakisaka, Takuya; Matsui, Yuji; Takeshita, Masao; Yasunaga, Koichi

    2014-11-14

    Elevated postprandial hyperglycaemia and oxidative stress increase the risks of type 2 diabetes and CVD. Green tea catechin possesses antidiabetic properties and antioxidant capacity. In the present study, we examined the acute and continuous effects of ingestion of catechin-rich green tea on postprandial hyperglycaemia and oxidative stress in healthy postmenopausal women. Participants were randomly assigned into the placebo (P, n 11) or green tea (GT, n 11) group. The GT group consumed a catechin-rich green tea (catechins 615 mg/350 ml) beverage per d for 4 weeks. The P group consumed a placebo (catechins 92 mg/350 ml) beverage per d for 4 weeks. At baseline and after 4 weeks, participants of each group consumed their designated beverages with breakfast and consumed lunch 3 h after breakfast. Venous blood samples were collected in the fasted state (0 h) and at 2, 4 and 6 h after breakfast. Postprandial glucose concentrations were 3 % lower in the GT group than in the P group (three-factor ANOVA, group × time interaction, Pcatechin-rich green tea intake was observed. Conversely, serum postprandial thioredoxin concentrations were 5 % higher in the GT group than in the P group (three-factor ANOVA, group × time interaction, Pcatechin-rich green tea has beneficial effects on postprandial glucose and redox homeostasis in postmenopausal women.

  16. Effects of Acute Exposure to Increased Plasma Branched-Chain Amino Acid Concentrations on Insulin-Mediated Plasma Glucose Turnover in Healthy Young Subjects

    OpenAIRE

    Sarah Everman; Mandarino, Lawrence J.; Carroll, Chad C.; Katsanos, Christos S.

    2015-01-01

    Background Plasma branched-chain amino acids (BCAA) are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity. Objective To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated plasma glucose turnover in humans. Methods Ten healthy subjects were randomly assigned to...

  17. Monomeric adiponectin increases cell viability in porcine aortic endothelial cells cultured in normal and high glucose conditions: Data on kinases activation

    Directory of Open Access Journals (Sweden)

    Elena Grossini

    2016-09-01

    Full Text Available We found that monomeric adiponectin was able to increase cell viability in porcine aortic endothelial cells (PAE cultured both in normal and high glucose condition. Moreover, in normal glucose condition monomeric adiponectin increased p38MAPK, Akt, ERK1/2 and eNOS phosphorylation in a dose- and time-dependent way. Also in high glucose condition monomeric adiponectin increased eNOS and above kinases phosphorylation with similar patterns but at lower extent. For interpretation of the data presented in this article, please see the research article “Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions” (Grossini et al., in press [1].

  18. Palmitic acid feeding increases ceramide supply in association with increased milk yield, circulating nonesterified fatty acids, and adipose tissue responsiveness to a glucose challenge.

    Science.gov (United States)

    Rico, J E; Mathews, A T; Lovett, J; Haughey, N J; McFadden, J W

    2016-11-01

    Reduced insulin action is a key adaptation that facilitates glucose partitioning to the mammary gland for milk synthesis and enhances adipose tissue lipolysis during early lactation. The progressive recovery of insulin sensitivity as cows advance toward late lactation is accompanied by reductions in circulating nonesterified fatty acids (NEFA) and milk yield. Because palmitic acid can promote insulin resistance in monogastrics through sphingolipid ceramide-dependent mechanisms, palmitic acid (C16:0) feeding may enhance milk production by restoring homeorhetic responses. We hypothesized that feeding C16:0 to mid-lactation cows would enhance ceramide supply and ceramide would be positively associated with milk yield. Twenty multiparous mid-lactation Holstein cows were enrolled in a study consisting of a 5-d covariate, 49-d treatment, and 14-d posttreatment period. All cows were randomly assigned to a sorghum silage-based diet containing no supplemental fat (control; n=10; 138±45 d in milk) or C16:0 at 4% of ration dry matter (PALM; 98% C16:0; n=10; 136±44 d in milk). Blood and milk were collected at routine intervals. Liver and skeletal muscle tissue were biopsied at d 47 of treatment. Intravenous glucose tolerance tests (300mg/kg of body weight) were performed at d -1, 24, and 49 relative to start of treatment. The plasma and tissue concentrations of ceramide and glycosylated ceramide were determined using liquid chromatography coupled with tandem mass spectrometry. Data were analyzed as repeated measures using a mixed model with fixed effects of treatment and time, and milk yield served as a covariate. The PALM treatment increased milk yield, energy-corrected milk, and milk fat yield. The most abundant plasma and tissue sphingolipids detected were C24:0-ceramide, C24:0-monohexosylceramide (GlcCer), and C16:0-lactosylceramide. Plasma concentrations of total ceramide and GlcCer decreased as lactation advanced, and ceramide and GlcCer were elevated in cows fed PALM

  19. A progressive increase in cardiovascular risk assessed by coronary angiography in non-diabetic patients at sub-diabetic glucose levels

    Directory of Open Access Journals (Sweden)

    Schott Matthias

    2011-06-01

    Full Text Available Abstract Objective Diabetes mellitus type 2 (DM2 is a risk factor for coronary heart disease (CHD. While there is a clear correlation of fasting blood glucose (FBG and 2 h post-challenge blood glucose values (2h-BG with microvascular complications, the risk for CHD conferred by glucose dysregulation antecedent to DM2 is less clear. Therefore, we investigated associations of FBG and 2h-BG values with the prevalence of CHD assessed by coronary angiography as the most sensitive diagnostic tool. Research Design and Methods Coronary angiography was performed in 1394 patients without known DM. Capillary blood glucose was analyzed before and 2 h after an oral glucose tolerance test. Associations between FBG as well as 2h-BG levels and the risk for CHD were assessed by logistic regression analysis. Results 1064 (75% of patients were diagnosed with CHD. 204 (15% were diagnosed with so far unknown DM2, 274 (20% with isolated impaired fasting glucose (IFG, 188 (13% with isolated impaired glucose tolerance (IGT and 282 (20% with both, IGT and IFG. We found a continuous increase in the risk for CHD with fasting and post-challenge blood glucose values even in the subdiabetic range. This correlation did however not suggest clear cut-off values. The increase in risk for CHD reached statistical significance at FBG levels of > 120 mg/dl (Odds Ratio of 2.7 [1.3-5.6] and 2h-BG levels > 140 mg/dl (141-160 mg/dl OR 1.8 [1.1-2.9], which was however lost after adjusting for age, sex and BMI. Conclusions In our study population we found a continuous increased risk for CHD at fasting and 2h-BG levels in the sub-diabetic glucose range, but no clear cut-off values for cardiovascular risk.

  20. Effect and Modeling of Glucose Inhibition and In Situ Glucose Removal During Enzymatic Hydrolysis of Pretreated Wheat Straw

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt

    2010-01-01

    , during 96 h of reaction. When glucose was removed by dialysis during the enzymatic hydrolysis, the cellulose conversion rates and glucose yields increased. In fact, with dialytic in situ glucose removal, the rate of enzyme-catalyzed glucose release during 48-72 h of reaction recovered from 20......-40% to become approximate to 70% of the rate recorded during 6-24 h of reaction. Although Michaelis-Menten kinetics do not suffice to model the kinetics of the complex multi-enzymatic degradation of cellulose, the data for the glucose inhibition were surprisingly well described by simple Michaelis......-Menten inhibition models without great significance of the inhibition mechanism. Moreover, the experimental in situ removal of glucose could be simulated by a Michaelis-Menten inhibition model. The data provide an important base for design of novel reactors and operating regimes which include continuous product...

  1. Increased oxidative stress and toxicity in ADH and CYP2E1 overexpressing human hepatoma VL-17A cells exposed to high glucose.

    Science.gov (United States)

    Chandrasekaran, Karthikeyan; Swaminathan, Kavitha; Kumar, S Mathan; Clemens, Dahn L; Dey, Aparajita

    2012-05-01

    High glucose mediated oxidative stress and cell death is a well documented phenomenon. Using VL-17A cells which are HepG2 cells over-expressing alcohol dehydrogenase (ADH) and cytochrome P450 2E1 (CYP2E1) and control HepG2 cells, the association of ADH and CYP2E1 with high glucose mediated oxidative stress and toxicity in liver cells was investigated. Cell viability was measured and apoptosis or necrosis was determined through caspase-3 activity, Annexin V-propidium iodide staining and detecting decreases in mitochondrial membrane potential. Reactive oxygen species, lipid peroxidation and the formation of advanced glycated-end products were assessed. The levels of several antioxidants which included glutathione, glutathione peroxidase, catalase and superoxide dismutase were altered in high glucose treated VL-17A cells. Greater toxicity was observed in VL-17A cells exposed to high glucose when compared to HepG2 cells. Oxidative stress parameters were greatly increased in high glucose exposed VL-17A cells and apoptotic cell death was observed. Inhibition of CYP2E1 or caspase 3 or addition of the antioxidant trolox led to significant decreases in high glucose mediated oxidative stress and toxicity. Thus, the over-expression of ADH and CYP2E1 in liver cells is associated with increased high glucose mediated oxidative stress and toxicity.

  2. Probiotic yogurts manufactured with increased glucose oxidase levels: postacidification, proteolytic patterns, survival of probiotic microorganisms, production of organic acid and aroma compounds.

    Science.gov (United States)

    Cruz, A G; Castro, W F; Faria, J A F; Lollo, P C B; Amaya-Farfán, J; Freitas, M Q; Rodrigues, D; Oliveira, C A F; Godoy, H T

    2012-05-01

    We investigated the effect of increased glucose oxidase concentration as a technological option to decrease oxidative stress during the processing of probiotic yogurts. Probiotic yogurts were produced with increased concentrations of glucose oxidase (0, 250, 500, 750, or 1,000 mg/kg) and submitted to physicochemical and microbiological analysis at 1, 15, and 30 d of refrigerated storage. Higher concentrations of glucose oxidase (750 and 1,000 mg/kg) and a longer storage time were found to have an influence on the characteristics of the probiotic yogurt, contributing to more extensive postacidification, an increase in the dissolved oxygen level, and higher proteolysis. In addition, increased production of aroma compounds (diacetyl and acetaldehyde) and organic acids (mainly lactic acid) and a decrease in the probiotic bacteria count were reported. The use of glucose oxidase was a feasible option to minimize oxidative stress in probiotic yogurts. However, supplementation with excessive amounts of the enzyme may be ineffective, because insufficient substrate (glucose) is present for its action. Consumer tests should be performed to evaluate changes in the sensory attributes of the probiotic yogurts with increased supplementation of glucose oxidase. In addition, packaging systems with different permeability to oxygen should be evaluated.

  3. Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance.

    Directory of Open Access Journals (Sweden)

    Sophie R Sayers

    Full Text Available Enteroendocrine L-cells synthesise and release the gut hormone glucagon-like peptide-1 (GLP-1 in response to food transit. Deletion of the tumour suppressor kinase LKB1 from proglucagon-expressing cells leads to the generation of intestinal polyps but no change in circulating GLP-1 levels. Here, we explore the role of the downstream kinase AMP-activated protein kinase (AMPK in these cells.Loss of AMPK from proglucagon-expressing cells was achieved using a preproglucagon promoter-driven Cre (iGluCre to catalyse recombination of floxed alleles of AMPKα1 and α2. Oral and intraperitoneal glucose tolerance were measured using standard protocols. L-cell mass was measured by immunocytochemistry. Hormone and peptide levels were measured by electrochemical-based luminescence detection or radioimmunoassay.Recombination with iGluCre led to efficient deletion of AMPK from intestinal L- and pancreatic alpha-cells. In contrast to mice rendered null for LKB1 using the same strategy, mice deleted for AMPK displayed an increase (WT: 0.05 ± 0.01, KO: 0.09±0.02%, p<0.01 in L-cell mass and elevated plasma fasting (WT: 5.62 ± 0.800 pg/ml, KO: 14.5 ± 1.870, p<0.01 and fed (WT: 15.7 ± 1.48pg/ml, KO: 22.0 ± 6.62, p<0.01 GLP-1 levels. Oral, but not intraperitoneal, glucose tolerance was significantly improved by AMPK deletion, whilst insulin and glucagon levels were unchanged despite an increase in alpha to beta cell ratio (WT: 0.23 ± 0.02, KO: 0.33 ± 0.03, p<0.01.AMPK restricts L-cell growth and GLP-1 secretion to suppress glucose tolerance. Targeted inhibition of AMPK in L-cells may thus provide a new therapeutic strategy in some forms of type 2 diabetes.

  4. Analyst Information Precision and Small Earnings Surprises

    NARCIS (Netherlands)

    S. Bissessur; D. Veenman

    2014-01-01

    Prior research attributes zero and small positive earnings surprises to managers’ incentives for earnings management. In contrast, this study introduces and empirically tests an explanation for zero and small positive earnings surprises based on predictable variation in analyst forecast errors. We a

  5. Cognitive and Social Perspectives on Surprise

    Science.gov (United States)

    Adhami, Mundler

    2007-01-01

    Meanings of "surprise" are wide and include uplifting and engaging facets like wonder and amazement on the one hand as well as ones that may be of the opposite nature like interruption and disrupt on the other. Pedagogically, educators who use surprise in class activities are focusing on students being "taken aback" by a situation, hopefully…

  6. Glucose allostasis

    DEFF Research Database (Denmark)

    Stumvoll, Michael; Tataranni, P Antonio; Stefan, Norbert

    2003-01-01

    In many organisms, normoglycemia is achieved by a tight coupling of nutrient-stimulated insulin secretion in the pancreatic beta-cell (acute insulin response [AIR]) and the metabolic action of insulin to stimulate glucose disposal (insulin action [M]). It is widely accepted that in healthy...... individuals with normal glucose tolerance, normoglycemia can always be maintained by compensatorily increasing AIR in response to decreasing M (and vice versa). This has been mathematically described by the hyperbolic relationship between AIR and M and referred to as glucose homeostasis, with glucose...... concentration assumed to remain constant along the hyperbola. Conceivably, glucose is one of the signals stimulating AIR in response to decreasing M. Hypothetically, as with any normally functioning feed-forward system, AIR should not fully compensate for worsening M, since this would remove the stimulus...

  7. Effects of acute exposure to increased plasma branched-chain amino acid concentrations on insulin-mediated plasma glucose turnover in healthy young subjects.

    Directory of Open Access Journals (Sweden)

    Sarah Everman

    Full Text Available Plasma branched-chain amino acids (BCAA are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity.To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated plasma glucose turnover in humans.Ten healthy subjects were randomly assigned to an experiment where insulin was infused at 40 mU/m2/min (40U during the second half of a 6-hour intravenous infusion of a BCAA mixture (i.e., BCAA; N = 5 to stimulate plasma glucose turnover or under the same conditions without BCAA infusion (Control; N = 5. In a separate experiment, seven healthy subjects were randomly assigned to receive insulin infusion at 80 mU/m2/min (80U in association with the above BCAA infusion (N = 4 or under the same conditions without BCAA infusion (N = 3. Plasma glucose turnover was measured prior to and during insulin infusion.Insulin infusion completely suppressed the endogenous glucose production (EGP across all groups. The percent suppression of EGP was not different between Control and BCAA in either the 40U or 80U experiments (P > 0.05. Insulin infusion stimulated whole-body glucose disposal rate (GDR across all groups. However, the increase (% in GDR was not different [median (1st quartile - 3rd quartile] between Control and BCAA in either the 40U ([199 (167-278 vs. 186 (94-308] or 80 U ([491 (414-548 vs. 478 (409-857] experiments (P > 0.05. Likewise, insulin stimulated the glucose metabolic clearance in all experiments (P 0.05.Short-term exposure of young healthy subjects to increased plasma BCAA concentrations does not alter the insulin sensitivity of glucose metabolism.

  8. Glucose delays the insulin-induced increase in thyroid hormone-mediated signaling in adipose of prolong-fasted elephant seal pups.

    Science.gov (United States)

    Martinez, Bridget; Soñanez-Organis, José G; Viscarra, Jose A; Jaques, John T; MacKenzie, Duncan S; Crocker, Daniel E; Ortiz, Rudy M

    2016-03-15

    Prolonged food deprivation in mammals typically reduces glucose, insulin, and thyroid hormone (TH) concentrations, as well as tissue deiodinase (DI) content and activity, which, collectively, suppress metabolism. However, in elephant seal pups, prolonged fasting does not suppress TH levels; it is associated with upregulation of adipose TH-mediated cellular mechanisms and adipose-specific insulin resistance. The functional relevance of this apparent paradox and the effects of glucose and insulin on TH-mediated signaling in an insulin-resistant tissue are not well defined. To address our hypothesis that insulin increases adipose TH signaling in pups during extended fasting, we assessed the changes in TH-associated genes in response to an insulin infusion in early- and late-fasted pups. In late fasting, insulin increased DI1, DI2, and THrβ-1 mRNA expression by 566%, 44%, and 267% at 60 min postinfusion, respectively, with levels decreasing by 120 min. Additionally, we performed a glucose challenge in late-fasted pups to differentiate between insulin- and glucose-mediated effects on TH signaling. In contrast to the insulin-induced effects, glucose infusion did not increase the expressions of DI1, DI2, and THrβ-1 until 120 min, suggesting that glucose delays the onset of the insulin-induced effects. The data also suggest that fasting duration increases the sensitivity of adipose TH-mediated mechanisms to insulin, some of which may be mediated by increased glucose. These responses appear to be unique among mammals and to have evolved in elephant seals to facilitate their adaptation to tolerate an extreme physiological condition. Copyright © 2016 the American Physiological Society.

  9. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism

    Directory of Open Access Journals (Sweden)

    Minjiang Chen

    2016-01-01

    Full Text Available Objective. High glucose- (HG- induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM or control (25 mM groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism.

  10. A toolkit for detecting technical surprise.

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Michael Wayne; Foehse, Mark C.

    2010-10-01

    The detection of a scientific or technological surprise within a secretive country or institute is very difficult. The ability to detect such surprises would allow analysts to identify the capabilities that could be a military or economic threat to national security. Sandia's current approach utilizing ThreatView has been successful in revealing potential technological surprises. However, as data sets become larger, it becomes critical to use algorithms as filters along with the visualization environments. Our two-year LDRD had two primary goals. First, we developed a tool, a Self-Organizing Map (SOM), to extend ThreatView and improve our understanding of the issues involved in working with textual data sets. Second, we developed a toolkit for detecting indicators of technical surprise in textual data sets. Our toolkit has been successfully used to perform technology assessments for the Science & Technology Intelligence (S&TI) program.

  11. Deciphering network community structure by surprise

    National Research Council Canada - National Science Library

    Aldecoa, Rodrigo; Marín, Ignacio

    2011-01-01

    .... A fundamental, unsolved problem is how to characterize the community structure of a network. Here, using both standard and novel benchmarks, we show that maximization of a simple global parameter, which we call Surprise...

  12. A Surprising Culprit Behind Celiac Disease?

    Science.gov (United States)

    ... news/fullstory_164503.html A Surprising Culprit Behind Celiac Disease? Study suggests harmless viruses may set stage ... typically harmless type of virus might sometimes trigger celiac disease, a new study suggests. Celiac disease is ...

  13. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production.

    Science.gov (United States)

    Merovci, Aurora; Solis-Herrera, Carolina; Daniele, Giuseppe; Eldor, Roy; Fiorentino, Teresa Vanessa; Tripathy, Devjit; Xiong, Juan; Perez, Zandra; Norton, Luke; Abdul-Ghani, Muhammad A; DeFronzo, Ralph A

    2014-02-01

    Chronic hyperglycemia impairs insulin action, resulting in glucotoxicity, which can be ameliorated in animal models by inducing glucosuria with renal glucose transport inhibitors. Here, we examined whether reduction of plasma glucose with a sodium-glucose cotransporter 2 (SGLT2) inhibitor could improve insulin-mediated tissue glucose disposal in patients with type 2 diabetes. Eighteen diabetic men were randomized to receive either dapagliflozin (n = 12) or placebo (n = 6) for 2 weeks. We measured insulin-mediated whole body glucose uptake and endogenous glucose production (EGP) at baseline and 2 weeks after treatment using the euglycemic hyperinsulinemic clamp technique. Dapagliflozin treatment induced glucosuria and markedly lowered fasting plasma glucose. Insulin-mediated tissue glucose disposal increased by approximately 18% after 2 weeks of dapagliflozin treatment, while placebo-treated subjects had no change in insulin sensitivity. Surprisingly, following dapagliflozin treatment, EGP increased substantially and was accompanied by an increase in fasting plasma glucagon concentration. Together, our data indicate that reduction of plasma glucose with an agent that works specifically on the kidney to induce glucosuria improves muscle insulin sensitivity. However, glucosuria induction following SGLT2 inhibition is associated with a paradoxical increase in EGP. These results provide support for the glucotoxicity hypothesis, which suggests that chronic hyperglycemia impairs insulin action in individuals with type 2 diabetes.

  14. Epinephrine-stimulated glycogen breakdown activates glycogen synthase and increases insulin-stimulated glucose uptake in epitrochlearis muscles.

    Science.gov (United States)

    Kolnes, Anders J; Birk, Jesper B; Eilertsen, Einar; Stuenæs, Jorid T; Wojtaszewski, Jørgen F P; Jensen, Jørgen

    2015-02-01

    Epinephrine increases glycogen synthase (GS) phosphorylation and decreases GS activity but also stimulates glycogen breakdown, and low glycogen content normally activates GS. To test the hypothesis that glycogen content directly regulates GS phosphorylation, glycogen breakdown was stimulated in condition with decreased GS activation. Saline or epinephrine (0.02 mg/100 g rat) was injected subcutaneously in Wistar rats (∼130 g) with low (24-h-fasted), normal (normal diet), and high glycogen content (fasted-refed), and epitrochlearis muscles were removed after 3 h and incubated ex vivo, eliminating epinephrine action. Epinephrine injection reduced glycogen content in epitrochlearis muscles with high (120.7 ± 17.8 vs. 204.6 ± 14.5 mmol/kg, P < 0.01) and normal glycogen (89.5 ± 7.6 vs. 152 ± 8.1 mmol/kg, P < 0.01), but not significantly in muscles with low glycogen (90.0 ± 5.0 vs. 102.8 ± 7.8 mmol/kg, P = 0.17). In saline-injected rats, GS phosphorylation at sites 2+2a, 3a+3b, and 1b was higher and GS activity lower in muscles with high compared with low glycogen. GS sites 2+2a and 3a+3b phosphorylation decreased and GS activity increased in muscles where epinephrine decreased glycogen content; these parameters were unchanged in epitrochlearis from fasted rats where epinephrine injection did not decrease glycogen content. Incubation with insulin decreased GS site 3a+3b phosphorylation independently of glycogen content. Insulin-stimulated glucose uptake was increased in muscles where epinephrine injection decreased glycogen content. In conclusion, epinephrine stimulates glycogenolysis in epitrochlearis muscles with normal and high, but not low, glycogen content. Epinephrine-stimulated glycogenolysis decreased GS phosphorylation and increased GS activity. These data for the first time document direct regulation of GS phosphorylation by glycogen content. Copyright © 2015 the American Physiological Society.

  15. Exercise training favors increased insulin-stimulated glucose uptake in skeletal muscle in contrast to adipose tissue: a randomized study using FDG PET imaging

    DEFF Research Database (Denmark)

    Reichkendler, M. H.; Auerbach, P.; Rosenkilde, M.

    2013-01-01

    Physical exercise increases peripheral insulin sensitivity, but regional differences are poorly elucidated in humans. We investigated the effect of aerobic exercise training on insulin-stimulated glucose uptake in five individual femoral muscle groups and four different adipose tissue regions...... abdominal SAT compared with CON but not in either intra- or retroperitoneal VAT. Total adipose tissue mass decreased in both exercise groups, and the decrease was distributed equally among subcutaneous and intra-abdominal depots. In conclusion, aerobic exercise training increases insulin-stimulated glucose...... was highest in femoral skeletal muscle followed by intraperitoneal visceral adipose tissue (VAT), retroperitoneal VAT, abdominal (anterior + posterior) subcutaneous adipose tissue (SAT), and femoral SAT (P tissues). Metabolic rate of glucose increased similarly (∼30%) in the two exercise...

  16. Glucose, Lactate and Glutamine but not Glutamate Support Depolarization-Induced Increased Respiration in Isolated Nerve Terminals

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Andersen, Vibe H; Bak, Lasse K;

    2016-01-01

    and glycolytic rate in presence of different substrates. Mitochondrial function was tested by sequentially exposure of the synaptosomes to the ATP synthase inhibitor, oligomycin, the uncoupler FCCP (carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone) and the electron transport chain inhibitors rotenone...... and antimycin A. The synaptosomes exhibited intense respiratory activity using glucose as substrate. The FCCP-dependent respiration was significantly higher with 10 mM glucose compared to 1 mM glucose. Synaptosomes also readily used pyruvate as substrate, which elevated basal respiration, activity....... Synaptosomal respiration using glutamate and glutamine as substrates was significantly higher compared to basal respiration, whereas oligomycin-dependent and FCCP-induced respiration was lower compared to the responses obtained in the presence of glucose as substrate. We provide evidence that synaptosomes...

  17. Reducing dietary fat from a meal increases the bioavailability of exogenous carbohydrate without altering plasma glucose concentration

    Science.gov (United States)

    Knuth, Nicolas D.; Shrivastava, Cara R.; Horowitz, Jeffrey F.

    2009-01-01

    The primary goal of this study was to determine the acute glycemic and endocrine responses to the reduction of fat content from a meal. On three separate occasions, nine overweight subjects (body mass index = 30 ± 1 kg/m2; 5 men, 4 women) consumed 1) a control meal (∼800 kcal; 100 g of carbohydrate, 31 g of fat, and 30 g of protein), 2) a low-fat meal (∼530 kcal; 100 g of carbohydrate, 1 g of fat, and 30 g of protein), or 3) a low-fat meal plus lipid infusion [same meal as low-fat meal, but the total energy provided was the same as control (800 kcal), with the “missing” fat (∼30 g) provided via an intravenous lipid infusion]. All three meals contained [13C]glucose (3 mg/kg body wt) to assess the bioavailability of ingested glucose. During the 5-h period after each meal, we measured the recovery of [13C]glucose in plasma, plasma glucose, and insulin concentrations. We also measured plasma concentration of the gastrointestinal peptides: glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and peptide YY3-36 (PYY3-36). The recovery of the ingested [13C]glucose in the hour after ingestion was greater (P < 0.05) after the low-fat than after the control meal [area under the curve (AUC): 1,206 ± 252 and 687 ± 161 μM·h, respectively]. However, removing dietary fat from the meal did not affect the plasma concentration of glucose or insulin. Importantly, [13C]glucose recovery was not different during the low-fat and lipid infusion trials (AUC: 1,206 ± 252 and 1,134 ± 247 μM·h, respectively), indicating that the accelerated delivery of exogenous glucose found after removing fat from the meal is due exclusively to the reduction of fat in the gastrointestinal tract. In parallel with these findings, the reduction in fat calories from the meal reduced plasma concentration of GIP, GLP-1, and PYY3-36. In summary, these data suggest that removing fat from the diet expedited exogenous glucose delivery into the systemic circulation

  18. Jicama (Pachyrhizus erosus) extract increases insulin sensitivity and regulates hepatic glucose in C57BL/Ksj-db/db mice

    OpenAIRE

    Park, Chan Joo; Lee, Hyun-Ah; Han, Ji-Sook

    2015-01-01

    This study investigated the effect of jicama extract on hyperglycemia and insulin sensitivity in an animal model of type 2 diabetes. Male C57BL/Ksj-db/db mice were divided into groups subsequently fed a regular diet (controls), or diet supplemented with jicama extract, and rosiglitazone. After 6 weeks, blood levels of glucose and glycosylated hemoglobin were significantly lower in animals administered the jicama extract than the control group. Additionally, glucose and insulin tolerance tests...

  19. Developmental exposure to ethanol increases the neuronal vulnerability to oxygen-glucose deprivation in cerebellar granule cell cultures.

    Science.gov (United States)

    Le Duc, Diana; Spataru, Ana; Ceanga, Mihai; Zagrean, Leon; Schöneberg, Torsten; Toescu, Emil C; Zagrean, Ana-Maria

    2015-07-21

    Prenatal alcohol exposure is associated with microencephaly, cognitive and behavioral deficits, and growth retardation. Some of the mechanisms of ethanol-induced injury, such as high level oxidative stress and overexpression of pro-apoptotic genes, can increase the sensitivity of fetal neurons towards hypoxic/ischemic stress associated with normal labor. Thus, alcohol-induced sequelae may be the cumulative result of direct ethanol toxicity and increased neuronal vulnerability towards metabolic stressors, including hypoxia. We examined the effects of ethanol exposure on the fetal cerebellar granular neurons' susceptibility to hypoxic/hypoglycemic damage. A chronic ethanol exposure covered the entire prenatal period and 5 days postpartum through breastfeeding, a time interval partially extending into the third-trimester equivalent in humans. After a binge-like alcohol exposure at postnatal day 5, glutamatergic cerebellar granule neurons were cultured and grown for 7 days in vitro, then exposed to a 3-h oxygen-glucose deprivation to mimic a hypoxic/ischemic condition. Cellular viability was monitored by dynamic recording of propidium iodide fluorescence over 20 h reoxygenation. We explored differentially expressed genes on microarray data from a mouse embryonic ethanol-exposure model and validated these by real-time PCR on the present model. In the ethanol-treated cerebellar granule neurons we find an increased expression of genes related to apoptosis (Mapk8 and Bax), but also of genes previously described as neuroprotective (Dhcr24 and Bdnf), which might suggest an actively maintained viability. Our data suggest that neurons exposed to ethanol during development are more vulnerable to in vitro hypoxia/hypoglycemia and have higher intrinsic death susceptibility than unexposed neurons.

  20. Surprise disrupts cognition via a fronto-basal ganglia suppressive mechanism.

    Science.gov (United States)

    Wessel, Jan R; Jenkinson, Ned; Brittain, John-Stuart; Voets, Sarah H E M; Aziz, Tipu Z; Aron, Adam R

    2016-04-18

    Surprising events markedly affect behaviour and cognition, yet the underlying mechanism is unclear. Surprise recruits a brain mechanism that globally suppresses motor activity, ostensibly via the subthalamic nucleus (STN) of the basal ganglia. Here, we tested whether this suppressive mechanism extends beyond skeletomotor suppression and also affects cognition (here, verbal working memory, WM). We recorded scalp-EEG (electrophysiology) in healthy participants and STN local field potentials in Parkinson's patients during a task in which surprise disrupted WM. For scalp-EEG, surprising events engage the same independent neural signal component that indexes action stopping in a stop-signal task. Importantly, the degree of this recruitment mediates surprise-related WM decrements. Intracranially, STN activity is also increased post surprise, especially when WM is interrupted. These results suggest that surprise interrupts cognition via the same fronto-basal ganglia mechanism that interrupts action. This motivates a new neural theory of how cognition is interrupted, and how distraction arises after surprising events.

  1. Increasing the culture efficiency of hybridoma cells by the use of integrated metabolic control of glucose and glutamine at low levels.

    Science.gov (United States)

    Li, Ling; Mi, Li; Feng, Qiang; Liu, Rong; Tang, Hao; Xie, Li; Yu, Xiaoling; Chen, Zhinan

    2005-08-01

    The metabolism of HAb18 hybridoma cells was shifted to decrease metabolite accumulation and to improve culture efficiency by integrated metabolic control of glucose and glutamine at low levels. When glucose and glutamine levels were decreased to 0.5 and 0.3 mM respectively, lactate and ammonia production were reduced by 62.6 and 74% respectively, glucose-to-cell yield was increased from 0.23x10(9) to 0.66x10(9) cells.mmol-1, and glutamine-to-cell yield from 0.18x10(9) to 1.95x10(9) cells.mmol-1. Compared with high-level glucose and glutamine fed-batch cultures, low-level glucose and glutamine led to higher cell density (1.0x10(7) versus 0.3x10(7) cells.ml-1), longer culture span (14 as opposed to 8 days) and higher antibody yield (250 as against 150 mg.l-1). These results indicate that hybridoma culture efficiency would be increased by the integrated control of glucose and glutamine at 0.5 and 0.3 mM respectively. In contrast with previously reported glucose-and/or-glutamine-level-controlled fed-batch cultures, we demonstrated an efficient strategy of nutrient level selection and amino acid feeding. More importantly, our accurately and well-distributed Equable Feeding Control System opens a new avenue for reducing metabolites to low levels by controlling nutrients at low levels.

  2. Oxyntomodulin increases the concentrations of insulin and glucose in plasma but does not affect ghrelin secretion in Holstein cattle under normal physiological conditions.

    Science.gov (United States)

    ThanThan, S; Zhao, H; Yannaing, S; Ishikawa, T; Kuwayama, H

    2010-10-01

    Ghrelin, the natural ligand of the growth hormone secretagogue receptor (GHS-R1a), has been shown to stimulate growth hormone (GH) secretion. Regulation of ghrelin secretion in ruminants is not well studied. We investigated the effects of oxyntomodulin (OXM) and secretin on the secretions of ghrelin, insulin, glucagon, glucose, and nonesterified fatty acids (NEFA) in pre-ruminants (5 wk old) and ruminants (10 wk old) under normal physiological (feeding) conditions. Eight male Holstein calves (pre-ruminants: 52 +/- 1 kg body weight [BW]; and ruminants: 85 +/- 1 kg BW) were injected intravenously with 30 microg of OXM/kg BW, 50 microg of secretin/kg BW, and vehicle (0.1% bovine serum albumin [BSA] in saline as a control) in random order. Blood samples were collected, and plasma hormones and metabolites were analyzed using a double-antibody radioimmunoassay system and commercially available kits, respectively. We found that OXM increased the concentrations of insulin and glucose but did not affect the concentrations of ghrelin in both pre-ruminants and ruminants and that there was no effect of secretin on the concentrations of ghrelin, insulin, and glucose in these calves. We also investigated the dose-response effects of OXM on the secretion of insulin and glucose in 8 Holstein steers (401 +/- 1 d old, 398 +/- 10 kg BW). We found that OXM increased the concentrations of insulin and glucose even at physiological plasma concentrations, with a minimum effective dose of 0.4 microg/kg for the promotion of glucose secretion and 2 microg/kg for the stimulation of insulin secretion. These findings suggest that OXM takes part in glucose metabolism in ruminants.

  3. Riluzole protects Huntington disease patients from brain glucose hypometabolism and grey matter volume loss and increases production of neurotrophins

    Energy Technology Data Exchange (ETDEWEB)

    Squitieri, Ferdinando; Orobello, Sara; Cannella, Milena; Martino, Tiziana [IRCCS Neuromed, Neurogenetics Unit and Centre for Rare Disease, Pozzilli (Italy); Romanelli, Pantaleo [IRCCS Neuromed, Department of Neurosurgery, Pozzilli (Italy); Giovacchini, Giampiero; Ciarmiello, Andrea [S. Andrea Hospital, Unit of Nuclear Medicine, La Spezia (Italy); Frati, Luigi [University ' ' Sapienza' ' , Department of Experimental Medicine, Rome (Italy); Mansi, Luigi [Second University of Naples, Department of Nuclear Medicine, Naples (Italy)

    2009-07-15

    Huntington disease (HD) mutation increases gain-of-toxic functions contributing to glutamate-mediated excitotoxicity. Riluzole interferes with glutamatergic neurotransmission, thereby reducing excitotoxicity, enhancing neurite formation in damaged motoneurons and increasing serum concentrations of BDNF, a brain cortex neurotrophin protecting striatal neurons from degeneration. We investigated metabolic and volumetric differences in distinct brain areas between 11 riluzole-treated and 12 placebo-treated patients by MRI and {sup 18}F-fluoro-2-deoxy-d-glucose (FDG) PET scanning, according to fully automated protocols. We also investigated the influence of riluzole on peripheral growth factor blood levels. Placebo-treated patients showed significantly greater proportional volume loss of grey matter and decrease in metabolic FDG uptake than patients treated with riluzole in all cortical areas (p<0.05). The decreased rate of metabolic FDG uptake correlated with worsening clinical scores in placebo-treated patients, compared to those who were treated with riluzole. The progressive decrease in metabolic FDG uptake observed in the frontal, parietal and occipital cortex correlated linearly with the severity of motor scores calculated by Unified Huntington Disease Rating Scale (UHDRS-I) in placebo-treated patients. Similarly, the rate of metabolic changes in the frontal and temporal areas of the brain cortex correlated linearly with worsening behavioural scores calculated by UHDRS-III in the placebo-treated patients. Finally, BDNF and transforming growth factor beta-1 serum levels were significantly higher in patients treated with riluzole. The linear correlation between decreased metabolic FDG uptake and worsening clinical scores in the placebo-treated patients suggests that FDG-PET may be a valuable procedure to assess brain markers of HD. (orig.)

  4. An excessive increase in glutamate contributes to glucose-toxicity in β-cells via activation of pancreatic NMDA receptors in rodent diabetes

    Science.gov (United States)

    Huang, Xiao-Ting; Li, Chen; Peng, Xiang-Ping; Guo, Jia; Yue, Shao-Jie; Liu, Wei; Zhao, Fei-Yan; Han, Jian-Zhong; Huang, Yan-Hong; Yang-Li, Y -L; Cheng, Qing-Mei; Zhou, Zhi-Guang; Chen, Chen; Feng, Dan-Dan; Luo, Zi-Qiang

    2017-01-01

    In the nervous system, excessive activation of NMDA receptors causes neuronal injury. Although activation of NMDARs has been proposed to contribute to the progress of diabetes, little is known about the effect of excessive long-term activation of NMDARs on β-cells, especially under the challenge of hyperglycemia. Here we thoroughly investigated whether endogenous glutamate aggravated β-cell dysfunction under chronic exposure to high-glucose via activation of NMDARs. The glutamate level was increased in plasma of diabetic mice or patients and in the supernatant of β-cell lines after treatment with high-glucose for 72 h. Decomposing the released glutamate improved GSIS of β-cells under chronic high-glucose exposure. Long-term treatment of β-cells with NMDA inhibited cell viability and decreased GSIS. These effects were eliminated by GluN1 knockout. The NMDAR antagonist MK-801 or GluN1 knockout prevented high-glucose-induced dysfunction in β-cells. MK-801 also decreased the expression of pro-inflammatory cytokines, and inhibited I-κB degradation, ROS generation and NLRP3 inflammasome expression in β-cells exposed to high-glucose. Furthermore, another NMDAR antagonist, Memantine, improved β-cells function in diabetic mice. Taken together, these findings indicate that an increase of glutamate may contribute to the development of diabetes through excessive activation of NMDARs in β-cells, accelerating β-cells dysfunction and apoptosis induced by hyperglycemia. PMID:28303894

  5. A tripeptide Diapin effectively lowers blood glucose levels in male type 2 diabetes mice by increasing blood levels of insulin and GLP-1.

    Directory of Open Access Journals (Sweden)

    Jifeng Zhang

    Full Text Available The prevalence of type 2 diabetes (T2D is rapidly increasing worldwide. Effective therapies, such as insulin and Glucagon-like peptide-1 (GLP-1, require injections, which are costly and result in less patient compliance. Here, we report the identification of a tripeptide with significant potential to treat T2D. The peptide, referred to as Diapin, is comprised of three natural L-amino acids, GlyGlyLeu. Glucose tolerance tests showed that oral administration of Diapin effectively lowered blood glucose after oral glucose loading in both normal C57BL/6J mice and T2D mouse models, including KKay, db/db, ob/ob mice, and high fat diet-induced obesity/T2D mice. In addition, Diapin treatment significantly reduced casual blood glucose in KKay diabetic mice in a time-dependent manner without causing hypoglycemia. Furthermore, we found that plasma GLP-1 and insulin levels in diabetic models were significantly increased with Diapin treatment compared to that in the controls. In summary, our findings establish that a peptide with minimum of three amino acids can improve glucose homeostasis and Diapin shows promise as a novel pharmaceutical agent to treat patients with T2D through its dual effects on GLP-1 and insulin secretion.

  6. Effects of the New Aldose Reductase Inhibitor Benzofuroxane Derivative BF-5m on High Glucose Induced Prolongation of Cardiac QT Interval and Increase of Coronary Perfusion Pressure

    Directory of Open Access Journals (Sweden)

    C. Di Filippo

    2016-01-01

    Full Text Available This study investigated the effects of the new aldose reductase inhibitor benzofuroxane derivative 5(6-(benzo[d]thiazol-2-ylmethoxybenzofuroxane (BF-5m on the prolongation of cardiac QT interval and increase of coronary perfusion pressure (CPP in isolated, high glucose (33.3 mM D-glucose perfused rat hearts. BF-5m was dissolved in the Krebs solution at a final concentration of 0.01 μM, 0.05 μM, and 0.1 μM. 33.3 mM D-glucose caused a prolongation of the QT interval and increase of CPP up to values of 190 ± 12 ms and 110 ± 8 mmHg with respect to the values of hearts perfused with standard Krebs solution (11.1 mM D-glucose. The QT prolongation was reduced by 10%, 32%, and 41%, respectively, for the concentration of BF-5m 0.01 μM, 0.05 μM, and 0.1 μM. Similarly, the CPP was reduced by 20% for BF-5m 0.05 μM and by 32% for BF-5m 0.1 μM. BF-5m also increased the expression levels of sirtuin 1, MnSOD, eNOS, and FOXO-1, into the heart. The beneficial actions of BF-5m were partly abolished by the pretreatment of the rats with the inhibitor of the sirtuin 1 activity EX527 (10 mg/kg/day/7 days i.p. prior to perfusion of the hearts with high glucose + BF-5m (0.1 μM. Therefore, BF-5m supplies cardioprotection from the high glucose induced QT prolongation and increase of CPP.

  7. Products of Leishmania braziliensis glucose catabolism: release of D-lactate and, under anaerobic conditions, glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Darling, T.N.; Davis, D.G.; London, R.E.; Blum, J.J.

    1987-10-01

    Leishmania braziliensis panamensis promastigotes were incubated with glucose as the sole carbon source. About one-fifth of the glucose consumed under aerobic conditions was oxidized to CO/sub 2/. Nuclear magnetic resonance studies with (1-/sup 13/C)glucose showed that the other products released were succinate, acetate, alanine, pyruvate, and lactate. Under anaerobic conditions, lactate output increased, glycerol became a major product, and, surprisingly, glucose consumption decreased. Enzymatic assays showed that the lactate formed was D(-)-lactate. The release of alanine during incubation with glucose as the sole carbon source suggested that appreciable proteolysis occurred, consistent with our observation that a large amount of ammonia was released under these conditions. The discoveries that D-lactate is a product of L. braziliensis glucose catabolism, that glycerol is produced under anaerobic conditions, and that the cells exhibit a reverse Pasteur effect open the way for detailed studies of the pathways of glucose metabolism and their regulation in this organism.

  8. Increased insulin binding to adipocytes and monocytes and increased insulin sensitivity of glucose transport and metabolism in adipocytes from non-insulin-dependent diabetics after a low-fat/high-starch/high-fiber diet.

    Science.gov (United States)

    Hjøllund, E; Pedersen, O; Richelsen, B; Beck-Nielsen, H; Sørensen, N S

    1983-11-01

    Nine non-insulin-dependent diabetics were studied before and after 3 weeks on an isoenergetic high-fiber/high-starch/low-fat diet (alternative diet), and nine non-insulin-dependent diabetics were studied on their usual diet. In the group that ate the alternative diet, the intake of fiber and starch increased 120% and 53%, whereas fat intake decreased 31%. Diabetes control improved as demonstrated by decreased fasting plasma glucose (P less than 0.05) and 24-hour urinary glucose excretion (P less than 0.05). The in vivo insulin action increased (KIVITT increased, P less than 0.05) with no change in fasting serum insulin levels. In fat cells obtained from patients in the alternative-diet group, insulin receptor binding increased (P less than 0.05) after the change of diet. Insulin binding to purified monocytes (more than 95% monocytes) also increased (P less than 0.05), whereas no change was found in insulin binding to erythrocytes. When lipogenesis was studied at a tracer glucose concentration at which glucose transport seems to be rate limiting, insulin sensitivity increased (P less than 0.02). This is the predicted consequence of increased receptor binding. Moreover, when CO2 production and lipogenesis were studied at a higher glucose concentration, where steps beyond transport seem to be rate limiting for glucose metabolism, increased insulin sensitivity was also observed. In contrast, no change was found in maximal insulin responsiveness. Fat and blood cells from the patients who continued on their usual diet showed no changes of the mentioned quantities.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Surprises in numerical expressions of physical constants

    CERN Document Server

    Amir, Ariel; Tokieda, Tadashi

    2016-01-01

    In science, as in life, `surprises' can be adequately appreciated only in the presence of a null model, what we expect a priori. In physics, theories sometimes express the values of dimensionless physical constants as combinations of mathematical constants like pi or e. The inverse problem also arises, whereby the measured value of a physical constant admits a `surprisingly' simple approximation in terms of well-known mathematical constants. Can we estimate the probability for this to be a mere coincidence, rather than an inkling of some theory? We answer the question in the most naive form.

  10. The antipsychotics clozapine and olanzapine increase plasma glucose and corticosterone levels in rats: comparison with aripiprazole, ziprasidone, bifeprunox and F15063.

    Science.gov (United States)

    Assié, Marie-Bernadette; Carilla-Durand, Elisabeth; Bardin, Laurent; Maraval, Mireille; Aliaga, Monique; Malfètes, Nathalie; Barbara, Michèle; Newman-Tancredi, Adrian

    2008-09-11

    Several novel antipsychotics activate serotonin 5-HT1A receptors as well as antagonising dopamine D2/3 receptors. Such a pharmacological profile is associated with a lowered liability to produce extrapyramidal side effects and enhanced efficacy in treating negative and cognitive symptoms of schizophrenia. However, 5-HT1A receptor agonists increase plasma corticosterone and many antipsychotics disturb the regulation of glucose. Here, we compared the influence on plasma glucose and corticosterone of acute treatments with 'new generation' antipsychotics which target dopamine D2/3 receptors and 5-HT1A receptors, with that of atypical antipsychotics, and with haloperidol. Olanzapine and clozapine, antipsychotics that are known to produce weight gain and diabetes in humans, both at 10 mg/kg p.o., substantially increased plasma glucose (from 0.8 to 1.7 g/l) at 1 h after administration, an effect that returned to control levels after 4 h. In comparison, F15063 (40 mg/kg p.o.) was without effect at any time point. Olanzapine and clozapine dose-dependently increased plasma glucose concentrations as did SLV313 and SSR181507. Haloperidol and risperidone had modest effects whereas aripiprazole, ziprasidone and bifeprunox, antipsychotics that are not associated with metabolic dysfunction in humans, and F15063 had little or no influence on plasma glucose. The same general pattern of response was found for plasma corticosterone levels. The present data provide the first comparative study of conventional, atypical and 'new generation' antipsychotics on glucose and corticosterone levels in rats. A variety of mechanisms likely underlie the hyperglycemia and corticosterone release observed with clozapine and olanzapine, whilst the balance of dopamine D2/3/5-HT1A interaction may contribute to the less favourable impact of SLV313 and SSR181507 compared with that of bifeprunox and F15063.

  11. Insulin Resistance is Accompanied by Increased Fasting Glucagon and Delayed Glucagon Suppression in Individuals With Normal and Impaired Glucose Regulation

    DEFF Research Database (Denmark)

    Faerch, Kristine; Vistisen, Dorte; Pacini, Giovanni

    2016-01-01

    Hyperinsulinemia is an adaptive mechanism that enables the maintenance of normoglycemia in the presence of insulin resistance. We assessed whether glucagon is also involved in the adaptation to insulin resistance. A total of 1,437 individuals underwent an oral glucose tolerance test with measurem......Hyperinsulinemia is an adaptive mechanism that enables the maintenance of normoglycemia in the presence of insulin resistance. We assessed whether glucagon is also involved in the adaptation to insulin resistance. A total of 1,437 individuals underwent an oral glucose tolerance test...

  12. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk

    DEFF Research Database (Denmark)

    Bouatia-Naji, Nabila; Bonnefond, Amélie; Cavalcanti-Proença, Christine;

    2009-01-01

    In genome-wide association (GWA) data from 2,151 nondiabetic French subjects, we identified rs1387153, near MTNR1B (which encodes the melatonin receptor 2 (MT2)), as a modulator of fasting plasma glucose (FPG; P = 1.3 x 10(-7)). In European populations, the rs1387153 T allele is associated.......005, incident cases N = 515). RT-PCR analyses confirm the presence of MT2 transcripts in neural tissues and show MT2 expression in human pancreatic islets and beta cells. Our data suggest a possible link between circadian rhythm regulation and glucose homeostasis through the melatonin signaling pathway....

  13. Munc18b Increases Insulin Granule Fusion, Restoring Deficient Insulin Secretion in Type-2 Diabetes Human and Goto-Kakizaki Rat Islets with Improvement in Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Tairan Qin

    2017-02-01

    Infusion of Ad-Munc18b into GK rat pancreas led to sustained improvement in glucose homeostasis. However, Munc18b overexpression in normal islets increased only newcomer SG fusion. Therefore, Munc18b could potentially be deployed in human T2D to rescue the deficient GSIS.

  14. Peroxisome Proliferator-Activated Receptor-alpha-Null Mice Have Increased White Adipose Tissue Glucose Utilization, GLUT4, and Fat Mass: Role in Liver and Brain

    NARCIS (Netherlands)

    Knauf, C.; Rieusset, J.; Foretz, M.; Cani, P.D.; Uldry, M.; Hosokawa, M.; Martinez, E.; Bringart, M.; Waget, A.; Kersten, A.H.; Desvergne, B.; Gremlich, S.; Wahli, W.; Seydoux, J.; Delzenne, N.M.; Thorens, B.; Burcelin, R.

    2006-01-01

    Activation of the peroxisome proliferator-activated receptor (PPAR)-¿ increases lipid catabolism and lowers the concentration of circulating lipid, but its role in the control of glucose metabolism is not as clearly established. Here we compared PPAR¿ knockout mice with wild type and confirmed that

  15. Peroxisome Proliferator-Activated Receptor-alpha-Null Mice Have Increased White Adipose Tissue Glucose Utilization, GLUT4, and Fat Mass: Role in Liver and Brain

    NARCIS (Netherlands)

    Knauf, C.; Rieusset, J.; Foretz, M.; Cani, P.D.; Uldry, M.; Hosokawa, M.; Martinez, E.; Bringart, M.; Waget, A.; Kersten, A.H.; Desvergne, B.; Gremlich, S.; Wahli, W.; Seydoux, J.; Delzenne, N.M.; Thorens, B.; Burcelin, R.

    2006-01-01

    Activation of the peroxisome proliferator-activated receptor (PPAR)-¿ increases lipid catabolism and lowers the concentration of circulating lipid, but its role in the control of glucose metabolism is not as clearly established. Here we compared PPAR¿ knockout mice with wild type and confirmed that

  16. A low-carbohydrate high-fat diet increases weight gain and does not improve glucose tolerance, insulin secretion or β-cell mass in NZO mice.

    Science.gov (United States)

    Lamont, B J; Waters, M F; Andrikopoulos, S

    2016-02-15

    Dietary guidelines for the past 20 years have recommended that dietary fat should be minimized. In contrast, recent studies have suggested that there could be some potential benefits for reducing carbohydrate intake in favor of increased fat. It has also been suggested that low-carbohydrate diets be recommended for people with type 2 diabetes. However, whether such diets can improve glycemic control will likely depend on their ability to improve β-cell function, which has not been studied. The objective of the study was to assess whether a low-carbohydrate and therefore high-fat diet (LCHFD) is beneficial for improving the endogenous insulin secretory response to glucose in prediabetic New Zealand Obese (NZO) mice. NZO mice were maintained on either standard rodent chow or an LCHFD from 6 to 15 weeks of age. Body weight, food intake and blood glucose were assessed weekly. Blood glucose and insulin levels were also assessed after fasting and re-feeding and during an oral glucose tolerance test. The capacity of pancreatic β-cells to secrete insulin was assessed in vivo with an intravenous glucose tolerance test. β-Cell mass was assessed in histological sections of pancreata collected at the end of the study. In NZO mice, an LCHFD reduced plasma triglycerides (P=0.001) but increased weight gain (Ptissue mass (P=0.0015), high-density lipoprotein cholesterol (P=0.044) and exacerbated glucose intolerance (P=0.013). Although fasting insulin levels tended to be higher (P=0.08), insulin secretory function in LCHFD-fed mice was not improved (P=0.93) nor was β-cell mass (P=0.75). An LCHFD is unlikely to be of benefit for preventing the decline in β-cell function associated with the progression of hyperglycemia in type 2 diabetes.

  17. Surprising Connections between Partitions and Divisors

    Science.gov (United States)

    Osler, Thomas J.; Hassen, Abdulkadir; Chandrupatla, Tirupathi R.

    2007-01-01

    The sum of the divisors of a positive integer is one of the most interesting concepts in multiplicative number theory, while the number of ways of expressing a number as a sum is a primary topic in additive number theory. In this article, we describe some of the surprising connections between and similarities of these two concepts.

  18. Surprises from extragalactic propagation of UHECRs

    CERN Document Server

    Boncioli, Denise; Grillo, Aurelio

    2015-01-01

    Ultra-high energy cosmic ray experimental data are now of very good statistical significance even in the region of the expected GZK feature. The identification of their sources requires sophisticate analysis of their propagation in the extragalactic space. When looking at the details of this propagation some unforeseen features emerge. We will discuss some of these "surprises".

  19. Pharmacologic Activation of Tumor Hypoxia : A Means to Increase Tumor 2-Deoxy-2-[F-18]Fluoro-D-Glucose Uptake?

    NARCIS (Netherlands)

    Mees, Gilles; Dierckx, Rudi; Vangestel, Christel; Laukens, Debby; Van Damme, Nancy; Van de Wiele, Christophe

    2013-01-01

    Tumor hypoxia and tumor metabolism are linked through the activation of metabolic genes following hypoxia-inducible factor 1 (HIF-1) activation. This raises the question of whether this relationship can be exploited to improve 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography ([F-18]FDG-

  20. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk

    NARCIS (Netherlands)

    Bouatia-Naji, Nabila; Bonnefond, Amelie; Cavalcanti-Proenca, Christine; Sparso, Thomas; Holmkvist, Johan; Marchand, Marion; Delplanque, Jerome; Lobbens, Stephane; Rocheleau, Ghislain; Durand, Emmanuelle; De Graeve, Franck; Chevre, Jean-Claude; Borch-Johnsen, Knut; Hartikainen, Anna-Liisa; Ruokonen, Aimo; Tichet, Jean; Marre, Michel; Weill, Jacques; Heude, Barbara; Tauber, Maithe; Lemaire, Katleen; Schuit, Frans; Elliott, Paul; Jorgensen, Torben; Charpentier, Guillaume; Hadjadj, Samy; Cauchi, Stephane; Vaxillaire, Martine; Sladek, Robert; Visvikis-Siest, Sophie; Balkau, Beverley; Levy-Marchal, Claire; Pattou, Francois; Meyre, David; Blakemore, Alexandra I. F.; Jarvelin, Marjo-Riita; Walley, Andrew J.; Hansen, Torben; Dina, Christian; Pedersen, Oluf; Froguel, Philippe

    2009-01-01

    In genome-wide association (GWA) data from 2,151 nondiabetic French subjects, we identified rs1387153, near MTNR1B (which encodes the melatonin receptor 2 (MT2)), as a modulator of fasting plasma glucose (FPG; P = 1.3 x 10(-7)). In European populations, the rs1387153 T allele is associated with incr

  1. Prediabetic increase in hemoglobin A1c compared with impaired fasting glucose in patients receiving antipsychotic drugs

    NARCIS (Netherlands)

    Manu, Peter; Correll, Christoph U.; Wampers, Martien; van Winkel, Ruud; Yu, Weiping; Mitchell, Alex J.; De Hert, Marc

    2013-01-01

    Background: In 2010, the American Diabetes Association recommended that individuals with hemoglobin A1c 5.7-6.4% be classified as prediabetic even in the absence of impaired fasting glucose (IFG). Aim of study: To compare the clinical and metabolic characteristics of patients receiving antipsychotic

  2. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk

    NARCIS (Netherlands)

    Bouatia-Naji, Nabila; Bonnefond, Amelie; Cavalcanti-Proenca, Christine; Sparso, Thomas; Holmkvist, Johan; Marchand, Marion; Delplanque, Jerome; Lobbens, Stephane; Rocheleau, Ghislain; Durand, Emmanuelle; De Graeve, Franck; Chevre, Jean-Claude; Borch-Johnsen, Knut; Hartikainen, Anna-Liisa; Ruokonen, Aimo; Tichet, Jean; Marre, Michel; Weill, Jacques; Heude, Barbara; Tauber, Maithe; Lemaire, Katleen; Schuit, Frans; Elliott, Paul; Jorgensen, Torben; Charpentier, Guillaume; Hadjadj, Samy; Cauchi, Stephane; Vaxillaire, Martine; Sladek, Robert; Visvikis-Siest, Sophie; Balkau, Beverley; Levy-Marchal, Claire; Pattou, Francois; Meyre, David; Blakemore, Alexandra I. F.; Jarvelin, Marjo-Riita; Walley, Andrew J.; Hansen, Torben; Dina, Christian; Pedersen, Oluf; Froguel, Philippe

    In genome-wide association (GWA) data from 2,151 nondiabetic French subjects, we identified rs1387153, near MTNR1B (which encodes the melatonin receptor 2 (MT2)), as a modulator of fasting plasma glucose (FPG; P = 1.3 x 10(-7)). In European populations, the rs1387153 T allele is associated with

  3. Adipocyte-specific protein tyrosine phosphatase 1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Carl Owen

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B, a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role of PTP1B in adipocytes is unclear, with studies demonstrating beneficial, detrimental or no effect(s of adipose-PTP1B-deficiency on body mass and insulin resistance. To definitively establish the role of adipocyte-PTP1B in body mass regulation and glucose homeostasis, adipocyte-specific-PTP1B knockout mice (adip-crePTP1B(-/- were generated using the adiponectin-promoter to drive Cre-recombinase expression. Chow-fed adip-crePTP1B(-/- mice display enlarged adipocytes, despite having similar body weight/adiposity and glucose homeostasis compared to controls. High-fat diet (HFD-fed adip-crePTP1B(-/- mice display no differences in body weight/adiposity but exhibit larger adipocytes, increased circulating glucose and leptin levels, reduced leptin sensitivity and increased basal lipogenesis compared to controls. This is associated with decreased insulin receptor (IR and Akt/PKB phosphorylation, increased lipogenic gene expression and increased hypoxia-induced factor-1-alpha (Hif-1α expression. Adipocyte-specific PTP1B deletion does not beneficially manipulate signaling pathways regulating glucose homeostasis, lipid metabolism or adipokine secretion in adipocytes. Moreover, PTP1B does not appear to be the major negative regulator of the IR in adipocytes.

  4. Overexpressing enzymes of the Ehrlich pathway and deleting genes of the competing pathway in Saccharomyces cerevisiae for increasing 2-phenylethanol production from glucose.

    Science.gov (United States)

    Shen, Li; Nishimura, Yuya; Matsuda, Fumio; Ishii, Jun; Kondo, Akihiko

    2016-07-01

    2-Phenylethanol (2-PE) is a higher aromatic alcohol that is used in the cosmetics and food industries. The budding yeast Saccharomyces cerevisiae is considered to be a suitable host for the industrial production of higher alcohols, including 2-PE. To produce 2-PE from glucose in S. cerevisiae, we searched for suitable 2-keto acid decarboxylase (KDC) and alcohol dehydrogenase (ADH) enzymes of the Ehrlich pathway for overexpression in strain YPH499, and found that overexpression of the ARO10 and/or ADH1 genes increased 2-PE production from glucose. Further, we screened ten BY4741 single-deletion mutants of genes involved in the competing pathways for 2-PE production, and found that strains aro8Δ and aat2Δ displayed increased 2-PE production. Based on these results, we engineered a BY4741 strain that overexpressed ARO10 and contained an aro8Δ deletion, and demonstrated that the strain produced 96 mg/L 2-PE from glucose as the sole carbon source. As this engineered S. cerevisiae strain showed a significant increase in 2-PE production from glucose without the addition of an intermediate carbon substrate, it is a promising candidate for the large-scale production of 2-PE.

  5. Uric Acid or 1-Methyl Uric Acid in the Urinary Bladder Increases Serum Glucose, Insulin, True Triglyceride, and Total Cholesterol Levels in Wistar Rats

    Directory of Open Access Journals (Sweden)

    T. Balasubramanian

    2003-01-01

    Full Text Available In animals deprived of food for a long period, a drop in the fat mass below 5% of the total body mass results in an increase in blood glucocorticoids and uric acid levels, followed by foraging activity. Since the glucocorticoids increase the uric acid excretion, an increase in the level of uric acid in the bladder urine could be the signal for this feeding behaviour and subsequent fat storage. Accumulation of fat is associated with hyperglycaemia, hyperinsulinaemia, hyperlipidaemia, and hypercholesterolaemia as seen in the metabolic syndrome or hibernation. It is hypothesized that uric acid or its structurally related compound, 1-methyl uric acid (one of the metabolites of the methyl xanthines namely caffeine, theophylline, and theobromine present in coffee, tea, cocoa, and some drugs, can act on the urinary bladder mucosa and increases the blood glucose, insulin, triglyceride, and cholesterol levels. In rats, perfusion of the urinary bladder with saturated aqueous solution of uric acid or 1-methyl uric acid results in a significant increase in the serum levels of glucose, insulin, true triglyceride, and total cholesterol in comparison with perfusion of the bladder with distilled water at 20, 40, and 80 min. The uric acid or the 1-methyl uric acid acts on the urinary bladder mucosa and increases the serum glucose, insulin, true triglyceride, and total cholesterol levels.

  6. Radar Design to Protect Against Surprise

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    Technological and doctrinal surprise is about rendering preparations for conflict as irrelevant or ineffective . For a sensor, this means essentially rendering the sensor as irrelevant or ineffective in its ability to help determine truth. Recovery from this sort of surprise is facilitated by flexibility in our own technology and doctrine. For a sensor, this mean s flexibility in its architecture, design, tactics, and the designing organizations ' processes. - 4 - Acknowledgements This report is the result of a n unfunded research and development activity . Sandia National Laboratories is a multi - program laboratory manage d and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  7. Radar Design to Protect Against Surprise.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.

    2015-02-01

    Technological and doctrinal surprise is about rendering preparations for conflict as irrelevant or ineffective . For a sensor, this means essentially rendering the sensor as irrelevant or ineffective in its ability to help determine truth. Recovery from this sort of surprise is facilitated by flexibility in our own technology and doctrine. For a sensor, this mean s flexibility in its architecture, design, tactics, and the designing organizations ' processes. - 4 - Acknowledgements This report is the result of a n unfunded research and development activity . Sandia National Laboratories is a multi - program laboratory manage d and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  8. Surprise-Based Learning for Autonomous Systems

    Science.gov (United States)

    2009-02-28

    for scientific theories containing recursive theoretical terms". British Journal of Philosophy of Science, 44. 641-652, 1993. Piaget J.. "The Origins...paradigm stems from Piaget’s theory of Developmental Psychology [5], Herben Simon’s theory on dual-space search for knowledge and problem solving [6...34, Twenty-First Conference on Uncertainty in Artificial Intelligence, Edinburgh, Scotland, July 2005. [34] Itti L., Baldi P., "A Surprising Theory of

  9. l-Cysteine supplementation increases insulin sensitivity mediated by upregulation of GSH and adiponectin in high glucose treated 3T3-L1 adipocytes.

    Science.gov (United States)

    Achari, Arunkumar E; Jain, Sushil K

    2017-09-15

    Diabetic patients have lower blood levels of l-cysteine (LC) and glutathione (GSH). This study examined the hypothesis that LC supplementation positively up regulates the effects of insulin on GSH and glucose metabolism in 3T3-L1 adipocyte model. 3T3L1 adipocytes were treated with LC (250 μM, 2 h) and/or insulin (15 or 30 nM, 2 h), and high glucose (HG, 25 mM, 20 h). Results showed that HG caused significant increase (95%) in ROS and reduction in the protein levels of DsbA-L (43%), adiponectin (64%), GCLC (20%), GCLM (21%), GSH (50%), and GLUT-4 (23%) in adipocytes. Furthermore, HG caused a reduction in total (35%) and HMW adiponectin (30%) secretion. Treatment with insulin alone significantly (p L, adiponectin, GCLC, GCLM, GSH, and GLUT-4 protein levels, glucose utilization, and improved total and HMW adiponectin secretion in HG treated adipocytes compared to HG alone. Interestingly, LC supplementation along with insulin caused greater reduction in ROS levels and significantly (p L (41% vs LC, 29% vs Insulin), adiponectin (92% Vs LC, 84% Vs insulin) protein levels and total (32% Vs LC, 22% Vs insulin) and HMW adiponectin (75% Vs LC, 39% Vs insulin) secretion compared with the either insulin or LC alone in HG-treated cells. In addition, LC supplementation along with insulin increased GCLC (21% Vs LC, 14% insulin), GCLM (28% Vs LC, 16% insulin) and GSH (25% Vs LC and insulin) levels compared with the either insulin or LC alone in HG-treated cells. Furthermore, LC and insulin increases GLUT-4 protein expression (65% Vs LC, 18% Vs Insulin), glucose utilization (57% Vs LC, 27% Vs insulin) compared with the either insulin or LC alone in HG-treated cells. Similarly, LC supplementation increased insulin action significantly in cells maintained in medium contained control glucose. To explore the beneficial effect of LC is mediated by the upregulation of GCLC, we knocked down GCLC using siRNA in adipoctyes. There was a significant decrease in DsbA-L and GLUT-4 m

  10. 3-O-Acyl-epicatechins Increase Glucose Uptake Activity and GLUT4 Translocation through Activation of PI3K Signaling in Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    Manabu Ueda-Wakagi

    2015-07-01

    Full Text Available Tea catechins promote glucose uptake in skeletal muscle cells. In this study, we investigated whether the addition of an acyl group to the C-3 position of catechins to generate 3-O-acyl-catechins promoted glucose uptake in L6 myotubes. 3-O-Myristoyl-(−-epicatechin (EC-C14 and 3-O-palmitoyl-(−-epicatechin (EC-C16 promoted glucose uptake and translocation of glucose transporter (GLUT 4 in the cells. The effect of 3-O-acyl-(−-epicatechins was stronger than that of (−-epicatechin (EC, whereas neither 3-O-myristoyl-(+-catechin (C-C14 nor 3-O-palmitoyl-(+catechin (C-C16 promoted glucose uptake or GLUT4 translocation as well as (+-catechin (C. We further investigated an affinity of catechins and 3-O-acyl-catechins to the lipid bilayer membrane by using surface plasma resonance analysis. Maximum binding amounts of EC-C16 and C-C16 to the lipid bilayer clearly increased compared with that of (−-EC and (+-C, respectively. We also examined the mechanism of GLUT4 translocation and found EC-C14 and EC-C16 induced the phosphorylation of PI3K, but did not affect phosphorylation of Akt or IR. In conclusion, the addition of an acyl group to the C-3 position of (−-EC increases its affinity for the lipid bilayer membrane and promotes GLUT4 translocation through PI3K-dependent pathways in L6 myotubes.

  11. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yansong [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China); Feng, Jianghua, E-mail: jianghua.feng@xmu.edu.cn [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (China); Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005 (China); Kou, Hao; Liang, Gai [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin [Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China)

    2012-07-15

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by {sup 1}H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine

  12. Increased fluoro-deoxy-D-glucose uptake on positron emission tomography-computed tomography postbronchoalveolar lavage: a potential cause of radiologic misinterpretation.

    LENUS (Irish Health Repository)

    Leong, Sum

    2011-08-01

    Cytologic analysis of bronchoalveolar lavage (BAL) fluid is used for lung cancer diagnosis. We describe a patient with a history of rectal carcinoma who presented with a new lung mass. BAL was performed, with positron emission tomography-computed tomography the following day. There was mildly increased fluoro-deoxy-D-glucose uptake in areas of the lung parenchyma with new ground-glass opacification. This created ambiguity in staging, clarified 2 weeks later by a computed tomography showing complete resolution of the ground-glass opacity. Clinicians should be aware that BAL may cause increased pulmonary fluoro-deoxy-D-glucose uptake, making accurate radiologic interpretation problematic. We suggest that to optimize positron emission tomography-computed tomography, studies should not be performed within 24 hours of BAL.

  13. Increased insulin sensitivity and reduced micro and macro vascular disease induced by 2-deoxy-D-glucose during metabolic syndrome in obese JCR: LA-cp rats.

    Science.gov (United States)

    Russell, J C; Proctor, S D

    2007-05-01

    The metabolic syndrome, characterized by obesity, insulin resistance and dyslipidemia, is a major cause of cardiovascular disease. The origins of the syndrome have been hypothesized to lie in continuous availability of energy dense foods in modern societies. In contrast, human physiology has evolved in an environment of sporadic food supply and frequent food deprivation. Intermittent food restriction in rats has previously been shown to lead to reduction of cardiovascular risk and a greater life span. The non-metabolizable glucose analogue, 2-deoxy-D-glucose (2-DG) is taken up by cells and induces pharmacological inhibition of metabolism of glucose. We hypothesized that intermittent inhibition of glucose metabolism, a metabolic deprivation, may mimic intermittent food deprivation and ameliorate metabolic and pathophysiological aspects of the metabolic syndrome. Insulin resistant, atherosclerosis-prone JCR:LA-cp rats were treated with 2-DG (0.3% w/w in chow) on an intermittent schedule (2 days treated, one day non-treated, two days treated and two days non-treated) or continuously at a dose to give an equivalent averaged intake. Intermittent 2-DG-treatment improved insulin sensitivity, which correlated with increased adiponectin concentrations. Further, intermittent treatment (but not continuous treatment) reduced plasma levels of leptin and the inflammatory cytokine IL-1 beta. Both 2-DG treatments reduced micro-vascular glomerular sclerosis, but only the intermittent schedule improved macro-vascular dysfunction. Our findings are consistent with reduction in severity of the metabolic syndrome and protection against end stage micro- and macro-vascular disease through intermittent metabolic deprivation at a cellular level by inhibition of glucose oxidation with 2-DG.

  14. Pupil size tracks perceptual content and surprise.

    Science.gov (United States)

    Kloosterman, Niels A; Meindertsma, Thomas; van Loon, Anouk M; Lamme, Victor A F; Bonneh, Yoram S; Donner, Tobias H

    2015-04-01

    Changes in pupil size at constant light levels reflect the activity of neuromodulatory brainstem centers that control global brain state. These endogenously driven pupil dynamics can be synchronized with cognitive acts. For example, the pupil dilates during the spontaneous switches of perception of a constant sensory input in bistable perceptual illusions. It is unknown whether this pupil dilation only indicates the occurrence of perceptual switches, or also their content. Here, we measured pupil diameter in human subjects reporting the subjective disappearance and re-appearance of a physically constant visual target surrounded by a moving pattern ('motion-induced blindness' illusion). We show that the pupil dilates during the perceptual switches in the illusion and a stimulus-evoked 'replay' of that illusion. Critically, the switch-related pupil dilation encodes perceptual content, with larger amplitude for disappearance than re-appearance. This difference in pupil response amplitude enables prediction of the type of report (disappearance vs. re-appearance) on individual switches (receiver-operating characteristic: 61%). The amplitude difference is independent of the relative durations of target-visible and target-invisible intervals and subjects' overt behavioral report of the perceptual switches. Further, we show that pupil dilation during the replay also scales with the level of surprise about the timing of switches, but there is no evidence for an interaction between the effects of surprise and perceptual content on the pupil response. Taken together, our results suggest that pupil-linked brain systems track both the content of, and surprise about, perceptual events.

  15. Progesterone impairs cell respiration and suppresses a compensatory increase in glucose transport in isolated rat skeletal muscle: a non-genomic mechanism contributing to metabolic adaptation to late pregnancy?

    Science.gov (United States)

    Gras, F; Brunmair, B; Quarré, L; Szöcs, Z; Waldhäusl, W; Fürnsinn, C

    2007-12-01

    The aim of the study was to gain better insight into the mechanisms responsible for impaired glucose metabolism during late pregnancy. We explored the direct effects of progesterone on glucose metabolism of skeletal muscle. Specimens of skeletal muscle from untreated rats were incubated with progesterone and rates of substrate fluxes through the various pathways of glucose metabolism were analysed. Progesterone dose-dependently reduced the rates of glucose and pyruvate oxidation (insulin-stimulated rates after 5 h of exposure to 1 and 10 mumol/l progesterone: glucose oxidation, -6 +/- 4%, NS, and -39 +/- 4%, p respiration, e.g. by the specific inhibitor rotenone, is known to trigger a compensatory increase in glucose transport, but this response was blunted in the case of progesterone (change of glucose transport in response to 10 mumol/l progesterone vs 60 nmol/l rotenone, both causing a reduction in glucose oxidation by -39%: progesterone, +14 +/- 8% vs rotenone, +84 +/- 23%, p respiration and at the same time suppresses a compensatory increase in glucose transport, causing cellular carbohydrate deficiency in isolated rat skeletal muscle. This effect is mediated by a direct, rapid and non-genomic mechanism and could contribute to pregnancy-associated changes in glucose homeostasis.

  16. Hydrogen sulfide releasing aspirin, ACS14, attenuates high glucose-induced increased methylglyoxal and oxidative stress in cultured vascular smooth muscle cells.

    Science.gov (United States)

    Huang, Qian; Sparatore, Anna; Del Soldato, Piero; Wu, Lingyun; Desai, Kaushik

    2014-01-01

    Hydrogen sulfide is a gasotransmitter with vasodilatory and anti-inflammatory properties. Aspirin is an irreversible cyclooxygenase inhibitor anti-inflammatory drug. ACS14 is a novel synthetic hydrogen sulfide releasing aspirin which inhibits cyclooxygenase and has antioxidant effects. Methylglyoxal is a chemically active metabolite of glucose and fructose, and a major precursor of advanced glycation end products formation. Methylglyoxal is harmful when produced in excess. Plasma methylglyoxal levels are significantly elevated in diabetic patients. Our aim was to investigate the effects of ACS14 on methylglyoxal levels in cultured rat aortic vascular smooth muscle cells. We used cultured rat aortic vascular smooth muscle cells for the study. Methylglyoxal was measured by HPLC after derivatization, and nitrite+nitrate with an assay kit. Western blotting was used to determine NADPH oxidase 4 (NOX4) and inducible nitric oxide synthase (iNOS) protein expression. Dicholorofluorescein assay was used to measure oxidative stress. ACS14 significantly attenuated elevation of intracellular methylglyoxal levels caused by incubating cultured vascular smooth muscle cells with methylglyoxal (30 µM) and high glucose (25 mM). ACS14, but not aspirin, caused a significant attenuation of increase in nitrite+nitrate levels caused by methylglyoxal or high glucose. ACS14, aspirin, and sodium hydrogen sulfide (NaHS, a hydrogen sulfide donor), all attenuated the increase in oxidative stress caused by methylglyoxal and high glucose in cultured cells. ACS14 prevented the increase in NOX4 expression caused by incubating the cultured VSMCs with MG (30 µM). ACS14, aspirin and NaHS attenuated the increase in iNOS expression caused by high glucose (25 mM). In conclusion, ACS14 has the novel ability to attenuate an increase in methylglyoxal levels which in turn can reduce oxidative stress, decrease the formation of advanced glycation end products and prevent many of the known deleterious effects

  17. Hydrogen sulfide releasing aspirin, ACS14, attenuates high glucose-induced increased methylglyoxal and oxidative stress in cultured vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Qian Huang

    Full Text Available Hydrogen sulfide is a gasotransmitter with vasodilatory and anti-inflammatory properties. Aspirin is an irreversible cyclooxygenase inhibitor anti-inflammatory drug. ACS14 is a novel synthetic hydrogen sulfide releasing aspirin which inhibits cyclooxygenase and has antioxidant effects. Methylglyoxal is a chemically active metabolite of glucose and fructose, and a major precursor of advanced glycation end products formation. Methylglyoxal is harmful when produced in excess. Plasma methylglyoxal levels are significantly elevated in diabetic patients. Our aim was to investigate the effects of ACS14 on methylglyoxal levels in cultured rat aortic vascular smooth muscle cells. We used cultured rat aortic vascular smooth muscle cells for the study. Methylglyoxal was measured by HPLC after derivatization, and nitrite+nitrate with an assay kit. Western blotting was used to determine NADPH oxidase 4 (NOX4 and inducible nitric oxide synthase (iNOS protein expression. Dicholorofluorescein assay was used to measure oxidative stress. ACS14 significantly attenuated elevation of intracellular methylglyoxal levels caused by incubating cultured vascular smooth muscle cells with methylglyoxal (30 µM and high glucose (25 mM. ACS14, but not aspirin, caused a significant attenuation of increase in nitrite+nitrate levels caused by methylglyoxal or high glucose. ACS14, aspirin, and sodium hydrogen sulfide (NaHS, a hydrogen sulfide donor, all attenuated the increase in oxidative stress caused by methylglyoxal and high glucose in cultured cells. ACS14 prevented the increase in NOX4 expression caused by incubating the cultured VSMCs with MG (30 µM. ACS14, aspirin and NaHS attenuated the increase in iNOS expression caused by high glucose (25 mM. In conclusion, ACS14 has the novel ability to attenuate an increase in methylglyoxal levels which in turn can reduce oxidative stress, decrease the formation of advanced glycation end products and prevent many of the known

  18. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium.

    Science.gov (United States)

    Morland, Cecilie; Pettersen, Mi Nguyen; Hassel, Bjørnar

    2016-05-01

    Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia.

  19. Bioactive Components from Flowers of Sambucus nigra L. Increase Glucose Uptake in Primary Porcine Myotube Cultures and Reduce Fat Accumulation in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Bhattacharya, Sumangala; B. Christensen, Kathrine; C. B. Olsen, Louise

    2013-01-01

    Obesity and insulin resistance in skeletal muscles are major features of type 2 diabetes. In the present study, we examined the potential of Sambucus nigra flower (elderflowers) extracts to stimulate glucose uptake (GU) in primary porcine myotubes and reduce fat accumulation (FAc) in Caenorhabditis...... elegans. Bioassay guided chromatographic fractionations of extracts and fractions resulted in the identification of naringenin and 5-O- caffeoylquinic acid exhibiting a significant increase in GU. In addition, phenolic compounds related to those found in elderflowers were also tested, and among these......, kaempferol-3-O-rutinoside, isorhamnetin-3-O-rutinoside, and isorhamnetin-3-O-glucoside and the related phenolic compounds kaempferol and ferulic acid. The study indicates that elderflower extracts contain bioactive compounds capable of modulating glucose and lipid metabolism, suitable for nutraceutical...

  20. Effects of Surprisal and Locality on Danish Sentence Processing: An Eye-Tracking Investigation.

    Science.gov (United States)

    Balling, Laura Winther; Kizach, Johannes

    2017-03-22

    An eye-tracking experiment in Danish investigates two dominant accounts of sentence processing: locality-based theories that predict a processing advantage for sentences where the distance between the major syntactic heads is minimized, and the surprisal theory which predicts that processing time increases with big changes in the relative entropy of possible parses, sometimes leading to anti-locality effects. We consider both lexicalised surprisal, expressed in conditional trigram probabilities, and syntactic surprisal expressed in the manipulation of the expectedness of the second NP in Danish constructions with two postverbal NP-objects. An eye-tracking experiment showed a clear advantage for local syntactic relations, with only a marginal effect of lexicalised surprisal and no effect of syntactic surprisal. We conclude that surprisal has a relatively marginal effect, which may be clearest for verbs in verb-final languages, while locality is a robust predictor of sentence processing.

  1. Gluten-free diet increases beta-cell volume and improves glucose tolerance in an animal model of type 2 diabetes.

    Science.gov (United States)

    Haupt-Jorgensen, Martin; Buschard, Karsten; Hansen, Axel K; Josefsen, Knud; Antvorskov, Julie Christine

    2016-10-01

    Gluten-free (GF) diet alleviates type 1 diabetes in animal models and possibly in humans. We recently showed that fatty acid-induced insulin secretion is enhanced by enzymatically digested gluten (gliadin) stimulation in INS-1E insulinoma cells. We therefore hypothesized that GF diet would induce beta-cell rest and ameliorate type 2 diabetes. C57BL/6JBomTac (B6) mice were fed a high-fat (HF), gluten-free high-fat (GF-HF), standard (STD) or gluten-free (GF) diet for 42 weeks. Short-term (6-24 weeks) GF-HF versus HF feeding impaired glucose tolerance and increased fasting glucose. Long-term (36-42 weeks) GF-HF versus HF feeding improved glucose tolerance and decreased fasting leptin. Mice fed a GF-HF versus HF diet for 42 weeks showed higher volumes of beta cells, islets and pancreas. The beta-cell volume correlated with the islet- and pancreas volume as well as body weight. GF-HF versus HF diet did not influence toll-like receptor 4 (Tlr4), interleukin 1 (IL-1), interleukin 6 (IL-6) or tumour necrosis factor-alpha (TNF-alpha) mRNA expression in intestine. STD versus GF feeding did not affect any parameter studied. Long-term feeding with GF-HF versus HF increases beta-cell volume and improves glucose tolerance in B6 mice. The mechanism may include beta-cell rest, but is unlikely to include TLR4 and proinflammatory cytokines in the intestine. Beta-cell volume correlates with pancreas volume and body weight, indicating that insulin secretion capacity controls pancreas volume. Thus, long-term GF diets may be beneficial for obese type 2 diabetes patients and trials should be performed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Impaired glucose metabolism is a risk factor for increased thyroid volume and nodule prevalence in a mild-to-moderate iodine deficient area.

    Science.gov (United States)

    Anil, Cuneyd; Akkurt, Aysen; Ayturk, Semra; Kut, Altug; Gursoy, Alptekin

    2013-07-01

    Insulin resistance (IR) is a key factor involved in the pathogenesis of impaired glucose metabolism. IR is associated with increased thyroid volume and nodule prevalence in patients with metabolic syndrome. Data on the association of thyroid morphology and abnormal glucose metabolism are limited. This prospective study was carried out to evaluate thyroid volume and nodule prevalence in patients with pre-diabetes and type 2 diabetes mellitus (DM) in a mild-to-moderate iodine deficient area. Data were gathered on all newly diagnosed patients with pre-diabetes and type 2 diabetes mellitus between May 2008 and February 2010. 156 patients with pre-diabetes and 123 patients with type 2 DM were randomly matched for age, gender, and smoking habits with 114 subjects with normal glucose metabolism. Serum thyroid-stimulating hormone (TSH) and thyroid ultrasonography was performed in all participants. Mean TSH level in the diabetes group (1.9±0.9 mIU/L) was higher than in the control group (1.4±0.8 mIU/L) and the pre-diabetes group (1.5±0.8 mIU/L) (P<0.0001 for both). Mean thyroid volume was higher in the pre-diabetes (18.2±9.2mL) and diabetes (20.0±8.2mL) groups than in controls (11.4±3.8mL) (P<0.0001 for both). Percentage of patients with thyroid nodules was also higher in the pre-diabetes (51.3%) and diabetes groups (61.8%) than in controls (23.7%) (P<0.0001 for both). The results suggest that patients with impaired glucose metabolism have significantly increased thyroid volume and nodule prevalence. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Cigarette smoking increases levels of retinol-binding protein-4 in healthy men with normal glucose tolerance

    Institute of Scientific and Technical Information of China (English)

    GAO Shan; WANG Yong-hui; LI Ming

    2012-01-01

    Background Smoking is related with insulin resistance and type 2 diabetes mellitus.Retinol-binding protein-4 is a new adipocytokine associated with insulin resistance.We investigated the serum levels of a series of adipocytokines including retinol-binding protein-4 in smokers and non-smokers to explore the possible roles of adipocytokines on smoking induced insulin resistance.Methods A total of 136 healthy male subjects (92 smokers and 44 non-smokers) with normal glucose tolerance were enrolled in the study.Adipocytokines including retinol-binding protein-4,visfatin,leptin,resistin,adiponectin were measured for the comparison between the two groups.Serum lipid profile,glucose,true insulin and proinsulin levels were measured as well in both groups.Food intake spectrum was also investigated.Results Both groups had similar profile of food consumption; visfatin,leptin,resistin and adiponectin,low-density lipoprotein cholesterol,high-density lipoprotein cholesterol,alanine aminotransferase,aspartate aminotransferase,as well as blood pressure and body mass index,were similar in both groups.Triglycerides,retinol-binding protein-4 and homeostatic model assessment index for insulin resistance were higher in smoker group ((2.58±2.53) vs.(1.60±0.94)mmol/L,(26.05±8.50) vs.(21.83±8.40) μg/ml,and 2.25±2.08 vs.1.58±1.15,respectively).Conclusion Smoking may have effect on insulin sensitivity,which is correlated with retinol-binding protein-4.

  4. High fasting blood glucose and obesity significantly and independently increase risk of breast cancer death in hormone receptor-positive disease.

    Science.gov (United States)

    Minicozzi, Pamela; Berrino, Franco; Sebastiani, Federica; Falcini, Fabio; Vattiato, Rosa; Cioccoloni, Francesca; Calagreti, Gioia; Fusco, Mario; Vitale, Maria Francesca; Tumino, Rosario; Sigona, Aurora; Budroni, Mario; Cesaraccio, Rosaria; Candela, Giuseppa; Scuderi, Tiziana; Zarcone, Maurizio; Campisi, Ildegarda; Sant, Milena

    2013-12-01

    We investigated the effect of fasting blood glucose and body mass index (BMI) at diagnosis on risk of breast cancer death for cases diagnosed in five Italian cancer registries in 2003-2005 and followed up to the end of 2008. For 1607 Italian women (≥15 years) with information on BMI or blood glucose or diabetes, we analysed the risk of breast cancer death in relation to glucose tertiles (≤84.0, 84.1-94.0, >94.0 mg/dl) plus diabetic and unspecified categories; BMI tertiles (≤23.4, 23.5-27.3, >27.3 kg/m(2), unspecified), stage (T1-3N0M0, T1-3N+M0 plus T4anyNM0, M1, unspecified), oestrogen (ER) and progesterone (PR) status (ER+PR+, ER-PR-, ER and PR unspecified, other), age, chemotherapy and endocrine therapy, using multiple regression models. Separate models for ER+PR+ and ER-PR- cases were also run. Patients often had T1-3N0M0, ER+PR+ cancers and received chemotherapy or endocrine therapy; only 6% were M1 and 17% ER-PR-. Diabetic patients were older and had more often high BMI (>27 kg/m(2)), ER-PR-, M1 cancers than other patients. For ER+PR+ cases, with adjustment for other variables, breast cancer mortality was higher in women with high BMI than those with BMI 23.5-27.3 kg/m(2) (hazard ratio (HR)=2.9, 95% confidence interval (CI) 1.2-6.9). Breast cancer mortality was also higher in women with high (>94 mg/dl) blood glucose compared to those with glucose 84.1-94.0mg/dl (HR=2.6, 95% CI 1.2-5.7). Our results provide evidence that in ER+PR+ patients, high blood glucose and high BMI are independently associated with increased risk of breast cancer death. Detection and correction of these factors in such patients may improve prognosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Exercise training favors increased insulin-stimulated glucose uptake in skeletal muscle in contrast to adipose tissue: a randomized study using FDG PET imaging.

    Science.gov (United States)

    Reichkendler, M H; Auerbach, P; Rosenkilde, M; Christensen, A N; Holm, S; Petersen, M B; Lagerberg, A; Larsson, H B W; Rostrup, E; Mosbech, T H; Sjödin, A; Kjaer, A; Ploug, T; Hoejgaard, L; Stallknecht, B

    2013-08-15

    Physical exercise increases peripheral insulin sensitivity, but regional differences are poorly elucidated in humans. We investigated the effect of aerobic exercise training on insulin-stimulated glucose uptake in five individual femoral muscle groups and four different adipose tissue regions, using dynamic (femoral region) and static (abdominal region) 2-deoxy-2-[¹⁸F]fluoro-d-glucose (FDG) PET/CT methodology during steady-state insulin infusion (40 mU·m⁻²·min⁻¹). Body composition was measured by dual X-ray absorptiometry and MRI. Sixty-one healthy, sedentary [V(O2max) 36(5) ml·kg⁻¹·min⁻¹; mean(SD)], moderately overweight [BMI 28.1(1.8) kg/m²], young [age: 30(6) yr] men were randomized to sedentary living (CON; n = 17 completers) or moderate (MOD; 300 kcal/day, n = 18) or high (HIGH; 600 kcal/day, n = 18) dose physical exercise for 11 wk. At baseline, insulin-stimulated glucose uptake was highest in femoral skeletal muscle followed by intraperitoneal visceral adipose tissue (VAT), retroperitoneal VAT, abdominal (anterior + posterior) subcutaneous adipose tissue (SAT), and femoral SAT (P tissues). Metabolic rate of glucose increased similarly (~30%) in the two exercise groups in femoral skeletal muscle (MOD 24[9, 39] μmol·kg⁻¹·min⁻¹, P = 0.004; HIGH 22[9, 35] μmol·kg⁻¹·min⁻¹, P = 0.003) (mean[95% CI]) and in five individual femoral muscle groups but not in femoral SAT. Standardized uptake value of FDG decreased ~24% in anterior abdominal SAT and ~20% in posterior abdominal SAT compared with CON but not in either intra- or retroperitoneal VAT. Total adipose tissue mass decreased in both exercise groups, and the decrease was distributed equally among subcutaneous and intra-abdominal depots. In conclusion, aerobic exercise training increases insulin-stimulated glucose uptake in skeletal muscle but not in adipose tissue, which demonstrates some interregional differences.

  6. Some surprising facts about (the problem of) surprising facts (from the Dusseldorf Conference, February 2011).

    Science.gov (United States)

    Mayo, D

    2014-03-01

    A common intuition about evidence is that if data x have been used to construct a hypothesis H, then x should not be used again in support of H. It is no surprise that x fits H, if H was deliberately constructed to accord with x. The question of when and why we should avoid such "double-counting" continues to be debated in philosophy and statistics. It arises as a prohibition against data mining, hunting for significance, tuning on the signal, and ad hoc hypotheses, and as a preference for predesignated hypotheses and "surprising" predictions. I have argued that it is the severity or probativeness of the test--or lack of it--that should determine whether a double-use of data is admissible. I examine a number of surprising ambiguities and unexpected facts that continue to bedevil this debate.

  7. Stroke Recovery: Surprising Influences and Residual Consequences

    Directory of Open Access Journals (Sweden)

    Argye E. Hillis

    2014-01-01

    Full Text Available There is startling individual variability in the degree to which people recover from stroke and the duration of time over which recovery of some symptoms occurs. There are a variety of mechanisms of recovery from stroke which take place at distinct time points after stroke and are influenced by different variables. We review recent studies from our laboratory that unveil some surprising findings, such as the role of education in chronic recovery. We also report data showing that the consequences that most plague survivors of stroke and their caregivers are loss of high level cortical functions, such as empathy or written language. These results have implications for rehabilitation and management of stroke.

  8. Surprises and mysteries in urban soils

    Science.gov (United States)

    Groffman, P. M.

    2015-12-01

    In the Baltimore Ecosystem Study, one of two urban long-term ecological research (LTER) projects funded by the U.S. National Science Foundation, we are using "the watershed approach" to integrate ecological, physical and social sciences. Urban and suburban watershed input/output budgets for nitrogen have shown surprisingly high retention which has led to detailed analysis of sources and sinks in soils these watersheds. Home lawns, thought to be major sources of reactive nitrogen in suburban watersheds, have more complex coupled carbon and nitrogen dynamics than previously thought, and are likely the site of much nitrogen retention. Riparian zones, thought to be an important sink for reactive nitrogen in many watersheds, have turned out be nitrogen sources in urban watersheds due to hydrologic changes that disconnect streams from their surrounding landscape. Urban effects on atmospheric carbon dioxide levels and nitrogen deposition have strong effects on soil nitrogen cycling processes and soil:atmosphere fluxes of nitrous oxide, carbon dioxide and methane. Efforts to manage urban soils and watersheds through geomorphic stream restoration, creation of stormwater management features and changes in lawn and forest management can have significant effects on watershed carbon and nitrogen dynamics. Urban soils present a basic and applied science frontier that challenges our understanding of biological, physical, chemical and social science processes. The watershed approach provides an effective platform for integrating these disciplines and for articulating critical questions that arise from surprising results. This approach can help us to meet the challenge of urban soils, which is critical to achieving sustainability goals in cities across the world.

  9. A Neural Mechanism for Surprise-related Interruptions of Visuospatial Working Memory.

    Science.gov (United States)

    Wessel, Jan R

    2016-11-30

    Surprising perceptual events recruit a fronto-basal ganglia mechanism for inhibition, which suppresses motor activity following surprise. A recent study found that this inhibitory mechanism also disrupts the maintenance of verbal working memory (WM) after surprising tones. However, it is unclear whether this same mechanism also relates to surprise-related interruptions of non-verbal WM. We tested this hypothesis using a change-detection task, in which surprising tones impaired visuospatial WM. Participants also performed a stop-signal task (SST). We used independent component analysis and single-trial scalp-electroencephalogram to test whether the same inhibitory mechanism that reflects motor inhibition in the SST relates to surprise-related visuospatial WM decrements, as was the case for verbal WM. As expected, surprising tones elicited activity of the inhibitory mechanism, and this activity correlated strongly with the trial-by-trial level of surprise. However, unlike for verbal WM, the activity of this mechanism was unrelated to visuospatial WM accuracy. Instead, inhibition-independent activity that immediately succeeded the inhibitory mechanism was increased when visuospatial WM was disrupted. This shows that surprise-related interruptions of visuospatial WM are not effected by the same inhibitory mechanism that interrupts verbal WM, and instead provides evidence for a 2-stage model of distraction.

  10. Enhancement of radiation effect and increase of apoptosis in lung cancer cells by thio-glucose-bound gold nanoparticles at megavoltage radiation energies

    Energy Technology Data Exchange (ETDEWEB)

    Wang Cuihong; Li Xiaohong; Wang Yang; Liu Zhen [Qilu Hospital of Shandong University, Department of Radiation Therapy (China); Fu Lei [Shandong Cancer Hospital (China); Hu Likuan, E-mail: xqawc1120@126.com [Qilu Hospital of Shandong University, Department of Radiation Therapy (China)

    2013-05-15

    Gold nanoparticles (GNPs) (1-1,000 nm) modified by glucose have been considered to increase the toxicity of radiotherapy in human malignant cells. We report on the effect on lung-cancer cells, A549, of thio-glucose-bound gold nanoparticles (Glu-GNPs) with a size of 13 nm, combined with megavoltage (MV) X-ray. Viewed by transmission electron microscopy, Glu-GNPs were mainly distributed in the membrane-coated vesicles of A549 cells. The combination of Glu-GNPs with radiation resulted in a significant growth inhibition, compared with radiation alone (P < 0.05). Glu-GNPs enhanced radiation effect by increasing the ratio of A549 cells in the G2/M phase, and inducing more apoptosis. Furthermore, when combined with radiation, Glu-GNPs resulted in deregulation of Bcl-2 and upregulation of Bax and active caspase 3. Our results suggest that Glu-GNPs, as a new radiosensitizer, combined with radiation, can increase cytotoxicity on A549 cells not only by arresting the G2/M phase, but also by increasing apoptosis-probably via regulating the expression of Bcl-2 family of proteins and mitochondrial apoptotic pathway.

  11. The conceptualization model problem—surprise

    Science.gov (United States)

    Bredehoeft, John

    2005-03-01

    The foundation of model analysis is the conceptual model. Surprise is defined as new data that renders the prevailing conceptual model invalid; as defined here it represents a paradigm shift. Limited empirical data indicate that surprises occur in 20-30% of model analyses. These data suggest that groundwater analysts have difficulty selecting the appropriate conceptual model. There is no ready remedy to the conceptual model problem other than (1) to collect as much data as is feasible, using all applicable methods—a complementary data collection methodology can lead to new information that changes the prevailing conceptual model, and (2) for the analyst to remain open to the fact that the conceptual model can change dramatically as more information is collected. In the final analysis, the hydrogeologist makes a subjective decision on the appropriate conceptual model. The conceptualization problem does not render models unusable. The problem introduces an uncertainty that often is not widely recognized. Conceptual model uncertainty is exacerbated in making long-term predictions of system performance. C'est le modèle conceptuel qui se trouve à base d'une analyse sur un modèle. On considère comme une surprise lorsque le modèle est invalidé par des données nouvelles; dans les termes définis ici la surprise est équivalente à un change de paradigme. Des données empiriques limitées indiquent que les surprises apparaissent dans 20 à 30% des analyses effectuées sur les modèles. Ces données suggèrent que l'analyse des eaux souterraines présente des difficultés lorsqu'il s'agit de choisir le modèle conceptuel approprié. Il n'existe pas un autre remède au problème du modèle conceptuel que: (1) rassembler autant des données que possible en utilisant toutes les méthodes applicables—la méthode des données complémentaires peut conduire aux nouvelles informations qui vont changer le modèle conceptuel, et (2) l'analyste doit rester ouvert au fait

  12. Combination of Peptide YY3–36 with GLP-17–36 amide Causes an Increase in First-Phase Insulin Secretion after IV Glucose

    Science.gov (United States)

    Tan, Tricia M.; Salem, Victoria; Troke, Rachel C.; Alsafi, Ali; Field, Benjamin C. T.; De Silva, Akila; Misra, Shivani; Baynes, Kevin C. R.; Donaldson, Mandy; Minnion, James; Ghatei, Mohammad A.; Godsland, Ian F.

    2014-01-01

    Context: The combination of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) has been proposed as a potential treatment for diabetes and obesity. However, the combined effects of these hormones, PYY3–36 and GLP-17–36 amide, on glucose homeostasis are unknown. Objective: This study sought to investigate the acute effects of PYY3–36 and GLP-17–36 amide, individually and in combination, on insulin secretion and sensitivity. Setting and Design: Using a frequently sampled iv glucose tolerance test (FSIVGTT) and minimal modeling, this study measured the effects of PYY3–36 alone, GLP-17–36 amide alone, and a combination of PYY3–36 and GLP-17–36 amide on acute insulin response to glucose (AIRg) and insulin sensitivity index (SI) in 14 overweight human volunteers, studied in a clinical research facility. Results: PYY3–36 alone caused a small but nonsignificant increase in AIRg. GLP-17–36 amide alone and the combination of PYY3–36 and GLP-17–36 amide did increase AIRg significantly. No significant differences in SI were observed with any intervention. Conclusions: PYY3–36 lacks any significant acute effects on first-phase insulin secretion or SI when tested using an FSIVGTT. Both GLP-17–36 amide alone and the combination of PYY3–36 and GLP-17–36 amide increase first-phase insulin secretion. There does not seem to be any additive or synergistic effect between PYY3–36 and GLP-17–36 amide on first-phase insulin secretion. Neither hormone alone nor the combination had any significant effects on SI. PMID:25144632

  13. Surprising characteristics of visual systems of invertebrates.

    Science.gov (United States)

    González-Martín-Moro, J; Hernández-Verdejo, J L; Jiménez-Gahete, A E

    2017-01-01

    To communicate relevant and striking aspects about the visual system of some close invertebrates. Review of the related literature. The capacity of snails to regenerate a complete eye, the benefit of the oval shape of the compound eye of many flying insects as a way of stabilising the image during flight, the potential advantages related to the extreme refractive error that characterises the ocelli of many insects, as well as the ability to detect polarised light as a navigation system, are some of the surprising capabilities present in the small invertebrate eyes that are described in this work. The invertebrate eyes have capabilities and sensorial modalities that are not present in the human eye. The study of the eyes of these animals can help us to improve our understanding of our visual system, and inspire the development of optical devices. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Surprises from Saturn: Implications for Other Environments

    Science.gov (United States)

    Coates, A. J.

    2014-05-01

    The exploration of Saturn by Cassini has provided many surprises regarding: Saturn's rapidly rotating magnetosphere, interactions with its diverse moons, and interactions with the solar wind. Enceladus, orbiting at 4 Saturn radii (RS), was found to have plumes of water vapour and ice which are the dominant source for the inner magnetosphere. Charged water clusters, charged dust and photoelectrons provide key populations in the 'dusty plasma' observed. Direct pickup is seen near Enceladus and field-aligned currents create a spot in Saturn's aurora. At Titan, orbiting at 20 RS, unexpected heavy negative and positive ions are seen in the ionosphere, which provide the source for Titan's haze. Ionospheric plasma is seen in Titan's tail, enabling ion escape to be estimated at 7 tonnes per day. Saturn's ring ionosphere was seen early in the mission and a return will be made in 2017. In addition, highly accelerated electrons are seen at Saturn's high Mach number (MA˜100) quasi-parallel bow shock. Here we review some of these key new results, and discuss the implications for other solar system objects.

  15. Rapid insulin-mediated increase in microvascular glycocalyx accessibility in skeletal muscle may contribute to insulin-mediated glucose disposal in rats.

    Directory of Open Access Journals (Sweden)

    Bart J M Eskens

    Full Text Available It has been demonstrated that insulin-mediated recruitment of microvascular blood volume is associated with insulin sensitivity. We hypothesize that insulin rapidly stimulates penetration of red blood cells (RBC and plasma into the glycocalyx and thereby promotes insulin-mediated glucose uptake by increasing intracapillary blood volume. Experiments were performed in rats; the role of the glycocalyx was assessed by enzymatic degradation using a bolus of hyaluronidase. First, the effect of insulin on glycocalyx accessibility was assessed by measuring the depth of penetration of RBCs into the glycocalyx in microvessels of the gastrocnemius muscle with Sidestream Dark-field imaging. Secondly, peripheral insulin sensitivity was determined using intravenous insulin tolerance tests (IVITT. In addition, in a smaller set of experiments, intravital microscopy of capillary hemodynamics in cremaster muscle and histological analysis of the distribution of fluorescently labeled 40 kDa dextrans (D40 in hindlimb muscle was used to evaluate insulin-mediated increases in capillary blood volume. Insulin increased glycocalyx penetration of RBCs by 0.34±0.44 µm (P<0.05 within 10 minutes, and this effect of insulin was greatly impaired in hyaluronidase treated rats. Further, hyaluronidase treated rats showed a 35±25% reduction in whole-body insulin-mediated glucose disposal compared to control rats. Insulin-mediated increases in capillary blood volume were reflected by a rapid increase in capillary tube hematocrit from 21.1±10.1% to 29.0±9.8% (P<0.05, and an increase in D40 intensity in individual capillaries of 134±138% compared to baseline at the end of the IVITT. These effects of insulin were virtually abolished in hyaluronidase treated animals. In conclusion, insulin rapidly increases glycocalyx accessibility for circulating blood in muscle, and this is associated with an increased blood volume in individual capillaries. Hyaluronidase treatment of the

  16. Addition of Orange Pomace to Orange Juice Attenuates the Increases in Peak Glucose and Insulin Concentrations after Sequential Meal Ingestion in Men with Elevated Cardiometabolic Risk.

    Science.gov (United States)

    Dong, Honglin; Rendeiro, Catarina; Kristek, Angelika; Sargent, Laura J; Saunders, Caroline; Harkness, Laura; Rowland, Ian; Jackson, Kim G; Spencer, Jeremy Pe; Lovegrove, Julie A

    2016-06-01

    Prospective cohort studies show that higher dietary fiber intake is associated with reduced cardiovascular disease risk, yet the impact on postprandial glucose and insulin responses is unclear. This study aims to evaluate the effects of orange beverages with differing fiber concentrations on postprandial glycemic responses (secondary outcome measure) after a sequential breakfast and lunch challenge in men with increased cardiometabolic risk. Thirty-six men (aged 30-65 y; body mass index 25-30 kg/m(2): fasting triacylglycerol or total cholesterol concentrations: 0.8-2.2 or 6.0-8.0 mmol/L, respectively) were provided with a high-fat mixed breakfast and were randomly assigned to consume 240 mL Tropicana (PepsiCo, Inc.) pure premium orange juice without pulp (OJ), OJ with 5.5 g added orange pomace fiber (OPF), juice made from lightly blended whole orange, or an isocaloric sugar-matched control (Control) on 4 occasions separated by 2 wk. A medium-fat mixed lunch was provided at 330 min. Blood samples were collected before breakfast and on 11 subsequent occasions for 420 min (3 time points postlunch) to determine postprandial glucose, insulin, lipid, and inflammatory biomarker responses. Repeated-measures ANOVA was used for data analysis. OPF significantly (P < 0.05) reduced the maximal change in glucose concentrations (1.9 ± 0.21 mmol/L) reached after breakfast compared with other treatments (2.3-2.4 mmol/L) and after lunch (3.0 ± 0.05 mmol/L) compared with OJ (3.6 ± 0.05 mmol/L). The maximal change in insulin concentration (313 ± 25 pmol/L) was also lower compared with Control (387 ± 30 pmol/L) and OJ (418 ± 39 pmol/L) after breakfast. OPF significantly delayed the time to reach the peak glucose concentration compared with Control and OJ, and of insulin compared with Control after breakfast. OPF consumed with breakfast may lower postprandial glycemic and insulinemic responses to typical meal ingestion in men with increased cardiometabolic risk. This trial is

  17. High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: new insights into impaired diabetic wound healing.

    Science.gov (United States)

    Lan, Cheng-Che E; Wu, Ching-Shuang; Huang, Shu-Mei; Wu, I-Hui; Chen, Gwo-Shing

    2013-07-01

    Impaired wound healing frequently occurs in patients with diabetes. Interleukin (IL)-8 production by keratinocyte is responsible for recruiting neutrophils during healing. Intense inflammation is associated with diabetic wounds, while reduction of neutrophil infiltration is associated with enhanced healing. We hypothesized that increased neutrophil recruitment by keratinocytes may contribute to the delayed healing of diabetic wounds. Using cultured human keratinocytes and a diabetic rat model, the current study shows that a high-glucose environment enhanced IL-8 production via epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinase (ERK) pathway in a reactive oxygen species (ROS)-dependent manner in keratinocytes. In addition, diabetic rat skin showed enhanced EGFR, ERK, and IL-8 expression compared with control rats. The dermal neutrophil infiltration of the wound, as represented by expression of myeloperoxidase level, was also significantly higher in diabetic rats. Treating diabetic rats with dapsone, an agent known to inhibit neutrophil function, was associated with improved healing. In conclusion, IL-8 production and neutrophil infiltration are increased in a high-glucose environment due to elevated ROS level and contributed to impaired wound healing in diabetic skin. Targeting these dysfunctions may present novel therapeutic approaches.

  18. Common polymorphisms in MTNR1B, G6PC2 and GCK are associated with increased fasting plasma glucose and impaired beta-cell function in Chinese subjects.

    Directory of Open Access Journals (Sweden)

    Claudia Ha Ting Tam

    Full Text Available BACKGROUND: Previous studies identified melatonin receptor 1B (MTNR1B, islet-specific glucose 6 phosphatase catalytic subunit-related protein (G6PC2, glucokinase (GCK and glucokinase regulatory protein (GCKR as candidate genes for type 2 diabetes (T2D acting through elevated fasting plasma glucose (FPG. We examined the associations of the reported common variants of these genes with T2D and glucose homeostasis in three independent Chinese cohorts. METHODOLOGY/PRINCIPAL FINDINGS: Five single nucleotide polymorphisms (SNPs, MTNR1B rs10830963, G6PC2 rs16856187 and rs478333, GCK rs1799884 and GCKR rs780094, were genotyped in 1644 controls (583 adults and 1061 adolescents and 1342 T2D patients. The G-allele of MTNR1B rs10830963 and the C-alleles of both G6PC2 rs16856187 and rs478333 were associated with higher FPG (0.0034increased FPG (P=2.9x10(-9 and reduced HOMA-B (P=1.1x10(-3. Meta-analyses strongly supported additive effects of MTNR1B rs10830963 and G6PC2 rs16856187 on FPG. CONCLUSIONS/SIGNIFICANCE: Common variants of MTNR1B, G6PC2 and GCK are associated with elevated FPG and impaired insulin secretion, both individually and jointly, suggesting that these risk alleles may precipitate or perpetuate hyperglycemia in predisposed individuals.

  19. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  20. High Blood Pressure and Obesity Increase the Risk of Abnormal Glucose Tolerance in Young Adult African Americans

    National Research Council Canada - National Science Library

    Huan, Yonghong; DeLoach, Stephanie; Keith, Scott W; Pequignot, Edward C; Falkner, Bonita

    2011-01-01

    .... The purpose of this study was to examine whether there is an interaction between hypertension and obesity that significantly increases the expression of metabolic risk factors for cardiovascular disease...

  1. High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer

    Directory of Open Access Journals (Sweden)

    Ukkonen Kaisa

    2011-12-01

    Full Text Available Abstract This report describes the combined use of an enzyme-based glucose release system (EnBase® and high-aeration shake flask (Ultra Yield Flask™. The benefit of this combination is demonstrated by over 100-fold improvement in the active yield of recombinant alcohol dehydrogenase expressed in E. coli. Compared to Terrific Broth and ZYM-5052 autoinduction medium, the EnBase system improved yield mainly through increased productivity per cell. Four-fold increase in oxygen transfer by the Ultra Yield Flask contributed to higher cell density with EnBase but not with the other tested media, and consequently the product yield per ml of EnBase culture was further improved.

  2. Bioactive Components from Flowers of Sambucus nigra L. Increase Glucose Uptake in Primary Porcine Myotube Cultures and Reduce Fat Accumulation in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Bhattacharya, Sumangala; B. Christensen, Kathrine; C. B. Olsen, Louise

    2013-01-01

    Obesity and insulin resistance in skeletal muscles are major features of type 2 diabetes. In the present study, we examined the potential of Sambucus nigra flower (elderflowers) extracts to stimulate glucose uptake (GU) in primary porcine myotubes and reduce fat accumulation (FAc) in Caenorhabditis...... elegans. Bioassay guided chromatographic fractionations of extracts and fractions resulted in the identification of naringenin and 5-O- caffeoylquinic acid exhibiting a significant increase in GU. In addition, phenolic compounds related to those found in elderflowers were also tested, and among these......, kaempferol, ferulic acid, p-coumaric acid, and caffeic acid increased GU significantly. FAc was significantly reduced in C. elegans, when treated with elderflower extracts, their fractions and the metabolites naringenin, quercetin-3-O-rutinoside, quercetin-3-O-glucoside, quercetin-3-O-5″-acetylglycoside...

  3. Skeletal muscle glucose uptake during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik A.

    2005-01-01

    The increase in skeletal muscle glucose uptake during exercise results from a coordinated increase in rates of glucose delivery (higher capillary perfusion), surface membrane glucose transport, and intracellular substrate flux through glycolysis. The mechanism behind the movement of GLUT4...

  4. Lifelong Physical Activity Prevents Aging-Associated Insulin Resistance in Human Skeletal Muscle Myotubes via Increased Glucose Transporter Expression

    DEFF Research Database (Denmark)

    Bunprajun, Tipwadee; Henriksen, Tora Ida; Scheele, Camilla

    2013-01-01

    , and significantly higher GLUT4 protein. It is likely that physical activity induces a number of stable adaptations, including increased GLUT4 expression that are retained in cells ex vivo and protect, or delay the onset of middle-aged-associated insulin resistance. Additionally, a sedentary lifestyle has an impact...

  5. A Shocking Surprise in Stephan's Quintet

    Science.gov (United States)

    2006-01-01

    This false-color composite image of the Stephan's Quintet galaxy cluster clearly shows one of the largest shock waves ever seen (green arc). The wave was produced by one galaxy falling toward another at speeds of more than one million miles per hour. The image is made up of data from NASA's Spitzer Space Telescope and a ground-based telescope in Spain. Four of the five galaxies in this picture are involved in a violent collision, which has already stripped most of the hydrogen gas from the interiors of the galaxies. The centers of the galaxies appear as bright yellow-pink knots inside a blue haze of stars, and the galaxy producing all the turmoil, NGC7318b, is the left of two small bright regions in the middle right of the image. One galaxy, the large spiral at the bottom left of the image, is a foreground object and is not associated with the cluster. The titanic shock wave, larger than our own Milky Way galaxy, was detected by the ground-based telescope using visible-light wavelengths. It consists of hot hydrogen gas. As NGC7318b collides with gas spread throughout the cluster, atoms of hydrogen are heated in the shock wave, producing the green glow. Spitzer pointed its infrared spectrograph at the peak of this shock wave (middle of green glow) to learn more about its inner workings. This instrument breaks light apart into its basic components. Data from the instrument are referred to as spectra and are displayed as curving lines that indicate the amount of light coming at each specific wavelength. The Spitzer spectrum showed a strong infrared signature for incredibly turbulent gas made up of hydrogen molecules. This gas is caused when atoms of hydrogen rapidly pair-up to form molecules in the wake of the shock wave. Molecular hydrogen, unlike atomic hydrogen, gives off most of its energy through vibrations that emit in the infrared. This highly disturbed gas is the most turbulent molecular hydrogen ever seen. Astronomers were surprised not only by the turbulence

  6. Masked Hypertension Defined by Ambulatory Blood Pressure Monitoring Is Associated With an Increased Serum Glucose Level and Urinary Albumin-Creatinine Ratio

    Science.gov (United States)

    Ishikawa, Joji; Hoshide, Satoshi; Eguchi, Kazuo; Schwartz, Joseph E.; Pickering, Thomas G.; Shimada, Kazuyuki; Kario, Kazuomi

    2017-01-01

    The authors evaluated the relationship of hypertensive target organ damage to masked hypertension assessed by ambulatory blood pressure (BP) and home blood pressure (HBP) monitoring in 129 participants without taking antihypertensive medication. Masked hypertension was defined as office BP ≤140/90 mm Hg and 24-hour ambulatory BP ≥130/80 mm Hg. The masked hypertensive participants defined by 24-hour ambulatory BP (n=13) had a higher serum glucose level (126 vs 96 mg/dL, P=.001) and urinary albumin-creatinine ratio (38.0 vs 7.5 mg/gCr, P<.001) than the normotensive participants (n=74); however, these relationships were not observed when the authors defined groups using HBP (≥135/85 mm Hg). Masked hypertension by both 24-hour ambulatory BP and HBP had a higher urinary albumin-creatinine ratio than normotension by both 24-hour ambulatory BP and HBP (62.1 vs 7.4 mg/gCr, P=.001), and than masked hypertension by HBP alone (9.3 mg/gCr, P=.009). Masked hypertension defined by 24-hour ambulatory BP is associated with an increased serum glucose level and urinary albumin-creatinine ratio, but these relationships are not observed in masked hypertension defined by HBP. PMID:20695934

  7. Effect of increased pCO(2) on bacterial assemblage shifts in response to glucose addition in Fram Strait seawater mesocosms.

    Science.gov (United States)

    Ray, Jessica L; Töpper, Birte; An, Shu; Silyakova, Anna; Spindelböck, Joachim; Thyrhaug, Runar; DuBow, Michael S; Thingstad, T Frede; Sandaa, Ruth-Anne

    2012-12-01

    Ocean acidification may stimulate primary production through increased availability of inorganic carbon in the photic zone, which may in turn change the biogenic flux of dissolved organic carbon (DOC) and the growth potential of heterotrophic bacteria. To investigate the effects of ocean acidification on marine bacterial assemblages, a two-by-three factorial mescosom experiment was conducted using surface sea water from the East Greenland Current in Fram Strait. Pyrosequencing of the V1-V2 region of bacterial 16S ribosomal RNA genes was used to investigate differences in the endpoint (Day 9) composition of bacterial assemblages in mineral nutrient-replete mesocosms amended with glucose (0 μM, 5.3 μM and 15.9 μM) under ambient (250 μatm) or acidified (400 μatm) partial pressures of CO(2) (pCO(2)). All mesocosms showed low richness and diversity by Chao1 estimator and Shannon index, respectively, with general dominance by Gammaproteobacteria and Flavobacteria. Nonmetric multidimensional scaling analysis and two-way analysis of variance of the Jaccard dissimilarity matrix (97% similarity cut-off) demonstrated that the significant community shift between 0 μM and 15.9 μM glucose addition at 250 μatm pCO(2) was eliminated at 400 μatm pCO(2). These results suggest that the response potential of marine bacteria to DOC input may be altered under acidified conditions.

  8. Puerarin reduces increased c-fos, c-jun, and type Ⅳ collagen expression caused by high glucose in glomerular mesangial cells

    Institute of Scientific and Technical Information of China (English)

    Cai-ping MAO; Zhen-lun GU

    2005-01-01

    Aim: Increased expression of c-fos, c-jun and type Ⅳ collagen (CoⅣ) in glomerular mesangial cells (GMC) are important characteristics of diabetic nephropathy.Both c-fos and c-jun regulate the gene expression of extracellular matrix components, and CoⅣ is the main component of the extracellular matrix. It has been reported that puerarin inhibits aggregation of the extracellular matrix in diabetic rats by an as yet unknown mechanism. The aim of this study is to investigate the effect of puerarin on c-fos, c-jun and CoⅣ expression in GMC cultured in medium containing 5.6 or 27.8 mmol/L glucose. Methods: The expressions ofc-fos and c-jun were measured at the protein level using flow cytometry. CoⅣ content was detected using radioimmunoassay. Protein kinase C (PKC) activity was measured using liquid scintillation counting. Results: Puerarin (10-5 mmol/L) significantly ameliorated the high-glucose effect on c-fos, c-jun and CoⅣ expression.This effect is accompanied by a reduced PKC activity in these cells. Conclusion:Our results suggest that reduced PKC activity and expression of c-fos and c-jun in GMC might participate in the mechanisms underlying the therapeutic effect of puerarin on diabetic nephropathy.

  9. Genetic and Diet-Induced Obesity Increased Intestinal Tumorigenesis in the Double Mutant Mouse Model Multiple Intestinal Neoplasia X Obese via Disturbed Glucose Regulation and Inflammation

    Directory of Open Access Journals (Sweden)

    Ha Thi Ngo

    2015-01-01

    Full Text Available We have studied how spontaneous or carcinogen-induced intestinal tumorigenesis was affected by genetic or diet-induced obesity in C57BL/6J-ApcMin/+ X C57BL/6J-Lepob/+ mice. Obesity was induced by the obese (ob mutation in the lep gene coding for the hormone leptin, or by a 45% fat diet. The effects of obesity were examined on spontaneous intestinal tumors caused by the multiple intestinal neoplasia (Min mutation in the adenomatous polyposis coli (Apc gene and on tumors induced by the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP. F1 ob/ob (homozygous mutated mice had increased body weight (bw and number of spontaneous and PhIP-induced small intestinal tumors (in ApcMin/+ mice, versus ob/wt (heterozygous mutated and wt/wt mice (homozygous wild-type. A 45% fat diet exacerbated bw and spontaneous tumor numbers versus 10% fat, but not PhIP-induced tumors. Except for bw, ob/wt and wt/wt were not significantly different. The obesity caused hyperglucosemia and insulinemia in ob/ob mice. A 45% fat diet further increased glucose, but not insulin. Inflammation was seen as increased TNFα levels in ob/ob mice. Thus the results implicate disturbed glucose regulation and inflammation as mechanisms involved in the association between obesity and intestinal tumorigenesis. Ob/ob mice had shorter lifespan than ob/wt and wt/wt mice.

  10. Epinephrine-stimulated glycogen breakdown activates glycogen synthase and increases insulin-stimulated glucose uptake in epitrochlearis muscles

    DEFF Research Database (Denmark)

    Kolnes, Anders J; Birk, Jesper Bratz; Eilertsen, Einar

    2015-01-01

    Adrenaline increases glycogen synthase (GS) phosphorylation and decreases GS activity but also stimulates glycogen breakdown and low glycogen content normally activates GS. To test the hypothesis that glycogen content directly regulates GS phosphorylation, glycogen breakdown was stimulated...... in condition with decreased GS activation. Saline or adrenaline (0.02mg/100g rat) was injected subcutaneously in Wistar rats (~130 g) with low (24 h fasted), normal (normal diet) and high glycogen content (fasted-refed) and epitrochlearis muscles were removed after 3 h and incubated ex vivo eliminating...... adrenaline action. Adrenaline injection reduced glycogen content in epitrochlearis muscles with high (120.7±17.8 vs 204.6±14.5 mmol•kg(-1); p

  11. Gluten-free diet increases beta-cell volume and improves glucose tolerance in an animal model of type 2 diabetes

    DEFF Research Database (Denmark)

    Haupt-Jørgensen, Martin; Buschard, Karsten; Hansen, Axel Kornerup

    2016-01-01

    Background Gluten-free (GF) diet alleviates type 1 diabetes in animal models and possibly in humans. We recently showed that fatty acid-induced insulin secretion is enhanced by enzymatically digested gluten (gliadin) stimulation in INS-1E insulinoma cells. We therefore hypothesized that GF diet...... would induce beta-cell rest and ameliorate type 2 diabetes. Methods C57BL/6JBomTac (B6) mice were fed a high-fat (HF), gluten-free high-fat (GF–HF), standard (STD) or gluten-free (GF) diet for 42 weeks. Results Short-term (6–24 weeks) GF–HF versus HF feeding impaired glucose tolerance and increased...

  12. Increased fluorine-18 2-fluoro-2-deoxy-D-glucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade

    DEFF Research Database (Denmark)

    Borgwardt, Lise; Højgaard, Liselotte; Carstensen, Henrik;

    2005-01-01

    PURPOSE Positron emission tomography (PET) has been used in grading of CNS tumors in adults, whereas studies of children have been limited. PATIENTS AND METHODS Nineteen boys and 19 girls (median age, 8 years) with primary CNS tumors were studied prospectively by fluorine-18 2-fluoro-2-deoxy......-D-glucose (FDG) PET with (n = 16) or without (n = 22) H(2)(15)O-PET before therapy. Image processing included coregistration to magnetic resonance imaging (MRI) in all patients. The FDG uptake in tumors was semiquantitatively calculated by a region-of-interest-based tumor hotspot/brain index. Eight tumors.......89; P PET/MRI coregistration increased information on tumor characterization in 90...

  13. The novel GLP-1-gastrin dual agonist ZP3022 improves glucose homeostasis and increases β-cell mass without affecting islet number in db/db mice.

    Science.gov (United States)

    Dalbøge, Louise S; Almholt, Dorthe L C; Neerup, Trine S R; Vrang, Niels; Jelsing, Jacob; Fosgerau, Keld

    2014-08-01

    Antidiabetic treatments aiming to preserve or even to increase β-cell mass are currently gaining increased interest. Here we investigated the effect of chronic treatment with the novel glucagon-like peptide-1 (GLP-1)-gastrin dual agonist ZP3022 (HGEGTFTSDLSKQMEEEAVRLFIEWLKN-8Ado-8Ado-YGWLDF-NH2) on glycemic control, β-cell mass and proliferation, and islet number. Male db/db mice were treated with ZP3022, liraglutide, or vehicle for 2, 4, or 8 weeks, with terminal assessment of hemoglobin A1c, basal blood glucose, and plasma insulin concentrations. Pancreata were removed for immunohistochemical staining and stereological quantification of β-cell mass, islet numbers, proliferation, and apoptosis. Treatment with ZP3022 or liraglutide led to a significant improvement in glycemic control. ZP3022 treatment resulted in a sustained increase in β-cell mass after 4 and 8 weeks of treatment, whereas the effect of liraglutide was transient. The expansion in β-cell mass observed in the ZP3022-treated mice appeared to be driven by increased β-cell proliferation in existing islets rather than by formation of new islets, as mean islet mass increased but the number of islets remained constant. Our data demonstrate that the GLP-1-gastrin dual agonist ZP3022 causes a sustained improvement in glycemic control accompanied by an increase in β-cell mass, increased proliferation, and increased mean islet mass. The results highlight that the GLP-1-gastrin dual agonist increases β-cell mass more than liraglutide and that dual agonists could potentially be developed into a new class of antidiabetic treatments.

  14. Methamphetamine inhibits the glucose uptake by human neurons and astrocytes: stabilization by acetyl-L-carnitine.

    Directory of Open Access Journals (Sweden)

    P M Abdul Muneer

    Full Text Available Methamphetamine (METH, an addictive psycho-stimulant drug exerts euphoric effects on users and abusers. It is also known to cause cognitive impairment and neurotoxicity. Here, we hypothesized that METH exposure impairs the glucose uptake and metabolism in human neurons and astrocytes. Deprivation of glucose is expected to cause neurotoxicity and neuronal degeneration due to depletion of energy. We found that METH exposure inhibited the glucose uptake by neurons and astrocytes, in which neurons were more sensitive to METH than astrocytes in primary culture. Adaptability of these cells to fatty acid oxidation as an alternative source of energy during glucose limitation appeared to regulate this differential sensitivity. Decrease in neuronal glucose uptake by METH was associated with reduction of glucose transporter protein-3 (GLUT3. Surprisingly, METH exposure showed biphasic effects on astrocytic glucose uptake, in which 20 µM increased the uptake while 200 µM inhibited glucose uptake. Dual effects of METH on glucose uptake were paralleled to changes in the expression of astrocytic glucose transporter protein-1 (GLUT1. The adaptive nature of astrocyte to mitochondrial β-oxidation of fatty acid appeared to contribute the survival of astrocytes during METH-induced glucose deprivation. This differential adaptive nature of neurons and astrocytes also governed the differential sensitivity to the toxicity of METH in these brain cells. The effect of acetyl-L-carnitine for enhanced production of ATP from fatty oxidation in glucose-free culture condition validated the adaptive nature of neurons and astrocytes. These findings suggest that deprivation of glucose-derived energy may contribute to neurotoxicity of METH abusers.

  15. The Influence of Negative Surprise on Hedonic Adaptation

    Directory of Open Access Journals (Sweden)

    Ana Paula Kieling

    2016-01-01

    Full Text Available After some time using a product or service, the consumer tends to feel less pleasure with consumption. This reduction of pleasure is known as hedonic adaptation. One of the emotions that interfere in this process is surprise. Based on two experiments, we suggest that negative surprise – differently to positive – influences with the level of pleasure foreseen and experienced by the consumer. Study 1 analyzes the influence of negative (vs. positive surprise on the consumer’s post-purchase hedonic adaptation expectation. Results showed that negative surprise influences the intensity of adaptation, augmenting its strength. Study 2 verifies the influence of negative (vs positive surprise over hedonic adaptation. The findings suggested that negative surprise makes adaptation happen more intensively and faster as time goes by, which brings consequences to companies and consumers in the post-purchase process, such as satisfaction and loyalty.

  16. Effects of Surprisal and Locality on Danish Sentence Processing

    DEFF Research Database (Denmark)

    Balling, Laura Winther; Kizach, Johannes

    2017-01-01

    An eye-tracking experiment in Danish investigates two dominant accounts of sentence processing: locality-based theories that predict a processing advantage for sentences where the distance between the major syntactic heads is minimized, and the surprisal theory which predicts that processing time...... constructions with two postverbal NP-objects. An eye-tracking experiment showed a clear advantage for local syntactic relations, with only a marginal effect of lexicalised surprisal and no effect of syntactic surprisal. We conclude that surprisal has a relatively marginal effect, which may be clearest for verbs...

  17. Impaired Glucose Tolerance in Healthy Men Treated with St. John's Wort.

    Science.gov (United States)

    Stage, Tore Bjerregaard; Damkier, Per; Christensen, Mette Marie Hougaard; Nielsen, Lene Buch-Krogh; Højlund, Kurt; Brøsen, Kim

    2016-03-01

    The purpose of this study was to examine whether the over-the-counter herbal medicinal plant St. John's wort affects glucose tolerance in healthy men. To do this, we included 10 healthy men who were examined by a 2-hr oral glucose tolerance test on three occasions: A: baseline; B: after 21 days of treatment with St. John's wort; and C: at least 6 weeks after the last capsule of St. John's wort was ingested. Plasma glucose, serum insulin and C-peptide levels were measured during an oral glucose tolerance test and used for estimation of area under the concentration-time curve (AUC) as well as indices of insulin sensitivity and insulin secretion. We found that treatment with St. John's wort increased total and incremental glucose AUC and 2-hr plasma glucose levels. Surprisingly, this effect was sustained and even further increased 6 weeks after the last capsule of St. John's wort was taken. No effect on indices of insulin sensitivity was seen, but indices of insulin secretion were reduced even after adjustment for insulin sensitivity. In conclusion, this study indicates that long-term treatment with St. John's wort may impair glucose tolerance by reducing insulin secretion in young, healthy men. The unregulated use of this over-the-counter drug might be a risk factor for impaired glucose tolerance and type 2 diabetes.

  18. Plant Breeding: Surprisingly, Less Sex Is Better.

    Science.gov (United States)

    van Dijk, Peter J; Rigola, Diana; Schauer, Stephen E

    2016-02-01

    Introduction of apomixis, asexual reproduction through seeds, into crop species has the potential to dramatically transform plant breeding. A new study demonstrates that traits can be stably transferred between generations in newly produced apomictic lines, and heralds a breeding revolution needed to increase food production for the growing planet.

  19. Physics Nobel prize 2004: Surprising theory wins physics Nobel

    CERN Multimedia

    2004-01-01

    From left to right: David Politzer, David Gross and Frank Wilczek. For their understanding of counter-intuitive aspects of the strong force, which governs quarks inside protons and neutrons, on 5 October three American physicists were awarded the 2004 Nobel Prize in Physics. David J. Gross (Kavli Institute of Theoretical Physics, University of California, Santa Barbara), H. David Politzer (California Institute of Technology), and Frank Wilczek (Massachusetts Institute of Technology) made a key theoretical discovery with a surprising result: the closer quarks are together, the weaker the force - opposite to what is seen with electromagnetism and gravity. Rather, the strong force is analogous to a rubber band stretching, where the force increases as the quarks get farther apart. These physicists discovered this property of quarks, known as asymptotic freedom, in 1976. It later became a key part of the theory of quantum chromodynamics (QCD) and the Standard Model, the current best theory to describe the interac...

  20. Mesocosms Reveal Ecological Surprises from Climate Change.

    Science.gov (United States)

    Fordham, Damien A

    2015-12-01

    Understanding, predicting, and mitigating the impacts of climate change on biodiversity poses one of the most crucial challenges this century. Currently, we know more about how future climates are likely to shift across the globe than about how species will respond to these changes. Two recent studies show how mesocosm experiments can hasten understanding of the ecological consequences of climate change on species' extinction risk, community structure, and ecosystem functions. Using a large-scale terrestrial warming experiment, Bestion et al. provide the first direct evidence that future global warming can increase extinction risk for temperate ectotherms. Using aquatic mesocosms, Yvon-Durocher et al. show that human-induced climate change could, in some cases, actually enhance the diversity of local communities, increasing productivity. Blending these theoretical and empirical results with computational models will improve forecasts of biodiversity loss and altered ecosystem processes due to climate change.

  1. Mesocosms Reveal Ecological Surprises from Climate Change.

    Directory of Open Access Journals (Sweden)

    Damien A Fordham

    2015-12-01

    Full Text Available Understanding, predicting, and mitigating the impacts of climate change on biodiversity poses one of the most crucial challenges this century. Currently, we know more about how future climates are likely to shift across the globe than about how species will respond to these changes. Two recent studies show how mesocosm experiments can hasten understanding of the ecological consequences of climate change on species' extinction risk, community structure, and ecosystem functions. Using a large-scale terrestrial warming experiment, Bestion et al. provide the first direct evidence that future global warming can increase extinction risk for temperate ectotherms. Using aquatic mesocosms, Yvon-Durocher et al. show that human-induced climate change could, in some cases, actually enhance the diversity of local communities, increasing productivity. Blending these theoretical and empirical results with computational models will improve forecasts of biodiversity loss and altered ecosystem processes due to climate change.

  2. Sonic Hedgehog Signaling Mediates Resveratrol to Increase Proliferation of Neural Stem Cells After Oxygen-Glucose Deprivation/Reoxygenation Injury in Vitro

    Directory of Open Access Journals (Sweden)

    Wei Cheng

    2015-03-01

    Full Text Available Background/Aims: There is interest in drugs and rehabilitation methods to enhance neurogenesis and improve neurological function after brain injury or degeneration. Resveratrol may enhance hippocampal neurogenesis and improve hippocampal atrophy in chronic fatigue mice and prenatally stressed rats. However, its effect and mechanism of neurogenesis after stroke is less well understood. Sonic hedgehog (Shh signaling is crucial for neurogenesis in the embryonic and adult brain, but relatively little is known about the role of Shh signaling in resveratrol-enhanced neurogenesis after stroke. Methods: Neural stem cells (NSCs before oxygen-glucose deprivation/reoxygenation (OGD/R in vitro were pretreated with resveratrol with or without cyclopamine. Survival and proliferation of NSCs was assessed by the CCK8 assay and BrdU immunocytochemical staining. The expressions and activity of signaling proteins and mRNAs were detected by immunocytochemistry, Western blotting, and RT-PCR analysis. Results: Resveratrol significantly increased NSCs survival and proliferation in a concentration-dependent manner after OGD/R injury in vitro. At the same time, the expression of Patched-1, Smoothened (Smo, and Gli-1 proteins and mRNAs was upregulated, and Gli-1 entered the nucleus, which was inhibited by cyclopamine, a Smo inhibitor. Conclusion: Shh signaling mediates resveratrol to increase NSCs proliferation after OGD/R injury in vitro.

  3. BClI polymorphism of the glucocorticoid receptor gene is associated with increased obesity, impaired glucose metabolism and dyslipidaemia in patients with Addison's disease.

    Science.gov (United States)

    Giordano, Roberta; Marzotti, Stefania; Berardelli, Rita; Karamouzis, Ioannis; Brozzetti, Annalisa; D'Angelo, Valentina; Mengozzi, Giulio; Mandrile, Giorgia; Giachino, Daniela; Migliaretti, Giuseppe; Bini, Vittorio; Falorni, Alberto; Ghigo, Ezio; Arvat, Emanuela

    2012-12-01

    Although glucocorticoids are essential for health, several studies have shown that glucocorticoids replacement in Addison's disease might be involved in anthropometric and metabolic impairment, with increased cardiovascular risk, namely if conventional doses are used. As the effects of glucocorticoids are mediated by the glucocorticoid receptor, encoded by NR3C1 gene, different polymorphisms in the NR3C1 gene have been linked to altered glucocorticoid sensitivity in general population as well as in patients with obesity or metabolic syndrome. We investigated the impact of glucocorticoid receptor gene polymorphisms, including the BclI, N363S and ER22/23EK variants, on anthropometric parameters (BMI and waist circumference), metabolic profile (HOMA, OGTT and serum lipids) and ACTH levels in 50 patients with Addison's disease (34 women and 16 men, age 20-82 year) under glucocorticoids replacement. Neither N363S nor ER22/23EK variants were significantly associated with anthropometric, metabolic or hormonal parameters, while patients carrying the homozygous BclI polymorphism GG (n = 4) showed higher (P Addison's disease and may contribute, along with other factors, to the increase in central adiposity, impaired glucose metabolism and dyslipidaemia. © 2012 Blackwell Publishing Ltd.

  4. Oxygen-glucose deprivation increases firing of unipolar brush cells and enhances spontaneous EPSCs in Purkinje cells in the vestibulo-cerebellum.

    Science.gov (United States)

    Takayasu, Yukihiro; Shino, Masato; Nikkuni, Osamu; Yoshida, Yukari; Furuya, Nobuhiko; Chikamatsu, Kazuaki

    2016-05-01

    Unipolar brush cells (UBCs) are excitatory interneurons in the granular layer of the cerebellar cortex, which are predominantly distributed in the vestibulo-cerebellar region. The unique firing properties and synaptic connections of UBCs may underlie lobular heterogeneity of excitability in the granular layer and the susceptibility to ischemia-induced excitotoxicity. In this study, we investigated the effects of oxygen-glucose deprivation (OGD) on the firing properties of UBCs and granule cells and spontaneous excitatory postsynaptic currents (sEPSCs) of Purkinje cells using whole-cell recordings. Short-term OGD induced increases in spontaneous firing of UBCs by causing membrane depolarization via the activation of NMDA receptors. UBC firing indirectly affected Purkinje cells by altering parallel fiber inputs of a subset granule cells, resulting in a marked increase in sEPSCs in Purkinje cells in vestibulo-cerebellar lobules IX-X, but not in lobules IV-VI, which have fewer UBCs. Similarly, the frequency and amplitude of sEPSCs in Purkinje cells were significantly greater in lobules IX-X than in IV-VI, even in control conditions. These results reveal that UBCs play key roles in regulating local excitability in the granular layer, resulting in lobular heterogeneity in the susceptibility to ischemic insult in the cerebellum.

  5. Surprise and Sense Making: Undergraduate Placement Experiences in SMEs

    Science.gov (United States)

    Walmsley, Andreas; Thomas, Rhodri; Jameson, Stephanie

    2006-01-01

    Purpose: This paper seeks to explore undergraduate placement experiences in tourism and hospitality SMEs, focusing on the notions of surprise and sense making. It aims to argue that surprises and sense making are important elements not only of the adjustment process when entering new work environments, but also of the learning experience that…

  6. Increased fetal insulin concentrations for one week fail to improve insulin secretion or β-cell mass in fetal sheep with chronically reduced glucose supply.

    Science.gov (United States)

    Lavezzi, Jinny R; Thorn, Stephanie R; O'Meara, Meghan C; LoTurco, Dan; Brown, Laura D; Hay, William W; Rozance, Paul J

    2013-01-01

    Maternal undernutrition during pregnancy and placental insufficiency are characterized by impaired development of fetal pancreatic β-cells. Prolonged reduced glucose supply to the fetus is a feature of both. It is unknown if reduced glucose supply, independent of other complications of maternal undernutrition and placental insufficiency, would cause similar β-cell defects. Therefore, we measured fetal insulin secretion and β-cell mass following prolonged reduced fetal glucose supply in sheep. We also tested whether restoring physiological insulin concentrations would correct any β-cell defects. Pregnant sheep received either a direct saline infusion (CON = control, n = 5) or an insulin infusion (HG = hypoglycemic, n = 5) for 8 wk in late gestation (75 to 134 days) to decrease maternal glucose concentrations and reduce fetal glucose supply. A separate group of HG fetuses also received a direct fetal insulin infusion for the final week of the study with a dextrose infusion to prevent a further fall in glucose concentration [hypoglycemic + insulin (HG+I), n = 4]. Maximum glucose-stimulated insulin concentrations were 45% lower in HG fetuses compared with CON fetuses. β-Cell, pancreatic, and fetal mass were 50%, 37%, and 40% lower in HG compared with CON fetuses, respectively (P < 0.05). Insulin secretion and β-cell mass did not improve in the HG+I fetuses. These results indicate that chronically reduced fetal glucose supply is sufficient to reduce pancreatic insulin secretion in response to glucose, primarily due to reduced pancreatic and β-cell mass, and is not correctable with insulin.

  7. Neural Responses to Rapid Facial Expressions of Fear and Surprise

    Directory of Open Access Journals (Sweden)

    Ke Zhao

    2017-05-01

    Full Text Available Facial expression recognition is mediated by a distributed neural system in humans that involves multiple, bilateral regions. There are six basic facial expressions that may be recognized in humans (fear, sadness, surprise, happiness, anger, and disgust; however, fearful faces and surprised faces are easily confused in rapid presentation. The functional organization of the facial expression recognition system embodies a distinction between these two emotions, which is investigated in the present study. A core system that includes the right parahippocampal gyrus (BA 30, fusiform gyrus, and amygdala mediates the visual recognition of fear and surprise. We found that fearful faces evoked greater activity in the left precuneus, middle temporal gyrus (MTG, middle frontal gyrus, and right lingual gyrus, whereas surprised faces were associated with greater activity in the right postcentral gyrus and left posterior insula. These findings indicate the importance of common and separate mechanisms of the neural activation that underlies the recognition of fearful and surprised faces.

  8. Increased expression of 78 kD glucose-regulated protein promotes cardiomyocyte apoptosis in a rat model of liver cirrhosis

    Science.gov (United States)

    Zhang, Lili; Zhang, Huiying; Lv, Minli; Jia, Jiantao; Fan, Yimin; Tian, Xiaoxia; Li, Xujiong; Li, Baohong; Ji, Jingquan; Wang, Limin; Zhao, Zhongfu; Han, Dewu; Ji, Cheng

    2015-01-01

    Aims: This study was to investigate the role and underlying mechanism of 78 kD glucose-regulated protein (GRP78) in cardiomyocyte apoptosis in a rat model of liver cirrhosis. Methods: A rat model of liver cirrhosis was established with multiple pathogenic factors. A total of 42 male SD rats were randomly divided into the liver cirrhosis group and control group. Cardiac structure analysis was performed to assess alterations in cardiac structure. Cardiomyocytes apoptosis was detected by TdT-mediated dUTP nick end labeling method. Expression of GRP78, CCAAT/enhancer-binding protein homologous protein (CHOP), caspase-12, nuclear factor kappa-light-chain-enhancer of activated B cells p65 subunit (NF-κB p65) and B cell lymphoma-2 (Bcl-2) was detected by immunohistochemical staining. Results: The ratios of left ventricular wall thickness to heart weight and heart weight to body weight were significantly increased with the progression of liver cirrhosis (P < 0.05). Apoptosis index of cardiomyocytes was significantly increased with the progression of liver cirrhosis (P < 0.05). The expression levels of GRP78, CHOP and caspase-12 were significantly increased in the progression of liver cirrhosis (P < 0.05). The expression levels of NF-κB p65 and Bcl-2 were highest in the 4-wk liver cirrhosis, and they were decreased in the 6-wk and 8-wk in the progression of liver cirrhosis. GRP78 expression levels were positively correlated with apoptosis index, CHOP and caspase-12 expression levels (P < 0.05). CHOP expression levels were negatively correlated with NF-κB p65 and Bcl-2 expression levels (P < 0.05). Conclusion: Increased expression of GRP78 promotes cardiomyocyte apoptosis in rats with cirrhotic cardiomyopathy. PMID:26464674

  9. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... the urine Frequent urination Increased thirst Part of managing your diabetes is checking your blood glucose often. ... how to handle this condition. Medical IDs Many people with diabetes, particularly those who use insulin, should ...

  10. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... the urine Frequent urination Increased thirst Part of managing your diabetes is checking your blood glucose often. ... Type 2 Diabetes Program Food & Fitness Food Recipes Planning Meals What Can I Eat Weight Loss Fitness ...

  11. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... the urine Frequent urination Increased thirst Part of managing your diabetes is checking your blood glucose often. ... also help. Work with your dietitian to make changes in your meal plan. If exercise and changes ...

  12. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... the urine Frequent urination Increased thirst Part of managing your diabetes is checking your blood glucose often. ... Sleeve Custom jerseys for your Tour de Cure team benefits the cause. Ask the Experts: Learn to ...

  13. The Na+ glucose co-transporter inhibitor canagliflozin activates AMP-activated protein kinase by inhibiting mitochondrial function and increasing cellular AMP levels

    OpenAIRE

    Hawley, Simon A.; Ford, Rebecca J.; Smith, Brennan K.; Gowans, Graeme J.; Mancini, Sarah; Pitt, Ryan D.; Day, Emily A.; Salt, Ian P.; Steinberg, Gregory R.; Hardie, D. Grahame

    2016-01-01

    Canagliflozin, dapagliflozin and empagliflozin, all recently approved for treatment of Type 2 diabetes, were derived from the natural product phlorizin. They reduce hyperglycemia by inhibiting glucose re-uptake by SGLT2 in the kidney, without affecting intestinal glucose uptake by SGLT1. We now report that canagliflozin also activates AMP-activated protein kinase (AMPK), an effect also seen with phloretin (the aglycone breakdown product of phlorizin), but not to any significant extent with da...

  14. Computational surprisal analysis speeds-up genomic characterization of cancer processes.

    Science.gov (United States)

    Kravchenko-Balasha, Nataly; Simon, Simcha; Levine, R D; Remacle, F; Exman, Iaakov

    2014-01-01

    Surprisal analysis is increasingly being applied for the examination of transcription levels in cellular processes, towards revealing inner network structures and predicting response. But to achieve its full potential, surprisal analysis should be integrated into a wider range computational tool. The purposes of this paper are to combine surprisal analysis with other important computation procedures, such as easy manipulation of the analysis results--e.g. to choose desirable result sub-sets for further inspection--, retrieval and comparison with relevant datasets from public databases, and flexible graphical displays for heuristic thinking. The whole set of computation procedures integrated into a single practical tool is what we call Computational Surprisal Analysis. This combined kind of analysis should facilitate significantly quantitative understanding of different cellular processes for researchers, including applications in proteomics and metabolomics. Beyond that, our vision is that Computational Surprisal Analysis has the potential to reach the status of a routine method of analysis for practitioners. The resolving power of Computational Surprisal Analysis is here demonstrated by its application to a variety of cellular cancer process transcription datasets, ours and from the literature. The results provide a compact biological picture of the thermodynamic significance of the leading gene expression phenotypes in every stage of the disease. For each transcript we characterize both its inherent steady state weight, its correlation with the other transcripts and its variation due to the disease. We present a dedicated website to facilitate the analysis for researchers and practitioners.

  15. Computational surprisal analysis speeds-up genomic characterization of cancer processes.

    Directory of Open Access Journals (Sweden)

    Nataly Kravchenko-Balasha

    Full Text Available Surprisal analysis is increasingly being applied for the examination of transcription levels in cellular processes, towards revealing inner network structures and predicting response. But to achieve its full potential, surprisal analysis should be integrated into a wider range computational tool. The purposes of this paper are to combine surprisal analysis with other important computation procedures, such as easy manipulation of the analysis results--e.g. to choose desirable result sub-sets for further inspection--, retrieval and comparison with relevant datasets from public databases, and flexible graphical displays for heuristic thinking. The whole set of computation procedures integrated into a single practical tool is what we call Computational Surprisal Analysis. This combined kind of analysis should facilitate significantly quantitative understanding of different cellular processes for researchers, including applications in proteomics and metabolomics. Beyond that, our vision is that Computational Surprisal Analysis has the potential to reach the status of a routine method of analysis for practitioners. The resolving power of Computational Surprisal Analysis is here demonstrated by its application to a variety of cellular cancer process transcription datasets, ours and from the literature. The results provide a compact biological picture of the thermodynamic significance of the leading gene expression phenotypes in every stage of the disease. For each transcript we characterize both its inherent steady state weight, its correlation with the other transcripts and its variation due to the disease. We present a dedicated website to facilitate the analysis for researchers and practitioners.

  16. The Leu7Pro polymorphism of preproNPY is associated with decreased insulin secretion, delayed ghrelin suppression, and increased cardiovascular responsiveness to norepinephrine during oral glucose tolerance test.

    Science.gov (United States)

    Jaakkola, Ulriikka; Kuusela, Tom; Jartti, Tuomas; Pesonen, Ullamari; Koulu, Markku; Vahlberg, Tero; Kallio, Jaana

    2005-06-01

    Neuropeptide Y (NPY) plays a role in angiogenesis, cardiovascular regulation, and hormone secretion. The leucine7 to proline7 (Leu7Pro) polymorphism of preproNPY is associated with vascular diseases and has an impact on hormone levels in healthy subjects. The current study investigated the role of the Leu7Pro polymorphism in metabolic and cardiovascular autonomic regulation. A 5-h oral glucose tolerance test was performed on 27 healthy volunteers representing two preproNPY genotypes (Leu7/Pro7 and Leu7/Leu7) matched for age, sex, body mass index and physical activity. Simultaneously we performed cardiovascular autonomic function tests and plasma measurements of sympathetic transmitters, glucose, insulin, and ghrelin. The subjects with Leu7/Pro7 genotype had decreased plasma NPY, norepinephrine (NE), and insulin concentrations and insulin to glucose ratios. The suppression of ghrelin concentrations after glucose ingestion was delayed in these subjects. They also had increased heart rate variability indices and baroreflex sensitivity. However, they displayed significant negative association of NE concentration with variability of low-frequency R-R-intervals and with baroreflex sensitivity. The Leu7Pro polymorphism of preproNPY is related to decreased level of basal sympathetic activity, decreased insulin secretion, and delayed ghrelin suppression during oral glucose tolerance test. The increased responsiveness of autonomic functions to NE associated with the polymorphism may be connected to increased cardiovascular vulnerability.

  17. Oxygen-glucose deprivation increases the enzymatic activity and the microvesicle-mediated release of ectonucleotidases in the cells composing the blood-brain barrier.

    Science.gov (United States)

    Ceruti, Stefania; Colombo, Laura; Magni, Giulia; Viganò, Francesca; Boccazzi, Marta; Deli, Mária A; Sperlágh, Beáta; Abbracchio, Maria P; Kittel, Agnes

    2011-08-01

    The blood-brain barrier (BBB), the dynamic interface between the nervous tissue and the blood, is composed by endothelial cells, pericytes and astrocytes. Extracellular nucleotides and nucleosides and their receptors (the purinergic system) constitute a widely diffused signaling system involved in many pathophysiological processes. However, the role of this system in controlling BBB functions is still largely unknown. By using cultures of these three cell types grown separately and a BBB in vitro model consisting of triple co-cultures, we studied for the first time the expression and distribution of the ecto-enzymes nucleoside triphosphate diphosphohydrolases (NTPDases, the enzymes which hydrolyze extracellular nucleotides) under control and ischemic (oxygen-glucose deprivation in vitro; OGD) conditions. NTPDase1 was detected in all three cell types, whereas NTPDase2 was expressed by astrocytes and pericytes and, to a lesser extent, by endothelial cells. Endothelial cells were extremely susceptible to cell death when OGD was applied to mimic in vitro the cytotoxicity induced by ischemia, whereas astrocytes and pericytes were more resistant. A semi-quantitative assay highlighted markedly increased e-ATPase activity following exposure to OGD in all three cell types, either when grown separately or when co-cultured together to resemble the composition of the BBB. Moreover, electron microscopy analysis showed that both endothelial cells and astrocytes shed microvesicles containing NTPDases from their membrane, which may suggest a novel mechanism to increase the breakdown of ATP released to toxic levels by damaged BBB cells. We hypothesize that this phenomenon could have a protective and/or modulatory effect for brain parenchymal cells. This in vitro model is therefore useful to study the role of extracellular nucleotides in modulating BBB responses to ischemic events, and to develop new effective purinergic-based approaches for brain ischemia.

  18. Glucose-6-phosphate dehydrogenase deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2.

    Science.gov (United States)

    Roshankhah, Shiva; Rostami-Far, Zahra; Shaveisi-Zadeh, Farhad; Movafagh, Abolfazl; Bakhtiari, Mitra; Shaveisi-Zadeh, Jila

    2016-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. G6PD plays a key role in the pentose phosphate pathway, which is a major source of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH provides the reducing equivalents for oxidation-reduction reductions involved in protecting against the toxicity of reactive oxygen species such as H2O2. We hypothesized that G6PD deficiency may reduce the amount of NADPH in sperms, thereby inhibiting the detoxification of H2O2, which could potentially affect their motility and viability, resulting in an increased susceptibility to infertility. Semen samples were obtained from four males with G6PD deficiency and eight healthy males as a control. In both groups, motile sperms were isolated from the seminal fluid and incubated with 0, 10, 20, 40, 60, 80, and 120 µM concentrations of H2O2. After 1 hour incubation at 37℃, sperms were evaluated for motility and viability. Incubation of sperms with 10 and 20 µM H2O2 led to very little decrease in motility and viability, but motility decreased notably in both groups in 40, 60, and 80 µM H2O2, and viability decreased in both groups in 40, 60, 80, and 120 µM H2O2. However, no statistically significant differences were found between the G6PD-deficient group and controls. G6PD deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2, and the reducing equivalents necessary for protection against H2O2 are most likely produced by other pathways. Therefore, G6PD deficiency cannot be considered as major risk factor for male infertility.

  19. Defense Science Board (DSB) Summer Study Report on Strategic Surprise

    Science.gov (United States)

    2015-07-01

    DSB Summer Study Report on Strategic Surprise July 2015 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden...SUBTITLE DSB Summer Study Report on Strategic Surprise 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Defense Science Board ( DSB ),The Pentagon ,OUSD(AT&L

  20. Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion.

    Science.gov (United States)

    Locke, J M; da Silva Xavier, G; Dawe, H R; Rutter, G A; Harries, L W

    2014-01-01

    Type 2 diabetes is characterised by progressive beta cell dysfunction, with changes in gene expression playing a crucial role in its development. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and therefore alterations in miRNA levels may be involved in the deterioration of beta cell function. Global TaqMan arrays and individual TaqMan assays were used to measure islet miRNA expression in discovery (n = 20) and replication (n = 20) cohorts from individuals with and without type 2 diabetes. The role of specific dysregulated miRNAs in regulating insulin secretion, content and apoptosis was subsequently investigated in primary rat islets and INS-1 cells. Identification of miRNA targets was assessed using luciferase assays and by measuring mRNA levels. In the discovery and replication cohorts miR-187 expression was found to be significantly increased in islets from individuals with type 2 diabetes compared with matched controls. An inverse correlation between miR-187 levels and glucose-stimulated insulin secretion (GSIS) was observed in islets from normoglycaemic donors. This correlation paralleled findings in primary rat islets and INS-1 cells where overexpression of miR-187 markedly decreased GSIS without affecting insulin content or apoptotic index. Finally, the gene encoding homeodomain-interacting protein kinase-3 (HIPK3), a known regulator of insulin secretion, was identified as a direct target of miR-187 and displayed reduced expression in islets from individuals with type 2 diabetes. Our findings suggest a role for miR-187 in the blunting of insulin secretion, potentially involving regulation of HIPK3, which occurs during the pathogenesis of type 2 diabetes.

  1. Altered walking strategy and increased unsteadiness in participants with impaired glucose tolerance and Type 2 diabetes relates to small-fibre neuropathy but not vitamin D deficiency.

    Science.gov (United States)

    Almurdhi, M M; Brown, S J; Bowling, F L; Boulton, A J M; Jeziorska, M; Malik, R A; Reeves, N D

    2017-06-01

    To investigate alterations in walking strategy and dynamic sway (unsteadiness) in people with impaired glucose tolerance and people with Type 2 diabetes in relation to severity of neuropathy and vitamin D levels. A total of 20 people with Type 2 diabetes, 20 people with impaired glucose tolerance and 20 people without either Type 2 diabetes or impaired glucose tolerance (control group) underwent gait analysis using a motion analysis system and force platforms, and detailed assessment of neuropathy and serum 25 hydroxy-vitamin D levels. Ankle strength (P = 0.01) and power (P = 0.003) during walking and walking speed (P = 0.008) were preserved in participants with impaired glucose tolerance but significantly lower in participants with Type 2 diabetes compared with control participants; however, step width (P = 0.005) and dynamic medio-lateral sway (P = 0.007) were significantly higher and posterior maximal movement (P = 0.000) was lower in participants with impaired glucose tolerance, but preserved in those with Type 2 diabetes compared with the control group. Dynamic medio-lateral sway correlated with corneal nerve fibre length (P = 0.001) and corneal nerve branch density (P = 0.001), but not with vibration perception threshold (P = 0.19). Serum 25 hydroxy-vitamin D levels did not differ significantly among the groups (P = 0.10) and did not correlate with any walking variables or measures of dynamic sway. Early abnormalities in walking strategy and dynamic sway were evident in participants with impaired glucose tolerance, whilst there was a reduction in ankle strength, power and walking speed in participants with Type 2 diabetes. Unsteadiness correlated with small-, but not large-fibre neuropathy and there was no relationship between vitamin D levels and walking variables. © 2017 Diabetes UK.

  2. Atom Surprise: Using Theatre in Primary Science Education

    Science.gov (United States)

    Peleg, Ran; Baram-Tsabari, Ayelet

    2011-10-01

    Early exposure to science may have a lifelong effect on children's attitudes towards science and their motivation to learn science in later life. Out-of-class environments can play a significant role in creating favourable attitudes, while contributing to conceptual learning. Educational science theatre is one form of an out-of-class environment, which has received little research attention. This study aims to describe affective and cognitive learning outcomes of watching such a play and to point to connections between theatrical elements and specific outcomes. "Atom Surprise" is a play portraying several concepts on the topic of matter. A mixed methods approach was adopted to investigate the knowledge and attitudes of children (grades 1-6) from two different school settings who watched the play. Data were gathered using questionnaires and in-depth interviews. Analysis suggested that in both schools children's knowledge on the topic of matter increased after the play with younger children gaining more conceptual knowledge than their older peers. In the public school girls showed greater gains in conceptual knowledge than boys. No significant changes in students' general attitudes towards science were found, however, students demonstrated positive changes towards science learning. Theatrical elements that seemed to be important in children's recollection of the play were the narrative, props and stage effects, and characters. In the children's memory, science was intertwined with the theatrical elements. Nonetheless, children could distinguish well between scientific facts and the fictive narrative.

  3. Glucose oxidation positively regulates glucose uptake and improves cardiac function recovery after myocardial reperfusion.

    Science.gov (United States)

    Li, Tingting; Xu, Jie; Qin, Xinghua; Hou, Zuoxu; Guo, Yongzheng; Liu, Zhenhua; Wu, Jianjiang; Zheng, Hong; Zhang, Xing; Gao, Feng

    2017-03-21

    Myocardial reperfusion decreases glucose oxidation and uncouples glucose oxidation from glycolysis. Therapies that increase glucose oxidation lessen myocardial ischemia/reperfusion injury. However, the regulation of glucose uptake during reperfusion remains poorly understood. Here we found that glucose uptake was remarkably diminished in myocardium following reperfusion in Sprague-Dawley rats as detected by 18F-labeled and fluorescent-labeled glucose analogs, even though GLUT1 was upregulated by 3 folds and GLUT4 translocation remained unchanged compared with those of sham rats. The decreased glucose uptake was accompanied by suppressed glucose oxidation. Interestingly, stimulating glucose oxidation by inhibition of pyruvate dehydrogenase kinase 4 (PDK4), a rate-limiting enzyme for glucose oxidation, increased glucose uptake and alleviated ischemia/reperfusion injury. In vitro data in neonatal myocytes showed that PDK4 overexpression decreased glucose uptake, while its knockdown increased glucose uptake, suggesting a role of PDK4 in regulating glucose uptake. Moreover, inhibition of PDK4 increased myocardial glucose uptake with concomitant enhancement of cardiac insulin sensitivity following myocardial ischemia/reperfusion. These results showed that the suppressed glucose oxidation mediated by PDK4 contributes to the reduced glucose uptake in myocardium following reperfusion, and enhancement of glucose uptake exerts cardioprotection. The findings suggest that stimulating glucose oxidation via PDK4 could be an efficient approach to improve recovery from myocardial ischemia/reperfusion injury. Copyright © 2017, American Journal of Physiology-Endocrinology and Metabolism.

  4. Neuroprotection of Persea major extract against oxygen and glucose deprivation in hippocampal slices involves increased glutamate uptake and modulation of A1 and A2A adenosine receptors

    Directory of Open Access Journals (Sweden)

    Marielli Letícia Fedalto

    2013-10-01

    Full Text Available Ischemic stroke is characterised by a lack of oxygen and glucose in the brain, leading to excessive glutamate release and neuronal cell death. Adenosine is produced in response to ATP depletion and acts as an endogenous neuromodulator that reduces excitotoxicity. Persea major (Meins. L.E. Kopp (Lauraceae is a medical plant that is indigenous to South Brazil, and the rural population has used it medicinally due to its anti-inflammatory properties. The aim of this study was to evaluate the neuroprotective effect of Persea major methanolic extract against oxygen and glucose deprivation and re-oxygenation as well as to determine its underlying mechanism of action in hippocampal brain slices. Persea major methanolic extract (0.5 mg/ml has a neuroprotective effect on hippocampal slices when added before or during 15 min of oxygen and glucose deprivation or 2 h of re-oxygenation. Hippocampal slices subjected to oxygen and glucose deprivation and re-oxygenation showed significantly reduced glutamate uptake, and the addition of Persea major methanolic extract in the re-oxygenation period counteracted the reduction of glutamate uptake. The presence of A1 or A2A, but not A2B or A3 receptor antagonists, abolished the neuroprotective effect of Persea major methanolic extract. In conclusion, the neuroprotective effect of Persea majormethanolic extract involves augmentation of glutamate uptake and modulation of A1 and A2B adenosine receptors.

  5. Overweight and obese boys reduce food intake in response to a glucose drink but fail to increase intake in response to exercise of short duration.

    Science.gov (United States)

    Tamam, Shlomi; Bellissimo, Nick; Patel, Barkha P; Thomas, Scott G; Anderson, G Harvey

    2012-06-01

    The effect of short duration exercise (EXR) on food intake (FI) and energy balance (EB) is not well understood in either normal weight (NW) or overweight (OW) and obese (OB) 9-14 years old children. Our purpose was to describe the effects of activity and a glucose drink on short term FI, appetite, and EB in NW, OW, and OB boys. Each boy received in random order either a noncaloric Sucralose sweetened control or glucose (1.0 g·kg(-1) body weight) drink 5 min after either exercise (EXR) or sedentary (SED) activity. Boys exercised for 15 min at their ventilation threshold (V(T)) in experiment 1 or at 25% above their V(T) in experiment 2. FI was measured at an ad libitum pizza meal 30 min after drink consumption. FI was lower after the glucose drink (p food than NW boys (p = 0.020). EB over the duration of the experiments was reduced by EXR in OW/OB boys (p = 0.013) but not in NW boys in either experiment (p > 0.05). We conclude that intake regulation in OW/OB boys in response to a glucose drink is similar to NW boys, but it may be less responsive to activity.

  6. A common polymorphism in the promoter of the IGF-I gene associates with increased fasting serum triglyceride levels in glucose-tolerant subjects

    DEFF Research Database (Denmark)

    Nielsen, Eva-Maria D; Hansen, Lars; Lajer, Maria

    2004-01-01

    The aim of the present study was to examine if absence of a common allele in a microsatellite polymorphism in the insulin-like growth factor I (IGF-I) promoter was associated with type 2 diabetes and alterations in quantitative traits in glucose-tolerant subjects....

  7. Increased nuclear tri-iodothyronine binding and thyroid hormone-stimulated glucose consumption in mononuclear blood cells from patients with liver cirrhosis

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L

    1991-01-01

    between the groups, but thyroid hormone-stimulated oxygen consumption was depressed in cells from patients with AC (P less than 0.05) compared with patients with LC and with controls. We conclude that both thyroid hormone-stimulated glucose consumption and T3 nuclear receptor binding in cells from...

  8. Including indigestible carbohydrates in the evening meal of healthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after a subsequent standardized breakfast

    DEFF Research Database (Denmark)

    Nilsson, A.C.; Ostman, E.M.; Holst, Jens Juul

    2008-01-01

    based bread (ordinary, high-amylose- or beta-glucan-rich genotypes) or an evening meal with white wheat flour bread (WWB) enriched with a mixture of barley fiber and resistant starch improved glucose tolerance at the subsequent breakfast compared with unsupplemented WWB (P

  9. Improvements in glucose metabolism early after gastric bypass surgery are not explained by increases in total bile acids and fibroblast growth factor 19 concentrations

    DEFF Research Database (Denmark)

    Jørgensen, Nils B; Dirksen, Carsten; Bojsen-Møller, Kirstine N;

    2015-01-01

    Context: Bile acids and fibroblast growth factor 19 (FGF19) have been suggested as key mediators of the improvements in glucose metabolism after Roux-en-Y gastric bypass (RYGB). Objective: To describe fasting and postprandial state total bile acid (TBA) and FGF19 concentrations before and after...

  10. Intermittent nutritional stimulus by short-term treatment of high-energy diet promotes ovarian performance together with increases in blood levels of glucose and insulin in cycling goats.

    Science.gov (United States)

    Zabuli, Jahid; Tanaka, Tomomi; Lu, Wengeng; Kamomae, Hideo

    2010-12-01

    The aim of this study was to determine if short-term intermittent treatments of high-energy diet have any stimulatory effects on ovarian function and metabolic status in goat. Cycling Shiba goats were divided into treatment (TG; n=6) and control (CG; n=6) groups. After the detection of ovulation (1st ovulation, Day 0) by ultrasonography, a high-energy diet (250% of maintenance) was fed to the TG from Day 12 to Day 15 (4 days) and from Day 18 to Day 21 (4 days). The high-energy diet comprised 1000 g hay-cubes and 300 g of concentrated feed/head/day (approximately 15 MJ of digestible energy/day). The CG was offered maintenance diet throughout the experiment. Transrectal ultrasound examinations were conducted every other day during the luteal phase and were conducted daily during the follicular phase. Blood samples were collected daily from Day -2 to 7 days after ovulation (2nd ovulation) following the nutritional treatment for analysis of follicle stimulating hormone (FSH), progesterone, oestradiol, glucose and insulin in plasma. Two wave-like rises in the concentrations of glucose and insulin appeared in response to the intermittent nutritional stimulus. Mean plasma concentrations of glucose and insulin were significantly (Pintermittent nutritional stimulus from the luteal phase increased the total number of ovulatory follicles and the ovulation rate in association with increasing plasma concentrations of glucose and insulin in goats.

  11. Bagpipes and Artichokes: Surprise as a Stimulus to Learning in the Elementary Music Classroom

    Science.gov (United States)

    Jacobi, Bonnie Schaffhauser

    2016-01-01

    Incorporating surprise into music instruction can stimulate student attention, curiosity, and interest. Novelty focuses attention in the reticular activating system, increasing the potential for brain memory storage. Elementary ages are ideal for introducing novel instruments, pieces, composers, or styles of music. Young children have fewer…

  12. Including indigestible carbohydrates in the evening meal of healthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after a subsequent standardized breakfast

    DEFF Research Database (Denmark)

    Nilsson, Anne C; Ostman, Elin M; Holst, Jens Juul

    2008-01-01

    Low-glycemic index (GI) foods and foods rich in whole grain are associated with reduced risk of type 2 diabetes and cardiovascular disease. We studied the effect of cereal-based bread evening meals (50 g available starch), varying in GI and content of indigestible carbohydrates, on glucose...... tolerance and related variables after a subsequent standardized breakfast in healthy subjects (n = 15). At breakfast, blood was sampled for 3 h for analysis of blood glucose, serum insulin, serum FFA, serum triacylglycerides, plasma glucagon, plasma gastric-inhibitory peptide, plasma glucagon-like peptide-1...... (GLP-1), serum interleukin (IL)-6, serum IL-8, and plasma adiponectin. Satiety was subjectively rated after breakfast and the gastric emptying rate (GER) was determined using paracetamol as a marker. Breath hydrogen was measured as an indicator of colonic fermentation. Evening meals with barley kernel...

  13. Including indigestible carbohydrates in the evening meal of healthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after a subsequent standardized breakfast.

    Science.gov (United States)

    Nilsson, Anne C; Ostman, Elin M; Holst, Jens J; Björck, Inger M E

    2008-04-01

    Low-glycemic index (GI) foods and foods rich in whole grain are associated with reduced risk of type 2 diabetes and cardiovascular disease. We studied the effect of cereal-based bread evening meals (50 g available starch), varying in GI and content of indigestible carbohydrates, on glucose tolerance and related variables after a subsequent standardized breakfast in healthy subjects (n = 15). At breakfast, blood was sampled for 3 h for analysis of blood glucose, serum insulin, serum FFA, serum triacylglycerides, plasma glucagon, plasma gastric-inhibitory peptide, plasma glucagon-like peptide-1 (GLP-1), serum interleukin (IL)-6, serum IL-8, and plasma adiponectin. Satiety was subjectively rated after breakfast and the gastric emptying rate (GER) was determined using paracetamol as a marker. Breath hydrogen was measured as an indicator of colonic fermentation. Evening meals with barley kernel based bread (ordinary, high-amylose- or beta-glucan-rich genotypes) or an evening meal with white wheat flour bread (WWB) enriched with a mixture of barley fiber and resistant starch improved glucose tolerance at the subsequent breakfast compared with unsupplemented WWB (P < 0.05). At breakfast, the glucose response was inversely correlated with colonic fermentation (r = -0.25; P < 0.05) and GLP-1 (r = -0.26; P < 0.05) and positively correlated with FFA (r = 0.37; P < 0.001). IL-6 was lower (P < 0.01) and adiponectin was higher (P < 0.05) at breakfast following an evening meal with barley-kernel bread compared with WWB. Breath hydrogen correlated positively with satiety (r = 0.27; P < 0.01) and inversely with GER (r = -0.23; P < 0.05). In conclusion, the composition of indigestible carbohydrates of the evening meal may affect glycemic excursions and related metabolic risk variables at breakfast through a mechanism involving colonic fermentation. The results provide evidence for a link between gut microbial metabolism and key factors associated with insulin resistance.

  14. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization

    Directory of Open Access Journals (Sweden)

    Mabel Parimala

    2015-01-01

    Full Text Available Nymphaea nouchali Burm. f. (Family - Nymphaeaceae is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT, followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues.

  15. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization.

    Science.gov (United States)

    Parimala, Mabel; Debjani, M; Vasanthi, Hannah Rachel; Shoba, Francis Gricilda

    2015-01-01

    Nymphaea nouchali Burm. f. (Family - Nymphaeaceae) is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues.

  16. Avoiding surprises when implementing a single quality system.

    Science.gov (United States)

    Donawa, Maria

    2009-01-01

    European medical device manufacturers are sometimes surprised to learn that operating ISO 13485 alone is not sufficient to meet United States (US) quality system requirements. This article discusses important considerations for meeting US and European requirements when operating under a single quality system.

  17. Reconsiderations: Donald Murray and the Pedagogy of Surprise

    Science.gov (United States)

    Ballenger, Bruce

    2008-01-01

    Toward the end of his life, Donald Murray felt that his approach to writing instruction was no longer appreciated by journals in his field. Nevertheless, his emphasis on encouraging students to surprise themselves through informal writing still has considerable value. (Contains 1 note.)

  18. Reconsiderations: Donald Murray and the Pedagogy of Surprise

    Science.gov (United States)

    Ballenger, Bruce

    2008-01-01

    Toward the end of his life, Donald Murray felt that his approach to writing instruction was no longer appreciated by journals in his field. Nevertheless, his emphasis on encouraging students to surprise themselves through informal writing still has considerable value. (Contains 1 note.)

  19. Errors and surprise in patients with focal brain lesions

    NARCIS (Netherlands)

    Ullsperger, M.

    2016-01-01

    Recent theories of performance monitoring suggest that not only errors and negative action outcomes but also valence-free expectancy violations can trigger cognitive and behavioral adaptations. EEG and fMRI evidence suggests that monitoring of both errors and surprising but valence-free action

  20. Disassociated relation between plasma tumor necrosis factor-α, interleukin-6 and increased body weight in Amerindian women: A long-term prospective study of natural body weight variation and impaired glucose tolerance

    Directory of Open Access Journals (Sweden)

    Lindgärde Folke

    2010-06-01

    Full Text Available Abstract Background Inflammatory cytokines are linked to obesity-related insulin resistance and may predict type 2 diabetes independently of obesity. We previously reported that a majority of a cohort of 73 non-diabetic women with normal plasma (p-glucose with Amerindian heritage in Lima, Peru, during a 5-year period increased both body weight and p-glucose levels, yet p-insulin was unaltered. A high proportion of palmitoleic acid (16:1n-7 in serum (s and systolic blood pressure (SBP were independent predictors of high p-glucose. Whether cytokines also contributed is, however, not known. Methods During 5 years we prospectively investigated the relation between changed concentrations of p-tumor necrosis factor (TNF-α, p-interleukin (IL-6 and circulating insulin and glucose in relation to the natural variation of body weight. Study variables included anthropometric measurements, p-insulin, TNF-α, IL-6, SBP and the proportion of 16:1n-7 in s-fatty acid composition. Results Weight and waist differences correlated negatively to the difference in p-TNF-α but positively to differences in p-IL-6 and p-insulin, whereas the increase of p-glucose from baseline to follow-up did not correlate with changes in levels of the two cytokines. In multiple regression analysis changes of TNF-α and insulin contributed independently to the variance in weight. P-insulin at baseline and weight change were determinants of fasting p-insulin at follow-up. Multiple regression analysis revealed that weight change (t-value = - 2.42; P = 0.018 and waist change (t-value = 2.41; P = 0.019 together with S-16:1n-7 (p Conclusion Our prospective study of Amerindian women revealed disassociations between changes in p-TNF-α and p-IL-6 in relation to variation in body weight. A high proportion of s-16:1n-7, SBP at baseline together with weight and waist changes were independent predictors of p-glucose at follow-up. The exact role of the opposite effects and clinical impact of p

  1. Deficiency of ACE2 in Bone-Marrow-Derived Cells Increases Expression of TNF-α in Adipose Stromal Cells and Augments Glucose Intolerance in Obese C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    Sean E. Thatcher

    2012-01-01

    Full Text Available Deficiency of ACE2 in macrophages has been suggested to promote the development of an inflammatory M1 macrophage phenotype. We evaluated effects of ACE2 deficiency in bone-marrow-derived stem cells on adipose inflammation and glucose tolerance in C57BL/6 mice fed a high fat (HF diet. ACE2 activity was increased in the stromal vascular fraction (SVF isolated from visceral, but not subcutaneous adipose tissue of HF-fed mice. Deficiency of ACE2 in bone marrow cells significantly increased mRNA abundance of F4/80 and TNF-α in the SVF isolated from visceral adipose tissue of HF-fed chimeric mice, supporting increased presence of inflammatory macrophages in adipose tissue. Moreover, deficiency of ACE2 in bone marrow cells modestly augmented glucose intolerance in HF-fed chimeric mice and increased blood levels of glycosylated hemoglobin. In summary, ACE2 deficiency in bone marrow cells promotes inflammation in adipose tissue and augments obesity-induced glucose intolerance.

  2. Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/obese humans

    Directory of Open Access Journals (Sweden)

    Cox Chad L

    2012-07-01

    Full Text Available Abstract Background Prospective studies in humans examining the effects of fructose consumption on biological markers associated with the development of metabolic syndrome are lacking. Therefore we investigated the relative effects of 10 wks of fructose or glucose consumption on plasma uric acid and RBP-4 concentrations, as well as liver enzyme (AST, ALT, and GGT activities in men and women. Methods As part of a parallel arm study, older (age 40–72, overweight and obese male and female subjects (BMI 25–35 kg/m2 consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 wks. Fasting and 24-h blood collections were performed at baseline and following 10 wks of intervention and plasma concentrations of uric acid, RBP-4 and liver enzyme activities were measured. Results Consumption of fructose, but not glucose, led to significant increases of 24-h uric acid profiles (P P = 0.012, as well as plasma GGT activity (P = 0.04. Fasting plasma uric acid concentrations increased in both groups; however, the response was significantly greater in subjects consuming fructose (P = 0.002 for effect of sugar. Within the fructose group male subjects exhibited larger increases of RBP-4 levels than women (P = 0.024. Conclusions These findings suggest that consumption of fructose at 25% of energy requirements for 10 wks, compared with isocaloric consumption of glucose, may contribute to the development of components of the metabolic syndrome by increasing circulating uric acid, GGT activity, suggesting alteration of hepatic function, and the production of RBP-4.

  3. Chronic treatment with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner.

    Science.gov (United States)

    Buhl, E S; Jessen, N; Schmitz, O; Pedersen, S B; Pedersen, O; Holman, G D; Lund, S

    2001-01-01

    Recent studies have demonstrated that chronic administration of AICAR (5-aminoimidazole-4-carboxamide- 1-beta-D-ribofuranoside), an activator of the AMP-activated protein kinase, increases hexokinase activity and the contents of total GLUT4 and glycogen in rat skeletal muscles. To explore whether AICAR also affects insulin-stimulated glucose transport and GLUT4 cell surface content, Wistar rats were subcutaneously injected with AICAR for 5 days in succession (1 mg/g body wt). Maximally insulin-stimulated (60 nmol/l) glucose uptake was markedly increased in epitrochlearis (EPI) muscle (average 63%, P fiber type-specific increase in insulin-stimulated glucose uptake and GLUT4 cell surface content in rat skeletal muscle with the greatest effect observed on white fast-twitch glycolytic muscles (EPI). These results are comparable with the effects of chronic exercise training, and it brings the AMP-activated protein kinase into focus as a new interesting target for future pharmacological intervention in insulin-resistant conditions.

  4. Ectopic expression of Hel-N1, an RNA-binding protein, increases glucose transporter (GLUT1) expression in 3T3-L1 adipocytes.

    Science.gov (United States)

    Jain, R G; Andrews, L G; McGowan, K M; Pekala, P H; Keene, J D

    1997-01-01

    3T3-L1 preadipocytes ectopically expressing the mammalian RNA-binding protein Hel-N1 expressed up to 10-fold more glucose transporter (GLUT1) protein and exhibited elevated rates of basal glucose uptake. Hel-N1 is a member of the ELAV-like family of proteins associated with the induction and maintenance of differentiation in various species. ELAV proteins are known to bind in vitro to short stretches of uridylates in the 3' untranslated regions (3'UTRs) of unstable mRNAs encoding growth-regulatory proteins involved in transcription and signal transduction. GLUT1 mRNA also contains a large 3'UTR with a U-rich region that binds specifically to Hel-N1 in vitro. Analysis of the altered GLUT1 expression at the translational and posttranscriptional levels suggested a mechanism involving both mRNA stabilization and accelerated formation of translation initiation complexes. These findings are consistent with the hypothesis that the Hel-N1 family of proteins modulate gene expression at the level of mRNA in the cytoplasm. PMID:9001249

  5. Glucose-dependent insulinotropic polypeptide

    DEFF Research Database (Denmark)

    Christensen, Mikkel; Vedtofte, Louise; Holst, Jens Juul

    2011-01-01

    OBJECTIVE To evaluate the glucose dependency of glucose-dependent insulinotropic polypeptide (GIP) effects on insulin and glucagon release in 10 healthy male subjects ([means ± SEM] aged 23 ± 1 years, BMI 23 ± 1 kg/m2, and HbA1c 5.5 ± 0.1%). RESEARCH DESIGN AND METHODS Saline or physiological doses....... In contrast, GIP increases glucagon levels during fasting and hypoglycemic conditions, where it has little or no effect on insulin secretion. Thus, GIP seems to be a physiological bifunctional blood glucose stabilizer with diverging glucose-dependent effects on the two main pancreatic glucoregulatory hormones....

  6. Surprising Sensitivities in Simulations of Radiative Convective Equilibrium

    Science.gov (United States)

    Drotos, Gabor; Becker, Tobias; Mauritsen, Thorsten; Stevens, Bjorn

    2017-04-01

    The climate and climate-sensitivity of a global model run in radiative equilibrium is explored. Results from simulations with ECHAM6.3 coupled to a slab ocean and run in a wide range of configurations are presented. Simulations both with and without a parameterised representation of deep convection are conducted for CO2 concentrations ranging from one eighth of present day values to thirty-two times the present day, and for variations in the solar constant of more than a factor of two. Very long simulations, in some case more than a thousand years, are performed to adequately sample the attractor of the different climate states of the model, and provide robust estimates of the system's climate sensitivity parameter. For the standard configuration of the model the climate sensitivity progressively decreases from very large values (6-7K) for the coldest climates to well below 1 K for the warmest climates. For very high CO2 levels (16 and 32 times the present value) fluctuations of globally averaged temperature as large as 10 K arise on decadal time-scales. These fluctuations manifest as quasi-period coolings, driven by large and persistent global scale decks of stratiform low clouds, so that for a period of several years global temperatures drop to levels below the lowest temperatures of the climate with present day values of CO2. The same configuration of the model has more modest sensitivities when the insolation is reduced, but runaway warming results for small (10%) increases. Simulations without parameterised convection have colder (by roughly 10K) climates and smaller (1K) sensitivities, allowing a stable climate with earth-like temperatures even for insolation much (50%) larger than the present day. Such values of insolation are possible because over a large range of the insolation the climate sensitivity parameter is very near zero. The surprising sensitivities of the system, and the limit-cycle like behaviour of the very CO2 rich climates, can be traced to

  7. Sleeping beauties in theoretical physics 26 surprising insights

    CERN Document Server

    Padmanabhan, Thanu

    2015-01-01

    This book addresses a fascinating set of questions in theoretical physics which will both entertain and enlighten all students, teachers and researchers and other physics aficionados. These range from Newtonian mechanics to quantum field theory and cover several puzzling issues that do not appear in standard textbooks. Some topics cover conceptual conundrums, the solutions to which lead to surprising insights; some correct popular misconceptions in the textbook discussion of certain topics; others illustrate deep connections between apparently unconnected domains of theoretical physics; and a few provide remarkably simple derivations of results which are not often appreciated. The connoisseur of theoretical physics will enjoy a feast of pleasant surprises skilfully prepared by an internationally acclaimed theoretical physicist. Each topic is introduced with proper background discussion and special effort is taken to make the discussion self-contained, clear and comprehensible to anyone with an undergraduate e...

  8. The June surprises: balls, strikes, and the fog of war.

    Science.gov (United States)

    Fried, Charles

    2013-04-01

    At first, few constitutional experts took seriously the argument that the Patient Protection and Affordable Care Act exceeded Congress's power under the commerce clause. The highly political opinions of two federal district judges - carefully chosen by challenging plaintiffs - of no particular distinction did not shake that confidence that the act was constitutional. This disdain for the challengers' arguments was only confirmed when the act was upheld by two highly respected conservative court of appeals judges in two separate circuits. But after the hostile, even mocking questioning of the government's advocate in the Supreme Court by the five Republican-appointed justices, the expectation was that the act would indeed be struck down on that ground. So it came as no surprise when the five opined the act did indeed exceed Congress's commerce clause power. But it came as a great surprise when Chief Justice John Roberts, joined by the four Democrat-appointed justices, ruled that the act could be sustained as an exercise of Congress's taxing power - a ground urged by the government almost as an afterthought. It was further surprising, even shocking, that Justices Antonin Scalia, Anthony Kennedy, Clarence Thomas, and Samuel Alito not only wrote a joint opinion on the commerce clause virtually identical to that of their chief, but that in writing it they did not refer to or even acknowledge his opinion. Finally surprising was the fact that Justices Ruth Bader Ginsburg and Stephen Breyer joined the chief in holding that aspects of the act's Medicaid expansion were unconstitutional. This essay ponders and tries to unravel some of these puzzles.

  9. Glucose Sensing Neurons in the Ventromedial Hypothalamus

    Directory of Open Access Journals (Sweden)

    Vanessa H. Routh

    2010-10-01

    Full Text Available Neurons whose activity is regulated by glucose are found in a number of brain regions. Glucose-excited (GE neurons increase while glucose-inhibited (GI neurons decrease their action potential frequency as interstitial brain glucose levels increase. We hypothesize that these neurons evolved to sense and respond to severe energy deficit (e.g., fasting that threatens the brains glucose supply. During modern times, they are also important for the restoration of blood glucose levels following insulin-induced hypoglycemia. Our data suggest that impaired glucose sensing by hypothalamic glucose sensing neurons may contribute to the syndrome known as hypoglycemia-associated autonomic failure in which the mechanisms which restore euglycemia following hypoglycemia become impaired. On the other hand, increased responses of glucose sensing neurons to glucose deficit may play a role in the development of Type 2 Diabetes Mellitus and obesity. This review will discuss the mechanisms by which glucose sensing neurons sense changes in interstitial glucose and explore the roles of these specialized glucose sensors in glucose and energy homeostasis.

  10. Inulin increases glucose transport in C2C12 myotubes and HepG2 cells via activation of AMP-activated protein kinase and phosphatidylinositol 3-kinase pathways.

    Science.gov (United States)

    Yun, Hee; Lee, Jong Hwa; Park, Chang Eun; Kim, Min-Jung; Min, Byung-Il; Bae, Hyunsu; Choe, Wonchae; Kang, Insug; Kim, Sung-Soo; Ha, Joohun

    2009-10-01

    Inulin, a naturally occurring, functional food ingredient found in various edible plants, has been reported to exert potential health benefits, including decreased risk of colonic diseases, non-insulin-dependent diabetes, obesity, osteoporosis, and cancer. However, the mechanism of the antidiabetic activity of inulin has not yet been elucidated. In this study, we showed that inulin increased the uptake of glucose in C2C12 myotubes, which was associated with both AMP-activated protein kinase (AMPK) and phosphatidylinositol 3-kinase (PI3-K) signaling pathways, but both of these pathways appeared to transmit their signals in an independent manner. Moreover, we found that inulin was able to increase the uptake of glucose in C2C12 myotubes in which insulin resistance was induced by exposing cells to high glucose concentrations. The identical effects of inulin were also observed in HepG2 hepatoma cells. Collectively, we report the antidiabetic activity of inulin and further demonstrate for the first time that such activity is associated with AMPK and PI3-K activation.

  11. Palm olein and olive oil cause a higher increase in postprandial lipemia compared with lard but had no effect on plasma glucose, insulin and adipocytokines.

    Science.gov (United States)

    Teng, Kim-Tiu; Nagapan, Gowri; Cheng, Hwee Ming; Nesaretnam, Kalanithi

    2011-04-01

    Postprandial lipemia impairs insulin sensitivity and triggers the pro-inflammatory state which may lead to the progression of cardiovascular diseases. A randomized, crossover single-blind study (n = 10 healthy men) was designed to compare the effects of a high-fat load (50 g fat), rich in palmitic acid from both plant (palm olein) or animal source (lard) versus an oleic acid-rich fat (virgin olive oil) on lipemia, plasma glucose, insulin and adipocytokines. Serum triacylglycerol (TAG) concentrations were significantly lower after the lard meal than after the olive oil and palm olein meals (meal effect P = 0.003; time effect P palm olein. A high fat load but not the type of fats influences concentrations of plasma IL-1β over time but had no effect on other pro-inflammatory markers tested in the postprandial state.

  12. Analysis of the capability of ultra-highly diluted glucose to increase glucose uptake in arsenite-stressed bacteria Escherichia coli%高度稀释的葡萄糖溶液提高含亚砷酸盐培养基中大肠埃希氏杆菌的葡萄糖摄取

    Institute of Scientific and Technical Information of China (English)

    Anisur Rahman Khuda-Bukhsh; Arnab De; Durba Das; Suman Dutta; Naoual Boujedaini

    2011-01-01

    Whether ultra-highly diluted homeopathic remedies can affect living systems is questionable.Therefore,this study sees value in the analysis of whether homeopathically diluted glucose 30C has any effect on Escherichia coli exposed to arsenite stress.Methods:E.coli were cultured to their log phase in standard Luria-Bertani medium and then treated with either 1 mmol/L or 2 mmol/L sodium arsenite,with or without supplementation of either 1% or 3% glucose,an ultra-highly diluted and agitated ethanolic solution (70%) of glucose (diluted 1060 times),glucose 30C or 70% ethanol (placebo) in the medium.Glucose uptake,specific activities of hexokinase and glucokinase,membrane potential,intracellular adenosine triphosphate (ATP) and expression of glucose permease in E.coli were analyzed at two different time intervals.Arsenic content in E.coli (intracellular) and in the spent medium (extracellular) was also determined.Results:In arsenite-exposed E.coli,the glucose uptake increased along with decreases in the specific activities of hexokinase and glucokinase,intracellular ATP and membrane potential and an increase in the gene expression level of glucose permease.Glucose uptake increased further by addition of 1%,3% or ultra-highly diluted glucose in the medium,but not by the placebo.Conclusion:The results demonstrated the efficacy of the ultra-highly diluted and agitated glucose in mimicking the action of actual glucose supplementation and its ability to modulate expressions of hexokinase and glucokinase enzymes and glucose permease genes,thereby validating the efficacy of ultra-high dilutions used in homeopathy.%目的:高度稀释的顺势疗法药物对活体系统的作用一直被质疑.因此,本研究检测依据顺势医学理论而高度稀释的葡萄糖溶液对暴露于亚砷酸盐的大肠埃希氏杆菌的作用.方法:大肠埃希氏杆菌在Luria-Bertani培养基中培养至对数期后分组.分别加入1%或3%的葡萄糖溶液、葡萄糖30C

  13. Increased Insulin following an Oral Glucose Load, Genetic Variation near the Melatonin Receptor MTNR1B, but No Biochemical Evidence of Endothelial Dysfunction in Young Asian Men and Women.

    Directory of Open Access Journals (Sweden)

    Maria A Matuszek

    Full Text Available To identify biochemical and genetic variation relating to increased risk of developing type 2 diabetes mellitus and cardiovascular disease in young, lean male and female adults of different ethnicities.Fasting blood and urine and non-fasting blood following oral glucose intake were analysed in 90 Caucasians, South Asians and South East/East Asians.There were no differences in age, birthweight, blood pressure, body mass index, percent body fat, total energy, percentage of macronutrient intake, microalbumin, leptin, cortisol, adrenocorticotropic hormone, nitric oxide metabolites, C-reactive protein, homocysteine, tumor necrosis factor-α, interleukin-6, von Willebrand factor, vascular cell adhesion molecule-1, plasminogen activator inhibitor-1, and tissue plasminogen activator. Fasting total cholesterol (P = .000, triglycerides (P = .050, low density lipoprotein (P = .009 and non-fasting blood glucose (15 min (P = .024 were elevated in South Asians compared with Caucasians, but there was no significant difference in glucose area under curve (AUC. Non-fasting insulin in South Asians (15-120 min, in South East/East Asians (60-120 min, and insulin AUC in South Asians and South East/East Asians, were elevated compared with Caucasians (P≤0.006. The molar ratio of C-peptide AUC/Insulin AUC (P = .045 and adiponectin (P = .037 were lower in South Asians compared with Caucasians. A significant difference in allele frequency distributions in Caucasians and South Asians was found for rs2166706 (P = 0.022 and rs10830963 (P = 0.009, which are both near the melatonin receptor MTNR1B.Elevated non-fasting insulin exists in young South Asians of normal fasting glucose and insulin. Hepatic clearance of insulin may be reduced in South Asians. No current biochemical evidence exists of endothelial dysfunction at this stage of development. MTNR1B signalling may be a useful therapeutic target in Asian populations in the prevention of type 2 diabetes mellitus.

  14. Lifestyle, glucose regulation and the cognitive effects of glucose load in middle-aged adults

    OpenAIRE

    Riby, Leigh; McLaughlin, Jennifer; Riby , Deborah, M.

    2008-01-01

    Interventions aimed at improving glucose regulatory mechanisms have been suggested as a possible source of cognitive enhancement in the elderly. In particular, previous research has identified episodic memory as a target for facilitation after either moderate increases in glycaemia (after a glucose drink) or after improvements in glucose regulation. The present study aimed to extend this research by examining the joint effects of glucose ingestion and glucose regulation on cognition. In addit...

  15. Surprisingly low compliance to local guidelines for risk factor based screening for gestational diabetes mellitus - A population-based study

    Directory of Open Access Journals (Sweden)

    Winkvist Anna

    2009-11-01

    Full Text Available Abstract Background Screening for gestational diabetes mellitus (GDM is routine during pregnancy in many countries in the world. The screening programs are either based on general screening offered to all pregnant women or risk factor based screening stipulated in local clinical guidelines. The aims of this study were to investigate: 1 the compliance with local guidelines of screening for GDM and 2 the outcomes of pregnancy and birth in relation to risk factors of GDM and whether or not exposed to oral glucose tolerance test (OGTT. Methods This study design was a population-based retrospective cross-sectional study of 822 women. A combination of questionnaire data and data collected from medical records was applied. Compliance to the local guidelines of risk factor based screening for GDM was examined and a comparison of outcomes of pregnancy and delivery in relation to risk factor groups for GDM was performed. Results Of the 822 participants, 257 (31.3% women fulfilled at least one criterion for being exposed to screening for GDM according to the local clinical guidelines. However, only 79 (30.7% of these women were actually exposed to OGTT and of those correctly exposed for screening, seven women were diagnosed with GDM. Women developing risk factors for GDM during pregnancy had a substantially increased risk of giving birth to an infant with macrosomia. Conclusion Surprisingly low compliance with the local clinical guidelines for screening for GDM during pregnancy was found. Furthermore, the prevalence of the risk factors of GDM in our study was almost doubled compared to previous Swedish studies. Pregnant women developing risk factors of GDM during pregnancy were found to be at substantially increased risk of giving birth to an infant with macrosomia. There is a need of actions improving compliance to the local guidelines.

  16. Sodium-glucose cotransport

    Science.gov (United States)

    Poulsen, Søren Brandt; Fenton, Robert A.; Rieg, Timo

    2017-01-01

    Purpose of review Sodium-glucose cotransporters (SGLTs) are important mediators of glucose uptake across apical cell membranes. SGLT1 mediates almost all sodium-dependent glucose uptake in the small intestine, while in the kidney SGLT2, and to a lesser extent SGLT1, account for more than 90% and nearly 3%, respectively, of glucose reabsorption from the glomerular ultrafiltrate. Although the recent availability of SGLT2 inhibitors for the treatment of diabetes mellitus has increased the number of clinical studies, this review has a focus on mechanisms contributing to the cellular regulation of SGLTs. Recent findings Studies have focused on the regulation of SGLT expression under different physiological/pathophysiological conditions, for example diet, age or diabetes mellitus. Several studies provide evidence of SGLT regulation via cyclic adenosine monophosphate/protein kinase A, protein kinase C, glucagon-like peptide 2, insulin, leptin, signal transducer and activator of transcription-3 (STAT3), phosphoinositide-3 kinase (PI3K)/Akt, mitogen-activated protein kinases (MAPKs), nuclear factor-kappaB (NF-kappaB), with-no-K[Lys] kinases/STE20/SPS1-related proline/alanine-rich kinase (Wnk/SPAK) and regulatory solute carrier protein 1 (RS1) pathways. Summary SGLT inhibitors are important drugs for glycemic control in diabetes mellitus. Although the contribution of SGLT1 for absorption of glucose from the intestine as well as SGLT2/SGLT1 for renal glucose reabsorption has been comprehensively defined, this review provides an up-to-date outline for the mechanistic regulation of SGLT1/SGLT2. PMID:26125647

  17. Exposure of ELF-EMF and RF-EMF Increase the Rate of Glucose Transport and TCA Cycle in Budding Yeast

    Science.gov (United States)

    Lin, Kang-Wei; Yang, Chuan-Jun; Lian, Hui-Yong; Cai, Peng

    2016-01-01

    In this study, we investigated the transcriptional response to 50 Hz extremely low frequency electromagnetic field (ELF-EMF) and 2.0 GHz radio frequency electromagnetic field (RF-EMF) exposure by Illumina sequencing technology using budding yeast as the model organism. The transcription levels of 28 genes were upregulated and those of four genes were downregulated under ELF-EMF exposure, while the transcription levels of 29 genes were upregulated and those of 24 genes were downregulated under RF-EMF exposure. After validation by reverse transcription quantitative polymerase chain reaction (RT-qPCR), a concordant direction of change both in differential gene expression (DGE) and RT-qPCR was demonstrated for nine genes under ELF-EMF exposure and for 10 genes under RF-EMF exposure. The RT-qPCR results revealed that ELF-EMF and RF-EMF exposure can upregulate the expression of genes involved in glucose transportation and the tricarboxylic acid (TCA) cycle, but not the glycolysis pathway. Energy metabolism is closely related with the cell response to environmental stress including EMF exposure. Our findings may throw light on the mechanism underlying the biological effects of EMF. PMID:27630630

  18. Investigating locality effects and surprisal in written English syntactic choice phenomena.

    Science.gov (United States)

    Rajkumar, Rajakrishnan; van Schijndel, Marten; White, Michael; Schuler, William

    2016-10-01

    We investigate the extent to which syntactic choice in written English is influenced by processing considerations as predicted by Gibson's (2000) Dependency Locality Theory (DLT) and Surprisal Theory (Hale, 2001; Levy, 2008). A long line of previous work attests that languages display a tendency for shorter dependencies, and in a previous corpus study, Temperley (2007) provided evidence that this tendency exerts a strong influence on constituent ordering choices. However, Temperley's study included no frequency-based controls, and subsequent work on sentence comprehension with broad-coverage eye-tracking corpora found weak or negative effects of DLT-based measures when frequency effects were statistically controlled for (Demberg & Keller, 2008; van Schijndel, Nguyen, & Schuler 2013; van Schijndel & Schuler, 2013), calling into question the actual impact of dependency locality on syntactic choice phenomena. Going beyond Temperley's work, we show that DLT integration costs are indeed a significant predictor of syntactic choice in written English even in the presence of competing frequency-based and cognitively motivated control factors, including n-gram probability and PCFG surprisal as well as embedding depth (Wu, Bachrach, Cardenas, & Schuler, 2010; Yngve, 1960). Our study also shows that the predictions of dependency length and surprisal are only moderately correlated, a finding which mirrors Dember & Keller's (2008) results for sentence comprehension. Further, we demonstrate that the efficacy of dependency length in predicting the corpus choice increases with increasing head-dependent distances. At the same time, we find that the tendency towards dependency locality is not always observed, and with pre-verbal adjuncts in particular, non-locality cases are found more often than not. In contrast, surprisal is effective in these cases, and the embedding depth measures further increase prediction accuracy. We discuss the implications of our findings for theories of

  19. Post-Translational Regulation of the Glucose-6-Phosphatase Complex by Cyclic Adenosine Monophosphate Is a Crucial Determinant of Endogenous Glucose Production and Is Controlled by the Glucose-6-Phosphate Transporter.

    Science.gov (United States)

    Soty, Maud; Chilloux, Julien; Delalande, François; Zitoun, Carine; Bertile, Fabrice; Mithieux, Gilles; Gautier-Stein, Amandine

    2016-04-01

    The excessive endogenous glucose production (EGP) induced by glucagon participates in the development of type 2 diabetes. To further understand this hormonal control, we studied the short-term regulation by cyclic adenosine monophosphate (cAMP) of the glucose-6-phosphatase (G6Pase) enzyme, which catalyzes the last reaction of EGP. In gluconeogenic cell models, a 1-h treatment by the adenylate cyclase activator forskolin increased G6Pase activity and glucose production independently of any change in enzyme protein amount or G6P content. Using specific inhibitors or protein overexpression, we showed that the stimulation of G6Pase activity involved the protein kinase A (PKA). Results of site-directed mutagenesis, mass spectrometry analyses, and in vitro phosphorylation experiments suggested that the PKA stimulation of G6Pase activity did not depend on a direct phosphorylation of the enzyme. However, the temperature-dependent induction of both G6Pase activity and glucose release suggested a membrane-based mechanism. G6Pase is composed of a G6P transporter (G6PT) and a catalytic unit (G6PC). Surprisingly, we demonstrated that the increase in G6PT activity was required for the stimulation of G6Pase activity by forskolin. Our data demonstrate the existence of a post-translational mechanism that regulates G6Pase activity and reveal the key role of G6PT in the hormonal regulation of G6Pase activity and of EGP.

  20. Estimations of expectedness and potential surprise in possibility theory

    Science.gov (United States)

    Prade, Henri; Yager, Ronald R.

    1992-01-01

    This note investigates how various ideas of 'expectedness' can be captured in the framework of possibility theory. Particularly, we are interested in trying to introduce estimates of the kind of lack of surprise expressed by people when saying 'I would not be surprised that...' before an event takes place, or by saying 'I knew it' after its realization. In possibility theory, a possibility distribution is supposed to model the relative levels of mutually exclusive alternatives in a set, or equivalently, the alternatives are assumed to be rank-ordered according to their level of possibility to take place. Four basic set-functions associated with a possibility distribution, including standard possibility and necessity measures, are discussed from the point of view of what they estimate when applied to potential events. Extensions of these estimates based on the notions of Q-projection or OWA operators are proposed when only significant parts of the possibility distribution are retained in the evaluation. The case of partially-known possibility distributions is also considered. Some potential applications are outlined.

  1. 10 years of surprises at Saturn: CAPS and INMS highlights

    Science.gov (United States)

    Coates, A. J.; Waite, J. H.

    2014-04-01

    The Cassini mission at Saturn has provided many surprises on Saturn's rapidly rotating magnetosphere and its interaction with the diverse moons, as well as its interaction with the solar wind. One of the early discoveries was the water-rich composition of the magnetosphere. Its structure and dynamics indicate remarkable injections, periodicities and interchange events. Enceladus, orbiting at 4 RS, was found to have plumes of water vapour and ice which are the dominant source for the inner magnetosphere. Charged water clusters, charged dust and photoelectrons provide key populations in the 'dusty plasma' seen here, as well as chemical complexity in the plume material. Direct pickup is seen near Enceladus and field aligned currents create a spot in Saturn's aurora. At Titan, orbiting at 20 RS, heavy negative and positive ions are seen in the ionosphere, as well as neutrals, all of which have surprising chemical complexity. These provide the source for Titan's haze. Ionospheric plasma is seen in Titan's tail, enabling ion escape to be estimated at 7 tonnes per day. Saturn's ring ionosphere was seen early in the mission, which was oxygen rich and produced photoelectrons; a return will be made in 2017. At Rhea, pickup positive and negative ions indicated weak atmospheres sustained by energetic particle impact, seen in the neutrals also. A weak atmosphere was also seen at Dione. The exosphere production process operates at Jupiter's moons also. Here we review some of the key new results, and discuss the implications for other solar system contexts.

  2. Thyroid hormone excess and glucose intolerance.

    Science.gov (United States)

    Dimitriadis, G D; Raptis, S A

    2001-01-01

    The elevated plasma glucose levels in hyperthyroidism may be explained by increased rates of endogenous glucose production, due mainly to increased gluconeogenesis. The rates of insulin-stimulated glucose disposal in peripheral tissues in hyperthyroidism have been found, in general, either normal or increased. Skeletal muscle is the most important tissue for the disposal of glucose in response to insulin. In this tissue, insulin increases glucose disposal by stimulating glucose transport, glucose phosphorylation/glycolysis, glycogen synthesis and glucose oxidation. Studies examining insulin-stimulated glucose metabolism in skeletal muscle have suggested that, in the hyperthyroid state, it may be of primary importance to increase the rates of glycolysis and lactate formation relative to glucose oxidation in this tissue in order to provide substrate for gluconeogenesis (increase Cori cycle activity). This effect will be achieved primarily by a decrease in glycogen synthesis and an increase in glycogenolysis. When hyperthyroidism becomes more severe, an increased rate of glucose uptake into muscle may then be necessary since the increased conversion of glycogen to lactate could not be sustained for prolonged periods and might lead to a depletion in glycogen stores. This mechanism would ensure that the level of glucose in plasma is kept normal or slightly increased. Thus, an increased Cori cycle activity may be a necessary mechanism to provide optimal conditions in hyperthyroidism for the control of glucose utilization without increasing the risk of hypoglycemia. In addition to lactate, increased rates of gluconeogenesis in hyperthyroidism can also be sustained by increased plasma concentrations of amino acids (mostly glutamine and alanine) and glycerol, as well as by increased plasma concentrations of free fatty acids.

  3. Increased Serum Levels of Anti-Carbamylated 78-kDa Glucose-Regulated Protein Antibody in Patients with Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Hui-Chun Yu

    2016-09-01

    Full Text Available The objective of this study was to investigate the presence and titer of anti-carbamylated 78-kDa glucose-regulated protein (anti-CarGRP78 antibody in serum from controls, and patients with rheumatoid arthritis (RA, systemic lupus erythematosus (SLE and primary Sjögren syndrome (pSS. Thirty-three RA patients, 20 SLE patients, 20 pSS patients, and 20 controls were enrolled from our outpatient clinic. GRP78 was cloned and carbamylated. Serum titers of anti- cyclic citrullinated peptides (anti-CCP, anti-GRP78, and anti-CarGRP78 were measured with an enzyme-linked immunosorbent assay. No differences in serum titers of anti-GRP78 antibody in patients with RA, SLE, or pSS compared with the controls were observed. Serum levels of anti-carGRP78 antibody in patients with RA, but not SLE or pSS, were significantly higher compared with the controls (OD405 0.15 ± 0.08 versus 0.11 ± 0.03, p = 0.033. There was a positive correlation between the serum levels of anti-GRP78 antibody, but not anti-CarGRP78 antibody, with the levels of anti-CCP antibody in patients with RA. Both anti-GRP78 and anti-carGRP78 antibodies failed to correlate with C-reactive protein levels in patients with RA. In conclusion, we demonstrated the presence of anti-CarGRP78 antibody in patients with RA. In addition, the serum titer of anti-CarGRP78 antibody was significantly elevated in patients with RA compared with the controls. Anti-CarGRP78 antibody could also be detected in patients with SLE or pSS.

  4. Increased Serum Levels of Anti-Carbamylated 78-kDa Glucose-Regulated Protein Antibody in Patients with Rheumatoid Arthritis.

    Science.gov (United States)

    Yu, Hui-Chun; Lai, Pei-Hsuan; Lai, Ning-Sheng; Huang, Hsien-Bin; Koo, Malcolm; Lu, Ming-Chi

    2016-09-08

    The objective of this study was to investigate the presence and titer of anti-carbamylated 78-kDa glucose-regulated protein (anti-CarGRP78) antibody in serum from controls, and patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and primary Sjögren syndrome (pSS). Thirty-three RA patients, 20 SLE patients, 20 pSS patients, and 20 controls were enrolled from our outpatient clinic. GRP78 was cloned and carbamylated. Serum titers of anti- cyclic citrullinated peptides (anti-CCP), anti-GRP78, and anti-CarGRP78 were measured with an enzyme-linked immunosorbent assay. No differences in serum titers of anti-GRP78 antibody in patients with RA, SLE, or pSS compared with the controls were observed. Serum levels of anti-carGRP78 antibody in patients with RA, but not SLE or pSS, were significantly higher compared with the controls (OD405 0.15 ± 0.08 versus 0.11 ± 0.03, p = 0.033). There was a positive correlation between the serum levels of anti-GRP78 antibody, but not anti-CarGRP78 antibody, with the levels of anti-CCP antibody in patients with RA. Both anti-GRP78 and anti-carGRP78 antibodies failed to correlate with C-reactive protein levels in patients with RA. In conclusion, we demonstrated the presence of anti-CarGRP78 antibody in patients with RA. In addition, the serum titer of anti-CarGRP78 antibody was significantly elevated in patients with RA compared with the controls. Anti-CarGRP78 antibody could also be detected in patients with SLE or pSS.

  5. A persistent increase in insulin-stimulated glucose uptake by both fast-twitch and slow-twitch skeletal muscles after a single exercise session by old rats.

    Science.gov (United States)

    Xiao, Yuanyuan; Sharma, Naveen; Arias, Edward B; Castorena, Carlos M; Cartee, Gregory D

    2013-06-01

    Exercise has been demonstrated to enhance subsequent insulin-stimulated glucose uptake (GU) by predominantly type II (fast-twitch) muscle of old rats, but previous research has not evaluated exercise effects on GU by type I (slow-twitch) muscle from old rats. Accordingly, we studied male Fischer 344/Brown Norway rats (24 months old) and determined GU (0, 100, 200, and 5,000 μU/ml insulin) of isolated soleus (predominantly type I) and epitrochlearis (predominantly type II) muscles after one exercise session. Epitrochlearis (100, 200, and 5,000 μU/ml insulin) and soleus (100 and 200 μU/ml insulin) GU were greater at 3-h postexercise vs. age-matched sedentary controls. Insulin receptor tyrosine phosphorylation (Tyr1162/1163) was unaltered by exercise in either muscle. Akt phosphorylation (pAkt) was greater for exercised vs. sedentary rats in the epitrochlearis (Ser473 and Thr308 with 100 and 200 μU/ml, respectively) and soleus (Ser473 with 200 μU/ml). AS160 phosphorylation (pAS160) was greater for exercised vs. sedentary rats in the epitrochlearis (Thr642 with 100 μU/ml), but not the soleus. Exercised vs. sedentary rats did not differ for total protein abundance of insulin receptor, Akt, AS160, or GLUT4 in either muscle. These results demonstrate that both predominantly type I and type II muscles from old rats are susceptible to exercise-induced improvement in insulin-mediated GU by mechanisms that are independent of enhanced insulin receptor tyrosine phosphorylation or altered abundance of important signaling proteins or GLUT4. Exercise-induced elevation in pAkt, and possibly pAS160, may contribute to this effect in the epitrochlearis of old rats, but other mechanisms are likely important for the soleus.

  6. The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men

    DEFF Research Database (Denmark)

    Pilgaard, K; Jensen, C B; Schou, J H

    2009-01-01

    AIMS/HYPOTHESIS: We studied the physiological, metabolic and hormonal mechanisms underlying the elevated risk of type 2 diabetes in carriers of TCF7L2 gene. METHODS: We undertook genotyping of 81 healthy young Danish men for rs7903146 of TCF7L2 and carried out various beta cell tests including: 2...... altered alpha cell function. CONCLUSIONS/INTERPRETATION: Elevated hepatic glucose production and reduced insulinotropic effect of incretin hormones contribute to an increased risk of type 2 diabetes in carriers of the rs7903146 risk T allele of TCF7L2....

  7. Blood glucose in acute stroke

    DEFF Research Database (Denmark)

    Olsen, Tom Skyhøj

    2009-01-01

    Blood glucose is often elevated in acute stroke, and higher admission glucose levels are associated with larger lesions, greater mortality and poorer functional outcome. In patients treated with thrombolysis, hyperglycemia is associated with an increased risk of hemorrhagic transformation...... of infarcts. For a number of years, tight glycemic control has been regarded as beneficial in critically illness, but recent research has been unable to support this notion. The only completed randomized study on glucose-lowering therapy in stroke has failed to demonstrate effect, and concerns relating...... to the risk of inducing potentially harmful hypoglycemia has been raised. Still, basic and observational research is overwhelmingly in support of a causal relationship between blood glucose and stroke outcome and further research on glucose-lowering therapy in acute stroke is highly warranted....

  8. Current understanding of increased insulin sensitivity after exercise - emerging candidates

    DEFF Research Database (Denmark)

    Maarbjerg, Stine Just; Sylow, Lykke; Richter, Erik

    2011-01-01

    insulin sensitivity. It is believed that increased sarcolemmal content of the glucose transporter GLUT4 can explain the phenomenon to some extent. Surprisingly no improvement in the proximal insulin signaling pathway is observed at the level of the insulin receptor, IRS1, PI3K or Akt. Recently more distal...... signaling component in the insulin signaling pathway such as aPKC, Rac1, TBC1D4 and TBC1D1 have been described. These are all affected by both insulin and exercise which means that they are likely converging points in promoting GLUT4 translocation and therefore possible candidates for regulating insulin...... in signaling to GLUT4 translocation, factors influencing the trans-sarcolemmal glucose concentration gradient might also be important. With regard to the interstitial glucose concentration microvascular perfusion is particular relevant as correlative evidence supports a connection between insulin sensitivity...

  9. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    Science.gov (United States)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  10. Antihypertensive drugs and glucose metabolism

    Institute of Scientific and Technical Information of China (English)

    Christos; V; Rizos; Moses; S; Elisaf

    2014-01-01

    Hypertension plays a major role in the development and progression of micro-and macrovascular disease.Moreover,increased blood pressure often coexists with additional cardiovascular risk factors such as insulin resistance.As a result the need for a comprehensive management of hypertensive patients is critical.However,the various antihypertensive drug categories have different effects on glucose metabolism.Indeed,angiotensin receptor blockers as well as angiotensin converting enzyme inhibitors have been associated with beneficial effects on glucose homeostasis.Calcium channel blockers(CCBs)have an overall neutral effect on glucose metabolism.However,some members of the CCBs class such as azelnidipine and manidipine have been shown to have advantageous effects on glucose homeostasis.On the other hand,diuretics andβ-blockers have an overall disadvantageous effect on glucose metabolism.Of note,carvedilol as well as nebivolol seem to differentiate themselves from the rest of theβ-blockers class,being more attractive options regarding their effect on glucose homeostasis.The adverse effects of some blood pressure lowering drugs on glucose metabolism may,to an extent,compromise their cardiovascular protective role.As a result the effects on glucose homeostasis of the various blood pressure lowering drugs should be taken into account when selecting an antihypertensive treatment,especially in patients which are at high risk for developing diabetes.

  11. The IRE1α/XBP1s Pathway Is Essential for the Glucose Response and Protection of β Cells.

    Directory of Open Access Journals (Sweden)

    Justin R Hassler

    2015-10-01

    Full Text Available Although glucose uniquely stimulates proinsulin biosynthesis in β cells, surprisingly little is known of the underlying mechanism(s. Here, we demonstrate that glucose activates the unfolded protein response transducer inositol-requiring enzyme 1 alpha (IRE1α to initiate X-box-binding protein 1 (Xbp1 mRNA splicing in adult primary β cells. Using mRNA sequencing (mRNA-Seq, we show that unconventional Xbp1 mRNA splicing is required to increase and decrease the expression of several hundred mRNAs encoding functions that expand the protein secretory capacity for increased insulin production and protect from oxidative damage, respectively. At 2 wk after tamoxifen-mediated Ire1α deletion, mice develop hyperglycemia and hypoinsulinemia, due to defective β cell function that was exacerbated upon feeding and glucose stimulation. Although previous reports suggest IRE1α degrades insulin mRNAs, Ire1α deletion did not alter insulin mRNA expression either in the presence or absence of glucose stimulation. Instead, β cell failure upon Ire1α deletion was primarily due to reduced proinsulin mRNA translation primarily because of defective glucose-stimulated induction of a dozen genes required for the signal recognition particle (SRP, SRP receptors, the translocon, the signal peptidase complex, and over 100 other genes with many other intracellular functions. In contrast, Ire1α deletion in β cells increased the expression of over 300 mRNAs encoding functions that cause inflammation and oxidative stress, yet only a few of these accumulated during high glucose. Antioxidant treatment significantly reduced glucose intolerance and markers of inflammation and oxidative stress in mice with β cell-specific Ire1α deletion. The results demonstrate that glucose activates IRE1α-mediated Xbp1 splicing to expand the secretory capacity of the β cell for increased proinsulin synthesis and to limit oxidative stress that leads to β cell failure.

  12. [Glucose homeostasis in children. I. Regulation of blood glucose].

    Science.gov (United States)

    Otto Buczkowska, E; Szirer, G; Jarosz-Chobot, P

    2001-01-01

    The amount of glucose in the circulation depends on its absorption from the intestine, uptake by and release from the liver and uptake by peripheral tissues. Insulin and glucagon together control the metabolities required by peripheral tissues and both are involved in maintaining glucose homeostasis. Insulin is considered to be an anabolic hormone in that it promotes the synthesis of protein, lipid and glycogen. The key target tissues for insulin are liver, muscles and adipose tissue. Glucagon acts largely to increase catabolic processes. Between meals or during fast, the most tightly regulated process is the release of glucose from the liver. During fasting glucose is produced from glycogen and is formed by enzymes on the gluconeogenic pathway. Fetal metabolism is directed to ensure anabolism with formation of glycogen, fat and protein. Glucogen is stored in the liver and serves as the immediate source of new glucose during first few hours after birth. Glucose is the most important substrate for brain metabolism. Due to the large size of neonatal brain in relation to body weight cerebral glucose consumption is particularly high. Postnatal hormonal changes have a central role in regulating glucose mobilization through glycogenolysis and gluconeogenesis. The initial glucagon surge is the key adaptive change which triggers the switch to glucose production. The control of insulin and glucagon secretion is of fundamental importance during first hours after birth. Children have a decreased tolerance to starvation when compared with adults, they are more prone to develop hypoglycaemia after short fasting. The faster rate in the fall of blood glucose and gluconeogenic substrates and rapid rate of ketogenesis are characteristic features of fasting adaptation in children.

  13. Measured Zero Net Energy Performance: Results, Lessons, and Surprises

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Carrie; LaRue, Anna; Pigman, Margaret; Roberts, Jon; Kaneda, David; Connelly, Dylan; Elliott, John; Pless, Shanti; Pande, Abhijeet; Dean, Edward; Anbarlilar, Can

    2016-08-26

    As more and more zero net energy (ZNE) buildings are built and monitored, we can learn from both careful case studies of individual projects as well as a broader perspective of trends over time. In a forum sponsored by Pacific Gas and Electric Company (PG&E), eight expert speakers discussed: results and lessons from monitoring occupied ZNE buildings; best practices for setting performance targets and getting actionable performance information, and; things that have surprised them about monitored ZNE buildings. This paper distills the content of the forum by laying out the most common hurdles that are encountered in setting up monitoring projects, frequent performance issues that the monitoring uncovers, and lessons learned that can be applied to future projects.

  14. Surprising hair analysis results following acute carbofuran intoxication.

    Science.gov (United States)

    Dulaurent, S; Gaulier, J M; Zouaoui, K; Moesch, C; François, B; Lachâtre, G

    2011-10-10

    We present two non fatal cases of intoxication with carbofuran (CBF) documented by hair analysis. Carbofuran and 3-hydroxycarbofuran (OHCBF, its main metabolite) hair concentrations were determined using a liquid chromatography-tandem mass spectrometry method. The obtained results were surprising if we consider several hair analyses previously published and based on a theory of the presence of xenobiotic in the only segment that comprised its intake. Among the two intoxication cases, we noticed the presence of CBF and OHCBF in hair segments corresponding to 45 days before, and more than 100 days after, the day of intoxication. Additionally, repeated hair samplings and subsequent analysis revealed a decrease of the carbofuran's concentration during the hair life.

  15. Probability and Surprisal in Auditory Comprehension of Morphologically Complex Words

    DEFF Research Database (Denmark)

    Balling, Laura Winther; Baayen, R. Harald

    2012-01-01

    Two auditory lexical decision experiments document for morphologically complex words two points at which the probability of a target word given the evidence shifts dramatically. The first point is reached when morphologically unrelated competitors are no longer compatible with the evidence....... Adapting terminology from Marslen-Wilson (1984), we refer to this as the word’s initial uniqueness point (UP1). The second point is the complex uniqueness point (CUP) introduced by Balling and Baayen (2008), at which morphologically related competitors become incompatible with the input. Later initial...... in the course of the word co-determines response latencies. The presence of effects of surprisal, both at the initial uniqueness point of complex words, and cumulatively throughout the word, challenges the Shortlist B model of Norris and McQueen (2008), and suggests that a Bayesian approach to auditory...

  16. 2014 Presidential elections in Romania – surprising result or strategy

    Directory of Open Access Journals (Sweden)

    Dan Mihalache

    2015-03-01

    Full Text Available The presidential elections in Romania which took place in November 2014 were won by Klaus Iohannis, who clearly defeated the incumbent prime-minister Victor Ponta by 10%. The result was considered by many a surprise, as none of the opinion polls were able to predict it. This article reveals a part of the strategy of Klaus Iohannis’s campaign and it offers a few clues about how this is result was possible, without having the aim to explain it fully. As the authors were accountable for strategy and political message in the electoral campaign for Klaus Iohannis, the scientific approach is combined with the inside view, to provide the reader a better understanding of the November 2014 events.

  17. High Glucose Promotes Tumor Invasion and Increases Metastasis-Associated Protein Expression in Human Lung Epithelial Cells by Upregulating Heme Oxygenase-1 via Reactive Oxygen Species or the TGF-β1/PI3K/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xiaowen Kang

    2015-02-01

    Full Text Available Background: Growing evidence indicates that heme oxygenase-1 (HO-1 is up-regulated in malignancies and subsequently alters tumor aggressiveness and various cancer-related factors, such as high glucose (HG levels. HO-1 expression can be induced when glucose concentrations are above 25 mM; however, the role of HO-1 in lung cancer patients with diabetes remains unknown. Therefore, in this study we investigated the promotion of tumor cell invasion and the expression of metastasis-associated proteins by inducing the up-regulation of HO-1 expression by HG treatment in A549 human lung epithelial cells. Methods: The expression of HO-1and metastasis-associated protein expression was explored by western blot analysis. HO-1 enzymatic activity, reactive oxygen species (ROS production and TGF-β1 production were examined by ELISA. Invasiveness was analyzed using a Transwell chamber. Results: HG treatment of A549 cells induced an increase in HO-1 expression, which was mediated by the HG-induced generation of reactive oxygen species (ROS and transforming growth factor-β1 (TGF-β1 in a concentration- and time-dependent manner. Following the increase in HO-1 expression, the enzymatic activity of HO-1 also increased in HG-treated cells. Pretreatment with N-acetyl-L-cysteine (NAC or with phosphatidylinositol 3-kinase (PI3K/Akt inhibitors attenuated the HG-induced increase in HO-1 expression. HG treatment of A549 cells enhanced the invasion potential of these cells, as shown with a Transwell assay, and increased metastasis-associated protein expression. However, HO-1 siRNA transfection significantly decreased these capabilities. Conclusion: this study is the first to demonstrate that HG treatment of A549 human lung epithelial cells promotes tumor cell invasion and increases metastasis-associated protein expression by up-regulating HO-1 expression via ROS or the TGF-β1/PI3K/Akt signaling pathway.

  18. Exploring the concept of climate surprises. A review of the literature on the concept of surprise and how it is related to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, M.H.; Moore, C.M. [National Center for Atmospheric Research, Boulder, CO (United States); Streets, D.G.; Bhatti, N.; Rosa, C.H. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.; Stewart, T.R. [State Univ. of New York, Albany, NY (United States)

    1998-01-01

    This report examines the concept of climate surprise and its implications for environmental policymaking. Although most integrated assessment models of climate change deal with average values of change, it is usually the extreme events or surprises that cause the most damage to human health and property. Current models do not help the policymaker decide how to deal with climate surprises. This report examines the literature of surprise in many aspects of human society: psychology, military, health care, humor, agriculture, etc. It draws together various ways to consider the concept of surprise and examines different taxonomies of surprise that have been proposed. In many ways, surprise is revealed to be a subjective concept, triggered by such factors as prior experience, belief system, and level of education. How policymakers have reacted to specific instances of climate change or climate surprise in the past is considered, particularly with regard to the choices they made between proactive and reactive measures. Finally, the report discusses techniques used in the current generation of assessment models and makes suggestions as to how climate surprises might be included in future models. The report concludes that some kinds of surprises are simply unpredictable, but there are several types that could in some way be anticipated and assessed, and their negative effects forestalled.

  19. Low Blood Glucose (Hypoglycemia)

    Science.gov (United States)

    ... Disease, & Other Dental Problems Diabetes & Sexual & Urologic Problems Low Blood Glucose (Hypoglycemia) What is hypoglycemia? Hypoglycemia, also called low blood glucose or low blood sugar, occurs when ...

  20. Glucose biosensor enhanced by nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Glucose biosensors have been formed with glucose oxidase (GOD) immobilized in composite immobilization membrane matrix, which is composed of hydrophobic gold, or hydrophilic gold, or hydrophobic silica nanoparticles, or the combination of gold and silica nanoparticles, and polyvinyl butyral (PVB) by a sol-gel method. The experiments show that nanoparticles can significantly enhance the catalytic activity of the immobilization enzyme. The current response can be increased from tens of nanoamperometer (nA) to thousands of nanoamperometer to the same glucose concentration, and the electrodes respond very quickly, to about 1 min. The function of nanoparticles effect on immobilization enzyme has been discussed.

  1. Glucose biosensor enhanced by nanoparticles

    Institute of Scientific and Technical Information of China (English)

    唐芳琼; 孟宪伟; 陈东; 冉均国; 郑昌琼

    2000-01-01

    Glucose biosensors have been formed with glucose oxidase (GOD) immobilized in composite immobilization membrane matrix, which is composed of hydrophobic gold, or hydro-philic gold, or hydrophobic silica nanoparticles, or the combination of gold and silica nanoparticles, and polyvinyl butyral (PVB) by a sol-gel method. The experiments show that nanoparticles can significantly enhance the catalytic activity of the immobilization enzyme. The current response can be increased from tens of nanoamperometer (nA) to thousands of nanoamperometer to the same glucose concentration, and the electrodes respond very quickly, to about 1 min. The function of nanoparticles effect on immobilization enzyme has been discussed.

  2. Postprandial glucose response to selected tropical fruits in normal glucose-tolerant Nigerians.

    Science.gov (United States)

    Edo, A; Eregie, A; Adediran, O; Ohwovoriole, A; Ebengho, S

    2011-01-01

    The glycemic response to commonly eaten fruits in Nigeria has not been reported. Therefore, this study assessed the plasma glucose response to selected fruits in Nigeria. Ten normal glucose-tolerant subjects randomly consumed 50 g carbohydrate portions of three fruits: banana (Musa paradisiaca), pineapple (Ananus comosus), and pawpaw (Carica papaya), and a 50-g glucose load at 1-week intervals. Blood samples were collected in the fasting state and half-hourly over a 2-h period post-ingestion of the fruits or glucose. The samples were analyzed for plasma glucose concentrations. Plasma glucose responses were assessed by the peak plasma glucose concentration, maximum increase in plasma glucose, 2-h postprandial plasma glucose level, and incremental area under the glucose curve and glycemic index (GI). The results showed that the blood glucose response to these three fruits was similar in terms of their incremental areas under the glucose curve, maximum increase in plasma glucose, and glycemic indices (GIs). The 2-h postprandial plasma glucose level of banana was significantly higher than that of pineapple, P fruits may be used as fruit exchanges with pineapple having the most favorable glycemic response.

  3. Liver X receptor antagonist reduces lipid formation and increases glucose metabolism in myotubes from lean, obese and type 2 diabetic individuals

    DEFF Research Database (Denmark)

    Kase, E T; Thoresen, G H; Westerlund, S

    2007-01-01

    AIMS/HYPOTHESIS: Liver X receptors (LXRs) play important roles in lipid and carbohydrate metabolism. The purpose of the present study was to evaluate effects of the endogenous LXR agonist 22-R-hydroxycholesterol (22-R-HC) and its stereoisomer 22-S-hydroxycholesterol (22-S-HC), in comparison...... with labelled precursors, and gene expression was analysed using real-time PCR. RESULTS: Treatment with T0901317 increased lipogenesis (de novo lipid synthesis) and lipid accumulation in myotubes, this increase being more pronounced in myotubes from type 2 diabetic volunteers than from lean volunteers......-HC, in contrast to T0901317, decreased the expression of genes involved in cholesterol synthesis, whereas only 22-R-HC, like T0901317, increased the expression of the gene encoding the reverse cholesterol transporter ATP-binding cassette subfamily A1 (ABCA1). CONCLUSIONS/INTERPRETATION: T0901317-induced...

  4. The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum

    DEFF Research Database (Denmark)

    Knudsen, Sine H; Karstoft, Kristian; Pedersen, Bente K;

    2014-01-01

    We investigated glucose tolerance and postprandial glucose fluxes immediately after a single bout of aerobic exercise in subjects representing the entire glucose tolerance continuum. Twenty-four men with normal glucose tolerance (NGT), impaired glucose tolerance (IGT), or type 2 diabetes (T2D; age......: 56 ± 1 years; body mass index: 27.8 ± 0.7 kg/m(2), P > 0.05) underwent a 180-min oral glucose tolerance test (OGTT) combined with constant intravenous infusion of [6,6-(2)H2]glucose and ingestion of [U-(13)C]glucose, following 1 h of exercise (50% of peak aerobic power) or rest. In both trials......, plasma glucose concentrations and kinetics, insulin, C-peptide, and glucagon were measured. Rates (mg kg(-1) min(-1)) of glucose appearance from endogenous (RaEndo) and exogenous (oral glucose; Ra OGTT) sources, and glucose disappearance (Rd) were determined. We found that exercise increased RaEndo, Ra...

  5. Sensory nerve desensitization by resiniferatoxin improves glucose tolerance and increases insulin secretion in Zucker Diabetic Fatty rats and is associated with reduced plasma activity of dipeptidyl peptidase IV

    DEFF Research Database (Denmark)

    Gram, Dorte X; Hansen, Anker J; Deacon, Carolyn F

    2005-01-01

    Sensory nerve desensitization by capsaicin has been shown to improve the diabetic condition in Zucker Diabetic Fatty rats. However, administration of capsaicin to adult rats is associated with an increased mortality. Therefore, in this experiment, we examined the influence of resiniferatoxin...

  6. The cancer drug Dasatinib increases PGC-1α in adipose tissue but has adverse effects on glucose tolerance in obese mice

    DEFF Research Database (Denmark)

    Sylow, Lykke; Long, Jonathan; Lokurkar, Isha A;

    2016-01-01

    Dasatinib (Sprycel) is a tyrosine kinase inhibitor approved for treatment of chronic myeloid leukemia (CML). In this study we identify dasatinib as a potent inducer of PGC-1α mRNA. Dasatinib increased PGC-1α mRNA expression up to 6-fold in 3T3-F442A adipocytes, primary adipocytes, and epididymal ...

  7. DTBNP and DTDP increase glucose-stimulated insulin secretion in INS-1 cell%DTBNP、DTDP促进INS-1细胞葡萄糖刺激胰岛素分泌

    Institute of Scientific and Technical Information of China (English)

    潘明麟; 居来提·赛买提; 刘田; 郭嫣嫣

    2016-01-01

    目的:探讨巯基氧化还原试剂对葡萄糖刺激胰岛素分泌(glucose-stimulated insulin secretion,GSIS)影响,进而揭示其调节胰岛素分泌的可能机制.方法:INS-l细胞经传代培养3~4 d后在KRBH液中,37℃培养箱孵育30 min,再用含有不同浓度葡萄糖和巯基氧化还原试剂的KRBH液中培养60 min.然后留取上清液进行胰岛素测定.结果:(1)INS-1细胞在2.5、5、10、15、20 mmol/L葡萄糖浓度范围内胰岛素分泌量逐渐增加,G5、G10、G15组间两两相比均有统计学意义(P<0.05);(2)与G10组相比,G10+DTBNP、G10+DTDP组胰岛素分泌量显著增加(P<0.05),且该效应可以被DTT所消除.(3)DTBNP、DTDP均能增加NIF处理组胰岛素分泌,但其增加幅度低于非NIF处理组(P<0.05);(4)与非DIA组相比,G10+DIA+DTBNP、G10+DIA+DTDP组胰岛素分泌增加幅度显著减低(P<0.05);(5)同G10组比较,G10+DIA+NIF+DTBNP、G10+DIA+NIF+DTDP组胰岛素分泌值增加(P<0.05).结论:本研究显示巯基氧化还原试剂对GSIS产生调节作用.DTDP、DTBNP可能通过对KATP、L型CaV通道及IP3受体活性的调节,促进胰岛素分泌.%Objective To investigate the role of sulfydral redox agent in the modulation of insulin secretion and the potential mechanism. Methods Insulin secretion was evaluated in INS-1 cells after treatment with different concentrations of glucose and sulfydral redox agents by a standard insulin radio immunoassay. Results Glucose concentration-dependently potentiates insulin secretion was observed in INS-1 cells. DTBNP and DTDP could not only significantly increase glucose-stimulated insulin secretion (GSIS), but also increase insulin secretion in nifedipine-pretreated cells, which could be abrogated by DTT. Importantly, pharmacological ablation of L-type calcium channels by nifedipine and/or ablation of K ATP channelby diazoxide both could potentiate glucose-induced insulin secretory. Conclusions Sulfydral redox agent could regulates GSIS. DTBNP and DTDP may

  8. High glucose upregulates CYP24A1 expression which attenuates the ability of 1,25(OH)2D3 to increase NGF secretion in a rat Schwann cell line RSC96.

    Science.gov (United States)

    Zhou, Yi-Kun; Liang, Zhi; Guo, Yan; Zhang, Hua-Tang; Wang, Kun-Hua

    2015-03-15

    Vitamin D deficiency or insufficiency is an independent risk factor for diabetic peripheral neuropathy (DPN), but the relationship between 1,25(OH)2D3 and DPN remains unknown. We found that 1,25(OH)2D3 stimulated the secretion of nerve growth factor (NGF) in rat Schwann cell line RSC96, but ability of 1,25(OH)2D3 to increase NGF protein was impaired under high glucose conditions. High glucose upregulated the expression of CYP24A1 protein, which catalyzes the conversion of 1,25(OH)2D3 into inactive products, further impairing the ability of 1,25(OH)2D3 to upregulate NGF secretion in Schwann cells. Inhibition of CYP24A1 protein expression ameliorated the secretion of NGF in response to 1,25(OH)2D3. The findings of this study suggest that CYP24A1 protein plays an important role in the relationship between DPN and 1,25(OH)2D3.

  9. Antiangiogenic activity of 2-deoxy-D-glucose.

    Directory of Open Access Journals (Sweden)

    Jaime R Merchan

    Full Text Available BACKGROUND: During tumor angiogenesis, endothelial cells (ECs are engaged in a number of energy consuming biological processes, such as proliferation, migration, and capillary formation. Since glucose uptake and metabolism are increased to meet this energy need, the effects of the glycolytic inhibitor 2-deoxy-D-glucose (2-DG on in vitro and in vivo angiogenesis were investigated. METHODOLOGY/PRINCIPAL FINDINGS: In cell culture, 2-DG inhibited EC growth, induced cytotoxicity, blocked migration, and inhibited actively forming but not established endothelial capillaries. Surprisingly, 2-DG was a better inhibitor of these EC properties than two more efficacious glycolytic inhibitors, 2-fluorodeoxy-D-glucose and oxamate. As an alternative to a glycolytic inhibitory mechanism, we considered 2-DG's ability to interfere with endothelial N-linked glycosylation. 2-DG's effects were reversed by mannose, an N-linked glycosylation precursor, and at relevant concentrations 2-DG also inhibited synthesis of the lipid linked oligosaccharide (LLO N-glycosylation donor in a mannose-reversible manner. Inhibition of LLO synthesis activated the unfolded protein response (UPR, which resulted in induction of GADD153/CHOP and EC apoptosis (TUNEL assay. Thus, 2-DG's effects on ECs appeared primarily due to inhibition of LLOs synthesis, not glycolysis. 2-DG was then evaluated in two mouse models, inhibiting angiogenesis in both the matrigel plug assay and the LH(BETAT(AG transgenic retinoblastoma model. CONCLUSIONS/SIGNIFICANCE: In conclusion, 2-DG inhibits endothelial cell angiogenesis in vitro and in vivo, at concentrations below those affecting tumor cells directly, most likely by interfering with N-linked glycosylation rather than glycolysis. Our data underscore the importance of glucose metabolism on neovascularization, and demonstrate a novel approach for anti-angiogenic strategies.

  10. Effects of glucose and amino acid infusion on glucose turnover in insulin-resistant obese and type II diabetic patients.

    Science.gov (United States)

    Tappy, L; Acheson, K; Normand, S; Pachiaudi, C; Jéquier, E; Riou, J P

    1994-04-01

    Glucose turnover was assessed from [6,6-2H]glucose and [U-13C]glucose dilution analysis in six lean nondiabetic subjects, six obese patients with normal glucose tolerance, and six obese patients with non-insulin-dependent diabetes mellitus (NIDDM) during sequential infusions of glucose (13.9 mumol/kg fat-free mass [FFM]/min) and glucose+amino acid (4.2 mg/kg FFM/min). Cori cycle activity was assessed from the difference between glucose turnover obtained from [6,6-2H]glucose and [U-13C]glucose. During infusion of glucose alone, total glucose turnover was increased by 70% in obese NIDDM patients. Amino acid infusion decreased glucose concentrations by 0.8, 0.5, and 1.8 mmol/L in controls, obese patients, and NIDDM patients, respectively. This decrease in glycemia occurred despite an increase in glucose turnover in lean and obese nondiabetic subjects, and was due to an increased metabolic clearance rate (MCR) of glucose. In NIDDM patients the MCR of glucose was unchanged, and the decrease in glycemia was explained by a diminution in hepatic glucose output. Glucose turnover obtained by [6.6-2H] dilution analysis exceeded significantly the values obtained by dilution analysis in obese subjects and obese NIDDM patients, but not in controls. This indicates an increased Cori cycle activity in these patients.

  11. Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine

    DEFF Research Database (Denmark)

    Leke, Renata; Bak, Lasse Kristoffer; Anker, Malene

    2011-01-01

    in a mouse neuronal-astrocytic co-culture model of the GABAergic system. We found that 5 mM ammonium chloride affected energy metabolism by increasing the neuronal TCA cycle activity and switching the astrocytic TCA cycle toward synthesis of substrate for glutamine synthesis. Furthermore, ammonia exposure...... enhanced the synthesis and release of alanine. Collectively, our results demonstrate that (1) formation of glutamine is seminal for detoxification of ammonia; (2) neuronal oxidative metabolism is increased in the presence of ammonia; and (3) synthesis and release of alanine is likely to be important......Cerebral hyperammonemia is believed to play a pivotal role in the development of hepatic encephalopathy (HE), a debilitating condition arising due to acute or chronic liver disease. In the brain, ammonia is thought to be detoxified via the activity of glutamine synthetase, an astrocytic enzyme...

  12. The surprising diversity of clostridial hydrogenases: a comparative genomic perspective.

    Science.gov (United States)

    Calusinska, Magdalena; Happe, Thomas; Joris, Bernard; Wilmotte, Annick

    2010-06-01

    Among the large variety of micro-organisms capable of fermentative hydrogen production, strict anaerobes such as members of the genus Clostridium are the most widely studied. They can produce hydrogen by a reversible reduction of protons accumulated during fermentation to dihydrogen, a reaction which is catalysed by hydrogenases. Sequenced genomes provide completely new insights into the diversity of clostridial hydrogenases. Building on previous reports, we found that [FeFe] hydrogenases are not a homogeneous group of enzymes, but exist in multiple forms with different modular structures and are especially abundant in members of the genus Clostridium. This unusual diversity seems to support the central role of hydrogenases in cell metabolism. In particular, the presence of multiple putative operons encoding multisubunit [FeFe] hydrogenases highlights the fact that hydrogen metabolism is very complex in this genus. In contrast with [FeFe] hydrogenases, their [NiFe] hydrogenase counterparts, widely represented in other bacteria and archaea, are found in only a few clostridial species. Surprisingly, a heteromultimeric Ech hydrogenase, known to be an energy-converting [NiFe] hydrogenase and previously described only in methanogenic archaea and some sulfur-reducing bacteria, was found to be encoded by the genomes of four cellulolytic strains: Clostridum cellulolyticum, Clostridum papyrosolvens, Clostridum thermocellum and Clostridum phytofermentans.

  13. Novelty biases attention and gaze in a surprise trial.

    Science.gov (United States)

    Horstmann, Gernot; Herwig, Arvid

    2016-01-01

    While the classical distinction between task-driven and stimulus-driven biasing of attention appears to be a dichotomy at first sight, there seems to be a third category that depends on the contrast or discrepancy between active representations and the upcoming stimulus, and may be termed novelty, surprise, or prediction failure. For previous demonstrations of the discrepancy-attention link, stimulus-driven components (saliency) may have played a decisive role. The present study was conducted to evaluate the discrepancy-attention link in a display where novel and familiar stimuli are equated for saliency. Eye tracking was used to determine fixations on novel and familiar stimuli as a proxy for attention. Results show a prioritization of attention by the novel color, and a de-prioritization of the familiar color, which is clearly present at the second fixation, and spans over the next couple of fixations. Saliency, on the other hand, did not prioritize items in the display. The results thus reinforce the notion that novelty captures and binds attention.

  14. A Well-Known But Still Surprising Generator

    Science.gov (United States)

    Haugland, Ole Anton

    2014-12-01

    The bicycle generator is often mentioned as an example of a method to produce electric energy. It is cheap and easily accessible, so it is a natural example to use in teaching. There are different types, but I prefer the old side-wall dynamo. The most common explanation of its working principle seems to be something like the illustration in Fig. 1. The illustration is taken from a popular textbook in the Norwegian junior high school.1 Typically it is explained as a system of a moving magnet or coils that directly results in a varying magnetic field through the coils. According to Faraday's law a voltage is induced in the coils. Simple and easy! A few times I have had a chance to glimpse into a bicycle generator, and I was somewhat surprised to sense that the magnet rotated parallel to the turns of the coil. How could the flux through the coil change and induce a voltage when the magnet rotated parallel to the turns of the coil? When teaching electromagnetic induction I have showed the students a dismantled generator and asked them how this could work. They naturally found that this was more difficult to understand than the principle illustrated in Fig. 1. Other authors in this journal have discussed even more challenging questions concerning electric generators.2,3

  15. The Kidney's role in glucose balance following partial hepatectomy.

    Science.gov (United States)

    Jones, C E; Koshibu, K; DeCambre, M; Gerich, J E; Bessey, P Q; Krusch, D A

    1998-10-01

    It has long been believed that the liver is the major contributor to glucose balance during fasting and stressful situations. Recently, investigators have implicated the kidney as having a significant contribution to systemic glucose appearance. We studied the relative contributions of the kidney and liver to glucose homeostasis in fasted nonoperated, sham-operated, and 70% hepatectomized rats. Systemic glucose appearance, renal glucose release and uptake, and hepatic glucose release were determined by glucose balance and isotopic dilution techniques. Systemic glucose appearance remained unchanged following hepatectomy. There was a significant output of glucose by the kidney in all groups, accounting for >50% of total glucose appearance. Despite the kidney's appreciable contribution to circulating glucose in the postabsorptive state, renal glucose release was not increased in the hepatectomized rats compared to controls. Total glucose appearance was maintained following hepatectomy by an increase in hepatic glucogenesis. There was a significant increase in the rate of hepatic glucose release from resected rats when normalized to gram of remaining liver (P < 0.001). Despite the substantial amount of renal glucose output in the postabsorptive state, preservation of glucose balance following 70% hepatectomy is accomplished by adaptation in hepatic glucose output.

  16. Enhancement of 4-chlorophenol biodegradation using glucose

    Energy Technology Data Exchange (ETDEWEB)

    Tarighian, Alireza; Hill, Gordon; Headley, John [Division of Environmental Engineering, University of Saskatchewan, 105 Maintenance Road, S7N 5C5, Saskatoon, SK (Canada); Pedras, Soledad [Department of Chemistry, University of Saskatchewan, 110 Science Place, S7N 5C9, Saskatoon, SK (Canada)

    2003-03-01

    Toxic, xenobiotic chemicals present challenging problems for the environment since they are normally resistant to biodegradation. Sometimes it is possible to induce biodegradation activity by the use of growth cosubstrates. In this study, pure solutions and binary mixtures of glucose, phenol and 4-chlorophenol have been metabolized in batch cultures by a pure strain of Pseudomonas putida. Following a lag period during which slow growth and low production of biomass occurred, phenol was metabolized according to the Monod model. Glucose was also metabolized according to the Monod model but exponential growth commenced immediately after inoculation with no noticeable lag phase. Biokinetic behavior for growth on a mixture of phenol and glucose paralleled the behavior on individual substrates with simultaneous consumption of both substrates. 4-chlorophenol was not consumed as a sole substrate by Pseudomonas putida but was consumed as a cometabolite with either glucose or phenol acting as the primary growth cosubstrate. Surprisingly, glucose was found to be the superior growth cosubstrate, suggesting that inexpensive sugars can be used to enhance the biodegradation of chlorophenol-contaminated sites. Glucose and the excreted metabolic products of the biodegradation process, including a bright yellow pigment, demonstrated negligible toxicity towards Artemia salina, unlike the phenol and 4-chlorophenol substrates. (orig.)

  17. Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine.

    Science.gov (United States)

    Leke, Renata; Bak, Lasse K; Anker, Malene; Melø, Torun M; Sørensen, Michael; Keiding, Susanne; Vilstrup, Hendrik; Ott, Peter; Portela, Luis V; Sonnewald, Ursula; Schousboe, Arne; Waagepetersen, Helle S

    2011-04-01

    Cerebral hyperammonemia is believed to play a pivotal role in the development of hepatic encephalopathy (HE), a debilitating condition arising due to acute or chronic liver disease. In the brain, ammonia is thought to be detoxified via the activity of glutamine synthetase, an astrocytic enzyme. Moreover, it has been suggested that cerebral tricarboxylic acid (TCA) cycle metabolism is inhibited and glycolysis enhanced during hyperammonemia. The aim of this study was to characterize the ammonia-detoxifying mechanisms as well as the effects of ammonia on energy-generating metabolic pathways in a mouse neuronal-astrocytic co-culture model of the GABAergic system. We found that 5 mM ammonium chloride affected energy metabolism by increasing the neuronal TCA cycle activity and switching the astrocytic TCA cycle toward synthesis of substrate for glutamine synthesis. Furthermore, ammonia exposure enhanced the synthesis and release of alanine. Collectively, our results demonstrate that (1) formation of glutamine is seminal for detoxification of ammonia; (2) neuronal oxidative metabolism is increased in the presence of ammonia; and (3) synthesis and release of alanine is likely to be important for ammonia detoxification as a supplement to formation of glutamine.

  18. Properties and Surprises of Solar Activity XXIII Cycle

    Science.gov (United States)

    Ishkov, V. N.

    2010-12-01

    The main properties of the 23rd cycle match almost completely those of average-magnitude solar cycles, and some of the features of the cycle may indicate a change in the generation mode of magnetic fields in the solar convection zone. If this is the case, the Sun enters a period of intermediate and weak cycles of solar activity (SA) in terms of the Wolf number, which may last for 3 to 6 solar cycles. The main development stages of solar cycle 23 are the following: minimum of solar cycle 22: April 1996 (W* = 8.0); maximum of the smoothed relative sunspot number: April 2000; global polarity reversal of the general solar magnetic field: July to December 2000; secondary maximum of the relative sunspot number: November 2001; maximum of the 10.7-cm radio flux: February 2002; phase of the cycle maximum: October 1999 to June 2002; beginning of the decrease phase: July 2002; the point of minimum of the current SA cycle: December 2008. Solar cycle 23 has presented two powerful flare-active sunspot groups, in September 2005 and December 2006 (+5.5 and +6.6 years from the maximum) which by flare potential occupy 4th and 20th place among the most flare-active regions for the last four solar cycles. The unprecedented duration of the relative sunspot numbers fall that has led to already record duration of the last solar cycle among authentic cycles (since 1849) became the next surprise of development of solar activity during the last cycle. The phase of the minimum began in May 2005 and lasted for 4.5 years. Thus, the new solar cycle 24 has begun in January 2009.

  19. Dracunculiasis eradication - Finishing the job before surprises arise

    Institute of Scientific and Technical Information of China (English)

    Benjamin Jelle Visser

    2012-01-01

    ABSTRACT Dracunculiasis(Guinea worm disease) is a preventable waterborne parasitic disease that affects the poorest people living in remote rural areas in sub-SaharanAfrican countries, who do not have access to safe drinking water.The Guinea Worm Eradication Program, a25-year old campaign to rid the world ofGuineaWorm disease has now reached its final stage accelerating to zero cases in all endemic countries.During the19th and20th centuries, dracunculiasis was common in much ofSouthernAsia and theAfrican continent.The overall number of cases has been reduced tremendously by≥99%, from the3.32 million cases estimated to have occurred in1986 inAfrica to only1797 cases reported in2010 reported in only five countries(Sudan,Mali,Ethiopia,Chad andGhana) andAsia free of the disease.This achievement is unique in its kind - the only previously eradicated disease is smallpox, a viral infection for which vaccination was possible - and it has been achieved through primary community-based prevention and health education programs.Most efforts need to be taken in two countries,SouthSudan(comprising94% or1698 out of1797 of the cases reported world-wide in2010) andMali because of frequent movements of nomads in a vast area inside and outsideMali’s borders.All factors favourable to dracunculiasis eradication are available including adequate financial resources, community and political support and high levels of advocacy.Thus there is no reason that this disabling parasitic disease cannot be eradicated soon before surprises arise such as new civil conflicts in currently endemic countries.

  20. A Dietary Supplement Containing Cinnamon, Chromium and Carnosine Decreases Fasting Plasma Glucose and Increases Lean Mass in Overweight or Obese Pre-Diabetic Subjects: A Randomized, Placebo-Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Yuejun Liu

    Full Text Available Preventing or slowing the progression of prediabetes to diabetes is a major therapeutic issue.Our aim was to evaluate the effects of 4-month treatment with a dietary supplement containing cinnamon, chromium and carnosine in moderately obese or overweight pre-diabetic subjects, the primary outcome being change in fasting plasma glucose (FPG level. Other parameters of plasma glucose homeostasis, lipid profile, adiposity and inflammatory markers were also assessed.In a randomized, double-blind, placebo-controlled study, 62 subjects with a FPG level ranging from 5.55 to 7 mmol/L and a body mass index ≥ 25 kg/m(2, unwilling to change their dietary and physical activity habits, were allocated to receive a 4-month treatment with either 1.2 g/day of the dietary supplement or placebo. Patients were followed up until 6 months post-randomization.Four-month treatment with the dietary supplement decreased FPG compared to placebo (-0.24 ± 0.50 vs +0.12 ± 0.59 mmol/L, respectively, p = 0.02, without detectable significant changes in HbA1c. Insulin sensitivity markers, plasma insulin, plasma lipids and inflammatory markers did not differ between the treatment groups. Although there were no significant differences in changes in body weight and energy or macronutrient intakes between the two groups, fat-free mass (% increased with the dietary supplement compared to placebo (p = 0.02. Subjects with a higher FPG level and a milder inflammatory state at baseline benefited most from the dietary supplement.Four-month treatment with a dietary supplement containing cinnamon, chromium and carnosine decreased FPG and increased fat-free mass in overweight or obese pre-diabetic subjects. These beneficial effects might open up new avenues in the prevention of diabetes.ClinicalTrials.gov NCT01530685.

  1. Correlation between blood glucose levels and salivary glucose levels with oral ulcer in diabetic patients

    Directory of Open Access Journals (Sweden)

    Fildzah Rahman

    2016-06-01

    Full Text Available Diabetes Mellitus (DM is a syndrome in metabolism of carbohydrates which indicated by the increased level of blood glucose and also may increase salivary glucose levels. Oral ulcer has been frequently recognized in diabetic patients, which can be due to increased glucose in oral fluids and immune dysfunction. This study aimed to determine the correlation of blood glucose levels and salivary glucose levels with oral ulcer in diabetic patients. Analytic observational study was carried out through the determination of blood glucose levels just by way of strip using a glucometer and salivary glucose levels with the method "GOD-PAP test enzymatic colorimetric". Oral ulcer was determined in presenting ulcer on 30 patients with DM. The results showed r = 0.228, which is higher salivary glucose levels followed by high levels of blood glucose, and intraoral examination of oral ulcer found in the whole sample and the most location commonly found in buccal mucosa and lingual. It was concluded that there is a correlation between blood glucose levels and salivary glucose levels, and glucose levels affect the occurrence of oral ulcer in patients with DM

  2. Glucose metabolism in rat retinal pigment epithelium.

    Science.gov (United States)

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2006-01-01

    The retinal pigment epithelium (RPE) is the major transport pathway for exchange of metabolites and ions between choroidal blood supply and the neural retina. To gain insight into the mechanisms controlling glucose metabolism in RPE and its possible relationship to retinopathy, we studied the influence of different glucose concentrations on glycogen and lactate levels and CO(2) production in RPE from normal and streptozotocin-treated diabetic rats. Incubation of normal RPE in the absence of glucose caused a decrease in lactate production and glycogen content. In normal RPE, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO(2) yield, as well as reduction in lactate and glycogen production. In RPE from diabetic rats glucose accumulation did not increase in the presence of high glucose substrate, but it showed a four- and a seven-fold increase in CO(2) production through the mitochondrial and pentose phosphate pathways, respectively. We found high glycogen levels in RPE which can be used as an energy reserve for RPE itself and/or neural retina. Findings further show that the RPE possesses a high oxidative capacity. The large increase in glucose shunting to the pentose phosphate pathway in diabetic retina exposed to high glucose suggests a need for reducing capacity, consistent with increased oxidative stress.

  3. Mechanical stress and glucose concentration modulate glucose transport in cultured rat podocytes.

    Science.gov (United States)

    Lewko, Barbara; Bryl, Ewa; Witkowski, Jacek M; Latawiec, Elzbieta; Angielski, Stefan; Stepinski, Jan

    2005-02-01

    Recent studies show that mechanical stress modifies both morphology and protein expression in podocytes. Ambient glucose is another factor modulating protein synthesis in these cells. In diabetes, podocytes experience elevated glucose concentrations as well as mechanical strain generated by high intracapillary pressures. Both these factors are responsible for podocyte injury, leading to impairment of kidney glomerular function. In the present study, we examined the effects of glucose concentration and mechanical stress on glucose uptake in podocytes. Following a 24 h pre-incubation in low (2.5 mM, LG), normal (5.6 mM, NG) or high (30 mM, HG) glucose media, cultured rat podocytes were exposed to 4 h mechanical stress. We used the labelled glucose analogue, [3H]2-deoxy-D-glucose, to measure glucose uptake. The distribution of facilitative glucose transporters GLUT2 and GLUT4 was assessed by flow cytometry. In the control (static) cells, glucose uptake was similar in the three glucose groups. In mechanically stressed podocytes, glucose uptake increased 2-fold in the LG and NG groups but increased 3-fold in the HG group. In the NG cells, mechanical load increased the membrane expression of GLUT2 and reduced the membrane-bound GLUT4. In stretched HG cells, the membrane expression of both GLUT2 and GLUT4 was decreased. High glucose decreased the plasma membrane GLUT2 content in the stretched cells, whereas both static and stretched podocytes showed an elevation in GLUT4. Mechanical stress potentiated glucose uptake in podocytes and this effect was enhanced by high ambient glucose. The decreased expression of GLUT2 and GLUT4 on the surface of stretched cells suggests that the activity of other glucose transporters may be regulated by mechanical stress in podocytes.

  4. Transgenic mice overexpressing renin exhibit glucose intolerance and diet-genotype interactions

    Directory of Open Access Journals (Sweden)

    Sarah J. Fletcher

    2013-01-01

    Full Text Available Numerous animal and clinical investigations have pointed to a potential role of the renin-angiotensin system (RAS in the development of insulin resistance and diabetes in conditions of expanded fat mass. However, the mechanisms underlying this association remain unclear. We used a transgenic mouse model overexpressing renin in the liver (RenTgMK to examine the effects of chronic activation of RAS on adiposity and insulin sensitivity. Hepatic overexpression of renin resulted in constitutively elevated plasma angiotensin II (4-6-fold increase vs. wild type. Surprisingly, RenTgMK mice developed glucose intolerance despite low levels of adiposity and insulinemia. The transgenics also had lower plasma triglyceride levels. Glucose intolerance in transgenic mice fed a low-fat diet was comparable to that observed in high fat-fed wild type mice. Glucose intolerance was exacerbated by high-fat feeding, only in female transgenic mice. These studies demonstrate that overexpression of renin and associated hyperangiotensinemia impair glucose tolerance in a diet-dependent manner and further support a consistent role of RAS in the pathogenesis of diabetes and insulin resistance, independent of changes in fat mass.

  5. Activation of the cAMP-PKA pathway Antagonizes Metformin Suppression of Hepatic Glucose Production.

    Science.gov (United States)

    He, Ling; Chang, Evan; Peng, Jinghua; An, Hongying; McMillin, Sara M; Radovick, Sally; Stratakis, Constantine A; Wondisford, Fredric E

    2016-05-13

    Metformin is the most commonly prescribed oral anti-diabetic agent worldwide. Surprisingly, about 35% of diabetic patients either lack or have a delayed response to metformin treatment, and many patients become less responsive to metformin over time. It remains unknown how metformin resistance or insensitivity occurs. Recently, we found that therapeutic metformin concentrations suppressed glucose production in primary hepatocytes through AMPK; activation of the cAMP-PKA pathway negatively regulates AMPK activity by phosphorylating AMPKα subunit at Ser-485, which in turn reduces AMPK activity. In this study, we find that metformin failed to suppress glucose production in primary hepatocytes with constitutively activated PKA and did not improve hyperglycemia in mice with hyperglucagonemia. Expression of the AMPKα1(S485A) mutant, which is unable to be phosphorylated by PKA, increased both AMPKα activation and the suppression of glucose production in primary hepatocytes treated with metformin. Intriguingly, salicylate/aspirin prevents the phosphorylation of AMPKα at Ser-485, blocks cAMP-PKA negative regulation of AMPK, and improves metformin resistance. We propose that aspirin/salicylate may augment metformin's hepatic action to suppress glucose production.

  6. Stars Form Surprisingly Close to Milky Way's Black Hole

    Science.gov (United States)

    2005-10-01

    The supermassive black hole at the center of the Milky Way has surprisingly helped spawn a new generation of stars, according to observations from NASA's Chandra X-ray Observatory. This novel mode of star formation may solve several mysteries about the supermassive black holes that reside at the centers of nearly all galaxies. "Massive black holes are usually known for violence and destruction," said Sergei Nayakshin of the University of Leicester, United Kingdom, and coauthor of a paper on this research in an upcoming issue of the Monthly Notices of the Royal Astronomical Society. "So it's remarkable that this black hole helped create new stars, not just destroy them." Black holes have earned their fearsome reputation because any material -- including stars -- that falls within the so-called event horizon is never seen again. However, these new results indicate that the immense disks of gas known to orbit many black holes at a "safe" distance from the event horizon can help nurture the formation of new stars. Animation of Stars Forming Around Black Hole Animation of Stars Forming Around Black Hole This conclusion came from new clues that could only be revealed in X-rays. Until the latest Chandra results, astronomers have disagreed about the origin of a mysterious group of massive stars discovered by infrared astronomers to be orbiting less than a light year from the Milky Way's central black hole, a.k.a. Sagittarius A*, or Sgr A*. At such close distances to Sgr A*, the standard model for star formation predicts that gas clouds from which stars form should have been ripped apart by tidal forces from the black hole. Two models to explain this puzzle have been proposed. In the disk model, the gravity of a dense disk of gas around Sgr A* offsets the tidal forces and allows stars to form; in the migration model, the stars formed in a star cluster far away from the black hole and migrated in to form the ring of massive stars. The migration scenario predicts about a

  7. Transgenic Rescue of Adipocyte Glucose-dependent Insulinotropic Polypeptide Receptor Expression Restores High Fat Diet-induced Body Weight Gain

    DEFF Research Database (Denmark)

    Ugleholdt, Randi; Pedersen, Jens; Bassi, Maria Rosaria

    2011-01-01

    to adipose tissue have a similar high fat diet -induced body weight gain as control mice, significantly greater than the weight gain in mice with a general ablation of the receptor. Surprisingly, this difference was due to an increase in total lean body mass rather than a gain in total fat mass......The glucose-dependent insulinotropic polypeptide receptor (GIPr) has been implicated in high fat diet-induced obesity and is proposed as an anti-obesity target despite an uncertainty regarding the mechanism of action. To independently investigate the contribution of the insulinotropic effects...

  8. Long-term intermittent feeding, but not caloric restriction, leads to redox imbalance, insulin receptor nitration, and glucose intolerance.

    Science.gov (United States)

    Cerqueira, Fernanda M; da Cunha, Fernanda M; Caldeira da Silva, Camille C; Chausse, Bruno; Romano, Renato L; Garcia, Camila C M; Colepicolo, Pio; Medeiros, Marisa H G; Kowaltowski, Alicia J

    2011-10-01

    Calorie restriction is a dietary intervention known to improve redox state, glucose tolerance, and animal life span. Other interventions have been adopted as study models for caloric restriction, including nonsupplemented food restriction and intermittent, every-other-day feedings. We compared the short- and long-term effects of these interventions to ad libitum protocols and found that, although all restricted diets decrease body weight, intermittent feeding did not decrease intra-abdominal adiposity. Short-term calorie restriction and intermittent feeding presented similar results relative to glucose tolerance. Surprisingly, long-term intermittent feeding promoted glucose intolerance, without a loss in insulin receptor phosphorylation. Intermittent feeding substantially increased insulin receptor nitration in both intra-abdominal adipose tissue and muscle, a modification associated with receptor inactivation. All restricted diets enhanced nitric oxide synthase levels in the insulin-responsive adipose tissue and skeletal muscle. However, whereas calorie restriction improved tissue redox state, food restriction and intermittent feedings did not. In fact, long-term intermittent feeding resulted in largely enhanced tissue release of oxidants. Overall, our results show that restricted diets are significantly different in their effects on glucose tolerance and redox state when adopted long-term. Furthermore, we show that intermittent feeding can lead to oxidative insulin receptor inactivation and glucose intolerance.

  9. Carbon Dioxide: Surprising Effects on Decision Making and Neurocognitive Performance

    Science.gov (United States)

    James, John T.

    2013-01-01

    The occupants of modern submarines and the International Space Station (ISS) have much in common as far as their air quality is concerned. Air is polluted by materials offgassing, use of utility compounds, leaks of systems chemicals, and anthropogenic sources. The primary anthropogenic compound of concern to submariners and astronauts has been carbon dioxide (CO2). NASA and the US Navy rely on the National Research Council Committee on Toxicology (NRC-COT) to help formulate exposure levels to CO2 that are thought to be safe for exposures of 3-6 months. NASA calls its limits Spacecraft Maximum Allowable Concentrations (SMACs). Years of experience aboard the ISS and a recent publication on deficits in decision making in ground-based subjects exposed briefly to 0.25% CO2 suggest that exposure levels that have been presumed acceptable to preserve health and performance need to be reevaluated. The current CO2 exposure limits for 3-6 months set by NASA and the UK Navy are 0.7%, and the limit for US submariners is 0.5%, although the NRC-COT recommended a 90-day level of 0.8% as safe a few years ago. NASA has set a 1000-day SMAC at 0.5% for exploration-class missions. Anecdotal experience with ISS operations approaching the current 180-day SMAC of 0.7% suggest that this limit is too high. Temporarily, NASA has limited exposures to 0.5% until further peer-reviewed data become available. In the meantime, a study published last year in the journal Environmental Health Perspectives (Satish U, et al. 2012) demonstrated that complexdecision- making performance is somewhat affected at 0.1% CO2 and becomes "dysfunctional" for at least half of the 9 indices of performance at concentrations approaching 0.25% CO2. The investigators used the Strategic Management Simulation (SMS) method of testing for decisionmaking ability, and the results were so surprising to the investigators that they declared that their findings need to be independently confirmed. NASA has responded to the

  10. Are seismic hazard assessment errors and earthquake surprises unavoidable?

    Science.gov (United States)

    Kossobokov, Vladimir

    2013-04-01

    Why earthquake occurrences bring us so many surprises? The answer seems evident if we review the relationships that are commonly used to assess seismic hazard. The time-span of physically reliable Seismic History is yet a small portion of a rupture recurrence cycle at an earthquake-prone site, which makes premature any kind of reliable probabilistic statements about narrowly localized seismic hazard. Moreover, seismic evidences accumulated to-date demonstrate clearly that most of the empirical relations commonly accepted in the early history of instrumental seismology can be proved erroneous when testing statistical significance is applied. Seismic events, including mega-earthquakes, cluster displaying behaviors that are far from independent or periodic. Their distribution in space is possibly fractal, definitely, far from uniform even in a single segment of a fault zone. Such a situation contradicts generally accepted assumptions used for analytically tractable or computer simulations and complicates design of reliable methodologies for realistic earthquake hazard assessment, as well as search and definition of precursory behaviors to be used for forecast/prediction purposes. As a result, the conclusions drawn from such simulations and analyses can MISLEAD TO SCIENTIFICALLY GROUNDLESS APPLICATION, which is unwise and extremely dangerous in assessing expected societal risks and losses. For example, a systematic comparison of the GSHAP peak ground acceleration estimates with those related to actual strong earthquakes, unfortunately, discloses gross inadequacy of this "probabilistic" product, which appears UNACCEPTABLE FOR ANY KIND OF RESPONSIBLE SEISMIC RISK EVALUATION AND KNOWLEDGEABLE DISASTER PREVENTION. The self-evident shortcomings and failures of GSHAP appeals to all earthquake scientists and engineers for an urgent revision of the global seismic hazard maps from the first principles including background methodologies involved, such that there becomes: (a) a

  11. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day ... DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing ...

  12. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day ... DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing ...

  13. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that helps red ...

  14. Your Glucose Meter

    Science.gov (United States)

    ... Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco ... Tips for Testing Your Blood Sugar and Caring for Your Meter Glucose meters test and record how much sugar (called glucose) is in your ...

  15. Glucose sensing and signalling; regulation of intestinal glucose transport.

    Science.gov (United States)

    Shirazi-Beechey, S P; Moran, A W; Batchelor, D J; Daly, K; Al-Rammahi, M

    2011-05-01

    Epithelial cells lining the inner surface of the intestinal epithelium are in direct contact with a lumenal environment that varies dramatically with diet. It has long been suggested that the intestinal epithelium can sense the nutrient composition of lumenal contents. It is only recently that the nature of intestinal nutrient-sensing molecules and underlying mechanisms have been elucidated. There are a number of nutrient sensors expressed on the luminal membrane of endocrine cells that are activated by various dietary nutrients. We showed that the intestinal glucose sensor, T1R2+T1R3 and the G-protein, gustducin are expressed in endocrine cells. Eliminating sweet transduction in mice in vivo by deletion of either gustducin or T1R3 prevented dietary monosaccharide- and artificial sweetener-induced up-regulation of the Na+/glucose cotransporter, SGLT1 observed in wild-type mice. Transgenic mice, lacking gustducin or T1R3 had deficiencies in secretion of glucagon-like peptide 1 (GLP-1) and, glucose-dependent insulinotrophic peptide (GIP). Furthermore, they had an abnormal insulin profile and prolonged elevation of postprandial blood glucose in response to orally ingested carbohydrates. GIP and GLP-1 increase insulin secretion, while glucagon-like peptide 2 (GLP-2) modulates intestinal growth, blood flow and expression of SGLT1. The receptor for GLP-2 resides in enteric neurons and not in any surface epithelial cells, suggesting the involvement of the enteric nervous system in SGLT1 up-regulation. The accessibility of the glucose sensor and the important role that it plays in regulation of intestinal glucose absorption and glucose homeostasis makes it an attractive nutritional and therapeutic target for manipulation.

  16. Glucose Transporters in Cardiac Metabolism and Hypertrophy

    Science.gov (United States)

    Shao, Dan; Tian, Rong

    2016-01-01

    The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions. PMID:26756635

  17. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical term for high blood glucose (blood sugar). High blood glucose happens when the body has too little insulin or when the body can't use insulin properly. What Causes Hyperglycemia? A number of things can cause hyperglycemia: ...

  18. Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity.

    Science.gov (United States)

    Park, Jiyoung; Rho, Ho Kyung; Kim, Kang Ho; Choe, Sung Sik; Lee, Yun Sok; Kim, Jae Bum

    2005-06-01

    Glucose-6-phosphate dehydrogenase (G6PD) produces cellular NADPH, which is required for the biosynthesis of fatty acids and cholesterol. Although G6PD is required for lipogenesis, it is poorly understood whether G6PD in adipocytes is involved in energy homeostasis, such as lipid and glucose metabolism. We report here that G6PD plays a role in adipogenesis and that its increase is tightly associated with the dysregulation of lipid metabolism and insulin resistance in obesity. We observed that the enzymatic activity and expression levels of G6PD were significantly elevated in white adipose tissues of obese models, including db/db, ob/ob, and diet-induced obesity mice. In 3T3-L1 cells, G6PD overexpression stimulated the expression of most adipocyte marker genes and elevated the levels of cellular free fatty acids, triglyceride, and FFA release. Consistently, G6PD knockdown via small interfering RNA attenuated adipocyte differentiation with less lipid droplet accumulation. Surprisingly, the expression of certain adipocytokines such as tumor necrosis factor alpha and resistin was increased, whereas that of adiponectin was decreased in G6PD overexpressed adipocytes. In accordance with these results, overexpression of G6PD impaired insulin signaling and suppressed insulin-dependent glucose uptake in adipocytes. Taken together, these data strongly suggest that aberrant increase of G6PD in obese and/or diabetic subjects would alter lipid metabolism and adipocytokine expression, thereby resulting in failure of lipid homeostasis and insulin resistance in adipocytes.

  19. Spectrophotometric Assay of Immobilized Glucose Oxidase

    Directory of Open Access Journals (Sweden)

    Nojan Noorbehesht

    2016-06-01

    Full Text Available Enzyme results in change the substrate of product. Each enzyme may act on specific substrates, resulting in product or different products. The enzyme glucose oxidase (GOX is a bio catalyst. It accelerates the process of transforming glucose into hydrogen peroxide (H2O2 . These enzymes are used in the chemical industry, food industry, cosmetics and kits for diagnosis of glucose. There are many researches about immobilizations of Glucose Oxide to increase specifications such as repeated use, recovery, stability, shelf life and other features In this work, glucose oxidase enzyme using covalent bonding is placed on the carrier of carbon nanotubes. In this study, multi-walled carbon nanotubes have been used as adsorbents. Also, carbon nanotubes have been functionalized by sulfuric acid and nitric acid with a high concentration. Glucose oxidase is a biological biocatalyst enzyme. It accelerates changing glucose to H2O2. This enzyme is used in the chemical industry, food industry, cosmetics and glucose diagnostic kits. For example, as a result of ongoing research working focuses on the development of glucose biosensors, GOX in practice as standard enzyme has been revealed for immobilization of oxidative enzyme.GOX correct fixation on the MWNTs carrier is a way to reuse enzyme and miniature of biosensor devices and structures. In this study, a spectrophotometer was used to determine the absorbance of the enzyme glucose oxidase (GOX to review its activities after stabilizing the carbon nanotubes.

  20. Supermagnetic Neutron Star Surprises Scientists, Forces Revision of Theories

    Science.gov (United States)

    2006-08-01

    magnetars because their magnetic fields are 100-1,000 times stronger than those of typical pulsars. It is the decay of those incredibly strong fields that powers their strange X-ray emission. "The magnetic field from a magnetar would make an aircraft carrier spin around and point north quicker than a compass needle moves on Earth," said David Helfand, of Columbia University. A magnetar's field is 1,000 trillion times stronger than Earth's, Helfand pointed out. The new object -- named XTE J1810-197 -- was first discovered by NASA's Rossi X-ray Timing Explorer when it emitted a strong burst of X-rays in 2003. While the X-rays were fading in 2004, Jules Halpern of Columbia University and collaborators identified the magnetar as a radio-wave emitter using the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope in New Mexico. Any radio emission is highly unusual for a magnetar. Because magnetars had not been seen to regularly emit radio waves, the scientists presumed that the radio emission was caused by a cloud of particles thrown off the neutron star at the time of its X-ray outburst, an idea they soon would realize was wrong. With knowledge that the magnetar emitted some form of radio waves, Camilo and his colleagues observed it with the Parkes radio telescope in Australia in March and immediately detected astonishingly strong radio pulsations every 5.5 seconds, corresponding to the previously-determined rotation rate of the neutron star. As they continued to observe XTE J1810-197, the scientists got more surprises. Whereas most pulsars become weaker at higher radio frequencies, XTE J1810-197 does not, remaining a strong emitter at frequencies up to 140 GHz, the highest frequency ever detected from a radio pulsar. In addition, unlike normal pulsars, the object's radio emission fluctuates in strength from day to day, and the shape of the pulsations changes as well. These variations likely indicate that the magnetic fields around the pulsar are changing

  1. Chandra Finds Surprising Black Hole Activity In Galaxy Cluster

    Science.gov (United States)

    2002-09-01

    Scientists at the Carnegie Observatories in Pasadena, California, have uncovered six times the expected number of active, supermassive black holes in a single viewing of a cluster of galaxies, a finding that has profound implications for theories as to how old galaxies fuel the growth of their central black holes. The finding suggests that voracious, central black holes might be as common in old, red galaxies as they are in younger, blue galaxies, a surprise to many astronomers. The team made this discovery with NASA'S Chandra X-ray Observatory. They also used Carnegie's 6.5-meter Walter Baade Telescope at the Las Campanas Observatory in Chile for follow-up optical observations. "This changes our view of galaxy clusters as the retirement homes for old and quiet black holes," said Dr. Paul Martini, lead author on a paper describing the results that appears in the September 10 issue of The Astrophysical Journal Letters. "The question now is, how do these black holes produce bright X-ray sources, similar to what we see from much younger galaxies?" Typical of the black hole phenomenon, the cores of these active galaxies are luminous in X-ray radiation. Yet, they are obscured, and thus essentially undetectable in the radio, infrared and optical wavebands. "X rays can penetrate obscuring gas and dust as easily as they penetrate the soft tissue of the human body to look for broken bones," said co-author Dr. Dan Kelson. "So, with Chandra, we can peer through the dust and we have found that even ancient galaxies with 10-billion-year-old stars can have central black holes still actively pulling in copious amounts of interstellar gas. This activity has simply been hidden from us all this time. This means these galaxies aren't over the hill after all and our theories need to be revised." Scientists say that supermassive black holes -- having the mass of millions to billions of suns squeezed into a region about the size of our Solar System -- are the engines in the cores of

  2. Trait Anxiety Is Associated with Negative Interpretations When Resolving Valence Ambiguity of Surprised Faces.

    Science.gov (United States)

    Park, Gewnhi; Vasey, Michael W; Kim, Grace; Hu, Dixie D; Thayer, Julian F

    2016-01-01

    The current research examines whether trait anxiety is associated with negative interpretation bias when resolving valence ambiguity of surprised faces. To further isolate the neuro-cognitive mechanism, we presented angry, happy, and surprised faces at broad spatial frequency (BSF), high spatial frequency (HSF), and low spatial frequency (LSF) and asked participants to determine the valence of each face. High trait anxiety was associated with more negative interpretations of BSF (i.e., intact) surprised faces. However, the modulation of trait anxiety on the negative interpretation of surprised faces disappeared at HSF and LSF. The current study provides evidence that trait anxiety modulates negative interpretations of BSF surprised faces. However, the negative interpretation of LSF surprised faces appears to be a robust default response that occurs regardless of individual differences in trait anxiety.

  3. Trait anxiety is associated with negative interpretations when resolving valence ambiguity of surprised faces

    Directory of Open Access Journals (Sweden)

    Gewnhi Park

    2016-08-01

    Full Text Available The current research examines whether trait anxiety is associated with negative interpretation bias when resolving valence ambiguity of surprised faces. To further isolate the neuro-cognitive mechanism, we presented angry, happy, and surprised faces at broad, high, and low spatial frequency and asked participants to determine the valence of each face. High trait anxiety was associated with more negative interpretations of broad spatial frequency (i.e., intact surprised faces. However, the modulation of trait anxiety on the negative interpretation of surprised faces disappeared at high and low spatial frequencies. The current study provides evidence that trait anxiety modulates negative interpretations of broad spatial frequency surprised faces. However, the negative interpretation of low spatial frequency surprised faces appears to be a robust default response that occurs regardless of individual differences in trait anxiety.

  4. Hepatic carboxylesterase 1 is induced by glucose and regulates postprandial glucose levels.

    Directory of Open Access Journals (Sweden)

    Jiesi Xu

    Full Text Available Metabolic syndrome, characterized by obesity, hyperglycemia, dyslipidemia and hypertension, increases the risks for cardiovascular disease, diabetes and stroke. Carboxylesterase 1 (CES1 is an enzyme that hydrolyzes triglycerides and cholesterol esters, and is important for lipid metabolism. Our previous data show that over-expression of mouse hepatic CES1 lowers plasma glucose levels and improves insulin sensitivity in diabetic ob/ob mice. In the present study, we determined the physiological role of hepatic CES1 in glucose homeostasis. Hepatic CES1 expression was reduced by fasting but increased in diabetic mice. Treatment of mice with glucose induced hepatic CES1 expression. Consistent with the in vivo study, glucose stimulated CES1 promoter activity and increased acetylation of histone 3 and histone 4 in the CES1 chromatin. Knockdown of ATP-citrate lyase (ACL, an enzyme that regulates histone acetylation, abolished glucose-mediated histone acetylation in the CES1 chromatin and glucose-induced hepatic CES1 expression. Finally, knockdown of hepatic CES1 significantly increased postprandial blood glucose levels. In conclusion, the present study uncovers a novel glucose-CES1-glucose pathway which may play an important role in regulating postprandial blood glucose levels.

  5. Trait Anxiety Is Associated with Negative Interpretations When Resolving Valence Ambiguity of Surprised Faces

    OpenAIRE

    Gewnhi Park; Vasey, Michael W.; Grace Kim; Dixie D Hu; Thayer, Julian F

    2016-01-01

    The current research examines whether trait anxiety is associated with negative interpretation bias when resolving valence ambiguity of surprised faces. To further isolate the neuro-cognitive mechanism, we presented angry, happy, and surprised faces at broad, high, and low spatial frequency and asked participants to determine the valence of each face. High trait anxiety was associated with more negative interpretations of broad spatial frequency (i.e., intact) surprised faces. However, the mo...

  6. Catalytic site inhibition of insulin-degrading enzyme by a small molecule induces glucose intolerance in mice.

    Science.gov (United States)

    Deprez-Poulain, Rebecca; Hennuyer, Nathalie; Bosc, Damien; Liang, Wenguang G; Enée, Emmanuelle; Marechal, Xavier; Charton, Julie; Totobenazara, Jane; Berte, Gonzague; Jahklal, Jouda; Verdelet, Tristan; Dumont, Julie; Dassonneville, Sandrine; Woitrain, Eloise; Gauriot, Marion; Paquet, Charlotte; Duplan, Isabelle; Hermant, Paul; Cantrelle, François-Xavier; Sevin, Emmanuel; Culot, Maxime; Landry, Valerie; Herledan, Adrien; Piveteau, Catherine; Lippens, Guy; Leroux, Florence; Tang, Wei-Jen; van Endert, Peter; Staels, Bart; Deprez, Benoit

    2015-09-23

    Insulin-degrading enzyme (IDE) is a protease that cleaves insulin and other bioactive peptides such as amyloid-β. Knockout and genetic studies have linked IDE to Alzheimer's disease and type-2 diabetes. As the major insulin-degrading protease, IDE is a candidate drug target in diabetes. Here we have used kinetic target-guided synthesis to design the first catalytic site inhibitor of IDE suitable for in vivo studies (BDM44768). Crystallographic and small angle X-ray scattering analyses show that it locks IDE in a closed conformation. Among a panel of metalloproteases, BDM44768 selectively inhibits IDE. Acute treatment of mice with BDM44768 increases insulin signalling and surprisingly impairs glucose tolerance in an IDE-dependent manner. These results confirm that IDE is involved in pathways that modulate short-term glucose homeostasis, but casts doubt on the general usefulness of the inhibition of IDE catalytic activity to treat diabetes.

  7. [Glucose Metabolism: Stress Hyperglycemia and Glucose Control].

    Science.gov (United States)

    Tanaka, Katsuya; Tsutsumi, Yasuo M

    2016-05-01

    It is important for the anesthesiologists to understand pathophysiology of perioperative stress hyperglycemia, because it offers strategies for treatment of stress hyperglycemia. The effect of glucose tolerance is different in the choice of the anesthetic agent used in daily clinical setting. Specifically, the volatile anesthetics inhibit insulin secretion after glucose load and affects glucose tolerance. During minor surgery by the remifentanil anesthesia, the stress reaction is hard to be induced, suggesting that we should consider low-dose glucose load. Finally it is necessary to perform the glycemic control of the patients who fell into stress hyperglycemia depending on the individual patient. However, there are a lot of questions to be answered in the future. The prognosis of the perioperative patients is more likely to be greatly improved if we can control stress hyperglycemia.

  8. Glucose-induced insulin resistance of skeletal-muscle glucose transport and uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, B F; Hansen, S A

    1988-01-01

    in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure......, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.......The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing...

  9. Inter-hospital transport of critically ill patients; expect surprises

    NARCIS (Netherlands)

    Droogh, Joep M.; Smit, Marije; Hut, Jakob; de Vos, Ronald; Ligtenberg, Jack J. M.; Zijlstra, Jan G.

    2012-01-01

    Introduction: Inter-hospital transport of critically ill patients is increasing. When performed by specialized retrieval teams there are less adverse events compared to transport by ambulance. These transports are performed with technical equipment also used in an Intensive Care Unit (ICU). As a

  10. The Surprisingly Modest Relationship between SES and Educational Achievement

    Science.gov (United States)

    Harwell, Michael; Maeda, Yukiko; Bishop, Kyoungwon; Xie, Aolin

    2017-01-01

    Measures of socioeconomic status (SES) are routinely used in analyses of achievement data to increase statistical power, statistically control for the effects of SES, and enhance causality arguments under the premise that the SES-achievement relationship is moderate to strong. Empirical evidence characterizing the strength of the SES-achievement…

  11. New Technology's Surprising Security Threats. Building Digital Libraries

    Science.gov (United States)

    Huwe, Terence

    2005-01-01

    In recent years, security issues have increasingly come to dominate the technological development process--although still in a more reactive than proactive mode. It now seems more important than ever to monitor security trends and policy developments, especially if technology is regarded as a potential community builder. This article suggests…

  12. Latin America: how a region surprised the experts.

    Science.gov (United States)

    De Sherbinin, A

    1993-02-01

    In 1960-1970, family planning specialists and demographers worried that poverty, limited education, Latin machismo, and strong catholic ideals would obstruct family planning efforts to reduce high fertility in Latin America. It had the highest annual population growth rate in the world (2.8%), which would increase the population 2-fold in 25 years. Yet, the UN's 1992 population projection for Latin America and the Caribbean in the year 2000 was about 20% lower than its 1963 projection (just over 500 vs. 638 million). Since life expectancy increased simultaneously from 57 to 68 years, this reduced projection was caused directly by a large decline in fertility from 5.9 to 3. A regression analysis of 11 Latin American and Caribbean countries revealed that differences in the contraceptive prevalence rates accounted for 90% of the variation in the total fertility rate between countries. Thus, contraception played a key role in the fertility decline. The second most significant determinant of fertility decline was an increase in the average age at first marriage from about 20 to 23 years. Induced abortion and breast feeding did not contribute significantly to fertility decline. The major socioeconomic factors responsible for the decline included economic development and urbanization, resulting in improvements in health care, reduced infant and child mortality, and increases in female literacy, education, and labor force participation. Public and private family planning programs also contributed significantly to the decline. They expanded from cities to remote rural areas, thereby increasing access to contraception. By the early 1990s, Brazil, Mexico, and Colombia had among the lowest levels of unmet need (13-24%) in developing countries. Other key factors of fertility decline were political commitment, strong communication efforts, and stress on quality services. Latin America provides hope to other regions where religion and culture promote a large family size.

  13. Paroxysmal atrial fibrillation occurs often in cryptogenic ischaemic stroke. Final results from the SURPRISE study

    DEFF Research Database (Denmark)

    Christensen, Louisa; Krieger, D W; Højberg, S;

    2014-01-01

    BACKGROUND AND PURPOSE: Atrial fibrillation (AF) increases the risk of stroke fourfold and is associated with a poor clinical outcome. Despite work-up in compliance with guidelines, up to one-third of patients have cryptogenic stroke (CS). The prevalence of asymptomatic paroxysmal atrial...... fibrillation (PAF) in CS remains unknown. The SURPRISE project aimed at determining this rate using long-term cardiac monitoring. METHODS: Patients with CS after protocolled work-up including electrocardiography (ECG) and telemetry were included after informed consent. An implantable loop recorder (ILR...... patients (16.1%). In three patients PAF was detected by other methods before or after monitoring and was undiscovered due to device sensitivity in one case. The first event of PAF was documented at a mean of 109 days (SD ±48) after stroke onset. PAF was asymptomatic in all cases and occurred in episodes...

  14. Glucose-dependent insulinotropic polypeptide

    DEFF Research Database (Denmark)

    Christensen, Mikkel Bring

    2016-01-01

    glucagon secretion are essential contributors to the hyperglycaemia that characterise patients with type 2 diabetes. Moreover, the near absence of a well-timed glucagon response contributes to an increased risk of hypoglycaemia in patients with type 1 diabetes. The overall aim of this PhD thesis...... insulin secretion (Study 3). The investigations in the three mentioned study populations have been described in three original articles. The employed study designs were in randomised, placebo-controlled, crossover set-up, in which the same research subject is subjected to several study days thereby acting...... the blood glucose levels. In Study 3, we also used stable glucose isotopes to estimate the endogenous glucose production and assessed symptoms and cognitive function during hypoglycaemia. The results from the three studies indicate that GIP has effects on insulin and glucagon responses highly dependent upon...

  15. The effect of altitude hypoxia on glucose homeostasis in men

    DEFF Research Database (Denmark)

    Larsen, J J; Hansen, J M; Olsen, Niels Vidiendal

    1997-01-01

    1. Exposure to altitude hypoxia elicits changes in glucose homeostasis with increases in glucose and insulin concentrations within the first few days at altitude. Both increased and unchanged hepatic glucose production (HGP) have previously been reported in response to acute altitude hypoxia...

  16. Selective nitration and bromination of surprisingly ruffled phosphorus corroles.

    Science.gov (United States)

    Pomarico, Giuseppe; Tortora, Luca; Fronczek, Frank R; Smith, Kevin M; Paolesse, Roberto

    2016-05-01

    Phosphorus complexes of corrole have recently attracted increasing interest since these compounds can be easily prepared in good yields, are stable, and show unusual optical properties. For these reasons, phosphorus corroles represent a class of interesting compounds to be exploited in the field of material science or for biomedical investigations and the definition of synthetic pathways for their functionalization is an important step to optimize their properties for various applications. We report here the reactivity of the phosphorus complex of 5,10,15-tritolylcorrole in the nitration or bromination reaction. Both these attempts were successful, allowing the preparation of substituted phosphorus corroles, which can be used as intermediates of more complex architectures endowed with useful properties. Furthermore, the crystallographic characterization of both complexes shows that they have an unusual ruffled geometry of the corrole core, a conformation that has not been considered possible for such a macrocycle.

  17. Comparative analyses of immunoglobulin genes: surprises and portents.

    Science.gov (United States)

    Flajnik, Martin F

    2002-09-01

    The study of immunoglobulin genes in non-mouse and non-human models has shown that different vertebrate groups have evolved distinct methods of generating antibody diversity. By contrast, the development of T cells in the thymus is quite similar in all of the species that have been examined. The three mechanisms by which B cells uniquely modify their immunoglobulin genes -- somatic hypermutation, gene conversion and class switching -- are increasingly believed to share some fundamental mechanisms, which studies in different vertebrate groups have helped (and will continue to help) to resolve. When these mechanisms are better understood, we should be able to look to the constitutive pathways from which they have evolved and perhaps determine whether the rearrangement of variable, diversity and joining antibody gene segments -- V(D)J recombination -- was superimposed on an existing adaptive immune system.

  18. Surprisal-based comparison between a symbolic and a connectionist model of sentence processing

    NARCIS (Netherlands)

    Frank, S.L.; Taatgen, N.; van Rijn, H.

    2009-01-01

    The 'unlexicalized surprisal' of a word in sentence context is defined as the negative logarithm of the probability of the word's part-of-speech given the sequence of previous parts-of-speech of the sentence. Unlexicalized surprisal is known to correlate with word reading time. Here, it is shown

  19. The role of surprising events in a math game on proportional reasoning

    NARCIS (Netherlands)

    Wouters, P.; Oostendorp, van H.; Vrugte, ter J.; Jong, de T.; Vandercruysse, S.; Elen, J.

    2015-01-01

    This study examines whether surprising events can be used to stimulate students’ playful learning in a GBL environment in the domain of proportional reasoning. The assumed effect of surprise is that unexpected events interrupt an expectation and therefore triggers the player to evaluate the new situ

  20. Distinct medial temporal networks encode surprise during motivation by reward versus punishment.

    Science.gov (United States)

    Murty, Vishnu P; LaBar, Kevin S; Adcock, R Alison

    2016-10-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment.

  1. In vitro and in vivo glucose consumption in swine eperythrozoonosis.

    Science.gov (United States)

    Smith, J E; Cipriano, J E; Hall, S M

    1990-10-01

    One complication of swine eperythrozoonosis is the hypoglycemia that occurs during parasitemia. To determine the cause of the hypoglycemia, we studied glucose consumption in splenectomized pigs infected with Eperythrozoon suis. With the rapid rise of erythroparasites, the in vitro glucose consumption of parasited whole blood increased dramatically, and hypoglycemia developed. Because mature porcine erythrocytes are impermeable to glucose, the increased glucose consumption is most logically the result of E. suis metabolism. Iodoacetamide and sodium fluoride (which inhibit glycolysis), but not sodium cyanide (which prevents cellular respiration), and tetracycline (which is used to treat eperythrozoonosis) inhibited glucose consumption. In vivo glucose turnover studies before infection and during peak parasitemia indicated an increased glucose production by infected pigs during parasitemia. The results suggest that hypoglycemia occurs during swine eperythrozoonosis because the parasite uses glucose faster than the gluconeogenic pathways can provide it.

  2. Effects on plasma glucose and lactate.

    Science.gov (United States)

    Young, Andrew

    2005-01-01

    Injection of amylin or amylin agonists, including human and rat amylin, pramlintide, salmon calcitonin, and calcitonin gene-related peptide (CGRP), increases the plasma levels of lactate and glucose in non-diabetic fasting rats and mice. This response can be useful in identifying and defining amylin agonists (amylinomimetic agents) (Cooper et al.) and has been investigated in several studies. Increases in plasma glucose and lactate are not present in all species. In humans, for example, increases in lactate are observed at high pramlintide doses but not at doses that would be used to therapeutically regulate plasma glucose. In species where it occurs, the increase in plasma lactate with amylin is comparable to that observed with exercise or adrenergic agents, and it is distinguishable from the very high levels observed during lactic acidosis (as may occur with biguanides). In contrast to lactic acidosis, the plasma lactate with amylin is derived from skeletal muscle rather than liver. Increases in plasma lactate and glucose in some species may initially appear inconsistent with a glucose-lowering effect of amylin agonists. But glycemic effects are due to actions in skeletal muscle and are present only in some species, whereas glucose-lowering actions are attributable to effects in gastrointestinal systems and are present in all species studied to date. And while glycemic effects are most pronounced in the fasted state, glucose-lowering effects are most pronounced in the postprandial state. Since they were discovered first, effects of higher doses of amylin on plasma glucose, especially in the fasted state, are described first and are related to concomitant changes in plasma lactate. These effects are prominent in rodents but are barely discernible in humans. Effects of lower doses of pramlintide to suppress plasma glucose profiles in the postprandial period are also observable in normal and diabetic rats, however, and are covered here as well. The relationship

  3. Imaging enhancement of malignancy by cyclophosphamide: surprising chemotherapy opposite effects

    Science.gov (United States)

    Yamauchi, Kensuke; Yang, Meng; Hayashi, Katsuhiro; Jiang, Ping; Xu, Mingxu; Yamamoto, Norio; Tsuchiya, Hiroyuki; Tomita, Katsuro; Moossa, A. R.; Bouvet, Michael; Hoffman, Robert M.

    2008-02-01

    Although side effects of cancer chemotherapy are well known, "opposite effects" of chemotherapy which enhance the malignancy of the treated cancer are not well understood. We have observed a number of steps of malignancy that are enhanced by chemotherapy pre-treatment of mice before transplantation of human tumor cells. The induction of intravascular proliferation, extravasation, and colony formation by cancer cells, critical steps of metastasis was enhanced by pretreatment of host mice with the commonly-used chemotherapy drug cyclophosphamide. Cyclophosphamide appears to interfere with a host process that inhibits intravascular proliferation, extravasation, and extravascular colony formation by at least some tumor cells. Cyclophosphamide does not directly affect the cancer cells since cyclophosphamide has been cleared by the time the cancer cells were injected. Without cyclophosphamide pretreatment, human colon cancer cells died quickly after injection in the portal vein of nude mice. Extensive clasmocytosis (destruction of the cytoplasm) of the cancer cells occurred within 6 hours. The number of apoptotic cells rapidly increased within the portal vein within 12 hours of injection. However, when the host mice were pretreated with cyclophosphamide, the cancer cells survived and formed colonies in the liver after portal vein injection. These results suggest that a cyclophosphamide-sensitive host cellular system attacked the cancer cells. This review describes an important unexpected "opposite effects" of chemotherapy that enhances critical steps in malignancy rather than inhibiting them, suggesting that certain current approaches to cancer chemotherapy should be modified.

  4. Biostable glucose permeable polymer

    DEFF Research Database (Denmark)

    2017-01-01

    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  5. Blood Glucose Levels

    Directory of Open Access Journals (Sweden)

    Carlos Estela

    2011-01-01

    Full Text Available The purpose of this study was to establish a mathematical model which can be used to estimate glucose levels in the blood over time. The equations governing this process were manipulated with the use of techniques such as separation of variables and integration of first order differential equations, which resulted in a function that described the glucose concentration in terms of time. This function was then plotted, which allowed us to find when glucose concentration was at its highest. The model was then used to analyze two cases where the maximum glucose level could not exceed a certain level while the amount of carbohydrates and glycemic index were varied, independently.

  6. Altered glucose metabolism in metastatic carcinoma.

    Science.gov (United States)

    Holroyde, C P; Gabuzda, T G; Putnam, R C; Paul, P; Reichard, G A

    1975-12-01

    To evaluate the possible role of altered glucose metabolism in malignant cachexia, metabolic parameters including total glucose turnover, glucose oxidation, and Cori cycle activity were measured in fourteen patients with metastatic carcinoma. Eight patients with progressive weight loss (PWL) were compared to 6 without (controls). Cori cycle activity was significantly increased (p less than 0.02) in PWL patients, 90 mg/kg/hr (range, 22 to 193) compared to 18 mg/kg/hr (range, 13 to 24) in controls. Total glucose turnover was moderately increased in PWL patients, 196 mg/kg/hr compared to 110 mg/kg/hr in controls. Glucose oxidation was 62 mg/kg/hr versus 48 mg/kg/hr, and total caloric expenditure was 36 kcal/sq m/hr compared to 33 Kcal/sq m/hr. PWL patients were metabolically heterogenous and mean values are skewed by four patients with increased glucose turnover, oxidation, and markedly high recycling rates that were equivalent to total endogenous glucose turnover of a normal subject. Total caloric expenditure was greatest in three of the four patients with a marked increase in Cori cycle activity. Energy loss associated with a high rate of gluconeogenesis from lactate has been suggested as an explanation for increased energy expenditure in some cancer patients, thus contributing to mechanisms that promote weight loss.

  7. Toward a Continuous Intravascular Glucose Monitoring System

    Directory of Open Access Journals (Sweden)

    Pedro Irazoqui

    2010-12-01

    Full Text Available Proof-of-concept studies that display the potential of using a glucose-sensitive hydrogel as a continuous glucose sensor are presented. The swelling ratio, porosity, and diffusivity of the hydrogel increased with glucose concentration. In glucose solutions of 50, 100, 200, and 300 mg/dL, the hydrogel swelling ratios were 4.9, 12.3, 15.9, and 21.7, respectively, and the swelling was reversible. The impedance across the hydrogel depended solely on the thickness and had an average increase of 47 W/mm. The hydrogels exposed to a hyperglycemic solution were more porous than the hydrogels exposed to a normal glycemic solution. The diffusivity of 390 Da MW fluorescein isothiocyanate in hydrogels exposed to normal and hyperglycemic solutions was examined using fluorescence recovery after photobleaching and was found to be 9.3 × 10−14 and 41.4 × 10−14 m2/s, respectively, compared to 6.2 × 10−10 m2/s in glucose solution. There was no significant difference between the permeability of hydrogels in normal and hyperglycemic glucose solutions with averages being 5.26 × 10−17 m2 and 5.80 × 10−17 m2, respectively, which resembles 2–4% agarose gels. A prototype design is presented for continuous intravascular glucose monitoring by attaching a glucose sensor to an FDA-approved stent.

  8. The glucose oxidase-peroxidase assay for glucose

    Science.gov (United States)

    The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...

  9. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle

    DEFF Research Database (Denmark)

    Ploug, T; Stallknecht, B M; Pedersen, O

    1990-01-01

    session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold...... by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased...

  10. Previously seen and expected stimuli elicit surprise in the context of visual search.

    Science.gov (United States)

    Retell, James D; Becker, Stefanie I; Remington, Roger W

    2016-04-01

    In the context of visual search, surprise is the phenomenon by which a previously unseen and unexpected stimulus exogenously attracts spatial attention. Capture by such a stimulus occurs, by definition, independent of task goals and is thought to be dependent on the extent to which the stimulus deviates from expectations. However, the relative contributions of prior-exposure and explicit knowledge of an unexpected event to the surprise response have not yet been systematically investigated. Here observers searched for a specific color while ignoring irrelevant cues of different colors presented prior to the target display. After a brief familiarization period, we presented an irrelevant motion cue to elicit surprise. Across conditions we varied prior exposure to the motion stimulus - seen versus unseen - and top-down expectations of occurrence - expected versus unexpected - to assess the extent to which each of these factors contributes to surprise. We found no attenuation of the surprise response when observers were pre-exposed to the motion cue and or had explicit knowledge of its occurrence. Our results show that it is neither sufficient nor necessary that a stimulus be new and unannounced to elicit surprise and suggest that the expectations that determine the surprise response are highly context specific.

  11. Corticosterone and Exogenous Glucose Alter Blood Glucose levels, Neurotoxicity, and Vascular Toxicity Produced by Methamphetamine.

    Science.gov (United States)

    Bowyer, John F; Tranter, Karen M; Sarkar, Sumit; George, Nysia I; Hanig, Joseph P; Kelly, Kimberly A; Michalovicz, Lindsay T; Miller, Diane B; O'Callaghan, James P

    2017-08-09

    Our previous studies have raised the possibility that altered blood glucose levels may influence and/or be predictive of methamphetamine (METH) neurotoxicity. This study evaluated the effects of exogenous glucose and corticosterone (CORT) pretreatment alone or in combination with METH on blood glucose levels and the neural and vascular toxicity produced. METH exposure consisted of four sequential injections of 5, 7.5, 10, and 10 mg/kg (2h between injections) D-METH. The three groups given METH in combination with saline, glucose (METH+Glucose), or CORT (METH+CORT) had significantly higher glucose levels compared to the corresponding treatment groups without METH except at 3 h after the last injection. At this last time point, the METH and METH+Glucose groups had lower levels than the non-METH groups, while the METH+CORT group did not. CORT alone or glucose alone did not significantly increase blood glucose. Mortality rates for the METH+CORT (40%) and METH+Glucose (44%) groups were substantially higher than the METH (< 10%) group. Additionally, METH+CORT significantly increased neurodegeneration above all other treatments (≈ 2.5-fold in the parietal cortex). Thus, maintaining elevated levels of glucose during METH exposure increases lethality and may exacerbate neurodegeneration. Neuroinflammation, specifically microglial activation, was associated with degenerating neurons in the parietal cortex and thalamus after METH exposure. The activated microglia in the parietal cortex were surrounding vasculature in most cases and the extent of microglial activation was exacerbated by CORT pretreatment. Our findings implicate elevated blood levels of glucose and hyperthermia in METH-induced neurotoxicity, neurovascular damage, and lethality, and that acute elevation of CORT exacerbates both neurotoxicity and neuroinflammation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. A Statistical Analysis of the Relationship between Harmonic Surprise and Preference in Popular Music.

    Science.gov (United States)

    Miles, Scott A; Rosen, David S; Grzywacz, Norberto M

    2017-01-01

    Studies have shown that some musical pieces may preferentially activate reward centers in the brain. Less is known, however, about the structural aspects of music that are associated with this activation. Based on the music cognition literature, we propose two hypotheses for why some musical pieces are preferred over others. The first, the Absolute-Surprise Hypothesis, states that unexpected events in music directly lead to pleasure. The second, the Contrastive-Surprise Hypothesis, proposes that the juxtaposition of unexpected events and subsequent expected events leads to an overall rewarding response. We tested these hypotheses within the framework of information theory, using the measure of "surprise." This information-theoretic variable mathematically describes how improbable an event is given a known distribution. We performed a statistical investigation of surprise in the harmonic structure of songs within a representative corpus of Western popular music, namely, the McGill Billboard Project corpus. We found that chords of songs in the top quartile of the Billboard chart showed greater average surprise than those in the bottom quartile. We also found that the different sections within top-quartile songs varied more in their average surprise than the sections within bottom-quartile songs. The results of this study are consistent with both the Absolute- and Contrastive-Surprise Hypotheses. Although these hypotheses seem contradictory to one another, we cannot yet discard the possibility that both absolute and contrastive types of surprise play roles in the enjoyment of popular music. We call this possibility the Hybrid-Surprise Hypothesis. The results of this statistical investigation have implications for both music cognition and the human neural mechanisms of esthetic judgments.

  13. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... events, such as eating breakfast, take on exaggerated importance. It's a world where a person needs a ... Living With Diabetes Treatment and Care Blood Glucose Testing Checking Your Blood Glucose A1C and eAG Hypoglycemia ( ...

  14. October Surprises.

    Science.gov (United States)

    2016-10-01

    Ushered in with the rampage of Hurricane Matthew, later days brightened in this month that has often been harbinger of both good and bad news for Cuba and the world. Hurricane Matthew ripped through Eastern Cuba, devastating the historic town of Baracoa (Cuba's first capital, founded in 1511) and the village of Maisí, where the morning sun first rises over Cuban territory. Wind and flood leveled hundreds of homes, brought down the power grid and destroyed crops. Yet there was no loss of human life, unlike in neighboring Haiti and other countries in Matthew's path, and unlike in Cuba in 1963, when Hurricane Flora caused more than 1200 deaths. In Haiti, efforts of health workers-including hundreds of Haitian graduates from Cuba's Latin American Medical School and 600 Cuban health professionals already there-were bolstered by dozens of specially trained Cuban disaster medical personnel in the wake of the storm.

  15. Surprising Resists

    Science.gov (United States)

    Morton, Stephie

    2007-01-01

    In this article, the author discusses an art adventure with her third, fourth, and fifth grade enrichment kids to the Fort Collins Museum of Contemporary Art in Colorado. The author demonstrates and teaches her students how to use the art tissue paper and oil pastel complementing the creative spirit of the Jaune Quick-to-See Smith work presented…

  16. Differential Incorporation of Glucose into Biomass during Warburg Metabolism

    OpenAIRE

    Chen, Ying-Jr; Huang, Xiaojing; Mahieu, Nathaniel G.; Cho, Kevin; Schaefer, Jacob; Patti, Gary J.

    2014-01-01

    It is well established that most cancer cells take up an increased amount of glucose relative to that taken up by normal differentiated cells. The majority of this glucose carbon is secreted from the cell as lactate. The fate of the remaining glucose carbon, however, has not been well-characterized. Here we apply a novel combination of metabolomic technologies to track uniformly labeled glucose in HeLa cancer cells. We provide a list of specific intracellular metabolites that become enriched ...

  17. Lifestyle, glucose regulation and the cognitive effects of glucose load in middle-aged adults.

    Science.gov (United States)

    Riby, Leigh M; McLaughlin, Jennifer; Riby, Deborah M; Graham, Cheryl

    2008-11-01

    Interventions aimed at improving glucose regulatory mechanisms have been suggested as a possible source of cognitive enhancement in the elderly. In particular, previous research has identified episodic memory as a target for facilitation after either moderate increases in glycaemia (after a glucose drink) or after improvements in glucose regulation. The present study aimed to extend this research by examining the joint effects of glucose ingestion and glucose regulation on cognition. In addition, risk factors associated with the development of poor glucose regulation in middle-aged adults were considered. In a repeated measures design, thirty-three middle-aged adults (aged 35-55 years) performed a battery of memory and non-memory tasks after either 25 g or 50 g glucose or a sweetness matched placebo drink. To assess the impact of individual differences in glucose regulation, blood glucose measurements were taken on four occasions during testing. A lifestyle and diet questionnaire was also administered. Consistent with previous research, episodic memory ability benefited from glucose ingestion when task demands were high. Blood glucose concentration was also found to predict performance across a number of cognitive domains. Interestingly, the risk factors associated with poor glucose regulation were linked to dietary impacts traditionally associated with poor health, e.g. the consumption of high-sugar sweets and drinks. The research replicates earlier work suggesting that task demands are critical to the glucose facilitation effect. Importantly, the data demonstrate clear associations between elevated glycaemia and relatively poor cognitive performance, which may be partly due to the effect of dietary and lifestyle factors.

  18. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Durand, Fabien [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Stines-Chaumeil, Claire [Universite de Bordeaux, CNRS, Institut de Biochimie et de Genetique Cellulaires, 1 rue Camille Saint Saens, 33077 Bordeaux Cedex (France); Flexer, Victoria [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Andre, Isabelle [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); CNRS, UMR5504, F-31400 Toulouse (France); INRA, UMR 792 Ingenierie des Systemes Biologiques et des Procedes, F-31400 Toulouse (France); Mano, Nicolas, E-mail: mano@crpp-bordeaux.cnrs.fr [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France)

    2010-11-26

    Research highlights: {yields} A new mutant of PQQ-GDH designed for glucose biosensors application. {yields} First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. {yields} Position N428 is a key point to increase the enzyme activity. {yields} Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.

  19. Exogenous amino acids suppress glucose oxidation and potentiate hepatic glucose production in late gestation fetal sheep.

    Science.gov (United States)

    Brown, Laura D; Kohn, Jaden R; Rozance, Paul J; Hay, William W; Wesolowski, Stephanie R

    2017-02-08

    Acute amino acid (AA) infusion increases AA oxidation rates in normal late gestation fetal sheep. Because fetal oxygen consumption rate does not change with increased AA oxidation, we hypothesized that AA infusion would suppress glucose oxidation pathways and that the additional carbon supply from AA would activate hepatic glucose production. To test this, late gestation fetal sheep were infused intravenously for 3h with saline or exogenous AA (AA). Glucose tracer metabolic studies were performed and skeletal muscle and liver tissues samples were collected. AA infusion increased fetal arterial plasma branched chain AA, cortisol, and glucagon concentrations. Fetal glucose utilization rates were similar between basal and AA periods, yet the fraction of glucose oxidized and glucose oxidation rate were decreased by 40% in the AA period. AA infusion increased expression of PDK4, an inhibitor of glucose oxidation, nearly 2-fold in muscle and liver. In liver, AA infusion tended to increase PCK1 gluconeogenic gene and PCK1 correlated with plasma cortisol concentrations. AA infusion also increased liver mRNA expression of lactate transporter gene (MCT1), protein expression of GLUT2 and LDHA, and phosphorylation of AMPK, 4EBP1, and S6 proteins. In isolated fetal hepatocytes, AA supplementation increased glucose production and PCK1, LDHA, and MCT1 gene expression. These results demonstrate that AA infusion into fetal sheep competitively suppresses glucose oxidation and potentiates hepatic glucose production. These metabolic patterns support flexibility in fetal metabolism in response to increased nutrient substrate supply while maintaining a relatively stable rate of oxidative metabolism.

  20. Identification of Glucose Transporters in Aspergillus nidulans

    Science.gov (United States)

    dos Reis, Thaila Fernanda; Menino, João Filipe; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; Colabardini, Ana Cristina; Savoldi, Marcela; Goldman, Maria Helena S.; Rodrigues, Fernando; Goldman, Gustavo Henrique

    2013-01-01

    To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose. PMID:24282591

  1. Regulation of endogenous glucose production in glucose transporter 4 over-expressing mice.

    Directory of Open Access Journals (Sweden)

    Eric D Berglund

    Full Text Available Strategies to amplify whole-body glucose disposal are key therapies to treat type 2 diabetes. Mice that over-express glucose transporter 4 (Glut4 in skeletal muscle, heart, and adipose tissue (G4Tg exhibit increased fasting glucose disposal and thus lowered blood glucose. Intriguingly, G4Tg mice also exhibit improved insulin-stimulated suppression of endogenous glucose production even though Glut4 is not present in the liver. It is unclear, however, if hepatic gluco-regulation is altered in G4Tg mice in the basal, non-insulin-stimulated state. The current studies were performed to examine fasting hepatic glucose metabolism in G4Tg mice and to determine whether gluco-regulatory adaptations exist in the non-insulin-stimulated condition. To test this question, phloridzin-glucose clamps were used to match blood glucose and pancreatic hormone levels while tracer dilution techniques were used to measure glucose flux. These techniques were performed in chronically-catheterized, conscious, and un-stressed 5h-fasted G4Tg and wild-type (WT littermates. Results show reduced blood glucose, hepatic glycogen content, and hepatic glucokinase (GK activity/expression as well as higher endogenous glucose production, glucose disposal, arterial glucagon, and hepatic glucose-6-phosphatase (G6Pase activity/expression in G4Tg mice versus WT controls. Clamping blood glucose for 90 min at ~115 mg/dLin G4Tg and WT mice normalized nearly all variables. Notably, however, net hepatic glycogen synthetic rates were disproportionately elevated compared to changes in blood glucose. In conclusion, these studies demonstrate that basal improvements in glucose tolerance due to increased uptake in extra-hepatic sites provoke important gluco-regulatory adaptations in the liver. Although changes in blood glucose underlie the majority of these adaptations, net hepatic glycogen synthesis is sensitized. These data emphasize that anti-diabetic therapies that target skeletal muscle, heart

  2. Glucose phosphorylation is required for Mycobacterium tuberculosis persistence in mice.

    Directory of Open Access Journals (Sweden)

    Joeli Marrero

    2013-01-01

    Full Text Available Mycobacterium tuberculosis (Mtb is thought to preferentially rely on fatty acid metabolism to both establish and maintain chronic infections. Its metabolic network, however, allows efficient co-catabolism of multiple carbon substrates. To gain insight into the importance of carbohydrate substrates for Mtb pathogenesis we evaluated the role of glucose phosphorylation, the first reaction in glycolysis. We discovered that Mtb expresses two functional glucokinases. Mtb required the polyphosphate glucokinase PPGK for normal growth on glucose, while its second glucokinase GLKA was dispensable. (13C-based metabolomic profiling revealed that both enzymes are capable of incorporating glucose into Mtb's central carbon metabolism, with PPGK serving as dominant glucokinase in wild type (wt Mtb. When both glucokinase genes, ppgK and glkA, were deleted from its genome, Mtb was unable to use external glucose as substrate for growth or metabolism. Characterization of the glucokinase mutants in mouse infections demonstrated that glucose phosphorylation is dispensable for establishing infection in mice. Surprisingly, however, the glucokinase double mutant failed to persist normally in lungs, which suggests that Mtb has access to glucose in vivo and relies on glucose phosphorylation to survive during chronic mouse infections.

  3. Surprisal analysis characterizes the free energy time course of cancer cells undergoing epithelial-to-mesenchymal transition.

    Science.gov (United States)

    Zadran, Sohila; Arumugam, Rameshkumar; Herschman, Harvey; Phelps, Michael E; Levine, R D

    2014-09-09

    The epithelial-to-mesenchymal transition (EMT) initiates the invasive and metastatic behavior of many epithelial cancers. Mechanisms underlying EMT are not fully known. Surprisal analysis of mRNA time course data from lung and pancreatic cancer cells stimulated to undergo TGF-β1-induced EMT identifies two phenotypes. Examination of the time course for these phenotypes reveals that EMT reprogramming is a multistep process characterized by initiation, maturation, and stabilization stages that correlate with changes in cell metabolism. Surprisal analysis characterizes the free energy time course of the expression levels throughout the transition in terms of two state variables. The landscape of the free energy changes during the EMT for the lung cancer cells shows a stable intermediate state. Existing data suggest this is the previously proposed maturation stage. Using a single-cell ATP assay, we demonstrate that the TGF-β1-induced EMT for lung cancer cells, particularly during the maturation stage, coincides with a metabolic shift resulting in increased cytosolic ATP levels. Surprisal analysis also characterizes the absolute expression levels of the mRNAs and thereby examines the homeostasis of the transcription system during EMT.

  4. Glucose as substrate and signal in priming: Results from experiments with non-metabolizable glucose analogues

    Science.gov (United States)

    Mason-Jones, Kyle; Kuzyakov, Yakov

    2016-04-01

    Priming of soil organic matter remains the subject of intense research, but a mechanistic explanation of the phenomenon remains to be demonstrated. This is largely due to the multiple effects of easily available carbon on the soil microbial community, and the challenge of separating these influences from one another. Several glucose analogues can be taken up by microbial glucose transporters and have similar regulatory effects on metabolism. These substances are, however, not easily catabolized by the common glycolytic pathway, limiting their energy value. Therefore, they can be used to distinguish between the action of glucose as a metabolic signal, and its influence as an energy source. We incubated an agricultural Haplic Luvisol under controlled conditions for 24 days after addition of: 1) glucose, 2) 3-O-methyl-glucose, 3) α-methylglucoside or 4) 2-deoxyglucose, at three concentration levels, along with a control treatment of water addition. CO2 efflux from soil was monitored by trapping evolved CO2 in NaOH and back-titration with HCl. On the first day after amendment, CO2 efflux from soil increased strongly for glucose and much less for the analogues, relative to the control. Only glucose caused a peak in efflux within the first two days. Peak mineralization of 2-deoxyglucose and α-methylglucoside was delayed until the third day, while CO2 from 3-O-methyl-glucose increased gradually, with a peak delayed by approximately a week. For glucose, the immediate increase in respiration was strongly dependent on the amount of glucose added, but this was not the case for the analogues, indicating that the catabolic potential for these substances was saturated. This is consistent with only a small part of the microbial community being capable of utilizing these carbon sources. In a subsequent experiment, 14C-labelled glucose or 14C-labelled 3-O-methyl-glucose were added to the same soil, enabling quantification of the priming effect. For 3-O-methyl-glucose, priming was

  5. Resolving futile glucose cycling and glycogenolytic contributions to plasma glucose levels following a glucose load

    NARCIS (Netherlands)

    Nunes, P.M.; Jarak, I.; Heerschap, A.; Jones, J.G.

    2014-01-01

    PURPOSE: After a glucose load, futile glucose/glucose-6-phosphate (G6P) cycling (FGC) generates [2-(2) H]glucose from (2) H2 O thereby mimicking a paradoxical glycogenolytic contribution to plasma glucose levels. Contributions of load and G6P derived from gluconeogenesis, FGC, and glycogenolysis to

  6. Glucose screening tests during pregnancy

    Science.gov (United States)

    Oral glucose tolerance test - pregnancy; OGTT - pregnancy; Glucose challenge test - pregnancy; Gestational diabetes - glucose screening ... screening test between 24 and 28 weeks of pregnancy. The test may be done earlier if you ...

  7. Fursemida Influence on glucose tolerance

    OpenAIRE

    Valdivia, Héctor; Departamento de Medicina, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú; Garmendia, Fausto; Departamento de Medicina, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú; Dávila, Enrique; Departamento de Medicina, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú

    2014-01-01

    We have investigated the effect of Fursemida on glucose tolerance in 82 patients : 14 mormales , 15 cirrhotic , 15 diabetics, 7 patients with cardioesclerosis , 8 with hypertension , 8 nephropathy without failure and 15 with failure, for which administered daily 80 me . diuretic for one week. In 8 patients (4 diabetic , cirrhotic March 1 with hypertension ) occurred a pathological increase in basal glycemia. Except with nephropathy , elevated in all groups glycemia curves was observed , which...

  8. The role of loudness in detection of surprising events in music recordings

    OpenAIRE

    Holonowicz, Piotr; Herrera, Perfecto; Purwins, Hendrik

    2009-01-01

    The abrupt change of loudness is a salient event that is not always expected by a music listener. Therefore loudness is an important cue when seeking for events in a music stream that could violate human expectations. The concept of expectation and surprise in music has become recently the subject of extensive research, however mostly using symbolic data. The aim of this work is to investigate the circumstances when a change of sound intensity could be surprising for a listener. Then, using t...

  9. Heterozygous SOD2 Deletion Impairs Glucose-Stimulated Insulin Secretion, but Not Insulin Action, in High-Fat–Fed Mice

    Science.gov (United States)

    Dai, Chunhua; Lustig, Mary E.; Bonner, Jeffrey S.; Mayes, Wesley H.; Mokshagundam, Shilpa; James, Freyja D.; Thompson, Courtney S.; Lin, Chien-Te; Perry, Christopher G.R.; Anderson, Ethan J.; Neufer, P. Darrell; Wasserman, David H.; Powers, Alvin C.

    2014-01-01

    Elevated reactive oxygen species (ROS) are linked to insulin resistance and islet dysfunction. Manganese superoxide dismutase (SOD2) is a primary defense against mitochondrial oxidative stress. To test the hypothesis that heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion (GSIS) and insulin action, wild-type (sod2+/+) and heterozygous knockout mice (sod2+/−) were fed a chow or high-fat (HF) diet, which accelerates ROS production. Hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI) clamps were performed to assess GSIS and insulin action in vivo. GSIS during HG clamps was equal in chow-fed sod2+/− and sod2+/+ but was markedly decreased in HF-fed sod2+/−. Remarkably, this impairment was not paralleled by reduced HG glucose infusion rate (GIR). Decreased GSIS in HF-fed sod2+/− was associated with increased ROS, such as superoxide ion. Surprisingly, insulin action determined by HI clamps did not differ between sod2+/− and sod2+/+ of either diet. Since insulin action was unaffected, we hypothesized that the unchanged HG GIR in HF-fed sod2+/− was due to increased glucose effectiveness. Increased GLUT-1, hexokinase II, and phospho-AMPK protein in muscle of HF-fed sod2+/− support this hypothesis. We conclude that heterozygous SOD2 deletion in mice, a model that mimics SOD2 changes observed in diabetic humans, impairs GSIS in HF-fed mice without affecting insulin action. PMID:24947366

  10. G-allele of intronic rs10830963 in MTNR1B confers increased risk of impaired fasting glycemia and type 2 diabetes through an impaired glucose-stimulated insulin release: studies involving 19,605 Europeans

    DEFF Research Database (Denmark)

    Sparsø, Thomas; Bonnefond, Amélie; Andersson, Ehm

    2009-01-01

    independent effect on FPG with isolated impaired fasting glycemia (i-IFG), isolated impaired glucose tolerance (i-IGT), type 2 diabetes, and measures of insulin release and peripheral and hepatic insulin sensitivity. RESEARCH DESIGN AND METHODS: We examined European-descent participants in the Inter99 study......OBJECTIVE: Genome-wide association studies have identified several variants within the MTNR1B locus that are associated with fasting plasma glucose (FPG) and type 2 diabetes. We refined the association signal by direct genotyping and examined for associations of the variant displaying the most...... (n = 5,553), in a sample of young healthy Danes (n = 372), in Danish twins (n = 77 elderly and n = 97 young), in additional Danish type 2 diabetic patients (n = 1,626) and control subjects (n = 505), in the Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) study (n = 4...

  11. The Nucleus of Comet 67P/Churyumov-Gerasimenko: Lots of Surprises

    Science.gov (United States)

    Weissman, Paul R.; Rosetta Science Working Team

    2016-10-01

    ESA's Rosetta mission has made many new and unexpected discoveries since its arrival at comet 67P/Churyumov-Gerasimenko in August 2014. The first of these was the unusual shape of the cometary nucleus. Although bilobate nuclei had been seen before, the extreme concavities on 67P were unexpected. Evidence gathered during the mission suggests that two independent bodies came together to form 67P, rather than the nucleus being a single body that was sculpted by sublimation and/or other processes. Although not a surprise, early observations showed that the nucleus rotation period had decreased by ~22 minutes since the previous aphelion passage. A similar rotation period decrease was seen post-perihelion during the encounter. These changes likely arise from asymmetric jetting forces from the irregular nucleus. Initially, Rosetta's instruments found little evidence for water ice on the surface; the presence of surface water ice increased substantially as the nucleus approached perihelion. The nucleus bulk density, 533 ± 6 kg/m3, was measured with Radio Science and OSIRIS imaging of the nucleus volume. This confirmed previous estimates based on indirect methods that the bulk density of cometary nuclei was on the order of 500-600 kg/m3 and on measurement of the density of 9P/Tempel 1's nucleus by Deep Impact. Nucleus topography proved to be highly varied, from smooth dust-covered plains to shallow circular basins, to the very rough terrain where the Philae lander came to rest. Evidence of thermal cracking is everywhere. The discovery of cylindrical pits on the surface, typically 100-200m in diameter with similar depths was a major surprise and has been interpreted as sinkholes. "Goose-bump" terrain consisting of apparently random piles of boulders 2-3 m in diameter was another unexpected discovery. Apparent layering with scales of meters to many tens of meters was seen but there was little or no evidence for impact features. Radar tomography of the interior of the "head

  12. Investigation of the heat source(s) of the Surprise Valley Geothermal System, Northern California

    Science.gov (United States)

    Tanner, N.; Holt, C. D.; Hawkes, S.; McClain, J. S.; Safford, L.; Mink, L. L.; Rose, C.; Zierenberg, R. A.

    2016-12-01

    Concerns about environmental impacts and energy security have led to an increased interest in sustainable and renewable energy resources, including geothermal systems. It is essential to know the permeability structure and possible heat source(s) of a geothermal area in order to assess the capacity and extent of the potential resource. We have undertaken geophysical surveys at the Surprise Valley Hot Springs in Cedarville, California to characterize essential parameters related to a fault-controlled geothermal system. At present, the heat source(s) for the system are unknown. Igneous bodies in the area are likely too old to have retained enough heat to supply the system, so it is probable that fracture networks provide heat from some deeper or more distributed heat sources. However, the fracture system and permeability structure remain enigmatic. The goal of our research is to identify the pathways for fluid transport within the Surprise Valley geothermal system using a combination of geophysical methods including active seismic surveys and short- and long-period magnetotelluric (MT) surveys. We have collected 14 spreads, consisting of 24 geophones each, of active-source seismic data. We used a "Betsy Gun" source at 8 to 12 locations along each spread and have collected and analyzed about 2800 shot-receiver pairs. Seismic velocities reveal shallow lake sediments, as well as velocities consistent with porous basalts. The latter, with velocities of greater than 3.0 km/s, lie along strike with known hot springs and faulted and tilted basalt outcrops outside our field area. This suggests that basalts may provide a permeable pathway through impermeable lake deposits. We conducted short-period (10Hz-60kHz) MT measurements at 33 stations. Our short-period MT models indicate shallow resistive blocks (>100Ωm) with a thin cover of more conductive sediments ( 10Ωm) at the surface. Hot springs are located in gaps between resistive blocks and are connected to deeper low

  13. Microbial production of glucose/fructose syrups

    Energy Technology Data Exchange (ETDEWEB)

    Matur, A.; Saglam, N.

    1982-04-01

    With the ever-increasing demand for sugar and the trend in rising price, rapid progress in research on new and/or alternative sweeteners has been inevitable during the past decade or so. Pure glucose, glucose/fructose, glucose/maltose syrups are often called isosyrups. Isosyrups have been recognized as a good alternative sources of sugar. These are used today in the manufacture of soft drinks, jams and jellies, confectionary, baking fermentation, dietetic and infant food, ice-cream, pharmaceutical processes, etc. Isosyrups are produced by hydrolysis of starch and cellulocis raw materials have been utilized for the production of isosyrups.

  14. Ekstrak Air Tapak Dara Menurunkan Kadar Gula dan Meningkatkan Jumlah Sel Beta Pankreas Kelinci Hiperglikemia (THE WATER EXTRACT OF TAPAK DARA DECREASES BLOOD GLUCOSE CONCENTRATION AND INCREASES INSULIN PRODUCTION BY PANCREATIC BETA-CELLS ON HYPERGLYCEMIC

    Directory of Open Access Journals (Sweden)

    Srikayati Widyastuti

    2012-03-01

    Full Text Available The present study was carried out to investigate the effects of tapak dara (Catharanthus roseus onblood glucose level and insulin profile in hyperglicemic rabbits. Fifeteen local male rabbits were used forthis study. The rabbits were randomly divided into five groups. Group 1 (K-, a control negative group;group 2 (K+, a control positive hipergliccemia; group 3 (KT1 and group 4 (KT2, were groups hiperglicemiaand treated with water extract of tapak dara doses 1 and 2 g/kg bw, respectively; and group 5 (KO, a grouphiperglicemia that treated with glibenclamide 2 mg/kg bw. The result showed water extract of tapak daradose 1 g/kgbw could not decrease the blood glucose level in hyperglycemic rabbits, while dose 2 g/kg bwcould decline blood glucose level in rabbits. This decline had no significantly difference compared withglibenclamide treatment (P> 0.05. Immunohistchemistry result indicated that water extract of tapakdara could stimulate beta cells pancreas to produce insulin.

  15. Fetal glucose uptake and utilization as functions of maternal glucose concentration.

    Science.gov (United States)

    Hay, W W; Sparks, J W; Wilkening, R B; Battaglia, F C; Meschia, G

    1984-03-01

    Seventeen studies were performed in 12 pregnant sheep to examine the relationship among simultaneously measured glucose uptake via the umbilical circulation, fetal glucose utilization (mg X min-1 X kg-1), and maternal arterial glucose (Gm, mg/dl). Fetal glucose utilization was measured by means of tracer glucose infused into the fetus or both mother and fetus. By fasting the ewe, Gm was varied in the 62-22 range. A decrease in Gm was accompanied by a significant (P less than 0.001) decrease in umbilical uptake (uptake = 0.09 Gm - 0.96, r = 0.82) and in fetal utilization, measured either by [U-14C]glucose (utilization = 0.062 Gm + 0.91, r = 0.90) or [6-3H]glucose (utilization = 0.065 Gm + 0.51, r = 0.91). At uptake greater than 3 mg X min-1 X kg-1, utilization and uptake were not significantly different. At lower uptakes, utilization did not decline as much as uptake. The results demonstrate that maternal fasting decreases both the umbilical uptake and the fetal utilization of glucose and suggest that fetal glucogenesis increases when the availability of exogenous glucose is markedly reduced.

  16. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor ... Islanders American Indian/Alaska Native Programs Older Adults Family Link Diabetes EXPO Upcoming Diabetes EXPOs EXPO Volunteer ...

  17. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day Diabetes Basics Home Symptoms Diagnosis America's Diabetes Challenge Type ...

  18. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Us in the Fight for a Cure Your tax-deductible gift today can fund critical diabetes research ... glucose for fuel, so your body breaks down fats to use for energy. When your body breaks ...

  19. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor ... Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely Get And ...

  20. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Glucose Testing Medication Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy 8 Tips for Caregivers ... updated, this is the "take-you-by-the-hand" guide that will become a trusted friend and ...

  1. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... an Employer Options for the Uninsured Medicare Medicaid & CHIP For Parents & Kids Safe at School Everyday Life ... blood sugar). High blood glucose happens when the body has too little insulin or when the body ...

  2. Nocturnal continuous glucose monitoring

    DEFF Research Database (Denmark)

    Bay, Christiane; Kristensen, Peter Lommer; Pedersen-Bjergaard, Ulrik;

    2013-01-01

    Abstract Background: A reliable method to detect biochemical nocturnal hypoglycemia is highly needed, especially in patients with recurrent severe hypoglycemia. We evaluated reliability of nocturnal continuous glucose monitoring (CGM) in patients with type 1 diabetes at high risk of severe...

  3. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To ... Complications Neuropathy Foot Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & ...

  4. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin ... Diabetes Pro: Professional Resources Online We Support Your Doctor Clinical Practice Guidelines Patient Education Materials Scientific Sessions ...

  5. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy ...

  6. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor ... Options for the Uninsured Medicare Medicaid & CHIP For Parents & Kids Safe at School Everyday Life Children and ...

  7. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More ... us get closer to curing diabetes and better treatments for those living with diabetes. Other Ways to ...

  8. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Clinical Practice Guidelines Patient Education Materials Scientific Sessions Journals for Professionals Professional Books Patient Access to Research ...

  9. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To ... Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely Get And ...

  10. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More ... us get closer to curing diabetes and better treatments for those living with diabetes. Other Ways to ...

  11. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy 8 Tips for Caregivers Health Insurance Health ... glucose happens when the body has too little insulin or when the body can't use insulin ...

  12. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More Oral Health & Hygiene Women A1C ... your doctor may change the amount of your medication or insulin or possibly the timing of when ...

  13. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... blood glucose early will help you avoid problems associated with hyperglycemia. How Do I Treat Hyperglycemia? You ... Advocacy Take Action Advocacy Priorities News & Events The Cost of Diabetes Advocate Toolkit Call to Congress Research & ...

  14. The biological activity of Coccinia indica on glucose transporter 1 (GLUT1 promoter

    Directory of Open Access Journals (Sweden)

    Juntipa Purintrapiban

    2009-08-01

    Full Text Available Plant derivatives with purported hypoglycemic properties have been used in traditional medicine around the world. Coccinia indica (ivy gourd is used in traditional medicine to treat diabetics in many countries. C. indica is able to cause a reduction in blood glucose level and has shown hypoglycemic activity in vitro and in vivo. However, the mechanism of this effect remains unknown. In this study, we generated the pGL3-glucose transporter 1 (GLUT1 promoter to elucidate the molecular mechanism of the regulation of GLUT1 gene expression in response to a water extract of C. indica stem (CIextract. A fragment of 2.1 kb of rat GLUT1 promoter, located at -2,106 to +134, was linked to firefly luciferase. The regulating transcription was analyzed in transient expression assay after transfection and exposure of L6 myocytes with the GLUT1 promoter system and CI extract, respectively. Under normal condition (5 mM glucose, promoter activity induced by 0.15 mg CI extract was markedly increased by 5.71 fold from the basal value. CI extract was more effective than 2 mM metformin. Surprisingly, promoter activity in hyperglycemic condition (15 mM glucose induced by 0.50 mg CI was increased by 1.63 fold from the basal value. In addition, CI extract increased the 2-deoxyglucose (2-DG uptake in L6myocytes in a dose-dependent manner in both conditions, 5 mM and 15 mM glucose. GLUT1 protein was determined by Western blot analysis and the level also increased in a dose-dependent fashion. Interestingly, the activity of the -273 to +134 of GLUT1 promoter was increased by 2.12 fold from the basal value. This site is the transcription initiation site containing GC box and TATA box. These observations suggest that the hypoglycemic action of C. indica may regulate through the activation of GLUT1 promoter resulting in an increase of the GLUT1 protein expression.

  15. Taeniid tapeworm responses to in vitro glucose.

    Science.gov (United States)

    Willms, Kaethe; Presas, Ana María Fernández; Jiménez, José Agustín; Landa, Abraham; Zurabián, Rimma; Ugarte, María Eugenia Juárez; Robert, Lilia

    2005-07-01

    Experimental taeniid strobilae from Taenia solium and T. crassiceps (WFU strain) were incubated for 0-72 h in 0, 5 or 20 mM glucose solutions and further exposed for 15 min to the gap junction fluorochrome Lucifer Yellow. Frozen sections were obtained from each worm and observed under an epifluorescent microscope. Worm sections from strobilae incubated with glucose, revealed intense fluorescence in the base of the tegumentary surface, suggesting that this tissue behaves as a gap junction complex. Fluorescence intensity differences between control worms not exposed to glucose and worms incubated with glucose, were highly significant. The results demonstrate that under in vitro conditions, glucose is taken up along the whole strobilar tegument in both taeniid species, suggesting, that although taeniids attached to the duodenum probably take up most of their nutrients directly from the mucosal wall, the capacity for absorbing glucose along the tegumentary surface is always active and may increase the survival capacity of these intestinal worms by promoting glucose absorption at other points in the intestinal lumen.

  16. Perioperative Glucose Control in Neurosurgical Patients

    Directory of Open Access Journals (Sweden)

    Daniel Agustín Godoy

    2012-01-01

    Full Text Available Many neurosurgery patients may have unrecognized diabetes or may develop stress-related hyperglycemia in the perioperative period. Diabetes patients have a higher perioperative risk of complications and have longer hospital stays than individuals without diabetes. Maintenance of euglycemia using intensive insulin therapy (IIT continues to be investigated as a therapeutic tool to decrease morbidity and mortality associated with derangements in glucose metabolism due to surgery. Suboptimal perioperative glucose control may contribute to increased morbidity, mortality, and aggravate concomitant illnesses. The challenge is to minimize the effects of metabolic derangements on surgical outcomes, reduce blood glucose excursions, and prevent hypoglycemia. Differences in cerebral versus systemic glucose metabolism, time course of cerebral response to injury, and heterogeneity of pathophysiology in the neurosurgical patient populations are important to consider in evaluating the risks and benefits of IIT. While extremes of glucose levels are to be avoided, there are little data to support an optimal blood glucose level or recommend a specific use of IIT for euglycemia maintenance in the perioperative management of neurosurgical patients. Individualized treatment should be based on the local level of blood glucose control, outpatient treatment regimen, presence of complications, nature of the surgical procedure, and type of anesthesia administered.

  17. Significance of insulin for glucose metabolism in skeletal muscle during contractions

    DEFF Research Database (Denmark)

    Hespel, P; Vergauwen, Lieven; Vandenberghe, K

    1996-01-01

    is effected primarily via mechanisms exerted within the muscle cell related to the contractile activity per se. Yet contractions become a more potent stimulus of muscle glucose uptake as the plasma insulin level is increased. In addition, enhanced glucose delivery to muscle, which during exercise...... is essentially effected via increased blood flow, significantly contributes to stimulate glucose uptake. Again, however, increased glucose delivery appears to be a more potent stimulus of muscle glucose uptake as the circulating insulin level is increased. Furthermore, contractions and elevated flow prove......Glucose uptake rate in active skeletal muscles is markedly increased during exercise. This increase reflects a multifactorial process involving both local and systemic mechanisms that cooperate to stimulate glucose extraction and glucose delivery to the muscle cells. Increased glucose extraction...

  18. Efficient reduction of complex noise in passive millimeter-wavelength video utilizing Bayesian surprise

    Science.gov (United States)

    Mundhenk, T. Nathan; Baron, Josh; Matic, Roy M.

    2011-06-01

    Passive millimeter wavelength (PMMW) video holds great promise given its ability to see targets and obstacles through fog, smoke and rain. However, current imagers produce undesirable complex noise. This can come as a mixture of fast shot (snow like) noise and a slower forming circular fixed pattern. Shot noise can be removed by a simple gain style filter. However, this can produce blurring of objects in the scene. To alleviate this, we measure the amount of Bayesian surprise in videos. Bayesian surprise is feature change in time which is abrupt, but cannot be accounted for as shot noise. Surprise is used to attenuate the shot noise filter in locations of high surprise. Since high Bayesian surprise in videos is very salient to observers, this reduces blurring particularly in places where people visually attend. Fixed pattern noise is removed after the shot noise using a combination of Non-uniformity correction (NUC) and Eigen Image Wavelet Transformation. The combination allows for online removal of time varying fixed pattern noise even when background motion may be absent. It also allows for online adaptation to differing intensities of fixed pattern noise. The fixed pattern and shot noise filters are all efficient allowing for real time video processing of PMMW video. We show several examples of PMMW video with complex noise that is much cleaner as a result of the noise removal. Processed video clearly shows cars, houses, trees and utility poles at 20 frames per second.

  19. Virtual Volatility, an Elementary New Concept with Surprising Stock Market Consequences

    Science.gov (United States)

    Prange, Richard; Silva, A. Christian

    2006-03-01

    Textbook investors start by predicting the future price distribution, PDF, of a candidate stock (or portfolio) at horizon T, e.g. a year hence. A (log)normal PDF with center (=drift =expected return) μT and width (=volatility) σT is often assumed on Central Limit Theorem grounds, i.e. by a random walk of daily (log)price increments δs. The standard deviation, stdev, of historical (ex post) δs `s is usually a fair predictor of the coming year's (ex ante) stdev(δs) = σdaily, but the historical mean E(δs) at best roughly limits the true, to be predicted, drift by μtrueT˜ μhistT ± σhistT. Textbooks take a PDF with σ ˜ σdaily and μ as somehow known, as if accurate predictions of μ were possible. It is elementary and presumably new to argue that an average of PDF's over a range of μ values should be taken, e.g. an average over forecasts by different analysts. We estimate that this leads to a PDF with a `virtual' volatility σ ˜ 1.3σdaily. It is indeed clear that uncertainty in the value of the expected gain parameter increases the risk of investment in that security by most measures, e. g. Sharpe's ratio μT/σT will be 30% smaller because of this effect. It is significant and surprising that there are investments which benefit from this 30% virtual increase in the volatility

  20. Multicenter outpatient dinner/overnight reduction of hypoglycemia and increased time of glucose in target with a wearable artificial pancreas using modular model predictive control in adults with type 1 diabetes.

    Science.gov (United States)

    Del Favero, S; Place, J; Kropff, J; Messori, M; Keith-Hynes, P; Visentin, R; Monaro, M; Galasso, S; Boscari, F; Toffanin, C; Di Palma, F; Lanzola, G; Scarpellini, S; Farret, A; Kovatchev, B; Avogaro, A; Bruttomesso, D; Magni, L; DeVries, J H; Cobelli, C; Renard, E

    2015-05-01

    To test in an outpatient setting the safety and efficacy of continuous subcutaneous insulin infusion (CSII) driven by a modular model predictive control (MMPC) algorithm informed by continuous glucose monitoring (CGM) measurement. 13 patients affected by type 1 diabetes participated to a non-randomized outpatient 42-h experiment that included two evening meals and overnight periods (in short, dinner & night periods). CSII was patient-driven during dinner & night period 1 and MMPC-driven during dinner&night period 2. The study was conducted in hotels, where patients could move around freely. A CGM system (G4 Platinum; Dexcom Inc., San Diego, CA, USA) and insulin pump (AccuChek Combo; Roche Diagnostics, Mannheim, Germany) were connected wirelessly to a smartphone-based platform (DiAs, Diabetes Assistant; University of Virginia, Charlottesville, VA, USA) during both periods. A significantly lower percentage of time spent with glucose levels <3.9 mmol/l was achieved in period 2 compared with period 1: 1.96 ± 4.56% vs 12.76 ± 15.84% (mean ± standard deviation, p < 0.01), together with a greater percentage of time spent in the 3.9-10 mmol/l target range: 83.56 ± 14.02% vs 62.43 ± 29.03% (p = 0.04). In addition, restricting the analysis to the overnight phases, a lower percentage of time spent with glucose levels <3.9 mmol/l (1.92 ± 4.89% vs 12.7 ± 19.75%; p = 0.03) was combined with a greater percentage of time spent in 3.9-10 mmol/l target range in period 2 compared with period 1 (92.16 ± 8.03% vs 63.97 ± 2.73%; p = 0.01). Average glucose levels were similar during both periods. The results suggest that MMPC managed by a wearable system is safe and effective during evening meal and overnight. Its sustained use during this period is currently being tested in an ongoing randomized 2-month study. © 2015 John Wiley & Sons Ltd.

  1. Are free glucose and glucose-6-phosphate in milk indicators of specific physiological states in the cow?

    DEFF Research Database (Denmark)

    Larsen, Torben; Moyes, Kasey M

    2015-01-01

    A total of 3200 milk samples from Holstein and Jersey cows were analysed for free glucose and glucose-6-phosphate (G6P) by an enzymatic-fluorometric method that requires no pre-treatment. The cows were primiparous as well as multiparous, and samples were taken throughout the entire lactation period......, free glucose increased whereas G6P decreased. Concentration of free glucose in milk is greater for primiparous than multiparous cows and greater for Holstein than Jersey cows. Concentration of G6P was not affected by parity or breed. The use of free glucose and G6P as indicators of physiological...

  2. Glucose predictability, blood capillary permeability, and glucose utilization rate in subcutaneous, skeletal muscle, and visceral fat tissues.

    Science.gov (United States)

    Koutny, Tomas

    2013-11-01

    This study suggests an approach for the comparison and evaluation of particular compartments with modest experimental setup costs. A glucose level prediction model was used to evaluate the compartment's glucose transport rate across the blood capillary membrane and the glucose utilization rate by the cells. The glucose levels of the blood, subcutaneous tissue, skeletal muscle tissue, and visceral fat were obtained in experiments conducted on hereditary hypertriglyceridemic rats. After the blood glucose level had undergone a rapid change, the experimenter attempted to reach a steady blood glucose level by manually correcting the glucose infusion rate and maintaining a constant insulin infusion rate. The interstitial fluid glucose levels of subcutaneous tissue, skeletal muscle tissue, and visceral fat were evaluated to determine the reaction delay compared with the change in the blood glucose level, the interstitial fluid glucose level predictability, the blood capillary permeability, the effect of the concentration gradient, and the glucose utilization rate. Based on these data, the glucose transport rate across the capillary membrane and the utilization rate in a particular tissue were determined. The rates obtained were successfully verified against positron emission tomography experiments. The subcutaneous tissue exhibits the lowest and the most predictable glucose utilization rate, whereas the skeletal muscle tissue has the greatest glucose utilization rate. In contrast, the visceral fat is the least predictable and has the shortest reaction delay compared with the change in the blood glucose level. The reaction delays obtained for the subcutaneous tissue and skeletal muscle tissue were found to be approximately equal using a metric based on the time required to reach half of the increase in the interstitial fluid glucose level. © 2013 Published by Elsevier Ltd.

  3. Modulation of memory with septal injections of morphine and glucose: effects on extracellular glucose levels in the hippocampus.

    Science.gov (United States)

    McNay, Ewan C; Canal, Clinton E; Sherwin, Robert S; Gold, Paul E

    2006-02-28

    The concentration of glucose in the extracellular fluid (ECF) of the hippocampus decreases substantially during memory testing on a hippocampus-dependent memory task. Administration of exogenous glucose, which enhances task performance, prevents this decrease, suggesting a relationship between hippocampal glucose availability and memory performance. In the present experiment, spontaneous alternation performance and task-related changes in hippocampal ECF glucose were assessed in rats after intraseptal administration of morphine, which impairs memory on a spontaneous alternation task, and after co-administration of intraseptal glucose, which attenuates that impairment. Consistent with previous findings, spontaneous alternation testing resulted in a decrease in hippocampal ECF glucose levels in control rats. However, rats that received intraseptal morphine prior to testing showed memory impairments and an absence of the task-related decrease in hippocampal ECF glucose levels. Intraseptal co-administration of glucose with morphine attenuated the memory impairment, and ECF glucose levels in the hippocampus decreased in a manner comparable to that seen in control rats. These data suggest that fluctuations in hippocampal ECF glucose levels may be a marker of mnemonic processing and support the view that decreases in extracellular glucose during memory testing reflect increased glucose demand during memory processing.

  4. Effects of celiac superior mesenteric ganglionectomy on glucose homeostasis and hormonal changes during oral glucose tolerance testing in rats.

    Science.gov (United States)

    Kumakura, Atsushi; Shikuma, Junpei; Ogihara, Norikazu; Eiki, Jun-ichi; Kanazawa, Masao; Notoya, Yōko; Kikuchi, Masatoshi; Odawara, Masato

    2013-01-01

    The liver plays an important role in maintaining glucose homeostasis in the body. In the prandial state, some of the glucose which is absorbed by the gastrointestinal tract is converted into glycogen and stored in the liver. In contrast, the liver produces glucose by glycogenolysis and gluconeogenesis while fasting. Thus, the liver contributes to maintaining blood glucose level within normoglycemic range. Glycogenesis and glycogenolysis are regulated by various mechanisms including hormones, the sympathetic and parasympathetic nervous systems and the hepatic glucose content. In this study, we examined a rat model in which the celiac superior mesenteric ganglion (CSMG) was resected. We attempted to elucidate how the celiac sympathetic nervous system is involved