WorldWideScience

Sample records for surprising physical phenomena

  1. Some Surprising Introductory Physics Facts and Numbers

    Science.gov (United States)

    Mallmann, A. James

    2016-01-01

    In the entertainment world, people usually like, and find memorable, novels, short stories, and movies with surprise endings. This suggests that classroom teachers might want to present to their students examples of surprising facts associated with principles of physics. Possible benefits of finding surprising facts about principles of physics are…

  2. Understanding the physics of changing mass phenomena

    NARCIS (Netherlands)

    Ellermeijer, A.L.

    2008-01-01

    Changing mass phenomena, like a falling chain or a bungee jumper, might give surprising results, even for experienced physicists. They have resulted in hot discussions in journals, in which for instance Physics professors claim the impossibility of an acceleration larger then g in case of a bungee

  3. Physics Nobel prize 2004: Surprising theory wins physics Nobel

    CERN Multimedia

    2004-01-01

    From left to right: David Politzer, David Gross and Frank Wilczek. For their understanding of counter-intuitive aspects of the strong force, which governs quarks inside protons and neutrons, on 5 October three American physicists were awarded the 2004 Nobel Prize in Physics. David J. Gross (Kavli Institute of Theoretical Physics, University of California, Santa Barbara), H. David Politzer (California Institute of Technology), and Frank Wilczek (Massachusetts Institute of Technology) made a key theoretical discovery with a surprising result: the closer quarks are together, the weaker the force - opposite to what is seen with electromagnetism and gravity. Rather, the strong force is analogous to a rubber band stretching, where the force increases as the quarks get farther apart. These physicists discovered this property of quarks, known as asymptotic freedom, in 1976. It later became a key part of the theory of quantum chromodynamics (QCD) and the Standard Model, the current best theory to describe the interac...

  4. Sleeping beauties in theoretical physics 26 surprising insights

    CERN Document Server

    Padmanabhan, Thanu

    2015-01-01

    This book addresses a fascinating set of questions in theoretical physics which will both entertain and enlighten all students, teachers and researchers and other physics aficionados. These range from Newtonian mechanics to quantum field theory and cover several puzzling issues that do not appear in standard textbooks. Some topics cover conceptual conundrums, the solutions to which lead to surprising insights; some correct popular misconceptions in the textbook discussion of certain topics; others illustrate deep connections between apparently unconnected domains of theoretical physics; and a few provide remarkably simple derivations of results which are not often appreciated. The connoisseur of theoretical physics will enjoy a feast of pleasant surprises skilfully prepared by an internationally acclaimed theoretical physicist. Each topic is introduced with proper background discussion and special effort is taken to make the discussion self-contained, clear and comprehensible to anyone with an undergraduate e...

  5. New phenomena in neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim

    2009-04-15

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  6. New phenomena in neutrino physics

    International Nuclear Information System (INIS)

    Kopp, Joachim

    2009-01-01

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  7. Physical phenomena as sense determinate occurrences

    International Nuclear Information System (INIS)

    Sommer, H.J.

    2005-01-01

    In the view of El Naschie's E Infinity theory [Chaos, Solitons and Fractals 22 (2004) 495], our physical laws emerge from a chaotic underground, a 'Dirac-sea'. But we have no direct access from our observations to this chaotic world and this implies that the meaning of the correspondence between the phenomena we obtain by our cognition and their causal structures remains hidden to us. The fundamental process which produces our cognition is the 'constitution of sense'. A formal description of this process will be presented. We use Dempster Shafer's belief calculus to define 'belief' and motivate an Anticipation Principle: 'Put the measurements obtained from the world in such an order that the credibility of your forecasts will be maximized.' From this specification of the basic idea of what physical science ideally strives for, we are able to deduce a frame of reference for the formation of phenomena out of arbitrary sets of measurements. Reality is formed by these 'observable phenomena'. In this emerging reality, we recognize characteristic effects and principles of modern physics: Einstein's Postulate of Relativity, Entanglement, and the Quantum Zeno Effect. The presented view of reality is closely related to the ideas that had been presented hundred years ago by Ernst Mach and which recently J. Anandan generalized in his concept of a 'Relational Reality'

  8. Self-organization phenomena in plasma physics

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Popescu, S.

    2001-01-01

    The self-assembling in nature and laboratory of structures in systems away from thermodynamic equilibrium is one of the problems that mostly fascinates the scientists working in all branches of science. In this context a substantial progress has been obtained by investigating the appearance of spatial and spatiotemporal patterns in plasma. These experiments revealed the presence of a scenario of self-organization able to suggest an answer to the central problem of the 'Science of Complexity', why matter transits spontaneously from a disordered into an ordered state? Based on this scenario of self-organization we present arguments proving the possibility to explain the challenging problems of nonequilibrium physics in general. These problems refer to: (i) genuine origin of phase transitions observed in gaseous conductors and semiconductors; (ii) the elucidation of the role played by self-organization in the simulation of oscillations; (iii) the physical basis of anomalous transport of matter and energy with special reference to the possibilities of improving the economical performance of fusion devices; (iv) the possibility to use self-confined gaseous space charged configurations as an alternative to the magnetically confined plasma used at present in fusion devices. In other branches of sciences, as for instance in Biology, the self-organization scenario reveals a new insight into a mechanism able to explain the appearance of the simplest possible space charge configuration able to evolve, under suitable conditions, into prebiotic structures. Referring to phenomena observed in nature, the same self-organization scenario suggests plausible answers to the appearance of ball lightening but also to the origin of the flickering phenomena observed in the light emission of the Sun and stars. For theory the described self-organization scenario offers a new physical basis for many problems of nonlinear science not solved yet and also a new model for the so-called 'self

  9. The challenge of quantum computer simulations of physical phenomena

    International Nuclear Information System (INIS)

    Ortiz, G.; Knill, E.; Gubernatis, J.E.

    2002-01-01

    The goal of physics simulation using controllable quantum systems ('physics imitation') is to exploit quantum laws to advantage, and thus accomplish efficient simulation of physical phenomena. In this Note, we discuss the fundamental concepts behind this paradigm of information processing, such as the connection between models of computation and physical systems. The experimental simulation of a toy quantum many-body problem is described

  10. Ether and interpretation of some physical phenomena and concepts

    International Nuclear Information System (INIS)

    Rzayev, S.G.

    2008-01-01

    On the basis of the concept of existence of an ether representation about time, space, matters and physical field are profound and also the essence of such phenomena, as corpuscular - wave dualism, change of time, scale and mass at movement body's is opened. The opportunity of transition from probability-statistical interpretation of the quantum phenomena to Laplace's determinism is shown

  11. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP)

  12. Elementary particle physics and high energy phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  13. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z 0 with the SLD detector; fixed-target K-decay experiments; the R ampersand D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs

  14. Surprise Trips

    DEFF Research Database (Denmark)

    Korn, Matthias; Kawash, Raghid; Andersen, Lisbet Møller

    2010-01-01

    We report on a platform that augments the natural experience of exploration in diverse indoor and outdoor environments. The system builds on the theme of surprises in terms of user expectations and finding points of interest. It utilizes physical icons as representations of users' interests...... and as notification tokens to alert users when they are within proximity of a surprise. To evaluate the concept, we developed mock-ups, a video prototype and conducted a wizard-of-oz user test for a national park in Denmark....

  15. Introduction to symmetry-breaking phenomena in physics

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2001-01-01

    The notion of broken symmetries started slowly to emerge in the 19th century. The early studies of Pasteur on the parity asymmetry of life, the studies of Curie on piezoelectricity and on the symmetries of effects versus the symmetry of causes ( which clearly excluded spontaneous symmetry breaking), are important historical landmarks. However the possibility of spontaneous symmetry breaking within the usual principles of statistical mechanics, waited for the work of Peierls and Onsager. The whole theory of phase transitions and critical phenomena, as well as the construction of field theoretic models as long distance limit of yet unknown physics, relies nowadays on the concept of criticality associated to spontaneous symmetry breaking. The phenomena of Goldstone bosons, of Meissner-Higgs effects, are central to the theory of condensed matter as well as to particle physics. In cosmology as well, the various inflationary scenarios begin similarly with this same concept. The three lectures will provide a simple ...

  16. Physics education students’ cognitive and affective domains toward ecological phenomena

    Science.gov (United States)

    Napitupulu, N. D.; Munandar, A.; Redjeki, S.; Tjasyono, B.

    2018-05-01

    Environmental education is become prominent in dealing with natural phenomena that occur nowadays. Studying environmental physics will lead students to have conceptual understanding which are importent in enhancing attitudes toward ecological phenomena that link directry to cognitive and affective domains. This research focused on the the relationship of cognitive and affective domains toward ecological phenomena. Thirty-seven Physics Education students participated in this study and validated sources of data were collected to eksplore students’ conceptual understanding as cognitive domain and to investigate students’ attitudes as affective domain. The percentage of cognitive outcome and affective outcome are explore. The features of such approaches to environmental learning are discussion through analysis of contribution of cognitive to develop the attitude ecological as affective outcome. The result shows that cognitive domains do not contribute significantly to affective domain toward ecological henomena as an issue trend in Central Sulawesi although students had passed Environmental Physics instruction for two semester. In fact, inferior knowledge in a way actually contributes to the attitude domain caused by the prior knowledge that students have as ombo as a Kaili local wisdom.

  17. Fundamentals of Cryobiology Physical Phenomena and Mathematical Models

    CERN Document Server

    Zhmakin, Alexander I

    2009-01-01

    The book gives a summary of the state-of-the-art of cryobiology and its applications. The accent is on the underlying physical phenomena, which are common in such opposite applications as cryosurgery and cryoconservation, and the corresponding mathematical models, including numerical ones. The treatment of some more special issues is moved to the appendices. The glossary contains definitions and explanations of the major entities. All the topics considered are well referenced. The book is useful to both biologists and physicits of different level including practioners and graduate students.

  18. Critical point phenomena: universal physics at large length scales

    International Nuclear Information System (INIS)

    Bruce, A.; Wallace, D.

    1993-01-01

    This article is concerned with the behaviour of a physical system at, or close to, a critical point (ebullition, ferromagnetism..): study of the phenomena displayed in the critical region (Ising model, order parameter, correlation length); description of the configurations (patterns) formed by the microscopic degrees of freedom near a critical point, essential concepts of the renormalization group (coarse-graining, system flow, fixed-point and scale-invariance); how these concepts knit together to form the renormalization group method; and what kind of problems may be resolved by the renormalization group method. 12 figs., 1 ref

  19. Modelling transport phenomena in a multi-physics context

    Science.gov (United States)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  20. Modelling transport phenomena in a multi-physics context

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Francesco [Dipartimento di Ingegneria Chimica e Alimentare - Università degli studi di Salerno Via Ponte Don Melillo - 84084 Fisciano SA (Italy)

    2015-01-22

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  1. Modelling transport phenomena in a multi-physics context

    International Nuclear Information System (INIS)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating

  2. Impact of measurable physical phenomena on contact thermal comfort

    Science.gov (United States)

    Fojtlín, Miloš; Pokorný, Jan; Fišer, Jan; Toma, Róbert; Tuhovčák, Ján

    Cabin HVAC (Heating Ventilation and Air-conditioning) systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  3. Impact of measurable physical phenomena on contact thermal comfort

    Directory of Open Access Journals (Sweden)

    Fojtlín Miloš

    2017-01-01

    Full Text Available Cabin HVAC (Heating Ventilation and Air-conditioning systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  4. Ultrafast phenomena in molecular sciences femtosecond physics and chemistry

    CERN Document Server

    Bañares, Luis

    2014-01-01

    This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the ...

  5. Physical resuspension and revaporisation phenomena in control rod aerosols

    International Nuclear Information System (INIS)

    Benson, C.G.; Browsher, B.R.

    1988-12-01

    Physical resuspension and revaporisation processes could play a significant role in the transport of fission products in a severe reactor accident. The processes involved in physical resuspension and revaporisation of control rod alloy aerosol particles from a stainless steel substrate have been studied at room temperature under laminar and turbulent flow conditions (Reynolds numbers of between 70 and 7000), and at temperatures in the range from 370 K to 870 K under laminar and intermediate flow conditions (Reynolds numbers of between 7 and 1400) in the absence and presence of steam. The phenomena were investigated using bulk analyses to determine the quantity of material remaining on a coupon after each experiment, and standard surface analysis techniques were used to examine the composition and morphology of the particles. The main conclusions of this work are that: (i) physical resuspension is only significant in turbulent flow, (ii) two processes are involved in physical resuspension: the removal of surface layers which are only loosely bound to the substrate, and the removal of a more tightly-bound layer, (iii) the amount of material resuspended decreases exponentially with time, and the data have been correlated with a reverse isotherm model, (iv) the weight loss from the revaporisation experiments can be interpreted in terms of the effective vapour pressure of the deposit, and an equation has been derived to express this vapour pressure as a function of temperature. These studies have demonstrated the importance of a number of resuspension processes in generating a source of radioactive material that could be released after failure of the containment. Efforts are in hand to include these phenomena in the relevant modelling studies. (author)

  6. Mission Concept to Connect Magnetospheric Physical Processes to Ionospheric Phenomena

    Science.gov (United States)

    Dors, E. E.; MacDonald, E.; Kepko, L.; Borovsky, J.; Reeves, G. D.; Delzanno, G. L.; Thomsen, M. F.; Sanchez, E. R.; Henderson, M. G.; Nguyen, D. C.; Vaith, H.; Gilchrist, B. E.; Spanswick, E.; Marshall, R. A.; Donovan, E.; Neilson, J.; Carlsten, B. E.

    2017-12-01

    On the Earth's nightside the magnetic connections between the ionosphere and the dynamic magnetosphere have a great deal of uncertainty: this uncertainty prevents us from scientifically understanding what physical processes in the magnetosphere are driving the various phenomena in the ionosphere. Since the 1990s, the space plasma physics group at Los Alamos National Laboratory has been working on a concept to connect magnetospheric physical processes to auroral phenomena in the ionosphere by firing an electron beam from a magnetospheric spacecraft and optically imaging the beam spot in the ionosphere. The magnetospheric spacecraft will carry a steerable electron accelerator, a power-storage system, a plasma contactor, and instruments to measure magnetic and electric fields, plasma, and energetic particles. The spacecraft orbit will be coordinated with a ground-based network of cameras to (a) locate the electron beam spot in the upper atmosphere and (b) monitor the aurora. An overview of the mission concept will be presented, including recent enabling advancements based on (1) a new understanding of the dynamic spacecraft charging of the accelerator and plasma-contactor system in the tenuous magnetosphere based on ion emission rather than electron collection, (2) a new understanding of the propagation properties of pulsed MeV-class beams in the magnetosphere, and (3) the design of a compact high-power 1-MeV electron accelerator and power-storage system. This strategy to (a) determine the magnetosphere-to-ionosphere connections and (b) reduce accelerator- platform charging responds to one of the six emerging-technology needs called out in the most-recent National Academies Decadal Survey for Solar and Space Physics. [LA-UR-17-23614

  7. Charming surprise

    CERN Multimedia

    Antonella Del Rosso

    2011-01-01

    The CP violation in charm quarks has always been thought to be extremely small. So, looking at particle decays involving matter and antimatter, the LHCb experiment has recently been surprised to observe that things might be different. Theorists are on the case. The study of the physics of the charm quark was not in the initial plans of the LHCb experiment, whose letter “b” stands for “beauty quark”. However, already one year ago, the Collaboration decided to look into a wider spectrum of processes that involve charm quarks among other things. The LHCb trigger allows a lot of these processes to be selected, and, among them, one has recently shown interesting features. Other experiments at b-factories have already performed the same measurement but this is the first time that it has been possible to achieve such high precision, thanks to the huge amount of data provided by the very high luminosity of the LHC. “We have observed the decay modes of the D0, a pa...

  8. Charming surprise

    CERN Multimedia

    Antonella Del Rosso

    2011-01-01

    The CP violation in charm quarks has always been thought to be extremely small. So, looking at particle decays involving matter and antimatter, the LHCb experiment has recently been surprised to observe that things might be different. Theorists are on the case.   The study of the physics of the charm quark was not in the initial plans of the LHCb experiment, whose letter “b” stands for “beauty quark”. However, already one year ago, the Collaboration decided to look into a wider spectrum of processes that involve charm quarks among other things. The LHCb trigger allows a lot of these processes to be selected, and, among them, one has recently shown interesting features. Other experiments at b-factories have already performed the same measurement but this is the first time that it has been possible to achieve such high precision, thanks to the huge amount of data provided by the very high luminosity of the LHC. “We have observed the decay modes of t...

  9. TOPICAL REVIEW: Physics and phenomena in pulsed magnetrons: an overview

    Science.gov (United States)

    Bradley, J. W.; Welzel, T.

    2009-05-01

    This paper reviews the contribution made to the observation and understanding of the basic physical processes occurring in an important type of magnetized low-pressure plasma discharge, the pulsed magnetron. In industry, these plasma sources are operated typically in reactive mode where a cathode is sputtered in the presence of both chemically reactive and noble gases typically with the power modulated in the mid-frequency (5-350 kHz) range. In this review, we concentrate mostly, however, on physics-based studies carried out on magnetron systems operated in argon. This simplifies the physical-chemical processes occurring and makes interpretation of the observations somewhat easier. Since their first recorded use in 1993 there have been more than 300 peer-reviewed paper publications concerned with pulsed magnetrons, dealing wholly or in part with fundamental observations and basic studies. The fundamentals of these plasmas and the relationship between the plasma parameters and thin film quality regularly have whole sessions at international conferences devoted to them; however, since many different types of magnetron geometries have been used worldwide with different operating parameters the important results are often difficult to tease out. For example, we find the detailed observations of the plasma parameter (particle density and temperature) evolution from experiment to experiment are at best difficult to compare and at worst contradictory. We review in turn five major areas of studies which are addressed in the literature and try to draw out the major results. These areas are: fast electron generation, bulk plasma heating, short and long-term plasma parameter rise and decay rates, plasma potential modulation and transient phenomena. The influence of these phenomena on the ion energy and ion energy flux at the substrate is discussed. This review, although not exhaustive, will serve as a useful guide for more in-depth investigations using the referenced

  10. Physics and phenomena in pulsed magnetrons: an overview

    International Nuclear Information System (INIS)

    Bradley, J W; Welzel, T

    2009-01-01

    This paper reviews the contribution made to the observation and understanding of the basic physical processes occurring in an important type of magnetized low-pressure plasma discharge, the pulsed magnetron. In industry, these plasma sources are operated typically in reactive mode where a cathode is sputtered in the presence of both chemically reactive and noble gases typically with the power modulated in the mid-frequency (5-350 kHz) range. In this review, we concentrate mostly, however, on physics-based studies carried out on magnetron systems operated in argon. This simplifies the physical-chemical processes occurring and makes interpretation of the observations somewhat easier. Since their first recorded use in 1993 there have been more than 300 peer-reviewed paper publications concerned with pulsed magnetrons, dealing wholly or in part with fundamental observations and basic studies. The fundamentals of these plasmas and the relationship between the plasma parameters and thin film quality regularly have whole sessions at international conferences devoted to them; however, since many different types of magnetron geometries have been used worldwide with different operating parameters the important results are often difficult to tease out. For example, we find the detailed observations of the plasma parameter (particle density and temperature) evolution from experiment to experiment are at best difficult to compare and at worst contradictory. We review in turn five major areas of studies which are addressed in the literature and try to draw out the major results. These areas are: fast electron generation, bulk plasma heating, short and long-term plasma parameter rise and decay rates, plasma potential modulation and transient phenomena. The influence of these phenomena on the ion energy and ion energy flux at the substrate is discussed. This review, although not exhaustive, will serve as a useful guide for more in-depth investigations using the referenced

  11. Physical phenomena stipulating nucleus formation, growth and structure films

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, L N [AN SSSR, Novosibirsk. Inst. Fiziki Poluprovodnikov

    1975-03-01

    This review is concerned with the physical phenomena responsible for the nucleation, growth and structure of films. Emphasis is placed on the study of films of solid-metal systems, semiconductors (In, As, Cd, Se, CdS), and dielectrics. The following problems are discussed in the paper: general regularities of the thermodynamics and kinetics of film formation, methods of obtaining a solid film, the process of film formation, the rate of growth of individual grains. The critical film thickness and its measurement are also considered. The results of investigating the process of formation of mono- and polycrystalline films are discussed. It is concluded, on the basis of studies into the relaxation processes accompanying the growth of films, that an insight into these processes will permits improving film properties.

  12. Physically vapor deposited coatings on tools: performance and wear phenomena

    International Nuclear Information System (INIS)

    Koenig, W.; Fritsch, R.; Kammermeier, D.

    1991-01-01

    Coatings produced by physical vapor deposition (PVD) enhance the performance of tools for a broad variety of production processes. In addition to TiN, nowadays (Ti,Al)N and Ti(C,N) coated tools are available. This gives the opportunity to compare the performance of different coatings under identical machining conditions and to evaluate causes and phenomena of wear. TiN, (Ti,Al)N and Ti(C,N) coatings on high speed steel (HSS) show different performances in milling and turning of heat treated steel. The thermal and frictional properties of the coating materials affect the structure, the thickness and the flow of the chips, the contact area on the rake face and the tool life. Model tests show the influence of internal cooling and the thermal conductivity of coated HSS inserts. TiN and (Ti,Zr)N PVD coatings on cemented carbides were examined in interrupted turning and in milling of heat treated steel. Experimental results show a significant influence of typical time-temperature cycles of PVD and chemical vapor deposition (CVD) coating processes on the physical data and on the performance of the substrates. PVD coatings increase tool life, especially towards lower cutting speeds into ranges which cannot be applied with CVD coatings. The reason for this is the superior toughness of the PVD coated carbide. The combination of tough, micrograin carbide and PVD coating even enables broaching of case hardened sliding gears at a cutting speed of 66 m min -1 . (orig.)

  13. Ontological Surprises

    DEFF Research Database (Denmark)

    Leahu, Lucian

    2016-01-01

    a hybrid approach where machine learning algorithms are used to identify objects as well as connections between them; finally, it argues for remaining open to ontological surprises in machine learning as they may enable the crafting of different relations with and through technologies.......This paper investigates how we might rethink design as the technological crafting of human-machine relations in the context of a machine learning technique called neural networks. It analyzes Google’s Inceptionism project, which uses neural networks for image recognition. The surprising output...

  14. Spin-transfer phenomena in layered magnetic structures: Physical phenomena and materials aspects

    International Nuclear Information System (INIS)

    Gruenberg, P.; Buergler, D.E.; Dassow, H.; Rata, A.D.; Schneider, C.M.

    2007-01-01

    During the past 20 years, layered structures consisting of ferromagnetic layers and spacers of various material classes with a thickness of only a few nanometers have revealed a variety of exciting and potentially very useful phenomena not present in bulk material. Representing distinct manifestations of spin-transfer processes, these phenomena may be categorized into interlayer exchange coupling (IEC), giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), and the more recently discovered spin-transfer torque effect leading to current-induced magnetization switching (CIMS) and current-driven magnetization dynamics. These phenomena clearly confer novel material properties on magnetic layered structures with respect to the (magneto-)transport and the magnetostatic as well as magnetodynamic behavior. Here, we will first concentrate on the less well understood aspects of IEC across insulating and semiconducting interlayers and relate the observations to TMR in the corresponding structures. In this context, we will also discuss more recent advances in TMR due to the use of electrodes made from Heusler alloys and the realization of coherent tunneling in epitaxial magnetic tunneling junctions. Finally, we will review our results on CIMS in epitaxial magnetic nanostructures showing that normal and inverse CIMS can occur simultaneously in a single nanopillar device. In all cases discussed, material issues play a major role in the detailed understanding of the spin-transfer effects, in particular in those systems that yield the largest effects and are thus of utmost interest for applications

  15. On Process Modelling Using Physical Oriented And Phenomena Based Principles

    Directory of Open Access Journals (Sweden)

    Mihai Culea

    2000-12-01

    Full Text Available This work presents a modelling framework based on phenomena description of the process. The approach is taken to easy understand and construct process model in heterogeneous possible distributed modelling and simulation environments. A simplified case study of a heat exchanger is considered and Modelica modelling language to check the proposed concept. The partial results are promising and the research effort will be extended in a computer aided modelling environment based on phenomena.

  16. The blowdown, refill and reflood phase during a LOCA. Survey of the main physical phenomena

    International Nuclear Information System (INIS)

    Reocreux, M.

    1980-05-01

    In this paper, the main physical phenomena occuring during a LOCA are reviewed. They are presented in a chronological order. For each phenomena, a detailed physical description is given followed by the review of the general modelling problems. For some of these phenomena, modelling details are given for critical flow, for two-phase flow and heat transfer, for critical heat flux and post critical heat flux heat transfer, for reflood and rewet heat transfer and in the survey on LOCA computation codes

  17. All basic condensed matter physics phenomena and notions mirror ...

    Indian Academy of Sciences (India)

    biology an opportunity to explore a variety of condensed matter phenomena and situations, some of which have ... The biological matter such as the tiniest of life, an amoeba, is alive ..... and black-holes, nature fascinates physicists. It is the ...

  18. Ancient Chinese observations of physical phenomena attending solar eclipses

    International Nuclear Information System (INIS)

    Wang, P.K.; Siscoe, G.L.

    1980-01-01

    The realization that solar activity probably undergoes changes in qualitative character on time scales greater than the 11 or 22 year cycle but short compared to the duration of recorded history gives renewed importance to historical documents describing the state of solar activity. Modern eclipse observation reveal the presence of solar acitivity through the appearance of coronal structures and prominences. It has been widely remarked that eclipse records prior to the 18th century are uniformly silent on these conspicuous solar eclipse features, raising the possibility, however unlikely, that a change in solar activity has occurred which rendered them only recently noticeable. We present here material from ancient Chinese sources, primarily astrological, that describe phenomena attending solar eclipses that are almost certainly coronal structures and prominences. Thus, these aspects of the present character of solar activity have apparently occurred at other times in history, if not continuously. (orig.)

  19. Physical and metallurgical phenomena during simulations of plasma disruptions

    International Nuclear Information System (INIS)

    Brossa, F.; Cambini, M.; Quataert, D.; Rigon, G.; Schiller, P.

    1988-01-01

    The metallographic analysis executed on austenitic stainless steel specimens subjected to simulated plasma disruptions allows us to present a complete picture of the most important phenomena. (i) The experiments show that for the calculation of melt layer and evaporation it is necessary to take considerable convection in the melt layer into account. (ii) The rapid solidification of the melt layer leads to a change in the crystalline structure and to the formation of cracks. (iii) Alloying elements with a high vapour pressure evaporate preferentially. (iv) The stresses generated during cooling induce in some case phase changes. (v) During neutron irradiation helium is formed in all first wall materials by (n, α) processes. This helium forms bubbles under disruptions. (orig.)

  20. Learning From Where Students Look While Observing Simulated Physical Phenomena

    Science.gov (United States)

    Demaree, Dedra

    2005-04-01

    The Physics Education Research (PER) Group at the Ohio State University (OSU) has developed Virtual Reality (VR) programs for teaching introductory physics concepts. Winter 2005, the PER group worked with OSU's cognitive science eye-tracking lab to probe what features students look at while using our VR programs. We see distinct differences in the features students fixate on depending upon whether or not they have formally studied the related physics. Students who first make predictions seem to fixate more on the relevant features of the simulation than those who do not, regardless of their level of education. It is known that students sometimes perform an experiment and report results consistent with their misconceptions but inconsistent with the experimental outcome. We see direct evidence of one student holding onto misconceptions despite fixating frequently on the information needed to understand the correct answer. Future studies using these technologies may prove valuable for tackling difficult questions regarding student learning.

  1. Dynamic modeling of physical phenomena for PRAs using neural networks

    International Nuclear Information System (INIS)

    Benjamin, A.S.; Brown, N.N.; Paez, T.L.

    1998-04-01

    In most probabilistic risk assessments, there is a set of accident scenarios that involves the physical responses of a system to environmental challenges. Examples include the effects of earthquakes and fires on the operability of a nuclear reactor safety system, the effects of fires and impacts on the safety integrity of a nuclear weapon, and the effects of human intrusions on the transport of radionuclides from an underground waste facility. The physical responses of the system to these challenges can be quite complex, and their evaluation may require the use of detailed computer codes that are very time consuming to execute. Yet, to perform meaningful probabilistic analyses, it is necessary to evaluate the responses for a large number of variations in the input parameters that describe the initial state of the system, the environments to which it is exposed, and the effects of human interaction. Because the uncertainties of the system response may be very large, it may also be necessary to perform these evaluations for various values of modeling parameters that have high uncertainties, such as material stiffnesses, surface emissivities, and ground permeabilities. The authors have been exploring the use of artificial neural networks (ANNs) as a means for estimating the physical responses of complex systems to phenomenological events such as those cited above. These networks are designed as mathematical constructs with adjustable parameters that can be trained so that the results obtained from the networks will simulate the results obtained from the detailed computer codes. The intent is for the networks to provide an adequate simulation of the detailed codes over a significant range of variables while requiring only a small fraction of the computer processing time required by the detailed codes. This enables the authors to integrate the physical response analyses into the probabilistic models in order to estimate the probabilities of various responses

  2. The mysteries of leptons. New physics and unexplained phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Merle, Alexander

    2009-12-09

    This doctoral thesis deals with the mysteries of the leptonic sector of the Standard Model of Elementary Particle Physics. After giving a short overview about the Standard Model itself, the text starts with introducing the so-called ''GSI anomaly'', the observation of a periodic modulation of the exponential decay law, which is still unexplained and has erroneously been attributed to neutrino oscillations. It is argued why this interpretation is incorrect and several further aspects of the phenomenon are discussed. Afterwards two topics of New Physics beyond the Standard Model are treated, double beta processes and lepton flavour violation. Some important phenomenological aspects of the former are discussed before performing a detailed calculation of the radiative process of neutrino-less double electron capture. In spite of the tiny rates, a detailed understanding of this process is important for setting proper experimental limits. The last part of the thesis starts with very general (and nearly model-independent) constraints for lepton flavour conservation, before discussing the interplay of structure and freedom in the Yukawa sector when a model is confronted with phenomenology. We also comment on a new mechanism that can indeed introduce some realistic structures leading to lepton flavour violating effects. (orig.)

  3. The mysteries of leptons. New physics and unexplained phenomena

    International Nuclear Information System (INIS)

    Merle, Alexander

    2009-01-01

    This doctoral thesis deals with the mysteries of the leptonic sector of the Standard Model of Elementary Particle Physics. After giving a short overview about the Standard Model itself, the text starts with introducing the so-called ''GSI anomaly'', the observation of a periodic modulation of the exponential decay law, which is still unexplained and has erroneously been attributed to neutrino oscillations. It is argued why this interpretation is incorrect and several further aspects of the phenomenon are discussed. Afterwards two topics of New Physics beyond the Standard Model are treated, double beta processes and lepton flavour violation. Some important phenomenological aspects of the former are discussed before performing a detailed calculation of the radiative process of neutrino-less double electron capture. In spite of the tiny rates, a detailed understanding of this process is important for setting proper experimental limits. The last part of the thesis starts with very general (and nearly model-independent) constraints for lepton flavour conservation, before discussing the interplay of structure and freedom in the Yukawa sector when a model is confronted with phenomenology. We also comment on a new mechanism that can indeed introduce some realistic structures leading to lepton flavour violating effects. (orig.)

  4. Surprise, Recipes for Surprise, and Social Influence.

    Science.gov (United States)

    Loewenstein, Jeffrey

    2018-02-07

    Surprising people can provide an opening for influencing them. Surprises garner attention, are arousing, are memorable, and can prompt shifts in understanding. Less noted is that, as a result, surprises can serve to persuade others by leading them to shifts in attitudes. Furthermore, because stories, pictures, and music can generate surprises and those can be widely shared, surprise can have broad social influence. People also tend to share surprising items with others, as anyone on social media has discovered. This means that in addition to broadcasting surprising information, surprising items can also spread through networks. The joint result is that surprise not only has individual effects on beliefs and attitudes but also collective effects on the content of culture. Items that generate surprise need not be random or accidental. There are predictable methods or recipes for generating surprise. One such recipe is discussed, the repetition-break plot structure, to explore the psychological and social possibilities of examining surprise. Recipes for surprise offer a useful means for understanding how surprise works and offer prospects for harnessing surprise to a wide array of ends. Copyright © 2017 Cognitive Science Society, Inc.

  5. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    Science.gov (United States)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  6. PREFACE: Conference of Theoretical Physics and Nonlinear Phenomena (CTPNP) 2014: ''From Universe to String's Scale''

    Science.gov (United States)

    2014-10-01

    Theoretical physics is the first step for the development of science and technology. For more than 100 years it has delivered new and sophisticated discoveries which have changed human views of their surroundings and universe. Theoretical physics has also revealed that the governing law in our universe is not deterministic, and it is undoubtedly the foundation of our modern civilization. Contrary to its importance, research in theoretical physics is not well advanced in some developing countries such as Indonesia. This workshop provides the formal meeting in Indonesia devoted to the field of theoretical physics and is organized to cover all subjects of theoretical physics as well as nonlinear phenomena in order to create a gathering place for the theorists in Indonesia and surrounding countries, to motivate young physicists to keep doing active researches in the field and to encourage constructive communication among the community members. Following the success of the tenth previous meetings in this conference series, the eleventh conference was held in Sebelas Maret University (UNS), Surakarta, Indonesia on 15 February 2014. In addition, the conference was proceeded by School of Advance Physics at Gadjah Mada University (UGM), Yogyakarta, on 16-17 February 2014. The conference is expected to provide distinguished experts and students from various research fields of theoretical physics and nonlinear phenomena in Indonesia as well as from other continents the opportunities to present their works and to enhance contacts among them. The introduction to the conference is continued in the pdf.

  7. Contribution to the study of multi-physical phenomena in cementitious materials

    International Nuclear Information System (INIS)

    Bary, B.

    2010-09-01

    This document is a synthesis of the applied research studies undertaken by the author during ten years, first at the University of Marne-La-Vallee during the period 1999-2002, then at the CEA. These studies concern the modeling and the numerical simulations of the cementitious materials behavior subjected on the one hand to moderate thermomechanical and hydric loadings, and on the other hand to chemical attacks due to the migration of calcium, carbonate and sulfate ions. The developed approaches may be viewed as multi-physical in the sense that the models used for describing the behavior couple various fields and phenomena such as mechanics, thermal, hydric and ionic transfers, and chemistry. In addition, analytical up-scaling techniques are applied to estimate the physical properties associated with these phenomena (mechanical, hydraulic and diffusive parameters) as a function of the microstructure and the hydric state of the material. (author)

  8. Rethinking earthquake-related DC-ULF electromagnetic phenomena: towards a physics-based approach

    Directory of Open Access Journals (Sweden)

    Q. Huang

    2011-11-01

    Full Text Available Numerous electromagnetic changes possibly related with earthquakes have been independently reported and have even been attempted to apply to short-term prediction of earthquakes. However, there are active debates on the above issue because the seismogenic process is rather complicated and the studies have been mainly empirical (i.e. a kind of experience-based approach. Thus, a physics-based study would be helpful for understanding earthquake-related electromagnetic phenomena and strengthening their applications. As a potential physics-based approach, I present an integrated research scheme, taking into account the interaction among observation, methodology, and physical model. For simplicity, this work focuses only on the earthquake-related DC-ULF electromagnetic phenomena. The main approach includes the following key problems: (1 how to perform a reliable and appropriate observation with some clear physical quantities; (2 how to develop a robust methodology to reveal weak earthquake-related electromagnetic signals from noisy background; and (3 how to develop plausible physical models based on theoretical analyses and/or laboratory experiments for the explanation of the earthquake-related electromagnetic signals observed in the field conditions.

  9. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    International Nuclear Information System (INIS)

    Sierra-Sosa, Daniel-Esteban; Angel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB (registered) software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  10. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Sosa, Daniel-Esteban; Angel-Toro, Luciano, E-mail: dsierras@eafit.edu.co, E-mail: langel@eafit.edu.co [Grupo de Optica Aplicada, Universidad EAFIT, 1 Medellin (Colombia)

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB (registered) software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  11. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    Science.gov (United States)

    Sierra-Sosa, Daniel-Esteban; Ángel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB® software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  12. First applications of structural pattern recognition methods to the investigation of specific physical phenomena at JET

    International Nuclear Information System (INIS)

    Ratta, G.A.; Vega, J.; Pereira, A.; Portas, A.; Luna, E. de la; Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N.; Vargas, H.; Santos, M.; Pajares, G.; Murari, A.

    2008-01-01

    Structural pattern recognition techniques allow the identification of plasma behaviours. Physical properties are encoded in the morphological structure of signals. Intelligent access methods have been applied to JET databases to retrieve data according to physical criteria. On the one hand, the structural form of signals has been used to develop general purpose data retrieval systems to search for both similar entire waveforms and similar structural shapes inside waveforms. On the other hand, domain dependent knowledge was added to the structural information of signals to create particular data retrieval methods for specific physical phenomena. The inclusion of explicit knowledge assists in data analysis. The latter has been applied in JET to look for first, cut-offs in ECE heterodyne radiometer signals and, second, L-H transitions

  13. First applications of structural pattern recognition methods to the investigation of specific physical phenomena at JET

    Energy Technology Data Exchange (ETDEWEB)

    Ratta, G.A. [Asociacion EURATOM/CIEMAT para Fusion (Spain)], E-mail: giuseppe.ratta@ciemat.es; Vega, J.; Pereira, A.; Portas, A.; Luna, E. de la [Asociacion EURATOM/CIEMAT para Fusion (Spain); Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N.; Vargas, H. [Dpto. Informatica y Automatica-UNED, 28040 Madrid (Spain); Santos, M.; Pajares, G. [Dpto. Arquitectura de Computadores y Automatica-UCM, 28040 Madrid (Spain); Murari, A. [Consorzio RFX-Associazione EURATOM ENEA per la Fusione, Padua (Italy)

    2008-04-15

    Structural pattern recognition techniques allow the identification of plasma behaviours. Physical properties are encoded in the morphological structure of signals. Intelligent access methods have been applied to JET databases to retrieve data according to physical criteria. On the one hand, the structural form of signals has been used to develop general purpose data retrieval systems to search for both similar entire waveforms and similar structural shapes inside waveforms. On the other hand, domain dependent knowledge was added to the structural information of signals to create particular data retrieval methods for specific physical phenomena. The inclusion of explicit knowledge assists in data analysis. The latter has been applied in JET to look for first, cut-offs in ECE heterodyne radiometer signals and, second, L-H transitions.

  14. Mathematical and physical modeling of thermal stratification phenomena in steel ladles

    Science.gov (United States)

    Putan, V.; Vilceanu, L.; Socalici, A.; Putan, A.

    2018-01-01

    By means of CFD numerical modeling, a systematic analysis of the similarity between steel ladles and hot-water model regarding natural convection phenomena was studied. The key similarity criteria we found to be dependent on the dimensionless numbers Fr and βΔT. These similarity criteria suggested that hot-water models with scale in the range between 1/5 and 1/3 and using hot water with temperature of 45 °C or higher are appropriate for simulating natural convection in steel ladles. With this physical model, thermal stratification phenomena due to natural convection in steel ladles were investigated. By controlling the cooling intensity of water model to correspond to the heat loss rate of steel ladles, which is governed by Fr and βΔT, the temperature profiles measured in the water bath of the model were to deduce the extent of thermal stratification in liquid steel bath in the ladles. Comparisons between mathematically simulated temperature profiles in the prototype steel ladles and those physically simulated by scaling-up the measured temperatures profiles in the water model showed good agreement. This proved that it is feasible to use a 1/5 scale water model with 45 °C hot water to simulate natural convection in steel ladles. Therefore, besides mathematical CFD models, the physical hot-water model provided an additional means of studying fluid flow and heat transfer in steel ladles.

  15. Fourier fringe analysis and its application to metrology of extreme physical phenomena: a review [Invited].

    Science.gov (United States)

    Takeda, Mitsuo

    2013-01-01

    The paper reviews a technique for fringe analysis referred to as Fourier fringe analysis (FFA) or the Fourier transform method, with a particular focus on its application to metrology of extreme physical phenomena. Examples include the measurement of extremely small magnetic fields with subfluxon sensitivity by electron wave interferometry, subnanometer wavefront evaluation of projection optics for extreme UV lithography, the detection of sub-Ångstrom distortion of a crystal lattice, and the measurement of ultrashort optical pulses in the femotsecond to attosecond range, which show how the advantages of FFA are exploited in these cutting edge applications.

  16. Quantitative physical models of volcanic phenomena for hazards assessment of critical infrastructures

    Science.gov (United States)

    Costa, Antonio

    2016-04-01

    Volcanic hazards may have destructive effects on economy, transport, and natural environments at both local and regional scale. Hazardous phenomena include pyroclastic density currents, tephra fall, gas emissions, lava flows, debris flows and avalanches, and lahars. Volcanic hazards assessment is based on available information to characterize potential volcanic sources in the region of interest and to determine whether specific volcanic phenomena might reach a given site. Volcanic hazards assessment is focussed on estimating the distances that volcanic phenomena could travel from potential sources and their intensity at the considered site. Epistemic and aleatory uncertainties strongly affect the resulting hazards assessment. Within the context of critical infrastructures, volcanic eruptions are rare natural events that can create severe hazards. In addition to being rare events, evidence of many past volcanic eruptions is poorly preserved in the geologic record. The models used for describing the impact of volcanic phenomena generally represent a range of model complexities, from simplified physics based conceptual models to highly coupled thermo fluid dynamical approaches. Modelling approaches represent a hierarchy of complexity, which reflects increasing requirements for well characterized data in order to produce a broader range of output information. In selecting models for the hazard analysis related to a specific phenomenon, questions that need to be answered by the models must be carefully considered. Independently of the model, the final hazards assessment strongly depends on input derived from detailed volcanological investigations, such as mapping and stratigraphic correlations. For each phenomenon, an overview of currently available approaches for the evaluation of future hazards will be presented with the aim to provide a foundation for future work in developing an international consensus on volcanic hazards assessment methods.

  17. University Physics Students' Use of Models in Explanations of Phenomena Involving Interaction between Metals and Electromagnetic Radiation.

    Science.gov (United States)

    Redfors, Andreas; Ryder, Jim

    2001-01-01

    Examines third year university physics students' use of models when explaining familiar phenomena involving interaction between metals and electromagnetic radiation. Concludes that few students use a single model consistently. (Contains 27 references.) (DDR)

  18. Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference

    Science.gov (United States)

    Singh, Bhim S. (Editor)

    2000-01-01

    The Fifth Microgravity Fluid Physics and Transport Phenomena Conference provided the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program and research opportunities and plans for the near future. Consistent with the conference theme "Microgravity Research an Agency-Wide Asset" the conference focused not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. The conference included 14 invited plenary talks, 61 technical paper presentations, 61 poster presentations, exhibits and a forum on emerging research themes focusing on nanotechnology and biofluid mechanics. This web-based proceeding includes the presentation and poster charts provided by the presenters of technical papers and posters that were scanned at the conference site. Abstracts of all the papers and posters are included and linked to the presentations charts. The invited and plenary speakers were not required to provide their charts and are generally not available for scanning and hence not posted. The conference program is also included.

  19. Elementary particle physics and high energy phenomena. [Dept. of Physics, Univ. of Colorado, Boulder, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z[sup 0] with the SLD detector; fixed-target K-decay experiments; the R D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs.

  20. Dynamic modeling of physical phenomena for probabilistic assessment of spent fuel accidents

    International Nuclear Information System (INIS)

    Benjamin, A.S.

    1997-01-01

    If there should be an accident involving drainage of all the water from a spent fuel pool, the fuel elements will heat up until the heat produced by radioactive decay is balanced by that removed by natural convection to air, thermal radiation, and other means. If the temperatures become high enough for the cladding or other materials to ignite due to rapid oxidation, then some of the fuel might melt, leading to an undesirable release of radioactive materials. The amount of melting is dependent upon the fuel loading configuration and its age, the oxidation and melting characteristics of the materials, and the potential effectiveness of recovery actions. The authors have developed methods for modeling the pertinent physical phenomena and integrating the results with a probabilistic treatment of the uncertainty distributions. The net result is a set of complementary cumulative distribution functions for the amount of fuel melted

  1. Basic physical phenomena, neutron production and scaling of the dense plasma focus

    International Nuclear Information System (INIS)

    Kaeppeler, H.J.

    This paper presents an attempt at establishing a model theory for the dense plasma focus in order to present a consistent interpretation of the basic physical phenomena leading to neutron production from both acceleration and thermal processes. To achieve this, the temporal history of the focus is divided into the compression of the plasma sheath, a qiescent and very dense phase with ensuing expansion, and an instable phase where the focus plasma is disrupted by instabilities. Finally, the decay of density, velocity and thermal fields is considered. Under the assumption that Io 2 /sigmaoRo 2 = const and to/Tc = const, scaling laws for plasma focus devices are derived. It is shown that while generally the neutron yield scales with the fourth power of maximum current, neutron production from thermal processes becomes increasingly important for large devices, while in the small devices neutron production from acceleration processes is by far predominant. (orig.) [de

  2. On a Formalization of Cantor Set Theory for Natural Models of the Physical Phenomena

    Directory of Open Access Journals (Sweden)

    Nudel'man A. S.

    2010-01-01

    Full Text Available This article presents a set theory which is an extension of ZFC . In contrast to ZFC , a new theory admits absolutely non-denumerable sets. It is feasible that a symbiosis of the proposed theory and Vdovin set theory will permit to formulate a (presumably non- contradictory axiomatic set theory which will represent the core of Cantor set theory in a maximally full manner as to the essence and the contents of the latter. This is possible due to the fact that the generalized principle of choice and the generalized continuum hypothesis are proved in Vdovin theory. The theory, being more complete than ZF and more natural according to Cantor, will allow to construct and study (in its framework only natural models of the real physical phenomena.

  3. On a Formalization of Cantor Set Theory for Natural Models of the Physical Phenomena

    Directory of Open Access Journals (Sweden)

    Nudel'man A. S.

    2010-01-01

    Full Text Available This article presents a set theory which is an extension of $ZFC$. In contrast to $ZFC$, a new theory admits absolutely non-denumerable sets. It is feasible that a symbiosis of the proposed theory and Vdovin set theory will permit to formulate a (presumably non-contradictory axiomatic set theory which will represent the core of Cantor set theory in a maximally full manner as to the essence and the contents of the latter. This is possible due to the fact that the generalized principle of choice and the generalized continuum hypothesis are proved in Vdovin theory. The theory, being more complete than $ZF$ and more natural according to Cantor, will allow to construct and study (in its framework only natural models of the real physical phenomena.

  4. First steps in eukaryogenesis: Physical phenomena in the origin and evolution of chromosome structure

    International Nuclear Information System (INIS)

    Chela Flores, J.

    1995-01-01

    Our present understanding of the origin and evolution of chromosomes differs considerably from current understanding of the origin and evolution of the cell itself. Chromosome origins have been less prominent in research, as the emphasis has not shifted so far appreciably from the phenomenon of primeval nucleic acid encapsulation to that of the origin of gene organization, expression, and regulation. In this work we discuss some reasons why preliminary steps in this direction are being taken. We have been led to examine properties that have contributed to raise the ancestral prokaryotic programmes to a level where we can appreciate in eukaryotes a clear departure from earlier themes in the evolution of the cell from the last common ancestor. We shift our point of view from evolution of cell morphology to the point of view of the genes. In particular, we focus attention on possible physical bases for the way transmission of information has evolved in eukaryotes, namely, the inactivation of whole chromosomes. The special case of inactivation of the X chromosome in mammals is discussed, paying particular attention to the physical process of the spread of X inactivation in monotremes (platypus and echidna.) When experimental data is unavailable some theoretical analysis is possible based on the idea that in certain cases collective phenomena in genetics, rather than chemical detail, are better correlates of complex chemical processes. (author). Abstract only

  5. First steps in eukaryogenesis: Physical phenomena in the origin and evolution of chromosome structure

    International Nuclear Information System (INIS)

    Chela Flores, J.

    1995-08-01

    Our present understanding of the origin and evolution of chromosomes differs considerably from current understanding of the origin and evolution of the cell itself. Chromosome origins have been less prominent in research, as the emphasis has not shifted so far appreciably from the phenomenon of primeval nucleic acid encapsulation to that of the origin of gene organization, expression, and regulation. In this work we discuss some reasons why preliminary steps in this direction are being taken. We have been led to examine properties that have contributed to raise the ancestral prokaryotic programmes to a level where we can appreciate in eukaryotes a clear departure from earlier themes in the evolution of cell from the last common ancestor. We shift our point of view from evolution of cell morphology to the point of view of the genes. In particular we focus attention on possible physical bases for the way transmission of information has evolved in eukaryotes, namely, the inactivation of whole chromosomes. The special case of the inactivation of the X chromosome in mammals is discussed, paying particular attention to the physical process of the spread of X inactivation in monotremes (platypus and echidna). When experimental data is unavailable some theoretical analysis is possible based on the idea that in certain cases collective phenomena in genetics, rather than chemical detail, are better correlates of complex chemical processes. (author). 65 refs

  6. Primary Teachers' Particle Ideas and Explanations of Physical Phenomena: Effect of an In-Service Training Course

    Science.gov (United States)

    Papageorgiou, George; Stamovlasis, Dimitrios; Johnson, Phil Michael

    2010-01-01

    This paper presents a study concerning Greek primary school teachers' (n = 162) ideas about the particulate nature of matter and their explanations of physical phenomena. The study took place during an in-service training course where the effectiveness of a specially designed intervention was tested. A key feature was an approach based on the…

  7. Physical model of lean suppression pressure oscillation phenomena: steam condensation in the light water reactor pressure suppression system (PSS)

    International Nuclear Information System (INIS)

    McCauley, E.W.; Holman, G.S.; Aust, E.; Schwan, H.; Vollbrandt, J.

    1980-01-01

    Using the results of large scale multivent tests conducted by GKSS, a physical model of chugging is developed. The unique combination of accurate digital data and cinematic data has provided the derivation of a detailed, quantified correlation between the dynamic physical variables and the associated two-phase thermo-hydraulic phenomena occurring during lean suppression (chugging) phases of the loss-of-coolant accident in a boiling water reactor pressure suppression system

  8. Unraveling the physics of nanofluidic phenomena at the single-molecule level

    Energy Technology Data Exchange (ETDEWEB)

    Fornasiero, Francesco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-13

    Despite groundbreaking potential in a broad application space, several nanofluidic phenomena remain poorly understood. Toward advancing the understanding of fluid behavior under nanoscale confinement, we developed a novel, ideal platform for fundamental molecular transport studies, in which the fluidic channel is a single carbon nanotube (CNT). CNTs offer the advantage of simple chemistry and structure, which can be synthetically tuned with nanometer precision and accurately modeled. With combined experimental and computational approaches, we demonstrated that CNT pores with 1-5 nm diameters conduct giant ionic currents that follow an unusual sublinear electrolyte concentration dependence. The large magnitude of the ionic conductance appears to originate from a strong electro-osmotic flow in smooth CNT pores. First-principle simulations suggest that electro-osmotic flow arises from localized negative polarization charges on carbon atoms near a potassium (K+) ion and from the strong cation-graphitic wall interactions, which drive K+ ions much closer to the wall than chlorides (Cl-). Single-molecule translocation studies reveal that charged molecules may be distinguished from neutral species on the basis of the sign of the transient current change during their passage through the nanopore. Together with shedding light on a few controversial questions in the CNT nanofluidics area, these results may benefit LLNL’s Security Mission by providing the foundation for the development of advanced single-molecule detection system for bio/chem/explosive analytes. In addition, these experimental and computational platforms can be applied to advance fundamental knowledge in other fields, from energy storage and membrane separation to superfluid physics.

  9. Material Abrasive Water Jet Cutting Investigation by Means Accompanying Physical Phenomena

    OpenAIRE

    Kinik, D.; Gánovská, B.; Hloch, S. (Sergej); Cárach, J.; Lehocká, D.

    2013-01-01

    The paper deals with the indirect ways of on-line monitoring of technological processes of cutting. The objective of the study is a design of on-line monitoring system for the cutting technology through an abrasive water jet. In cutting by the abrasive water jet two parallel phenomena are formed. The phenomena are represented by generated surface and vibrations. For the purpose of proving of the hypothetical assumptions on dependence of generated surface quality on vibrations the ex...

  10. Astronomy in the Middle of the World: a physical analysis of the astronomic phenomena at Latitude Zero

    Science.gov (United States)

    Silva, J. N.; Voelzke, M. R.; Araújo, M. S. T.

    2018-03-01

    Although Astronomy is part of everyday life of the people, peculiarities are little-known for an observer on the equator, as residents in Macapá-AP, located at Latitude Zero. So, this work aims to support physics teaching focusing on the correct diffusion of some physical phenomena which have an intrinsic relationship with Astronomy from the sight of an observer at latitude zero, highlighting the celestial sphere visualization and emphasizing which constellations are visible during an earth year, being proposed the elaboration of a planisphere to this latitude. It's also discussed about the Solstices and, more specifically, about the Equinoxes and their particularities for an observer in latitude zero. The offered approach can help teachers of Physics and Science who work in regular education schools to explore these important astronomical phenomena.

  11. Uncovering noisy social signals : Using optimization methods from experimental physics to study social phenomena

    NARCIS (Netherlands)

    Kaptein, Maurits; Van Emden, Robin; Iannuzzi, Davide

    2017-01-01

    Due to the ubiquitous presence of treatment heterogeneity, measurement error, and contextual confounders, numerous social phenomena are hard to study. Precise control of treatment variables and possible confounders is often key to the success of studies in the social sciences, yet often proves out

  12. Uncovering noisy social signals: Using optimization methods from experimental physics to study social phenomena

    NARCIS (Netherlands)

    Kaptein, M.C.; Emden, R. van; Iannuzzi, D.

    2017-01-01

    Due to the ubiquitous presence of treatment heterogeneity, measurement error, and contextual confounders, numerous social phenomena are hard to study. Precise control of treatment variables and possible confounders is often key to the success of studies in the social sciences, yet often proves out

  13. Connectivity: a primer in phase transitions and critical phenomena for students of particle physics

    International Nuclear Information System (INIS)

    Stanley, H.E.

    1983-01-01

    This introduction to the phase transitions and critical phenomena focuses on the theme of connectivity, and illustrates concepts with a paradigm of connectivity, such as the percolation problem. The phenomenon of bond percolation, where a finite section of ''fence'' has both conducting and insulating links, is described. Three approaches to the study of connectivity phenomena are described: exact enumeration procedures, Monte Carlo simulation, and renormalization groups. Exact enumeration probabilities are calculated. Lattice animals are discussed. Computer simulation is described as simple: assign random numbers, then design algorithms that recognize clusters. The Monte Carlo simulations have not lead to higher accuracy in predicting critical exponents, but have given a graphic illustration of what a million-site cluster looks like. The incipient infinite cluster can also be described. In this case, the magnetic correlations of a dilute magnetic system will spread along the ''backbone bonds'' rather than by ''dangling ends.'' Renormalization group approaches are also treated. Finally, relations between connectivity and models of critical thermal phenomena such as the Ising Model, the Potts model, and polychromatic generalization of the Potts Model, are discussed

  14. Investigation of Physical Phenomena and Cutting Efficiency for Laser Cutting on Anode for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Dongkyoung Lee

    2018-02-01

    Full Text Available Lithium-ion batteries have a higher energy density than other secondary batteries. Among the lithium-ion battery manufacturing process, electrode cutting is one of the most important processes since poor cut quality leads to performance degradation, separator protrusion, and local electric stress concentration. This may, eventually, lead to malfunction of lithium-ion batteries or explosion. The current mechanical cutting technology uses a contact process and this may lead to process instability. Furthermore, there are additional costs if the tools and cell design are changed. To solve these issues, laser cutting has been used. Conventional dependent parameters have limitations in investigating and explaining many physical phenomena during the laser cutting of electrodes. Therefore, this study proposes specific widths such as melting, top, and kerf width. Moreover, the relationship between laser parameters and multiphysical phenomena with the proposed widths are investigated. Five types of classification with regard to physical phenomena are presented and explained with SEM images. Cutting efficiency is estimated with the proposed widths. The proposed specific cutting widths, five types of geometrical classification, and cutting efficiency can be used as standardized parameters to evaluate the cutting quality.

  15. Nicolas Lémery (1645-1715 and his Physical-chemical Theory about Different Phenomena for Earth Sciences

    Directory of Open Access Journals (Sweden)

    Cándido Manuel GARCÍA CRUZ

    2016-06-01

    Full Text Available An unabridged translation of a work of Nicolas Lémery (1645–1715 is presented for the first time in Spanish, wherein this French chemist and apothecary attempts an explanation on physical and chemical basis of several significant phenomena in Earth Sciences, such as earthquakes, subterranean fires, hurricanes, lightning and thunder. This explanation had a common cause for all the aforementioned phenomena: the processes of mineral fermentation, in this case of sulfur and iron, as a heat source, within the corpuscular theory of matter and mechanistic philosophy, and likewise it represents an interesting contribution of the influence of chemistry on the incipient development of experimental geology at the dawn of the 18th Century. 

  16. Statistical issues in searches for new phenomena in High Energy Physics

    Science.gov (United States)

    Lyons, Louis; Wardle, Nicholas

    2018-03-01

    Many analyses of data in High Energy Physics are concerned with searches for New Physics. We review the statistical issues that arise in such searches, and then illustrate these using the specific example of the recent successful search for the Higgs boson, produced in collisions between high energy protons at CERN’s Large Hadron Collider.

  17. Inference of physical phenomena from FFTF [Fast Flux Test Facility] noise analysis

    International Nuclear Information System (INIS)

    Thie, J.A.; Damiano, B.; Campbell, L.R.

    1989-01-01

    The source of features observed in noise spectra collected by an automated data collection system operated by the Oak Ridge National Laboratory at the Fast Flux Test Facility (FFTF) can be identified using a methodology based on careful data observation and intuition. When a large collection of data is available, as in this case, automatic pattern recognition and parameter storage and retrieval using a data base can be used to extract useful information. However, results can be limited to empirical signature comparison monitoring unless an effort is made to determine the noise sources. This paper describes the identification of several FFTF noise data phenomena and suggests how this understanding may lead to new or enhanced monitoring. 13 refs., 4 figs

  18. Superconductivity and superfluidity as universal emergent phenomena in diverse physical systems

    International Nuclear Information System (INIS)

    Guidry, Mike

    2014-01-01

    Superconductivity and superfluidity are observed across a strikingly broad range of physical systems. This universality seems unlikely to be coincidental but a unified understanding of superconductivity and superfluidity across these highly disparate fields seems impossible in traditional microscopic terms. I give an overview of superconductivity and superfluidity found in various fermionic condensed matter, nuclear physics, and neutron star systems, and propose that all result from generic algebraic structures for the emergent effective Hamiltonian, with the role of underlying microscopic physics largely relegated to influence on parameter values

  19. Exploring a Theory Describing the Physics of Information Systems, Characterizing the Phenomena of Complex Information Systems

    National Research Council Canada - National Science Library

    Harmon, Scott

    2001-01-01

    This project accomplished all of its objectives: document a theory of information physics, conduct a workshop on planing experiments to test this theory, and design experiments that validate this theory...

  20. Elementary particle physics and high energy phenomena. Progress report for FY92

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  1. Surprising finding on colonoscopy.

    Science.gov (United States)

    Griglione, Nicole; Naik, Jahnavi; Christie, Jennifer

    2010-02-01

    A 48-year-old man went to his primary care physician for his annual physical. He told his physician that for the past few years, he had intermittent, painless rectal bleeding consisting of small amounts of blood on the toilet paper after defecation. He also mentioned that he often spontaneously awoke, very early in the morning. His past medical history was unremarkable. The patient was born in Cuba but had lived in the United States for more than 30 years. He was divorced, lived alone, and had no children. He had traveled to Latin America-including Mexico, Brazil, and Cuba-off and on over the past 10 years. His last trip was approximately 2 years ago. His physical exam was unremarkable. Rectal examination revealed no masses or external hemorrhoids; stool was brown and Hemoccult negative. Labs were remarkable for eosinophilia ranging from 10% to 24% over the past several years (the white blood cell count ranged from 5200 to 5900/mcL). A subsequent colonoscopy revealed many white, thin, motile organisms dispersed throughout the colon. The organisms were most densely populated in the cecum. Of note, the patient also had nonbleeding internal hemorrhoids. An aspiration of the organisms was obtained and sent to the microbiology lab for further evaluation. What is your diagnosis? How would you manage this condition?

  2. Switching Phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Mazza, M. G.; Kumar, P.; Plerou, V.; Preis, T.; Stokely, K.; Xu, L.

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines can suddenly "switch" from one behavior to another, even though they possess no perfect metronome in time. As if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many temporal patterns in physics, economics, and medicine and even begin to characterize the switching phenomena that enable a system to pass from one state to another. We discuss some applications of correlated randomness to understanding switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water's anomalies are related to a switching point (which is not unlike the "tipping point" immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not "outliers" (another Gladwell immortalization).

  3. Surprising quantum bounces

    CERN Document Server

    Nesvizhevsky, Valery

    2015-01-01

    This unique book demonstrates the undivided unity and infinite diversity of quantum mechanics using a single phenomenon: quantum bounces of ultra-cold particles. Various examples of such "quantum bounces" are: gravitational quantum states of ultra-cold neutrons (the first observed quantum states of matter in a gravitational field), the neutron whispering gallery (an observed matter-wave analog of the whispering gallery effect well known in acoustics and for electromagnetic waves), and gravitational and whispering gallery states for anti-matter atoms that remain to be observed. These quantum states are an invaluable tool in the search for additional fundamental short-range forces, for exploring the gravitational interaction and quantum effects of gravity, for probing physics beyond the standard model, and for furthering studies into the foundations of quantum mechanics, quantum optics, and surface science.

  4. Phenomena-based Uncertainty Quantification in Predictive Coupled- Physics Reactor Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Marvin [Texas A & M Univ., College Station, TX (United States)

    2017-06-12

    This project has sought to develop methodologies, tailored to phenomena that govern nuclearreactor behavior, to produce predictions (including uncertainties) for quantities of interest (QOIs) in the simulation of steady-state and transient reactor behavior. Examples of such predictions include, for each QOI, an expected value as well as a distribution around this value and an assessment of how much of the distribution stems from each major source of uncertainty. The project has sought to test its methodologies by comparing against measured experimental outcomes. The main experimental platform has been a 1-MW TRIGA reactor. This is a flexible platform for a wide range of experiments, including steady state with and without temperature feedback, slow transients with and without feedback, and rapid transients with strong feedback. The original plan was for the primary experimental data to come from in-core neutron detectors. We made considerable progress toward this goal but did not get as far along as we had planned. We have designed, developed, installed, and tested vertical guide tubes, each able to accept a detector or stack of detectors that can be moved axially inside the tube, and we have tested several new detector designs. One of these shows considerable promise.

  5. Phenomena-based Uncertainty Quantification in Predictive Coupled- Physics Reactor Simulations

    International Nuclear Information System (INIS)

    Adams, Marvin

    2017-01-01

    This project has sought to develop methodologies, tailored to phenomena that govern nuclearreactor behavior, to produce predictions (including uncertainties) for quantities of interest (QOIs) in the simulation of steady-state and transient reactor behavior. Examples of such predictions include, for each QOI, an expected value as well as a distribution around this value and an assessment of how much of the distribution stems from each major source of uncertainty. The project has sought to test its methodologies by comparing against measured experimental outcomes. The main experimental platform has been a 1-MW TRIGA reactor. This is a flexible platform for a wide range of experiments, including steady state with and without temperature feedback, slow transients with and without feedback, and rapid transients with strong feedback. The original plan was for the primary experimental data to come from in-core neutron detectors. We made considerable progress toward this goal but did not get as far along as we had planned. We have designed, developed, installed, and tested vertical guide tubes, each able to accept a detector or stack of detectors that can be moved axially inside the tube, and we have tested several new detector designs. One of these shows considerable promise.

  6. Elementary particle physics and high energy phenomena. Progress report for FY93

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z{sup 0} with the SLD detector; fixed-target K-decay experiments; the R&D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs.

  7. More statistics, less surprise

    CERN Multimedia

    Antonella Del Rosso & the LHCb collaboration

    2013-01-01

    The LHCb collaboration has recently announced new results for a parameter that measures the CP violation effect in particles containing charm quarks. The new values obtained with a larger data set and with a new independent method are showing that the effect is smaller than previous measurements had  suggested. The parameter is back into the Standard Model picture.   CP violation signals – in particles containing charm quarks, such as the D0 particle, is a powerful probe of new physics. Indeed, such effects could result in unexpected values of parameters whose expectation values in the Standard Model are known. Although less precise than similar approaches used in particles made of b quarks, the investigation of the charm system has proven  to be intriguing. The LHCb collaboration has reported new measurements of ΔACP, the difference in CP violation between the D0→K+K– and D0→π+π– decays. The results are ob...

  8. Mechanical reliability of structures subjected to time-variant physical phenomena

    International Nuclear Information System (INIS)

    Lemaire, Celine

    1999-01-01

    This work deals with two-phase critical flows in order to improve the way to dimension safety systems. It brings a numerical, physical and experimental contribution. We emphasized the importance to validate separately the numerical method and the physical model. Reference numerical solutions, assimilated to quasi-analytical solutions, were elaborated for a stationary one-dimensional restriction. They allowed to validate in space non stationary numerical schemes converged in time and constitute space convergence indicator (2 schemes validated). With this reliable numerical solution, we studied the physical model. The potential of a particular existing dispersed flow model has been validated thanks to experimental data. The validity domain of such a model is inevitably reduced. During this study, particular behaviors have been exhibited like the pseudo-critical nature of flow with a relaxation process, the non characteristic properties/nature of critical parameters where disequilibrium is largely reduced or the predominance of pressure due to interfacial transfers. The multidimensional aspect has been studied. A data base included local parameters corresponding to a simplify geometry has been constituted. The flow impact on the disk has been characterized and multidimensional effects identified. These effects form an additional step to the validation of multidimensional physical models. (author) [fr

  9. On the significance of modeling nuclear fuel behavior with the right representation of physical phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydin, E-mail: karahan@mit.ed [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-204, Cambridge, MA 02139 (United States); Kazimi, Mujid S. [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-204, Cambridge, MA 02139 (United States)

    2011-02-15

    Research highlights: Essence of more physics based modeling approaches to the fuel behavior problem is emphasized. Demonstrations on modeling of metallic and oxide fuel dimensional changes and fission gas behavior with more physics based and semi-empirical approaches are given. Essence of fuel clad chemical interaction modeling of the metallic fuel in an appropriate way and implications during short and long term transients for sodium fast reactor applications are discussed. - Abstract: This work emphasizes the relevance of representation of appropriate mechanisms for understanding the actual physical behavior of the fuel pin under irradiation. Replacing fully empirical simplified treatments with more rigorous semi-empirical models which include the important pieces of physics, would open the path to more accurately capture the sensitivity to various parameters such as operating conditions, geometry, composition, and enhance the uncertainty quantification process. Steady state and transient fuel behavior demonstration examples and implications are given for sodium fast reactor metallic fuels by using FEAST-METAL. The essence of appropriate modeling of the fuel clad mechanical interaction and fuel clad chemical interaction of the metallic fuels are emphasized. Furthermore, validation efforts for oxide fuel pellet swelling behavior at high temperature and high burnup LWR conditions and comparison with FRAPCON-EP and FRAPCON-3.4 codes will be given. The value of discriminating the oxide fuel swelling modes, instead of applying a linear line, is pointed out. Future directions on fuel performance modeling will be addressed.

  10. Esoteric elementary particle phenomena in undergraduate physics: spontaneous symmetry breaking and scale invariance

    International Nuclear Information System (INIS)

    Greenberger, D.M.

    1978-01-01

    We take two rather abstract concepts from elementary particle physics, and show that there actually exist analogs to both of them in undergraduate physics. In the case of spontaneous symmetry breaking, we provide an example where the most symmetrical state of a simple system suddenly becomes unstable, while a less symmetrical state develops lower energy and becomes stable. In the case of scale invariance, we consider an example with no natural scale determined, and show that a straightforward dimensional analysis of the problem leads to incorrect results, because of the occurrence of infinities, even though they would appear to be irrelevant infinities that might not be expected to affect the dimensions of the answer. We then show how a simple use of the scale invariance of the problem leads to the correct answer

  11. Anomaly! collider physics and the quest for new phenomena at Fermilab

    CERN Document Server

    Dorigo, Tommaso

    2017-01-01

    From the mid-1980s, an international collaboration of 600 physicists embarked on the investigation of subnuclear physics at the high-energy frontier. As well as discovering the top quark, the heaviest elementary particle ever observed, the physicists analyzed their data to seek signals of new physics which could revolutionize our understanding of nature. Anomaly! tells the story of that quest, and focuses specifically on the finding of several unexplained effects which were unearthed in the process. These anomalies proved highly controversial within the large team: to some collaborators they called for immediate publication, while to others their divulgation threatened to jeopardize the reputation of the experiment. Written in a confidential, narrative style, this book looks at the sociology of a large scientific collaboration, providing insight in the relationships between top physicists at the turn of the millennium. The stories offer an insider's view of the life cycle of the "failed" discoveries that un...

  12. Applications of the Local Algebras of Vector Fields to the Modelling of Physical Phenomena

    OpenAIRE

    Bayak, Igor V.

    2015-01-01

    In this paper we discuss the local algebras of linear vector fields that can be used in the mathematical modelling of physical space by building the dynamical flows of vector fields on eight-dimensional cylindrical or toroidal manifolds. It is shown that the topological features of the vector fields obey the Dirac equation when moving freely within the surface of a pseudo-sphere in the eight-dimensional pseudo-Euclidean space.

  13. Study of surface phenomena in biomaterials: The influence of physical factors

    Energy Technology Data Exchange (ETDEWEB)

    Sachelarie, Liliana, E-mail: lisachero@yahoo.com; Vasiliu, Mihaela Papusa; Ciobanu, Catalina

    2015-10-15

    This study's purpose is pointing out the phenomenon that occurs at time of interaction between the tissue with implant. The materials used are Ti and its alloys. The oral tissue must be compatible with the materials used in surgical implant to human body. The bio-materials surface behavior is influenced by physical characteristics. The methods we use show a number of bio-compatibility aspects. The success of an implant in a hard tissue depends not only on the initial attachment and the osteogenic cells consecutive proliferation, but also on their capacity to create a new bone.

  14. Dynamic modeling of physical phenomena for probabilistic risk assessments using artificial neural networks

    International Nuclear Information System (INIS)

    Benjamin, A.S.; Paez, T.L.; Brown, N.N.

    1998-01-01

    In most probabilistic risk assessments, there is a subset of accident scenarios that involves physical challenges to the system, such as high heat rates and/or accelerations. The system's responses to these challenges may be complicated, and their prediction may require the use of long-running computer codes. To deal with the many scenarios demanded by a risk assessment, the authors have been investigating the use of artificial neural networks (ANNs) as a fast-running estimation tool. They have developed a multivariate linear spline algorithm by extending previous ANN methods that use radial basis functions. They have applied the algorithm to problems involving fires, shocks, and vibrations. They have found that within the parameter range for which it is trained, the algorithm can simulate the nonlinear responses of complex systems with high accuracy. Running times per case are less than one second

  15. Physical interpretation of geysering phenomena and periodic boiling instability at low flows

    International Nuclear Information System (INIS)

    Duffey, R.B.; Rohatgi, U.S.

    1996-01-01

    Over 30 years ago, Griffith showed that unstable and periodic initial boiling occurred in stagnant liquids in heated pipes coupled to a cooler or condensing plenum volume. This was called ''geysering'', and is a similar phenomenon to the rapid nucleation and voiding observed in tubes filled with superheated liquid. It is also called ''bumping'' when non-uniformly heated water or a chemical suddenly boils in laboratory glassware. In engineering, the stability and predictability has importance to the onset of bulk boiling in a natural and forced circulation loops. The latest available data show the observed stability and periodicity of the onset of boiling flow when there is a plenum, multiple heated channels, and a sustained subcooling in a circulating loop. We examine the available data, both old and new, and develop a new theory to illustrate the simple physics causing the observed periodicity of the flow. We examine the validity of the theory by comparison to all the geysering data, and develop a useful and simple correlation. We illustrate the equivalence of the onset of geysering to the onset of static instability in subcooled boiling. We also derive the stability boundary for geysering, utilizing turbulent transport analysis to determine the effects of pressure and other key parameters. This new result explains the greater stability region observed at higher pressures. The paper builds on the 30 years of quite independent thermal hydraulic work that is still fresh and useful today. We discuss the physical interpretation of geysering onset with a consistent theory, and show where refinements would be useful to the data correlations

  16. How would photons describe natural phenomena based upon their physical experiences?

    Science.gov (United States)

    Roychoudhuri, Chandrasekhar

    2013-10-01

    The question posed in the title represents an impossible approach to scientific investigation, but the approach is like a subjectivist. Obviously, photons cannot express their views; neither can we ask directly any scientific questions to the photons. The purpose is to draw the attention of the reader that even our strongly mathematically driven scientific enterprise is full of subjectivism when we start dissecting our thinking process. First, we frame questions in our mind to understand a natural phenomenon we have been observing. Let us not forget that framing the question determine the answer. The answers guide us to frame the foundational hypotheses to build a theory to "explain" the phenomenon under study. Our mind is a product of biological evolutionary requirements; which is further re-programmed by strong human social cultures. In other words, human constructed theories cannot spontaneously become rigorously objective, unless we consciously make them so. We need to develop a methodology of scientific thinking that will automatically force us to make repeated iterative corrections in generating questions as objectively as possible. Those questions will then guide us to re-construct the foundational hypotheses and re-frame the working theories. We are proposing that we add Interaction Process Mapping Epistemology (IPM-E) as a necessary extra thinking tool; which will complement the prevailing Measurable Data Modeling Epistemology (MDM-E). We believe that ongoing interaction processes in nature represent reality ontology. So the iterative application of IPM-E, along with MDM-E, will keep us along the route of ontological reality. We apply this prescription to reveal the universal property, Non-Interaction of Waves, which we have been neglecting for centuries. Using this property, we demonstrate that a large number of ad hoc hypotheses from Classical-, QM-, Relativity- and Astro-Physics can be easily modified to make physics more causal and understandable

  17. Surprise... Surprise..., An Empirical Investigation on How Surprise is Connected to Customer Satisfaction

    NARCIS (Netherlands)

    J. Vanhamme (Joëlle)

    2003-01-01

    textabstractThis research investigates the specific influence of the emotion of surprise on customer transaction-specific satisfaction. Four empirical studies-two field studies (a diary study and a cross section survey) and two experiments-were conducted. The results show that surprise positively

  18. Non-equilibrium phenomena in confined soft matter irreversible adsorption, physical aging and glass transition at the nanoscale

    CERN Document Server

    2015-01-01

    This book presents cutting-edge experimental and computational results and provides comprehensive coverage on the impact of non-equilibrium structure and dynamics on the properties of soft matter confined to the nanoscale. The book is organized into three main sections: ·         Equilibration and physical aging: by treating non-equilibrium phenomena with the formal methodology of statistical physics in bulk, the analysis of the kinetics of equilibration sheds new light on the physical origin of the non-equilibrium character of thin polymer films. Both the impact of sample preparation and that of interfacial interactions are analyzed using a large set of experiments. A historical overview of the investigation of the non-equilibrium character of thin polymer films is also presented. Furthermore, the discussion focuses on how interfaces and geometrical confinement perturb the pathways and kinetics of equilibrations of soft glasses (a process of tremendous technological interest). ·         Irr...

  19. Physical phenomena in a low-temperature non-equilibrium plasma and in MHD generators with non-equilibrium conductivity

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Golubev, V.S.; Dykhne, A.M.

    1976-01-01

    The paper assesses the position in 1975 of theoretical and experimental work on the physics of a magnetohydrodynamic generator with non-equilibrium plasma conductivity. This research started at the beginning of the 1960s; as work on the properties of thermally non-equilibrium plasma in magnetic fields and also in MHD generator ducts progressed, a number of phenomena were discovered and investigated that had either been unknown in plasma physics or had remained uninvestigated until that time: ionization instability and ionization turbulence of plasma in a magnetic field, acoustic instability of a plasma with anisotropic conductivity, the non-equilibrium ionization wave and the energy balance of a non-equilibrium plasma. At the same time, it was discovered what physical requirements an MHD generator with non-equilibrium conductivity must satisfy to achieve high efficiency in converting the thermal or kinetic energy of the gas flow into electric energy. The experiments on MHD power generation with thermally non-equilibrium plasma carried out up to 1975 indicated that it should be possible to achieve conversion efficiencies of up to 20-30%. (author)

  20. Cavitation phenomena in mechanical heart valves: studied by using a physical impinging rod system.

    Science.gov (United States)

    Lo, Chi-Wen; Chen, Sheng-Fu; Li, Chi-Pei; Lu, Po-Chien

    2010-10-01

    When studying mechanical heart valve cavitation, a physical model allows direct flow field and pressure measurements that are difficult to perform with actual valves, as well as separate testing of water hammer and squeeze flow effects. Movable rods of 5 and 10 mm diameter impinged same-sized stationary rods to simulate squeeze flow. A 24 mm piston within a tube simulated water hammer. Adding a 5 mm stationary rod within the tube generated both effects simultaneously. Charged-coupled device (CCD) laser displacement sensors, strobe lighting technique, laser Doppler velocimetry (LDV), particle image velocimetry (PIV) and high fidelity piezoelectric pressure transducers measured impact velocities, cavitation images, squeeze flow velocities, vortices, and pressure changes at impact, respectively. The movable rods created cavitation at critical impact velocities of 1.6 and 1.2 m/s; squeeze flow velocities were 2.8 and 4.64 m/s. The isolated water hammer created cavitation at 1.3 m/s piston speed. The combined piston and stationary rod created cavitation at an impact speed of 0.9 m/s and squeeze flow of 3.2 m/s. These results show squeeze flow alone caused cavitation, notably at lower impact velocity as contact area increased. Water hammer alone also caused cavitation with faster displacement. Both effects together were additive. The pressure change at the vortex center was only 150 mmHg, which cannot generate the magnitude of pressure drop required for cavitation bubble formation. Cavitation occurred at 3-5 m/s squeeze flow, significantly different from the 14 m/s derived by Bernoulli's equation; the temporal acceleration of unsteady flow requires further study.

  1. Paranormal phenomena

    Science.gov (United States)

    Gaina, Alex

    1996-08-01

    Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.

  2. Using analog instruments in Tracker video-based experiments to understand the phenomena of electricity and magnetism in physics education

    Science.gov (United States)

    Aguilar-Marín, Pablo; Chavez-Bacilio, Mario; Jáuregui-Rosas, Segundo

    2018-05-01

    Tracker is a piece of freeware software, designed to use video recorded images of the motion of objects as input data, and has been mostly applied in physics education to analyse and simulate physical phenomena in mechanics. In this work we report the application of Tracker to the study of experiments in electricity and magnetism using analog instruments for electrical signal measurements. As we are unable to directly video-track the motion of electrons in electric circuits, the angular deflections of the instruments’ pointers were video captured instead. The kinematic variables (angular position as a function of time) had to be related to the electrical ones (voltages and currents as a function of time). Two well-known experiments in physics teaching, the RC circuit for charging and discharging a capacitor and Faraday electromagnetic induction, were chosen to illustrate the procedures. The third experiment analysed and modeled with Tracker was the rather well-known electromagnetic retardation of disk- or cylinder-shaped magnets falling inside non-magnetic metallic pipes. Instead of metallic pipes we used an aluminum plate with an arrangement of a couple of parallelepiped-shaped magnets falling parallel to the plate. In the three cases studied, the experimental and the Tracker simulation results were in very good agreement. These outcomes show that it is possible to exploit the potential of Tracker software in areas other than mechanics, in areas where electrical signals are involved. The experiments are inexpensive and simple to perform, and are suitable for high school and introductory undergraduate courses in electricity, magnetism and electronics. We propose the use of Tracker combined with analog measuring devices to explore further its applications in electricity, magnetism, electronics and in other experimental sciences where electrical signals are involved.

  3. Fundamentals of Fire Phenomena

    DEFF Research Database (Denmark)

    Quintiere, James

    analyses. Fire phenomena encompass everything about the scientific principles behind fire behaviour. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear...

  4. Critical Phenomena in Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Gundlach Carsten

    1999-01-01

    Full Text Available As first discovered by Choptuik, the black hole threshold in the space of initial data for general relativity shows both surprising structure and surprising simplicity. Universality, power-law scaling of the black hole mass, and scale echoing have given rise to the term 'critical phenomena'. They are explained by the existence of exact solutions which are attractors within the black hole threshold, that is, attractors of codimension one in phase space, and which are typically self-similar. This review gives an introduction to the phenomena, tries to summarize the essential features of what is happening, and then presents extensions and applications of this basic scenario. Critical phenomena are of interest particularly for creating surprising structure from simple equations, and for the light they throw on cosmic censorship and the generic dynamics of general relativity.

  5. Surprise as a design strategy

    NARCIS (Netherlands)

    Ludden, G.D.S.; Schifferstein, H.N.J.; Hekkert, P.P.M.

    2008-01-01

    Imagine yourself queuing for the cashier’s desk in a supermarket. Naturally, you have picked the wrong line, the one that does not seem to move at all. Soon, you get tired of waiting. Now, how would you feel if the cashier suddenly started to sing? Many of us would be surprised and, regardless of

  6. Science and Paranormal Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H. Pierre

    1999-06-03

    In order to ground my approach to the study of paranormal phenomena, I first explain my operational approach to physics, and to the ''historical'' sciences of cosmic, biological, human, social and political evolution. I then indicate why I believe that ''paranormal phenomena'' might-but need not- fit into this framework. I endorse the need for a new theoretical framework for the investigation of this field presented by Etter and Shoup at this meeting. I close with a short discussion of Ted Bastin's contention that paranormal phenomena should be defined as contradicting physics.

  7. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  8. Nonequilibrium Phenomena in Plasmas

    CERN Document Server

    Sharma, A Surjalal

    2005-01-01

    The complexity of plasmas arises mainly from their inherent nonlinearity and far from equilibrium nature. The nonequilibrium behavior of plasmas is evident in the natural settings, for example, in the Earth's magnetosphere. Similarly, laboratory plasmas such as fusion bottles also have their fair share of complex behavior. Nonequilibrium phenomena are intimately connected with statistical dynamics and form one of the growing research areas in modern nonlinear physics. These studies encompass the ideas of self-organization, phase transition, critical phenomena, self-organized criticality and turbulence. This book presents studies of complexity in the context of nonequilibrium phenomena using theory, modeling, simulations, and experiments, both in the laboratory and in nature.

  9. Contribution to the study of multi-physical phenomena in cementitious materials; Contribution a l'etude de phenomenes multi-physiques dans les materiaux cimentaires

    Energy Technology Data Exchange (ETDEWEB)

    Bary, B.

    2010-09-15

    This document is a synthesis of the applied research studies undertaken by the author during ten years, first at the University of Marne-La-Vallee during the period 1999-2002, then at the CEA. These studies concern the modeling and the numerical simulations of the cementitious materials behavior subjected on the one hand to moderate thermomechanical and hydric loadings, and on the other hand to chemical attacks due to the migration of calcium, carbonate and sulfate ions. The developed approaches may be viewed as multi-physical in the sense that the models used for describing the behavior couple various fields and phenomena such as mechanics, thermal, hydric and ionic transfers, and chemistry. In addition, analytical up-scaling techniques are applied to estimate the physical properties associated with these phenomena (mechanical, hydraulic and diffusive parameters) as a function of the microstructure and the hydric state of the material. (author)

  10. Introduction to wetting phenomena

    International Nuclear Information System (INIS)

    Indekeu, J.O.

    1995-01-01

    In these lectures the field of wetting phenomena is introduced from the point of view of statistical physics. The phase transition from partial to complete wetting is discussed and examples of relevant experiments in binary liquid mixtures are given. Cahn's concept of critical-point wetting is examined in detail. Finally, a connection is drawn between wetting near bulk criticality and the universality classes of surface critical phenomena. (author)

  11. Pupil size tracks perceptual content and surprise.

    Science.gov (United States)

    Kloosterman, Niels A; Meindertsma, Thomas; van Loon, Anouk M; Lamme, Victor A F; Bonneh, Yoram S; Donner, Tobias H

    2015-04-01

    Changes in pupil size at constant light levels reflect the activity of neuromodulatory brainstem centers that control global brain state. These endogenously driven pupil dynamics can be synchronized with cognitive acts. For example, the pupil dilates during the spontaneous switches of perception of a constant sensory input in bistable perceptual illusions. It is unknown whether this pupil dilation only indicates the occurrence of perceptual switches, or also their content. Here, we measured pupil diameter in human subjects reporting the subjective disappearance and re-appearance of a physically constant visual target surrounded by a moving pattern ('motion-induced blindness' illusion). We show that the pupil dilates during the perceptual switches in the illusion and a stimulus-evoked 'replay' of that illusion. Critically, the switch-related pupil dilation encodes perceptual content, with larger amplitude for disappearance than re-appearance. This difference in pupil response amplitude enables prediction of the type of report (disappearance vs. re-appearance) on individual switches (receiver-operating characteristic: 61%). The amplitude difference is independent of the relative durations of target-visible and target-invisible intervals and subjects' overt behavioral report of the perceptual switches. Further, we show that pupil dilation during the replay also scales with the level of surprise about the timing of switches, but there is no evidence for an interaction between the effects of surprise and perceptual content on the pupil response. Taken together, our results suggest that pupil-linked brain systems track both the content of, and surprise about, perceptual events. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Fundamentals of wave phenomena

    CERN Document Server

    Hirose, Akira

    2010-01-01

    This textbook provides a unified treatment of waves that either occur naturally or can be excited and propagated in various media. This includes both longitudinal and transverse waves. The book covers both mechanical and electrical waves, which are normally covered separately due to their differences in physical phenomena.

  13. Transport phenomena

    International Nuclear Information System (INIS)

    Kirczenow, G.; Marro, J.

    1974-01-01

    Some simple remarks on the basis of transport theory. - Entropy, dynamics and scattering theory. - Response, relaxation and fluctuation. - Fluctuating hydrodynamics and renormalization of susceptibilities and transport coefficients. - Irreversibility of the transport equations. - Ergodic theory and statistical mechanics. - Correlation functions in Heisenberg magnets. - On the Enskog hard-sphere kinetic eqquation and the transport phenomena of dense simple gases. - What can one learn from Lorentz models. - Conductivity in a magnetic field. - Transport properties in gases in presence of external fields. - Transport properties of dilute gases with internal structure. (orig.) [de

  14. Hysteresis phenomena in hydraulic measurement

    International Nuclear Information System (INIS)

    Ran, H J; Farhat, M; Luo, X W; Chen, Y L; Xu, H Y

    2012-01-01

    Hysteresis phenomena demonstrate the lag between the generation and the removal of some physical phenomena. This paper studies the hysteresis phenomena of the head-drop in a scaled model pump turbine using experiment test and CFD methods. These lag is induced by complicated flow patterns, which influenced the reliability of rotating machine. Keeping the same measurement procedure is concluded for the hydraulic machine measurement.

  15. Physical simulation of precipitation of radioactive element oxalates by using the harmless neodymium oxalate for studying the agglomeration phenomena

    International Nuclear Information System (INIS)

    Lalleman, Sophie; Bertrand, Murielle; Plasari, Edouard

    2012-01-01

    Oxalic precipitation is usually applied in nuclear industry to process radioactive wastes or to recover actinides from a multicomponent solution.This paper deals with the development of methods adapted to a nuclear environment in order to study the agglomeration phenomena during actinide oxalic precipitation.These methods are previously set up with harmless elements that simulate the actinide behaviour: the lanthanides. A parametric study is carried out to quantify the influence of operating parameters on the agglomeration kernel and to determine a kinetic law for this mechanism. The experimental study is performed in a continuous-MSMPR precipitator at steady-state. The method is based on the resolution of two population balances using the moment approach, one for elementary crystals and the other for agglomerates. Provided that the kinetic rates of nucleation and growth are known, the agglomeration kernel can be obtained from a mathematical treatment of the experimental particle size distributions. Results point out that experimental crystal sizes are consistent with an independent kernel. It appears that the agglomeration kernel is directly proportional to supersaturation, increases with temperature but is limited by ionic strength and shear rate. (authors)

  16. The role of surprise in satisfaction judgements

    NARCIS (Netherlands)

    Vanhamme, J.; Snelders, H.M.J.J.

    2001-01-01

    Empirical findings suggest that surprise plays an important role in consumer satisfaction, but there is a lack of theory to explain why this is so. The present paper provides explanations for the process through which positive (negative) surprise might enhance (reduce) consumer satisfaction. First,

  17. Wave phenomena

    CERN Document Server

    Towne, Dudley H

    1988-01-01

    This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.

  18. Quantification of natural phenomena

    International Nuclear Information System (INIS)

    Botero Alvarez, Javier

    1997-01-01

    The science is like a great spider's web in which unexpected connections appear and therefore it is frequently difficult to already know the consequences of new theories on those existent. The physics is a clear example of this. The Newton mechanics laws describe the physical phenomena observable accurately by means of our organs of the senses or by means of observation teams not very sophisticated. After their formulation at the beginning of the XVIII Century, these laws were recognized in the scientific world as a mathematical model of the nature. Together with the electrodynamics law, developed in the XIX century, and the thermodynamic one constitutes what we call the classic physics. The state of maturity of the classic physics at the end of last century it was such that some scientists believed that the physics was arriving to its end obtaining a complete description of the physical phenomena. The spider's web of the knowledge was supposed finished, or at least very near its termination. It ended up saying, in arrogant form, that if the initial conditions of the universe were known, we could determine the state of the same one in any future moment. Two phenomena related with the light would prove in firm form that mistaken that they were, creating unexpected connections in the great spider's web of the knowledge and knocking down part of her. The thermal radiation of the bodies and the fact that the light spreads to constant speed in the hole, without having an absolute system of reference with regard to which this speed is measured, they constituted the decisive factors in the construction of a new physics. The development of sophisticated of measure teams gave access to more precise information and it opened the microscopic world to the observation and confirmation of existent theories

  19. Renormalization group and critical phenomena

    International Nuclear Information System (INIS)

    Ji Qing

    2004-01-01

    The basic clue and the main steps of renormalization group method used for the description of critical phenomena is introduced. It is pointed out that this method really reflects the most important physical features of critical phenomena, i.e. self-similarity, and set up a practical solving method from it. This way of setting up a theory according to the features of the physical system is really a good lesson for today's physicists. (author)

  20. Physics of Limiting Phenomena in Superconducting Microwave Resonators: Vortex Dissipation, Ultimate Quench and Quality Factor Degradation Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-12-01

    Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the

  1. Physics of limiting phenomena in superconducting microwave resonators: Vortex dissipation, ultimate quench and quality factor degradation mechanisms

    Science.gov (United States)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radiofrequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associated to the superheating

  2. Investigation of physical properties of porous rocks and fluid flow phenomena in porous media using computer assisted tomography

    International Nuclear Information System (INIS)

    Kantzas, A.

    1990-01-01

    Computer assisted tomography is becoming a very attractive tool for petroleum engineers. The method can give an image of a core in two or three dimensions with a very fine resolution and high accuracy. The image data can be processed to give information about the physical properties of the core (density, porosity, mineralogy, heterogeneities) and the fluids within the core (saturation and saturation profiles). This paper presents a software package that uses the CAT scanner output data as input for petrographic and dynamic modelling of a porous rock. Core samples up to 10 cm in diameter are scanned at different x-ray energy levels using an EMI CT5005 full body scanner. The scanner computer is producing an array of normalized linear attenuation coefficients per scanned slice. The resolution is 0.75 mm x 0.75 mm while the slice thickness can vary from 15 mm down to 1 mm depending on the bulk density and size of the sample. The developed package analyzes the CAT scanner data for bulk and grain density, effective atomic number, static and dynamic porosity and fluid saturations for up to three fluids present. The capabilities and limitations of the presented algorithm are discussed and characteristic examples are presented

  3. Climate Change as a Predictable Surprise

    International Nuclear Information System (INIS)

    Bazerman, M.H.

    2006-01-01

    In this article, I analyze climate change as a 'predictable surprise', an event that leads an organization or nation to react with surprise, despite the fact that the information necessary to anticipate the event and its consequences was available (Bazerman and Watkins, 2004). I then assess the cognitive, organizational, and political reasons why society fails to implement wise strategies to prevent predictable surprises generally and climate change specifically. Finally, I conclude with an outline of a set of response strategies to overcome barriers to change

  4. Describing students' talk about physical science phenomena outside and inside the classroom: A case of secondary school students from Maragoli, western region of Kenya

    Science.gov (United States)

    Oberrecht, Stephen Patrick

    Because of cultural and linguistic influences on science learning involving students from diverse cultural and linguistic backgrounds, calls have been made for teachers to enact teaching that is sensitive to these students' backgrounds. However, most of the research involving such students has tended to focus on students at elementary grade levels from predominantly two linguistic backgrounds, Hispanic and Haitian Creole, learning science concepts mainly in the life sciences. Also, most of the studies examined classroom interactions between teachers and the students and among students. Not much attention had been paid to how students talk about ideas inherent in scientific phenomena in an outside-the-classroom context and much less on how that talk relates to that of the classroom. Thus, this research extends knowledge in the area of science learning involving students learning science in a language other than their first language to include students from a language background other than Hispanic and Haitian Creole at not only the high school level but also their learning of ideas in a content area other than the life science (i.e., the physical sciences). More importantly, this research extends knowledge in the area by relating science learning outside and inside the classroom. This dissertation describes this exploratory research project that adopted a case study strategy. The research involved seven Form Two (tenth grade) students (three boys and four girls) from one public, mixed gender day secondary school in rural Kenya. I collected data from the students through focus group discussions as they engaged in talking about ideas inherent in selected physical science phenomena and activities they encountered in their everyday lives, as well as learned about in their science classrooms. I supplemented these data with data from one-on-one semi-structured interviews with two teachers (one for chemistry and one for physics) on their teaching of ideas investigated in

  5. Finite element computation of multi-physical micropolar transport phenomena from an inclined moving plate in porous media

    Science.gov (United States)

    Shamshuddin, MD.; Anwar Bég, O.; Sunder Ram, M.; Kadir, A.

    2018-02-01

    Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems. Micropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element computational solution is presented for magnetohydrodynamic, incompressible, dissipative, radiative and chemically-reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated homogenous porous medium. Heat generation/absorption effects are included. Rosseland's diffusion approximation is used to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous medium. The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and interpreted.

  6. Transport phenomena in environmental engineering

    Science.gov (United States)

    Sander, Aleksandra; Kardum, Jasna Prlić; Matijašić, Gordana; Žižek, Krunoslav

    2018-01-01

    A term transport phenomena arises as a second paradigm at the end of 1950s with high awareness that there was a strong need to improve the scoping of chemical engineering science. At that point, engineers became highly aware that it is extremely important to take step forward from pure empirical description and the concept of unit operations only to understand the specific process using phenomenological equations that rely on three elementary physical processes: momentum, energy and mass transport. This conceptual evolution of chemical engineering was first presented with a well-known book of R. Byron Bird, Warren E. Stewart and Edwin N. Lightfoot, Transport Phenomena, published in 1960 [1]. What transport phenomena are included in environmental engineering? It is hard to divide those phenomena through different engineering disciplines. The core is the same but the focus changes. Intention of the authors here is to present the transport phenomena that are omnipresent in treatment of various process streams. The focus in this chapter is made on the transport phenomena that permanently occur in mechanical macroprocesses of sedimentation and filtration for separation in solid-liquid particulate systems and on the phenomena of the flow through a fixed and a fluidized bed of particles that are immanent in separation processes in packed columns and in environmental catalysis. The fundamental phenomena for each thermal and equilibrium separation process technology are presented as well. Understanding and mathematical description of underlying transport phenomena result in scoping the separation processes in a way that ChEs should act worldwide.

  7. A toolkit for detecting technical surprise.

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Michael Wayne; Foehse, Mark C.

    2010-10-01

    The detection of a scientific or technological surprise within a secretive country or institute is very difficult. The ability to detect such surprises would allow analysts to identify the capabilities that could be a military or economic threat to national security. Sandia's current approach utilizing ThreatView has been successful in revealing potential technological surprises. However, as data sets become larger, it becomes critical to use algorithms as filters along with the visualization environments. Our two-year LDRD had two primary goals. First, we developed a tool, a Self-Organizing Map (SOM), to extend ThreatView and improve our understanding of the issues involved in working with textual data sets. Second, we developed a toolkit for detecting indicators of technical surprise in textual data sets. Our toolkit has been successfully used to perform technology assessments for the Science & Technology Intelligence (S&TI) program.

  8. Modelling of transport phenomena

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi.

    1993-09-01

    In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the anomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confinement modes, and the sudden jumps such as L-H transition. Starting from the formalism of the transport matrix, the modelling based on the low frequency instabilities are reviewed. Theoretical results in the range of drift wave frequency are examined. Problems in theories based on the quasilinear and mixing-length estimates lead to the renewal of the turbulence theory, and the physics picture of the self-sustained turbulence is discussed. The theory of transport using the fluid equation of plasma is developed, showing that the new approach is very promising in explaining abovementioned characteristics of anomalous transport in both L-mode and improved confinement plasmas. The interference of the fluxes is the key to construct the physics basis of the bifurcation theory for the L-H transition. The present status of theories on the mechanisms of improved confinement is discussed. Modelling on the nonlocal nature of transport is briefly discussed. Finally, the impact of the anomalous transport on disruptive phenomena is also described. (author) 95 refs

  9. Studies of Novel Quantum Phenomena in Ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Zhiqiang

    2011-04-08

    Strongly correlated oxides have been the subject of intense study in contemporary condensed matter physics, and perovskite ruthenates (Sr,Ca)n+1RunO3n+1 have become a new focus in this field. One of important characteristics of ruthenates is that both lattice and orbital degrees of freedom are active and are strongly coupled to charge and spin degrees of freedom. Such a complex interplay of multiple degrees of freedom causes the properties of ruthenates to exhibit a gigantic response to external stimuli under certain circumstances. Magnetic field, pressure, and chemical composition all have been demonstrated to be effective in inducing electronic/magnetic phase transitions in ruthenates. Therefore, ruthenates are ideal candidates for searching for novel quantum phenomena through controlling external parameters. The objective of this project is to search for novel quantum phenomena in ruthenate materials using high-quality single crystals grown by the floating-zone technique, and investigate the underlying physics. The following summarizes our accomplishments. We have focused on trilayered Sr4Ru3O10 and bilayered (Ca1-xSrx)3Ru2O7. We have succeeded in growing high-quality single crystals of these materials using the floating-zone technique and performed systematic studies on their electronic and magnetic properties through a variety of measurements, including resistivity, Hall coefficient, angle-resolved magnetoresistivity, Hall probe microscopy, and specific heat. We have also studied microscopic magnetic properties for some of these materials using neutron scattering in collaboration with Los Alamos National Laboratory. We have observed a number of unusual exotic quantum phenomena through these studies, such as an orbital selective metamagnetic transition, bulk spin valve effect, and a heavy-mass nearly ferromagnetic state with a surprisingly large Wilson ratio. Our work has also revealed underlying physics of these exotic phenomena. Exotic phenomena of correlated

  10. Chaotic phenomena in plasmas

    International Nuclear Information System (INIS)

    Kawai, Y.

    1991-08-01

    It has recently been recognized that the research on various aspects of chaotic dynamics grows rapidly as one of some areas in nonlinear science. On the other hands, the plasma has long been called a treasure-house of nonlinear phenomena, so it is easy to imagine that the plasma is abundant in chaotic phenomena. In fact, the research on plasma chaos is going on, such as the research on the stochastic magnetic field and the chaotic orbit in the toroidal helical system, as well as the research in other experiments. To review the present status of the research on plasma chaos and to make clear the basic common physics, a working group was organized in 1990 as a collaboration research of National Institute for Fusion Science. This is the report on its activity in 1990, with a stress on experimental data obtained in basic plasma experiments and RFP, and on the relaxed theories and computer simulations. (author)

  11. Discovery potential for new phenomena

    International Nuclear Information System (INIS)

    Godfrey, S.; Price, L.E.

    1997-03-01

    The authors examine the ability of future facilities to discover and interpret non-supersymmetric new phenomena. The authors first explore explicit manifestations of new physics, including extended gauge sectors, leptoquarks, exotic fermions, and technicolor models. They then take a more general approach where new physics only reveals itself through the existence of effective interactions at lower energy scales

  12. Surprise: a belief or an emotion?

    Science.gov (United States)

    Mellers, Barbara; Fincher, Katrina; Drummond, Caitlin; Bigony, Michelle

    2013-01-01

    Surprise is a fundamental link between cognition and emotion. It is shaped by cognitive assessments of likelihood, intuition, and superstition, and it in turn shapes hedonic experiences. We examine this connection between cognition and emotion and offer an explanation called decision affect theory. Our theory predicts the affective consequences of mistaken beliefs, such as overconfidence and hindsight. It provides insight about why the pleasure of a gain can loom larger than the pain of a comparable loss. Finally, it explains cross-cultural differences in emotional reactions to surprising events. By changing the nature of the unexpected (from chance to good luck), one can alter the emotional reaction to surprising events. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Viral marketing: the use of surprise

    NARCIS (Netherlands)

    Lindgreen, A.; Vanhamme, J.; Clarke, I.; Flaherty, T.B.

    2005-01-01

    Viral marketing involves consumers passing along a company's marketing message to their friends, family, and colleagues. This chapter reviews viral marketing campaigns and argues that the emotion of surprise often is at work and that this mechanism resembles that of word-of-mouth marketing.

  14. Exploration, Novelty, Surprise and Free Energy Minimisation

    Directory of Open Access Journals (Sweden)

    Philipp eSchwartenbeck

    2013-10-01

    Full Text Available This paper reviews recent developments under the free energy principle that introduce a normative perspective on classical economic (utilitarian decision-making based on (active Bayesian inference. It has been suggested that the free energy principle precludes novelty and complexity, because it assumes that biological systems – like ourselves - try to minimise the long-term average of surprise to maintain their homeostasis. However, recent formulations show that minimising surprise leads naturally to concepts such as exploration and novelty bonuses. In this approach, agents infer a policy that minimises surprise by minimising the difference (or relative entropy between likely and desired outcomes, which involves both pursuing the goal-state that has the highest expected utility (often termed ‘exploitation’ and visiting a number of different goal-states (‘exploration’. Crucially, the opportunity to visit new states increases the value of the current state. Casting decision-making problems within a variational framework, therefore, predicts that our behaviour is governed by both the entropy and expected utility of future states. This dissolves any dialectic between minimising surprise and exploration or novelty seeking.

  15. Glial heterotopia of maxilla: A clinical surprise

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Mahalik

    2011-01-01

    Full Text Available Glial heterotopia is a rare congenital mass lesion which often presents as a clinical surprise. We report a case of extranasal glial heterotopia in a neonate with unusual features. The presentation, management strategy, etiopathogenesis and histopathology of the mass lesion has been reviewed.

  16. Radar Design to Protect Against Surprise

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    Technological and doctrinal surprise is about rendering preparations for conflict as irrelevant or ineffective . For a sensor, this means essentially rendering the sensor as irrelevant or ineffective in its ability to help determine truth. Recovery from this sort of surprise is facilitated by flexibility in our own technology and doctrine. For a sensor, this mean s flexibility in its architecture, design, tactics, and the designing organizations ' processes. - 4 - Acknowledgements This report is the result of a n unfunded research and development activity . Sandia National Laboratories is a multi - program laboratory manage d and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  17. ISS COLUMBUS laboratory experiment `GeoFlow I and II' -fluid physics research in microgravity environment to study convection phenomena inside deep Earth and mantle

    Science.gov (United States)

    Futterer, Birgit; Egbers, Christoph; Chossat, Pascal; Hollerbach, Rainer; Breuer, Doris; Feudel, Fred; Mutabazi, Innocent; Tuckerman, Laurette

    Overall driving mechanism of flow in inner Earth is convection in its gravitational buoyancy field. A lot of effort has been involved in theoretical prediction and numerical simulation of both the geodynamo, which is maintained by convection, and mantle convection, which is the main cause for plate tectonics. Especially resolution of convective patterns and heat transfer mechanisms has been in focus to reach the real, highly turbulent conditions inside Earth. To study specific phenomena experimentally different approaches has been observed, against the background of magneto-hydrodynamic but also on the pure hydrodynamic physics of fluids. With the experiment `GeoFlow' (Geophysical Flow Simulation) instability and transition of convection in spherical shells under the influence of central-symmetry buoyancy force field are traced for a wide range of rotation regimes within the limits between non-rotating and rapid rotating spheres. The special set-up of high voltage potential between inner and outer sphere and use of a dielectric fluid as working fluid induce an electro-hydrodynamic force, which is comparable to gravitational buoyancy force inside Earth. To reduce overall gravity in a laboratory this technique requires microgravity conditions. The `GeoFlow I' experiment was accomplished on International Space Station's module COLUM-BUS inside Fluid Science Laboratory FSL und supported by EADS Astrium, Friedrichshafen, User Support und Operations Centre E-USOC in Madrid, Microgravity Advanced Research and Support Centre MARS in Naples, as well as COLUMBUS Control Center COL-CC Munich. Running from August 2008 until January 2009 it delivered 100.000 images from FSL's optical diagnostics module; here more precisely the Wollaston shearing interferometry was used. Here we present the experimental alignment with numerical prediction for the non-rotating and rapid rotation case. The non-rotating case is characterized by a co-existence of several stationary supercritical

  18. A surprising palmar nevus: A case report

    Directory of Open Access Journals (Sweden)

    Rana Rafiei

    2018-02-01

    Full Text Available Raised palmar or plantar nevus especially in white people is an unusual feature. We present an uncommon palmar compound nevus in a 26-year-old woman with a large diameter (6 mm which had a collaret-shaped margin. In histopathologic evaluation intralymphatic protrusions of nevic nests were noted. This case was surprising to us for these reasons: size, shape, location and histopathology of the lesion. Palmar nevi are usually junctional (flat and below 3 mm diameter and intra lymphatic protrusion or invasion in nevi is an extremely rare phenomenon.

  19. Dropout Phenomena at Universities

    DEFF Research Database (Denmark)

    Larsen, Michael Søgaard; Kornbeck, Kasper Pihl; Kristensen, Rune

    Dropout from university studies comprises a number of complex phenomena with serious complex consequences and profound political attention. Further analysis of the field is, therefore, warranted. Such an analysis is offered here as a systematic review which gives answers based on the best possible...... such dropout phenomena occur at universities? What can be done by the universities to prevent or reduce such dropout phenomena?...

  20. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  1. Primary Care Practice: Uncertainty and Surprise

    Science.gov (United States)

    Crabtree, Benjamin F.

    I will focus my comments on uncertainty and surprise in primary care practices. I am a medical anthropologist by training, and have been a full-time researcher in family medicine for close to twenty years. In this talk I want to look at primary care practices as complex systems, particularly taking the perspective of translating evidence into practice. I am going to discuss briefly the challenges we have in primary care, and in medicine in general, of translating new evidence into the everyday care of patients. To do this, I will look at two studies that we have conducted on family practices, then think about how practices can be best characterized as complex adaptive systems. Finally, I will focus on the implications of this portrayal for disseminating new knowledge into practice.

  2. Surprises and counterexamples in real function theory

    CERN Document Server

    Rajwade, A R

    2007-01-01

    This book presents a variety of intriguing, surprising and appealing topics and nonroutine theorems in real function theory. It is a reference book to which one can turn for finding that arise while studying or teaching analysis.Chapter 1 is an introduction to algebraic, irrational and transcendental numbers and contains the Cantor ternary set. Chapter 2 contains functions with extraordinary properties; functions that are continuous at each point but differentiable at no point. Chapters 4 and intermediate value property, periodic functions, Rolle's theorem, Taylor's theorem, points of tangents. Chapter 6 discusses sequences and series. It includes the restricted harmonic series, of alternating harmonic series and some number theoretic aspects. In Chapter 7, the infinite peculiar range of convergence is studied. Appendix I deal with some specialized topics. Exercises at the end of chapters and their solutions are provided in Appendix II.This book will be useful for students and teachers alike.

  3. Nonlinear dynamical phenomena in liquid crystals

    International Nuclear Information System (INIS)

    Wang, X.Y.; Sun, Z.M.

    1988-09-01

    Because of the existence of the orientational order and anisotropy in liquid crystals, strong nonlinear phenomena and singular behaviors, such as solitary wave, transient periodic structure, chaos, fractal and viscous fingering, can be excited by a very small disturbance. These phenomena and behaviors are in connection with physics, biology and mathematics. 12 refs, 6 figs

  4. The conceptualization model problem—surprise

    Science.gov (United States)

    Bredehoeft, John

    2005-03-01

    The foundation of model analysis is the conceptual model. Surprise is defined as new data that renders the prevailing conceptual model invalid; as defined here it represents a paradigm shift. Limited empirical data indicate that surprises occur in 20-30% of model analyses. These data suggest that groundwater analysts have difficulty selecting the appropriate conceptual model. There is no ready remedy to the conceptual model problem other than (1) to collect as much data as is feasible, using all applicable methods—a complementary data collection methodology can lead to new information that changes the prevailing conceptual model, and (2) for the analyst to remain open to the fact that the conceptual model can change dramatically as more information is collected. In the final analysis, the hydrogeologist makes a subjective decision on the appropriate conceptual model. The conceptualization problem does not render models unusable. The problem introduces an uncertainty that often is not widely recognized. Conceptual model uncertainty is exacerbated in making long-term predictions of system performance. C'est le modèle conceptuel qui se trouve à base d'une analyse sur un modèle. On considère comme une surprise lorsque le modèle est invalidé par des données nouvelles; dans les termes définis ici la surprise est équivalente à un change de paradigme. Des données empiriques limitées indiquent que les surprises apparaissent dans 20 à 30% des analyses effectuées sur les modèles. Ces données suggèrent que l'analyse des eaux souterraines présente des difficultés lorsqu'il s'agit de choisir le modèle conceptuel approprié. Il n'existe pas un autre remède au problème du modèle conceptuel que: (1) rassembler autant des données que possible en utilisant toutes les méthodes applicables—la méthode des données complémentaires peut conduire aux nouvelles informations qui vont changer le modèle conceptuel, et (2) l'analyste doit rester ouvert au fait

  5. Current topics in condensed matter and particle physics. Non-perturbative phenomena and strongly correlated systems. Kathmandu summer school lecture notes. V. 2

    International Nuclear Information System (INIS)

    Pati, J.; Shafi, Q.; Yu Lu

    1993-01-01

    This is a collection of five lectures on quantum field theory and its applications, two lectures on aspects of particle and nuclear physics (unification in the superstring context; and topics in P and CP violation in nuclear and particle physics), and ten lectures mainly on the physics of strong correlations, all but one of which are within the INIS scope. Refs, figs and tabs

  6. X rays and radioactivity: a complete surprise

    International Nuclear Information System (INIS)

    Radvanyi, P.; Bordry, M.

    1995-01-01

    The discoveries of X rays and of radioactivity came as complete experimental surprises; the physicists, at that time, had no previous hint of a possible structure of atoms. It is difficult now, knowing what we know, to replace ourselves in the spirit, astonishment and questioning of these years, between 1895 and 1903. The nature of X rays was soon hypothesized, but the nature of the rays emitted by uranium, polonium and radium was much more difficult to disentangle, as they were a mixture of different types of radiations. The origin of the energy continuously released in radioactivity remained a complete mystery for a few years. The multiplicity of the radioactive substances became soon a difficult matter: what was real and what was induced ? Isotopy was still far ahead. It appeared that some radioactive substances had ''half-lifes'': were they genuine radioactive elements or was it just a transitory phenomenon ? Henri Becquerel (in 1900) and Pierre and Marie Curie (in 1902) hesitated on the correct answer. Only after Ernest Rutherford and Frederick Soddy established that radioactivity was the transmutation of one element into another, could one understand that a solid element transformed into a gaseous element, which in turn transformed itself into a succession of solid radioactive elements. It was only in 1913 - after the discovery of the atomic nucleus -, through precise measurements of X ray spectra, that Henry Moseley showed that the number of electrons of a given atom - and the charge of its nucleus - was equal to its atomic number in the periodic table. (authors)

  7. X rays and radioactivity: a complete surprise

    Energy Technology Data Exchange (ETDEWEB)

    Radvanyi, P. [Laboratoire National Saturne, Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France); Bordry, M. [Institut du Radium, 75 - Paris (France)

    1995-12-31

    The discoveries of X rays and of radioactivity came as complete experimental surprises; the physicists, at that time, had no previous hint of a possible structure of atoms. It is difficult now, knowing what we know, to replace ourselves in the spirit, astonishment and questioning of these years, between 1895 and 1903. The nature of X rays was soon hypothesized, but the nature of the rays emitted by uranium, polonium and radium was much more difficult to disentangle, as they were a mixture of different types of radiations. The origin of the energy continuously released in radioactivity remained a complete mystery for a few years. The multiplicity of the radioactive substances became soon a difficult matter: what was real and what was induced ? Isotopy was still far ahead. It appeared that some radioactive substances had ``half-lifes``: were they genuine radioactive elements or was it just a transitory phenomenon ? Henri Becquerel (in 1900) and Pierre and Marie Curie (in 1902) hesitated on the correct answer. Only after Ernest Rutherford and Frederick Soddy established that radioactivity was the transmutation of one element into another, could one understand that a solid element transformed into a gaseous element, which in turn transformed itself into a succession of solid radioactive elements. It was only in 1913 - after the discovery of the atomic nucleus -, through precise measurements of X ray spectra, that Henry Moseley showed that the number of electrons of a given atom - and the charge of its nucleus - was equal to its atomic number in the periodic table. (authors).

  8. Quantum theory of collective phenomena

    CERN Document Server

    Sewell, G L

    2014-01-01

    ""An excellent and competent introduction to the field … [and] … a source of information for the expert."" - Physics Today""This a book of major importance…. I trust that this book will be used as a basis for the teaching of a balanced, modern and rigorous course on statistical mechanics in all universities."" - Bulletin of the London Mathematical Society""This is one of the best introductions to the subject, and it is strongly recommended to anyone interested in collective phenomena."" - Physics Bulletin ""The book may be recommended for students as a well-balanced introduction to this rich s

  9. A Shocking Surprise in Stephan's Quintet

    Science.gov (United States)

    2006-01-01

    This false-color composite image of the Stephan's Quintet galaxy cluster clearly shows one of the largest shock waves ever seen (green arc). The wave was produced by one galaxy falling toward another at speeds of more than one million miles per hour. The image is made up of data from NASA's Spitzer Space Telescope and a ground-based telescope in Spain. Four of the five galaxies in this picture are involved in a violent collision, which has already stripped most of the hydrogen gas from the interiors of the galaxies. The centers of the galaxies appear as bright yellow-pink knots inside a blue haze of stars, and the galaxy producing all the turmoil, NGC7318b, is the left of two small bright regions in the middle right of the image. One galaxy, the large spiral at the bottom left of the image, is a foreground object and is not associated with the cluster. The titanic shock wave, larger than our own Milky Way galaxy, was detected by the ground-based telescope using visible-light wavelengths. It consists of hot hydrogen gas. As NGC7318b collides with gas spread throughout the cluster, atoms of hydrogen are heated in the shock wave, producing the green glow. Spitzer pointed its infrared spectrograph at the peak of this shock wave (middle of green glow) to learn more about its inner workings. This instrument breaks light apart into its basic components. Data from the instrument are referred to as spectra and are displayed as curving lines that indicate the amount of light coming at each specific wavelength. The Spitzer spectrum showed a strong infrared signature for incredibly turbulent gas made up of hydrogen molecules. This gas is caused when atoms of hydrogen rapidly pair-up to form molecules in the wake of the shock wave. Molecular hydrogen, unlike atomic hydrogen, gives off most of its energy through vibrations that emit in the infrared. This highly disturbed gas is the most turbulent molecular hydrogen ever seen. Astronomers were surprised not only by the turbulence

  10. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  11. Transport phenomena in multiphase flows

    CERN Document Server

    Mauri, Roberto

    2015-01-01

    This textbook provides a thorough presentation of the phenomena related to the transport of mass, momentum and energy.  It lays all the basic physical principles, then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings. The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level. The book is a modular teaching tool and can be used either for an introductory...

  12. Surprise: Dwarf Galaxy Harbors Supermassive Black Hole

    Science.gov (United States)

    2011-01-01

    The surprising discovery of a supermassive black hole in a small nearby galaxy has given astronomers a tantalizing look at how black holes and galaxies may have grown in the early history of the Universe. Finding a black hole a million times more massive than the Sun in a star-forming dwarf galaxy is a strong indication that supermassive black holes formed before the buildup of galaxies, the astronomers said. The galaxy, called Henize 2-10, 30 million light-years from Earth, has been studied for years, and is forming stars very rapidly. Irregularly shaped and about 3,000 light-years across (compared to 100,000 for our own Milky Way), it resembles what scientists think were some of the first galaxies to form in the early Universe. "This galaxy gives us important clues about a very early phase of galaxy evolution that has not been observed before," said Amy Reines, a Ph.D. candidate at the University of Virginia. Supermassive black holes lie at the cores of all "full-sized" galaxies. In the nearby Universe, there is a direct relationship -- a constant ratio -- between the masses of the black holes and that of the central "bulges" of the galaxies, leading them to conclude that the black holes and bulges affected each others' growth. Two years ago, an international team of astronomers found that black holes in young galaxies in the early Universe were more massive than this ratio would indicate. This, they said, was strong evidence that black holes developed before their surrounding galaxies. "Now, we have found a dwarf galaxy with no bulge at all, yet it has a supermassive black hole. This greatly strengthens the case for the black holes developing first, before the galaxy's bulge is formed," Reines said. Reines, along with Gregory Sivakoff and Kelsey Johnson of the University of Virginia and the National Radio Astronomy Observatory (NRAO), and Crystal Brogan of the NRAO, observed Henize 2-10 with the National Science Foundation's Very Large Array radio telescope and

  13. Interfacial transport phenomena

    CERN Document Server

    Slattery, John C; Oh, Eun-Suok

    2007-01-01

    Revised and updated extensively from the previous editionDiscusses transport phenomena at common lines or three-phase lines of contactProvides a comprehensive summary about the extensions of continuum mechanics to the nanoscale.

  14. Severe accident phenomena

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Kilpi, K.; Lindholm, I.; Maekynen, J.; Pekkarinen, E.; Sairanen, R.; Silde, A.

    1995-02-01

    Severe accidents are nuclear reactor accidents in which the reactor core is substantially damaged. The report describes severe reactor accident phenomena and their significance for the safety of nuclear power plants. A comprehensive set of phenomena ranging from accident initiation to containment behaviour and containment integrity questions are covered. The report is based on expertise gained in the severe accident assessment projects conducted at the Technical Research Centre of Finland (VTT). (49 refs., 32 figs., 12 tabs.)

  15. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    Science.gov (United States)

    Lumetta, Gregg J.; Arcia, Edgar

    2016-01-01

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as…

  16. Salience and attention in surprisal-based accounts of language processing

    Directory of Open Access Journals (Sweden)

    Alessandra eZarcone

    2016-06-01

    Full Text Available The notion of salience has been singled out as the explanatory factor for a diverse range oflinguistic phenomena. In particular, perceptual salience (e.g. visual salience of objects in the world,acoustic prominence of linguistic sounds and semantic-pragmatic salience (e.g. prominence ofrecently mentioned or topical referents have been shown to influence language comprehensionand production. A different line of research has sought to account for behavioral correlates ofcognitive load during comprehension as well as for certain patterns in language usage usinginformation-theoretic notions, such as surprisal. Surprisal and salience both affect languageprocessing at different levels, but the relationship between the two has not been adequatelyelucidated, and the question of whether salience can be reduced to surprisal / predictability isstill open. Our review identifies two main challenges in addressing this question: terminologicalinconsistency and lack of integration between high and low levels of representations in salience-based accounts and surprisal-based accounts. We capitalise upon work in visual cognition inorder to orient ourselves in surveying the different facets of the notion of salience in linguisticsand their relation with models of surprisal. We find that work on salience highlights aspects oflinguistic communication that models of surprisal tend to overlook, namely the role of attentionand relevance to current goals, and we argue that the Predictive Coding framework provides aunified view which can account for the role played by attention and predictability at different levelsof processing and which can clarify the interplay between low and high levels of processes andbetween predictability-driven expectation and attention-driven focus.

  17. Salience and Attention in Surprisal-Based Accounts of Language Processing.

    Science.gov (United States)

    Zarcone, Alessandra; van Schijndel, Marten; Vogels, Jorrig; Demberg, Vera

    2016-01-01

    The notion of salience has been singled out as the explanatory factor for a diverse range of linguistic phenomena. In particular, perceptual salience (e.g., visual salience of objects in the world, acoustic prominence of linguistic sounds) and semantic-pragmatic salience (e.g., prominence of recently mentioned or topical referents) have been shown to influence language comprehension and production. A different line of research has sought to account for behavioral correlates of cognitive load during comprehension as well as for certain patterns in language usage using information-theoretic notions, such as surprisal. Surprisal and salience both affect language processing at different levels, but the relationship between the two has not been adequately elucidated, and the question of whether salience can be reduced to surprisal / predictability is still open. Our review identifies two main challenges in addressing this question: terminological inconsistency and lack of integration between high and low levels of representations in salience-based accounts and surprisal-based accounts. We capitalize upon work in visual cognition in order to orient ourselves in surveying the different facets of the notion of salience in linguistics and their relation with models of surprisal. We find that work on salience highlights aspects of linguistic communication that models of surprisal tend to overlook, namely the role of attention and relevance to current goals, and we argue that the Predictive Coding framework provides a unified view which can account for the role played by attention and predictability at different levels of processing and which can clarify the interplay between low and high levels of processes and between predictability-driven expectation and attention-driven focus.

  18. Salience and Attention in Surprisal-Based Accounts of Language Processing

    Science.gov (United States)

    Zarcone, Alessandra; van Schijndel, Marten; Vogels, Jorrig; Demberg, Vera

    2016-01-01

    The notion of salience has been singled out as the explanatory factor for a diverse range of linguistic phenomena. In particular, perceptual salience (e.g., visual salience of objects in the world, acoustic prominence of linguistic sounds) and semantic-pragmatic salience (e.g., prominence of recently mentioned or topical referents) have been shown to influence language comprehension and production. A different line of research has sought to account for behavioral correlates of cognitive load during comprehension as well as for certain patterns in language usage using information-theoretic notions, such as surprisal. Surprisal and salience both affect language processing at different levels, but the relationship between the two has not been adequately elucidated, and the question of whether salience can be reduced to surprisal / predictability is still open. Our review identifies two main challenges in addressing this question: terminological inconsistency and lack of integration between high and low levels of representations in salience-based accounts and surprisal-based accounts. We capitalize upon work in visual cognition in order to orient ourselves in surveying the different facets of the notion of salience in linguistics and their relation with models of surprisal. We find that work on salience highlights aspects of linguistic communication that models of surprisal tend to overlook, namely the role of attention and relevance to current goals, and we argue that the Predictive Coding framework provides a unified view which can account for the role played by attention and predictability at different levels of processing and which can clarify the interplay between low and high levels of processes and between predictability-driven expectation and attention-driven focus. PMID:27375525

  19. Theory of nonlinear, distortive phenomena in solids: Martensitic, crack, and multiscale structures-phenomenology and physics. Progress summary, 1991--1994

    International Nuclear Information System (INIS)

    Sethna, J.P.; Krumhansl, J.A.

    1994-01-01

    We have identified tweed precursors to martensitic phase transformations as a spin glass phase due to composition variations, and used simulations and exact replica theory predictions to predict diffraction peaks and model phase diagrams, and provide real space data for comparison to transmission electron micrograph images. We have used symmetry principles to derive the crack growth laws for mixed-mode brittle fracture, explaining the results for two-dimensional fracture and deriving the growth laws in three dimensions. We have used recent advances in dynamical critical phenomena to study hysteresis in disordered systems, explaining the return-point-memory effect, predicting distributions for Barkhausen noise, and elucidating the transition from athermal to burst behavior in martensites. From a nonlinear lattice-dynamical model of a first-order transition using simulations, finite-size scaling, and transfer matrix methods, it is shown that heterophase transformation precursors cannot occur in a pure homogeneous system, thus emphasizing the role of disorder in real materials. Full integration of nonlinear Landau-Ginzburg continuum theory with experimental neutron-scattering data and first-principles calculations has been carried out to compute semi-quantitative values of the energy and thickness of twin boundaries in InTl and FePd martensites

  20. Dissipative phenomena in condensed matter some applications

    CERN Document Server

    Dattagupta, Sushanta

    2004-01-01

    From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.

  1. Old Star's "Rebirth" Gives Astronomers Surprises

    Science.gov (United States)

    2005-04-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope are taking advantage of a once-in-a-lifetime opportunity to watch an old star suddenly stir back into new activity after coming to the end of its normal life. Their surprising results have forced them to change their ideas of how such an old, white dwarf star can re-ignite its nuclear furnace for one final blast of energy. Sakurai's Object Radio/Optical Images of Sakurai's Object: Color image shows nebula ejected thousands of years ago. Contours indicate radio emission. Inset is Hubble Space Telescope image, with contours indicating radio emission; this inset shows just the central part of the region. CREDIT: Hajduk et al., NRAO/AUI/NSF, ESO, StSci, NASA Computer simulations had predicted a series of events that would follow such a re-ignition of fusion reactions, but the star didn't follow the script -- events moved 100 times more quickly than the simulations predicted. "We've now produced a new theoretical model of how this process works, and the VLA observations have provided the first evidence supporting our new model," said Albert Zijlstra, of the University of Manchester in the United Kingdom. Zijlstra and his colleagues presented their findings in the April 8 issue of the journal Science. The astronomers studied a star known as V4334 Sgr, in the constellation Sagittarius. It is better known as "Sakurai's Object," after Japanese amateur astronomer Yukio Sakurai, who discovered it on February 20, 1996, when it suddenly burst into new brightness. At first, astronomers thought the outburst was a common nova explosion, but further study showed that Sakurai's Object was anything but common. The star is an old white dwarf that had run out of hydrogen fuel for nuclear fusion reactions in its core. Astronomers believe that some such stars can undergo a final burst of fusion in a shell of helium that surrounds a core of heavier nuclei such as carbon and oxygen. However, the

  2. Conference of “Uncertainty and Surprise: Questions on Working with the Unexpected and Unknowable”

    CERN Document Server

    McDaniel, Reuben R; Uncertainty and Surprise in Complex Systems : Questions on Working with the Unexpected

    2005-01-01

    Complexity science has been a source of new insight in physical and social systems and has demonstrated that unpredictability and surprise are fundamental aspects of the world around us. This book is the outcome of a discussion meeting of leading scholars and critical thinkers with expertise in complex systems sciences and leaders from a variety of organizations sponsored by the Prigogine Center at The University of Texas at Austin and the Plexus Institute to explore strategies for understanding uncertainty and surprise. Besides distributions to the conference it includes a key digest by the editors as well as a commentary by the late nobel laureat Ilya Prigogine, "Surprises in half of a century". The book is intended for researchers and scientists in complexity science as well as for a broad interdisciplinary audience of both practitioners and scholars. It will well serve those interested in the research issues and in the application of complexity science to physical and social systems.

  3. The quest for new phenomena

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1996-12-01

    The Standard Model of particle physics has been very successful in describing experimental data with great precision. With the exception of some neutrino anomalies, there is no data that is in disagreement with it. Nevertheless, the model is regarded as incomplete and unsatisfactory. There is no explanation of the pattern of quark and lepton masses and, possibly more important, no understanding of the scale of electroweak interactions. Electroweak symmetry breaking is implemented in the Standard Model from the presence of a scalar electroweak doublet, the Higgs field, that acquires a vacuum expectation value of order 250 GeV and leaves as a remnant one physical state, the electrically neutral Higgs boson whose mass is not predicted. In this talk, the author compares the techniques used at, and capabilities of, various facilities in searching for new phenomena. The author emphasizes the cases where information from more than one facility may be needed to fully explore the physics

  4. The Influence of Negative Surprise on Hedonic Adaptation

    Directory of Open Access Journals (Sweden)

    Ana Paula Kieling

    2016-01-01

    Full Text Available After some time using a product or service, the consumer tends to feel less pleasure with consumption. This reduction of pleasure is known as hedonic adaptation. One of the emotions that interfere in this process is surprise. Based on two experiments, we suggest that negative surprise – differently to positive – influences with the level of pleasure foreseen and experienced by the consumer. Study 1 analyzes the influence of negative (vs. positive surprise on the consumer’s post-purchase hedonic adaptation expectation. Results showed that negative surprise influences the intensity of adaptation, augmenting its strength. Study 2 verifies the influence of negative (vs positive surprise over hedonic adaptation. The findings suggested that negative surprise makes adaptation happen more intensively and faster as time goes by, which brings consequences to companies and consumers in the post-purchase process, such as satisfaction and loyalty.

  5. Fourteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A; Silvestri, Sandro; Ultrafast Phenomena XIV

    2005-01-01

    Ultrafast Phenomena XIV presents the latest advances in ultrafast science, including ultrafast laser and measurement technology as well as studies of ultrafast phenomena. Pico-, femto-, and atosecond processes relevant in physics, chemistry, biology and engineering are presented. Ultrafast technology is now having a profound impact within a wide range of applications, among them imaging, material diagnostics, and transformation and high-speed optoelectronics. This book summarizes results presented at the 14th Ultrafast Phenomena Conference and reviews the state of the art in this important and rapidly advancing field.

  6. Computational transport phenomena for engineering analyses

    CERN Document Server

    Farmer, Richard C; Cheng, Gary C; Chen, Yen-Sen

    2009-01-01

    Computational Transport PhenomenaOverviewTransport PhenomenaAnalyzing Transport PhenomenaA Computational Tool: The CTP CodeVerification, Validation, and GeneralizationSummaryNomenclatureReferencesThe Equations of ChangeIntroductionDerivation of The Continuity EquationDerivation of The Species Continuity EquationDerivation of The Equation Of MotionDerivation of The General Energy EquationNon-Newtonian FluidsGeneral Property BalanceAnalytical and Approximate Solutions for the Equations of ChangeSummaryNomenclatureReferencesPhysical PropertiesOverviewReal-Fluid ThermodynamicsChemical Equilibrium

  7. Sixteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Corkum, Paul; Nelson, Keith A; Riedle, Eberhard; Schoenlein, Robert W; Ultrafast Phenomena XVI

    2009-01-01

    Ultrafast Phenomena XVI presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh speed communications. This book summarizes the results presented at the 16th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.

  8. A Dichotomic Analysis of the Surprise Examination Paradox

    OpenAIRE

    Franceschi, Paul

    2002-01-01

    This paper presents a dichotomic analysis of the surprise examination paradox. In section 1, I analyse the surprise notion in detail. I introduce then in section 2, the distinction between a monist and dichotomic analysis of the paradox. I also present there a dichotomy leading to distinguish two basically and structurally different versions of the paradox, respectively based on a conjoint and a disjoint definition of the surprise. In section 3, I describe the solution to SEP corresponding to...

  9. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2001-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies.Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations.The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable in

  10. Nonlinear phenomena in general relativity

    Science.gov (United States)

    Allahyari, Alireza; Firouzjaee, Javad T.; Mansouri, Reza

    2018-04-01

    The perturbation theory plays an important role in studying structure formation in cosmology and post-Newtonian physics, but not all phenomena can be described by the linear perturbation theory. Thus, it is necessary to study exact solutions or higher-order perturbations. Specifically, we study black hole (apparent) horizons and the cosmological event horizon formation in the perturbation theory. We emphasize that in the perturbative regime of the gravitational potential these horizons cannot form in the lower order. Studying the infinite plane metric, we show that, to capture the cosmological constant effect, we need at least a second-order expansion.

  11. Quantum phenomena in gravitational field

    Science.gov (United States)

    Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.

    2011-10-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.

  12. Quantum phenomena in gravitational field

    International Nuclear Information System (INIS)

    Bourdel, Th.; Doser, M.; Ernest, A.D.; Voronin, A.Y.; Voronin, V.V.

    2010-01-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)

  13. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  14. SEPARATION PHENOMENA LOGISTIC REGRESSION

    Directory of Open Access Journals (Sweden)

    Ikaro Daniel de Carvalho Barreto

    2014-03-01

    Full Text Available This paper proposes an application of concepts about the maximum likelihood estimation of the binomial logistic regression model to the separation phenomena. It generates bias in the estimation and provides different interpretations of the estimates on the different statistical tests (Wald, Likelihood Ratio and Score and provides different estimates on the different iterative methods (Newton-Raphson and Fisher Score. It also presents an example that demonstrates the direct implications for the validation of the model and validation of variables, the implications for estimates of odds ratios and confidence intervals, generated from the Wald statistics. Furthermore, we present, briefly, the Firth correction to circumvent the phenomena of separation.

  15. Rheological phenomena in focus

    CERN Document Server

    Boger, DV

    1993-01-01

    More than possibly any other scientific discipline, rheology is easily visualized and the relevant literature contains many excellent photographs of unusual and often bizarre phenomena. The present book brings together these photographs for the first time. They are supported by a full explanatory text. Rheological Phenomena in Focus will be an indispensable support manual to all those who teach rheology or have to convince colleagues of the practical relevance of the subject within an industrial setting. For those who teach fluid mechanics, the book clearly illustrates the difference be

  16. The Value of Surprising Findings for Research on Marketing

    OpenAIRE

    JS Armstrong

    2004-01-01

    In the work of Armstrong (Journal of Business Research, 2002), I examined empirical research on the scientific process and related these to marketing science. The findings of some studies were surprising. In this reply, I address surprising findings and other issues raised by commentators.

  17. Modelization of physical phenomena in research reactors with the help of new developments in transport methods, and methodology validation with experimental data

    International Nuclear Information System (INIS)

    Rauck, St.

    2000-10-01

    The aim of this work is to develop a scheme for experimental reactors, based on transport equations. This type of reactors is characterized by a small core, a complex, very heterogeneous geometry and a large leakage. The possible insertion of neutron beams in the reflector and the presence of absorbers in the core increase the difficulty of the 3D-geometrical description and the physical modeling of the component parameters of the reactor. The Orphee reactor has been chosen for our study. Physical models (homogenization, collapsing cross section in few groups, albedo multigroup condition) have been developed in the APOLLO2 and CRONOS2 codes to calculate flux and power maps in a 3D-geometry, with different burnup and through transport equations. Comparisons with experimental measurements have shown the interest of taking into account anisotropy, steep flux gradients by using Sn methods, and on the other hand using a 12-group cross section library. The modeling of neutron beams has been done outside the core modeling through Monte Carlo calculations and with the total geometry, including a large thickness of heavy water. Thanks to this calculations, one can evaluate the neutron beams anti-reactivity and determinate the core cycle. We assure these methods more accurate than usual transport-diffusion calculations will be used for the conception of new research reactors. (author)

  18. Bioelectrochemistry II membrane phenomena

    CERN Document Server

    Blank, M

    1987-01-01

    This book contains the lectures of the second course devoted to bioelectro­ chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special­ ized study of biological phenomena, for which the investigation using the dual approach, physico-che...

  19. Sawtooth phenomena in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1989-01-01

    A review of experimental and theoretical investigaions of sawtooth phenomena in tokamaks is presented. Different types of sawtooth oscillations, scaling laws and methods of interanl disruption stabilization are described. Theoretical models of the sawtooth instability are discussed. 122 refs.; 4 tabs

  20. Study of a particle detector with very high spatial precision (drift chambers), and analysis of the physical phenomena governing the operation of this detector

    International Nuclear Information System (INIS)

    Schultz, Guy.

    1976-01-01

    The physical principles of drift chambers are studied and various measurements which can be performed with these chambers are described. The laws governing the passage of particles through matter are first reviewed and different transport coefficients, (velocity, scattering coefficient, characteristic energy ...) of the electrons under the influence of an electric field for different gases (argon, CO 2 , isobutane, methane, methylal) are studied. The theoretical predictions are then compared with the experimental results. The different amplification processes in the gas and the space charge effect of the positive ions on electron multiplication for large particle fluxes are also studied as well as the mobility of positive ions in different gases. After these results, the operating characteristics (efficiency, linearity of the space-time ratio, spatial resolution), with and without an external magnetic field are determined [fr

  1. Interfacial polarization phenomena in organic molecular films

    International Nuclear Information System (INIS)

    Iwamoto, Mitsumasa; Manaka, Takaaki

    2006-01-01

    Electrostatic phenomena occurring at the interface between metal/organic and organic/organic materials are discussed from the viewpoint of dielectrics physics. Focusing on two important origins of surface polarization phenomena, orientational ordering of polar molecules and displacement of excess charges at the interface, surface polarization phenomena of organic thin films are discussed. To define the orientational order of polar molecules, orientational order parameters are introduced, and surface polarization due to the alignment of dipoles is expressed. The generation of Maxwell displacement current (MDC) and optical second harmonic generation (SHG) that are specific for surface organic monomolecular films are discussed, and some experimental evidence are shown. As an extension of the concept of surface Fermi level introduced to discuss the electrostatic phenomena due to electron transfer at the interface between metal-organic insulators, the surface Fermi level is extended to the discussion on the electrostatic phenomena of organic semiconductor materials on metals. In this paper, some experimental evidence of surface polarization originating from polar molecules and displacement of excess charges are shown. After that, with consideration of these surface phenomena, single electron tunneling of organic films are briefly discussed in association with surface polarization phenomena

  2. Ignorance, Vulnerability and the Occurrence of "Radical Surprises": Theoretical Reflections and Empirical Findings

    Science.gov (United States)

    Kuhlicke, C.

    2009-04-01

    By definition natural disasters always contain a moment of surprise. Their occurrence is mostly unforeseen and unexpected. They hit people unprepared, overwhelm them and expose their helplessness. Yet, there is surprisingly little known on the reasons for their being surprised. Aren't natural disasters expectable and foreseeable after all? Aren't the return rates of most hazards well known and shouldn't people be better prepared? The central question of this presentation is hence: Why do natural disasters so often radically surprise people at all (and how can we explain this being surprised)? In the first part of the presentation, it is argued that most approaches to vulnerability are not able to grasp this moment of surprise. On the contrary, they have their strength in unravelling the expectable: A person who is marginalized or even oppressed in everyday life is also vulnerable during times of crisis and stress, at least this is the central assumption of most vulnerability studies. In the second part, an understanding of vulnerability is developed, which allows taking into account such radical surprises. First, two forms of the unknown are differentiated: An area of the unknown an actor is more or less aware of (ignorance), and an area, which is not even known to be not known (nescience). The discovery of the latter is mostly associated with a "radical surprise", since it is per definition impossible to prepare for it. Second, a definition of vulnerability is proposed, which allows capturing the dynamics of surprises: People are vulnerable when they discover their nescience exceeding by definition previously established routines, stocks of knowledge and resources—in a general sense their capacities—to deal with their physical and/or social environment. This definition explicitly takes the view of different actors serious and departs from their being surprised. In the third part findings of a case study are presented, the 2002 flood in Germany. It is shown

  3. PHYSICS

    CERN Multimedia

    Chris Hill

    2012-01-01

    The months that have passed since the last CMS Bulletin have been a very busy and exciting time for CMS physics. We have gone from observing the very first 8TeV collisions produced by the LHC to collecting a dataset of the collisions that already exceeds that recorded in all of 2011. All in just a few months! Meanwhile, the analysis of the 2011 dataset and publication of the subsequent results has continued. These results come from all the PAGs in CMS, including searches for the Higgs boson and other new phenomena, that have set the most stringent limits on an ever increasing number of models of physics beyond the Standard Model including dark matter, Supersymmetry, and TeV-scale gravity scenarios, top-quark physics where CMS has overtaken the Tevatron in the precision of some measurements, and bottom-quark physics where CMS made its first discovery of a new particle, the Ξ*0b baryon (candidate event pictured below). Image 2:  A Ξ*0b candidate event At the same time POGs and PAGs...

  4. High Temperature Phenomena in Shock Waves

    CERN Document Server

    2012-01-01

    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  5. Luminous Phenomena - A Scientific Investigation of Anomalous Luminous Atmospheric Phenomena

    Science.gov (United States)

    Teodorani, M.

    2003-12-01

    Anomalous atmospheric luminous phenomena reoccur in several locations of Earth, in the form of multi-color light balls characterized by large dimensions, erratic motion, long duration and a correlated electromagnetic field. The author (an astrophysicist) of this book, which is organized as a selection of some of his technical and popularizing papers and seminars, describes and discusses all the efforts that have been done in 10 years, through several missions and a massive data analysis, in order to obtain some scientific explanation of this kind of anomalies, in particular the Hessdalen anomaly in Norway. The following topics are treated in the book: a) geographic archive of the areas of Earth where such phenomena are known to reoccur most often; b) observational techniques of astrophysical kind that have been used to acquire the data; c) main scientific results obtained so far; d) physical interpretation and natural hypothesis vs. ETV hypothesis; e) historical and chronological issues; f) the importance to brindle new energy sources; g) the importance to keep distance from any kind of "ufology". An unpublished chapter is entirely devoted to a detailed scientific investigation project of light phenomena reoccurring on the Ontario lake; the chosen new-generation multi-wavelength sensing instrumentation that is planned to be used in future missions in that specific area, is described together with scientific rationale and planned procedures. The main results, which were obtained in other areas of the world, such as the Arizona desert, USA and the Sibillini Mountains, Italy, are also briefly mentioned. One chapter is entirely dedicated to the presentation of extensive abstracts of technical papers by the author concerning this specific subject. The book is accompanied with a rich source of bibliographic references.

  6. Volcano Modelling and Simulation gateway (VMSg): A new web-based framework for collaborative research in physical modelling and simulation of volcanic phenomena

    Science.gov (United States)

    Esposti Ongaro, T.; Barsotti, S.; de'Michieli Vitturi, M.; Favalli, M.; Longo, A.; Nannipieri, L.; Neri, A.; Papale, P.; Saccorotti, G.

    2009-12-01

    Physical and numerical modelling is becoming of increasing importance in volcanology and volcanic hazard assessment. However, new interdisciplinary problems arise when dealing with complex mathematical formulations, numerical algorithms and their implementations on modern computer architectures. Therefore new frameworks are needed for sharing knowledge, software codes, and datasets among scientists. Here we present the Volcano Modelling and Simulation gateway (VMSg, accessible at http://vmsg.pi.ingv.it), a new electronic infrastructure for promoting knowledge growth and transfer in the field of volcanological modelling and numerical simulation. The new web portal, developed in the framework of former and ongoing national and European projects, is based on a dynamic Content Manager System (CMS) and was developed to host and present numerical models of the main volcanic processes and relationships including magma properties, magma chamber dynamics, conduit flow, plume dynamics, pyroclastic flows, lava flows, etc. Model applications, numerical code documentation, simulation datasets as well as model validation and calibration test-cases are also part of the gateway material.

  7. Corrugator Activity Confirms Immediate Negative Affect in Surprise

    Directory of Open Access Journals (Sweden)

    Sascha eTopolinski

    2015-02-01

    Full Text Available The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for these consequences. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by suprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low suprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect and frontalis (cultural surprise expression activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes.

  8. Designing quantum-information-processing superconducting qubit circuits that exhibit lasing and other atomic-physics-like phenomena on a chip

    Science.gov (United States)

    Nori, Franco

    2008-03-01

    Superconducting (SC) circuits can behave like atoms making transitions between a few energy levels. Such circuits can test quantum mechanics at macroscopic scales and be used to conduct atomic-physics experiments on a silicon chip. This talk overviews a few of our theoretical studies on SC circuits and quantum information processing (QIP) including: SC qubits for single photon generation and for lasing; controllable couplings among qubits; how to increase the coherence time of qubits using a capacitor in parallel to one of the qubit junctions; hybrid circuits involving both charge and flux qubits; testing Bell's inequality in SC circuits; generation of GHZ states; quantum tomography in SC circuits; preparation of macroscopic quantum superposition states of a cavity field via coupling to a SC qubit; generation of nonclassical photon states using a SC qubit in a microcavity; scalable quantum computing with SC qubits; and information processing with SC qubits in a microwave field. Controllable couplings between qubits can be achieved either directly or indirectly. This can be done with and without coupler circuits, and with and without data-buses like EM fields in cavities (e.g., we will describe both the variable-frequency magnetic flux approach and also a generalized double-resonance approach that we introduced). It is also possible to ``turn a quantum bug into a feature'' by using microscopic defects as qubits, and the macroscopic junction as a controller of it. We have also studied ways to implement radically different approaches to QIP by using ``cluster states'' in SC circuits. For a general overview of this field, see, J.Q. You and F. Nori, Phys. Today 58 (11), 42 (2005)

  9. Theory of threshold phenomena

    International Nuclear Information System (INIS)

    Hategan, Cornel

    2002-01-01

    Theory of Threshold Phenomena in Quantum Scattering is developed in terms of Reduced Scattering Matrix. Relationships of different types of threshold anomalies both to nuclear reaction mechanisms and to nuclear reaction models are established. Magnitude of threshold effect is related to spectroscopic factor of zero-energy neutron state. The Theory of Threshold Phenomena, based on Reduced Scattering Matrix, does establish relationships between different types of threshold effects and nuclear reaction mechanisms: the cusp and non-resonant potential scattering, s-wave threshold anomaly and compound nucleus resonant scattering, p-wave anomaly and quasi-resonant scattering. A threshold anomaly related to resonant or quasi resonant scattering is enhanced provided the neutron threshold state has large spectroscopic amplitude. The Theory contains, as limit cases, Cusp Theories and also results of different nuclear reactions models as Charge Exchange, Weak Coupling, Bohr and Hauser-Feshbach models. (author)

  10. Wolf-Rayet phenomena

    International Nuclear Information System (INIS)

    Conti, P.S.

    1982-01-01

    The author reviews in broad terms the concept of Wolf-Rayet (W-R) phenomena, outlines what we currently know about the properties of stars showing such phenomena and indicates the directions in which future work is leading. He begins by listing the characteristics of W-R spectra and then considers the following specific problems: the absolute visual magnitudes; the heterogeneity of WN spectra; the existence of transition type spectra and compositions; the mass loss rates; the existence of very luminous and possibly very massive W-R stars. He discusses briefly our current understanding of the theoretical aspects of stellar evolution and stellar winds and the various scenarios that have been proposed to understand W-R stars. (Auth.)

  11. Transport phenomena II essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena II covers forced convention, temperature distribution, free convection, diffusitivity and the mechanism of mass transfer, convective mass transfer, concentration

  12. Large momentum transfer phenomena

    International Nuclear Information System (INIS)

    Imachi, Masahiro; Otsuki, Shoichiro; Matsuoka, Takeo; Sawada, Shoji.

    1978-01-01

    The large momentum transfer phenomena in hadron reaction drastically differ from small momentum transfer phenomena, and are described in this paper. Brief review on the features of the large transverse momentum transfer reactions is described in relation with two-body reactions, single particle productions, particle ratios, two jet structure, two particle correlations, jet production cross section, and the component of momentum perpendicular to the plane defined by the incident protons and the triggered pions and transverse momentum relative to jet axis. In case of two-body process, the exponent N of the power law of the differential cross section is a value between 10 to 11.5 in the large momentum transfer region. The breaks of the exponential behaviors into the power ones are observed at the large momentum transfer region. The break would enable to estimate the order of a critical length. The large momentum transfer phenomena strongly suggest an important role of constituents of hadrons in the hard region. Hard rearrangement of constituents from different initial hadrons induces large momentum transfer reactions. Several rules to count constituents in the hard region have been proposed so far to explain the power behavior. Scale invariant quark interaction and hard reactions are explained, and a summary of the possible types of hard subprocess is presented. (Kato, T.)

  13. Managing Uncertainity: Soviet Views on Deception, Surprise, and Control

    National Research Council Canada - National Science Library

    Hull, Andrew

    1989-01-01

    .... In the first two cases (deception and surprise), the emphasis is on how the Soviets seek to sow uncertainty in the minds of the enemy and how the Soviets then plan to use that uncertainty to gain military advantage...

  14. Dividend announcements reconsidered: Dividend changes versus dividend surprises

    OpenAIRE

    Andres, Christian; Betzer, André; van den Bongard, Inga; Haesner, Christian; Theissen, Erik

    2012-01-01

    This paper reconsiders the issue of share price reactions to dividend announcements. Previous papers rely almost exclusively on a naive dividend model in which the dividend change is used as a proxy for the dividend surprise. We use the difference between the actual dividend and the analyst consensus forecast as obtained from I/B/E/S as a proxy for the dividend surprise. Using data from Germany, we find significant share price reactions after dividend announcements. Once we control for analys...

  15. The Surprise Examination Paradox and the Second Incompleteness Theorem

    OpenAIRE

    Kritchman, Shira; Raz, Ran

    2010-01-01

    We give a new proof for Godel's second incompleteness theorem, based on Kolmogorov complexity, Chaitin's incompleteness theorem, and an argument that resembles the surprise examination paradox. We then go the other way around and suggest that the second incompleteness theorem gives a possible resolution of the surprise examination paradox. Roughly speaking, we argue that the flaw in the derivation of the paradox is that it contains a hidden assumption that one can prove the consistency of the...

  16. Conference on Non-linear Phenomena in Mathematical Physics: Dedicated to Cathleen Synge Morawetz on her 85th Birthday. The Fields Institute, Toronto, Canada September 18-20, 2008. Sponsors: Association for Women in Mathematics, Inc. and The Fields Institute

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jennifer

    2012-10-15

    This scientific meeting focused on the legacy of Cathleen S. Morawetz and the impact that her scientific work on transonic flow and the non-linear wave equation has had in recent progress on different aspects of analysis for non-linear wave, kinetic and quantum transport problems associated to mathematical physics. These are areas where the elements of continuum, statistical and stochastic mechanics, and their interplay, have counterparts in the theory of existence, uniqueness and stability of the associated systems of equations and geometric constraints. It was a central event for the applied and computational analysis community focusing on Partial Differential Equations. The goal of the proposal was to honor Cathleen Morawetz, a highly successful woman in mathematics, while encouraging beginning researchers. The conference was successful in show casing the work of successful women, enhancing the visibility of women in the profession and providing role models for those just beginning their careers. The two-day conference included seven 45-minute lectures and one day of six 45-minute lectures, and a poster session for junior participants. The conference program included 19 distinguished speakers, 10 poster presentations, about 70 junior and senior participants and, of course, the participation of Cathleen Synge Morawetz. The conference celebrated Morawetz's paramount contributions to the theory of non-linear equations in gas dynamics and their impact in the current trends of nonlinear phenomena in mathematical physics, but also served as an awareness session of current women's contribution to mathematics.

  17. Research in magnetospheric wave phenomena

    International Nuclear Information System (INIS)

    Barfield, J.N.

    1975-01-01

    During the last 4 years a number of developments have occurred which have led to an increased understanding of the role of wave phenomena in the physical processes of the magnetosphere. While the studies span the frequency regime from millihertz to the electron gyrofrequency, the developments to be discussed in this paper have in common that they have added substantially to the understanding of the controlling processes, regions, and boundaries in the magnetosphere. The topics discussed are the increased awareness and documentation of the role of the plasmapause in micropulsation generation and propagation; the establishment of the role of ion cyclotron waves in the wave-particle interactions at the plasmapause; the discovery of magnetospheric electrostatic waves with ω = (3/2)Ω/sub -/; the discovery and preliminary identification of the source of plasmaspheric hiss; and the analysis of storm time Pc 5 waves as observed on the satellites ATS 1 and Explorer 45. (auth)

  18. Transport phenomena in porous media

    CERN Document Server

    Ingham, Derek B

    1998-01-01

    Research into thermal convection in porous media has substantially increased during recent years due to its numerous practical applications. These problems have attracted the attention of industrialists, engineers and scientists from many very diversified disciplines, such as applied mathematics, chemical, civil, environmental, mechanical and nuclear engineering, geothermal physics and food science. Thus, there is a wealth of information now available on convective processes in porous media and it is therefore appropriate and timely to undertake a new critical evaluation of this contemporary information. Transport Phenomena in Porous Media contains 17 chapters and represents the collective work of 27 of the world's leading experts, from 12 countries, in heat transfer in porous media. The recent intensive research in this area has substantially raised the expectations for numerous new practical applications and this makes the book a most timely addition to the existing literature. It includes recent major deve...

  19. Acoustic phenomena during boiling

    International Nuclear Information System (INIS)

    Dorofeev, B.M.

    1985-01-01

    Applied and theoretical significance of investigation into acoustic phenomena on boiling is discussed. Effect of spatial and time conditions on pressure vapour bubble has been elucidated. Collective effects were considered: acoustic interaction of bubbles, noise formation ion developed boiling, resonance and hydrodynamic autooscillations. Different methods for predicting heat transfer crisis using changes of accompanying noise characteristics were analysed. Principle peculiarities of generation mechanism of thermoacoustic autooscillations were analysed as well: formation of standing waves; change of two-phase medium contraction in a channel; relation of alternating pressure with boiling process as well as with instantaneous and local temperatures of heat transfer surface and liquid in a boundary layer

  20. Magnetohydrodynamic flow phenomena

    International Nuclear Information System (INIS)

    Gerbeth, G.; Mutschke, G.; Eckert, S.

    1995-01-01

    The MHD group of the Institute of Safety Research performs basic studies on fluid dynamics and heat/mass transfer in fluids, particularly for electrically conducting fluids (liquid metals) exposed to external magnetic fields (Magnetohydrodynamics - MHD). Such a contactless influence on transport phenomena is of principal importance for a variety of applied problems including safety and design aspects in liquid metal cooled fusion reactors, fast reactors, and chemical systems. Any electrically conducting flow can be influenced without any contact by means of an external electromagnetic field. This, of course, can change the known hydromechanically flow patterns considerably. In the following two examples of such magnetic field influence are presented. (orig.)

  1. Random phenomena; Phenomenes aleatoires

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, G. [Commissariat a l' energie atomique et aux energies alternatives - CEA, C.E.N.G., Service d' Electronique, Section d' Electronique, Grenoble (France)

    1963-07-01

    This document gathers a set of conferences presented in 1962. A first one proposes a mathematical introduction to the analysis of random phenomena. The second one presents an axiomatic of probability calculation. The third one proposes an overview of one-dimensional random variables. The fourth one addresses random pairs, and presents basic theorems regarding the algebra of mathematical expectations. The fifth conference discusses some probability laws: binomial distribution, the Poisson distribution, and the Laplace-Gauss distribution. The last one deals with the issues of stochastic convergence and asymptotic distributions.

  2. Transport phenomena I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena I includes viscosity, flow of Newtonian fluids, velocity distribution in laminar flow, velocity distributions with more than one independent variable, thermal con

  3. Direct channel problems and phenomena

    International Nuclear Information System (INIS)

    Cutkosky, R.E.

    1975-01-01

    Direct channel problems and phenomena are considered covering the need for precision hadron spectroscopy, the data base for precision hadron spectroscopy, some relations between direct-channel and cross-channel effects, and spin rotation phenomena

  4. Phenomena Associated With EIT Waves

    Science.gov (United States)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.

    2003-01-01

    We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  5. Surprising phenomena at the surface of solids: complex molecule emission after impact of ions or of energetic photons

    International Nuclear Information System (INIS)

    Le Beyec, Y.

    1990-01-01

    The vanishing of large mass molecules, by particle or photon impact is an unexpected behavior of the matter which allows to study the medium answer to the interaction. This phenomenon has several applications and gives rise development of analysis scientific instrumentation for non volatile compounds as the time of flight mass spectrometers. - In this report, the point is made about the induced desorption by rapid heavy ions [fr

  6. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Arcia, Edgar

    2016-10-11

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as how the morphological features of the crystals dictates how the dissolution process proceeds, and how materials can be purified by re-crystallization techniques.

  7. Emergent Phenomena at Oxide Interfaces

    International Nuclear Information System (INIS)

    Hwang, H.Y.

    2012-01-01

    Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r → -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t → -t. In quantum mechanics, the time-evolution of the wave-function Ψ is given by the phase factor e -iEt/h b ar with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin operator changes sign

  8. An efficient community detection algorithm using greedy surprise maximization

    International Nuclear Information System (INIS)

    Jiang, Yawen; Jia, Caiyan; Yu, Jian

    2014-01-01

    Community detection is an important and crucial problem in complex network analysis. Although classical modularity function optimization approaches are widely used for identifying communities, the modularity function (Q) suffers from its resolution limit. Recently, the surprise function (S) was experimentally proved to be better than the Q function. However, up until now, there has been no algorithm available to perform searches to directly determine the maximal surprise values. In this paper, considering the superiority of the S function over the Q function, we propose an efficient community detection algorithm called AGSO (algorithm based on greedy surprise optimization) and its improved version FAGSO (fast-AGSO), which are based on greedy surprise optimization and do not suffer from the resolution limit. In addition, (F)AGSO does not need the number of communities K to be specified in advance. Tests on experimental networks show that (F)AGSO is able to detect optimal partitions in both simple and even more complex networks. Moreover, algorithms based on surprise maximization perform better than those algorithms based on modularity maximization, including Blondel–Guillaume–Lambiotte–Lefebvre (BGLL), Clauset–Newman–Moore (CNM) and the other state-of-the-art algorithms such as Infomap, order statistics local optimization method (OSLOM) and label propagation algorithm (LPA). (paper)

  9. Exotic Phenomena Searches at Hadron Colliders

    CERN Document Server

    INSPIRE-00305407

    2013-01-01

    This review presents a selection of the final results of searches for various exotic physics phenomena in proton-proton collisions at $\\sqrt{s}=7$ and 8~TeV delivered by the LHC and collected with the ATLAS and CMS detectors in 2011 (5 $fb^{-1}$) and in the first part of 2012 (4 $fb^{-1}$). Searches for large extra dimensions, gravitons, microscopic black holes, long-lived particles, dark matter, and leptoquarks are presented in this report. No sign of new physics beyond the standard model has been observed so far. In the majority of the cases these searches set the most stringent limits to date on the aforementioned new physics phenomena.

  10. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.

    1976-01-01

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  11. Foot morphometric phenomena.

    Science.gov (United States)

    Agić, Ante

    2007-06-01

    Knowledge of the foot morphometry is important for proper foot structure and function. Foot structure as a vital part of human body is important for many reasons. The foot anthropometric and morphology phenomena are analyzed together with hidden biomechanical descriptors in order to fully characterize foot functionality. For Croatian student population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot morphometric descriptors are influenced by many factors, such as life style, climate, and things of great importance in human society. Dominant descriptors related to fit and comfort are determined by the use 3D foot shape and advanced foot biomechanics. Some practical recommendations and conclusions for medical, sportswear and footwear practice are highlighted.

  12. Workshop on Interface Phenomena

    CERN Document Server

    Kreuzer, Hans

    1987-01-01

    This book contains the proceedings of the first Workshop on Interface Phenomena, organized jointly by the surface science groups at Dalhousie University and the University of Maine. It was our intention to concentrate on just three topics related to the kinetics of interface reactions which, in our opinion, were frequently obscured unnecessarily in the literature and whose fundamental nature warranted an extensive discussion to help clarify the issues, very much in the spirit of the Discussions of the Faraday Society. Each session (day) saw two principal speakers expounding the different views; the session chairmen were asked to summarize the ensuing discussions. To understand the complexity of interface reactions, paradigms must be formulated to provide a framework for the interpretation of experimen­ tal data and for the construction of theoretical models. Phenomenological approaches have been based on a small number of rate equations for the concentrations or mole numbers of the various species involved i...

  13. Fast fission phenomena

    International Nuclear Information System (INIS)

    Gregoire, Christian.

    1982-03-01

    Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted [fr

  14. 48{sup th} Annual meeting on nuclear technology (AMNT 2017). Key topic / Outstanding know-how and sustainable innovations. Technical session: Reactor physics, thermo and fluid dynamics. Neutron flux oscillations phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Herb, Joachim [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany). Abt. Kuehlkreislauf

    2018-01-15

    The Technical Session about Neutron Flux Oscillation Phenomena was chaired by Joachim Herb (Gesellschaft fuer Anlagen und Reaktorsicherheit (GRS) GmbH) and well attended by approx. 50 listeners. It comprised of three keynotes and two technical presentations. The main topics were the significant changes of the neutron flux noise levels in different German and foreign pressurized water reactors (PWRs). For about ten years an increase in neutron noise levels has been observed in German PWRs. During the following five years the noise levels have been decreasing again. In principle, a correlation of the neutron noise levels to the use of certain fuel element types was observed and the phenomenon of neutron flux oscillations had been known since decades. Nevertheless, no self-consistent physical theory exists so far, which can explain the observed changes and the absolute levels of the observed neutron flux noise levels. Therefore, safety authorities, technical support organizations (TSO), utilities as well as research organizations showed increased interest in this topic during the last years. The results of the corresponding work as well as an outlook into soon-starting research projects were given in this session.

  15. Mesoscopic phenomena in solids

    CERN Document Server

    Altshuler, BL; Webb, RA

    1991-01-01

    The physics of disordered systems has enjoyed a resurgence of interest in the last decade. New concepts such as weak localization, interaction effects and Coulomb gap, have been developed for the transport properties of metals and insulators. With the fabrication of smaller and smaller samples and the routine availability of low temperatures, new physics has emerged from the studies of small devices. The new field goes under the name ""mesoscopic physics"" and has rapidly developed, both experimentally and theoretically. This book is designed to review the current status of the field.

  16. Collective phenomena in photonic, plasmonic and hybrid structures.

    Science.gov (United States)

    Boriskina, Svetlana V; Povinelli, Michelle; Astratov, Vasily N; Zayats, Anatoly V; Podolskiy, Viktor A

    2011-10-24

    Preface to a focus issue of invited articles that review recent progress in studying the fundamental physics of collective phenomena associated with coupling of confined photonic, plasmonic, electronic and phononic states and in exploiting these phenomena to engineer novel devices for light generation, optical sensing, and information processing. © 2011 Optical Society of America

  17. Surprise and Memory as Indices of Concrete Operational Development

    Science.gov (United States)

    Achenbach, Thomas M.

    1973-01-01

    Normal and retarded children's use of color, number, length and continuous quantity as attributes of identification was assessed by presenting them with contrived changes in three properties. Surprise and correct memory responses for color preceded those to number, which preceded logical verbal responses to a conventional number-conservation task.…

  18. Effects of surprisal and locality on Danish sentence processing

    DEFF Research Database (Denmark)

    Balling, Laura Winther; Kizach, Johannes

    2017-01-01

    An eye-tracking experiment in Danish investigates two dominant accounts of sentence processing: locality-based theories that predict a processing advantage for sentences where the distance between the major syntactic heads is minimized, and the surprisal theory which predicts that processing time...

  19. Surprisal analysis and probability matrices for rotational energy transfer

    International Nuclear Information System (INIS)

    Levine, R.D.; Bernstein, R.B.; Kahana, P.; Procaccia, I.; Upchurch, E.T.

    1976-01-01

    The information-theoretic approach is applied to the analysis of state-to-state rotational energy transfer cross sections. The rotational surprisal is evaluated in the usual way, in terms of the deviance of the cross sections from their reference (''prior'') values. The surprisal is found to be an essentially linear function of the energy transferred. This behavior accounts for the experimentally observed exponential gap law for the hydrogen halide systems. The data base here analyzed (taken from the literature) is largely computational in origin: quantal calculations for the hydrogenic systems H 2 +H, He, Li + ; HD+He; D 2 +H and for the N 2 +Ar system; and classical trajectory results for H 2 +Li + ; D 2 +Li + and N 2 +Ar. The surprisal analysis not only serves to compact a large body of data but also aids in the interpretation of the results. A single surprisal parameter theta/subR/ suffices to account for the (relative) magnitude of all state-to-state inelastic cross sections at a given energy

  20. Things may not be as expected: Surprising findings when updating ...

    African Journals Online (AJOL)

    2015-05-14

    May 14, 2015 ... Things may not be as expected: Surprising findings when updating .... (done at the end of three months after the first review month) ..... Allen G. Getting beyond form filling: The role of institutional governance in human research ...

  1. Automation surprise : results of a field survey of Dutch pilots

    NARCIS (Netherlands)

    de Boer, R.J.; Hurts, Karel

    2017-01-01

    Automation surprise (AS) has often been associated with aviation safety incidents. Although numerous laboratory studies have been conducted, few data are available from routine flight operations. A survey among a representative sample of 200 Dutch airline pilots was used to determine the prevalence

  2. Unsteady phenomena in the edge tone

    International Nuclear Information System (INIS)

    Paal, G.; Vaik, I.

    2007-01-01

    Despite its geometrical simplicity, the edge tone displays a remarkably complex behaviour. A plane jet oscillates around the wedge-shaped object with a relatively stable frequency and under certain circumstances emits an audible tone. This configuration plays a central role in the sound production of several wind instruments but occurs in industrial situations too. The flow exhibits various interesting nonlinear phenomena reported in the literature which are not entirely explained. In this paper, detailed high precision numerical simulations of the flow are reported under various conditions. Several phenomena are reproduced in agreement with the literature such as the existence of 'stages', the dependence of oscillation frequency on the outflow velocity and the orifice-edge distance within one stage, the pressure distribution on the edge surface, etc. A criterion for the appropriate time step for constant accuracy has been derived. The location of force action is surprisingly stable; it remains in a very narrow region of the wedge surface independently of the Reynolds number and the orifice-edge distance but it is much further behind the edge tip than reported in the literature. The various stages can coexist in different ways: jumping back and forth between stages or being superposed on each other. Regardless of the form, the first stage continues to be dominant even when the second and third stage appears. The question of disturbance propagation velocity and disturbance wavelength is also investigated. The development of higher harmonics of a single stage along the orifice-edge tip distance is presented

  3. Arcjet cathode phenomena

    Science.gov (United States)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  4. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H 2 SO 4 ) and nitric acids (HNO 3 ), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  5. Classification of debris flow phenomena in the Faroe Islands

    DEFF Research Database (Denmark)

    Dahl, Mads-Peter Jakob; E. Mortensen, Lis; Jensen, Niels H.

    2012-01-01

    Landslides and debris flow phenomena in particular constitute a threat to human activities in the Faroe Islands. As a contribution to ongoing landslide risk management research, this paper proposes a classification scheme for debris flow phenomena in the Faroe Islands. The scheme, produced through...... a multidisciplinary study involving geomorphological fieldwork and qualitative collection of indigenous landslide knowledge, presents physical characteristics to classify debris flow phenomena into groups named with Faroese terms. The following landslide definitions are proposed. Brekku-skriðulop (English translation...... with international landslide classification systems, significantly increases the knowledge of debris flow phenomena and promotes a consistent terminology of these within the Faroe Islands....

  6. Haters Phenomena in Social Media

    OpenAIRE

    Pradipta, Angga; Lailiyah, S.Sos, M.I.Kom, Nuriyatul

    2016-01-01

    Social media is internet-basic media, functioned as interaction media room based on multimedia technology. And social media created some effects. One of the negative effects of social media is haters phenomena. Haters are a person who easily said dirty words, harass, and humiliate to others. This phenomena causes anxiety—especially in Indonesia, even the Government issued public policy and letter of regulation about this phenomena, through Paragraph 27 verse (3) IT Constitution, Paragraph 45 ...

  7. CVD diamond - fundamental phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, W.A. [Pennsylvania State Univ., University Park (United States)

    1993-01-01

    This compilation of figures and diagrams addresses the basic physical processes involved in the chemical vapor deposition of diamond. Different methods of deposition are illustrated. For each method, observations are made of the prominent advantages and disadvantages of the technique. Chemical mechanisms of nucleation are introduced.

  8. Plasma phenomena around comets: interaction with the solar wind

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Shapiro, V.D.; Shevchenko, V.I.; Szegoe, K.

    1987-08-01

    The most important plasma physical experimental data measured during the cometary missions are summarized. These data do not include tail phenomena. Theoretical considerations are also presented concerning the upstream and bow shock regions. (author) 47 refs.; 15 figs

  9. Stars Form Surprisingly Close to Milky Way's Black Hole

    Science.gov (United States)

    2005-10-01

    million low mass, sun-like stars in and around the ring, whereas in the disk model, the number of low mass stars could be much less. Nayakshin and his coauthor, Rashid Sunyaev of the Max Plank Institute for Physics in Garching, Germany, used Chandra observations to compare the X-ray glow from the region around Sgr A* to the X-ray emission from thousands of young stars in the Orion Nebula star cluster. They found that the Sgr A* star cluster contains only about 10,000 low mass stars, thereby ruling out the migration model. "We can now say that the stars around Sgr A* were not deposited there by some passing star cluster, rather they were born there," said Sunyaev . "There have been theories that this was possible, but this is the first real evidence. Many scientists are going to be very surprised by these results." Because the Galactic Center is shrouded in dust and gas, it has not been possible to look for the low-mass stars in optical observations. In contrast, X-ray data have allowed astronomers to penetrate the veil of gas and dust and look for these low mass stars. Scenario Dismissed by Chandra Results Scenario Dismissed by Chandra Results "In one of the most inhospitable places in our Galaxy, stars have prevailed," said Nayakshin. "It appears that star formation is much more tenacious than we previously believed." The results suggest that the "rules" of star formation change when stars form in the disk of a giant black hole. Because this environment is very different from typical star formation regions, there is a change in the proportion of stars that form. For example, there is a much higher percentage of massive stars in the disks around black holes. And, when these massive stars explode as supernovae, they will "fertilize" the region with heavy elements such as oxygen. This may explain the large amounts of such elements observed in the disks of young supermassive black holes. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for

  10. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2014-06-01

    Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in

  11. Simulations of Biomechanical Phenomena

    Science.gov (United States)

    Gonzalez, Jose Cruz

    Recent studies have published breakthroughs in the application of finite element (FEA) studies in the design and analysis of advanced orthodontics. However, FEA has not captured bone remodeling responses to advanced orthodontics. The results of these simulations report unrealistic displacement around the nasal bridge, which impeded correlation with clinical data. Bone remodeling has been previously documented in FEA and has shown bone response to mechanical stimulus in femur bone models. However, the relationship between mechanical stimulus and bone remodeling has not been reported in orthodontic studies due to the complexity of the skull. In the current study, strain energy is used as the mechanical stimulus to control remodeling, from which density and modulus evolve. Due to the localization of forces in orthodontics, current remodeling algorithms have limited application. In turn, we developed an algorithm that dynamically collects, sorts, and bins stresses in all elements for regional remodeling based on the proximity of the element to the load. The results demonstrate that bone response to orthodontic appliances is different than that of an FEA without bone remodeling, due to load path changes based upon evolution of the bone properties. It was also found that density and moduli proximal to the load application site exhibit faster remodeling than those located remotely. Modeling another biomechanical phenomena, a 3D simulation was created to simulate recent experimental results that discovered a difference in impact mitigation properties of dense-polymer/foam bilayer structure based on the orientation of the dense-polymer with respect to the impact site. The impact energy transmitted varied in time of arrival and amplitude depending on the orientation of the structure (thin layer up or down). By creating a 3D explicit dynamic FEA simulation, it is expected to reduce costly experiments and time consumed in set up, and offer opportunities for optimization for

  12. The June surprises: balls, strikes, and the fog of war.

    Science.gov (United States)

    Fried, Charles

    2013-04-01

    At first, few constitutional experts took seriously the argument that the Patient Protection and Affordable Care Act exceeded Congress's power under the commerce clause. The highly political opinions of two federal district judges - carefully chosen by challenging plaintiffs - of no particular distinction did not shake that confidence that the act was constitutional. This disdain for the challengers' arguments was only confirmed when the act was upheld by two highly respected conservative court of appeals judges in two separate circuits. But after the hostile, even mocking questioning of the government's advocate in the Supreme Court by the five Republican-appointed justices, the expectation was that the act would indeed be struck down on that ground. So it came as no surprise when the five opined the act did indeed exceed Congress's commerce clause power. But it came as a great surprise when Chief Justice John Roberts, joined by the four Democrat-appointed justices, ruled that the act could be sustained as an exercise of Congress's taxing power - a ground urged by the government almost as an afterthought. It was further surprising, even shocking, that Justices Antonin Scalia, Anthony Kennedy, Clarence Thomas, and Samuel Alito not only wrote a joint opinion on the commerce clause virtually identical to that of their chief, but that in writing it they did not refer to or even acknowledge his opinion. Finally surprising was the fact that Justices Ruth Bader Ginsburg and Stephen Breyer joined the chief in holding that aspects of the act's Medicaid expansion were unconstitutional. This essay ponders and tries to unravel some of these puzzles.

  13. ORMS IN SURPRISING PLACES: CLINICAL AND MORPHOLOGICAL FEATURES

    Directory of Open Access Journals (Sweden)

    Myroshnychenko MS

    2013-06-01

    Full Text Available Helminthes are the most common human diseases, which are characterized by involvement in the pathological process of all organs and systems. In this article, the authors discuss a few cases of typical and atypical localizations for parasitic worms such as filarial and pinworms which were recovered from surprising places in the bodies of patients in Kharkiv region. This article will allow the doctors of practical health care to pay special attention to the timely prevention and diagnostics of this pathology.

  14. Are seismic hazard assessment errors and earthquake surprises unavoidable?

    Science.gov (United States)

    Kossobokov, Vladimir

    2013-04-01

    Why earthquake occurrences bring us so many surprises? The answer seems evident if we review the relationships that are commonly used to assess seismic hazard. The time-span of physically reliable Seismic History is yet a small portion of a rupture recurrence cycle at an earthquake-prone site, which makes premature any kind of reliable probabilistic statements about narrowly localized seismic hazard. Moreover, seismic evidences accumulated to-date demonstrate clearly that most of the empirical relations commonly accepted in the early history of instrumental seismology can be proved erroneous when testing statistical significance is applied. Seismic events, including mega-earthquakes, cluster displaying behaviors that are far from independent or periodic. Their distribution in space is possibly fractal, definitely, far from uniform even in a single segment of a fault zone. Such a situation contradicts generally accepted assumptions used for analytically tractable or computer simulations and complicates design of reliable methodologies for realistic earthquake hazard assessment, as well as search and definition of precursory behaviors to be used for forecast/prediction purposes. As a result, the conclusions drawn from such simulations and analyses can MISLEAD TO SCIENTIFICALLY GROUNDLESS APPLICATION, which is unwise and extremely dangerous in assessing expected societal risks and losses. For example, a systematic comparison of the GSHAP peak ground acceleration estimates with those related to actual strong earthquakes, unfortunately, discloses gross inadequacy of this "probabilistic" product, which appears UNACCEPTABLE FOR ANY KIND OF RESPONSIBLE SEISMIC RISK EVALUATION AND KNOWLEDGEABLE DISASTER PREVENTION. The self-evident shortcomings and failures of GSHAP appeals to all earthquake scientists and engineers for an urgent revision of the global seismic hazard maps from the first principles including background methodologies involved, such that there becomes: (a) a

  15. Introductory lectures on critical phenomena

    International Nuclear Information System (INIS)

    Khajehpour, M.R.H.

    1988-09-01

    After a presentation of classical models for phase transitions and critical phenomena (Van der Waals theory, Weiss theory of ferromagnetism) and theoretical models (Ising model, XY model, Heisenberg model, spherical model) the Landau theory of critical and multicritical points and some single applications of renormalization group method in static critical phenomena are presented. 115 refs, figs and tabs

  16. General unifying features of controlled quantum phenomena

    International Nuclear Information System (INIS)

    Pechen, Alexander; Brif, Constantin; Wu, Rebing; Chakrabarti, Raj; Rabitz, Herschel

    2010-01-01

    Many proposals have been put forth for controlling quantum phenomena, including open-loop, adaptive feedback, and real-time feedback control. Each of these approaches has been viewed as operationally, and even physically, distinct from the others. This work shows that all such scenarios inherently share the same fundamental control features residing in the topology of the landscape relating the target physical observable to the applied controls. This unified foundation may provide a basis for development of hybrid control schemes that would combine the advantages of the existing approaches to achieve the best overall performance.

  17. Reduplication phenomena: body, mind and archetype.

    Science.gov (United States)

    Garner, J

    2000-09-01

    The many biological and few psychodynamic explanations of reduplicative syndromes tend to have paralleled the dualism of the phenomenon with organic theories concentrating on form and dynamic theories emphasising content. This paper extends the contribution of psychoanalytic thinking to an elucidation of the form of the delusion. Literature on clinical and aetiological aspects of reduplicative phenomena is reviewed alongside a brief examination of psychoanalytic models not overtly related to these phenomena. The human experience of doubles as universal archetype is considered. There is an obvious aetiological role for brain lesions in delusional misidentifications, but psychological symptoms in an individual can rarely be reduced to an organic disorder. The splitting and doubling which occurs in the phenomena have resonances in cultural mythology and in theories from different schools of psychodynamic thought. For the individual patient and doctor, it is a diverting but potentially empty debate to endeavour to draw strict divisions between what is physical and what is psychological although both need to be investigated. Nevertheless, in patients in whom there is clear evidence of an organic contribution to aetiology a psychodynamic understanding may serve to illuminate the patient's experience. Organic brain disease or serious functional illness predispose to regression to earlier modes of archetypical and primitive thinking with concretization of the metaphorical and mythological world. Psychoanalytic models have a contribution in describing the form as well as the content of reduplicative phenomena.

  18. Advanced diffusion processes and phenomena

    CERN Document Server

    Öchsner, Andreas; Belova, Irina

    2014-01-01

    This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the

  19. Kinetic effects on magnetohydrodynamic phenomena

    International Nuclear Information System (INIS)

    Naito, Hiroshi; Matsumoto, Taro

    2001-01-01

    Resistive and ideal magnetohydrodynamic (MHD) theories are insufficient to adequately explain MHD phenomena in the high-temperature plasma. Recent progress in numerical simulations concerning kinetic effects on magnetohydrodynamic phenomena is summarized. The following three topics are studied using various models treating extended-MHD phenomena. (1) Kinetic modifications of internal kink modes in tokamaks with normal and reversed magnetic shear configurations. (2) Temporal evolution of the toroidal Alfven eigenmode and fishbone mode in tokamaks with energetic ions. (3) Kinetic stabilization of a title mode in field-reversed configurations by means of anchoring ions and beam ions. (author)

  20. On the surprising rigidity of the Pauli exclusion principle

    International Nuclear Information System (INIS)

    Greenberg, O.W.

    1989-01-01

    I review recent attempts to construct a local quantum field theory of small violations of the Pauli exclusion principle and suggest a qualitative reason for the surprising rigidity of the Pauli principle. I suggest that small violations can occur in our four-dimensional world as a consequence of the compactification of a higher-dimensional theory in which the exclusion principle is exactly valid. I briefly mention a recent experiment which places a severe limit on possible violations of the exclusion principle. (orig.)

  1. Teacher Supply and Demand: Surprises from Primary Research

    Directory of Open Access Journals (Sweden)

    Andrew J. Wayne

    2000-09-01

    Full Text Available An investigation of primary research studies on public school teacher supply and demand revealed four surprises. Projections show that enrollments are leveling off. Relatedly, annual hiring increases should be only about two or three percent over the next few years. Results from studies of teacher attrition also yield unexpected results. Excluding retirements, only about one in 20 teachers leaves each year, and the novice teachers who quit mainly cite personal and family reasons, not job dissatisfaction. Each of these findings broadens policy makers' options for teacher supply.

  2. Novel QCD Phenomena

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.; SLAC

    2007-01-01

    I discuss a number of novel topics in QCD, including the use of the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. In particular, there is an exact correspondence between the fifth-dimension coordinate z of AdS space and a specific impact variable ζ which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. I also discuss a number of novel phenomenological features of QCD. Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and anomalous heavy quark effects. The presence of direct higher-twist processes where a proton is produced in the hard subprocess can explain the large proton-to-pion ratio seen in high centrality heavy ion collisions

  3. Unified Treatise of Phenomena of Seismic Fusion-Fission Under Seismonomy in the Light of Monistic Weltanschauung: the Doctrine of Dynamics Monism With Implication to the Earthquake Source Physics}

    Science.gov (United States)

    Zaurov, D.

    2006-12-01

    Established profoundly new conceptual framework by the five postulates of seismonomy, enables unified treatise of processes such as dynamic structural devastation, seismic blowing up of mount ridges, collision physics, meteorite impact cratering, and seismic global faulting with insight into the earthquake source physics. Hence, by establishing the parametric method of identification of natural modes and then Parametric Scan- Window Observation of Dynamic Responses (PSW-method), it becomes possible to obtain crucial field data. Thus, earth-dam dynamics data revealed an essential non-stationarity of dam's dynamic characteristics throughout earthquakes, the effect of stochastic alternation of the locally-stationary modal states with the discrete characteristics of their spectral distribution. At this point, in the course of other, separate line of far beyond lasting quest concerning metaphysical constituents of matter, and then constitutive relation between excited modal oscillation of structures and causal pattern of their fracture, the results of such analysis, resuming obscurity of the well known jaggedness of observing earthquake spectra, were illuminated and perceived. It was succeeded, on the one hand, to establish unitary conceptualized framework of seismic records analysis consisting both the PSW- and spectral- analysis, which reformulated to be a statistical representation complementary to PSW-method, and, on the other hand, to realize genesis of the doctrine of dynamics monism consisting concepts of both: fission-fusion dynamics and dynamics coherentism as an inspiration of the paradigm of seismic fusion-fission phenomena. Global faulting originating straight plane faults, which often stretch through large scale substantially inhomogeneous volumes, are, uncontestably, the result of dynamics fission, the first step of dynamics binary division of an emerged geoseismoid onto two secondary seismoids with a potential, occasionally stretched rupture plane. That

  4. Micro transport phenomena during boiling

    CERN Document Server

    Peng, Xiaofeng

    2011-01-01

    "Micro Transport Phenomena During Boiling" reviews the new achievements and contributions in recent investigations at microscale. It presents some original research results and discusses topics at the frontier of thermal and fluid sciences.

  5. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos; Sun, Zhonghao

    2017-01-01

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration

  6. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    Science.gov (United States)

    Loss, Daniel

    2009-10-01

    Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation

  7. Estimations of expectedness and potential surprise in possibility theory

    Science.gov (United States)

    Prade, Henri; Yager, Ronald R.

    1992-01-01

    This note investigates how various ideas of 'expectedness' can be captured in the framework of possibility theory. Particularly, we are interested in trying to introduce estimates of the kind of lack of surprise expressed by people when saying 'I would not be surprised that...' before an event takes place, or by saying 'I knew it' after its realization. In possibility theory, a possibility distribution is supposed to model the relative levels of mutually exclusive alternatives in a set, or equivalently, the alternatives are assumed to be rank-ordered according to their level of possibility to take place. Four basic set-functions associated with a possibility distribution, including standard possibility and necessity measures, are discussed from the point of view of what they estimate when applied to potential events. Extensions of these estimates based on the notions of Q-projection or OWA operators are proposed when only significant parts of the possibility distribution are retained in the evaluation. The case of partially-known possibility distributions is also considered. Some potential applications are outlined.

  8. Prospects for Future Collider Physics

    CERN Document Server

    Ellis, John

    2016-10-20

    One item on the agenda of future colliders is certain to be the Higgs boson. What is it trying to tell us? The primary objective of any future collider must surely be to identify physics beyond the Standard Model, and supersymmetry is one of the most studied options. it Is supersymmetry waiting for us and, if so, can LHC Run 2 find it? The big surprise from the initial 13-TeV LHC data has been the appearance of a possible signal for a new boson X with a mass ~750 GeV. What are the prospects for future colliders if the X(750) exists? One of the most intriguing possibilities in electroweak physics would be the discovery of non-perturbative phenomena. What are the prospects for observing sphalerons at the LHC or a future collider?

  9. Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control

    Science.gov (United States)

    2016-07-30

    flames," Physics of Fluids , vol. 7, no. 6, pp. 1447-54, 1995. [8] K. Lyons, " Toward an understanding of the stabilization mechanisms of lifted...Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control This report summarizes the research accomplished in the project...34Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control". The main areas of activity are: a) electrostatic flame and flow

  10. Surprises in the suddenly-expanded infinite well

    International Nuclear Information System (INIS)

    Aslangul, Claude

    2008-01-01

    I study the time evolution of a particle prepared in the ground state of an infinite well after the latter is suddenly expanded. It turns out that the probability density |Ψ(x, t)| 2 shows up quite a surprising behaviour: for definite times, plateaux appear for which |Ψ(x, t)| 2 is constant on finite intervals for x. Elements of theoretical explanation are given by analysing the singular component of the second derivative ∂ xx Ψ(x, t). Analytical closed expressions are obtained for some specific times, which easily allow us to show that, at these times, the density organizes itself into regular patterns provided the size of the box is large enough; more, above some critical size depending on the specific time, the density patterns are independent of the expansion parameter. It is seen how the density at these times simply results from a construction game with definite rules acting on the pieces of the initial density

  11. Hepatobiliary fascioliasis in non-endemic zones: a surprise diagnosis.

    Science.gov (United States)

    Jha, Ashish Kumar; Goenka, Mahesh Kumar; Goenka, Usha; Chakrabarti, Amrita

    2013-03-01

    Fascioliasis is a zoonotic infection caused by Fasciola hepatica. Because of population migration and international food trade, human fascioliasis is being an increasingly recognised entity in nonendemic zones. In most parts of Asia, hepatobiliary fascioliasis is sporadic. Human hepatobiliary infection by this trematode has two distinct phases: an acute hepatic phase and a chronic biliary phase. Hepatobiliary infection is mostly associated with intense peripheral eosinophilia. In addition to classically defined hepatic phase and biliary phase fascioliasis, some cases may have an overlap of these two phases. Chronic liver abscess formation is a rare presentation. We describe a surprise case of hepatobiliary fascioliasis who presented to us with liver abscess without intense peripheral eosinophilia, a rare presentation of human fascioliasis especially in non-endemic zones. Copyright © 2013 Arab Journal of Gastroenterology. Published by Elsevier Ltd. All rights reserved.

  12. The Value of Change: Surprises and Insights in Stellar Evolution

    Science.gov (United States)

    Bildsten, Lars

    2018-01-01

    Astronomers with large-format cameras regularly scan the sky many times per night to detect what's changing, and telescopes in space such as Kepler and, soon, TESS obtain very accurate brightness measurements of nearly a million stars over time periods of years. These capabilities, in conjunction with theoretical and computational efforts, have yielded surprises and remarkable new insights into the internal properties of stars and how they end their lives. I will show how asteroseismology reveals the properties of the deep interiors of red giants, and highlight how astrophysical transients may be revealing unusual thermonuclear outcomes from exploding white dwarfs and the births of highly magnetic neutron stars. All the while, stellar science has been accelerated by the availability of open source tools, such as Modules for Experiments in Stellar Astrophysics (MESA), and the nearly immediate availability of observational results.

  13. Quantum Chess: Making Quantum Phenomena Accessible

    Science.gov (United States)

    Cantwell, Christopher

    Quantum phenomena have remained largely inaccessible to the general public. There tends to be a scare factor associated with the word ``Quantum''. This is in large part due to the alien nature of phenomena such as superposition and entanglement. However, Quantum Computing is a very active area of research and one day we will have games that run on those quantum computers. Quantum phenomena such as superposition and entanglement will seem as normal as gravity. Is it possible to create such games today? Can we make games that are built on top of a realistic quantum simulation and introduce players of any background to quantum concepts in a fun and mentally stimulating way? One of the difficulties with any quantum simulation run on a classical computer is that the Hilbert space grows exponentially, making simulations of an appreciable size physically impossible due largely to memory restrictions. Here we will discuss the conception and development of Quantum Chess, and how to overcome some of the difficulties faced. We can then ask the question, ``What's next?'' What are some of the difficulties Quantum Chess still faces, and what is the future of quantum games?

  14. Thermal transport phenomena in nanoparticle suspensions

    International Nuclear Information System (INIS)

    Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications. (topical review)

  15. Some aspects of geomagnetically conjugate phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, M.J.

    1987-12-01

    Both charged particles and waves convey information about the thermosphere, ionosphere and magnetosphere from the Northern to the Southern Hemisphere and vice versa, along geomagnetic flux tubes.The interhemispheric travel time of electrons or ions, being dependent upon L-value , pitch angle and energy (which may lie between less than or equal to 1 eV and greater than or equal to 1 MeV) may be many hours, ranging down to less than or equal to 1 s. However, the one-hop propagation time for magnetohydrodynamic or whistler mode waves generally lies between 10/sup 2/s and 1 s. Such times, therefore, give the time scales of transient phenomena that are geomagnetically conjugate and of changes in steady-state plasma processes occurring in geomagnetically conjugate regions. Contrasting examples are presented of conjugate physical phenomena, obtained using satellite, rocket, aircraft and ground-based observations; the latter capitalise upon the rather rare disposition of land - rather than ocean - at each end of a geophysically interesting flux tube. Particular attention is paid to the interactions between whistler mode waves and energetic electrons. Geomagnetic, radio, optical and plasma observations, taken together with model computations, provide a wealth of knowledge on conjugate phenomena and their dependence on conditions in the solar wind, substorms, L-value, etc... Finally, some suggestions are made for future lines of research.

  16. Modeling in transport phenomena a conceptual approach

    CERN Document Server

    Tosun, Ismail

    2007-01-01

    Modeling in Transport Phenomena, Second Edition presents and clearly explains with example problems the basic concepts and their applications to fluid flow, heat transfer, mass transfer, chemical reaction engineering and thermodynamics. A balanced approach is presented between analysis and synthesis, students will understand how to use the solution in engineering analysis. Systematic derivations of the equations and the physical significance of each term are given in detail, for students to easily understand and follow up the material. There is a strong incentive in science and engineering to

  17. Advances in modelling of condensation phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Zaltsgendler, E. [Ontario Hydro Nuclear, Toronto (Canada); Hanna, B. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  18. Cooperative phenomena in flows; Poster abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Loekseth, Trine (ed.)

    2011-05-15

    The objective of this 'Geilo School' was to bring together researchers with various interests and background including theoretical experimental physicists, material scientists and molecular biologists to identify and discuss areas where synergism between these disciplines may be most fruitfully applied to the study of various aspects of 'Cooperative phenomena in flows'. There were altogether 21 lecturers at the School with about 80 participants from 19 countries. This was the 21. Geilo School held biannually since the first one in I971. Reference to the earlier Geilo Schools 1971-2009 may be found here: http://www.ife.no/departments/physics/projects/geilo (Author)

  19. Cooperative phenomena in flows; Poster abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Loekseth, Trine [ed.

    2011-05-15

    The objective of this 'Geilo School' was to bring together researchers with various interests and background including theoretical experimental physicists, material scientists and molecular biologists to identify and discuss areas where synergism between these disciplines may be most fruitfully applied to the study of various aspects of 'Cooperative phenomena in flows'. There were altogether 21 lecturers at the School with about 80 participants from 19 countries. This was the 21. Geilo School held biannually since the first one in I971. Reference to the earlier Geilo Schools 1971-2009 may be found here: http://www.ife.no/departments/physics/projects/geilo (Author)

  20. Critical phenomena and renormalization group transformations

    International Nuclear Information System (INIS)

    Castellani, C.; Castro, C. di

    1980-01-01

    Our main goal is to guide the reader to find out the common rational behind the various renormalization procedures which have been proposed in the last ten years. In the first part of these lectures old arguments on universality and scaling will be briefly recalled. To our opinion these introductory remarks allow one to stress the physical origin of the two majore renormalization procedures, which have been used in the theory of critical phenomena: the Wilson and the field theoretic approach. All the general properties of a ''good'' renormalization transformation will also come out quite naturally. (author)

  1. Phenomena and parameters important to burnup credit

    International Nuclear Information System (INIS)

    Parks, C.V.; Dehart, M.D.; Wagner, J.C.

    2001-01-01

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water- reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given. (author)

  2. Chalcogenides Metastability and Phase Change Phenomena

    CERN Document Server

    Kolobov, Alexander V

    2012-01-01

    A state-of-the-art description of metastability observed in chalcogenide alloys is presented with the accent on the underlying physics. A comparison is made between sulphur(selenium)-based chalcogenide glasses, where numerous photo-induced phenomena take place entirely within the amorphous phase, and tellurides where a reversible crystal-to-amorphous phase-change transformation is a major effect. Applications of metastability in devices¿optical memories and nonvolatile electronic phase-change random-access memories among others are discussed, including the latest trends. Background material essential for understanding current research in the field is also provided.

  3. Advances in modelling of condensation phenomena

    International Nuclear Information System (INIS)

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-01-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described

  4. Layered phenomena in the mesopause region

    Science.gov (United States)

    Plane, J. M. C.; Bailey, S. M.; Baumgarten, G.; Rapp, M.

    2015-05-01

    This special issue of the Journal of Atmospheric and Solar-Terrestrial Physics comprises a collection of papers which were mostly presented at the 11th Layered Phenomena in the Mesopause Region (LPMR) Workshop, held at the University of Leeds between 29th July 2013 and 1st August 2013. The topics covered at the workshop included atmospheric dynamics, mesospheric ice clouds, meteoric metal layers, meteoric smoke particles, and airglow layers. There was also a session on the potential of planned sub-orbital spacecraft for making measurements in the mesosphere and lower thermosphere (MLT).

  5. Micro- and nanoscale phenomena in tribology

    CERN Document Server

    Chung, Yip-Wah

    2011-01-01

    Drawn from presentations at a recent National Science Foundation Summer Institute on Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, Micro- and Nanoscale Phenomena in Tribology explores the convergence of the multiple science and engineering disciplines involved in tribology and the connection from the macro to nano world. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study.After discussing the

  6. Containment severe accident thermohydraulic phenomena

    International Nuclear Information System (INIS)

    Frid, W.

    1991-08-01

    This report describes and discusses the containment accident progression and the important severe accident containment thermohydraulic phenomena. The overall objective of the report is to provide a rather detailed presentation of the present status of phenomenological knowledge, including an account of relevant experimental investigations and to discuss, to some extent, the modelling approach used in the MAAP 3.0 computer code. The MAAP code has been used in Sweden as the main tool in the analysis of severe accidents. The dependence of the containment accident progression and containment phenomena on the initial conditions, which in turn are heavily dependent on the in-vessel accident progression and phenomena as well as associated uncertainties, is emphasized. The report is in three parts dealing with: * Swedish reactor containments, the severe accident mitigation programme in Sweden and containment accident progression in Swedish PWRs and BWRs as predicted by the MAAP 3.0 code. * Key non-energetic ex-vessel phenomena (melt fragmentation in water, melt quenching and coolability, core-concrete interaction and high temperature in containment). * Early containment threats due to energetic events (hydrogen combustion, high pressure melt ejection and direct containment heating, and ex-vessel steam explosions). The report concludes that our understanding of the containment severe accident progression and phenomena has improved very significantly over the parts ten years and, thereby, our ability to assess containment threats, to quantify uncertainties, and to interpret the results of experiments and computer code calculations have also increased. (au)

  7. Teaching optical phenomena with Tracker

    Science.gov (United States)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  8. Exploring the concept of climate surprises. A review of the literature on the concept of surprise and how it is related to climate change

    International Nuclear Information System (INIS)

    Glantz, M.H.; Moore, C.M.; Streets, D.G.; Bhatti, N.; Rosa, C.H.

    1998-01-01

    This report examines the concept of climate surprise and its implications for environmental policymaking. Although most integrated assessment models of climate change deal with average values of change, it is usually the extreme events or surprises that cause the most damage to human health and property. Current models do not help the policymaker decide how to deal with climate surprises. This report examines the literature of surprise in many aspects of human society: psychology, military, health care, humor, agriculture, etc. It draws together various ways to consider the concept of surprise and examines different taxonomies of surprise that have been proposed. In many ways, surprise is revealed to be a subjective concept, triggered by such factors as prior experience, belief system, and level of education. How policymakers have reacted to specific instances of climate change or climate surprise in the past is considered, particularly with regard to the choices they made between proactive and reactive measures. Finally, the report discusses techniques used in the current generation of assessment models and makes suggestions as to how climate surprises might be included in future models. The report concludes that some kinds of surprises are simply unpredictable, but there are several types that could in some way be anticipated and assessed, and their negative effects forestalled

  9. Exploring the concept of climate surprises. A review of the literature on the concept of surprise and how it is related to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, M.H.; Moore, C.M. [National Center for Atmospheric Research, Boulder, CO (United States); Streets, D.G.; Bhatti, N.; Rosa, C.H. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.; Stewart, T.R. [State Univ. of New York, Albany, NY (United States)

    1998-01-01

    This report examines the concept of climate surprise and its implications for environmental policymaking. Although most integrated assessment models of climate change deal with average values of change, it is usually the extreme events or surprises that cause the most damage to human health and property. Current models do not help the policymaker decide how to deal with climate surprises. This report examines the literature of surprise in many aspects of human society: psychology, military, health care, humor, agriculture, etc. It draws together various ways to consider the concept of surprise and examines different taxonomies of surprise that have been proposed. In many ways, surprise is revealed to be a subjective concept, triggered by such factors as prior experience, belief system, and level of education. How policymakers have reacted to specific instances of climate change or climate surprise in the past is considered, particularly with regard to the choices they made between proactive and reactive measures. Finally, the report discusses techniques used in the current generation of assessment models and makes suggestions as to how climate surprises might be included in future models. The report concludes that some kinds of surprises are simply unpredictable, but there are several types that could in some way be anticipated and assessed, and their negative effects forestalled.

  10. Abnormal pressures as hydrodynamic phenomena

    Science.gov (United States)

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  11. Whistlers and related ionospheric phenomena

    CERN Document Server

    Helliwell, Robert A

    2006-01-01

    The investigation of whistlers and related phenomena is a key element in studies of very-low-frequency propagation, satellite communication, the outer ionosphere, and solar-terrestrial relationships. This comprehensive text presents a history of the study of the phenomena and includes all the elements necessary for the calculation of the characteristics of whistlers and whistler-mode signals.An introduction and brief history are followed by a summary of the theory of whistlers and a detailed explanation of the calculation of their characteristics. Succeeding chapters offer a complete atlas of

  12. In vessel core melt progression phenomena

    International Nuclear Information System (INIS)

    Courtaud, M.

    1993-01-01

    For all light water reactor (LWR) accidents, including the so called severe accidents where core melt down can occur, it is necessary to determine the amount and characteristics of fission products released to the environment. For existing reactors this knowledge is used to evaluate the consequences and eventual emergency plans. But for future reactors safety authorities demand decrease risks and reactors designed in such a way that fission products are retained inside the containment, the last protective barrier. This requires improved understanding and knowledge of all accident sequences. In particular it is necessary to be able to describe the very complex phenomena occurring during in vessel core melt progression because they will determine the thermal and mechanical loads on the primary circuit and the timing of its rupture as well as the fission product source term. On the other hand, in case of vessel failure, knowledge of the physical and chemical state of the core melt will provide the initial conditions for analysis of ex-vessel core melt progression and phenomena threatening the containment. Finally a good understanding of in vessel phenomena will help to improve accident management procedures like Emergency Core Cooling System water injection, blowdown and flooding of the vessel well, with their possible adverse effects. Research and Development work on this subject was initiated a long time ago and is still in progress but now it must be intensified in order to meet the safety requirements of the next generation of reactors. Experiments, limited in scale, analysis of the TMI 2 accident which is a unique source of global information and engineering judgment are used to establish and assess physical models that can be implemented in computer codes for reactor accident analysis

  13. Transport phenomena in particulate systems

    CERN Document Server

    Freire, José Teixeira; Ferreira, Maria do Carmo

    2012-01-01

    This volume spans 10 chapters covering different aspects of transport phenomena including fixed and fluidized systems, spouted beds, electrochemical and wastewater treatment reactors. This e-book will be valuable for students, engineers and researchers aiming to keep updated on the latest developments on particulate systems.

  14. Strings, fields and critical phenomena

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1987-07-01

    The connection between field theory and critical phenomena is reviewed. Emphasis is put on the use of Monte Carlo methods in the study of non-perturbative aspects of field theory. String theory is then described as a statistical theory of random surfaces and the critical behaviour is analyzed both by analytical and numerical methods. (orig.)

  15. Nuclear disarmament verification via resonant phenomena.

    Science.gov (United States)

    Hecla, Jake J; Danagoulian, Areg

    2018-03-28

    Nuclear disarmament treaties are not sufficient in and of themselves to neutralize the existential threat of the nuclear weapons. Technologies are necessary for verifying the authenticity of the nuclear warheads undergoing dismantlement before counting them toward a treaty partner's obligation. Here we present a concept that leverages isotope-specific nuclear resonance phenomena to authenticate a warhead's fissile components by comparing them to a previously authenticated template. All information is encrypted in the physical domain in a manner that amounts to a physical zero-knowledge proof system. Using Monte Carlo simulations, the system is shown to reveal no isotopic or geometric information about the weapon, while readily detecting hoaxing attempts. This nuclear technique can dramatically increase the reach and trustworthiness of future nuclear disarmament treaties.

  16. Discrete computational mechanics for stiff phenomena

    KAUST Repository

    Michels, Dominik L.

    2016-11-28

    Many natural phenomena which occur in the realm of visual computing and computational physics, like the dynamics of cloth, fibers, fluids, and solids as well as collision scenarios are described by stiff Hamiltonian equations of motion, i.e. differential equations whose solution spectra simultaneously contain extremely high and low frequencies. This usually impedes the development of physically accurate and at the same time efficient integration algorithms. We present a straightforward computationally oriented introduction to advanced concepts from classical mechanics. We provide an easy to understand step-by-step introduction from variational principles over the Euler-Lagrange formalism and the Legendre transformation to Hamiltonian mechanics. Based on such solid theoretical foundations, we study the underlying geometric structure of Hamiltonian systems as well as their discrete counterparts in order to develop sophisticated structure preserving integration algorithms to efficiently perform high fidelity simulations.

  17. Atom Surprise: Using Theatre in Primary Science Education

    Science.gov (United States)

    Peleg, Ran; Baram-Tsabari, Ayelet

    2011-10-01

    Early exposure to science may have a lifelong effect on children's attitudes towards science and their motivation to learn science in later life. Out-of-class environments can play a significant role in creating favourable attitudes, while contributing to conceptual learning. Educational science theatre is one form of an out-of-class environment, which has received little research attention. This study aims to describe affective and cognitive learning outcomes of watching such a play and to point to connections between theatrical elements and specific outcomes. "Atom Surprise" is a play portraying several concepts on the topic of matter. A mixed methods approach was adopted to investigate the knowledge and attitudes of children (grades 1-6) from two different school settings who watched the play. Data were gathered using questionnaires and in-depth interviews. Analysis suggested that in both schools children's knowledge on the topic of matter increased after the play with younger children gaining more conceptual knowledge than their older peers. In the public school girls showed greater gains in conceptual knowledge than boys. No significant changes in students' general attitudes towards science were found, however, students demonstrated positive changes towards science learning. Theatrical elements that seemed to be important in children's recollection of the play were the narrative, props and stage effects, and characters. In the children's memory, science was intertwined with the theatrical elements. Nonetheless, children could distinguish well between scientific facts and the fictive narrative.

  18. X-rays from comets - a surprising discovery

    CERN Document Server

    CERN. Geneva

    2000-01-01

    Comets are kilometre-size aggregates of ice and dust, which remained from the formation of the solar system. It was not obvious to expect X-ray emission from such objects. Nevertheless, when comet Hyakutake (C/1996 B2) was observed with the ROSAT X-ray satellite during its close approach to Earth in March 1996, bright X-ray emission from this comet was discovered. This finding triggered a search in archival ROSAT data for comets, which might have accidentally crossed the field of view during observations of unrelated targets. To increase the surprise even more, X-ray emission was detected from four additional comets, which were optically 300 to 30 000 times fainter than Hyakutake. For one of them, comet Arai (C/1991 A2), X-ray emission was even found in data which were taken six weeks before the comet was optically discovered. These findings showed that comets represent a new class of celestial X-ray sources. The subsequent detection of X-ray emission from several other comets in dedicated observations confir...

  19. Introduction of chemical, physical and mechanical coupling in the study of the blistering phenomena for semi-crystalline polymers; Une approche multiphysique de l'endommagement de polymeres en milieu petrolier: exemple du blistering

    Energy Technology Data Exchange (ETDEWEB)

    Cangemi, L.; Klopffer, M.H.; Martin, J. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Grandidier, J.C. [Poitiers Univ., Lab. de Mecanique et de Physique des Materiaux, UMR 6617 CNRS, ENSMA, 86 (France)

    2005-09-01

    Polymer materials are used in numerous oil applications where the knowledge and the control of their barrier properties are required: thermosetting coatings, rubber seals, thermoplastic liners. In that case, thermoplastic materials are in contact with water, hydrocarbons, gases and all carried fluids at high temperature and high pressure (up to 13 deg C and to 100 MPa). Under these extreme conditions, gases contained in petroleum products (such as H{sub 2}S, CO{sub 2}) have a high tendency to dissolve into semi-crystalline polymers (polyolefins, fluorinated polymers). A decompression, i.e. a rupture of the thermodynamic equilibrium may eventually lead to gas concentration and temperature gradients in the polymer structures. The resulting damaging phenomenon is called blistering and can be really dramatic for the material because it is irreversible and may end the pipe leak-proofness. As a matter of fact, the condition of damage is mainly correlated to the temperature, the rate of decompression and the properties of the material. Thereby, it is important to have an accurate knowledge of all the involved phenomena in order to quantify and then predict the barrier properties of the materials in those aggressive conditions. The aim of this study is to identify the various mechanism involved in the blistering phenomena for semi-crystalline polymers (such as PVF2, PE), to establish some relations between the polymer microstructure (morphology), its mechanical properties and the damage and to build physicochemical models which will take into account some mechanical, thermal and diffusional aspects. (authors)

  20. Beyond surprise : A longitudinal study on the experience of visual-tactual incongruities in products

    NARCIS (Netherlands)

    Ludden, G.D.S.; Schifferstein, H.N.J.; Hekkert, P.

    2012-01-01

    When people encounter products with visual-tactual incongruities, they are likely to be surprised because the product feels different than expected. In this paper, we investigate (1) the relationship between surprise and the overall liking of the products, (2) the emotions associated with surprise,

  1. Surprising Incentive: An Instrument for Promoting Safety Performance of Construction Employees

    Directory of Open Access Journals (Sweden)

    Fakhradin Ghasemi

    2015-09-01

    Conclusion: The results of this study proved that the surprising incentive would improve the employees' safety performance just in the short term because the surprising value of the incentives dwindle over time. For this reason and to maintain the surprising value of the incentive system, the amount and types of incentives need to be evaluated and modified annually or biannually.

  2. The Role of Surprise in Game-Based Learning for Mathematics

    NARCIS (Netherlands)

    Wouters, Pieter; van Oostendorp, Herre; ter Vrugte, Judith; Vandercruysse, Sylke; de Jong, Anthonius J.M.; Elen, Jan; De Gloria, Alessandro; Veltkamp, Remco

    2016-01-01

    In this paper we investigate the potential of surprise on learning with prevocational students in the domain of proportional reasoning. Surprise involves an emotional reaction, but it also serves a cognitive goal as it directs attention to explain why the surprising event occurred and to learn for

  3. Human amygdala response to dynamic facial expressions of positive and negative surprise.

    Science.gov (United States)

    Vrticka, Pascal; Lordier, Lara; Bediou, Benoît; Sander, David

    2014-02-01

    Although brain imaging evidence accumulates to suggest that the amygdala plays a key role in the processing of novel stimuli, only little is known about its role in processing expressed novelty conveyed by surprised faces, and even less about possible interactive encoding of novelty and valence. Those investigations that have already probed human amygdala involvement in the processing of surprised facial expressions either used static pictures displaying negative surprise (as contained in fear) or "neutral" surprise, and manipulated valence by contextually priming or subjectively associating static surprise with either negative or positive information. Therefore, it still remains unresolved how the human amygdala differentially processes dynamic surprised facial expressions displaying either positive or negative surprise. Here, we created new artificial dynamic 3-dimensional facial expressions conveying surprise with an intrinsic positive (wonderment) or negative (fear) connotation, but also intrinsic positive (joy) or negative (anxiety) emotions not containing any surprise, in addition to neutral facial displays either containing ("typical surprise" expression) or not containing ("neutral") surprise. Results showed heightened amygdala activity to faces containing positive (vs. negative) surprise, which may either correspond to a specific wonderment effect as such, or to the computation of a negative expected value prediction error. Findings are discussed in the light of data obtained from a closely matched nonsocial lottery task, which revealed overlapping activity within the left amygdala to unexpected positive outcomes. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. PHYSICS

    CERN Multimedia

    P. Sphicas

    There have been three physics meetings since the last CMS week: “physics days” on March 27-29, the Physics/ Trigger week on April 23-27 and the most recent physics days on May 22-24. The main purpose of the March physics days was to finalize the list of “2007 analyses”, i.e. the few topics that the physics groups will concentrate on for the rest of this calendar year. The idea is to carry out a full physics exercise, with CMSSW, for select physics channels which test key features of the physics objects, or represent potential “day 1” physics topics that need to be addressed in advance. The list of these analyses was indeed completed and presented in the plenary meetings. As always, a significant amount of time was also spent in reviewing the status of the physics objects (reconstruction) as well as their usage in the High-Level Trigger (HLT). The major event of the past three months was the first “Physics/Trigger week” in Apri...

  5. Mathematical Modeling of Diverse Phenomena

    Science.gov (United States)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  6. Multiparticle phenomena and Landau damping

    International Nuclear Information System (INIS)

    Talman, R.

    1987-01-01

    The purpose of this paper is to survey various methods of studying multiparticle phenomena in accelerators. Both experimental and theoretical methods are described. An effort has been made to emphasize the intuitive and qualitative aspects rather than the detailed mathematics. Some of the terms or concepts to be explained are coherent and incoherent tunes, normal modes, Landau damping, beam-transfer functions, and feedback. These are all of daily importance in the interpretation of colliding-beam observations and the control of performance

  7. Antagonistic Phenomena in Network Dynamics

    Science.gov (United States)

    Motter, Adilson E.; Timme, Marc

    2018-03-01

    Recent research on the network modeling of complex systems has led to a convenient representation of numerous natural, social, and engineered systems that are now recognized as networks of interacting parts. Such systems can exhibit a wealth of phenomena that not only cannot be anticipated from merely examining their parts, as per the textbook definition of complexity, but also challenge intuition even when considered in the context of what is now known in network science. Here, we review the recent literature on two major classes of such phenomena that have far-reaching implications: (a) antagonistic responses to changes of states or parameters and (b) coexistence of seemingly incongruous behaviors or properties - both deriving from the collective and inherently decentralized nature of the dynamics. They include effects as diverse as negative compressibility in engineered materials, rescue interactions in biological networks, negative resistance in fluid networks, and the Braess paradox occurring across transport and supply networks. They also include remote synchronization, chimera states, and the converse of symmetry breaking in brain, power-grid, and oscillator networks as well as remote control in biological and bioinspired systems. By offering a unified view of these various scenarios, we suggest that they are representative of a yet broader class of unprecedented network phenomena that ought to be revealed and explained by future research.

  8. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    Science.gov (United States)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed

  9. Laboratory simulation of space plasma phenomena*

    Science.gov (United States)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  10. Shock Wave Diffraction Phenomena around Slotted Splitters

    Directory of Open Access Journals (Sweden)

    Francesca Gnani

    2015-01-01

    Full Text Available In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement.

  11. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    A remarkable amount of progress has been made in Physics since the last CMS Week in June given the exponential growth in the delivered LHC luminosity. The first major milestone was the delivery of a variety of results to the ICHEP international conference held in Paris this July. For this conference, CMS prepared 15 Physics Analysis Summaries on physics objects and 22 Summaries on new and interesting physics measurements that exploited the luminosity recorded by the CMS detector. The challenge was incorporating the largest batch of luminosity that was delivered only days before the conference (300 nb-1 total). The physics covered from this initial running period spanned hadron production measurements, jet production and properties, electroweak vector boson production, and even glimpses of the top quark. Since then, the accumulated integrated luminosity has increased by a factor of more than 100, and all groups have been working tremendously hard on analysing this dataset. The September Physics Week was held ...

  12. Nuclear Physics Department annual report

    International Nuclear Information System (INIS)

    1997-07-01

    This annual report presents articles and abstracts published in foreign journals, covering the following subjects: nuclear structure, nuclear reactions, applied physics, instrumentation, nonlinear phenomena and high energy physics

  13. Phenomena of g-u symmetry-breakdown in HD

    NARCIS (Netherlands)

    de Lange, A.; Reinhold, E.M.; Ubachs, W.M.G.

    2002-01-01

    Phenomena associated with the breakdown of inversion symmetry in the HD molecule are reviewed and discussed. A distinction is made between three kinds of physical effects observed in HD spectra. The existence of a small electric dipole moment in the ground state gives rise to vibrational and pure

  14. Wave propagation phenomena in metamaterials for retrieving of effective parameters

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Ha, S.

    2011-01-01

    In the talk we give an overview of the developed restoration procedures and discuss their pros and cons in connection of assigning effective parameters (EP) to metamaterials (MMs). There are plenty of notorious physical phenomena preserving the unambiguous retrieving of EP, like strong coupling...

  15. Light-induced phenomena in polymeric thin films

    Czech Academy of Sciences Publication Activity Database

    Nešpůrek, Stanislav; Pospíšil, Jan

    2005-01-01

    Roč. 7, č. 3 (2005), s. 1157-1168 ISSN 1454-4164 R&D Projects: GA MŠk ME 700 Institutional research plan: CEZ:AV0Z40500505 Keywords : Light-induced phenomena * photodegradation * photochromism Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.138, year: 2005

  16. Extreme wave phenomena in down-stream running modulated waves

    NARCIS (Netherlands)

    Andonowati, A.; Karjanto, N.; van Groesen, Embrecht W.C.

    Modulational, Benjamin-Feir, instability is studied for the down-stream evolution of surface gravity waves. An explicit solution, the soliton on finite background, of the NLS equation in physical space is used to study various phenomena in detail. It is shown that for sufficiently long modulation

  17. PHYSICS

    CERN Multimedia

    J. Incandela

    There have been numerous developments in the physics area since the September CMS week. The biggest single event was the Physics/Trigger week in the end of Octo¬ber, whereas in terms of ongoing activities the “2007 analyses” went into high gear. This was in parallel with participation in CSA07 by the physics groups. On the or¬ganizational side, the new conveners of the physics groups have been selected, and a new database for man¬aging physics analyses has been deployed. Physics/Trigger week The second Physics-Trigger week of 2007 took place during the week of October 22-26. The first half of the week was dedicated to working group meetings. The ple¬nary Joint Physics-Trigger meeting took place on Wednesday afternoon and focused on the activities of the new Trigger Studies Group (TSG) and trigger monitoring. Both the Physics and Trigger organizations are now focused on readiness for early data-taking. Thus, early trigger tables and preparations for calibr...

  18. PHYSICS

    CERN Multimedia

    P. Sphicas

    The CPT project came to an end in December 2006 and its original scope is now shared among three new areas, namely Computing, Offline and Physics. In the physics area the basic change with respect to the previous system (where the PRS groups were charged with detector and physics object reconstruction and physics analysis) was the split of the detector PRS groups (the old ECAL-egamma, HCAL-jetMET, Tracker-btau and Muons) into two groups each: a Detector Performance Group (DPG) and a Physics Object Group. The DPGs are now led by the Commissioning and Run Coordinator deputy (Darin Acosta) and will appear in the correspond¬ing column in CMS bulletins. On the physics side, the physics object groups are charged with the reconstruction of physics objects, the tuning of the simulation (in collaboration with the DPGs) to reproduce the data, the provision of code for the High-Level Trigger, the optimization of the algorithms involved for the different physics analyses (in collaboration with the analysis gr...

  19. Mitigating Surprise Through Enhanced Operational Design: Civilian Conceptual Planning Models

    Science.gov (United States)

    2007-01-01

    political, historical, cultural , and economic contexts. If we are going to fight among the people, we must understand them.1 When evaluating US military...represents both the Christian and Yoruba minorities as well as the military, continues to compete against rival elites representing disparate elements...undeniably have to learn a new culture , the physical battlespace would not be alien since MS-13 maintains a large presence in areas that are home to

  20. Correlated randomness and switching phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Kumar, P.; Plerou, V.; Preis, T.

    2010-08-01

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines have no perfect metronome in time and no perfect spatial architecture-crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned structures in space. Further, many of these processes and structures have the remarkable feature of “switching” from one behavior to another as if by magic. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many spatial and temporal patterns in biology, medicine, and economics and even begin to characterize the switching phenomena that enables a system to pass from one state to another. Inspired by principles developed by A. Nihat Berker and scores of other statistical physicists in recent years, we discuss some applications of correlated randomness to understand switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water’s anomalies are related to a switching point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not “outliers” (another Gladwell immortalization). Though more speculative, we support the idea of disease as arising from some kind of yet-to-be-understood complex switching phenomenon, by discussing data on selected examples, including heart disease and Alzheimer disease.

  1. Transitional Phenomena on Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Wójcik Tadeusz M.

    2014-03-01

    Full Text Available One of the most significant problem with technology development is transferring of large heat fluxes, which requires constant heat transfer temperature (in the specified temperature range. This problem concern mainly the nuclear energetics, space technologies, military technologies and most of all electronics containing integrated circuits with very large scale of integrations. Intensive heat transfer and thermal energy storage are possible by the use of phase change materials (PCMs. In the paper there are presented preliminary results of research on the use of liquid-gas (L-G PCMs and solid-solid phase change materials (S-S PCMs. For L-G PCMs the boiling characteristics were determined by increasing and decreasing the heat flux, which for certain sets of structural parameters of the heating surface and the physical properties of the liquid induce a variety of forms of transitional phenomena. Thermal energy storage is much more effective when using PCMs than sensible heat.

  2. Cheshire cat phenomena and quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.

    1986-11-01

    The notion of the ''Cheshire Cat'' principle in hadron structure is developed rigorously in (1+1) dimensions and approximately in (3+1) dimensions for up- and down-quark flavor systems. This phenomenon is invoked to address the issue as to whether or not direct quark-gluon signatures can be ''seen'' in low-energy nuclear phenomena. How addition of the third flavor -strangeness- can modify the Cheshire Cat property is discussed. It is proposed that one of the primary objectives of nuclear physics be to probe -and disturb- the ''vacuum'' of the strong interactions (QCD) and that for this purpose the chiral symmetry SU(3)xSU(3) can play a crucial role in normal and extreme conditions. As an illustration, kaon condensation at a density ρ>∼ 3ρ 0 is discussed in terms of a toy model and is related to ''cleansing'' of the quark condensates from the vacuum

  3. Modeling electrical dispersion phenomena in Earth materials

    Directory of Open Access Journals (Sweden)

    D. Patella

    2008-06-01

    Full Text Available It is illustrated that IP phenomena in rocks can be described using conductivity dispersion models deduced as solutions to a 2nd-order linear differential equation describing the motion of a charged particle immersed in an external electrical field. Five dispersion laws are discussed, namely: the non-resonant positive IP model, which leads to the classical Debye-type dispersion law and by extension to the Cole-Cole model, largely used in current practice; the non-resonant negative IP model, which allows negative chargeability values, known in metals at high frequencies, to be explained as an intrinsic physical property of earth materials in specific field cases; the resonant flat, positive or negative IP models, which can explain the presence of peak effects at specific frequencies superimposed on flat, positive or negative dispersion spectra.

  4. Carbon Dioxide: Surprising Effects on Decision Making and Neurocognitive Performance

    Science.gov (United States)

    James, John T.

    2013-01-01

    The occupants of modern submarines and the International Space Station (ISS) have much in common as far as their air quality is concerned. Air is polluted by materials offgassing, use of utility compounds, leaks of systems chemicals, and anthropogenic sources. The primary anthropogenic compound of concern to submariners and astronauts has been carbon dioxide (CO2). NASA and the US Navy rely on the National Research Council Committee on Toxicology (NRC-COT) to help formulate exposure levels to CO2 that are thought to be safe for exposures of 3-6 months. NASA calls its limits Spacecraft Maximum Allowable Concentrations (SMACs). Years of experience aboard the ISS and a recent publication on deficits in decision making in ground-based subjects exposed briefly to 0.25% CO2 suggest that exposure levels that have been presumed acceptable to preserve health and performance need to be reevaluated. The current CO2 exposure limits for 3-6 months set by NASA and the UK Navy are 0.7%, and the limit for US submariners is 0.5%, although the NRC-COT recommended a 90-day level of 0.8% as safe a few years ago. NASA has set a 1000-day SMAC at 0.5% for exploration-class missions. Anecdotal experience with ISS operations approaching the current 180-day SMAC of 0.7% suggest that this limit is too high. Temporarily, NASA has limited exposures to 0.5% until further peer-reviewed data become available. In the meantime, a study published last year in the journal Environmental Health Perspectives (Satish U, et al. 2012) demonstrated that complexdecision- making performance is somewhat affected at 0.1% CO2 and becomes "dysfunctional" for at least half of the 9 indices of performance at concentrations approaching 0.25% CO2. The investigators used the Strategic Management Simulation (SMS) method of testing for decisionmaking ability, and the results were so surprising to the investigators that they declared that their findings need to be independently confirmed. NASA has responded to the

  5. Phenomena and Diosignes of Aratous

    Science.gov (United States)

    Avgoloupis, S. I.

    2013-01-01

    Aratous (305-240B.C.) was a singular intellectual, writer and poet which engage himself to compose a very interesting astronomical poet, using the "Dactylous sixstage' style, the formal style of the ancient Greek Epic poetry. This astronomic poem of Aratous "Phenomena and Diosignes" became very favorite reading during the Alexandrine, the Romman and the Byzandin eras as well and had received many praises from significant poets and particularly from Hipparchous and from Theonas from Alexandria, an astronomer of 4rth century A.C.(in Greeks)

  6. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2000-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. No longer an area of specialist interest, it has acquired a central focus in condensed matter studies. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.The two review articles in this volume complement each other in a remarkable way. Both deal with what m

  7. Nonlinear phenomena at cyclotron resonance

    International Nuclear Information System (INIS)

    Subbarao, D.; Uma, R.

    1986-01-01

    Finite amplitude electromagnetic waves in a magnetoplasma which typically occur in situations as in present day wave heating, current drives and other schemes in magnetically confined fusion systems, can show qualitatively different absorption and emission characteristics around resonant frequencies of the plasma because of anharmonicity. Linear wave plasma coupling as well as weak nonlinear effects such as parametric instabilities generally overlook this important effect even though the thresholds for the two phenomena as shown here are comparable. Though the effects described here are relevant to a host of nonlinear resonance effects in fusion plasmas, the authors mainly limit themselves to ECRH

  8. Violent phenomena in the Universe

    CERN Document Server

    Narlikar, Jayant V

    2007-01-01

    The serenity of a clear night sky belies the evidence-gathered by balloons, rockets, satellites, and telescopes-that the universe contains centers of furious activity that pour out vast amounts of energy, some in regular cycles and some in gigantic bursts. This reader-friendly book, acclaimed by Nature as ""excellent and uncompromising,"" traces the development of modern astrophysics and its explanations of these startling celestial fireworks.This lively narrative ranges from the gravitational theories of Newton and Einstein to recent exciting discoveries of such violent phenomena as supernova

  9. Nonlinear Dynamic Phenomena in Mechanics

    CERN Document Server

    Warminski, Jerzy; Cartmell, Matthew P

    2012-01-01

    Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinear

  10. Foot anthropometry and morphology phenomena.

    Science.gov (United States)

    Agić, Ante; Nikolić, Vasilije; Mijović, Budimir

    2006-12-01

    Foot structure description is important for many reasons. The foot anthropometric morphology phenomena are analyzed together with hidden biomechanical functionality in order to fully characterize foot structure and function. For younger Croatian population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot structure descriptors are influenced by many factors, as a style of life, race, climate, and things of the great importance in human society. Dominant descriptors are determined by principal component analysis. Some practical recommendation and conclusion for medical, sportswear and footwear practice are highlighted.

  11. Gravitational Anomaly and Transport Phenomena

    International Nuclear Information System (INIS)

    Landsteiner, Karl; Megias, Eugenio; Pena-Benitez, Francisco

    2011-01-01

    Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid.

  12. Concepts of particle physics

    International Nuclear Information System (INIS)

    Gottfried, K.; Weisskopf, V.F.

    1984-01-01

    This volume elucidates basic and well-established concepts of particle physics for the autodidact who is curious about recent developments in fundamental physics. Elementary quantum mechanics is a background must. Contents, abridged: The evolution of the particle concept before the advent of quantum mechanics. Nonrelativistic quantum mechanics and atomic physics. Relativistic quantum theory. Nuclear phenomena. Subnuclear phenomena. Index

  13. PHYSICS

    CERN Multimedia

    Submitted by

    Physics Week: plenary meeting on physics groups plans for startup (14–15 May 2008) The Physics Objects (POG) and Physics Analysis (PAG) Groups presented their latest developments at the plenary meeting during the Physics Week. In the presentations particular attention was given to startup plans and readiness for data-taking. Many results based on the recent cosmic run were shown. A special Workshop on SUSY, described in a separate section, took place the day before the plenary. At the meeting, we had also two special DPG presentations on “Tracker and Muon alignment with CRAFT” (Ernesto Migliore) and “Calorimeter studies with CRAFT” (Chiara Rovelli). We had also a report from Offline (Andrea Rizzi) and Computing (Markus Klute) on the San Diego Workshop, described elsewhere in this bulletin. Tracking group (Boris Mangano). The level of sophistication of the tracking software increased significantly over the last few months: V0 (K0 and Λ) reconstr...

  14. The Surprising Impact of Seat Location on Student Performance

    Science.gov (United States)

    Perkins, Katherine K.; Wieman, Carl E.

    2005-01-01

    Every physics instructor knows that the most engaged and successful students tend to sit at the front of the class and the weakest students tend to sit at the back. However, it is normally assumed that this is merely an indication of the respective seat location preferences of weaker and stronger students. Here we present evidence suggesting that in fact this may be mixing up the cause and effect. It may be that the seat selection itself contributes to whether the student does well or poorly, rather than the other way around. While a number of studies have looked at the effect of seat location on students, the results are often inconclusive, and few, if any, have studied the effects in college classrooms with randomly assigned seats. In this paper, we report on our observations of a large introductory physics course in which we randomly assigned students to particular seat locations at the beginning of the semester. Seat location during the first half of the semester had a noticeable impact on student success in the course, particularly in the top and bottom parts of the grade distribution. Students sitting in the back of the room for the first half of the term were nearly six times as likely to receive an F as students who started in the front of the room. A corresponding but less dramatic reversal was evident in the fractions of students receiving As. These effects were in spite of many unusual efforts to engage students at the back of the class and a front-to-back reversal of seat location halfway through the term. These results suggest there may be inherent detrimental effects of large physics lecture halls that need to be further explored.

  15. Nearest star the surprising science of our sun

    CERN Document Server

    Golub, Leon

    2014-01-01

    How did the Sun evolve, and what will it become? What is the origin of its light and heat? How does solar activity affect the atmospheric conditions that make life on Earth possible? These are the questions at the heart of solar physics, and at the core of this book. The Sun is the only star near enough to study in sufficient detail to provide rigorous tests of our theories and help us understand the more distant and exotic objects throughout the cosmos. Having observed the Sun using both ground-based and spaceborne instruments, the authors bring their extensive personal experience to this sto

  16. TAXATION OF INCOME OF PHYSICAL PERSONS AND LOCAL FINANCES: SURPRISES AND PERSPECTIVES OF THEIR SOLUTIONS

    Directory of Open Access Journals (Sweden)

    I. Lyutyi

    2018-01-01

    Full Text Available The article proposes a comprehensive vision of the personal income tax system issues in the context of its use as a tool for the formation of local public finances, a systemic approach to increasing its effectiveness in the context of the need to balance the interests in the chains of the individual-society general system: individual-local community, the territory of the labor force supplier-the territory of the labor force recipient (scope of application of labor, the local community-the territory/sphere where social services are provided. A conclusion is drawn about the dominant fiscal function of the personal income tax and the tax on real property other than a parcel of land, which exhibits the constant growth of its tax rates without an acceptable extension of the preferential part. The process of transforming these taxes and their budget-forming role in the formation of the capable united territorial communities were investigated. The main issues of enrollment and distribution of income tax among the budgets of different territorial communities as subjects of the process of decentralization of public finances were revealed. The significant amount of work is required to assess the actual and potential capacity of the respective territories in order to provide the relevant services in the context of the entire array of the settlement network, which requires the development of a budget classification that would contribute to more detailed local budgets in developing a model for their distribution of profitable tax that would better take into account the parameters of the capacity of territorial communities, provision of their residents with the relevant services. The conclusion is made on the necessity of forming the preferential part of the mentioned taxes on the new conceptual principles, which provide for an extensive and effective system of tax incentives that would be provided to taxpayers, indirectly through the participation of the state, opportunities for obtaining education, treatment, introduction of energy-saving technologies, saving, investing in construction of housing, etc., and also formed the motivation for legalization of incomes as the basis for expanding the tax base, increasing budget formation of relevant taxes.

  17. Chandra Finds Surprising Black Hole Activity In Galaxy Cluster

    Science.gov (United States)

    2002-09-01

    Scientists at the Carnegie Observatories in Pasadena, California, have uncovered six times the expected number of active, supermassive black holes in a single viewing of a cluster of galaxies, a finding that has profound implications for theories as to how old galaxies fuel the growth of their central black holes. The finding suggests that voracious, central black holes might be as common in old, red galaxies as they are in younger, blue galaxies, a surprise to many astronomers. The team made this discovery with NASA'S Chandra X-ray Observatory. They also used Carnegie's 6.5-meter Walter Baade Telescope at the Las Campanas Observatory in Chile for follow-up optical observations. "This changes our view of galaxy clusters as the retirement homes for old and quiet black holes," said Dr. Paul Martini, lead author on a paper describing the results that appears in the September 10 issue of The Astrophysical Journal Letters. "The question now is, how do these black holes produce bright X-ray sources, similar to what we see from much younger galaxies?" Typical of the black hole phenomenon, the cores of these active galaxies are luminous in X-ray radiation. Yet, they are obscured, and thus essentially undetectable in the radio, infrared and optical wavebands. "X rays can penetrate obscuring gas and dust as easily as they penetrate the soft tissue of the human body to look for broken bones," said co-author Dr. Dan Kelson. "So, with Chandra, we can peer through the dust and we have found that even ancient galaxies with 10-billion-year-old stars can have central black holes still actively pulling in copious amounts of interstellar gas. This activity has simply been hidden from us all this time. This means these galaxies aren't over the hill after all and our theories need to be revised." Scientists say that supermassive black holes -- having the mass of millions to billions of suns squeezed into a region about the size of our Solar System -- are the engines in the cores of

  18. Natural phenomena hazards, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity

  19. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.  Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish how ready we are to do physics with the early collisions at the LHC. The agenda of the week was thus pac...

  20. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.   Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish (we hoped) the readiness of CMS to do physics with the early collisions at the LHC. The agenda of the...

  1. A Neural Mechanism for Surprise-related Interruptions of Visuospatial Working Memory.

    Science.gov (United States)

    Wessel, Jan R

    2018-01-01

    Surprising perceptual events recruit a fronto-basal ganglia mechanism for inhibition, which suppresses motor activity following surprise. A recent study found that this inhibitory mechanism also disrupts the maintenance of verbal working memory (WM) after surprising tones. However, it is unclear whether this same mechanism also relates to surprise-related interruptions of non-verbal WM. We tested this hypothesis using a change-detection task, in which surprising tones impaired visuospatial WM. Participants also performed a stop-signal task (SST). We used independent component analysis and single-trial scalp-electroencephalogram to test whether the same inhibitory mechanism that reflects motor inhibition in the SST relates to surprise-related visuospatial WM decrements, as was the case for verbal WM. As expected, surprising tones elicited activity of the inhibitory mechanism, and this activity correlated strongly with the trial-by-trial level of surprise. However, unlike for verbal WM, the activity of this mechanism was unrelated to visuospatial WM accuracy. Instead, inhibition-independent activity that immediately succeeded the inhibitory mechanism was increased when visuospatial WM was disrupted. This shows that surprise-related interruptions of visuospatial WM are not effected by the same inhibitory mechanism that interrupts verbal WM, and instead provides evidence for a 2-stage model of distraction. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Earthquake prediction with electromagnetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Masashi, E-mail: hayakawa@hi-seismo-em.jp [Hayakawa Institute of Seismo Electomagnetics, Co. Ltd., University of Electro-Communications (UEC) Incubation Center, 1-5-1 Chofugaoka, Chofu Tokyo, 182-8585 (Japan); Advanced Wireless & Communications Research Center, UEC, Chofu Tokyo (Japan); Earthquake Analysis Laboratory, Information Systems Inc., 4-8-15, Minami-aoyama, Minato-ku, Tokyo, 107-0062 (Japan); Fuji Security Systems. Co. Ltd., Iwato-cho 1, Shinjyuku-ku, Tokyo (Japan)

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  3. Electrostatic Phenomena on Planetary Surfaces

    Science.gov (United States)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  4. In-vessel phenomena -- CORA

    International Nuclear Information System (INIS)

    Ott, L.J.; Rij, W.I. van.

    1991-01-01

    Experiment-specific models have been employed since 1986 by Oak Ridge National Laboratory (ORNL) severe accident analysis programs for the purpose of boiling water reactor experimental planning and optimum interpretation of experimental results. The large integral tests performed to date, which start from an initial undamaged core state, have involved significantly different-from-prototypic boundary and experimental conditions because of either normal facility limitations or specific experimental constraints. These experiments (ACRR: DF-4, NRU: FLHT-6, and CORA) were designed to obtain specific phenomenological information such as the degradation and interaction of prototypic components and the effects on melt progression of control-blade materials and channel boxes. Applications of ORNL models specific to the KfK CORA-16 and CORA-17 experiments are discussed and significant findings from the experimental analyses such as the following are presented: applicability of available Zircaloy oxidation kinetics correlations; influence of cladding strain on Zircaloy oxidation; influence of spacer grids on the structural heatup; and the impact of treating the gaseous coolant as a gray interacting medium. The experiment-specific models supplement and support the systems-level accident analysis codes. They allow the analyst to accurately quantify the observed experimental phenomena and to compensate for the effect of known uncertainties. They provide a basis for the efficient development of new models for phenomena that are currently not modeled (such as material interactions). They can provide validated phenomenological models (from the results of the experiments) as candidates for incorporation in the systems-level ''whole-core'' codes

  5. Macroscopic quantum phenomena from the large N perspective

    International Nuclear Information System (INIS)

    Chou, C H; Hu, B L; Subasi, Y

    2011-01-01

    Macroscopic quantum phenomena (MQP) is a relatively new research venue, with exciting ongoing experiments and bright prospects, yet with surprisingly little theoretical activity. What makes MQP intellectually stimulating is because it is counterpoised against the traditional view that macroscopic means classical. This simplistic and hitherto rarely challenged view need be scrutinized anew, perhaps with much of the conventional wisdoms repealed. In this series of papers we report on a systematic investigation into some key foundational issues of MQP, with the hope of constructing a viable theoretical framework for this new endeavour. The three major themes discussed in these three essays are the large N expansion, the correlation hierarchy and quantum entanglement for systems of 'large' sizes, with many components or degrees of freedom. In this paper we use different theories in a variety of contexts to examine the conditions or criteria whereby a macroscopic quantum system may take on classical attributes, and, more interestingly, that it keeps some of its quantum features. The theories we consider here are, the O(N) quantum mechanical model, semiclassical stochastic gravity and gauge / string theories; the contexts include that of a 'quantum roll' in inflationary cosmology, entropy generation in quantum Vlasov equation for plasmas, the leading order and next-to-leading order large N behaviour, and hydrodynamic / thermodynamic limits. The criteria for classicality in our consideration include the use of uncertainty relations, the correlation between classical canonical variables, randomization of quantum phase, environment-induced decoherence, decoherent history of hydrodynamic variables, etc. All this exercise is to ask only one simple question: Is it really so surprising that quantum features can appear in macroscopic objects? By examining different representative systems where detailed theoretical analysis has been carried out, we find that there is no a priori

  6. Nonlinear Magnetic Phenomena in Highly Polarized Target Materials

    CERN Document Server

    Kiselev, Yu F

    2007-01-01

    The report introduces and surveys nonlinear magnetic phenomena which have been observed at high nuclear polarizations in polarized targets of the SMC and of the COMPASS collaborations at CERN. Some of these phenomena, namely the frequency modulation eect and the distortion of the NMR line shape, promote the development of the polarized target technique. Others, as the spin-spin cross-relaxation between spin subsystems can be used for the development of quantum statistical physics. New findings bear on an electromagnetic noise and the spectrally resolved radiation from LiD with negatively polarized nuclei detected by low temperature bolometers. These nonlinear phenomena need to be taken into account for achieving the ultimate polarizations.

  7. PHYSICS

    CERN Multimedia

    J. Incandela

    The all-plenary format of the CMS week in Cyprus gave the opportunity to the conveners of the physics groups to present the plans of each physics analysis group for tackling early physics analyses. The presentations were complete, so all are encouraged to browse through them on the Web. There is a wealth of information on what is going on, by whom and on what basis and priority. The CMS week was followed by two CMS “physics events”, the ICHEP08 days and the physics days in July. These were two weeks dedicated to either the approval of all the results that would be presented at ICHEP08, or to the review of all the other Monte-Carlo based analyses that were carried out in the context of our preparations for analysis with the early LHC data (the so-called “2008 analyses”). All this was planned in the context of the beginning of a ramp down of these Monte Carlo efforts, in anticipation of data.  The ICHEP days are described below (agenda and talks at: http://indic...

  8. PHYSICS

    CERN Multimedia

    Joe Incandela

    There have been two plenary physics meetings since the December CMS week. The year started with two workshops, one on the measurements of the Standard Model necessary for “discovery physics” as well as one on the Physics Analysis Toolkit (PAT). Meanwhile the tail of the “2007 analyses” is going through the last steps of approval. It is expected that by the end of January all analyses will have converted to using the data from CSA07 – which include the effects of miscalibration and misalignment. January Physics Days The first Physics Days of 2008 took place on January 22-24. The first two days were devoted to comprehensive re¬ports from the Detector Performance Groups (DPG) and Physics Objects Groups (POG) on their planning and readiness for early data-taking followed by approvals of several recent studies. Highlights of POG presentations are included below while the activities of the DPGs are covered elsewhere in this bulletin. January 24th was devo...

  9. A surprise in the first Born approximation for electron scattering

    International Nuclear Information System (INIS)

    Treacy, M.M.J.; Van Dyck, D.

    2012-01-01

    A standard textbook derivation for the scattering of electrons by a weak potential under the first Born approximation suggests that the far-field scattered wave should be in phase with the incident wave. However, it is well known that waves scattered from a weak phase object should be phase-shifted by π/2 relative to the incident wave. A disturbing consequence of this missing phase is that, according to the Optical Theorem, the total scattering cross section would be zero in the first Born approximation. We resolve this mystery pedagogically by showing that the first Born approximation fails to conserve electrons even to first order. Modifying the derivation to conserve electrons introduces the correct phase without changing the scattering amplitude. We also show that the far-field expansion for the scattered waves used in many texts is inappropriate for computing an exit wave from a sample, and that the near-field expansion also give the appropriately phase-shifted result. -- Highlights: ► The first Born approximation is usually invoked as the theoretical physical basis for kinematical electron scattering theory. ► Although it predicts the correct scattering amplitude, it predicts the wrong phase; the scattered wave is missing a prefactor of i. ► We show that this arises because the standard textbook version of the first Born approximation does not conserve electrons. ► We show how this can be fixed.

  10. Physics

    CERN Document Server

    Cullen, Katherine

    2005-01-01

    Defined as the scientific study of matter and energy, physics explains how all matter behaves. Separated into modern and classical physics, the study attracts both experimental and theoretical physicists. From the discovery of the process of nuclear fission to an explanation of the nature of light, from the theory of special relativity to advancements made in particle physics, this volume profiles 10 pioneers who overcame tremendous odds to make significant breakthroughs in this heavily studied branch of science. Each chapter contains relevant information on the scientist''s childhood, research, discoveries, and lasting contributions to the field and concludes with a chronology and a list of print and Internet references specific to that individual.

  11. Multiscale Modeling of Mesoscale and Interfacial Phenomena

    Science.gov (United States)

    Petsev, Nikolai Dimitrov

    With rapidly emerging technologies that feature interfaces modified at the nanoscale, traditional macroscopic models are pushed to their limits to explain phenomena where molecular processes can play a key role. Often, such problems appear to defy explanation when treated with coarse-grained continuum models alone, yet remain prohibitively expensive from a molecular simulation perspective. A prominent example is surface nanobubbles: nanoscopic gaseous domains typically found on hydrophobic surfaces that have puzzled researchers for over two decades due to their unusually long lifetimes. We show how an entirely macroscopic, non-equilibrium model explains many of their anomalous properties, including their stability and abnormally small gas-side contact angles. From this purely transport perspective, we investigate how factors such as temperature and saturation affect nanobubbles, providing numerous experimentally testable predictions. However, recent work also emphasizes the relevance of molecular-scale phenomena that cannot be described in terms of bulk phases or pristine interfaces. This is true for nanobubbles as well, whose nanoscale heights may require molecular detail to capture the relevant physics, in particular near the bubble three-phase contact line. Therefore, there is a clear need for general ways to link molecular granularity and behavior with large-scale continuum models in the treatment of many interfacial problems. In light of this, we have developed a general set of simulation strategies that couple mesoscale particle-based continuum models to molecular regions simulated through conventional molecular dynamics (MD). In addition, we derived a transport model for binary mixtures that opens the possibility for a wide range of applications in biological and drug delivery problems, and is readily reconciled with our hybrid MD-continuum techniques. Approaches that couple multiple length scales for fluid mixtures are largely absent in the literature, and

  12. Surprising structures hiding in Penrose’s future null infinity

    Science.gov (United States)

    Newman, Ezra T.

    2017-07-01

    Since the late1950s, almost all discussions of asymptotically flat (Einstein-Maxwell) space-times have taken place in the context of Penrose’s null infinity, I+. In addition, almost all calculations have used the Bondi coordinate and tetrad systems. Beginning with a known asymptotically flat solution to the Einstein-Maxwell equations, we show first, that there are other natural coordinate systems, near I+, (analogous to light-cones in flat-space) that are based on (asymptotically) shear-free null geodesic congruences (analogous to the flat-space case). Using these new coordinates and their associated tetrad, we define the complex dipole moment, (the mass dipole plus i times angular momentum), from the l  =  1 harmonic coefficient of a component of the asymptotic Weyl tensor. Second, from this definition, from the Bianchi identities and from the Bondi-Sachs mass and linear momentum, we show that there exists a large number of results—identifications and dynamics—identical to those of classical mechanics and electrodynamics. They include, among many others, {P}=M{v}+..., {L}= {r} × {P} , spin, Newton’s second law with the rocket force term (\\dotM v) and radiation reaction, angular momentum conservation and others. All these relations take place in the rather mysterious H-space rather than in space-time. This leads to the enigma: ‘why do these well known relations of classical mechanics take place in H-space?’ and ‘What is the physical meaning of H-space?’

  13. Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, N. [RIKEN, Wako, iTHES Research Group, Saitama (Japan); Far Eastern Federal University, Complex Simulation Group, School of Biomedicine, Vladivostok (Russian Federation); Sahoo, B.K. [Physical Research Laboratory, Atomic, Molecular and Optical Physics Division, Ahmedabad (India); Yoshinaga, N. [Graduate School of Science and Engineering, Saitama (Japan); Sato, T. [RIKEN, Nishina Center, Saitama (Japan); Asahi, K. [RIKEN, Nishina Center, Saitama (Japan); Tokyo Institute of Technology, Department of Physics and International Education and Research Center of Science, Tokyo (Japan); Das, B.P. [Tokyo Institute of Technology, Department of Physics and International Education and Research Center of Science, Tokyo (Japan)

    2017-03-15

    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas, i.e. particle, nuclear and atomic, is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested. (orig.)

  14. PHYSICS

    CERN Multimedia

    Guenther Dissertori

    The time period between the last CMS week and this June was one of intense activity with numerous get-together targeted at addressing specific issues on the road to data-taking. The two series of workshops, namely the “En route to discoveries” series and the “Vertical Integration” meetings continued.   The first meeting of the “En route to discoveries” sequence (end 2007) had covered the measurements of the Standard Model signals as necessary prerequisite to any claim of signals beyond the Standard Model. The second meeting took place during the Feb CMS week and concentrated on the commissioning of the Physics Objects, whereas the third occurred during the April Physics Week – and this time the theme was the strategy for key new physics signatures. Both of these workshops are summarized below. The vertical integration meetings also continued, with two DPG-physics get-togethers on jets and missing ET and on electrons and photons. ...

  15. PHYSICS

    CERN Multimedia

    D. Acosta

    2011-01-01

    Since the last CMS Week, all physics groups have been extremely active on analyses based on the full 2010 dataset, with most aiming for a preliminary measurement in time for the winter conferences. Nearly 50 analyses were approved in a “marathon” of approval meetings during the first two weeks of March, and the total number of approved analyses reached 90. The diversity of topics is very broad, including precision QCD, Top, and electroweak measurements, the first observation of single Top production at the LHC, the first limits on Higgs production at the LHC including the di-tau final state, and comprehensive searches for new physics in a wide range of topologies (so far all with null results unfortunately). Most of the results are based on the full 2010 pp data sample, which corresponds to 36 pb-1 at √s = 7 TeV. This report can only give a few of the highlights of a very rich physics program, which is listed below by physics group...

  16. SURPRISINGLY WEAK MAGNETISM ON YOUNG ACCRETING BROWN DWARFS

    International Nuclear Information System (INIS)

    Reiners, A.; Basri, G.; Christensen, U. R.

    2009-01-01

    We have measured the surface magnetic flux on four accreting young brown dwarfs and one nonaccreting young very low mass (VLM) star utilizing high-resolution spectra of absorption lines of the FeH molecule. A magnetic field of 1-2 kG had been proposed for one of the brown dwarfs, Two Micron All Sky Survey (2MASS) J1207334-393254, because of its similarities to higher mass T Tauri stars as manifested in accretion and the presence of a jet. We do not find clear evidence for a kilogauss field in any of our young brown dwarfs but do find a 2 kG field on the young VLM star. Our 3σ upper limit for the magnetic flux in 2MASS J1207334-393254 just reaches 1 kG. We estimate the magnetic field required for accretion in young brown dwarfs given the observed rotations, and find that fields of only a few hundred gauss are sufficient for magnetospheric accretion. This predicted value is less than our observed upper limit. We conclude that magnetic fields in young brown dwarfs are a factor of 5 or more lower than in young stars of about one solar mass, and in older stars with spectral types similar to our young brown dwarfs. It is interesting that, during the first few million years, the fields scale down with mass in line with what is needed for magnetospheric accretion, yet no such scaling is observed at later ages within the same effective temperature range. This scaling is opposite to the trend in rotation, with shorter rotation periods for very young accreting brown dwarfs compared with accreting solar-mass objects (and very low Rossby numbers in all cases). We speculate that in young objects a deeper intrinsic connection may exist between magnetospheric accretion and magnetic field strength, or that magnetic field generation in brown dwarfs may be less efficient than in stars. Neither of these currently has an easy physical explanation.

  17. Distinct medial temporal networks encode surprise during motivation by reward versus punishment

    Science.gov (United States)

    Murty, Vishnu P.; LaBar, Kevin S.; Adcock, R. Alison

    2016-01-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. PMID:26854903

  18. Distinct medial temporal networks encode surprise during motivation by reward versus punishment.

    Science.gov (United States)

    Murty, Vishnu P; LaBar, Kevin S; Adcock, R Alison

    2016-10-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Hillslope, river, and Mountain: some surprises in Landscape evolution (Ralph Alger Bagnold Medal Lecture)

    Science.gov (United States)

    Tucker, G. E.

    2012-04-01

    Geomorphology, like the rest of geoscience, has always had two major themes: a quest to understand the earth's history and 'products' - its landscapes and seascapes - and, in parallel, a quest to understand its formative processes. This dualism is manifest in the remarkable career of R. A. Bagnold, who was inspired by landforms such as dunes, and dedicated to understanding the physical processes that shaped them. His legacy inspires us to emulate two principles at the heart of his contributions: the benefits of rooting geomorphic theory in basic physics, and the importance of understanding geomorphic systems in terms of simple equations framed around energy or force. Today, following Bagnold's footsteps, the earth-surface process community is engaged in a quest to build, test, and refine an ever-improving body of theory to describe our planet's surface and its evolution. In this lecture, I review a small sample of some of the fruits of that quest, emphasizing the value of surprises encountered along the way. The first example involves models of long-term river incision into bedrock. When the community began to grapple with how to represent this process mathematically, several different ideas emerged. Some were based on the assumption that sediment transport is the limiting factor; others assumed that hydraulic stress on rock is the key, while still others treated rivers as first-order 'reactors.' Thanks in part to advances in digital topography and numerical computing, the predictions of these models can be tested using natural-experiment case studies. Examples from the King Range, USA, the Central Apennines, Italy, and the fold-thrust belt of Taiwan, illustrate that independent knowledge of history and/or tectonics makes it possible to quantify how the rivers have responded to external forcing. Some interesting surprises emerge, such as: that the relief-uplift relationship can be highly nonlinear in a steady-state landscape because of grain-entrainment thresholds

  20. Physical electronics handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 2, Physical Electronics, discusses the fundamentals of electric discharges in gases. Electrical discharges in gases is used generically to denote the passage of electricity through a gas and implicitly embraces the wide variety of physical phenomena which accompany such a discharge of electricity. The discharge currents may be as small as 10-16A in certain ionization growth studies, or be as large as megamperes in thermonuclear and plasma physics studies. Key topics discussed include collision phenomena in gases; surface phenomena and transport of charged par

  1. The theory of critical phenomena in two-dimensional systems

    International Nuclear Information System (INIS)

    Olvera de la C, M.

    1981-01-01

    An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)

  2. Maxwell Prize Talk: Scaling Laws for the Dynamical Plasma Phenomena

    Science.gov (United States)

    Ryutov, Livermore, Ca 94550, Usa, D. D.

    2017-10-01

    The scaling and similarity technique is a powerful tool for developing and testing reduced models of complex phenomena, including plasma phenomena. The technique has been successfully used in identifying appropriate simplified models of transport in quasistationary plasmas. In this talk, the similarity and scaling arguments will be applied to highly dynamical systems, in which temporal evolution of the plasma leads to a significant change of plasma dimensions, shapes, densities, and other parameters with respect to initial state. The scaling and similarity techniques for dynamical plasma systems will be presented as a set of case studies of problems from various domains of the plasma physics, beginning with collisonless plasmas, through intermediate collisionalities, to highly collisional plasmas describable by the single-fluid MHD. Basic concepts of the similarity theory will be introduced along the way. Among the results discussed are: self-similarity of Langmuir turbulence driven by a hot electron cloud expanding into a cold background plasma; generation of particle beams in disrupting pinches; interference between collisionless and collisional phenomena in the shock physics; similarity for liner-imploded plasmas; MHD similarities with an emphasis on the effect of small-scale (turbulent) structures on global dynamics. Relations between astrophysical phenomena and scaled laboratory experiments will be discussed.

  3. Poorly studied phenomena in geoelectrics

    Directory of Open Access Journals (Sweden)

    В. С. Могилатов

    2016-12-01

    Full Text Available Undoubtedly, modern geoelectric technologies emerge in the result of the development of traditional approaches and techniques. However of more interest is the appearance of completely new technologies based on new effects and new models of interaction of geological medium and electromagnetic field. The author does not commit to indicate principally new directions, but only wants to discuss some poorly known facts from the theory and practice of geoelectrics. The outcome of this study could be considered attracting the attention of experts to non-traditional signals in geoelectrics. The reviewed phenomena of interest, not fully implemented in practice in the author’s opinion, are field split into two polarizations: transverse electric (the ТЕ-field and transverse magnetic (the ТМ-field, then some poorly known properties of ТМ-field, the role of bias currents, the anisotropy of horizontal resistances, the role of geomagnetic field in geoelectric sounding, the unique resolution of CSEM (Controlled Source Electro-Magnetic techniques at sea.

  4. Transient phenomena in multiphase flow

    International Nuclear Information System (INIS)

    Afgan, N.H.

    1988-01-01

    This book is devoted to formulation of the two-phase system. Emphasis is given to classical instantaneous equations of mass momentum and energy for local conditions and respective averaging procedures and their relevance to the structure of transfer laws. In formulating an equation for a two-velocity continuum, two-phase dispersed flow, two-velocity and local inertial effects associated with contraction and expansion of the mixture have been considered. Particular attention is paid to the effects of interface topology and area concentration as well as the latter's dependence on interfacial transfer laws. Also covered are low bubble concentrations in basic nonuniform unsteady flow where interactions between bubbles are negligible but where the effects of bubbles must still be considered. Special emphasis has been given to the pairwise interaction of the bubble and respective hydrodynamic equations describing the motion of a pair of spherical bubbles through a liquid This book introduces turbulence phenomena in two-phase flow and related problems of phase distribution in two-phase flow. This includes an extensive survey of turbulence and phase distribution models in transient two-phase flow. It is shown that if the turbulent structure of the continuous phase of bubbly two-phase is either measured or can be predicted, then the observed lateral phase distribution can be determined by using an multidimensional two-fluid model in which all lateral forces are properly modeled

  5. Electrostatic phenomena in volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S J; James, M R; Gilbert, J S, E-mail: s.lane@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2011-06-23

    Electrostatic phenomena have long been associated with the explosive eruption of volcanoes. Lightning generated in volcanic plumes is a spectacular atmospheric electrical event that requires development of large potential gradients over distances of up to kilometres. This process begins as hydrated liquid rock (magma) ascends towards Earth's surface. Pressure reduction causes water supersaturation in the magma and the development of bubbles of supercritical water, where deeper than c. 1000 m, and water vapour at shallower depths that drives flow expansion. The generation of high strain rates in the expanding bubbly magma can cause it to fracture in a brittle manner, as deformation relaxation timescales are exceeded. The brittle fracture provides the initial charge separation mechanism, known as fractoemission. The resulting mixture of charged silicate particles and ions evolves over time, generating macro-scale potential gradients in the atmosphere and driving processes such as particle aggregation. For the silicate particles, aggregation driven by electrostatic effects is most significant for particles smaller than c. 100 {mu}m. Aggregation acts to change the effective aerodynamic behaviour of silicate particles, thus altering the sedimentation rates of particles from volcanic plumes from the atmosphere. The presence of liquid phases also promotes aggregation processes and lightning.

  6. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos

    2017-07-06

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.

  7. PHYSICS

    CERN Multimedia

    Darin Acosta

    2010-01-01

    The collisions last year at 900 GeV and 2.36 TeV provided the long anticipated collider data to the CMS physics groups. Quite a lot has been accomplished in a very short time. Although the delivered luminosity was small, CMS was able to publish its first physics paper (with several more in preparation), and commence the commissioning of physics objects for future analyses. Many new performance results have been approved in advance of this CMS Week. One remarkable outcome has been the amazing agreement between out-of-the-box data with simulation at these low energies so early in the commissioning of the experiment. All of this is testament to the hard work and preparation conducted beforehand by many people in CMS. These analyses could not have happened without the dedicated work of the full collaboration on building and commissioning the detector, computing, and software systems combined with the tireless work of many to collect, calibrate and understand the data and our detector. To facilitate the efficien...

  8. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    The Physics Groups are actively engaged on analyses of the first data from the LHC at 7 TeV, targeting many results for the ICHEP conference taking place in Paris this summer. The first large batch of physics approvals is scheduled for this CMS Week, to be followed by four more weeks of approvals and analysis updates leading to the start of the conference in July. Several high priority analysis areas were organized into task forces to ensure sufficient coverage from the relevant detector, object, and analysis groups in the preparation of these analyses. Already some results on charged particle correlations and multiplicities in 7 TeV minimum bias collisions have been approved. Only one small detail remains before ICHEP: further integrated luminosity delivered by the LHC! Beyond the Standard Model measurements that can be done with these data, the focus changes to the search for new physics at the TeV scale and for the Higgs boson in the period after ICHEP. Particle Flow The PFT group is focusing on the ...

  9. PHYSICS

    CERN Multimedia

    the PAG conveners

    2011-01-01

    The delivered LHC integrated luminosity of more than 1 inverse femtobarn by summer and more than 5 by the end of 2011 has been a gold mine for the physics groups. With 2011 data, we have submitted or published 14 papers, 7 others are in collaboration-wide review, and 75 Physics Analysis Summaries have been approved already. They add to the 73 papers already published based on the 2010 and 2009 datasets. Highlights from each physics analysis group are described below. Heavy ions Many important results have been obtained from the first lead-ion collision run in 2010. The published measurements include the first ever indications of Υ excited state suppression (PRL synopsis), long-range correlation in PbPb, and track multiplicity over a wide η range. Preliminary results include the first ever measurement of isolated photons (showing no modification), J/ψ suppression including the separation of the non-prompt component, further study of jet fragmentation, nuclear modification factor...

  10. PHYSICS

    CERN Multimedia

    L. Demortier

    Physics-wise, the CMS week in December was dominated by discussions of the analyses that will be carried out in the “next six months”, i.e. while waiting for the first LHC collisions.  As presented in December, analysis approvals based on Monte Carlo simulation were re-opened, with the caveat that for this work to be helpful to the goals of CMS, it should be carried out using the new software (CMSSW_2_X) and associated samples.  By the end of the week, the goal for the physics groups was set to be the porting of our physics commissioning methods and plans, as well as the early analyses (based an integrated luminosity in the range 10-100pb-1) into this new software. Since December, the large data samples from CMSSW_2_1 were completed. A big effort by the production group gave a significant number of events over the end-of-year break – but also gave out the first samples with the fast simulation. Meanwhile, as mentioned in December, the arrival of 2_2 meant that ...

  11. PHYSICS

    CERN Multimedia

    C. Hill

    2012-01-01

      2012 has started off as a very busy year for the CMS Physics Groups. Planning for the upcoming higher luminosity/higher energy (8 TeV) operation of the LHC and relatively early Rencontres de Moriond are the high-priority activities for the group at the moment. To be ready for the coming 8-TeV data, CMS has made a concerted effort to perform and publish analyses on the 5 fb−1 dataset recorded in 2011. This has resulted in the submission of 16 papers already, including nine on the search for the Higgs boson. In addition, a number of preliminary results on the 2011 dataset have been released to the public. The Exotica and SUSY groups approved several searches for new physics in January, such as searches for W′ and exotic highly ionising particles. These were highlighted at a CERN seminar given on 24th  January. Many more analyses, from all the PAGs, including the newly formed SMP (Standard Model Physics) and FSQ (Forward and Small-x QCD), were approved in February. The ...

  12. PHYSICS

    CERN Document Server

    C. Hill

    2012-01-01

      The period since the last CMS Bulletin has been historic for CMS Physics. The pinnacle of our physics programme was an observation of a new particle – a strong candidate for a Higgs boson – which has captured worldwide interest and made a profound impact on the very field of particle physics. At the time of the discovery announcement on 4 July, 2012, prominent signals were observed in the high-resolution H→γγ and H→ZZ(4l) modes. Corroborating excess was observed in the H→W+W– mode as well. The fermionic channel analyses (H→bb, H→ττ), however, yielded less than the Standard Model (SM) expectation. Collectively, the five channels established the signal with a significance of five standard deviations. With the exception of the diphoton channel, these analyses have all been updated in the last months and several new channels have been added. With improved analyses and more than twice the i...

  13. Pathways toward understanding Macroscopic Quantum Phenomena

    International Nuclear Information System (INIS)

    Hu, B L; Subaşi, Y

    2013-01-01

    Macroscopic quantum phenomena refer to quantum features in objects of 'large' sizes, systems with many components or degrees of freedom, organized in some ways where they can be identified as macroscopic objects. This emerging field is ushered in by several categories of definitive experiments in superconductivity, electromechanical systems, Bose-Einstein condensates and others. Yet this new field which is rich in open issues at the foundation of quantum and statistical physics remains little explored theoretically (with the important exception of the work of A J Leggett [1], while touched upon or implied by several groups of authors represented in this conference. Our attitude differs in that we believe in the full validity of quantum mechanics stretching from the testable micro to meso scales, with no need for the introduction of new laws of physics.) This talk summarizes our thoughts in attempting a systematic investigation into some key foundational issues of quantum macroscopic phenomena, with the goal of ultimately revealing or building a viable theoretical framework. Three major themes discussed in three intended essays are the large N expansion [2], the correlation hierarchy [3] and quantum entanglement [4]. We give a sketch of the first two themes and then discuss several key issues in the consideration of macro and quantum, namely, a) recognition that there exist many levels of structure in a composite body and only by judicious choice of an appropriate set of collective variables can one give the best description of the dynamics of a specific level of structure. Capturing the quantum features of a macroscopic object is greatly facilitated by the existence and functioning of these collective variables; b) quantum entanglement, an exclusively quantum feature [5], is known to persist to high temperatures [6] and large scales [7] under certain conditions, and may actually decrease with increased connectivity in a quantum network [8]. We use entanglement as a

  14. Surprise responses in the human brain demonstrate statistical learning under high concurrent cognitive demand

    Science.gov (United States)

    Garrido, Marta Isabel; Teng, Chee Leong James; Taylor, Jeremy Alexander; Rowe, Elise Genevieve; Mattingley, Jason Brett

    2016-06-01

    The ability to learn about regularities in the environment and to make predictions about future events is fundamental for adaptive behaviour. We have previously shown that people can implicitly encode statistical regularities and detect violations therein, as reflected in neuronal responses to unpredictable events that carry a unique prediction error signature. In the real world, however, learning about regularities will often occur in the context of competing cognitive demands. Here we asked whether learning of statistical regularities is modulated by concurrent cognitive load. We compared electroencephalographic metrics associated with responses to pure-tone sounds with frequencies sampled from narrow or wide Gaussian distributions. We showed that outliers evoked a larger response than those in the centre of the stimulus distribution (i.e., an effect of surprise) and that this difference was greater for physically identical outliers in the narrow than in the broad distribution. These results demonstrate an early neurophysiological marker of the brain's ability to implicitly encode complex statistical structure in the environment. Moreover, we manipulated concurrent cognitive load by having participants perform a visual working memory task while listening to these streams of sounds. We again observed greater prediction error responses in the narrower distribution under both low and high cognitive load. Furthermore, there was no reliable reduction in prediction error magnitude under high-relative to low-cognitive load. Our findings suggest that statistical learning is not a capacity limited process, and that it proceeds automatically even when cognitive resources are taxed by concurrent demands.

  15. Observation of Celestial Phenomena in Ancient China

    Science.gov (United States)

    Sun, Xiaochun

    Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.

  16. Report of the workshop on nuclear polarization phenomena

    International Nuclear Information System (INIS)

    1985-01-01

    The third work shop on the study of the nuclear polarization was held in December 1984 at RCNP (Research Center for Nuclear Physics). Osaka University, in advance of the comming international conference. About 80 researchers gathered and discussed both theoretical and experimental aspects of nuclear polarization phenomena. Forty eight papers were presented at the work shop and they are collected in this report. Although almost all of them are written in Japanese, the abstracts are prepared in English. (Aoki, K.)

  17. Conformal field theory and 2D critical phenomena. Part 1

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.; Zamolodchikov, Al.B.

    1989-01-01

    Review of the recent developments in the two-dimensional conformal field theory and especially its applications to the physics of 2D critical phenomena is given. It includes the Ising model, the Potts model. Minimal models, corresponding to theories invariant under higher symmetries, such as superconformal theories, parafermionic theories and theories with current and W-algebras are also discussed. Non-hamiltonian approach to two-dimensional field theory is formulated. 126 refs

  18. PHYSICS

    CERN Multimedia

    J. D'Hondt

    The Electroweak and Top Quark Workshop (16-17th of July) A Workshop on Electroweak and Top Quark Physics, dedicated on early measurements, took place on 16th-17th July. We had more than 40 presentations at the Workshop, which was an important milestone for 2007 physics analyses in the EWK and TOP areas. The Standard Model has been tested empirically by many previous experiments. Observables which are nowadays known with high precision will play a major role for data-based CMS calibrations. A typical example is the use of the Z to monitor electron and muon reconstruction in di-lepton inclusive samples. Another example is the use of the W mass as a constraint for di-jets in the kinematic fitting of top-quark events, providing information on the jet energy scale. The predictions of the Standard Model, for what concerns proton collisions at the LHC, are accurate to a level that the production of W/Z and top-quark events can be used as a powerful tool to commission our experiment. On the other hand the measure...

  19. PHYSICS

    CERN Multimedia

    Christopher Hill

    2013-01-01

    Since the last CMS Bulletin, the CMS Physics Analysis Groups have completed more than 70 new analyses, many of which are based on the complete Run 1 dataset. In parallel the Snowmass whitepaper on projected discovery potential of CMS for HL-LHC has been completed, while the ECFA HL-LHC future physics studies has been summarised in a report and nine published benchmark analyses. Run 1 summary studies on b-tag and jet identification, quark-gluon discrimination and boosted topologies have been documented in BTV-13-001 and JME-13-002/005/006, respectively. The new tracking alignment and performance papers are being prepared for submission as well. The Higgs analysis group produced several new results including the search for ttH with H decaying to ZZ, WW, ττ+bb (HIG-13-019/020) where an excess of ~2.5σ is observed in the like-sign di-muon channel, and new searches for high-mass Higgs bosons (HIG-13-022). Search for invisible Higgs decays have also been performed both using the associ...

  20. PHYSICS

    CERN Multimedia

    C. Hill

    2013-01-01

    In the period since the last CMS Bulletin, the LHC – and CMS – have entered LS1. During this time, CMS Physics Analysis Groups have performed more than 40 new analyses, many of which are based on the complete 8 TeV dataset delivered by the LHC in 2012 (and in some cases on the full Run 1 dataset). These results were shown at, and well received by, several high-profile conferences in the spring of 2013, including the inaugural meeting of the Large Hadron Collider    Physics Conference (LHCP) in Barcelona, and the 26th International Symposium on Lepton Photon Interactions at High Energies (LP) in San Francisco. In parallel, there have been significant developments in preparations for Run 2 of the LHC and on “future physics” studies for both Phase 1 and Phase 2 upgrades of the CMS detector. The Higgs analysis group produced five new results for LHCP including a new H-to-bb search in VBF production (HIG-13-011), ttH with H to γ&ga...

  1. PHYSICS

    CERN Multimedia

    C. Hill

    2013-01-01

    The period since the last CMS bulletin has seen the end of proton collisions at a centre-of-mass energy 8 TeV, a successful proton-lead collision run at 5 TeV/nucleon, as well as a “reference” proton run at 2.76 TeV. With these final LHC Run 1 datasets in hand, CMS Physics Analysis Groups have been busy analysing these data in preparation for the winter conferences. Moreover, despite the fact that the pp run only concluded in mid-December (and there was consequently less time to complete data analyses), CMS again made a strong showing at the Rencontres de Moriond in La Thuile (EW and QCD) where nearly 40 new results were presented. The highlight of these preliminary results was the eagerly anticipated updated studies of the properties of the Higgs boson discovered in July of last year. Meanwhile, preparations for Run 2 and physics performance studies for Phase 1 and Phase 2 upgrade scenarios are ongoing. The Higgs analysis group produced updated analyses on the full Run 1 dataset (~25 f...

  2. A Contrast-Based Computational Model of Surprise and Its Applications.

    Science.gov (United States)

    Macedo, Luis; Cardoso, Amílcar

    2017-11-19

    We review our work on a contrast-based computational model of surprise and its applications. The review is contextualized within related research from psychology, philosophy, and particularly artificial intelligence. Influenced by psychological theories of surprise, the model assumes that surprise-eliciting events initiate a series of cognitive processes that begin with the appraisal of the event as unexpected, continue with the interruption of ongoing activity and the focusing of attention on the unexpected event, and culminate in the analysis and evaluation of the event and the revision of beliefs. It is assumed that the intensity of surprise elicited by an event is a nonlinear function of the difference or contrast between the subjective probability of the event and that of the most probable alternative event (which is usually the expected event); and that the agent's behavior is partly controlled by actual and anticipated surprise. We describe applications of artificial agents that incorporate the proposed surprise model in three domains: the exploration of unknown environments, creativity, and intelligent transportation systems. These applications demonstrate the importance of surprise for decision making, active learning, creative reasoning, and selective attention. Copyright © 2017 Cognitive Science Society, Inc.

  3. The common extremalities in biology and physics maximum energy dissipation principle in chemistry, biology, physics and evolution

    CERN Document Server

    Moroz, Adam

    2011-01-01

    This book is the first unified systemic description of dissipative phenomena, taking place in biology, and non-dissipative (conservative) phenomena, which is more relevant to physics. Fully updated and revised, this new edition extends our understanding of nonlinear phenomena in biology and physics from the extreme / optimal perspective. The first book to provide understanding of physical phenomena from a biological perspective and biological phenomena from a physical perspective Discusses emerging fields and analysis Provides examples.

  4. A Statistical Analysis of the Relationship between Harmonic Surprise and Preference in Popular Music.

    Science.gov (United States)

    Miles, Scott A; Rosen, David S; Grzywacz, Norberto M

    2017-01-01

    Studies have shown that some musical pieces may preferentially activate reward centers in the brain. Less is known, however, about the structural aspects of music that are associated with this activation. Based on the music cognition literature, we propose two hypotheses for why some musical pieces are preferred over others. The first, the Absolute-Surprise Hypothesis, states that unexpected events in music directly lead to pleasure. The second, the Contrastive-Surprise Hypothesis, proposes that the juxtaposition of unexpected events and subsequent expected events leads to an overall rewarding response. We tested these hypotheses within the framework of information theory, using the measure of "surprise." This information-theoretic variable mathematically describes how improbable an event is given a known distribution. We performed a statistical investigation of surprise in the harmonic structure of songs within a representative corpus of Western popular music, namely, the McGill Billboard Project corpus. We found that chords of songs in the top quartile of the Billboard chart showed greater average surprise than those in the bottom quartile. We also found that the different sections within top-quartile songs varied more in their average surprise than the sections within bottom-quartile songs. The results of this study are consistent with both the Absolute- and Contrastive-Surprise Hypotheses. Although these hypotheses seem contradictory to one another, we cannot yet discard the possibility that both absolute and contrastive types of surprise play roles in the enjoyment of popular music. We call this possibility the Hybrid-Surprise Hypothesis. The results of this statistical investigation have implications for both music cognition and the human neural mechanisms of esthetic judgments.

  5. Universal role of correlation entropy in critical phenomena

    International Nuclear Information System (INIS)

    Gu Shijian; Sun Changpu; Lin Haiqing

    2008-01-01

    In statistical physics, if we divide successively an equilibrium system into two parts, we will face a situation that, to a certain length ξ, the physics of a subsystem is no longer the same as the original one. The extensive property of the thermal entropy S(A union B) = S(A) + S(B) is then violated. This observation motivates us to introduce a concept of correlation entropy between two points, as measured by the mutual information in information theory, to study the critical phenomena. A rigorous relation is established to display some drastic features of the non-vanishing correlation entropy of a subsystem formed by any two distant particles with long-range correlation. This relation actually indicates a universal role played by the correlation entropy for understanding the critical phenomena. We also verify these analytical studies in terms of two well-studied models for both the thermal and quantum phase transitions: the two-dimensional Ising model and the one-dimensional transverse-field Ising model. Therefore, the correlation entropy provides us with a new physical intuition of the critical phenomena from the point of view of information theory

  6. Half collision resonance phenomena in molecules

    International Nuclear Information System (INIS)

    Maximo Garcia-Sucre; Raseev, G.; Ross, S.C.

    1991-01-01

    The Escuela Latinoamericana de Fisica (ELAF) is a series of meeting s that for 28 years has played an important role in research-level teaching of physics in Latin America. This book contains the proceedings of ELAF 90 which was held at the Instituto Venezolano de Investigaciones Cientificas (IVIC) in Caracas, Venezuela from July 23 to August 3, 1990, as part of the commemoration of the 30th anniversary of IVIC. In contrast to previous ELAF's that were of general scope, ELAF 90 centered on a particular subject matter: '' Half Collisional Resonance Phenomena in Molecules, Experimental and Theoretical Approaches. ''The term ''Half Collision'' refers to the fragmentation of a molecular system following is excitation by light. The lack of an incident fragmentation of a molecular system following is excitation by light. The lack of an incident particle (other than the photon) in the fragmentation process is what leads to the term. The purpose of this volume is to present current results in the experimental and theoretical study of half collisions and also to include pedagogical papers at an introductory or intermediate level. The contributions are grouped into several sections; light sources; ionization; dissociation-experimental; dissociation-theory; competition between ionization and dissociation; and particle-molecule collisions

  7. Condensed matter view of giant resonance phenomena

    International Nuclear Information System (INIS)

    Zangwill, A.

    1987-01-01

    The intent of this article is to present a view of giant resonance phenomena (an essentially atomic phenomenon) from the perspective of a condensed matter physicist with an interest in the optical properties of matter. As we shall see, this amounts to a particular prejudice about how one should think about many-body effects in a system of interacting electrons. Some of these effects are special to condensed matter systems and will be dealt with in the second half of this paper. However, it turns out that the authors view of the main ingredient to a giant resonance differs significantly from that normally taken by scientists trained in the traditional methods of atomic physics. Therefore, in the first section the author will take advantage of the fact that his contribution to this volume was composed and delivered to the publishers somewhat after the conclusion of the School (rather than before as requested by the organizers) and try to clearly distinguish the differences of opinion presented by the lecturers from the unalterable experimental facts. 46 references, 9 figures

  8. Summit surprises.

    Science.gov (United States)

    Myers, N

    1994-01-01

    A New Delhi Population Summit, organized by the Royal Society, the US National Academy of Sciences, the Royal Swedish Academy of Sciences, and the Indian National Science Academy, was convened with representation of 120 (only 10% women) scientists from 50 countries and about 12 disciplines and 43 national scientific academies. Despite the common assumption that scientists never agree, a 3000 word statement was signed by 50 prominent national figures and supported by 25 professional papers on diverse subjects. The statement proclaimed that stable world population and "prodigious planning efforts" are required for dealing with global social, economic, and environmental problems. The target should be zero population growth by the next generation. The statement, although containing many uncompromising assertions, was not as strong as a statement by the Royal Society and the US National Academy of Sciences released last year: that, in the future, science and technology may not be able to prevent "irreversible degradation of the environment and continued poverty," and that the capacity to sustain life on the planet may be permanently jeopardized. The Delhi statement was backed by professional papers highlighting several important issues. Dr Mahmoud Fathalla of the Rockefeller Foundation claimed that the 500,000 annual maternal deaths worldwide, of which perhaps 33% are due to "coathanger" abortions, are given far less attention than a one-day political event of 500 deaths would receive. Although biologically women have been given a greater survival advantage, which is associated with their reproductive capacity, socially disadvantaged females are relegated to low status. There is poorer nutrition and overall health care for females, female infanticide, and female fetuses are increasingly aborted in China, India, and other countries. The sex ratio in developed countries is 95-97 males to every 100 females, but in developing Asian countries the ratio is 105 males to 100 females. There are reports of 60-100 million missing females. The human species 12,000 years ago had a population of 6 million, a life expectancy of 20 years, and a doubling time of 8000 years; high birth rates were important for preservation of the species. Profertility attitudes are still prevalent today. Insufficient funds go to contraceptive research.

  9. Polarization phenomena in heavy-ion reactions

    International Nuclear Information System (INIS)

    Sugimoto, K.; Ishihara, M.; Takahashi, N.

    1984-01-01

    This chapter presents a few key experiments which provide direct evidence of the polarization phenomena in heavy-ion reactions. The theory of polarization observables and measurements is given with the necessary formulae. The polarization phenomena is described and studies of product nuclear polarization in heavy-ion reactions are discussed. Studies of heavy-ion reactions induced by polarized beams are examined

  10. A Connection between Transport Phenomena and Thermodynamics

    Science.gov (United States)

    Swaney, Ross; Bird, R. Byron

    2017-01-01

    Although students take courses in transport phenomena and thermodynamics, they probably do not ask whether these two subjects are related. Here we give an answer to that question. Specifically we give relationships between the equations of change for total energy, internal energy, and entropy of transport phenomena and key equations of equilibrium…

  11. Measuring and characterizing beat phenomena with a smartphone

    Science.gov (United States)

    Osorio, M.; Pereyra, C. J.; Gau, D. L.; Laguarda, A.

    2018-03-01

    Nowadays, smartphones are in everyone’s life. Apart from being excellent tools for work and communication, they can also be used to perform several measurements of simple physical magnitudes, serving as a mobile and inexpensive laboratory, ideal for use physics lectures in high schools or universities. In this article, we use a smartphone to analyse the acoustic beat phenomena by using a simple experimental setup, which can complement lessons in the classroom. The beats were created by the superposition of the waves generated by two tuning forks, with their natural frequencies previously characterized using different applications. After the characterization, we recorded the beats and analysed the oscillations in time and frequency.

  12. Nanophenomena at surfaces fundamentals of exotic condensed matter phenomena

    CERN Document Server

    Michailov, Michail

    2011-01-01

    This book presents the state of the art in nanoscale surface physics. It outlines contemporary trends in the field covering a wide range of topical areas: atomic structure of surfaces and interfaces, molecular films and polymer adsorption, biologically inspired nanophysics, surface design and pattern formation, and computer modeling of interfacial phenomena. Bridging 'classical' and 'nano' concepts, the present volume brings attention to the physical background of exotic condensed-matter properties. The book is devoted to Iwan Stranski and Rostislaw Kaischew, remarkable scientists, who played

  13. Phenomena at very high spins

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1980-03-01

    The present talk has three parts: first, a discussion of current ideas about the physics of very high spin states; second, some comments about noncollective behavior up to the highest spins where it is known, approx. 40 h; and finally, a presentation of the newest method for studying collective behavior up to spins of 60 to 70 h. The intention is that the overview presented in the first part will be sufficiently broad to indicate the relationship of the noncollective and collective behavior discussed in the other parts, and to provide some understanding of the compromise in behavior that seems to occur at the very highest spins. 13 figures

  14. Pattern formations and oscillatory phenomena

    CERN Document Server

    Kinoshita, Shuichi

    2013-01-01

    Patterns and their formations appear throughout nature, and are studied to analyze different problems in science and make predictions across a wide range of disciplines including biology, physics, mathematics, chemistry, material science, and nanoscience. With the emergence of nanoscience and the ability for researchers and scientists to study living systems at the biological level, pattern formation research has become even more essential. This book is an accessible first of its kind guide for scientists, researchers, engineers, and students who require a general introduction to thi

  15. Phenomena identification and ranking tables (PIRT) for LBLOCA

    International Nuclear Information System (INIS)

    Shaw, R.A.; Dimenna, R.A.; Larson, T.K.; Wilson, G.E.

    1988-01-01

    The US Nuclear Regulatory Commission is sponsoring a program to provide validated reactor safety computer codes with quantified uncertainties. The intent is to quantify the accuracy of the codes for use in best estimate licensing applications. One of the tasks required to complete this program involves the identification and ranking of thermal-hydraulic phenomena that occur during particular accidents. This paper provides detailed tables of phenomena and importance ranks for a PWR LBLOCA. The phenomena were identified and ranked according to perceived impact on peak cladding temperature. Two approaches were used to complete this task. First, a panel of experts identified the physical processes considered to be most important during LBLOCA. A second team of experienced analysts then, in parallel, assembled complete tables of all plausible LBLOCA phenomena, regardless of perceived importance. Each phenomenon was then ranked in importance against every other phenomenon associated with a given component. The results were placed in matrix format and solved for the principal eigenvector. The results as determined by each method are presented in this report

  16. The sun as a star: Solar phenomena and stellar applications

    International Nuclear Information System (INIS)

    Noyes, R.W.

    1981-01-01

    Our Sun is a run-of-the-mill star, having no obvious extremes of stellar properties. For this reason it is perhaps more, rather than less, interesting as an astrophysical object, for its sameness to other stars suggests that in studying the Sun, we are studying at close hand common, rather than unusual stellar phenomena. Conversely, comparative study of the Sun and other solar-type stars is an invaluable tool for solar physics, for two reasons: First, it allows us to explore how solar properties and phenomena depend on parameters we cannot vary on the Sun - most fundamentally, rotation rate and mass. Second, study of solar-like stars of different ages allows us to see how stellar and solar phenomena depend on age; study of other stars may be one of the best ways to infer the earlier history of the Sun, as well as its future history. In this review we shall concentrate on phenomena common to the Sun and solar-type (main sequence) stars with different fundamental properties such as mass, age, and rotation. (orig.)

  17. PHYSICS

    CERN Multimedia

    V.Ciulli

    2011-01-01

    The main programme of the Physics Week held between 16th and 20th May was a series of topology-oriented workshops on di-leptons, di-photons, inclusive W, and all-hadronic final states. The goal of these workshops was to reach a common understanding for the set of objects (ID, cleaning...), the handling of pile-up, calibration, efficiency and purity determination, as well as to revisit critical common issues such as the trigger. Di-lepton workshop Most analysis groups use a di-lepton trigger or a combination of single and di-lepton triggers in 2011. Some groups need to collect leptons with as low PT as possible with strong isolation and identification requirements as for Higgs into WW at low mass, others with intermediate PT values as in Drell-Yan studies, or high PT as in the Exotica group. Electron and muon reconstruction, identification and isolation, was extensively described in the workshop. For electrons, VBTF selection cuts for low PT and HEEP cuts for high PT were discussed, as well as more complex d...

  18. Precedent Phenomena in Quebecois Linguistic World View

    Directory of Open Access Journals (Sweden)

    Ксения Эдуардовна Болотина

    2016-12-01

    Full Text Available This article is devoted to the linguocultural analysis of precedent phenomena as parts of Quebecois’ cognitive base. Precedent phenomena being cultural facts are one of the key issues in modern linguistic and cognitive studies. By precedent phenomena we mean, according to Y.E. Prohorov, such entities when verbalized in discourse that refer to a certain cultural fact behind them. In the article the precedent phenomena such as precedent text, precedent situation, precedent utterance, and precedent name are analyzed. The main theses of the precedence theory given in the article (Y.N. Karaulov, Y.E. Prohorov, V.V. Krasnyh, D.B. Gudkov are at the heart of precedence studies on the basis of different languages. However, a complex analysis of precedent phenomena in the Quebec national variant of French is new to Russian linguistics. The study of precedent phenomena enables us to elicit features of their functioning in ethnospecific discourse and determine cultural dominants existing in Quebecois’ linguistic world view. Given the fact that the size of the article is limited, we undertooke the analysis of eight phenomena precedent of the bearers of Quebec linguoculture. The choice of phenomena is determined by the frequency of their use in discourse. The facts analyzed are of national character, i.e. known to all members of the linguocultural community. A certain cultural fact is at the very core of each precedent phenomenon given in the article. To get the whole picture we analysed historic, political, and cultural context connected to the precedent phenomena in question. The study enables us to elicit distinctive features that are at the core of each phenomenon. The results are backed with the supportive material drawn from analysis of different types of discourse. The analysis of precedent phenomena undertaken in this article allows us to reconstruct, to a certain extent, Quebec cultural space and is a stepping stone to the reconstruction of the

  19. The discovery of nuclear compression phenomena in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schmidt, H.R.

    1991-01-01

    This article has attempted to review more than 15 years of research on shock compression phenomena, which is closely related to the goal of determining the nuclear EOS. Exciting progress has been made in this field over the last years and the fundamental physics of relativistic heavy ion-collisions has been well established. Overwhelming experimental evidence for the existence of shock compression has been extracted from the data. While early, inclusive measurements had been rather inconclusive, the advent of 4π-detectors like the GSI-LBL Plastic Ball had enabled the outstanding discovery of collective flow effects, as they were predicted by fluid-dynamical calculations. The particular case of conical Mach shock waves, anticipated for asymmetric collisions, has not been observed. What are the reasons? Surprisingly, the maximum energy of 2.1 GeV/nucleon for heavy ions at the BEVALAC had been found to be too low for Mach shock waves to occur. The small 20 Ne-nucleus is stopped in the heavy Au target. A Mach cone, however, if it had developed in the early stage of the collision will be wiped out by thermal motion in the process of slowing the projectile down to rest. A comparison of the data with models hints towards a rather hard EOS, although a soft one cannot be excluded definitively. A quantitative extraction is aggravated by a number in-medium and final-state effects which influence the calculated observables in a similar fashion as different choices of an EOS. Thus, as of now, the precise knowledge of the EOS of hot and dense matter is still an open question and needs further investigation. (orig.)

  20. Distinct medial temporal networks encode surprise during motivation by reward versus punishment

    OpenAIRE

    Murty, Vishnu P.; LaBar, Kevin S.; Adcock, R. Alison

    2016-01-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also...

  1. Supercoherent phenomena in pulsed power

    International Nuclear Information System (INIS)

    O'Rourke, R.C.

    1983-01-01

    This chapter proposes the formulation of programs of basic physics research to transform Pulsed Power Technology (PPT) to Pulsed Power Science and Technology (PPS and T) by formulating the laws of the quantized microscopic electromagnetic field; applying the microscopic electromagnetic field theory to the generation, propagation and deposition of pulses in nonlinear networks; learning more about the basic super coherent ''micro-structure'' in space and time of the many-photon states of pulsed laser beams; learning more about the basic super coherent ''micro-structure'' in space and time of the many-electronstates of pulsed electron and ion laser beams; and learning everything about the ''micro-picture'' of so-called ''dielectric breakdown'' and the associated absolute time delays. Promotes the idea that laser, electron and ion beams are similar kinds of pulses in the microscopic electromagnetic field. Presents expression for the microscopic electromagnetic field in order to show the role of supercoherence in PPS and T

  2. A statistical approach to strange diffusion phenomena

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Carreras, B.A.; Sanchez, R.

    2005-01-01

    The study of particle (and heat) transport in fusion plasmas has revealed the existence of what might be called 'unusual' transport phenomena. Such phenomena are: unexpected scaling of the confinement time with system size, power degradation (i.e. sub-linear scaling of energy content with power input), profile stiffness (also known as profile consistency), rapid transient transport phenomena such as cold and heat pulses (travelling much faster than the diffusive timescale would allow), non-local behaviour and central profile peaking during off-axis heating, associated with unexplained inward pinches. The standard modelling framework, essentially equal to Fick's Law plus extensions, has great difficulty in providing an all-encompassing and satisfactory explanation of all these phenomena. This difficulty has motivated us to reconsider the basics of the modelling of diffusive phenomena. Diffusion is based on the well-known random walk. The random walk is captured in all its generality in the Continuous Time Random Walk (CTRW) formalism. The CTRW formalism is directly related to the well-known Generalized Master Equation, which describes the behaviour of tracer particle diffusion on a very fundamental level, and from which the phenomenological Fick's Law can be derived under some specific assumptions. We show that these assumptions are not necessarily satisfied under fusion plasma conditions, in which case other equations (such as the Fokker-Planck diffusion law or the Master Equation itself) provide a better description of the phenomena. This fact may explain part of the observed 'strange' phenomena (namely, the inward pinch). To show how the remaining phenomena mentioned above may perhaps find an explanation in the proposed alternative modelling framework, we have designed a toy model that incorporates a critical gradient mechanism, switching between rapid (super-diffusive) and normal diffusive transport as a function of the local gradient. It is then demonstrated

  3. Molecular nanomagnets and related phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Song (ed.) [Peking Univ., Beijing (China). College of Chemistry and Molecular Engineering

    2015-07-01

    The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for

  4. Molecular nanomagnets and related phenomena

    International Nuclear Information System (INIS)

    Gao, Song

    2015-01-01

    The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for

  5. Transient phenomena in electrical power systems

    CERN Document Server

    Venikov, V A; Higinbotham, W

    1964-01-01

    Electronics and Instrumentation, Volume 24: Transient Phenomena in Electrical Power Systems presents the methods for calculating the stability and the transient behavior of systems with forced excitation control. This book provides information pertinent to the analysis of transient phenomena in electro-mechanical systems.Organized into five chapters, this volume begins with an overview of the principal requirements in an excitation system. This text then explains the electromagnetic and electro-mechanical phenomena, taking into account the mutual action between the components of the system. Ot

  6. Nonlinear Photonics and Novel Optical Phenomena

    CERN Document Server

    Morandotti, Roberto

    2012-01-01

    Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.

  7. Heat transfer phenomena revelant to severe accidents

    International Nuclear Information System (INIS)

    Dallman, R.J.; Duffey, R.B.

    1990-01-01

    A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression

  8. Developing Phenomena Models from Experimental Data

    DEFF Research Database (Denmark)

    Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay

    2003-01-01

    A systematic approach for developing phenomena models from experimental data is presented. The approach is based on integrated application of stochastic differential equation (SDE) modelling and multivariate nonparametric regression, and it is shown how these techniques can be used to uncover...... unknown functionality behind various phenomena in first engineering principles models using experimental data. The proposed modelling approach has significant application potential, e.g. for determining unknown reaction kinetics in both chemical and biological processes. To illustrate the performance...... of the approach, a case study is presented, which shows how an appropriate phenomena model for the growth rate of biomass in a fed-batch bioreactor can be inferred from data....

  9. Developing Phenomena Models from Experimental Data

    DEFF Research Database (Denmark)

    A systematic approach for developing phenomena models from experimental data is presented. The approach is based on integrated application of stochastic differential equation (SDE) modelling and multivariate nonparametric regression, and it is shown how these techniques can be used to uncover...... unknown functionality behind various phenomena in first engineering principles models using experimental data. The proposed modelling approach has significant application potential, e.g. for determining unknown reaction kinetics in both chemical and biological processes. To illustrate the performance...... of the approach, a case study is presented, which shows how an appropriate phenomena model for the growth rate of biomass in a fed-batch bioreactor can be inferred from data....

  10. Heat transfer phenomena relevant to severe accidents

    International Nuclear Information System (INIS)

    Dallman, R.J.; Duffey, R.B.

    1990-01-01

    A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression. 26 refs

  11. "Did You Climax or Are You Just Laughing at Me?" Rare Phenomena Associated With Orgasm.

    Science.gov (United States)

    Reinert, Anna E; Simon, James A

    2017-07-01

    The study of the human orgasm has shown a core set of physiologic and psychological symptoms experienced by most individuals. The study of normal sheds light on the abnormal and has spotlighted rare physical and psychological symptoms experienced by some individuals in association with orgasm. These phenomena are rare and, as is typical of rare phenomena, their documentation in the medical literature is largely confined to case studies. To identify peri-orgasmic phenomena, defined as unusual physical or psychological symptoms subjectively experienced by some individuals as part of the orgasm response, distinct from the usual or normal orgasm response. A list of peri-orgasmic phenomena was made with help from sexual health colleagues and, using this list as a foundation, a literature search was performed of articles published in English. Publications included in this review report on physical or psychological phenomena at the time of orgasm that are distinct from psychological, whole-body, and genito-pelvic sensations commonly experienced at the time of orgasm. Cases of physical symptoms related to the physiology of sexual intercourse and not specifically to orgasm were excluded. Case studies of peri-orgasmic phenomena were reviewed, including cases describing cataplexy (weakness), crying, dysorgasmia, dysphoria, facial and/or ear pain, foot pain, headache, pruritus, laughter, panic attack, post-orgasm illness syndrome, seizures, and sneezing. The literature review confirms the existence of diverse and frequently replicated peri-orgasmic phenomena. The value of case studies is in the collection and recording of observations so that hypotheses can be formed about the observed phenomena. Accordingly, this review could inspire further research on the neurophysiologic mechanisms of orgasm. Reinert AE, Simon JA. "Did You Climax or Are You Just Laughing at Me?" Rare Phenomena Associated With Orgasm. Sex Med Rev 2017;5:275-281. Copyright © 2017 International Society for

  12. Elementary particle physics and high energy phenomena. Final technical report

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; Alwis, S.P. de; Degrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1996-06-01

    This report covers progress made by Experimental Group 1 (Task A1). Brief summaries are given for the research in each of the following areas: (1) study of the properties of the Z 0 with the SLD detector; (2) the KTeV project: studies of CP violation; (4) detector development activities; (5) the B-Factory program; and (6) the NLC program

  13. Effects of peripheral physical phenomena on ECE spectra

    International Nuclear Information System (INIS)

    Airoldi, A.; Ramponi, G.

    1993-01-01

    In large fusion Tokamaks the measurement of the Electron Cyclotron Emission (ECE) from the low field side, perpendicularly viewing chord, is by now a standard way of obtaining the radial electron temperature profile. In high temperature plasmas the condition of large optical thickness for the second harmonic X-mode may be easily satisfied even for frequencies corresponding to the edge plasma region, allowing the temperature profile to be inferred. Recent experimental observations of enhanced emission at frequencies associated with the extreme edge of the profile in H-mode JET plasmas have been interpreted as the effect of a small fraction of suprathermal electrons. It is well known that the ECE spectra are very sensitive to the presence of non-thermal electron components, thus it is important to interpret the ECE signals as an indication of the possible deviation of the electron distribution function from a 'pure' Maxwellian and to discern under which conditions they are a good measure of the plasma thermal energy. (author) 3 refs., 6 figs

  14. Orthogonal polarization in lasers physical phenomena and engineering applications

    CERN Document Server

    Zhang, Shulian

    2013-01-01

    This practical book summarizes the latest research results of orthogonally polarized lasers, birefringence laser cavities, and their applications. Coverage ranges from basic principles and technologies to the characteristics of different cavities and lasers to various measurement techniques. A number of figures, experimental designs, and measurement curves are included, helping readers gain a thorough understanding of the many applications in modern engineering and start their own projects. Many types of relevant lasers (Helium/Neon lasers, Nd:YAG lasers, laser diodes, etc.) are also discussed

  15. Solid state physics: magnetic phenomena. Final report, 1961--1975

    International Nuclear Information System (INIS)

    Bowers, R.; Silsbee, R.H.

    1976-01-01

    Research activities centered at Cornell University in: (1) electron spin resonance and (2) the electronic transport properties of metals, are described. A list of 150 publications and technical reports published by this group since 1958 is included

  16. Towards High Resolution Numerical Algorithms for Wave Dominated Physical Phenomena

    Science.gov (United States)

    2009-01-30

    Modelling and Numerical Analysis, 40(5):815-841, 2006. [31] Michael Dumbser, Martin Kaser, and Eleuterio F. Toro. An arbitrary high-order Discontinuous...proximation of PML, SIAM J. Numer. Anal., 41 (2003), pp. 287-305. [60] E. BECACHE, S. FAUQUEUX, AND P. JOLY , Stability of perfectly matched layers, group...time-domain performance analysis, IEEE Trans, on Magnetics, 38 (2002), pp. 657- 660. [64] J. DIAZ AND P. JOLY , An analysis of higher-order boundary

  17. Large X Hadron Physics and Correlations with Central Region Phenomena

    CERN Multimedia

    2002-01-01

    The experiment uses a forward double-septum magnetic spectrometer with acceptance of @+~150~mrad to study the production of multiparticle systems. The system of mini-drift MWPC's has a processor which enables real-time selection of different multiplicities. The 32-cell Cherenkov counters along with the T.O.F. system allow the identification and separation of @p's, K's and p's over a large momentum range. A 3~m~x~3~m shower counter is installed to measure @p|0's and @g's traversing the spectrometer. \\\\ \\\\ A magnetic spectrometer installed at 90|0 measures identified single particles (T.O.F. and aerogel Cherenkov counters) and permits the measurement of flavour correlations with the forward spectrometer. Momentum selection of the 90|0 particles is incorporated in the trigger. .in +3 The experiment is data taking and studying such topics as 1) Production of @L^c|+ @A @L@p|+@p|+@p|- @A pK|-@p|+ 2) Glueball search in diffractive production of p @A pK|0^sK@+@p, pK|0^sK|0^s, p@L@L, etc... 3) p@*, pp comparison inclu...

  18. Constructive Models of Discrete and Continuous Physical Phenomena

    Science.gov (United States)

    2014-02-08

    BOURKE , T., CAILLAUD, B., AND POUZET, M. The fundamentals of hybrid systems modelers. Journal of Computer and System Sciences 78, 3 (2012), 877–910...8. BENVENISTE, A., BOURKE , T., CAILLAUD, B., AND POUZET, M. Index theory for hy- brid DAE systems (abstract and slides). In Synchronous Programming

  19. Nonlinear phenomena in the plasmafocus

    International Nuclear Information System (INIS)

    Krompholz, H.; Haas, C.R.; Herziger, G.; Michel, L.; Neff, W.; Noll, R.; Schmitt, K.; Weikl, B.

    1984-01-01

    Observed modulation effects in the plasma density and in the distribution of accelerated particles are strong indications for nonlinear wave-wave and wave-particles interactions as basic physical mechanisms in the plasmafocus. Plasma dynamics and the distribution of particles emitted from the plasmafocus have been investigated with high spatial (10 μm) and temporal (down to 20 ps) resolution at a 1.6 kJ Mather-type device. By controlling the plasma ignition in this device, a homogeneous plasma layer is developing leading to reproducible operation. Schilieren pictures using a mode locked dye laser show regular density modulations of the plasma during collapse and compression phase with wavelengths smaller than 100 μm. The formation of these structures is accompanied by the emission of superthermal IR radiation pointing to the Lower Hybrid Drift Instability as one of the mechanisms initiating the transfer of magnetic energy into the plasma and the efficient particle acceleration up to energies of several MeV

  20. Theoretical and experimental notes on noise phenomena of KUR

    International Nuclear Information System (INIS)

    Kishida, Kuniharu

    1980-01-01

    The classification of global or local noise is important in reactor noise analysis. The term of ''global'' or ''local'' corresponds to that of ''system size'' or ''cell size'' in statistical physics. On the other hand, point model or phase space description is used in time series analysis. If a time series model describing spatial behavior is established, it will serve to reactor diagnosis. The noise phenomena of KUR are discussed from these points of view. In other words, from experimental results, the point reactor picture is reasonable to neutronic aspect but quantitative problem remains in coolant temperature fluctuations. By taking into account a diffusion type model, the spatial dependence is discussed for the problem remaining in coolant temperature fluctuations. It is pointed out that the time-space picture is a crucial idea of reactor noise phenomena. (author)

  1. IUTAM Symposium on Fracture Phenomena in Nature and Technology

    CERN Document Server

    Carini, Angelo; Gei, Massimiliano; Salvadori, Alberto

    2014-01-01

    This book contains contributions presented at the IUTAM Symposium "Fracture Phenomena in Nature and Technology" held in Brescia, Italy, 1-5 July, 2012.The objective of the Symposium was fracture research, interpreted broadly to include new engineering and structural mechanics treatments of damage development and crack growth, and also large-scale failure processes as exemplified by earthquake or landslide failures, ice shelf break-up, and hydraulic fracturing (natural, or for resource extraction or CO2 sequestration), as well as small-scale rupture phenomena in materials physics including, e.g., inception of shear banding, void growth, adhesion and decohesion in contact and friction, crystal dislocation processes, and atomic/electronic scale treatment of brittle crack tips and fundamental cohesive properties.Special emphasis was given to multiscale fracture description and new scale-bridging formulations capable to substantiate recent experiments and tailored to become the basis for innovative computationa...

  2. Classifying prion and prion-like phenomena.

    Science.gov (United States)

    Harbi, Djamel; Harrison, Paul M

    2014-01-01

    The universe of prion and prion-like phenomena has expanded significantly in the past several years. Here, we overview the challenges in classifying this data informatically, given that terms such as "prion-like", "prion-related" or "prion-forming" do not have a stable meaning in the scientific literature. We examine the spectrum of proteins that have been described in the literature as forming prions, and discuss how "prion" can have a range of meaning, with a strict definition being for demonstration of infection with in vitro-derived recombinant prions. We suggest that although prion/prion-like phenomena can largely be apportioned into a small number of broad groups dependent on the type of transmissibility evidence for them, as new phenomena are discovered in the coming years, a detailed ontological approach might be necessary that allows for subtle definition of different "flavors" of prion / prion-like phenomena.

  3. Conditioning and breakdown phenomena in accelerator tubes

    International Nuclear Information System (INIS)

    Skorka, S.J.

    1979-01-01

    Important breakdown mechanisms in accelerator tubes are reviewed, and discharge phenomena in NEC tubes are deduced from the surface appearance of the electrodes and insulators of a used tube. Microphotos of these surfaces are shown

  4. Canister storage building natural phenomena design loads

    International Nuclear Information System (INIS)

    Tallman, A.M.

    1996-02-01

    This document presents natural phenomena hazard (NPH) loads for use in the design and construction of the Canister Storage Building (CSB), which will be located in the 200 East Area of the Hanford Site

  5. Didactic demonstrations of superfluidity and superconductivity phenomena

    International Nuclear Information System (INIS)

    Aniola-Jedrzejak, L.; Lewicki, A.; Pilipowicz, A.; Tarnawski, Z.; Bialek, H.

    1980-01-01

    In order to demonstrate to students phenomena of superfluidity and superconductivity a special helium cryostat has been constructed. The demonstrated effects, construction of the cryostat and the method of demonstration are described. (author)

  6. Transport phenomena an introduction to advanced topics

    CERN Document Server

    Glasgow, Larry A

    2010-01-01

    Enables readers to apply transport phenomena principles to solve advanced problems in all areas of engineering and science This book helps readers elevate their understanding of, and their ability to apply, transport phenomena by introducing a broad range of advanced topics as well as analytical and numerical solution techniques. Readers gain the ability to solve complex problems generally not addressed in undergraduate-level courses, including nonlinear, multidimensional transport, and transient molecular and convective transport scenarios. Avoiding rote memorization, the author em

  7. Evidence on Dropout Phenomena at Universities

    DEFF Research Database (Denmark)

    Larsen, Malene Rode; Sommersel, Hanna Bjørnøy; Larsen, Michael Søgaard

    This publication is an excerpt from the full technical report ‘Dropout Phenomena at Universities: What is Dropout? Why does Dropout Occur? What Can be Done by the Universities to Prevent or Reduce it? A systematic review’, which was completed in April 2013. The purpose of this excerpt is to present...... the knowledge we have on dropout phenomena at European universities in a short, precise and comprehensible form to allow readers to orient themselves on the subject in a more readable manner....

  8. Polarization phenomena in two body systems

    International Nuclear Information System (INIS)

    Thomas, G.H.

    1978-01-01

    A review is given of strong interactions at very low, low, intermediate, and high energies over the range 6.14 MeV to 150 GeV/c with regard to polarization phenomena in two-body systems. From the one-pion-exchange model to the theory that can possibly relate to all the phenomena, namely, quantum electrodynamics the review pointed to a unified explanation for the interactions under study. 46 references

  9. Debris Flows and Related Phenomena

    Science.gov (United States)

    Ancey, C.

    borrowed from geomorphology, geology, hydrology, soil mechanics, and fluid mechanics. The purpose of this chapter is to provide an introduction to physical aspects of debris flows, with specific attention directed to their rheological features. Despite attempts to provide a coherent view on the topic, coverage is incomplete and the reader is referred to a series of papers and books. Three books are particularly commendable [3-5]. Some review papers provide interesting overviews, introducing the newcomers to the field to the main concepts [6-8]. The background material in rheology can be found in Chaps. 2 and 3.

  10. Second DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    1989-01-01

    This conference has been organized into ten presentation sessions which include an overview of the DOE Natural Phenomena Guidelines, Seismic Analysis, Seismic Design, Modifying Existing Facilities, DOE Orders, Codes, and Standards (2 sessions), Seismic Hazard (2 sessions), and Probabilistic Risk Assessment (2 sessions). Two poster sessions were also included in the program to provide a different forum for communication of ideas. Over the past fourteen years, Lawrence Livermore National Laboratory, Nuclear Systems Safety Program, has been working with the US Department of Energy, Office of Safety Appraisals and their predecessors in the area of natural phenomena hazards. During this time we have developed seismic, extreme wind/tornado, and flood hazard models for DOE sites in the United States. Guidelines for designing and evaluating DOE facilities for natural phenomena have been developed and are in interim use throughout the DOE community. A series of state-of-the practice manuals have also been developed to aid the designers. All of this material is listed in the Natural Phenomena Hazards Bibliography included in these proceedings. This conference provides a mechanism to disseminate current information on natural phenomena hazards and their mitigation. It provides an opportunity to bring together members of the DOE community to discuss current projects, to share information, and to hear practicing members of the structural engineering community discuss their experiences from past natural phenomena, future trends, and any changes to building codes. Each paper or poster presented is included in these proceedings. We have also included material related to the luncheon and dinner talks

  11. Statistical physics

    CERN Document Server

    Sadovskii, Michael V

    2012-01-01

    This volume provides a compact presentation of modern statistical physics at an advanced level. Beginning with questions on the foundations of statistical mechanics all important aspects of statistical physics are included, such as applications to ideal gases, the theory of quantum liquids and superconductivity and the modern theory of critical phenomena. Beyond that attention is given to new approaches, such as quantum field theory methods and non-equilibrium problems.

  12. TOTEM Physics

    OpenAIRE

    Eggert, K; Anelli, G; Aurola, A; Avati, V; Berardi, V; Bottigli, U; Bozzo, M; Brucken, E; Buzzo, A; Calicchio, M; Capurro, F; Catanesi, M G; Ciocci, M A; Cuneo, S; Da Vià, C

    2006-01-01

    This article discusses the physics programme of the TOTEM experiment at the LHC. A new special beam optics with beta* = 90 m, enabling the measurements of the total cross-section, elastic pp scattering and diffractive phenomena already at early LHC runs, is explained. For this and the various other TOTEM running scenarios, the acceptances of the leading proton detectors and of the forward tracking stations for some physics processes are described.

  13. TOTEM physics

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, G.; Aurola, A.; Avati, V.; Berardi, V.; Bottigli, U.; Bozzo, M.; Brucken, E.; Buzzo, A.; Calicchio, M.; Capurro, F.; Catanesi, M.G.; Ciocci, M.A.; Cuneo, S.; Da Vi' a, C.; Deile, M.; Dimovasili, E.; Eggert, K.; Eraluoto, M.; Ferro, F.; Giachero, A.; Hasi, J.; Haug, F.; Heino, J.; Hilden, T.; Jarron, P.; Kalliopuska, J.; Kaspar, J.; Kok, A.; Kundrat, V.; Kurvinen, K.; Lami, S.; Lamsa, J.; Latino, G.; Lauhakangas, R.; Lippmaa, E.; Lippmaa, J.; Lokajfeek, M.; LoVetere, M.; Macina, D.; Macri, M.; Meucci, M.; Minutoli, S.; Morelli, A.; Musico, P.; Negri, M.; Niewiadomski, H.; Noschis, E.; Ojala, J.; Oljemark, F.; Orava, R.; Oriunno, M.; Osterberg, K.; Paoletti, R.; Perrot, A.L.; Radermacher, E.; Radicioni, E.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Rummel, A.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Saramad, S.; Sauli, F.; Scribano, A.; Sette, G.; Smotlacha, J.; Snoeys, W.; Taylor, C.; Toppinen, A.; Trummal, A.; Turini, N.; Van Remortel, N.; Verardo, L.; Verdier, A.; Watts, S.; Whitmore, J

    2005-07-01

    This article discusses the physics programme of the TOTEM experiment at the LHC (Large Hadron Collider in CERN). A new special beam optics with {beta}{sup *} 90 m (betatron value), enabling the measurements of the total cross-section, elastic pp scattering and diffractive phenomena already at early LHC runs, is explained. For this and the various other TOTEM running scenarios, the acceptances of the leading proton detectors and of the forward tracking stations for some physics processes are described. (authors)

  14. What is a surprise earthquake? The example of the 2002, San Giuliano (Italy event

    Directory of Open Access Journals (Sweden)

    M. Mucciarelli

    2005-06-01

    Full Text Available Both in scientific literature and in the mass media, some earthquakes are defined as «surprise earthquakes». Based on his own judgment, probably any geologist, seismologist or engineer may have his own list of past «surprise earthquakes». This paper tries to quantify the underlying individual perception that may lead a scientist to apply such a definition to a seismic event. The meaning is different, depending on the disciplinary approach. For geologists, the Italian database of seismogenic sources is still too incomplete to allow for a quantitative estimate of the subjective degree of belief. For seismologists, quantification is possible defining the distance between an earthquake and its closest previous neighbor. Finally, for engineers, the San Giuliano quake could not be considered a surprise, since probabilistic site hazard estimates reveal that the change before and after the earthquake is just 4%.

  15. Using LabVIEW for Applying Mathematical Models in Representing Phenomena

    Science.gov (United States)

    Faraco, G.; Gabriele, L.

    2007-01-01

    Simulations make it possible to explore physical and biological phenomena, where conducting the real experiment is impracticable or difficult. The implementation of a software program describing and simulating a given physical situation encourages the understanding of a phenomenon itself. Fifty-nine students, enrolled at the Mathematical Methods…

  16. Highlights of papers presented at the workshop on cold fusion phenomena

    International Nuclear Information System (INIS)

    1989-09-01

    This report contains highlights of formal oral papers presented at the Workshop on Cold Fusion Phenomena, hosted by Los Alamos National Laboratory and held May 23--25, 1989, in Santa Fe, New Mexico. General topics covered are: physics of fusion reactions; neutron and gamma-ray spectroscopy; colorimetry; and applicable condensed-matter physics, electrochemistry, and analytical chemistry

  17. Risk, surprises and black swans fundamental ideas and concepts in risk assessment and risk management

    CERN Document Server

    Aven, Terje

    2014-01-01

    Risk, Surprises and Black Swans provides an in depth analysis of the risk concept with a focus on the critical link to knowledge; and the lack of knowledge, that risk and probability judgements are based on.Based on technical scientific research, this book presents a new perspective to help you understand how to assess and manage surprising, extreme events, known as 'Black Swans'. This approach looks beyond the traditional probability-based principles to offer a broader insight into the important aspects of uncertain events and in doing so explores the ways to manage them.

  18. Geochemical modelling: what phenomena are missing

    International Nuclear Information System (INIS)

    Jacquier, P.

    1989-12-01

    In the framework of safety assessment of radioactive waste disposal, retention phenomena are usually taken into account by the Kd concept. It is well recognized that this concept is not enough for safety assessment models, because of the several and strong assumptions which are involved in this kind of representation. One way to have a better representation of the retention phenomena, is to substitute for this Kd concept an explicit description of geochemical phenomena and then couple transport codes with geochemical codes in a fully or a two-step procedure. We use currently such codes, but the scope of this paper is to display the limits today of the geochemical modelling in connection with sites analysis for deep disposal. In this paper, we intend to give an overview of phenomena which are missing in the geochemical models, or which are not completely introduced in the models. We can distinguish, on one hand phenomena for which modelling concepts exist such as adsorption/desorption and, on the other hand, phenomena for which modelling concepts do not exist for the moment such as colloids, and complexation by polyelectrolyte solutions (organics). Moreover we have to take care of very low concentrations of radionuclides, which can be expected from the leaching processes in the repository. Under those conditions, some reactions may not occur. After a critical review of the involved phenomena, we intend to stress the main directions of the wishful evolution of the geochemical modelling. This evolution should improve substantially the quality of the above-mentioned site assessments

  19. Analysis and design of Fuel Cycle Plant for natural phenomena hazards

    International Nuclear Information System (INIS)

    Horsager, B.K.

    1985-01-01

    A description of the Design Basis and the analysis and design methods used for natural phenomena at the Fuel Cycle Plant at Hanford, Washington is presented. A physical description of the main process facility and the auxiliary emergency and support facilities is given. The mission of the facility is presented and a brief description of the processes which will take place within the facility is given. The Design Criteria and design bases for natural phenomena including tornados, earthquakes and volcanic eruptions are described

  20. Transport phenomena and drying of solids and particulate materials

    CERN Document Server

    Lima, AG

    2014-01-01

    The purpose of this book, Transport Phenomena and Drying of Solids and Particulate Materials, is to provide a collection of recent contributions in the field of heat and mass transfer, transport phenomena, drying and wetting of solids and particulate materials. The main benefit of the book is that it discusses some of the most important topics related to the heat and mass transfer in solids and particulate materials. It includes a set of new developments in the field of basic and applied research work on the physical and chemical aspects of heat and mass transfer phenomena, drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional c...

  1. Auroral and sub-auroral phenomena: an electrostatic picture

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2010-02-01

    Full Text Available Many auroral and sub-auroral phenomena are manifestations of an underlying magnetosphere-ionosphere coupling. In the electrostatic perspective the associated auroral current circuit describes how the generator (often in the magnetosphere is connected to the load (often in the ionosphere through field-aligned currents. The present paper examines the generic properties of the current continuity equation that characterizes the auroral circuit. The physical role of the various elements of the current circuit is illustrated by considering a number of magnetospheric configurations, various auroral current-voltage relations, and different types of behaviour of the ionospheric conductivity. Based on realistic assumptions concerning the current-voltage relation and the ionospheric conductivity, a comprehensive picture of auroral and sub-auroral phenomena is presented, including diffuse aurora, discrete auroral arcs, black aurora, and subauroral ion drift. The electrostatic picture of field-aligned potential differences, field-aligned currents, ionospheric electric fields and plasma drift, and spatial scales for all these phenomena is in qualitative agreement with observations.

  2. Flow reduction due to degassing and redissolution phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, C. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    At the Stripa mine in Sweden, flow and transport experiments in a water-saturated fractured granite were conducted to investigate techniques for site characterization for a geologic nuclear waste repository. In the Simulated Drift Experiment, measured water inflow to an excavated drift with pressure held at 1 bar was only 1/9th the value expected based on inflow to boreholes with pressure held at 2.7 bars. Several physical and chemical mechanisms were hypothesized to be responsible for this reduction in flow. One possibility is that significant degassing of dissolved nitrogen takes place between 2.7 and 1 bars, credating a two-phase regime with an accompanying decrease in fluid mobility, resulting in a decrease in flow to the drift. To investigate this process, theoretical studies on degassing and redissolution phenomena have been carried out, beginning with an idealized model which yields a simple analytical solution, then relaxing some of the simplifying assumptions and using TOUGH2 to study the phenomena numerically. In conjunction with these theoretical studies, laboratory experiments on flow and degassing in transparent fracture replicas are being carried out, and are being used to check the modeling approach. We need to develop a fundamental understanding of degassing and redissolution in particular and two-phase flow phenomena in general for flow in fractures and fracture networks, in order to successfully model conditions around a nuclear waste repository, where long time and large space scales may preclude conclusive field experiments.

  3. Jump phenomena. [large amplitude responses of nonlinear systems

    Science.gov (United States)

    Reiss, E. L.

    1980-01-01

    The paper considers jump phenomena composed of large amplitude responses of nonlinear systems caused by small amplitude disturbances. Physical problems where large jumps in the solution amplitude are important features of the response are described, including snap buckling of elastic shells, chemical reactions leading to combustion and explosion, and long-term climatic changes of the earth's atmosphere. A new method of rational functions was then developed which consists of representing the solutions of the jump problems as rational functions of the small disturbance parameter; this method can solve jump problems explicitly.

  4. Searches for New Phenomena with the ATLAS detector

    CERN Document Server

    ATLAS Collaboration; The ATLAS collaboration

    2017-01-01

    Many theories beyond the Standard Model (BSM) predict new phenomena accessible by the LHC which prevent the need of fine-tuning of the Higgs Boson mass or expand the gauge sectors of the SM to name a few. Searches for new physics models are performed using the ATLAS experiment at the LHC focusing on exotic signatures that can be realized in serval BSM theories. The results reported do not touch on Dark Matter signatures and use the pp collision data sample collected in 2015 and 2016 by the ATLAS detector at the LHC with a centre-of-mass energy of 13 TeV.

  5. Search for new phenomena with the CDF detector

    International Nuclear Information System (INIS)

    Azzi, P.

    1997-05-01

    We present the results of the searches for new phenomena in pp collisions at √s=1.8 TeV with the CDF detector using the full data sample of 110 pb -1 collected between 1992 and 1995. We have searched for new physics in events with two photons, testing some of the hypotheses proposed to explain the appearance of the CDF eeγγ E T event. New results on the search for a heavy neutral scalar object, charged Higgs bosons (H ± ) and the scalar top quark are presented. Finally we summarize the CDF results on the search for third generation leptoquarks

  6. Interference phenomena at backscattering by ice crystals of cirrus clouds.

    Science.gov (United States)

    Borovoi, Anatoli; Kustova, Natalia; Konoshonkin, Alexander

    2015-09-21

    It is shown that light backscattering by hexagonal ice crystals of cirrus clouds is formed within the physical-optics approximation by both diffraction and interference phenomena. Diffraction determines the angular width of the backscattering peak and interference produces the interference rings inside the peak. By use of a simple model for distortion of the pristine hexagonal shape, we show that the shape distortion leads to both oscillations of the scattering (Mueller) matrix within the backscattering peak and to a strong increase of the depolarization, color, and lidar ratios needed for interpretation of lidar signals.

  7. Introduction to wave scattering, localization, and mesoscopic phenomena

    CERN Document Server

    Sheng, Ping

    1995-01-01

    This book gives readers a coherent picture of waves in disordered media, including multiple scattered waves. The book is intended to be self-contained, with illustrated problems and solutions at the end of each chapter to serve the double purpose of filling out the technical and mathematical details and giving the students exercises if used as a course textbook.The study of wave behavior in disordered media has applications in:Condensed matter physics (semi and superconductor nanostructures and mesoscopic phenomena)Materials science/analytical chemistry (analysis of composite and crystalline structures and properties)Optics and electronics (microelectronic and optoelectronic devices)Geology (seismic exploration of Earths subsurface)

  8. [Spiritual phenomena occurring in everybody and health].

    Science.gov (United States)

    Krsiak, M

    2008-01-01

    The past several years have seen an explosion of research in the area of spirituality and health. However, confusion and incomprehension of the conception of spirituality (e.g. confounding spirituality with various conventional views on religiousness) hampers better understanding in this area. The present paper proposes definition of spiritual phenomena in man based on natural epistemological and instrumental criteria (whether a certain phenomenon can be objectively known and evoked): spiritual phenomena in man are those, which cannot be objectively known nor evoked, but which act (e.g., love, idea). Spiritual phenomena can be really known only in the self ("in spirit"). Objectively known can be only manifestations of spiritual phenomena. Some attributes of love (e.g. its personal uniqueness) or ideas (e.g., sense of own life) whose satisfaction appears to be important for health are briefly outlined. A review of some frequently cited recent papers investigating the role of spirituality in health and discussion of frequent pitfalls in this area is given. Spirituality is a universal human phenomenon. All human beings, secular or religious, encounter with spiritual phenomena. Although the present conception of spirituality distances from some conventional views on religiousness, it is not atheistic. On the contrary, it accommodates the basic religious concept "God is love". Conceptual clarification is essential for further progress in the study of impact of spirituality on health.

  9. Surprise Gift” Purchases of Small Electric Appliances: A Pilot Study

    NARCIS (Netherlands)

    J. Vanhamme (Joëlle); C.J.P.M. de Bont (Cees)

    2005-01-01

    textabstractUnderstanding decision-making processes for gifts is of strategic importance for companies selling small electrical appliances as gifts account for a large part of their sales. Among all gifts, the ones that are surprising are the most valued by recipients. However, research about

  10. Dealing with unexpected events on the flight deck : A conceptual model of startle and surprise

    NARCIS (Netherlands)

    Landman, H.M.; Groen, E.L.; Paassen, M.M. van; Bronkhorst, A.W.; Mulder, M.

    2017-01-01

    Objective: A conceptual model is proposed in order to explain pilot performance in surprising and startling situations. Background: Today’s debate around loss of control following in-flight events and the implementation of upset prevention and recovery training has highlighted the importance of

  11. Bagpipes and Artichokes: Surprise as a Stimulus to Learning in the Elementary Music Classroom

    Science.gov (United States)

    Jacobi, Bonnie Schaffhauser

    2016-01-01

    Incorporating surprise into music instruction can stimulate student attention, curiosity, and interest. Novelty focuses attention in the reticular activating system, increasing the potential for brain memory storage. Elementary ages are ideal for introducing novel instruments, pieces, composers, or styles of music. Young children have fewer…

  12. The Educational Philosophies of Mordecai Kaplan and Michael Rosenak: Surprising Similarities and Illuminating Differences

    Science.gov (United States)

    Schein, Jeffrey; Caplan, Eric

    2014-01-01

    The thoughts of Mordecai Kaplan and Michael Rosenak present surprising commonalities as well as illuminating differences. Similarities include the perception that Judaism and Jewish education are in crisis, the belief that Jewish peoplehood must include commitment to meaningful content, the need for teachers to teach from a position of…

  13. Models of Automation surprise : results of a field survey in aviation

    NARCIS (Netherlands)

    De Boer, Robert; Dekker, Sidney

    2017-01-01

    Automation surprises in aviation continue to be a significant safety concern and the community’s search for effective strategies to mitigate them are ongoing. The literature has offered two fundamentally divergent directions, based on different ideas about the nature of cognition and collaboration

  14. Decision-making under surprise and uncertainty: Arsenic contamination of water supplies

    Science.gov (United States)

    Randhir, Timothy O.; Mozumder, Pallab; Halim, Nafisa

    2018-05-01

    With ignorance and potential surprise dominating decision making in water resources, a framework for dealing with such uncertainty is a critical need in hydrology. We operationalize the 'potential surprise' criterion proposed by Shackle, Vickers, and Katzner (SVK) to derive decision rules to manage water resources under uncertainty and ignorance. We apply this framework to managing water supply systems in Bangladesh that face severe, naturally occurring arsenic contamination. The uncertainty involved with arsenic in water supplies makes the application of conventional analysis of decision-making ineffective. Given the uncertainty and surprise involved in such cases, we find that optimal decisions tend to favor actions that avoid irreversible outcomes instead of conventional cost-effective actions. We observe that a diversification of the water supply system also emerges as a robust strategy to avert unintended outcomes of water contamination. Shallow wells had a slight higher optimal level (36%) compare to deep wells and surface treatment which had allocation levels of roughly 32% under each. The approach can be applied in a variety of other cases that involve decision making under uncertainty and surprise, a frequent situation in natural resources management.

  15. Surprising results: HIV testing and changes in contraceptive practices among young women in Malawi

    Science.gov (United States)

    Sennott, Christie; Yeatman, Sara

    2015-01-01

    This study uses eight waves of data from the population-based Tsogolo la Thanzi study (2009–2011) in rural Malawi to examine changes in young women’s contraceptive practices, including the use of condoms, non-barrier contraceptive methods, and abstinence, following positive and negative HIV tests. The analysis factors in women’s prior perceptions of their HIV status that may already be shaping their behaviour and separates surprise HIV test results from those that merely confirm what was already believed. Fixed effects logistic regression models show that HIV testing frequently affects the contraceptive practices of young Malawian women, particularly when the test yields an unexpected result. Specifically, women who are surprised to test HIV positive increase their condom use and are more likely to use condoms consistently. Following an HIV negative test (whether a surprise or expected), women increase their use of condoms and decrease their use of non-barrier contraceptives; the latter may be due to an increase in abstinence following a surprise negative result. Changes in condom use following HIV testing are robust to the inclusion of potential explanatory mechanisms including fertility preferences, relationship status, and the perception that a partner is HIV positive. The results demonstrate that both positive and negative tests can influence women’s sexual and reproductive behaviours, and emphasise the importance of conceptualizing of HIV testing as offering new information only insofar as results deviate from prior perceptions of HIV status. PMID:26160156

  16. Surprise, Memory, and Retrospective Judgment Making: Testing Cognitive Reconstruction Theories of the Hindsight Bias Effect

    Science.gov (United States)

    Ash, Ivan K.

    2009-01-01

    Hindsight bias has been shown to be a pervasive and potentially harmful decision-making bias. A review of 4 competing cognitive reconstruction theories of hindsight bias revealed conflicting predictions about the role and effect of expectation or surprise in retrospective judgment formation. Two experiments tested these predictions examining the…

  17. The making of extraordinary psychological phenomena.

    Science.gov (United States)

    Lamont, Peter

    2012-01-01

    This article considers the extraordinary phenomena that have been central to unorthodox areas of psychological knowledge. It shows how even the agreed facts relating to mesmerism, spiritualism, psychical research, and parapsychology have been framed as evidence both for and against the reality of the phenomena. It argues that these disputes can be seen as a means through which beliefs have been formulated and maintained in the face of potentially challenging evidence. It also shows how these disputes appealed to different forms of expertise, and that both sides appealed to belief in various ways as part of the ongoing dispute about both the facts and expertise. Finally, it shows how, when a formal Psychology of paranormal belief emerged in the twentieth century, it took two different forms, each reflecting one side of the ongoing dispute about the reality of the phenomena. © 2012 Wiley Periodicals, Inc.

  18. Self field electromagnetism and quantum phenomena

    Science.gov (United States)

    Schatten, Kenneth H.

    1994-07-01

    Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.

  19. Vector (two-dimensional) magnetic phenomena

    International Nuclear Information System (INIS)

    Enokizono, Masato

    2002-01-01

    In this paper, some interesting phenomena were described from the viewpoint of two-dimensional magnetic property, which is reworded with the vector magnetic property. It shows imperfection of conventional magnetic property and some interested phenomena were discovered, too. We found magnetic materials had the strong nonlinearity both magnitude and spatial phase due to the relationship between the magnetic field strength H-vector and the magnetic flux density B-vector. Therefore, magnetic properties should be defined as the vector relationship. Furthermore, the new Barukhausen signal was observed under rotating flux. (Author)

  20. Incorporating interfacial phenomena in solidification models

    Science.gov (United States)

    Beckermann, Christoph; Wang, Chao Yang

    1994-01-01

    A general methodology is available for the incorporation of microscopic interfacial phenomena in macroscopic solidification models that include diffusion and convection. The method is derived from a formal averaging procedure and a multiphase approach, and relies on the presence of interfacial integrals in the macroscopic transport equations. In a wider engineering context, these techniques are not new, but their application in the analysis and modeling of solidification processes has largely been overlooked. This article describes the techniques and demonstrates their utility in two examples in which microscopic interfacial phenomena are of great importance.

  1. Arcing phenomena in fusion devices workshop

    International Nuclear Information System (INIS)

    Clausing, R.E.

    1979-01-01

    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included

  2. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    Silicone elastomers have been heavily investigated as candidates for dielectric elastomers and are as such almost ideal candidates with their inherent softness and compliance but they suffer from low dielectric permittivity. This shortcoming has been sought optimized by many means during recent...... years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we investigate the electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers. Two types...... of silicone elastomers are investigated and different types of breakdown are discussed. Furthermore the use of voltage stabilizers in silicone-based dielectric elastomers is investigated and discussed....

  3. Ordering phenomena in ABA triblock copolymer gels

    DEFF Research Database (Denmark)

    Reynders, K.; Mischenko, N.; Kleppinger, R.

    1997-01-01

    Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network). The lat......Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network...

  4. Third DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    1991-01-01

    This conference on Natural Phenomena Hazards Mitigation has been organized into 15 presentation, panel, and poster sessions. The sessions included an overview of activities at DOE Headquarters; natural phenomena hazards tasks underway for DOE; two sessions on codes, standards, orders, criteria, and guidelines; two sessions on seismic hazards; equipment qualification; wind; PRA and margin assessments; modifications, retrofit, and restart; underground structures with a panel discussion; seismic analysis; seismic evaluation and design; and a poster session. Individual projects are processed separately for the data bases

  5. CP violating phenomena and theoretical results

    International Nuclear Information System (INIS)

    Grimus, W.

    1987-01-01

    An introduction to CP violating phenomena is given and the standard model and its most popular low energy extensions in this context are reviewed. The discussion comprises the minimal supersymmetric extension of the standard model, left-right symmetry, the standard model with more than one Higgs doublet and gauged horizontal symmetries. (Author)

  6. Collision and interaction phenomena - a historical outline

    International Nuclear Information System (INIS)

    Radmaneche, R.

    1977-09-01

    Collisions and interactions have become important for the description of matter. The author presents an outline which deals with elastic and inelastic collisions, with strong interactions, electromagnetic interactions, weak interactions and gravitational interactions. It is shown that the description of such processes has developed parallel with the understanding of matter and with the mechanism of the phenomena. Current and unsolved problems are mentioned

  7. Transport phenomena in materials processing---1990

    International Nuclear Information System (INIS)

    Bishop, B.J.; Lior, N.; Lavine, A.; Flik, M.; Karwe, M.V.; Bergman, T.L.; Beckermann, C.; Charmchi, M.

    1990-01-01

    The papers contained in this volume represent a wide range of current research interests in processes such as food and polymer processing, casting, welding, machining, laser cutting, and superconductor processing. This volume includes papers presented in four sessions: Heat Transfer in Materials Processing; Thermal Phenomena in Superconductor Processing; Heat Transfer in Food and Polymer Processing; Heat Transfer in CAsting and Welding

  8. Homoclinic phenomena in the gravitational collapse

    International Nuclear Information System (INIS)

    Koiller, J.; Mello Neto, J.R.T. de; Soares, I.D.

    1984-01-01

    A class of Bianchi IX cosmological models is shown to have chaotic gravitational collapse, due to Poincare's homoclinic phenomena. Such models can be programmed so that for any given positive integer N (N=infinity included) the universe undergoes N non-periodic oscillations (each oscillation requiring a long time) before collapsing. For N=infinity the universe undergoes periodic oscillations. (Author) [pt

  9. Novel experimentally observed phenomena in soft matter

    Indian Academy of Sciences (India)

    The resulting flow is non-Newtonian and is characterized by features such as shear rate-dependent viscosities and nonzero normal stresses. This article begins with an introduction to some unusual flow properties displayed by soft matter. Experiments that report a spectrum of novel phenomena exhibited by these materials, ...

  10. Some Phenomena on Negative Inversion Constructions

    Science.gov (United States)

    Sung, Tae-Soo

    2013-01-01

    We examine the characteristics of NDI (negative degree inversion) and its relation with other inversion phenomena such as SVI (subject-verb inversion) and SAI (subject-auxiliary inversion). The negative element in the NDI construction may be" not," a negative adverbial, or a negative verb. In this respect, NDI has similar licensing…

  11. Hyperchaotic phenomena in dynamic decision making

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Mosekilde, Erik; Sterman, John David

    1992-01-01

    of this article is to show how the decision making behavior of real people in simulated corporate environments can lead to chaotic, hyperchaotic and higher-order hyperchaotic phenomena. Characteristics features of these complicated forms of behavior are analyzed with particular emphasis on an interesting form...

  12. DOE natural phenomena hazards mitigation conference: proceedings

    International Nuclear Information System (INIS)

    1985-10-01

    The conference includes sessions which present an overview of DOE programs, available codes, standards and criteria, examples of designs and upgrades from the DOE complex, lessons learned from past natural phenomena, ground motion, seismic evaluation of equipment, and applications of probabilistic risk assessment techniques to DOE facilities. Separate abstracts have been prepared for individual papers

  13. Interface-induced phenomena in magnetism

    NARCIS (Netherlands)

    Hellman, Frances; Hoffmann, A.; Tserkovnyak, Yaroslav; Beach, Geoffrey S.D.; Fullerton, Eric E.; Leighton, Chris; Macdonald, Allan H.; Ralph, Daniel C.; Arena, Dario A.; Dürr, Hermann A.; Fischer, Peter; Grollier, Julie; Heremans, Joseph P.; Jungwirth, Tomas; Kimel, Alexey V.; Koopmans, B.; Krivorotov, Ilya N.; May, Steven J.; Petford-Long, Amanda K.; Rondinelli, James M.; Samarth, Nitin; Schuller, Ivan K.; Slavin, Andrei N.; Stiles, Mark D.; Tchernyshyov, Oleg; Thiaville, André; Zink, Barry L.

    2017-01-01

    This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on

  14. Analysis of induction phenomena in thermonuclear experiments

    International Nuclear Information System (INIS)

    Deeds, W.E.; Dodd, C.V.

    1976-01-01

    Many of the problems involving transients induced by changing currents in the large coils of thermonuclear machines are identical to those arising in nondestructive testing by eddy currents. There are three chief methods used for calculating such induction phenomena: analytical boundary-value solutions, relaxation or iteration techniques, and model experiments. Some of the results obtained by each of these methods are described below

  15. Modelling of flow phenomena during DC casting

    NARCIS (Netherlands)

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an

  16. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Mateiu, Ramona Valentina; Skov, Anne Ladegaard

    2017-01-01

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we focus on the chloro propyl functionalized silicone elastomers prepared in Madsen et al[2] and we investigate the electrical...

  17. Simple classical approach to spin resonance phenomena

    DEFF Research Database (Denmark)

    Gordon, R A

    1977-01-01

    A simple classical method of describing spin resonance in terms of the average power absorbed by a spin system is discussed. The method has several advantages over more conventional treatments, and a number of important spin resonance phenomena, not normally considered at the introductory level...

  18. Transport phenomena in strongly correlated Fermi liquids

    International Nuclear Information System (INIS)

    Kontani, Hiroshi

    2013-01-01

    Comprehensive overview. Written by an expert of this topic. Provides the reader with current developments in the field. In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical point using a uniform approach. We also discuss spin related transport phenomena in strongly correlated systems. In many d- and f-electron systems, the spin current induced by the spin Hall effect is considerably greater because of the orbital degrees of freedom. This fact attracts much attention due to its potential application in spintronics. We discuss various novel charge, spin and heat transport phenomena in strongly correlated metals.

  19. Solar Phenomena Associated with "EIT Waves"

    Science.gov (United States)

    Biesecker, D. A.; Myers, D. C.; Thompson, B. J.; Hammer, D. M.; Vourlidas, A.

    2002-01-01

    In an effort to understand what an 'EIT wave' is and what its causes are, we have looked for correlations between the initiation of EIT waves and the occurrence of other solar phenomena. An EIT wave is a coronal disturbance, typically appearing as a diffuse brightening propagating across the Sun. A catalog of EIT waves, covering the period from 1997 March through 1998 June, was used in this study. For each EIT wave, the catalog gives the heliographic location and a rating for each wave, where the rating is determined by the reliability of the observations. Since EIT waves are transient, coronal phenomena, we have looked for correlations with other transient, coronal phenomena: X-ray flares, coronal mass ejections (CMEs), and metric type II radio bursts. An unambiguous correlation between EIT waves and CMEs has been found. The correlation of EIT waves with flares is significantly weaker, and EIT waves frequently are not accompanied by radio bursts. To search for trends in the data, proxies for each of these transient phenomena are examined. We also use the accumulated data to show the robustness of the catalog and to reveal biases that must be accounted for in this study.

  20. Computer simulation of phenomena in plasma via particles

    International Nuclear Information System (INIS)

    Alves, M.V.; Bittencourt, J.A.

    1988-06-01

    The method of plasma computer simulation via particles has become an efficient tool to investigate the time and spatial evolution of various physical phenomena in plasmas. This method is based on the study of the individual plasma particle motions interacting with one another and with the externally applied fields. Although fairly simple, it allows a non-linear analysis of complex plasma physical phenomena and to obtain diagnostics even for regions of the system where experimental measurements would be difficult to make. In this report, a general view of the electrostatic one-dimensional computer code ES1, originally developed by A. Bruce Langdon, is presented. The main mathematical artifice in this code is the use of a spatial grid in which various plasma particles are represented by ''superparticles'', using a given shape function. The principal characteristics of the model, the approximations made and the mathematical methods used to solve the equations involved, are described. The specification of the input parameters which characterize the system, the initial conditions and the graphic diagnostics which can be utilized, are also described. Results are presented illustrating graphically the behavior of the plasma oscillations, the two-stream instability and the beam-plasma instability. (author) [pt

  1. Observation of bifurcation phenomena in an electron beam plasma system

    International Nuclear Information System (INIS)

    Hayashi, N.; Tanaka, M.; Shinohara, S.; Kawai, Y.

    1995-01-01

    When an electron beam is injected into a plasma, unstable waves are excited spontaneously near the electron plasma frequency f pe by the electron beam plasma instability. The experiment on subharmonics in an electron beam plasma system was performed with a glow discharge tube. The bifurcation of unstable waves with the electron plasma frequency f pe and 1/2 f pe was observed using a double-plasma device. Furthermore, the period doubling route to chaos around the ion plasma frequency in an electron beam plasma system was reported. However, the physical mechanism of bifurcation phenomena in an electron beam plasma system has not been clarified so far. We have studied nonlinear behaviors of the electron beam plasma instability. It was found that there are some cases: the fundamental unstable waves and subharmonics of 2 period are excited by the electron beam plasma instability, the fundamental unstable waves and subharmonics of 3 period are excited. In this paper, we measured the energy distribution functions of electrons and the dispersion relation of test waves in order to examine the physical mechanism of bifurcation phenomena in an electron beam plasma system

  2. 2nd Workshop on Laser Interaction and Related Plasma Phenomena

    CERN Document Server

    Hora, Heinrich

    1972-01-01

    Paul Harteck Rensselaer Polytechnic Institute Troy, New York When the Maser and the Laser Were discovered, people were speculating if this was the beginning of a new page, or even a new chapter, in the Book of Physics. The Second Workshop on "Laser Interaction and Related Plasma Phenomena" held in Hartford made it clear that the perspective had changed, that people now question if the consequences of these discoveries constitute a new chapter, or possibly a new era in Physics. While the papers presented were all stimulating and of out­ standing quality, of special interest were the experiments which demonstrated that triggering of thermonuclear fusion by Laser techniques is indeed in the realm of the possible. Along these lines, I enjoy recalling an anecdote concerning the late F. G. Houtermans. I think that all who knew him will agree that he was an unusual genius and at the same time a very amusing colleague.

  3. Models of Automation Surprise: Results of a Field Survey in Aviation

    Directory of Open Access Journals (Sweden)

    Robert De Boer

    2017-09-01

    Full Text Available Automation surprises in aviation continue to be a significant safety concern and the community’s search for effective strategies to mitigate them are ongoing. The literature has offered two fundamentally divergent directions, based on different ideas about the nature of cognition and collaboration with automation. In this paper, we report the results of a field study that empirically compared and contrasted two models of automation surprises: a normative individual-cognition model and a sensemaking model based on distributed cognition. Our data prove a good fit for the sense-making model. This finding is relevant for aviation safety, since our understanding of the cognitive processes that govern human interaction with automation drive what we need to do to reduce the frequency of automation-induced events.

  4. Human Amygdala Tracks a Feature-Based Valence Signal Embedded within the Facial Expression of Surprise.

    Science.gov (United States)

    Kim, M Justin; Mattek, Alison M; Bennett, Randi H; Solomon, Kimberly M; Shin, Jin; Whalen, Paul J

    2017-09-27

    Human amygdala function has been traditionally associated with processing the affective valence (negative vs positive) of an emotionally charged event, especially those that signal fear or threat. However, this account of human amygdala function can be explained by alternative views, which posit that the amygdala might be tuned to either (1) general emotional arousal (activation vs deactivation) or (2) specific emotion categories (fear vs happy). Delineating the pure effects of valence independent of arousal or emotion category is a challenging task, given that these variables naturally covary under many circumstances. To circumvent this issue and test the sensitivity of the human amygdala to valence values specifically, we measured the dimension of valence within the single facial expression category of surprise. Given the inherent valence ambiguity of this category, we show that surprised expression exemplars are attributed valence and arousal values that are uniquely and naturally uncorrelated. We then present fMRI data from both sexes, showing that the amygdala tracks these consensus valence values. Finally, we provide evidence that these valence values are linked to specific visual features of the mouth region, isolating the signal by which the amygdala detects this valence information. SIGNIFICANCE STATEMENT There is an open question as to whether human amygdala function tracks the valence value of cues in the environment, as opposed to either a more general emotional arousal value or a more specific emotion category distinction. Here, we demonstrate the utility of surprised facial expressions because exemplars within this emotion category take on valence values spanning the dimension of bipolar valence (positive to negative) at a consistent level of emotional arousal. Functional neuroimaging data showed that amygdala responses tracked the valence of surprised facial expressions, unconfounded by arousal. Furthermore, a machine learning classifier identified

  5. Prediction, Expectation, and Surprise: Methods, Designs, and Study of a Deployed Traffic Forecasting Service

    OpenAIRE

    Horvitz, Eric J.; Apacible, Johnson; Sarin, Raman; Liao, Lin

    2012-01-01

    We present research on developing models that forecast traffic flow and congestion in the Greater Seattle area. The research has led to the deployment of a service named JamBayes, that is being actively used by over 2,500 users via smartphones and desktop versions of the system. We review the modeling effort and describe experiments probing the predictive accuracy of the models. Finally, we present research on building models that can identify current and future surprises, via efforts on mode...

  6. The effect of emotionally valenced eye region images on visuocortical processing of surprised faces.

    Science.gov (United States)

    Li, Shuaixia; Li, Ping; Wang, Wei; Zhu, Xiangru; Luo, Wenbo

    2018-05-01

    In this study, we presented pictorial representations of happy, neutral, and fearful expressions projected in the eye regions to determine whether the eye region alone is sufficient to produce a context effect. Participants were asked to judge the valence of surprised faces that had been preceded by a picture of an eye region. Behavioral results showed that affective ratings of surprised faces were context dependent. Prime-related ERPs with presentation of happy eyes elicited a larger P1 than those for neutral and fearful eyes, likely due to the recognition advantage provided by a happy expression. Target-related ERPs showed that surprised faces in the context of fearful and happy eyes elicited dramatically larger C1 than those in the neutral context, which reflected the modulation by predictions during the earliest stages of face processing. There were larger N170 with neutral and fearful eye contexts compared to the happy context, suggesting faces were being integrated with contextual threat information. The P3 component exhibited enhanced brain activity in response to faces preceded by happy and fearful eyes compared with neutral eyes, indicating motivated attention processing may be involved at this stage. Altogether, these results indicate for the first time that the influence of isolated eye regions on the perception of surprised faces involves preferential processing at the early stages and elaborate processing at the late stages. Moreover, higher cognitive processes such as predictions and attention can modulate face processing from the earliest stages in a top-down manner. © 2017 Society for Psychophysiological Research.

  7. Analysis of physiological signals for recognition of boredom, pain, and surprise emotions.

    Science.gov (United States)

    Jang, Eun-Hye; Park, Byoung-Jun; Park, Mi-Sook; Kim, Sang-Hyeob; Sohn, Jin-Hun

    2015-06-18

    The aim of the study was to examine the differences of boredom, pain, and surprise. In addition to that, it was conducted to propose approaches for emotion recognition based on physiological signals. Three emotions, boredom, pain, and surprise, are induced through the presentation of emotional stimuli and electrocardiography (ECG), electrodermal activity (EDA), skin temperature (SKT), and photoplethysmography (PPG) as physiological signals are measured to collect a dataset from 217 participants when experiencing the emotions. Twenty-seven physiological features are extracted from the signals to classify the three emotions. The discriminant function analysis (DFA) as a statistical method, and five machine learning algorithms (linear discriminant analysis (LDA), classification and regression trees (CART), self-organizing map (SOM), Naïve Bayes algorithm, and support vector machine (SVM)) are used for classifying the emotions. The result shows that the difference of physiological responses among emotions is significant in heart rate (HR), skin conductance level (SCL), skin conductance response (SCR), mean skin temperature (meanSKT), blood volume pulse (BVP), and pulse transit time (PTT), and the highest recognition accuracy of 84.7% is obtained by using DFA. This study demonstrates the differences of boredom, pain, and surprise and the best emotion recognizer for the classification of the three emotions by using physiological signals.

  8. Spatiotemporal neural characterization of prediction error valence and surprise during reward learning in humans.

    Science.gov (United States)

    Fouragnan, Elsa; Queirazza, Filippo; Retzler, Chris; Mullinger, Karen J; Philiastides, Marios G

    2017-07-06

    Reward learning depends on accurate reward associations with potential choices. These associations can be attained with reinforcement learning mechanisms using a reward prediction error (RPE) signal (the difference between actual and expected rewards) for updating future reward expectations. Despite an extensive body of literature on the influence of RPE on learning, little has been done to investigate the potentially separate contributions of RPE valence (positive or negative) and surprise (absolute degree of deviation from expectations). Here, we coupled single-trial electroencephalography with simultaneously acquired fMRI, during a probabilistic reversal-learning task, to offer evidence of temporally overlapping but largely distinct spatial representations of RPE valence and surprise. Electrophysiological variability in RPE valence correlated with activity in regions of the human reward network promoting approach or avoidance learning. Electrophysiological variability in RPE surprise correlated primarily with activity in regions of the human attentional network controlling the speed of learning. Crucially, despite the largely separate spatial extend of these representations our EEG-informed fMRI approach uniquely revealed a linear superposition of the two RPE components in a smaller network encompassing visuo-mnemonic and reward areas. Activity in this network was further predictive of stimulus value updating indicating a comparable contribution of both signals to reward learning.

  9. Renormalization group theory of critical phenomena

    International Nuclear Information System (INIS)

    Menon, S.V.G.

    1995-01-01

    Renormalization group theory is a framework for describing those phenomena that involve a multitude of scales of variations of microscopic quantities. Systems in the vicinity of continuous phase transitions have spatial correlations at all length scales. The renormalization group theory and the pertinent background material are introduced and applied to some important problems in this monograph. The monograph begins with a historical survey of thermal phase transitions. The background material leading to the renormalization group theory is covered in the first three chapters. Then, the basic techniques of the theory are introduced and applied to magnetic critical phenomena in the next four chapters. The momentum space approach as well as the real space techniques are, thus, discussed in detail. Finally, brief outlines of applications of the theory to some of the related areas are presented in the last chapter. (author)

  10. Transport phenomena in strongly correlated Fermi liquids

    CERN Document Server

    Kontani, Hiroshi

    2013-01-01

    In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, \\tau, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical poi...

  11. Coherence Phenomena in Coupled Optical Resonators

    Science.gov (United States)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  12. Tunable caustic phenomena in electron wavefields

    Energy Technology Data Exchange (ETDEWEB)

    Tavabi, Amir Hossein, E-mail: a.tavabi@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); Migunov, Vadim; Dwyer, Christian; Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); Pozzi, Giulio [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); Department of Physics and Astronomy, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy)

    2015-10-15

    Novel caustic phenomena, which contain fold, butterfly and elliptic umbilic catastrophes, are observed in defocused images of two approximately collinear oppositely biased metallic tips in a transmission electron microscope. The observed patterns depend sensitively on defocus, on the applied voltage between the tips and on their separation and lateral offset. Their main features are interpreted on the basis of a projected electrostatic potential model for the electron-optical phase shift. - Highlights: • Electron-optical caustics are observed in defocused images of biased metallic tips. • The caustics depend on defocus, on the bias between the tips and on their separation. • The setup offers the flexibility to study a wide variety of caustic phenomena.

  13. Basic transport phenomena in materials engineering

    CERN Document Server

    Iguchi, Manabu

    2014-01-01

    This book presents the basic theory and experimental techniques of transport phenomena in materials processing operations. Such fundamental knowledge is highly useful for researchers and engineers in the field to improve the efficiency of conventional processes or develop novel technology. Divided into four parts, the book comprises 11 chapters describing the principles of momentum transfer, heat transfer, and mass transfer in single phase and multiphase systems. Each chapter includes examples with solutions and exercises to facilitate students’ learning. Diagnostic problems are also provided at the end of each part to assess students’ comprehension of the material.  The book is aimed primarily at students in materials science and engineering. However, it can also serve as a useful reference text in chemical engineering as well as an introductory transport phenomena text in mechanical engineering. In addition, researchers and engineers engaged in materials processing operations will find the material use...

  14. Coherent topological phenomena in protein folding

    DEFF Research Database (Denmark)

    Bohr, Henrik; Brunak, Søren; Bohr, Jakob

    1997-01-01

    A theory is presented for coherent topological phenomena in protein dynamics with implications for protein folding and stability. We discuss the relationship to the writhing number used in knot diagrams of DNA. The winding state defines a long-range order along the backbone of a protein with long......-range excitations, `wring' modes, that play an important role in protein denaturation and stability. Energy can be pumped into these excitations, either thermally or by an external force....

  15. Workshop on Nonlinear Phenomena in Complex Systems

    CERN Document Server

    1989-01-01

    This book contains a thorough treatment of neural networks, cellular-automata and synergetics, in an attempt to provide three different approaches to nonlinear phenomena in complex systems. These topics are of major interest to physicists active in the fields of statistical mechanics and dynamical systems. They have been developed with a high degree of sophistication and include the refinements necessary to work with the complexity of real systems as well as the more recent research developments in these areas.

  16. Role of spinning electrons in paramagnetic phenomena

    International Nuclear Information System (INIS)

    Bose, D.M.

    1986-06-01

    An attempt is made to explain paramagnetic phenomena without assuming the orientation of a molecule or ion in a magnetic field. Only the spin angular momentum is assumed to be responsible. A derivative of the Gurie-Langevin law and the magnetic moments of ions are given as a function of the number of electrons in an inner, incomplete shell. An explanation of Gerlach's experiments with iron and nickel vapors is attempted. An explanation of magnetomechanical experiments with ferromagnetic elements is given

  17. From critical phenomena to gauge gields

    International Nuclear Information System (INIS)

    Le Bellac, M.

    1988-01-01

    In this book the author gives an introduction to the following questions: critical phenomena (Landau theory, renormalization group, two dimensional models); Perturbation theory and renormalization, scalar euclidian field (Feynman diagrams, Callan-Symanzik equations); Quantum theory of scalar fields (path integrals in quantum mechanics and statistical mechanics, green functions and S matrix, quantization of Klein-Gordon field); Gauge theories (quantization of Dirac field and electromagnetic field, quantum electrodynamics, non-abelian gauge theories) [fr

  18. Pseudogap phenomena in ultracold atomic Fermi gases

    OpenAIRE

    Chen, Qijin; Wang, Jibiao

    2014-01-01

    The pairing and superfluid phenomena in a two-component ultracold atomic Fermi gas is an analogue of Cooper pairing and superconductivity in an electron system, in particular, the high $T_c$ superconductors. Owing to the various tunable parameters that have been made accessible experimentally in recent years, atomic Fermi gases can be explored as a prototype or quantum simulator of superconductors. It is hoped that, utilizing such an analogy, the study of atomic Fermi gases may shed light to ...

  19. Occult Phenomena in Sherlock Holmes the Movie

    OpenAIRE

    NAMAZCARRA, CHRIESHER

    2014-01-01

    Keywords: Occult phenomena, Sherlock Holmes, movie. Lately, it is not difficult for people to find occult practices. There are many television programs and movie which air mystical programme aggressively to raise the rating and attract the viewers. A movie that raise occultism theme is Sherlock Holmes, the Movie. This movie tells about the struggle of detective Sherlock Holmes to fight the black magic power of Lord Blackwood.To carry out the study, the theories of Occultism such as the secrec...

  20. Investigation of oscillating airfoil shock phenomena

    OpenAIRE

    Giordano , Daniel; Fleeter , Sanford

    1992-01-01

    Fundamental experiments were performed in an unsteady flow water table facility to investigate and quantify the unsteady aerodynamics of a biconvex airfoil executing torsion mode oscillations at realistic reduced frequencies. A computer-based image enhancement system was used to measure the oscillating supersonic and transonic shock flow phenomena. By utilizing the hydraulic analogy to compare experimental results with a linear theoretical prediction, magnitude and phase relationships for the...

  1. Conformal field theories and critical phenomena

    International Nuclear Information System (INIS)

    Xu, Bowei

    1993-01-01

    In this article we present a brief review of the conformal symmetry and the two dimensional conformal quantum field theories. As concrete applications of the conformal theories to the critical phenomena in statistical systems, we calculate the value of central charge and the anomalous scale dimensions of the Z 2 symmetric quantum chain with boundary condition. The results are compatible with the prediction of the conformal field theories

  2. An interpretation of passive containment cooling phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bum-Jin [Ministry of Science & Technology, Kyunggi-Do (Korea, Democratic People`s Republic of); Kang, Chang-Sun, [Seoul National Univ. (Korea, Democratic People`s Republic of)

    1995-09-01

    A simplified interpretation model for the cooling capability of the Westinghouse type PCCS is proposed in this paper. The PCCS domain was phenomenologically divided into 3 regions; water entrance effect region, asymptotic region, and air entrance effect region. The phenomena in the asymptotic region is focused in this paper. Due to the very large height to thickness ratio of the water film, the length of the asymptotic region is estimated to be over 90% of the whole domain. Using the analogy between heat and mass transfer phenomena in a turbulent situation, a new dependent variable combining temperature and vapor mass fraction was defined. The similarity between the PCCS phenomena, which contains the sensible and latent heat transfer, and the buoyant air flow on a vertical heated plate is derived. The modified buoyant coefficient and thermal conductivity were defined. Using these newly defined variable and coefficients, the modified correlation for the interfacial heat fluxes and the ratios of latent heat transfer to sensible heat transfer is established. To verify the accuracy of the correlation, the results of this study were compared with the results of other numerical analyses performed for the same configuration and they are well within the range of 15% difference.

  3. 'Surprise': Outbreak of Campylobacter infection associated with chicken liver pâté at a surprise birthday party, Adelaide, Australia, 2012.

    Science.gov (United States)

    Parry, Amy; Fearnley, Emily; Denehy, Emma

    2012-10-01

    In July 2012, an outbreak of Campylobacter infection was investigated by the South Australian Communicable Disease Control Branch and Food Policy and Programs Branch. The initial notification identified illness at a surprise birthday party held at a restaurant on 14 July 2012. The objective of the investigation was to identify the potential source of infection and institute appropriate intervention strategies to prevent further illness. A guest list was obtained and a retrospective cohort study undertaken. A combination of paper-based and telephone questionnaires were used to collect exposure and outcome information. An environmental investigation was conducted by Food Policy and Programs Branch at the implicated premises. All 57 guests completed the questionnaire (100% response rate), and 15 met the case definition. Analysis showed a significant association between illness and consumption of chicken liver pâté (relative risk: 16.7, 95% confidence interval: 2.4-118.6). No other food or beverage served at the party was associated with illness. Three guests submitted stool samples; all were positive for Campylobacter. The environmental investigation identified that the cooking process used in the preparation of chicken liver pâté may have been inconsistent, resulting in some portions not cooked adequately to inactivate potential Campylobacter contamination. Chicken liver products are a known source of Campylobacter infection; therefore, education of food handlers remains a high priority. To better identify outbreaks among the large number of Campylobacter notifications, routine typing of Campylobacter isolates is recommended.

  4. Understanding physics

    CERN Document Server

    Cassidy, David; Rutherford, James

    2002-01-01

    Understanding Physics provides a thorough grounding in contemporary physics while placing physics into its social and historical context Based in large part on the highly respected Project Physics Course developed by two of the authors, it also integrates the results of recent pedagogical research The text thus - teaches about the basic phenomena in the physical world and the concepts developed to explain them - shows that science is a rational human endeavor with a long and continuing tradition, involving many different cultures and people - develops facility in critical thinking, reasoned argumentation, evaluation of evidence, mathematical modeling, and ethical values The treatment emphasizes not only what we know but also how we know it, why we believe it, and what effects that knowledge has - Why do we believe the Earth and planets revolve around the Sun? - Why do we believe that matter is made of atoms? - How do relativity theory and quantum mechanics alter our conception of Nature and in what ways do th...

  5. Quantum physics

    International Nuclear Information System (INIS)

    Basdevant, J.L.; Dalibart, J.

    1997-01-01

    This pedagogical book gives an initiation to the principles and practice of quantum mechanics. A large part is devoted to experimental facts and to their analysis: concrete facts, phenomena and applications related to fundamental physics, elementary particles, astrophysics, high-technology, semi-conductors, micro-electronics and lasers. The book is divided in 22 chapters dealing with: quantum phenomena, wave function and Schroedinger equation, physical units and measurements, energy quantification of some simple systems, Hilbert space, Dirac formalism and quantum mechanics postulates, two-state systems and ammonia Maser principle, bands theory and crystals conductibility, commutation of observables, Stern and Gerlach experiment, approximation methods, kinetic momentum in quantum mechanics, first description of atoms, 1/2 spin formalism and magnetic resonance, Lagrangian, Hamiltonian and Lorentz force in quantum mechanics, addition of kinetic momenta and fine and hyper-fine structure of atomic lines, identical particle systems and Pauli principle, qualitative physics and scale of size of some microscopic and macroscopic phenomena, systems evolution, collisions and cross sections, invariance and conservation laws, quantum mechanics and astrophysics, and historical aspects of quantum mechanics. (J.S.)

  6. Study on the phenomena of natural circulation in LMFBR

    International Nuclear Information System (INIS)

    Takeda, Hirofumi; Koga, Tomonari

    1993-01-01

    Decay heat removal with natural circulation is to be introduced to the LMFBR operation under loss of the electric power supply. The natural circulation is highly reliable, but the phenomenon is essentially unstable and subtle, which makes fine prediction difficult. The difficulties of experimental prediction are explained by facts that the phenomena are ruled by the delicate balance between the buoyancy force and the low pressure loss and are influenced by the various parameters such as local geometry, heat capacity and so on. Therefore the similarity rule for the natural circulation has not been fully understood. This study has been conducted to establish the simulation method for the natural circulation phenomena and the detailed phenomena have been reviewed. For the natural circulation in an LMFBR plant, there are no readily available reference velocity and temperature. These values are related only with the heating and cooling rate, the characteristic length and physical properties of the testing fluid. Basic equations were transformed by these values, and dimensionless equations were derived and then two dimensionless numbers, the Gr' number and the Bo' number, were identified. In order to examine the similarity rule for natural circulation we performed experiments using the different scale water models, a 1/20th and a 1/6th model. The temperatures and velocities at typical points were measured in the transient condition with various heating rate as a parameter. Measured temperatures and velocities were transformed to dimensionless forms for comparison and the effects of the Bo' number and the Gr' number were examined. As a result, it was clarified that the effect of the Gr' number is negligibly small but the effect of Bo' number still remained in our experimental range. The Bo' number of an actual plant is within the range of this experiment. Accordingly similitude of the Bo' number becomes important in an experiment to simulate an actual plant. (author)

  7. Manipulating novel quantum phenomena using synthetic gauge fields

    Science.gov (United States)

    Zhang, Shao-Liang; Zhou, Qi

    2017-11-01

    The past few years have seen fascinating progress in the creation and utilization of synthetic gauge fields for charge-neutral ultracold atoms. Whereas the synthesis of gauge fields in itself is readily interesting, it is more exciting to explore the new era that will be brought by the interplay between synthetic gauge fields and many other degrees of freedom of highly tunable ultracold atoms. This topical review surveys recent developments in using synthetic gauge fields to manipulate novel quantum phenomena that are not easy to access in other systems. We first summarize current experimental methods of creating synthetic gauge fields, including the use of Raman schemes, shaken lattices, and Raman-dressed lattices. We then discuss how synthetic gauge fields bring new physics to non-interacting systems, including degenerate single-particle ground states, quartic dispersions, topological band structures in lattices, and synthetic dimensions. As for interacting systems, we focus on novel quantum many-body states and quantum macroscopic phenomena induced by interactions in the presence of unconventional single-particle dispersions. For bosons, we discuss how a quartic dispersion leads to non-condensed bosonic states at low temperatures and at the ground state. For fermions, we discuss chiral superfluids in the presence of attractive s-wave interaction, where high partial-wave interactions are not required. Finally, we discuss the challenges in current experiments, and conclude with an outlook for what new exciting developments synthetic gauge fields may bring us in the near future.

  8. Modeling as an Anchoring Scientific Practice for Explaining Friction Phenomena

    Science.gov (United States)

    Neilson, Drew; Campbell, Todd

    2017-12-01

    Through examining the day-to-day work of scientists, researchers in science studies have revealed how models are a central sense-making practice of scientists as they construct and critique explanations about how the universe works. Additionally, they allow predictions to be made using the tenets of the model. Given this, alongside research suggesting that engaging students in developing and using models can have a positive effect on learning in science classrooms, the recent national standards documents in science education have identified developing and using models as an important practice students should engage in as they apply and refine their ideas with peers and teachers in explaining phenomena or solving problems in classrooms. This article details how students can be engaged in developing and using models to help them make sense of friction phenomena in a high school conceptual physics classroom in ways that align with visions for teaching and learning outlined in the Next Generation Science Standards. This particular unit has been refined over several years to build on what was initially an inquiry-based unit we have described previously. In this latest iteration of the friction unit, students developed and refined models through engaging in small group and whole class discussions and investigations.

  9. Minerve: thermal-hydraulic phenomena simulation and virtual reality

    International Nuclear Information System (INIS)

    Laffont, A.; Pentori, B.

    2003-01-01

    MINERVE is a 3D interactive application representing the thermal-hydraulic phenomena happening in a nuclear plant. Therefore, the 3D geometric model of the French 900 MW PWR installations has been built. The users can interact in real time with this model to see at each step of the simulation what happens in the pipes. The thermal-hydraulic simulation is made by CATHARE-2, which calculates at every time step data on about one thousand meshes (the whole primary circuit, a part of the second circuit, and the Residual Heat Removal System). The simulation covers incidental and accidental cases on these systems. There are two main innovations in MINERVE: In the domain of nuclear plant's visualization, it is to introduce interactive 3D software mechanisms to visualize results of a physical simulation. In the domain of real-time 3D, it is to visualize fluids in a pipe, while they can have several configurations, like bubbles or single liquid phase. These mechanisms enable better comprehension and better visual representation of the possible phenomena. This paper describes the functionalities of MINERVE, and the difficulties to represent fluids with several characteristics like speed, configuration,..., in 3D. On the end, we talk about the future of MINERVE, and more widely of the possible futures of such an application in scientific visualization. (authors)

  10. Minerve: thermal-hydraulic phenomena simulation and virtual reality

    Energy Technology Data Exchange (ETDEWEB)

    Laffont, A.; Pentori, B. [EDF R and D, EDF SEPTEN Electricity of France - Research and Development, Department SINETICS, 92 - Clamart (France)

    2003-07-01

    MINERVE is a 3D interactive application representing the thermal-hydraulic phenomena happening in a nuclear plant. Therefore, the 3D geometric model of the French 900 MW PWR installations has been built. The users can interact in real time with this model to see at each step of the simulation what happens in the pipes. The thermal-hydraulic simulation is made by CATHARE-2, which calculates at every time step data on about one thousand meshes (the whole primary circuit, a part of the second circuit, and the Residual Heat Removal System). The simulation covers incidental and accidental cases on these systems. There are two main innovations in MINERVE: In the domain of nuclear plant's visualization, it is to introduce interactive 3D software mechanisms to visualize results of a physical simulation. In the domain of real-time 3D, it is to visualize fluids in a pipe, while they can have several configurations, like bubbles or single liquid phase. These mechanisms enable better comprehension and better visual representation of the possible phenomena. This paper describes the functionalities of MINERVE, and the difficulties to represent fluids with several characteristics like speed, configuration,..., in 3D. On the end, we talk about the future of MINERVE, and more widely of the possible futures of such an application in scientific visualization. (authors)

  11. Quantum Phenomena in Low-Dimensional Systems

    OpenAIRE

    Geller, Michael R.

    2001-01-01

    A brief summary of the physics of low-dimensional quantum systems is given. The material should be accessible to advanced physics undergraduate students. References to recent review articles and books are provided when possible.

  12. Searches for new phenomena in leptonic final states using the ATLAS detector

    CERN Document Server

    Mankinen, Katja Hannele; The ATLAS collaboration

    2018-01-01

    Many theories beyond the Standard Model predict new phenomena which decay to well isolated, high-pt leptons. Searches for such new physics models are performed using the ATLAS experiment at the LHC, by looking for resonances in the dilepton mass spectrum or excesses in the tail of the transverse mass distribution for various lepton flavours. Selected recent results will be discussed.

  13. Study of rare earth local moment magnetism and strongly correlated phenomena in various crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Tai [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.

  14. Ab initio theory of galvanomagnetic phenomena in ferromagnetic metals and disordered alloys

    Czech Academy of Sciences Publication Activity Database

    Turek, Ilja; Kudrnovský, Josef; Drchal, Václav

    2012-01-01

    Roč. 86, č. 1 (2012), 014405/1/-014405/8/ ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/11/1228 Institutional research plan: CEZ:AV0Z10100520 Institutional support: RVO:68081723 Keywords : electronic transport * galvanomagnetic phenomena Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012

  15. Coherent phenomena in the interaction of pulsed particle beams and radiation

    NARCIS (Netherlands)

    Smorenburg, P.W.

    2013-01-01

    In this thesis, an analytical study is performed of phenomena occurring in the interaction of bunches of charged particles with electromagnetic radiation. The work concentrates on bunches smaller than the wavelength of the radiation, for which coherent effects become significant. Novel physical

  16. The influence of the surprising decay properties of element 108 on search experiments for new elements

    International Nuclear Information System (INIS)

    Hofmann, S.; Armbruster, P.; Muenzenberg, G.; Reisdorf, W.; Schmidt, K.H.; Burkhard, H.G.; Hessberger, F.P.; Schoett, H.J.; Agarwal, Y.K.; Berthes, G.; Gollerthan, U.; Folger, H.; Hingmann, J.G.; Keller, J.G.; Leino, M.E.; Lemmertz, P.; Montoya, M.; Poppensieker, K.; Quint, B.; Zychor, I.

    1986-01-01

    Results of experiments to synthesize the heaviest elements are reported. Surprising is the high stability against fission not only of the odd and odd-odd nuclei but also of even isotopes of even elements. Alpha decay data gave an increasing stability of nuclei by shell effects up to 266 109, the heaviest known element. Theoretically, the high stability is explained by an island of nuclei with big quadrupole and hexadecapole deformations around Z=109 and N=162. Future experiments will be planned to prove the island character of these heavy nuclei. (orig.)

  17. Comparison of the light flash phenomena observed in space and in laboratory experiments

    International Nuclear Information System (INIS)

    McNulty, P.J.; Pease, V.P.; Bond, V.P.

    1976-01-01

    Astronauts on Apollo and Skylab missions have reported observing a variety of visual phenomena when their eyes were closed and adapted to darkness. These observations were studied under controlled conditions during a number of sessions on board Apollo and Skylab spacecraft and the data available to date on these so-called light flashes is in the form of descriptions of the phenomena and frequency of occurrence. Similar visual phenomena have been demonstrated in a number of laboratories by exposing the eyes of human subjects to beams of neutrons, alphas, pions, and protons. More than one physical mechanism is involved in the laboratory and space phenomena. No direct comparison of the laboratory and space observations has been made by observers who have experienced both. However, the range of visual phenomena observed in the laboratory is consistent with the Apollo and Skylab observations. Measured detection efficiencies can be used to estimate the frequencies with which various phenomena would be observed if the subject was exposed to cosmic rays in space

  18. BWR core melt progression phenomena: Experimental analyses

    International Nuclear Information System (INIS)

    Ott, L.J.

    1992-01-01

    In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component

  19. Coherent Nonlinear Longitudinal Phenomena in Unbunched Synchrotron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, Linda Klamp [Northwestern U.

    1996-12-01

    Coherent nonlinear longitudinal phenomena are studied in proton and antiproton synchrotron beams. Theoretical development done in the eld of plasma physics for resonant wave-wave coupling is applied to the case of a particle beam. Results are given from experiments done to investigate the nature of the weakly nonlinear three-wave coupling processes known as parametric coupling and echoes. Storage ring impedances are shown to amplify the parametric coupling process, underlining the possibility that machine impedances might be extracted from coupling events instigated by external excitation. Echo amplitudes are demonstrated to be sensitive to diusion processes, such as intrabeam scattering, which degrade a beam. The result of a fast diusion rate measurement using echo amplitudes is presented. In addition to the wave-wave interactions, observations of moderately nonlinear waveparticle interactions are also included. The manifestations of these interactions that are documented include nonlinear Landau damping, higher harmonic generation, and signs of the possible formation of solitons.

  20. Observations of fast, transient gamma-ray phenomena

    International Nuclear Information System (INIS)

    Kouveliotou, C.

    1981-09-01

    The present work is devoted primarily to the study of the solar GRBs as seen by the ISEE-3 satellite, in the energy range between 100 keV and 6.5 MeV. We have also included the cosmic GRB observations from ISEE-3, as a direct comparison for the two phenomena. Thus this thesis comprises 7 chapters: introduction, a chapter providing information on the instruments used, a discussion on the physics of the gamma-ray emission, a chapter describing the cosmic GRBs, and a chapter analysing the solar ones. Finally, we give the conclusions and a summary of our results and indications for the future observations. (orig./WL)