WorldWideScience

Sample records for surgical robotics research

  1. Surgical Robotics Research in Cardiovascular Disease

    International Nuclear Information System (INIS)

    Pohost, Gerald M; Guthrie, Barton L; Steiner, Charles

    2008-01-01

    This grant is to support a research in robotics at three major medical centers: the University of Southern California-USC- (Project 1); the University of Alabama at Birmingham-UAB-(Project 2); and the Cleveland Clinic Foundation-CCF-(Project 3). Project 1 is oriented toward cardiovascular applications, while projects 2 and 3 are oriented toward neurosurgical applications. The main objective of Project 1 is to develop an approach to assist patients in maintaining a constant level of stress while undergoing magnetic resonance imaging or spectroscopy. The specific project is to use handgrip to detect the changes in high energy phosphate metabolism between rest and stress. The high energy phosphates, ATP and phosphocreatine (PCr) are responsible for the energy of the heart muscle (myocardium) responsible for its contractile function. If the blood supply to the myocardium in insufficient to support metabolism and contractility during stress, the high energy phosphates, particularly PCr, will decrease in concentration. The high energy phosphates can be tracked using phosphorus-31 magnetic resonance spectroscopy ( 31 P MRS). In Project 2 the UAB Surgical Robotics project focuses on the use of virtual presence to assist with remote surgery and surgical training. The goal of this proposal was to assemble a pilot system for proof of concept. The pilot project was completed successfully and was judged to demonstrate that the concept of remote surgical assistance as applied to surgery and surgical training was feasible and warranted further development. The main objective of Project 3 is to develop a system to allow for the tele-robotic delivery of instrumentation during a functional neurosurgical procedure (Figure 3). Instrumentation such as micro-electrical recording probes or deep brain stimulation leads. Current methods for the delivery of these instruments involve the integration of linear actuators to stereotactic navigation systems. The control of these delivery devices

  2. Surgical Robotics Research in Cardiovascular Disease

    Energy Technology Data Exchange (ETDEWEB)

    Pohost, Gerald M; Guthrie, Barton L; Steiner, Charles

    2008-02-29

    This grant is to support a research in robotics at three major medical centers: the University of Southern California-USC- (Project 1); the University of Alabama at Birmingham-UAB-(Project 2); and the Cleveland Clinic Foundation-CCF-(Project 3). Project 1 is oriented toward cardiovascular applications, while projects 2 and 3 are oriented toward neurosurgical applications. The main objective of Project 1 is to develop an approach to assist patients in maintaining a constant level of stress while undergoing magnetic resonance imaging or spectroscopy. The specific project is to use handgrip to detect the changes in high energy phosphate metabolism between rest and stress. The high energy phosphates, ATP and phosphocreatine (PCr) are responsible for the energy of the heart muscle (myocardium) responsible for its contractile function. If the blood supply to the myocardium in insufficient to support metabolism and contractility during stress, the high energy phosphates, particularly PCr, will decrease in concentration. The high energy phosphates can be tracked using phosphorus-31 magnetic resonance spectroscopy ({sup 31}P MRS). In Project 2 the UAB Surgical Robotics project focuses on the use of virtual presence to assist with remote surgery and surgical training. The goal of this proposal was to assemble a pilot system for proof of concept. The pilot project was completed successfully and was judged to demonstrate that the concept of remote surgical assistance as applied to surgery and surgical training was feasible and warranted further development. The main objective of Project 3 is to develop a system to allow for the tele-robotic delivery of instrumentation during a functional neurosurgical procedure (Figure 3). Instrumentation such as micro-electrical recording probes or deep brain stimulation leads. Current methods for the delivery of these instruments involve the integration of linear actuators to stereotactic navigation systems. The control of these delivery

  3. Research of the master-slave robot surgical system with the function of force feedback.

    Science.gov (United States)

    Shi, Yunyong; Zhou, Chaozheng; Xie, Le; Chen, Yongjun; Jiang, Jun; Zhang, Zhenfeng; Deng, Ze

    2017-12-01

    Surgical robots lack force feedback, which may lead to operation errors. In order to improve surgical outcomes, this research developed a new master-slave surgical robot, which was designed with an integrated force sensor. The new structure designed for the master-slave robot employs a force feedback mechanism. A six-dimensional force sensor was mounted on the tip of the slave robot's actuator. Sliding model control was adopted to control the slave robot. According to the movement of the master system manipulated by the surgeon, the slave's movement and the force feedback function were validated. The motion was completed, the standard deviation was calculated, and the force data were detected. Hence, force feedback was realized in the experiment. The surgical robot can help surgeons to complete trajectory motions with haptic sensation. Copyright © 2017 John Wiley & Sons, Ltd.

  4. [Surgical robotics in neurosurgery].

    Science.gov (United States)

    Haidegger, Tamás; Benyó, Zoltán

    2009-09-06

    Surgical robotics is one of the most dynamically advancing areas of biomedical engineering. In the past few decades, computer-integrated interventional medicine has gained significance internationally in the field of surgical procedures. More recently, mechatronic devices have been used for nephrectomy, cholecystectomy, as well as in orthopedics and radiosurgery. Estimates show that 70% of the radical prostatectomies were performed with the da Vinci robot in the United States last year. Robot-aided procedures offer remarkable advantages in neurosurgery both for the patient and the surgeon, making microsurgery and Minimally Invasive Surgery a reality, and even complete teleoperation accessible. This paper introduces surgical robotic systems developed primarily for brain and spine applications, besides, it focuses on the different research strategies applied to provide smarter, better and more advanced tools to surgeons. A new system is discussed in details that we have developed together with the Johns Hopkins University in Baltimore. This cooperatively-controlled system can assist with skull base drilling to improve the safety and quality of neurosurgery while reducing the operating time. The paper presents the entire system, the preliminary results of phantom and cadaver tests and our efforts to improve the accuracy of the components. An effective optical tracking based patient motion compensation method has been implemented and tested. The results verify the effectiveness of the system and allow for further research.

  5. Medical Robotic and Tele surgical Simulation Education Research

    Science.gov (United States)

    2017-05-01

    to bedside assistant Ergonomic positioning Camera control Undocking Docking Clutching Robotic trocars Instrument exchange Operating room set-up...sitting at the robotic console. 3. Intra-operative use of a robot, description of the critical psychomotor skills, surgeon ergonomics , visual field...their mobile phone.7,8 In recent studies by Chen et al. and Holst et al., crowds have been shown to be as effective as ex- pert surgeons at evaluating

  6. Teaching Hospitals and the Disconnect Between Technology Adoption and Comparative Effectiveness Research: The Case of the Surgical Robot.

    Science.gov (United States)

    Makarov, Danil V; Li, Huilin; Lepor, Herbert; Gross, Cary P; Blustein, Jan

    2017-06-01

    The surgical robot, a costly technology for treatment of prostate cancer with equivocal marginal benefit, rapidly diffused into clinical practice. We sought to evaluate the role of teaching in the early adoption phase of the surgical robot. Teaching hospitals were the primary early adopters: data from the Healthcare Cost and Utilization Project showed that surgical robots were acquired by 45.5% of major teaching, 18.0% of minor teaching and 8.0% of non-teaching hospitals during the early adoption phase. However, teaching hospital faculty produced little comparative effectiveness research: By 2008, only 24 published studies compared robotic prostatectomy outcomes to those of conventional techniques. Just ten of these studies (41.7%) were more than minimally powered, and only six (25%) involved cross-institutional collaborations. In adopting the surgical robot, teaching hospitals fulfilled their mission to innovate, but failed to generate corresponding scientific evidence.

  7. Research on micromanipulator’s clamping force sensing based on static wirerope tension of a surgical robot

    Directory of Open Access Journals (Sweden)

    Lingtao Yu

    2015-04-01

    Full Text Available The micromanipulator’s force feedback is one of the key research contents of minimally invasive surgical robotic system. Because the micromanipulator is a kind of compact construction which is suitable for valve installation with small space in surgery, especially for the influence of disinfection method, there are major difficulties and limitations to integrate compact sensors in the end of micromanipulator. This article focuses on the 3-degree-of-freedom micromanipulator’s clamping force sensing, and these three joints are actuated by wirerope driving. A clamping force sensing method is proposed based on static tension of wirerope driving, and a static model between the clamping force and wirerope’s static tension is established considering the influence of real friction resistance in the mechanical system. Finally, an equivalent experimental test platform for 3-degree-of-freedom micromanipulator’s clamping force sensing is set up, and then a series of experiments of the clamping force are studied. The frictional resistances of wirerope between the guide plate and guide pulley mechanism are tested, and a calibration and correction method of the experimental clamping force is proposed. The final experiment results show that the total average accuracy of experimental clamping force is about 78.3%, and it can be the basic measurement force to realize micromanipulator’s clamping force feedback of a minimally invasive surgical robot.

  8. Robotics Offer Newfound Surgical Capabilities

    Science.gov (United States)

    2008-01-01

    Barrett Technology Inc., of Cambridge, Massachusetts, completed three Phase II Small Business Innovation Research (SBIR) contracts with Johnson Space Center, during which the company developed and commercialized three core technologies: a robotic arm, a hand that functions atop the arm, and a motor driver to operate the robotics. Among many industry uses, recently, an adaptation of the arm has been cleared by the U.S. Food and Drug Administration (FDA) for use in a minimally invasive knee surgery procedure, where its precision control makes it ideal for inserting a very small implant.

  9. A research review on clinical needs, technical requirements, and normativity in the design of surgical robots.

    Science.gov (United States)

    Díaz, Carlos Eduardo; Fernández, Roemi; Armada, Manuel; García, Felipe

    2017-12-01

    Nowadays robots play an important role in society, mainly due to the significant benefits they provide when utilized for assisting human beings in the execution of dangerous or repetitive tasks. Medicine is one of the fields in which robots are gaining greater use and development, especially those employed in minimally invasive surgery (MIS). However, due to the particular conditions of the human body where robots have to act, the design of these systems is complex, not only from a technical point of view, but also because the clinical needs and the normativity aspects are important considerations that have to be taken into account in order to achieve better performances and more secure systems for patients and surgeons. Thus, this paper explores the clinical needs and the technical requirements that will trace the roadmap for the next scientific and technological advances in the field of robotic surgery, the metrics that should be defined for safe technology development and the standards that are being elaborated for boosting the industry and facilitating systems integration. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Next-generation robotic surgery--from the aspect of surgical robots developed by industry.

    Science.gov (United States)

    Nakadate, Ryu; Arata, Jumpei; Hashizume, Makoto

    2015-02-01

    At present, much of the research conducted worldwide focuses on extending the ability of surgical robots. One approach is to extend robotic dexterity. For instance, accessibility and dexterity of the surgical instruments remains the largest issue for reduced port surgery such as single port surgery or natural orifice surgery. To solve this problem, a great deal of research is currently conducted in the field of robotics. Enhancing the surgeon's perception is an approach that uses advanced sensor technology. The real-time data acquired through the robotic system combined with the data stored in the robot (such as the robot's location) provide a major advantage. This paper aims at introducing state-of-the-art products and pre-market products in this technological advancement, namely the robotic challenge in extending dexterity and hopefully providing the path to robotic surgery in the near future.

  11. Development of a Cognitive Robotic System for Simple Surgical Tasks

    Directory of Open Access Journals (Sweden)

    Riccardo Muradore

    2015-04-01

    Full Text Available The introduction of robotic surgery within the operating rooms has significantly improved the quality of many surgical procedures. Recently, the research on medical robotic systems focused on increasing the level of autonomy in order to give them the possibility to carry out simple surgical actions autonomously. This paper reports on the development of technologies for introducing automation within the surgical workflow. The results have been obtained during the ongoing FP7 European funded project Intelligent Surgical Robotics (I-SUR. The main goal of the project is to demonstrate that autonomous robotic surgical systems can carry out simple surgical tasks effectively and without major intervention by surgeons. To fulfil this goal, we have developed innovative solutions (both in terms of technologies and algorithms for the following aspects: fabrication of soft organ models starting from CT images, surgical planning and execution of movement of robot arms in contact with a deformable environment, designing a surgical interface minimizing the cognitive load of the surgeon supervising the actions, intra-operative sensing and reasoning to detect normal transitions and unexpected events. All these technologies have been integrated using a component-based software architecture to control a novel robot designed to perform the surgical actions under study. In this work we provide an overview of our system and report on preliminary results of the automatic execution of needle insertion for the cryoablation of kidney tumours.

  12. Current Capabilities and Development Potential in Surgical Robotics

    Directory of Open Access Journals (Sweden)

    Mathias Hoeckelmann

    2015-05-01

    Full Text Available Commercial surgical robots have been in clinical use since the mid-1990s, supporting surgeons in various tasks. In the past decades, many systems emerged as research platforms, and a few entered the global market. This paper summarizes the currently available surgical systems and research directions in the broader field of surgical robotics. The widely deployed teleoperated manipulators aim to enhance human cognitive and physical skills and provide smart tools for surgeons, while image-guided robotics focus on surpassing human limitations by introducing automated targeting and treatment delivery methods. Both concepts are discussed based on prototypes and commercial systems. Through concrete examples the possible future development paths of surgical robots are illustrated. While research efforts are taking different approaches to improve the capacity of such systems, the aim of this survey is to assess their maturity from the commercialization point of view.

  13. Liability exposure for surgical robotics instructors.

    Science.gov (United States)

    Lee, Yu L; Kilic, Gokhan; Phelps, John Y

    2012-01-01

    Surgical robotics instructors provide an essential service in improving the competency of novice gynecologic surgeons learning robotic surgery and advancing surgical skills on behalf of patients. However, despite best intentions, robotics instructors and the gynecologists who use their services expose themselves to liability. The fear of litigation in the event of a surgical complication may reduce the availability and utility of robotics instructors. A better understanding of the principles of duty of care and the physician-patient relationship, and their potential applicability in a court of law likely will help to dismantle some concerns and uncertainties about liability. This commentary is not meant to discourage current and future surgical instructors but to raise awareness of liability issues among robotics instructors and their students and to recommend certain preventive measures to curb potential liability risks. Published by Elsevier Inc.

  14. Design, implementation and testing of master slave robotic surgical system

    International Nuclear Information System (INIS)

    Ali, S.A.

    2015-01-01

    The autonomous manipulation of the medical robotics is needed to draw up a complete surgical plan in development. The autonomy of the robot comes from the fact that once the plan is drawn up off-line, it is the servo loops, and only these, that control the actions of the robot online, based on instantaneous control signals and measurements provided by the vision or force sensors. Using only these autonomous techniques in medical and surgical robotics remain relatively limited for two main reasons: Predicting complexity of the gestures, and human Safety. Therefore, Modern research in haptic force feedback in medical robotics is aimed to develop medical robots capable of performing remotely, what a surgeon does by himself. These medical robots are supposed to work exactly in the manner that a surgeon does in daily routine. In this paper the master slave tele-robotic system is designed and implemented with accuracy and stability by using 6DOF (Six Degree of Freedom) haptic force feedback devices. The master slave control strategy, haptic devices integration, application software designing using Visual C++ and experimental setup are considered. Finally, results are presented the stability, accuracy and repeatability of the system. (author)

  15. Towards Safe Robotic Surgical Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2015-01-01

    a controller for motion compensation in beating-heart surgery, and prove that it is safe, i.e., the surgical tool is kept within an allowable distance and orientation of the heart. We solve the problem by simultaneously finding a control law and a barrier function. The motion compensation system is simulated...

  16. Hydraulic Robotic Surgical Tool Changing Manipulator.

    Science.gov (United States)

    Pourghodrat, Abolfazl; Nelson, Carl A; Oleynikov, Dmitry

    2017-03-01

    Natural orifice transluminal endoscopic surgery (NOTES) is a surgical technique to perform "scarless" abdominal operations. Robotic technology has been exploited to improve NOTES and circumvent its limitations. Lack of a multitasking platform is a major limitation. Manual tool exchange can be time consuming and may lead to complications such as bleeding. Previous multifunctional manipulator designs use electric motors. These designs are bulky, slow, and expensive. This paper presents design, prototyping, and testing of a hydraulic robotic tool changing manipulator. The manipulator is small, fast, low-cost, and capable of carrying four different types of laparoscopic instruments.

  17. Robotics research in Chile

    Directory of Open Access Journals (Sweden)

    Javier Ruiz-del-Solar

    2016-12-01

    Full Text Available The development of research in robotics in a developing country is a challenging task. Factors such as low research funds, low trust from local companies and the government, and a small number of qualified researchers hinder the development of strong, local research groups. In this article, and as a case of study, we present our research group in robotics at the Advanced Mining Technology Center of the Universidad de Chile, and the way in which we have addressed these challenges. In 2008, we decided to focus our research efforts in mining, which is the main industry in Chile. We observed that this industry has needs in terms of safety, productivity, operational continuity, and environmental care. All these needs could be addressed with robotics and automation technology. In a first stage, we concentrate ourselves in building capabilities in field robotics, starting with the automation of a commercial vehicle. An important outcome of this project was the earn of the local mining industry confidence. Then, in a second stage started in 2012, we began working with the local mining industry in technological projects. In this article, we describe three of the technological projects that we have developed with industry support: (i an autonomous vehicle for mining environments without global positioning system coverage; (ii the inspection of the irrigation flow in heap leach piles using unmanned aerial vehicles and thermal cameras; and (iii an enhanced vision system for vehicle teleoperation in adverse climatic conditions.

  18. Application of da Vinci surgical robotic system in hepatobiliary surgery

    Directory of Open Access Journals (Sweden)

    Chen Jiahai

    2018-01-01

    Full Text Available The development of minimally invasive surgery has brought a revolutionary change to surgery techniques, and endoscopic surgical robots, especially Da Vinci robotic surgical system, has further broaden the scope of minimally invasive surgery, which has been applied in a variety of surgical fields including hepatobiliary surgery. Today, the application of Da Vinci surgical robot can cover most of the operations in hepatobiliary surgery which has proved to be safe and practical. What’s more, many clinical studies in recent years have showed that Da Vinci surgical system is superior to traditional laparoscopy. This paper summarize the advantage and disadvantage of Da Vinci surgical system, and outlines the current status of and future perspectives on the robot-assisted hepatobiliary surgery based on the cases reports in recent years of the application of Da Vinci surgical robot.

  19. Mentoring console improves collaboration and teaching in surgical robotics.

    Science.gov (United States)

    Hanly, Eric J; Miller, Brian E; Kumar, Rajesh; Hasser, Christopher J; Coste-Maniere, Eve; Talamini, Mark A; Aurora, Alexander A; Schenkman, Noah S; Marohn, Michael R

    2006-10-01

    One of the most significant limitations of surgical robots has been their inability to allow multiple surgeons and surgeons-in-training to engage in collaborative control of robotic surgical instruments. We report the initial experience with a novel two-headed da Vinci surgical robot that has two collaborative modes: the "swap" mode allows two surgeons to simultaneously operate and actively swap control of the robot's four arms, and the "nudge" mode allows them to share control of two of the robot's arms. The utility of the mentoring console operating in its two collaborative modes was evaluated through a combination of dry laboratory exercises and animal laboratory surgery. The results from surgeon-resident collaborative performance of complex three-handed surgical tasks were compared to results from single-surgeon and single-resident performance. Statistical significance was determined using Student's t-test. Collaborative surgeon-resident swap control reduced the time to completion of complex three-handed surgical tasks by 25% compared to single-surgeon operation of a four-armed da Vinci (P collaboration during robotic surgery and improves the performance of complex surgical tasks. The mentoring console has the potential to improve resident participation in surgical robotics cases, enhance resident education in surgical training programs engaged in surgical robotics, and improve patient safety during robotic surgery.

  20. Training program for fundamental surgical skill in robotic laparoscopic surgery.

    Science.gov (United States)

    Suh, Irene; Mukherjee, Mukul; Oleynikov, Dmitry; Siu, Ka-Chun

    2011-09-01

    Although the use of robotic laparoscopic surgery has increased in popularity, training protocols for gaining proficiency in robotic surgical skills are not well established. The purpose of this study was to examine a fundamental training program that provides an effective approach to evaluate and improve robotic surgical skills performance using the da Vinci(™) Surgical System. Fifteen medical students without any robotic surgical experience were recruited. Participants went through a 4-day training program for developing fundamental robotic surgical skills and received a retention test 1 day after the completion of training. Data analysis included time to task completion, average speed, total distance traveled and movement curvature of the instrument tips, and muscle activities of the participants' forearms. Surgical performance was graded by the modified Objective Structured Assessment of Technical Skills for robotic laparoscopic surgery. Finally, participants evaluated their own performance after each session through questionnaires. Significant training effects were shown for the time to task completion (p movement curvature (p mastery, familiarity, and self-confidence and less difficulty in performing fundamental tasks with the surgical robot in both post-testing and retention sessions. Our 4-day training program comprising of a series of training tasks from fundamental to surgical skill levels was effective in improving surgical skills. Further studies are required to verify these findings with a longer period of retention. Copyright © 2011 John Wiley & Sons, Ltd.

  1. [Simulation-based robot-assisted surgical training].

    Science.gov (United States)

    Kolontarev, K B; Govorov, A V; Rasner, P I; Sheptunov, S A; Prilepskaya, E A; Maltsev, E G; Pushkar, D Yu

    2015-12-01

    Since the first use of robotic surgical system in 2000, the robot-assisted technology has gained wide popularity throughout the world. Robot-assisted surgical training is a complex issue that requires significant efforts from students and teacher. During the last two decades, simulation-based training had received active development due to wide-spread occurrence and popularization of laparoscopic and robot-assisted surgical techniques. We performed a systematic review to identify the currently available simulators for robot-assisted surgery. We searched the Medline and Pubmed, English sources of literature data, using the following key words and phrases: "robotics", "robotic surgery", "computer assisted surgery", "simulation", "computer simulation", "virtual reality", "surgical training", and "surgical education". There were identified 565 publications, which meet the key words and phrases; 19 publications were selected for the final analysis. It was established that simulation-based training is the most promising teaching tool that can be used in the training of the next generation robotic surgeons. Today the use of simulators to train surgeons is validated. Price of devices is an obvious barrier for inclusion in the program for training of robotic surgeons, but the lack of this tool will result in a sharp increase in the duration of specialists training.

  2. The SEP "Robot": A Valid Virtual Reality Robotic Simulator for the Da Vinci Surgical System?

    NARCIS (Netherlands)

    van der Meijden, O. A. J.; Broeders, I. A. M. J.; Schijven, M. P.

    2010-01-01

    The aim of the study was to determine if the concept of face and construct validity may apply to the SurgicalSim Educational Platform (SEP) "robot" simulator. The SEP robot simulator is a virtual reality (VR) simulator aiming to train users on the Da Vinci Surgical System. To determine the SEP's

  3. Wire in the Cable-Driven System of Surgical Robot

    Science.gov (United States)

    Wang, X. F.; Lv, N.; Mu, H. Z.; Xue, L. J.

    2017-07-01

    During the evolution of the surgical robot, cable plays an important role. It translates motion and force precisely from surgeon’s hand to the tool’s tips. In the paper, the vertical wires, the composition of cable, are mathematically modeled from a geometric point of view. The cable structure and tension are analyzed according to the characteristics of wire screw twist. The structural equations of the wires in different positions are derived for both non-bent cable and bent cable, respectively. The bending moment formula of bent cable is also obtained. This will help researchers find suitable cable and design more matched pulley.

  4. Surgical Residents are Excluded From Robot-assisted Surgery

    DEFF Research Database (Denmark)

    Broholm, Malene; Rosenberg, Jacob

    2015-01-01

    PURPOSE: Implementation of a robotic system may influence surgical training. The aim was to report the charge of the operating surgeon and the bedside assistant at robot-assisted procedures in urology, gynecology, and colorectal surgery. MATERIALS AND METHODS: A review of hospital charts from sur...

  5. Microsurgery robots: addressing the needs of high-precision surgical interventions.

    Science.gov (United States)

    Mattos, Leonardo S; Caldwell, Darwin G; Peretti, Giorgio; Mora, Francesco; Guastini, Luca; Cingolani, Roberto

    2016-01-01

    Robotics has a significant potential to enhance the overall capacity and efficiency of healthcare systems. Robots can help surgeons perform better quality operations, leading to reductions in the hospitalisation time of patients and in the impact of surgery on their postoperative quality of life. In particular, robotics can have a significant impact on microsurgery, which presents stringent requirements for superhuman precision and control of the surgical tools. Microsurgery is, in fact, expected to gain importance in a growing range of surgical specialties as novel technologies progressively enable the detection, diagnosis and treatment of diseases at earlier stages. Within such scenarios, robotic microsurgery emerges as one of the key components of future surgical interventions, and will be a vital technology for addressing major surgical challenges. Nonetheless, several issues have yet to be overcome in terms of mechatronics, perception and surgeon-robot interfaces before microsurgical robots can achieve their full potential in operating rooms. Research in this direction is progressing quickly and microsurgery robot prototypes are gradually demonstrating significant clinical benefits in challenging applications such as reconstructive plastic surgery, ophthalmology, otology and laryngology. These are reassuring results offering confidence in a brighter future for high-precision surgical interventions.

  6. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions.

    Science.gov (United States)

    Kassahun, Yohannes; Yu, Bingbin; Tibebu, Abraham Temesgen; Stoyanov, Danail; Giannarou, Stamatia; Metzen, Jan Hendrik; Vander Poorten, Emmanuel

    2016-04-01

    Advances in technology and computing play an increasingly important role in the evolution of modern surgical techniques and paradigms. This article reviews the current role of machine learning (ML) techniques in the context of surgery with a focus on surgical robotics (SR). Also, we provide a perspective on the future possibilities for enhancing the effectiveness of procedures by integrating ML in the operating room. The review is focused on ML techniques directly applied to surgery, surgical robotics, surgical training and assessment. The widespread use of ML methods in diagnosis and medical image computing is beyond the scope of the review. Searches were performed on PubMed and IEEE Explore using combinations of keywords: ML, surgery, robotics, surgical and medical robotics, skill learning, skill analysis and learning to perceive. Studies making use of ML methods in the context of surgery are increasingly being reported. In particular, there is an increasing interest in using ML for developing tools to understand and model surgical skill and competence or to extract surgical workflow. Many researchers begin to integrate this understanding into the control of recent surgical robots and devices. ML is an expanding field. It is popular as it allows efficient processing of vast amounts of data for interpreting and real-time decision making. Already widely used in imaging and diagnosis, it is believed that ML will also play an important role in surgery and interventional treatments. In particular, ML could become a game changer into the conception of cognitive surgical robots. Such robots endowed with cognitive skills would assist the surgical team also on a cognitive level, such as possibly lowering the mental load of the team. For example, ML could help extracting surgical skill, learned through demonstration by human experts, and could transfer this to robotic skills. Such intelligent surgical assistance would significantly surpass the state of the art in surgical

  7. Nigerian Journal of Surgical Research

    African Journals Online (AJOL)

    The Nigerian Journal of Surgical Research is a publication of the Surgical Research Society with main office in Zaria, Nigeria. Zaria is home to Ahmadu Bello University (ABU), a premier university in Nigeria. The aim of The Nigerian Journal of Surgical Research is to cover developments and advances in the broad field of ...

  8. The da vinci robot system eliminates multispecialty surgical trainees' hand dominance in open and robotic surgical settings.

    Science.gov (United States)

    Badalato, Gina M; Shapiro, Edan; Rothberg, Michael B; Bergman, Ari; RoyChoudhury, Arindam; Korets, Ruslan; Patel, Trushar; Badani, Ketan K

    2014-01-01

    Handedness, or the inherent dominance of one hand's dexterity over the other's, is a factor in open surgery but has an unknown importance in robot-assisted surgery. We sought to examine whether the robotic surgery platform could eliminate the effect of inherent hand preference. Residents from the Urology and Obstetrics/Gynecology departments were enrolled. Ambidextrous and left-handed subjects were excluded. After completing a questionnaire, subjects performed three tasks modified from the Fundamentals of Laparoscopic Surgery curriculum. Tasks were performed by hand and then with the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, California). Participants were randomized to begin with using either the left or the right hand, and then switch. Left:right ratios were calculated from scores based on time to task completion. Linear regression analysis was used to determine the significance of the impact of surgical technique on hand dominance. Ten subjects were enrolled. The mean difference in raw score performance between the right and left hands was 12.5 seconds for open tasks and 8 seconds for robotic tasks (Probot tasks, respectively (Probotic and open approaches for raw time scores (Phand, prior robotic experience, and comfort level. These findings remain to be validated in larger cohorts. The robotic technique reduces hand dominance in surgical trainees across all task domains. This finding contributes to the known advantages of robotic surgery.

  9. Pneumatic-type surgical robot end-effector for laparoscopic surgical-operation-by-wire.

    Science.gov (United States)

    Lee, Chiwon; Park, Woo Jung; Kim, Myungjoon; Noh, Seungwoo; Yoon, Chiyul; Lee, Choonghee; Kim, Youdan; Kim, Hyeon Hoe; Kim, Hee Chan; Kim, Sungwan

    2014-09-05

    existing other surgical robot systems. Its workspace is sufficient for clinical surgery. Therefore, the proposed system is expected to be widely used for laparoscopic robotic surgery. This research using iHOTAS will be applied to the tactile force feedback system for surgeon's safe operation.

  10. Robotic Telesurgery Research

    Science.gov (United States)

    2010-03-01

    prismatic elbow joint. The body of the robot is fitted with a collar that is used with an external support assembly for fixation and gross positioning of...interface is located remotely within the operating room and consists of two controllers, a video display, and a foot pedal, as shown in Figure 1. This...adjustability are placed on all of the mirrors. Three adjustable screws sit behind each of the mirrors, allowing the user to correct for distortion in

  11. Kinematic design considerations for minimally invasive surgical robots: an overview.

    Science.gov (United States)

    Kuo, Chin-Hsing; Dai, Jian S; Dasgupta, Prokar

    2012-06-01

    Kinematic design is a predominant phase in the design of robotic manipulators for minimally invasive surgery (MIS). However, an extensive overview of the kinematic design issues for MIS robots is not yet available to both mechanisms and robotics communities. Hundreds of archival reports and articles on robotic systems for MIS are reviewed and studied. In particular, the kinematic design considerations and mechanism development described in the literature for existing robots are focused on. The general kinematic design goals, design requirements, and design preferences for MIS robots are defined. An MIS-specialized mechanism, namely the remote center-of-motion (RCM) mechanism, is revisited and studied. Accordingly, based on the RCM mechanism types, a classification for MIS robots is provided. A comparison between eight different RCM types is given. Finally, several open challenges for the kinematic design of MIS robotic manipulators are discussed. This work provides a detailed survey of the kinematic design of MIS robots, addresses the research opportunity in MIS robots for kinematicians, and clarifies the kinematic point of view to MIS robots as a reference for the medical community. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Do Robotic Surgical Systems Improve Profit Margins? A Cross-Sectional Analysis of California Hospitals.

    Science.gov (United States)

    Shih, Ya-Chen Tina; Shen, Chan; Hu, Jim C

    2017-09-01

    The aim of this study was to examine the association between ownership of robotic surgical systems and hospital profit margins. This study used hospital annual utilization data, annual financial data, and discharge data for year 2011 from the California Office of Statewide Health Planning and Development. We first performed bivariate analysis to compare mean profit margin by hospital and market characteristics and to examine whether these characteristics differed between hospitals that had one or more robotic surgical systems in 2011 and those that did not. We applied the t test and the F test to compare mean profit margin between two groups and among three or more groups, respectively. We then conducted multilevel logistic regression to determine the association between ownership of robotic surgical systems and having a positive profit margin after controlling for other hospital and market characteristics and accounting for possible correlation among hospitals located within the same market. The study sample included 167 California hospitals with valid financial information. Hospitals with robotic surgical systems tended to report more favorable profit margins. However, multilevel logistic regression showed that this relationship (an association, not causality) became only marginally significant (odds ratio [OR] = 6.2; P = 0.053) after controlling for other hospital characteristics, such as ownership type, teaching status, bed size, and surgical volumes, and market characteristics, such as total number of robotic surgical systems owned by other hospitals in the same market area. As robotic surgical systems become widely disseminated, hospital decision makers should carefully evaluate the financial and clinical implications before making a capital investment in this technology. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  13. Robotic technologies in surgical oncology training and practice.

    Science.gov (United States)

    Orvieto, Marcelo A; Marchetti, Pablo; Castillo, Octavio A; Coelho, Rafael F; Chauhan, Sanket; Rocco, Bernardo; Ardila, Bobby; Mathe, Mary; Patel, Vipul R

    2011-09-01

    The modern-day surgeon is frequently exposed to new technologies and instrumentation. Robotic surgery (RS) has evolved as a minimally invasive technique aimed to improve clinical outcomes. RS has the potential to alleviate the inherent limitations of laparoscopic surgery such as two dimensional imaging, limited instrument movement and intrinsic human tremor. Since the first reported robot-assisted surgical procedure performed in 1985, the technology has dramatically evolved and currently multiple surgical specialties have incorporated RS into their daily clinical armamentarium. With this exponential growth, it should not come as a surprise the ever growing requirement for surgeons trained in RS as well as the interest from residents to receive robotic exposure during their training. For this reason, the establishment of set criteria for adequate and standardized training and credentialing of surgical residents, fellows and those trained surgeons wishing to perform RS has become a priority. In this rapidly evolving field, we herein review the past, present and future of robotic technologies and its penetration into different surgical specialties. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Miniature surgical robots in the era of NOTES and LESS: dream or reality?

    Science.gov (United States)

    Zygomalas, Apollon; Kehagias, Ioannis; Giokas, Konstantinos; Koutsouris, Dimitrios

    2015-02-01

    Laparoscopy is an established method for the treatment of numerous surgical conditions. Natural orifice transluminal endoscopic surgery (NOTES) is a novel surgical technique that uses the natural orifices of the human body as entrances to the abdominal cavity. An alternative concept of minimally invasive approach to the abdominal cavity is to insert all the laparoscopic instruments through ports using a single small incision on the abdominal wall. A suggested name for this technique is laparoendoscopic single-site surgery (LESS). Considering the technical difficulties in NOTES and LESS and the progress in informatics and robotics, the use of robots seems ideal. The aim of this study is to investigate if there is at present, a realistic possibility of using miniature robots in NOTES or LESS in daily clinical practice. An up-to-date review on in vivo surgical miniature robots is made. A Web-based research of the English literature up to March 2013 using PubMed, Scopus, and Google Scholar as search engines was performed. The development of in vivo miniature robots for use in NOTES or LESS is a reality with great advancements, potential advantages, and possible application in minimally invasive surgery in the future. However, true totally NOTES or LESS procedures on humans using miniature robots either solely or as assistance, remain a dream at present. © The Author(s) 2014.

  15. Integration of a Robotic Arm with the Surgical Assistant Workstation Software Framework

    NARCIS (Netherlands)

    Young, J.; Elhawary, H.; Popovic, A.

    2012-01-01

    We have integrated the Philips Research robot arm with the Johns Hopkins University cisst library, an open-source platform for computerassisted surgical intervention. The development of a Matlab to C++ wrapper to abstract away servo-level details facilitates the rapid development of a

  16. Review of surgical robotics user interface: what is the best way to control robotic surgery?

    Science.gov (United States)

    Simorov, Anton; Otte, R Stephen; Kopietz, Courtni M; Oleynikov, Dmitry

    2012-08-01

    As surgical robots begin to occupy a larger place in operating rooms around the world, continued innovation is necessary to improve our outcomes. A comprehensive review of current surgical robotic user interfaces was performed to describe the modern surgical platforms, identify the benefits, and address the issues of feedback and limitations of visualization. Most robots currently used in surgery employ a master/slave relationship, with the surgeon seated at a work-console, manipulating the master system and visualizing the operation on a video screen. Although enormous strides have been made to advance current technology to the point of clinical use, limitations still exist. A lack of haptic feedback to the surgeon and the inability of the surgeon to be stationed at the operating table are the most notable examples. The future of robotic surgery sees a marked increase in the visualization technologies used in the operating room, as well as in the robots' abilities to convey haptic feedback to the surgeon. This will allow unparalleled sensation for the surgeon and almost eliminate inadvertent tissue contact and injury. A novel design for a user interface will allow the surgeon to have access to the patient bedside, remaining sterile throughout the procedure, employ a head-mounted three-dimensional visualization system, and allow the most intuitive master manipulation of the slave robot to date.

  17. A Surgical Robot Teleoperation Framework for Providing Haptic Feedback Incorporating Virtual Envrioment-Based Guidance

    Directory of Open Access Journals (Sweden)

    Adnan Munawar

    2016-08-01

    Full Text Available In robot-assisted tele-operated laparoscopic surgeries, the patient side manipulators are controlled via the master manipulators that are controlled by the surgeon. The current generation of robots approved for laparoscopic surgery lack haptic feedback. In theory, haptic feedback would enhance the surgical procedures by enabling better coordination between the hand movements that are improved by the tactile sense of the operating environment. This research presents an overall control framework for a haptic feedback on existing robot platforms, and demonstrated on the daVinci Research Kit (dVRK system. The paper discusses the implementation of a flexible framework that incorporates a stiffness control with gravity compensation for the surgeons manipulator and a sensing and collision detection algorithm for calculating the interaction between the patients manipulators and the surgical area.

  18. Human-robot skills transfer interfaces for a flexible surgical robot.

    Science.gov (United States)

    Calinon, Sylvain; Bruno, Danilo; Malekzadeh, Milad S; Nanayakkara, Thrishantha; Caldwell, Darwin G

    2014-09-01

    In minimally invasive surgery, tools go through narrow openings and manipulate soft organs to perform surgical tasks. There are limitations in current robot-assisted surgical systems due to the rigidity of robot tools. The aim of the STIFF-FLOP European project is to develop a soft robotic arm to perform surgical tasks. The flexibility of the robot allows the surgeon to move within organs to reach remote areas inside the body and perform challenging procedures in laparoscopy. This article addresses the problem of designing learning interfaces enabling the transfer of skills from human demonstration. Robot programming by demonstration encompasses a wide range of learning strategies, from simple mimicking of the demonstrator's actions to the higher level imitation of the underlying intent extracted from the demonstrations. By focusing on this last form, we study the problem of extracting an objective function explaining the demonstrations from an over-specified set of candidate reward functions, and using this information for self-refinement of the skill. In contrast to inverse reinforcement learning strategies that attempt to explain the observations with reward functions defined for the entire task (or a set of pre-defined reward profiles active for different parts of the task), the proposed approach is based on context-dependent reward-weighted learning, where the robot can learn the relevance of candidate objective functions with respect to the current phase of the task or encountered situation. The robot then exploits this information for skills refinement in the policy parameters space. The proposed approach is tested in simulation with a cutting task performed by the STIFF-FLOP flexible robot, using kinesthetic demonstrations from a Barrett WAM manipulator. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  20. Medical Robots: Current Systems and Research Directions

    Directory of Open Access Journals (Sweden)

    Ryan A. Beasley

    2012-01-01

    Full Text Available First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities of medical robots, for example, increased usage of intraoperative images, improved robot arm design, and haptic feedback to guide the surgeon.

  1. Accessibility to surgical robot technology and prostate-cancer patient behavior for prostatectomy.

    Science.gov (United States)

    Sugihara, Toru; Yasunaga, Hideo; Matsui, Hiroki; Nagao, Go; Ishikawa, Akira; Fujimura, Tetsuya; Fukuhara, Hiroshi; Fushimi, Kiyohide; Ohori, Makoto; Homma, Yukio

    2017-07-01

    To examine how surgical robot emergence affects prostate-cancer patient behavior in seeking radical prostatectomy focusing on geographical accessibility. In Japan, robotic surgery was approved in April 2012. Based on data in the Japanese Diagnosis Procedure Combination database between April 2012 and March 2014, distance to nearest surgical robot and interval days to radical prostatectomy (divided by mean interval in 2011: % interval days to radical prostatectomy) were calculated for individual radical prostatectomy cases at non-robotic hospitals. Caseload changes regarding distance to nearest surgical robot and robot introduction were investigated. Change in % interval days to radical prostatectomy was evaluated by multivariate analysis including distance to nearest surgical robot, age, comorbidity, hospital volume, operation type, hospital academic status, bed volume and temporal progress. % Interval days to radical prostatectomy became wider for distance to nearest surgical robot robot emerged within 30 and 10 km, the prostatectomy caseload in non-robot hospitals reduced by 13 and 18% within 6 months, respectively, while the robot hospitals gained +101% caseload (P robotic minimally invasive radical prostatectomies in 483 non-robot hospitals revealed a significant inverse association between distance to nearest surgical robot and % interval days to radical prostatectomy (B = -17.3% for distance to nearest surgical robot ≥30 km and -11.7% for 10-30 km versus distance to nearest surgical robot Robotic surgery accessibility within 30 km would make patients less likely select conventional surgery. The nearer a robot was, the faster the caseload reduction was. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. The SEP "robot": a valid virtual reality robotic simulator for the Da Vinci Surgical System?

    Science.gov (United States)

    van der Meijden, O A J; Broeders, I A M J; Schijven, M P

    2010-04-01

    The aim of the study was to determine if the concept of face and construct validity may apply to the SurgicalSim Educational Platform (SEP) "robot" simulator. The SEP robot simulator is a virtual reality (VR) simulator aiming to train users on the Da Vinci Surgical System. To determine the SEP's face validity, two questionnaires were constructed. First, a questionnaire was sent to users of the Da Vinci system (reference group) to determine a focused user-group opinion and their recommendations concerning VR-based training applications for robotic surgery. Next, clinical specialists were requested to complete a pre-tested face validity questionnaire after performing a suturing task on the SEP robot simulator. To determine the SEP's construct validity, outcome parameters of the suturing task were compared, for example, relative to participants' endoscopic experience. Correlations between endoscopic experience and outcome parameters of the performed suturing task were tested for significance. On an ordinal five-point, scale the average score for the quality of the simulator software was 3.4; for its hardware, 3.0. Over 80% agreed that it is important to train surgeons and surgical trainees to use the Da Vinci. There was a significant but marginal difference in tool tip trajectory (p = 0.050) and a nonsignificant difference in total procedure time (p = 0.138) in favor of the experienced group. In conclusion, the results of this study reflect a uniform positive opinion using VR training in robotic surgery. Concepts of face and construct validity of the SEP robotic simulator are present; however, these are not strong and need to be improved before implementation of the SEP robotic simulator in its present state for a validated training curriculum to be successful .

  3. Medical capsule robots: A renaissance for diagnostics, drug delivery and surgical treatment.

    Science.gov (United States)

    Mapara, Sanyat S; Patravale, Vandana B

    2017-09-10

    The advancements in electronics and the progress in nanotechnology have resulted in path breaking development that will transform the way diagnosis and treatment are carried out currently. This development is Medical Capsule Robots, which has emerged from the science fiction idea of robots travelling inside the body to diagnose and cure disorders. The first marketed capsule robot was a capsule endoscope developed to capture images of the gastrointestinal tract. Today, varieties of capsule endoscopes are available in the market. They are slightly larger than regular oral capsules, made up of a biocompatible case and have electronic circuitry and mechanisms to capture and transmit images. In addition, robots with diagnostic features such as in vivo body temperature detection and pH monitoring have also been launched in the market. However, a multi-functional unit that will diagnose and cure diseases inside the body has not yet been realized. A remote controlled capsule that will undertake drug delivery and surgical treatment has not been successfully launched in the market. High cost, inadequate power supply, lack of control over drug release, limited space for drug storage on the capsule, inadequate safety and no mechanisms for active locomotion and anchoring have prevented their entry in the market. The capsule robots can revolutionize the current way of diagnosis and treatment. This paper discusses in detail the applications of medical capsule robots in diagnostics, drug delivery and surgical treatment. In diagnostics, detailed analysis has been presented on wireless capsule endoscopes, issues associated with the marketed versions and their corresponding solutions in literature. Moreover, an assessment has been made of the existing state of remote controlled capsules for targeted drug delivery and surgical treatment and their future impact is predicted. Besides the need for multi-functional capsule robots and the areas for further research have also been

  4. Robots for use in autism research.

    Science.gov (United States)

    Scassellati, Brian; Admoni, Henny; Matarić, Maja

    2012-01-01

    Autism spectrum disorders are a group of lifelong disabilities that affect people's ability to communicate and to understand social cues. Research into applying robots as therapy tools has shown that robots seem to improve engagement and elicit novel social behaviors from people (particularly children and teenagers) with autism. Robot therapy for autism has been explored as one of the first application domains in the field of socially assistive robotics (SAR), which aims to develop robots that assist people with special needs through social interactions. In this review, we discuss the past decade's work in SAR systems designed for autism therapy by analyzing robot design decisions, human-robot interactions, and system evaluations. We conclude by discussing challenges and future trends for this young but rapidly developing research area.

  5. Japan's robotics research for the next generation

    Science.gov (United States)

    Umetani, Y.; Yonemoto, K.

    1983-10-01

    The results of a survey of Japanese research institutes concerning the direction of Japanese robotics development over the next twenty years are presented. Attention is given to an assessment of the goals of robotics R & D in the public and private sectors based on the total research budgets of R & D institutes, the number of research laboratories studying robotics, and the various classifications of the topics of study. The study topics include work, control, measurement and recognition functions. A time table is presented which lists the specific applications of robotic research, the year of their expected actualization, and the degree of importance assigned by the respondents. Some of the more important applications are: robots able to work in hostile environments; robots for unmanned mining operations; and the rationalization of such tasks as afforestation, felling and transport activities in steep forested land through the use of advanced locomotive technology.

  6. Surgeons' display reduced mental effort and workload while performing robotically assisted surgical tasks, when compared to conventional laparoscopy.

    Science.gov (United States)

    Moore, Lee J; Wilson, Mark R; McGrath, John S; Waine, Elizabeth; Masters, Rich S W; Vine, Samuel J

    2015-09-01

    Research has demonstrated the benefits of robotic surgery for the patient; however, research examining the benefits of robotic technology for the surgeon is limited. This study aimed to adopt validated measures of workload, mental effort, and gaze control to assess the benefits of robotic surgery for the surgeon. We predicted that the performance of surgical training tasks on a surgical robot would require lower investments of workload and mental effort, and would be accompanied by superior gaze control and better performance, when compared to conventional laparoscopy. Thirty-two surgeons performed two trials on a ball pick-and-drop task and a rope-threading task on both robotic and laparoscopic systems. Measures of workload (the surgery task load index), mental effort (subjective: rating scale for mental effort and objective: standard deviation of beat-to-beat intervals), gaze control (using a mobile eye movement recorder), and task performance (completion time and number of errors) were recorded. As expected, surgeons performed both tasks more quickly and accurately (with fewer errors) on the robotic system. Self-reported measures of workload and mental effort were significantly lower on the robotic system compared to the laparoscopic system. Similarly, an objective cardiovascular measure of mental effort revealed lower investment of mental effort when using the robotic platform relative to the laparoscopic platform. Gaze control distinguished the robotic from the laparoscopic systems, but not in the predicted fashion, with the robotic system associated with poorer (more novice like) gaze control. The findings highlight the benefits of robotic technology for surgical operators. Specifically, they suggest that tasks can be performed more proficiently, at a lower workload, and with the investment of less mental effort, this may allow surgeons greater cognitive resources for dealing with other demands such as communication, decision-making, or periods of increased

  7. Pilot study on effectiveness of simulation for surgical robot design using manipulability.

    Science.gov (United States)

    Kawamura, Kazuya; Seno, Hiroto; Kobayashi, Yo; Fujie, Masakatsu G

    2011-01-01

    Medical technology has advanced with the introduction of robot technology, which facilitates some traditional medical treatments that previously were very difficult. However, at present, surgical robots are used in limited medical domains because these robots are designed using only data obtained from adult patients and are not suitable for targets having different properties, such as children. Therefore, surgical robots are required to perform specific functions for each clinical case. In addition, the robots must exhibit sufficiently high movability and operability for each case. In the present study, we focused on evaluation of the mechanism and configuration of a surgical robot by a simulation based on movability and operability during an operation. We previously proposed the development of a simulator system that reproduces the conditions of a robot and a target in a virtual patient body to evaluate the operability of the surgeon during an operation. In the present paper, we describe a simple experiment to verify the condition of the surgical assisting robot during an operation. In this experiment, the operation imitating suturing motion was carried out in a virtual workspace, and the surgical robot was evaluated based on manipulability as an indicator of movability. As the result, it was confirmed that the robot was controlled with low manipulability of the left side manipulator during the suturing. This simulation system can verify the less movable condition of a robot before developing an actual robot. Our results show the effectiveness of this proposed simulation system.

  8. Pitfalls of robot-assisted radical prostatectomy: a comparison of positive surgical margins between robotic and laparoscopic surgery.

    Science.gov (United States)

    Tozawa, Keiichi; Yasui, Takahiro; Umemoto, Yukihiro; Mizuno, Kentaro; Okada, Atsushi; Kawai, Noriyasu; Takahashi, Satoru; Kohri, Kenjiro

    2014-10-01

    To compare the surgical outcomes of laparoscopic radical prostatectomy and robot-assisted radical prostatectomy, including the frequency and location of positive surgical margins. The study cohort comprised 708 consecutive male patients with clinically localized prostate cancer who underwent laparoscopic radical prostatectomy (n = 551) or robot-assisted radical prostatectomy (n = 157) between January 1999 and September 2012. Operative time, estimated blood loss, complications, and positive surgical margins frequency were compared between laparoscopic radical prostatectomy and robot-assisted radical prostatectomy. There were no significant differences in age or body mass index between the laparoscopic radical prostatectomy and robot-assisted radical prostatectomy patients. Prostate-specific antigen levels, Gleason sum and clinical stage of the robot-assisted radical prostatectomy patients were significantly higher than those of the laparoscopic radical prostatectomy patients. Robot-assisted radical prostatectomy patients suffered significantly less bleeding (P robot-assisted radical prostatectomy group. In the laparoscopic radical prostatectomy group, positive surgical margins were detected in the apex (52.0%), anterior (5.3%), posterior (5.3%) and lateral regions (22.7%) of the prostate, as well as in the bladder neck (14.7%). In the robot-assisted radical prostatectomy patients, they were observed in the apex, anterior, posterior, and lateral regions of the prostate in 43.0%, 6.9%, 25.9% and 15.5% of patients, respectively, as well as in the bladder neck in 8.6% of patients. Positive surgical margin distributions after robot-assisted radical prostatectomy and laparoscopic radical prostatectomy are significantly different. The only disadvantage of robot-assisted radical prostatectomy is the lack of tactile feedback. Thus, the robotic surgeon needs to take this into account to minimize the risk of positive surgical margins. © 2014 The Japanese Urological

  9. Kinect technology for hand tracking control of surgical robots: technical and surgical skill comparison to current robotic masters.

    Science.gov (United States)

    Kim, Yonjae; Leonard, Simon; Shademan, Azad; Krieger, Axel; Kim, Peter C W

    2014-06-01

    Current surgical robots are controlled by a mechanical master located away from the patient, tracking surgeon's hands by wire and pulleys or mechanical linkage. Contactless hand tracking for surgical robot control is an attractive alternative, because it can be executed with minimal footprint at the patient's bedside without impairing sterility, while eliminating current disassociation between surgeon and patient. We compared technical and technologic feasibility of contactless hand tracking to the current clinical standard master controllers. A hand-tracking system (Kinect™-based 3Gear), a wire-based mechanical master (Mantis Duo), and a clinical mechanical linkage master (da Vinci) were evaluated for technical parameters with strong clinical relevance: system latency, static noise, robot slave tremor, and controller range. Five experienced surgeons performed a skill comparison study, evaluating the three different master controllers for efficiency and accuracy in peg transfer and pointing tasks. da Vinci had the lowest latency of 89 ms, followed by Mantis with 374 ms and 3Gear with 576 ms. Mantis and da Vinci produced zero static error. 3Gear produced average static error of 0.49 mm. The tremor of the robot used by the 3Gear and Mantis system had a radius of 1.7 mm compared with 0.5 mm for da Vinci. The three master controllers all had similar range. The surgeons took 1.98 times longer to complete the peg transfer task with the 3Gear system compared with Mantis, and 2.72 times longer with Mantis compared with da Vinci (p value 2.1e-9). For the pointer task, surgeons were most accurate with da Vinci with average error of 0.72 mm compared with Mantis's 1.61 mm and 3Gear's 2.41 mm (p value 0.00078). Contactless hand-tracking technology as a surgical master can execute simple surgical tasks. Whereas traditional master controllers outperformed, given that contactless hand-tracking is a first-generation technology, clinical potential is promising and could

  10. Automated robot-assisted surgical skill evaluation: Predictive analytics approach.

    Science.gov (United States)

    Fard, Mahtab J; Ameri, Sattar; Darin Ellis, R; Chinnam, Ratna B; Pandya, Abhilash K; Klein, Michael D

    2018-02-01

    Surgical skill assessment has predominantly been a subjective task. Recently, technological advances such as robot-assisted surgery have created great opportunities for objective surgical evaluation. In this paper, we introduce a predictive framework for objective skill assessment based on movement trajectory data. Our aim is to build a classification framework to automatically evaluate the performance of surgeons with different levels of expertise. Eight global movement features are extracted from movement trajectory data captured by a da Vinci robot for surgeons with two levels of expertise - novice and expert. Three classification methods - k-nearest neighbours, logistic regression and support vector machines - are applied. The result shows that the proposed framework can classify surgeons' expertise as novice or expert with an accuracy of 82.3% for knot tying and 89.9% for a suturing task. This study demonstrates and evaluates the ability of machine learning methods to automatically classify expert and novice surgeons using global movement features. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Evaluation of Sensor Configurations for Robotic Surgical Instruments

    Science.gov (United States)

    Gómez-de-Gabriel, Jesús M.; Harwin, William

    2015-01-01

    Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included. PMID:26516863

  12. A development of assistant surgical robot system based on surgical-operation-by-wire and hands-on-throttle-and-stick.

    Science.gov (United States)

    Kim, Myungjoon; Lee, Chiwon; Park, Woo Jung; Suh, Yun Suhk; Yang, Han Kwang; Kim, H Jin; Kim, Sungwan

    2016-05-20

    Robot-assisted laparoscopic surgery offers several advantages compared with open surgery and conventional minimally invasive surgery. However, one issue that needs to be resolved is a collision between the robot arm and the assistant instrument. This is mostly caused by miscommunication between the surgeon and the assistant. To resolve this limitation, an assistant surgical robot system that can be simultaneously manipulated via a wireless controller is proposed to allow the surgeon to control the assistant instrument. The system comprises two novel master interfaces (NMIs), a surgical instrument with a gripper actuated by a micromotor, and 6-axis robot arm. Two NMIs are attached to master tool manipulators of da Vinci research kit (dVRK) to control the proposed system simultaneously with patient side manipulators of dVRK. The developments of the surgical instrument and NMI are based on surgical-operation-by-wire concept and hands-on-throttle-and-stick concept from the earlier research, respectively. Tests for checking the accuracy, latency, and power consumption of the NMI are performed. The gripping force, reaction time, and durability are assessed to validate the surgical instrument. The workspace is calculated for estimating the clinical applicability. A simple peg task using the fundamentals of laparoscopic surgery board and an in vitro test are executed with three novice volunteers. The NMI was operated for 185 min and reflected the surgeon's decision successfully with a mean latency of 132 ms. The gripping force of the surgical instrument was comparable to that of conventional systems and was consistent even after 1000 times of gripping motion. The reaction time was 0.4 s. The workspace was calculated to be 8397.4 cm(3). Recruited volunteers were able to execute the simple peg task within the cut-off time and successfully performed the in vitro test without any collision. Various experiments were conducted and it is verified that the proposed assistant

  13. A cable-driven soft robot surgical system for cardiothoracic endoscopic surgery: preclinical tests in animals.

    Science.gov (United States)

    Wang, Hesheng; Zhang, Runxi; Chen, Weidong; Wang, Xiaozhou; Pfeifer, Rolf

    2017-08-01

    Minimally invasive surgery attracts more and more attention because of the advantages of minimal trauma, less bleeding and pain and low complication rate. However, minimally invasive surgery for beating hearts is still a challenge. Our goal is to develop a soft robot surgical system for single-port minimally invasive surgery on a beating heart. The soft robot described in this paper is inspired by the octopus arm. Although the octopus arm is soft and has more degrees of freedom (DOFs), it can be controlled flexibly. The soft robot is driven by cables that are embedded into the soft robot manipulator and can control the direction of the end and middle of the soft robot manipulator. The forward, backward and rotation movement of the soft robot is driven by a propulsion plant. The soft robot can move freely by properly controlling the cables and the propulsion plant. The soft surgical robot system can perform different thoracic operations by changing surgical instruments. To evaluate the flexibility, controllability and reachability of the designed soft robot surgical system, some testing experiments have been conducted in vivo on a swine. Through the subxiphoid, the soft robot manipulator could enter into the thoracic cavity and pericardial cavity smoothly and perform some operations such as biopsy, ligation and ablation. The operations were performed successfully and did not cause any damage to the surrounding soft tissues. From the experiments, the flexibility, controllability and reachability of the soft robot surgical system have been verified. Also, it has been shown that this system can be used in the thoracic and pericardial cavity for different operations. Compared with other endoscopy robots, the soft robot surgical system is safer, has more DOFs and is more flexible for control. When performing operations in a beating heart, this system maybe more suitable than traditional endoscopy robots.

  14. Modelling and Experiment Based on a Navigation System for a Cranio-Maxillofacial Surgical Robot

    OpenAIRE

    Duan, Xingguang; Gao, Liang; Wang, Yonggui; Li, Jianxi; Li, Haoyuan; Guo, Yanjun

    2018-01-01

    In view of the characteristics of high risk and high accuracy in cranio-maxillofacial surgery, we present a novel surgical robot system that can be used in a variety of surgeries. The surgical robot system can assist surgeons in completing biopsy of skull base lesions, radiofrequency thermocoagulation of the trigeminal ganglion, and radioactive particle implantation of skull base malignant tumors. This paper focuses on modelling and experimental analyses of the robot system based on navigatio...

  15. Telesurgery via Unmanned Aerial Vehicle (UAV) with a field deployable surgical robot.

    Science.gov (United States)

    Lum, Mitchell J H; Rosen, Jacob; King, Hawkeye; Friedman, Diana C W; Donlin, Gina; Sankaranarayanan, Ganesh; Harnett, Brett; Huffman, Lynn; Doarn, Charles; Broderick, Timothy; Hannaford, Blake

    2007-01-01

    Robotically assisted surgery stands to further revolutionize the medical field and provide patients with more effective healthcare. Most robotically assisted surgeries are teleoperated from the surgeon console to the patient where both ends of the system are located in the operating room. The challenge of surgical teleoperation across a long distance was already demonstrated through a wired communication network in 2001. New development has shifted towards deploying a surgical robot system in mobile settings and/or extreme environments such as the battlefield or natural disaster areas with surgeons operating wirelessly. As a collaborator in the HAPs/MRT (High Altitude Platform/Mobile Robotic Telesurgery) project, The University of Washington surgical robot was deployed in the desert of Simi Valley, CA for telesurgery experiments on an inanimate model via wireless communication through an Unmanned Aerial Vehicle (UAV). The surgical tasks were performed telerobotically with a maximum time delay between the surgeon's console (master) and the surgical robot (slave) of 20 ms for the robotic control signals and 200 ms for the video stream. This was our first experiment in the area of Mobile Robotic Telesurgery (MRT). The creation and initial testing of a deployable surgical robot system will facilitate growth in this area eventually leading to future systems saving human lives in disaster areas, on the battlefield or in other remote environments.

  16. Survey on Robot-Assisted Surgical Techniques Utilization in US Pediatric Surgery Fellowships.

    Science.gov (United States)

    Maizlin, Ilan I; Shroyer, Michelle C; Yu, David C; Martin, Colin A; Chen, Mike K; Russell, Robert T

    2017-02-01

    Robotic technology has transformed both practice and education in many adult surgical specialties; no standardized training guidelines in pediatric surgery currently exist. The purpose of our study was to assess the prevalence of robotic procedures and extent of robotic surgery education in US pediatric surgery fellowships. A deidentified survey measured utilization of the robot, perception on the utility of the robot, and its incorporation in training among the program directors of Accreditation Council for Graduate Medical Education (ACGME) pediatric surgery fellowships in the United States. Forty-one of the 47 fellowship programs (87%) responded to the survey. While 67% of respondents indicated the presence of a robot in their facility, only 26% reported its utilizing in their surgical practice. Among programs not utilizing the robot, most common reasons provided were lack of clear supportive evidence, increased intraoperative time, and incompatibility of instrument size to pediatric patients. While 58% of program directors believe that there is a future role for robotic surgery in children, only 18% indicated that robotic training should play a part in pediatric surgery education. Consequently, while over 66% of survey respondents received training in robot-assisted surgical technique, only 29% of fellows receive robot-assisted training during their fellowship. A majority of fellowships have access to a robot, but few utilize the technology in their current practice or as part of training. Further investigation is required into both the technology's potential benefits in the pediatric population and its role in pediatric surgery training.

  17. Simulation tools for robotics research and assessment

    Science.gov (United States)

    Fields, MaryAnne; Brewer, Ralph; Edge, Harris L.; Pusey, Jason L.; Weller, Ed; Patel, Dilip G.; DiBerardino, Charles A.

    2016-05-01

    The Robotics Collaborative Technology Alliance (RCTA) program focuses on four overlapping technology areas: Perception, Intelligence, Human-Robot Interaction (HRI), and Dexterous Manipulation and Unique Mobility (DMUM). In addition, the RCTA program has a requirement to assess progress of this research in standalone as well as integrated form. Since the research is evolving and the robotic platforms with unique mobility and dexterous manipulation are in the early development stage and very expensive, an alternate approach is needed for efficient assessment. Simulation of robotic systems, platforms, sensors, and algorithms, is an attractive alternative to expensive field-based testing. Simulation can provide insight during development and debugging unavailable by many other means. This paper explores the maturity of robotic simulation systems for applications to real-world problems in robotic systems research. Open source (such as Gazebo and Moby), commercial (Simulink, Actin, LMS), government (ANVEL/VANE), and the RCTA-developed RIVET simulation environments are examined with respect to their application in the robotic research domains of Perception, Intelligence, HRI, and DMUM. Tradeoffs for applications to representative problems from each domain are presented, along with known deficiencies and disadvantages. In particular, no single robotic simulation environment adequately covers the needs of the robotic researcher in all of the domains. Simulation for DMUM poses unique constraints on the development of physics-based computational models of the robot, the environment and objects within the environment, and the interactions between them. Most current robot simulations focus on quasi-static systems, but dynamic robotic motion places an increased emphasis on the accuracy of the computational models. In order to understand the interaction of dynamic multi-body systems, such as limbed robots, with the environment, it may be necessary to build component

  18. Pilot study of design method for surgical robot using workspace reproduction system.

    Science.gov (United States)

    Seno, Hiroto; Kawamura, Kazuya; Kobayashi, Yo; Fujie, Masakatsu G

    2011-01-01

    Recent development methods for surgical robots have an inherent problem. The user-friendliness of operating robot cannot be revealed until completion of the robot. To assist the design of a surgical robot that is user-friendly in terms of surgeon's operation, we propose a system that considers the operation manner of surgeon during the design phase of the robot. This system includes the following functionality: 1) a master manipulator that measures the operation manner of the surgeon (operator), and 2) a slave simulator in which the mechanical parameters can be configured freely. The operator can use the master manipulator to operate the slave simulator. Using this system, we investigate the necessity of considering the operator's manner when developing a surgical robot. In the experiment, we used three instruments with mechanisms that differed with respect to the length between bending joints and measured the trajectory of each instrument tip position during the surgical task. The results show that there are differences in the trajectories of each mechanism. Based on the results, changes in the mechanism of the surgical robot influenced the operator's manner. Therefore, when designing the mechanism for a surgical robot, there is a need to consider how this influences the operator's manner.

  19. The effect of music on robot-assisted laparoscopic surgical performance.

    Science.gov (United States)

    Siu, Ka-Chun; Suh, Irene H; Mukherjee, Mukul; Oleynikov, Dmitry; Stergiou, Nick

    2010-12-01

    Music is often played in the operating room to increase the surgeon's concentration and to mask noise. It could have a beneficial effect on surgical performance. Ten participants with limited experience with the da Vinci robotic surgical system were recruited to perform two surgical tasks: suture tying and mesh alignment when classical, jazz, hip-hop, and Jamaican music were presented. Kinematics of the instrument tips of the surgical robot and surface electromyography of the subjects were recorded. Results revealed that a significant music effect was found for both tasks with decreased time to task completion (P = .005) and total travel distance (P = .021) as well as reduced muscle activations ( P = .016) and increased median muscle frequency (P = .034). Subjects improved their performance significantly when they listened to either hip-hop or Jamaican music. In conclusion, music with high rhythmicity has a beneficial effect on robotic surgical performance. Musical environment may benefit surgical training and make acquisition of surgical skills more efficient.

  20. Utilization and outcome of laparoscopic versus robotic general and bariatric surgical procedures at Academic Medical Centers.

    Science.gov (United States)

    Villamere, James; Gebhart, Alana; Vu, Stephen; Nguyen, Ninh T

    2015-07-01

    Robotic-assisted general and bariatric surgery is gaining popularity among surgeons. The aim of this study was to analyze the utilization and outcome of laparoscopic versus robotic-assisted laparoscopic techniques for common elective general and bariatric surgical procedures performed at Academic Medical Centers. We analyzed data from University HealthSystem Consortium clinical database from October 2010 to February 2014 for all patients who underwent laparoscopic versus robotic techniques for eight common elective general and bariatric surgical procedures: gastric bypass, sleeve gastrectomy, gastric band, antireflux surgery, Heller myotomy (HM), cholecystectomy (LC), colectomy, rectal resection (RR). Utilization and outcome measures including demographics, in-hospital mortality, major complications, 30-day readmission, length of stay (LOS), and costs were compared between techniques. 96,694 laparoscopic and robotic procedures were analyzed. Utilization of the robotic approach was the highest for RR (21.4%), followed by HM (9.1%). There was no significant difference in in-hospital mortality or major complications between laparoscopic versus robotic techniques for all procedures. Only two procedures had improved outcome associated with the robotic approach: robotic HM and robotic LC had a shorter LOS compared to the laparoscopic approach (2.8 ± 3.6 vs. 2.3 ± 2.1; respectively, p bariatric surgical procedures with the highest utilization for rectal resection. Compared to conventional laparoscopy, there were no observed clinical benefits associated with the robotic approach, but there was a consistently higher cost.

  1. Direct manipulation of tool-like masters for controlling a master-slave surgical robotic system.

    Science.gov (United States)

    Zhang, Linan; Zhou, Ningxin; Wang, Shuxin

    2014-12-01

    Robotic-assisted minimally invasive surgery (MIS) can benefit both patients and surgeons. However, the learning curve for robotically assisted procedures can be long and the total system costs are high. Therefore, there is considerable interest in new methods and lower cost controllers for a surgical robotic system. In this study, a knife-master and a forceps-master, shaped similarly to a surgical knife and forceps, were developed as input devices for control of a master-slave surgical robotic system. In addition, a safety strategy was developed to eliminate the master-slave orientation difference and stabilize the surgical system. Master-slave tracking experiments and a ring-and-bar experiment showed that the safety tracking strategy could ensure that the robot system moved stably without any tremor in the tracking motion. Subjects could manipulate the surgical tool to achieve the master-slave operation with less training compared to a mechanical master. Direct manipulation of the small, light and low-cost surgical tools to control a robotic system is a possible operating mode. Surgeons can operate the robotic system in their own familiar way, without long training. The main potential safety issues can be solved by the proposed safety control strategy. Copyright © 2013 John Wiley & Sons, Ltd.

  2. 16th International Symposium of Robotic Research

    CERN Document Server

    Corke, Peter

    2016-01-01

    This volume presents a collection of papers presented at the 16th International Symposium of Robotic Research (ISRR). ISRR is the biennial meeting of the International Foundation of Robotic Research (IFRR) and its 16th edition took place in Singapore over the period 16th to 19th December 2013. The ISRR is the longest running series of robotics research meetings and dates back to the very earliest days of robotics as a research discipline. This 16th ISRR meeting was held in the 30th anniversary year of the very first meeting which took place in Bretton Woods (New Hampshire, USA) in August 1983., and represents thirty years at the forefront of ideas in robotics research. As for the previous symposia, ISRR 2013 followed up on the successful concept of a mixture of invited contributions and open submissions. 16 of the contributions were invited contributions from outstanding researchers selected by the IFRR officers and the program committee, and the other contributions were chosen among the open submissions afte...

  3. Photoacoustic-based approach to surgical guidance performed with and without a da Vinci robot

    Science.gov (United States)

    Gandhi, Neeraj; Allard, Margaret; Kim, Sungmin; Kazanzides, Peter; Lediju Bell, Muyinatu A.

    2017-12-01

    Death and paralysis are significant risks of modern surgeries, caused by injury to blood vessels and nerves hidden by bone and other tissue. We propose an approach to surgical guidance that relies on photoacoustic (PA) imaging to determine the separation between these critical anatomical features and to assess the extent of safety zones during surgical procedures. Images were acquired as an optical fiber was swept across vessel-mimicking targets, in the absence and presence of teleoperation with a research da Vinci Surgical System. Vessel separation distances were measured directly from PA images. Vessel positions were additionally recorded based on the fiber position (calculated from the da Vinci robot kinematics) that corresponded to an observed PA signal, and these recordings were used to indirectly measure vessel separation distances. Amplitude- and coherence-based beamforming were used to estimate vessel separations, resulting in 0.52- to 0.56-mm mean absolute errors, 0.66- to 0.71-mm root-mean-square errors, and 65% to 68% more accuracy compared to fiber position measurements obtained through the da Vinci robot kinematics. Similar accuracy was achieved in the presence of up to 4.5-mm-thick ex vivo tissue. Results indicate that PA image-based measurements of the separation among anatomical landmarks could be a viable method for real-time path planning in multiple interventional PA applications.

  4. 15th International Symposium of Robotic Research

    CERN Document Server

    Khatib, Oussama

    2017-01-01

    This volume presents a collection of papers presented at the 15th International Symposium of Robotic Research (ISRR). ISRR is the biennial meeting of the International Foundation of Robotic Research (IFRR) and its 15th edition took place in Flagstaff, Arizona on December 9 to December 12, 2011. As for the previous symposia, ISRR 2011 followed up on the successful concept of a mixture of invited contributions and open submissions. Therefore approximately half of the 37 contributions were invited contributions from outstanding researchers selected by the IFRR officers and the program committee, and the other half were chosen among the open submissions after peer review. This selection process resulted in a truly excellent technical program which featured some of the very best of robotic research. The program was organized around oral presentation in a single-track format and included for the first time a small number of interactive presentations. The symposium contributions contained in this volume report on a ...

  5. Human-Robot Interaction Directed Research Project

    Science.gov (United States)

    Rochlis, Jennifer; Ezer, Neta; Sandor, Aniko

    2011-01-01

    Human-robot interaction (HRI) is about understanding and shaping the interactions between humans and robots (Goodrich & Schultz, 2007). It is important to evaluate how the design of interfaces and command modalities affect the human s ability to perform tasks accurately, efficiently, and effectively (Crandall, Goodrich, Olsen Jr., & Nielsen, 2005) It is also critical to evaluate the effects of human-robot interfaces and command modalities on operator mental workload (Sheridan, 1992) and situation awareness (Endsley, Bolt , & Jones, 2003). By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed that support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for design. Because the factors associated with interfaces and command modalities in HRI are too numerous to address in 3 years of research, the proposed research concentrates on three manageable areas applicable to National Aeronautics and Space Administration (NASA) robot systems. These topic areas emerged from the Fiscal Year (FY) 2011 work that included extensive literature reviews and observations of NASA systems. The three topic areas are: 1) video overlays, 2) camera views, and 3) command modalities. Each area is described in detail below, along with relevance to existing NASA human-robot systems. In addition to studies in these three topic areas, a workshop is proposed for FY12. The workshop will bring together experts in human-robot interaction and robotics to discuss the state of the practice as applicable to research in space robotics. Studies proposed in the area of video overlays consider two factors in the implementation of augmented reality (AR) for operator displays during teleoperation. The first of these factors is the type of navigational guidance provided by AR symbology. In the proposed

  6. Predicting Complications Following Robot-Assisted Partial Nephrectomy with the ACS NSQIP®Universal Surgical Risk Calculator.

    Science.gov (United States)

    Winoker, Jared S; Paulucci, David J; Anastos, Harry; Waingankar, Nikhil; Abaza, Ronney; Eun, Daniel D; Bhandari, Akshay; Hemal, Ashok K; Sfakianos, John P; Badani, Ketan K

    2017-10-01

    We evaluated the predictive value of the ACS NSQIP® (American College of Surgeons National Surgical Quality Improvement Program®) surgical risk calculator in a tertiary referral cohort of patients who underwent robot-assisted partial nephrectomy. We queried our prospectively maintained, multi-institutional database of patients treated with robot-assisted partial nephrectomy and input the preoperative details of 300 randomly selected patients into the calculator. Accuracy of the calculator was assessed by the ROC AUC and the Brier score. The observed rate of any complication in our cohort was 14% while the mean predicted rate of any complication using the calculator was 5.42%. The observed rate of serious complications (Clavien score 3 or greater) was 3.67% compared to the predicted rate of 4.89%. Low AUC and high Brier score were calculated for any complication (0.51 and 0.1272) and serious complications (0.55 and 0.0352, respectively). The calculated AUC was low for all outcomes, including venous thromboembolism (0.67), surgical site infection (0.51) and pneumonia (0.44). The ACS NSQIP risk calculator poorly predicted and discriminated which patients would experience complications after robot-assisted partial nephrectomy. These findings suggest the need for a more tailored outcome prediction model to better assist urologists risk stratify patients undergoing robot-assisted partial nephrectomy and counsel them on individual surgical risks. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Feasibility of transoral lateral oropharyngectomy using a robotic surgical system for tonsillar cancer.

    Science.gov (United States)

    Park, Young Min; Lee, Jeong Gwon; Lee, Won Sang; Choi, Eun Chang; Chung, Sa Myung; Kim, Se-Heon

    2009-08-01

    Conventional surgical approaches for tonsillar carcinomas have a great risk for developing treatment-related morbidity. To minimize this morbidity, transoral lateral oropharyngectomy (TLO) using the robotic surgical system was performed, and the efficacy and feasibility of this procedure was evaluated. TLO was performed using the da Vinci surgical robot (Intuitive Surgical, Inc., Sunnyvale, CA). It consists of a surgeon's console and a manipulator cart equipped with three robotic arms. The surgeon is provided with three-dimensional magnified images from the endoscopic arm and can control two instrument arms for delicate operations from the console. Safe resection of tonsillar carcinoma was possible with the three-dimensional magnified images. When proceeding with resection of the buccopharyngeal fascia, we could prevent damage to the carotid artery, which is located posterolateral to the tonsillar fossa, since the joint at the distal part of the robotic arm can be bent freely from side to side. By using the 30 degrees endoscope, we can achieve a better surgical view of the base of the tongue area. TLO was performed successfully in all five patients without surgical complications. The mean operating time was 44 min, and an average of 19 min was required for setting up the robotic system. TLO using the robotic system will be a good option for organ preservation therapy in the treatment of carcinomas of the tonsil and the tonsillar fossa in the future.

  8. Robot-Assisted Fracture Surgery: Surgical Requirements and System Design.

    Science.gov (United States)

    Georgilas, Ioannis; Dagnino, Giulio; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2018-03-09

    The design of medical devices is a complex and crucial process to ensure patient safety. It has been shown that improperly designed devices lead to errors and associated accidents and costs. A key element for a successful design is incorporating the views of the primary and secondary stakeholders early in the development process. They provide insights into current practice and point out specific issues with the current processes and equipment in use. This work presents how information from a user-study conducted in the early stages of the RAFS (Robot Assisted Fracture Surgery) project informed the subsequent development and testing of the system. The user needs were captured using qualitative methods and converted to operational, functional, and non-functional requirements based on the methods derived from product design and development. This work presents how the requirements inform a new workflow for intra-articular joint fracture reduction using a robotic system. It is also shown how the various elements of the system are developed to explicitly address one or more of the requirements identified, and how intermediate verification tests are conducted to ensure conformity. Finally, a validation test in the form of a cadaveric trial confirms the ability of the designed system to satisfy the aims set by the original research question and the needs of the users.

  9. Computer-based laparoscopic and robotic surgical simulators: performance characteristics and perceptions of new users.

    Science.gov (United States)

    Lin, David W; Romanelli, John R; Kuhn, Jay N; Thompson, Renee E; Bush, Ron W; Seymour, Neal E

    2009-01-01

    This study aimed to define perceptions of the need and the value of new simulation devices for laparoscopic and robot-assisted surgery. The initial experience of surgeons using both robotic and nonrobotic laparoscopic simulators to perform an advanced laparoscopic skill was evaluated. At the 2006 Society of American Gastroesophageal Surgeons (SAGES) meeting, 63 Learning Center attendees used a new virtual reality robotic surgery simulator (SEP Robot) and either a computer-enhanced laparoscopic simulator (ProMIS) or a virtual reality simulator (SurgicalSIM). Demographic and training data were collected by an intake survey. Subjects then were assessed during one iteration of laparoscopic suturing and knot-tying on the SEP Robot and either the ProMIS or the SurgicalSIM. A posttask survey determined users' impressions of task realism, interface quality, and educational value. Performance data were collected and comparisons made between user-defined groups, different simulation platforms, and posttask survey responses. The task completion rate was significantly greater for experts than for nonexperts on the virtual reality platforms (SurgicalSIM: 100% vs 36%; SEP Robot: 93% vs 63%; p platforms, whereas simulator metrics best discriminated expertise for the videoscopic platform. Similar comparisons for the virtual reality platforms were not feasible because of the low task completion rate for nonexperts. The added degrees of freedom associated with the robotic surgical simulator instruments facilitated completion of the task by nonexperts. All platforms were perceived as effective training tools.

  10. An integrated movement capture and control platform applied towards autonomous movements of surgical robots.

    Science.gov (United States)

    Daluja, Sachin; Golenberg, Lavie; Cao, Alex; Pandya, Abhilash K; Auner, Gregory W; Klein, Michael D

    2009-01-01

    Robotic surgery has gradually gained acceptance due to its numerous advantages such as tremor filtration, increased dexterity and motion scaling. There remains, however, a significant scope for improvement, especially in the areas of surgeon-robot interface and autonomous procedures. Previous studies have attempted to identify factors affecting a surgeon's performance in a master-slave robotic system by tracking hand movements. These studies relied on conventional optical or magnetic tracking systems, making their use impracticable in the operating room. This study concentrated on building an intrinsic movement capture platform using microcontroller based hardware wired to a surgical robot. Software was developed to enable tracking and analysis of hand movements while surgical tasks were performed. Movement capture was applied towards automated movements of the robotic instruments. By emulating control signals, recorded surgical movements were replayed by the robot's end-effectors. Though this work uses a surgical robot as the platform, the ideas and concepts put forward are applicable to telerobotic systems in general.

  11. Robotics as a new surgical minimally invasive approach to treatment of endometriosis: a systematic review.

    Science.gov (United States)

    Carvalho, Luiz; Abrão, Mauricio Simões; Deshpande, Abhishek; Falcone, Tommaso

    2012-06-01

    This systematic review evaluates the role of robotics in the surgical treatment of endometriosis. Electronic database searches were conducted in MEDLINE, Scopus, and ISI Web of Knowledge for relevant studies over the past 10 years. Four published articles were found that used robotic assisted laparoscopy to perform endometriosis surgery. All four studies used the da Vinci Surgical System (Intuitive Surgical Inc., Sunnyvale, CA, USA). Three studies were case reports, and one was a cohort study. Robotics appears to be as effective as conventional laparoscopy in the management of endometriosis. There were no reports of any major complications. Few studies have been published and show us that robotic endometriosis surgery is feasible even in severe endometriosis cases without conversion. There is a lack of long-term outcome papers in the literature. Randomized controlled trials are necessary. Copyright © 2011 John Wiley & Sons, Ltd.

  12. General surgery residents' perception of robot-assisted procedures during surgical training.

    Science.gov (United States)

    Farivar, Behzad S; Flannagan, Molly; Leitman, I Michael

    2015-01-01

    With the continued expansion of robotically assisted procedures, general surgery residents continue to receive more exposure to this new technology as part of their training. There are currently no guidelines or standardized training requirements for robot-assisted procedures during general surgical residency. The aim of this study was to assess the effect of this new technology on general surgery training from the residents' perspective. An anonymous, national, web-based survey was conducted on residents enrolled in general surgery training in 2013. The survey was sent to 240 Accreditation Council for Graduate Medical Education-approved general surgery training programs. Overall, 64% of the responding residents were men and had an average age of 29 years. Half of the responses were from postgraduate year 1 (PGY1) and PGY2 residents, and the remainder was from the PGY3 level and above. Overall, 50% of the responses were from university training programs, 32% from university-affiliated programs, and 18% from community-based programs. More than 96% of residents noted the availability of the surgical robot system at their training institution. Overall, 63% of residents indicated that they had participated in robotic surgical cases. Most responded that they had assisted in 10 or fewer robotic cases with the most frequent activities being assisting with robotic trocar placement and docking and undocking the robot. Only 18% reported experience with operating the robotic console. More senior residents (PGY3 and above) were involved in robotic cases compared with junior residents (78% vs 48%, p robotic case. Approximately 64% of residents reported that formal training in robotic surgery was important in residency training and 46% of residents indicated that robotic-assisted cases interfered with resident learning. Only 11% felt that robotic-assisted cases would replace conventional laparoscopic surgery in the future. This study illustrates that although the most residents

  13. Improved transoral dissection of the tongue base with a next-generation robotic surgical system.

    Science.gov (United States)

    Chen, Michelle M; Orosco, Ryan K; Lim, Gil Chai; Holsinger, F Christopher

    2018-01-01

    To describe the application of a novel, flexible, single-port robotic surgical system for transoral tongue base resection, and compare it to the current multiport, rigid-arm robotic surgical system. Preclinical anatomic study using four human cadavers. Transoral resection of the tongue base using the da Vinci Sp and the Si robotic surgical systems. A standardized operative procedure is outlined, and operative parameters were compared between robotic systems. Successful completion of tongue base resection was achieved in all cadavers using both the Sp and the Si systems. The optimal entry guide and instrument position for the Sp system was with the cannula rotated 180° from the standard position so that the camera was in the most inferior (caudal) channel. In the optimal configuration, no instrument exchanges were needed with the Sp system, but use of the Si system required one instrument exchange. This is the first preclinical anatomic study of robotic tongue base resection that compares a novel single-port robotic system to the current multiarm system. Surgical workflow was more streamlined with the da Vinci Sp system, and the new capabilities of simultaneous dissection, traction, and counter traction allowed for improved dissection and vessel control. NA. Laryngoscope, 128:78-83, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  14. Human-Robot Interaction Directed Research Project

    Science.gov (United States)

    Sandor, Aniko; Cross, Ernest V., II; Chang, Mai Lee

    2014-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces and command modalities affect the human's ability to perform tasks accurately, efficiently, and effectively when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. This DRP concentrates on three areas associated with interfaces and command modalities in HRI which are applicable to NASA robot systems: 1) Video Overlays, 2) Camera Views, and 3) Command Modalities. The first study focused on video overlays that investigated how Augmented Reality (AR) symbology can be added to the human-robot interface to improve teleoperation performance. Three types of AR symbology were explored in this study, command guidance (CG), situation guidance (SG), and both (SCG). CG symbology gives operators explicit instructions on what commands to input, whereas SG symbology gives operators implicit cues so that operators can infer the input commands. The combination of CG and SG provided operators with explicit and implicit cues allowing the operator to choose which symbology to utilize. The objective of the study was to understand how AR symbology affects the human operator's ability to align a robot arm to a target using a flight stick and the ability to allocate attention between the symbology and external views of the world. The study evaluated the effects type of symbology (CG and SG) has on operator tasks performance and attention allocation during teleoperation of a robot arm. The second study expanded on the first study by evaluating the effects of the type of

  15. Validation of a virtual reality-based robotic surgical skills curriculum.

    Science.gov (United States)

    Connolly, Michael; Seligman, Johnathan; Kastenmeier, Andrew; Goldblatt, Matthew; Gould, Jon C

    2014-05-01

    The clinical application of robotic-assisted surgery (RAS) is rapidly increasing. The da Vinci Surgical System™ is currently the only commercially available RAS system. The skills necessary to perform robotic surgery are unique from those required for open and laparoscopic surgery. A validated laparoscopic surgical skills curriculum (fundamentals of laparoscopic surgery or FLS™) has transformed the way surgeons acquire laparoscopic skills. There is a need for a similar skills training and assessment tool specific for robotic surgery. Based on previously published data and expert opinion, we developed a robotic skills curriculum. We sought to evaluate this curriculum for evidence of construct validity (ability to discriminate between users of different skill levels). Four experienced surgeons (>20 RAS) and 20 novice surgeons (first-year medical students with no surgical or RAS experience) were evaluated. The curriculum comprised five tasks utilizing the da Vinci™ Skills Simulator (Pick and Place, Camera Targeting 2, Peg Board 2, Matchboard 2, and Suture Sponge 3). After an orientation to the robot and a period of acclimation in the simulator, all subjects completed three consecutive repetitions of each task. Computer-derived performance metrics included time, economy of motion, master work space, instrument collisions, excessive force, distance of instruments out of view, drops, missed targets, and overall scores (a composite of all metrics). Experienced surgeons significantly outperformed novice surgeons in most metrics. Statistically significant differences were detected for each task in regards to mean overall scores and mean time (seconds) to completion. The curriculum we propose is a valid method of assessing and distinguishing robotic surgical skill levels on the da Vinci Si™ Surgical System. Further study is needed to establish proficiency levels and to demonstrate that training on the simulator with the proposed curriculum leads to improved robotic

  16. Retention of fundamental surgical skills learned in robot-assisted surgery.

    Science.gov (United States)

    Suh, Irene H; Mukherjee, Mukul; Shah, Bhavin C; Oleynikov, Dmitry; Siu, Ka-Chun

    2012-12-01

    Evaluation of the learning curve for robotic surgery has shown reduced errors and decreased task completion and training times compared with regular laparoscopic surgery. However, most training evaluations of robotic surgery have only addressed short-term retention after the completion of training. Our goal was to investigate the amount of surgical skills retained after 3 months of training with the da Vinci™ Surgical System. Seven medical students without any surgical experience were recruited. Participants were trained with a 4-day training program of robotic surgical skills and underwent a series of retention tests at 1 day, 1 week, 1 month, and 3 months post-training. Data analysis included time to task completion, speed, distance traveled, and movement curvature by the instrument tip. Performance of the participants was graded using the modified Objective Structured Assessment of Technical Skills (OSATS) for robotic surgery. Participants filled out a survey after each training session by answering a set of questions. Time to task completion and the movement curvature was decreased from pre- to post-training and the performance was retained at all the corresponding retention periods: 1 day, 1 week, 1 month, and 3 months. The modified OSATS showed improvement from pre-test to post-test and this improvement was maintained during all the retention periods. Participants increased in self-confidence and mastery in performing robotic surgical tasks after training. Our novel comprehensive training program improved robot-assisted surgical performance and learning. All trainees retained their fundamental surgical skills for 3 months after receiving the training program.

  17. Modeling and evaluation of hand-eye coordination of surgical robotic system on task performance.

    Science.gov (United States)

    Gao, Yuanqian; Wang, Shuxin; Li, Jianmin; Li, Aimin; Liu, Hongbin; Xing, Yuan

    2017-12-01

    Robotic-assisted minimally invasive surgery changes the direct hand and eye coordination in traditional surgery to indirect instrument and camera coordination, which affects the ergonomics, operation performance, and safety. A camera, two instruments, and a target, as the descriptors, are used to construct the workspace correspondence and geometrical relationships in a surgical operation. A parametric model with a set of parameters is proposed to describe the hand-eye coordination of the surgical robot. From the results, optimal values and acceptable ranges of these parameters are identified from two tasks. A 90° viewing angle had the longest completion time; 60° instrument elevation angle and 0° deflection angle had better performance; there is no significant difference among manipulation angles and observing distances on task performance. This hand-eye coordination model provides evidence for robotic design, surgeon training, and robotic initialization to achieve dexterous and safe manipulation in surgery. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Design of a surgical robot with dynamic vision field control for Single Port Endoscopic Surgery.

    Science.gov (United States)

    Kobayashi, Yo; Sekiguchi, Yuta; Tomono, Yu; Watanabe, Hiroki; Toyoda, Kazutaka; Konishi, Kozo; Tomikawa, Morimasa; Ieiri, Satoshi; Tanoue, Kazuo; Hashizume, Makoto; Fujie, Masaktsu G

    2010-01-01

    Recently, a robotic system was developed to assist Single Port Endoscopic Surgery (SPS). However, the existing system required a manual change of vision field, hindering the surgical task and increasing the degrees of freedom (DOFs) of the manipulator. We proposed a surgical robot for SPS with dynamic vision field control, the endoscope view being manipulated by a master controller. The prototype robot consisted of a positioning and sheath manipulator (6 DOF) for vision field control, and dual tool tissue manipulators (gripping: 5DOF, cautery: 3DOF). Feasibility of the robot was demonstrated in vitro. The "cut and vision field control" (using tool manipulators) is suitable for precise cutting tasks in risky areas while a "cut by vision field control" (using a vision field control manipulator) is effective for rapid macro cutting of tissues. A resection task was accomplished using a combination of both methods.

  19. In vivo demonstration of surgical task assistance using miniature robots.

    Science.gov (United States)

    Hawks, Jeff A; Kunowski, Jacob; Platt, Stephen R

    2012-10-01

    Laparoscopy is beneficial to patients as measured by less painful recovery and an earlier return to functional health compared to conventional open surgery. However, laparoscopy requires the manipulation of long, slender tools from outside the patient's body. As a result, laparoscopy generally benefits only patients undergoing relatively simple procedures. An innovative approach to laparoscopy uses miniature in vivo robots that fit entirely inside the abdominal cavity. Our previous work demonstrated that a mobile, wireless robot platform can be successfully operated inside the abdominal cavity with different payloads (biopsy, camera, and physiological sensors). We hope that these robots are a step toward reducing the invasiveness of laparoscopy. The current study presents design details and results of laboratory and in vivo demonstrations of several new payload designs (clamping, cautery, and liquid delivery). Laboratory and in vivo cooperation demonstrations between multiple robots are also presented.

  20. Intraocular robotic interventional surgical system (IRISS): Mechanical design, evaluation, and master-slave manipulation.

    Science.gov (United States)

    Wilson, Jason T; Gerber, Matthew J; Prince, Stephen W; Chen, Cheng-Wei; Schwartz, Steven D; Hubschman, Jean-Pierre; Tsao, Tsu-Chin

    2018-02-01

    Since the advent of robotic-assisted surgery, the value of using robotic systems to assist in surgical procedures has been repeatedly demonstrated. However, existing technologies are unable to perform complete, multi-step procedures from start to finish. Many intraocular surgical steps continue to be manually performed. An intraocular robotic interventional surgical system (IRISS) capable of performing various intraocular surgical procedures was designed, fabricated, and evaluated. Methods were developed to evaluate the performance of the remote centers of motion (RCMs) using a stereo-camera setup and to assess the accuracy and precision of positioning the tool tip using an optical coherence tomography (OCT) system. The IRISS can simultaneously manipulate multiple surgical instruments, change between mounted tools using an onboard tool-change mechanism, and visualize the otherwise invisible RCMs to facilitate alignment of the RCM to the surgical incision. The accuracy of positioning the tool tip was measured to be 0.205±0.003 mm. The IRISS was evaluated by trained surgeons in a remote surgical theatre using post-mortem pig eyes and shown to be effective in completing many key steps in a variety of intraocular surgical procedures as well as being capable of performing an entire cataract extraction from start to finish. The IRISS represents a necessary step towards fully automated intraocular surgery and demonstrated accurate and precise master-slave manipulation for cataract removal and-through visual feedback-retinal vein cannulation. Copyright © 2017 John Wiley & Sons, Ltd.

  1. A cohort study evaluating robotic versus laparotomy surgical outcomes of obese women with endometrial carcinoma.

    Science.gov (United States)

    Subramaniam, Akila; Kim, Kenneth H; Bryant, Shannon A; Zhang, Bin; Sikes, Christa; Kimball, Kristopher J; Kilgore, Larry C; Huh, Warner K; Straughn, John M; Alvarez, Ronald D

    2011-09-01

    Minimally invasive surgery offers advantages for management of obese patients, but technical difficulty often deters its utilization. Compared to laparotomy, robotic surgery should allow comparable staging and improved surgical outcomes. Therefore, we evaluated outcomes in robotic and laparotomy cohorts of obese women with endometrial cancer at our institution. Retrospective robotic and laparotomy cohorts of obese women (BMI ≥ 30 kg/m(2)) undergoing surgical management of primary endometrial cancer from March 2006 to March 2009 were formulated utilizing a computerized database. Patient demographics, operative statistics, peri-operative complications, and pathologic details were collected in an intent to treat analysis. Chi-square or Fisher's exact test and t-test were used for statistical analysis. 73 women underwent robotic surgical management, 11% converted to laparotomy. Mean BMI (39.8 vs. 41.9, p=0.152), number of co-morbidities (2.49 vs. 2.62, p=0.690), number of previous surgeries (0.97 vs. 0.94, p=0.841), and lymphadenectomies performed (65.8% vs. 56.7%, p=0.227) were similar between cohorts. Total lymph nodes obtained were not statistically different between cohorts (8.01 vs. 7.24, p=0.505). Total operative time and room time was significantly longer for robotic surgery; however, estimated blood loss, the percentage of patients receiving transfusion, hospital length of stay, wound complications (4.1% vs. 20.2%, p=0.002) and other complications (9.6% vs. 29.8%, p=0.001) were improved for the robotic cohort. Robotic management of obese women with endometrial cancer yields acceptable staging results and improved surgical outcomes. Although operating time is longer, hospital time is shorter. Robotic surgery may be an ideal approach for these patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Robotics in General Surgery

    OpenAIRE

    Wall, James; Chandra, Venita; Krummel, Thomas

    2008-01-01

    In summary, robotics has made a significant contribution to General Surgery in the past 20 years. In its infancy, surgical robotics has seen a shift from early systems that assisted the surgeon to current teleoperator systems that can enhance surgical skills. Telepresence and augmented reality surgery are being realized, while research and development into miniaturization and automation is rapidly moving forward. The future of surgical robotics is bright. Researchers are working to address th...

  3. DaVinci canvas: a telerobotic surgical system with integrated, robot-assisted, laparoscopic ultrasound capability.

    Science.gov (United States)

    Leven, Joshua; Burschka, Darius; Kumar, Rajesh; Zhang, Gary; Blumenkranz, Steve; Dai, Xiangtian Donald; Awad, Mike; Hager, Gregory D; Marohn, Mike; Choti, Mike; Hasser, Chris; Taylor, Russell H

    2005-01-01

    We present daVinci Canvas: a telerobotic surgical system with integrated robot-assisted laparoscopic ultrasound capability. DaVinci Canvas consists of the integration of a rigid laparoscopic ultrasound probe with the daVinci robot, video tracking of ultrasound probe motions, endoscope and ultrasound calibration and registration, autonomous robot motions, and the display of registered 2D and 3D ultrasound images. Although we used laparoscopic liver cancer surgery as a focusing application, our broader aim was the development of a versatile system that would be useful for many procedures.

  4. Modelling and Experiment Based on a Navigation System for a Cranio-Maxillofacial Surgical Robot.

    Science.gov (United States)

    Duan, Xingguang; Gao, Liang; Wang, Yonggui; Li, Jianxi; Li, Haoyuan; Guo, Yanjun

    2018-01-01

    In view of the characteristics of high risk and high accuracy in cranio-maxillofacial surgery, we present a novel surgical robot system that can be used in a variety of surgeries. The surgical robot system can assist surgeons in completing biopsy of skull base lesions, radiofrequency thermocoagulation of the trigeminal ganglion, and radioactive particle implantation of skull base malignant tumors. This paper focuses on modelling and experimental analyses of the robot system based on navigation technology. Firstly, the transformation relationship between the subsystems is realized based on the quaternion and the iterative closest point registration algorithm. The hand-eye coordination model based on optical navigation is established to control the end effector of the robot moving to the target position along the planning path. The closed-loop control method, "kinematics + optics" hybrid motion control method, is presented to improve the positioning accuracy of the system. Secondly, the accuracy of the system model was tested by model experiments. And the feasibility of the closed-loop control method was verified by comparing the positioning accuracy before and after the application of the method. Finally, the skull model experiments were performed to evaluate the function of the surgical robot system. The results validate its feasibility and are consistent with the preoperative surgical planning.

  5. A Novel Telemanipulated Robotic Assistant for Surgical Endoscopy: Preclinical Application to ESD.

    Science.gov (United States)

    Zorn, Lucile; Nageotte, Florent; Zanne, Philippe; Legner, Andras; Dallemagne, Bernard; Marescaux, Jacques; de Mathelin, Michel

    2018-04-01

    Minimally invasive surgical interventions in the gastrointestinal tract, such as endoscopic submucosal dissection (ESD), are very difficult for surgeons when performed with standard flexible endoscopes. Robotic flexible systems have been identified as a solution to improve manipulation. However, only a few such systems have been brought to preclinical trials as of now. As a result, novel robotic tools are required. We developed a telemanipulated robotic device, called STRAS, which aims to assist surgeons during intraluminal surgical endoscopy. This is a modular system, based on a flexible endoscope and flexible instruments, which provides 10 degrees of freedom (DoFs). The modularity allows the user to easily set up the robot and to navigate toward the operating area. The robot can then be teleoperated using master interfaces specifically designed to intuitively control all available DoFs. STRAS capabilities have been tested in laboratory conditions and during preclinical experiments. We report 12 colorectal ESDs performed in pigs, in which large lesions were successfully removed. Dissection speeds are compared with those obtained in similar conditions with the manual Anubiscope platform from Karl Storz. We show significant improvements ( ). These experiments show that STRAS (v2) provides sufficient DoFs, workspace, and force to perform ESD, that it allows a single surgeon to perform all the surgical tasks and those performances are improved with respect to manual systems. The concepts developed for STRAS are validated and could bring new tools for surgeons to improve comfort, ease, and performances for intraluminal surgical endoscopy.

  6. Modelling and Experiment Based on a Navigation System for a Cranio-Maxillofacial Surgical Robot

    Directory of Open Access Journals (Sweden)

    Xingguang Duan

    2018-01-01

    Full Text Available In view of the characteristics of high risk and high accuracy in cranio-maxillofacial surgery, we present a novel surgical robot system that can be used in a variety of surgeries. The surgical robot system can assist surgeons in completing biopsy of skull base lesions, radiofrequency thermocoagulation of the trigeminal ganglion, and radioactive particle implantation of skull base malignant tumors. This paper focuses on modelling and experimental analyses of the robot system based on navigation technology. Firstly, the transformation relationship between the subsystems is realized based on the quaternion and the iterative closest point registration algorithm. The hand-eye coordination model based on optical navigation is established to control the end effector of the robot moving to the target position along the planning path. The closed-loop control method, “kinematics + optics” hybrid motion control method, is presented to improve the positioning accuracy of the system. Secondly, the accuracy of the system model was tested by model experiments. And the feasibility of the closed-loop control method was verified by comparing the positioning accuracy before and after the application of the method. Finally, the skull model experiments were performed to evaluate the function of the surgical robot system. The results validate its feasibility and are consistent with the preoperative surgical planning.

  7. Modelling and Experiment Based on a Navigation System for a Cranio-Maxillofacial Surgical Robot

    Science.gov (United States)

    Duan, Xingguang; Gao, Liang; Li, Jianxi; Li, Haoyuan; Guo, Yanjun

    2018-01-01

    In view of the characteristics of high risk and high accuracy in cranio-maxillofacial surgery, we present a novel surgical robot system that can be used in a variety of surgeries. The surgical robot system can assist surgeons in completing biopsy of skull base lesions, radiofrequency thermocoagulation of the trigeminal ganglion, and radioactive particle implantation of skull base malignant tumors. This paper focuses on modelling and experimental analyses of the robot system based on navigation technology. Firstly, the transformation relationship between the subsystems is realized based on the quaternion and the iterative closest point registration algorithm. The hand-eye coordination model based on optical navigation is established to control the end effector of the robot moving to the target position along the planning path. The closed-loop control method, “kinematics + optics” hybrid motion control method, is presented to improve the positioning accuracy of the system. Secondly, the accuracy of the system model was tested by model experiments. And the feasibility of the closed-loop control method was verified by comparing the positioning accuracy before and after the application of the method. Finally, the skull model experiments were performed to evaluate the function of the surgical robot system. The results validate its feasibility and are consistent with the preoperative surgical planning.

  8. Design of a new haptic device and experiments in minimally invasive surgical robot.

    Science.gov (United States)

    Wang, Tao; Pan, Bo; Fu, Yili; Wang, Shuguo; Ai, Yue

    2017-12-01

    In this paper, we designed a 8 degrees of freedom (DOFs) haptic device for applications in minimally invasive surgical robot. The device can provide three translational, three rotational and a grasping motion and force feedback capability. It is composed of three parts, including an arm mechanism, a redundant wrist mechanism and a grasper mechanism. The kinematics and gravity compensation algorithms are also detailed in the paper. In addition, the haptic device and a slave surgical robot for minimally invasive surgery (MIS) developed by our lab are integrated as a master-slave surgical robotic system in this paper. In the master-slave robotic system, a new control system is designed to realize real-time mater-slave control based on EtherCAT bus technology. Experiments show that the haptic device can effectively compensate gravity at any position in its workspace and successfully realize master-slave operation by the control method, which prove the haptic device designed in this paper can be used as a master manipulator to control the surgical robot.

  9. Robotic surgical education: a collaborative approach to training postgraduate urologists and endourology fellows.

    Science.gov (United States)

    Mirheydar, Hossein; Jones, Marklyn; Koeneman, Kenneth S; Sweet, Robert M

    2009-01-01

    Currently, robotic training for inexperienced, practicing surgeons is primarily done vis-à-vis industry and/or society-sponsored day or weekend courses, with limited proctorship opportunities. The objective of this study was to assess the impact of an extended-proctorship program at up to 32 months of follow-up. An extended-proctorship program for robotic-assisted laparoscopic radical prostatectomy was established at our institution. The curriculum consisted of 3 phases: (1) completing an Intuitive Surgical 2-day robotic training course with company representatives; (2) serving as assistant to a trained proctor on 5 to 6 cases; and (3) performing proctored cases up to 1 year until confidence was achieved. Participants were surveyed and asked to evaluate on a 5-point Likert scale their operative experience in robotics and satisfaction regarding their training. Nine of 9 participants are currently performing robotic-assisted laparoscopic radical prostatectomy (RALP) independently. Graduates of our program have performed 477 RALP cases. The mean number of cases performed within phase 3 was 20.1 (range, 5 to 40) prior to independent practice. The program received a rating of 4.2/5 for effectiveness in teaching robotic surgery skills. Our robotic program, with extended proctoring, has led to an outstanding take-rate for disseminating robotic skills in a metropolitan community.

  10. Comparison of surgical outcomes between open and robot-assisted minimally invasive pancreaticoduodenectomy.

    Science.gov (United States)

    Kim, Hyeong Seok; Han, Youngmin; Kang, Jae Seung; Kim, Hongbeom; Kim, Jae Ri; Koon, Wooil; Kim, Sun-Whe; Jang, Jin-Young

    2018-02-01

    Robot surgery is a new method that maintains advantages and overcomes disadvantages of conventional methods, even in pancreatic surgery. This study aimed to evaluate safety and benefits of robot-assisted minimally invasive pancreaticoduodenectomy (robot PD). This study included 237 patients who underwent PD between 2015 and 2017. Demographics and surgical outcomes were evaluated. Fifty-one patients underwent robot PD and 186 underwent open PD. Robot PD group had younger age (60.7 vs. 65.4 years, P = 0.006) and lower body mass index (22.7 vs. 24.0, P = 0.007). Robot PD group had lower proportion of patients with firm or hard pancreatic texture (15.7% vs. 38.2%, P = 0.004) and smaller pancreatic duct size (2.3 vs. 3.3 mm, P = 0.002). Two groups had similar operation time (robot vs. open: 335.6 vs. 330.1 min) and complications (15.7% vs. 21.0%), including postoperative pancreatic fistula rate (6.0% vs. 12.0%). Robot PD group had lower postoperative pain score (3.7 vs. 4.1 points, P = 0.008), and shorter postoperative stay (10.6 vs. 15.3 days, P = 0.001). Robot PD is comparable to open PD in early outcomes. Robot PD is safe and feasible and enables early recovery; indication for robot PD is expected to expand in the near future. © 2017 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  11. Hybrid procedure for total laryngectomy with a flexible robot-assisted surgical system.

    Science.gov (United States)

    Schuler, Patrick J; Hoffmann, Thomas K; Veit, Johannes A; Rotter, Nicole; Friedrich, Daniel T; Greve, Jens; Scheithauer, Marc O

    2017-06-01

    Total laryngectomy is a standard procedure in head-and-neck surgery for the treatment of cancer patients. Recent clinical experiences have indicated a clinical benefit for patients undergoing transoral robot-assisted total laryngectomy (TORS-TL) with commercially available systems. Here, a new hybrid procedure for total laryngectomy is presented. TORS-TL was performed in human cadavers (n = 3) using a transoral-transcervical hybrid procedure. The transoral approach was performed with a robotic flexible robot-assisted surgical system (Flex®) and compatible flexible instruments. Transoral access and visualization of anatomical landmarks were studied in detail. Total laryngectomy is feasible with a combined transoral-transcervical approach using the flexible robot-assisted surgical system. Transoral visualization of all anatomical structures is sufficient. The flexible design of the robot is advantageous for transoral surgery of the laryngeal structures. Transoral robot assisted surgery has the potential to reduce morbidity, hospital time and fistula rates in a selected group of patients. Initial clinical studies and further development of supplemental tools are in progress. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. A new AS-display as part of the MIRO lightweight robot for surgical applications

    Science.gov (United States)

    Grossmann, Christoph M.

    2010-02-01

    The DLR MIRO is the second generation of versatile robot arms for surgical applications, developed at the Institute for Robotics and Mechatronics at Deutsche Zentrum für Luft- und Raumfahrt (DLR) in Oberpfaffenhofen, Germany. With its low weight of 10 kg and dimensions similar to those of the human arm, the MIRO robot can assist the surgeon directly at the operating table where space is scarce. The planned scope of applications of this robot arm ranges from guiding a laser unit for the precise separation of bone tissue in orthopedics to positioning holes for bone screws, robot assisted endoscope guidance and on to the multi-robot concept for endoscopic minimally invasive surgery. A stereo-endoscope delivers two full HD video streams that can even be augmented with information, e.g vectors indicating the forces that act on the surgical tool at any given moment. SeeFront's new autostereoscopic 3D display SF 2223, being a part of the MIRO assembly, will let the surgeon view the stereo video stream in excellent quality, in real time and without the need for any viewing aids. The presentation is meant to provide an insight into the principles at the basis of the SeeFront 3D technology and how they allow the creation of autostereoscopic display solutions ranging from smallest "stamp-sized" displays to 30" desktop versions, which all provide comfortable freedom of movement for the viewer along with excellent 3D image quality.

  13. Fundamentals of surgical research course: research presentations.

    Science.gov (United States)

    Mayer, Kathrin

    2005-10-01

    The effective communication of research outcomes is a skill that can be learned. To make the greatest impact, it is imperative to know your audience. Oral communication is a highly effective means for dissemination of new information. The preparation of a research presentation requires significant time. The researcher must determine the key messages to be delivered and plan the presentation accordingly. High quality visual aids can impress your audience and, in combination with a succinct oral presentation, can increase retention of the material. In addition to the communication of the raw scientific data and results, the importance of stance, appearance, voice, and eye contact necessary to engage your audience should not be overlooked.

  14. KASPAR – A Minimally Expressive Humanoid Robot for Human–Robot Interaction Research

    Directory of Open Access Journals (Sweden)

    Kerstin Dautenhahn

    2009-01-01

    Full Text Available This paper provides a comprehensive introduction to the design of the minimally expressive robot KASPAR, which is particularly suitable for human–robot interaction studies. A low-cost design with off-the-shelf components has been used in a novel design inspired from a multi-disciplinary viewpoint, including comics design and Japanese Noh theatre. The design rationale of the robot and its technical features are described in detail. Three research studies will be presented that have been using KASPAR extensively. Firstly, we present its application in robot-assisted play and therapy for children with autism. Secondly, we illustrate its use in human–robot interaction studies investigating the role of interaction kinesics and gestures. Lastly, we describe a study in the field of developmental robotics into computational architectures based on interaction histories for robot ontogeny. The three areas differ in the way as to how the robot is being operated and its role in social interaction scenarios. Each will be introduced briefly and examples of the results will be presented. Reflections on the specific design features of KASPAR that were important in these studies and lessons learnt from these studies concerning the design of humanoid robots for social interaction will also be discussed. An assessment of the robot in terms of utility of the design for human–robot interaction experiments concludes the paper.

  15. Robotic surgery: changing the surgical approach for endometrial cancer in a referral cancer center.

    Science.gov (United States)

    Peiretti, Michele; Zanagnolo, Vanna; Bocciolone, Luca; Landoni, Fabio; Colombo, Nicoletta; Minig, Lucas; Sanguineti, Fabio; Maggioni, Angelo

    2009-01-01

    To study the effect of robotic surgery on the surgical approach to endometrial cancer in a gynecologic oncology center over a short time. Prospective analysis of patients with early-stage endometrial cancer who underwent robotic surgery. Teaching hospital. Eighty patients who underwent robotic surgery. Between November 2006 and October 2008, 80 consecutive patients with an initial diagnosis of endometrial cancer consented to undergo robotic surgery at the European Institute of Oncology, Milan, Italy. We collected all patient data for demographics, operating time, estimated blood loss, histologic findings, lymph node count, analgesic-free postoperative day, length of stay, and intraoperative and early postoperative complications. Mean (SD) patient age was 58.3 (11.5) years (95% confidence interval [CI], 55.7-60.9). Body mass index was 25.2 (6.1) kg/m(2) (95% CI, 23.6-26.7). In 3 patients (3.7%), conversion to conventional laparotomy was required. Mean operative time was 181.1 (63.1) minutes (95% CI, 166.7-195.5). Mean docking time was 4.5 (1.1) minutes (95% CI, 2.2-2.7). Mean hospital stay was 2.5 (1.1) days (95% CI, 2.2-2.7), and 93% of patients were analgesic-free on postoperative day 2. Over a relatively short time using the da Vinci surgical system, we observed a substantial change in our surgical activity. For endometrial cancer, open surgical procedures decreased from 78% to 35%. Moreover, our preliminary data confirm that surgical robotic staging for early-stage endometrial cancer is feasible and safe. Age, obesity, and previous surgery do not seem to be contraindications.

  16. Electromyographic correlates of learning during robotic surgical training in virtual reality.

    Science.gov (United States)

    Suh, Irene H; Mukherjee, Mukul; Schrack, Ryan; Park, Shi-Hyun; Chien, Jung-Hung; Oleynikov, Dmitry; Siu, Ka-Chun

    2011-01-01

    The purpose of this study was to investigate the muscle activation and the muscle frequency response of the dominant arm muscles (flexor carpi radialis and extensor digitorum) and hand muscles (abductor pollicis and first dorsal interosseous) during robotic surgical skills training in a virtual environment. The virtual surgical training tasks consisted of bimanual carrying, needle passing and mesh alignment. The experimental group (n=5) was trained by performing four blocks of the virtual surgical tasks using the da Vinci™ surgical robot. During the pre- and post-training tests, all subjects were tested by performing a suturing task on a "life-like" suture pad. The control group (n=5) performed only the suturing task without any virtual task training. Differences between pre- and post-training tests were significantly greater in the virtual reality group, as compared to the control group in the muscle activation of the hand muscle (abductor pollicis) for both the suture tying and the suture running (pvirtual reality leads to specific changes in neuromotor control of robotic surgical tasks.

  17. Robot-assisted cardiac surgery using the da vinci surgical system: a single center experience.

    Science.gov (United States)

    Kim, Eung Re; Lim, Cheong; Kim, Dong Jin; Kim, Jun Sung; Park, Kay Hyun

    2015-04-01

    We report our initial experiences of robot-assisted cardiac surgery using the da Vinci Surgical System. Between February 2010 and March 2014, 50 consecutive patients underwent minimally invasive robot-assisted cardiac surgery. Robot-assisted cardiac surgery was employed in two cases of minimally invasive direct coronary artery bypass, 17 cases of mitral valve repair, 10 cases of cardiac myxoma removal, 20 cases of atrial septal defect repair, and one isolated CryoMaze procedure. Average cardiopulmonary bypass time and average aorta cross-clamping time were 194.8±48.6 minutes and 126.1±22.6 minutes in mitral valve repair operations and 132.0±32.0 minutes and 76.1±23.1 minutes in myxoma removal operations, respectively. During atrial septal defect closure operations, the average cardiopulmonary bypass time was 128.3±43.1 minutes. The median length of stay was between five and seven days. The only complication was that one patient needed reoperation to address bleeding. There were no hospital mortalities. Robot-assisted cardiac surgery is safe and effective for mitral valve repair, atrial septal defect closure, and cardiac myxoma removal surgery. Reducing operative time depends heavily on the experience of the entire robotic surgical team.

  18. Prior experience in micro-surgery may improve the surgeon's performance in robotic surgical training.

    Science.gov (United States)

    Perez, Manuela; Perrenot, Cyril; Tran, Nguyen; Hossu, Gabriela; Felblinger, Jacques; Hubert, Jacques

    2013-09-01

    Robotic surgery has witnessed a huge expansion. Robotic simulators have proved to be of major interest in training. Some authors have suggested that prior experience in micro-surgery could improve robotic surgery training. To test micro-surgery as a new approach in training, we proposed a prospective study comparing the surgical performance of micro-surgeons with that of general surgeons on a robotic simulator. 49 surgeons were enrolled; 11 in the micro-surgery group (MSG); 38 n the control group (CG). Performance was evaluated based on five dV-Trainer® exercises. MSG achieved better results for all exercises including exercises requiring visual evaluation of force feed-back, economy of motion, instrument force and position. These results show that experience in micro-surgery could significantly improve surgeons' abilities and their performance in robotic training. So, as micro-surgery practice is relatively cheap, it could be easily included in basic robotic surgery training. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Robotic transverse colectomy for mid-transverse colon cancer: surgical techniques and oncologic outcomes.

    Science.gov (United States)

    Jung, Kyung Uk; Park, Yoonah; Lee, Kang Young; Sohn, Seung-Kook

    2015-06-01

    Robot-assisted surgery for colon cancer has been reported in many studies, most of which worked on right and/or sigmoid colectomy. The aim of this study was to report our experience of robotic transverse colectomy with an intracorporeal anastomosis, provide details of the surgical technique, and present the theoretical benefits of the procedure. This is a retrospective review of prospectively collected data of robotic surgery for colorectal cancer performed by a single surgeon between May 2007 and February 2011. Out of 162 consecutive cases, we identified three robotic transverse colectomies, using a hand-sewn intracorporeal anastomosis. Two males and one female underwent transverse colectomies for malignant or premalignant disease. The mean docking time, time spent using the robot, and total operative time were 5, 268, and 307 min, respectively. There were no conversions to open or conventional laparoscopic technique. The mean length of specimen and number of lymph nodes retrieved were 14.1 cm and 6.7, respectively. One patient suffered from a wound seroma and recovered with conservative management. The mean hospital stay was 8.7 days. After a median follow-up of 72 months, there were no local or systemic recurrences. Robotic transverse colectomy seems to be a safe and feasible technique. It may minimize the necessity of mobilizing both colonic flexures, with facilitated intracorporeal hand-sewn anastomosis. However, further prospective studies with a larger number of patients are required to draw firm conclusions.

  20. Surgical outcome of robotic surgery in morbidly obese patient with endometrial cancer compared to laparotomy.

    Science.gov (United States)

    Bernardini, Marcus Q; Gien, Lilian T; Tipping, Helen; Murphy, Joan; Rosen, Barry P

    2012-01-01

    Before the introduction of robotic surgery at our institution, most obese women of class 2 or greater (body mass index [BMI] >35) underwent a laparotomy for the management of endometrial cancer. Since November 2008, we have performed most of these cases in a robotic fashion. This manuscript presents the outcome of these women in comparison with a historical cohort of women treated with laparotomy. Women with clinical stage I or II endometrial cancer and a BMI greater than 35 kg/m treated with robotic surgery at our institution between November 2008 and November 2010 were compared with a historical cohort of similar patients who underwent laparotomy. Patients' characteristics, operating room time, type of surgery, length of hospital stay, and incidence of perioperative complications were compared between the 2 groups. A total of 86 women were analyzed in this study (robotic surgery, 45; laparotomy, 41). The overall intraoperative complication rate is 5.8%. There is no statistical difference in age, number of comorbidities, BMI, prior abdominal surgery, and operative complications between the women who underwent robotic surgery versus laparotomy. Postoperative complication rates are higher in the laparotomy group (44% vs 17.7%; P = 0.007), and hospital length of stay is also higher in the laparotomy group (4 vs 2 days; P surgery group. Robotic surgery for the surgical management of the morbidly obese patient is shown to be safe and have less perioperative complications compared with open surgery.

  1. Compact teleoperated laparoendoscopic single-site robotic surgical system: Kinematics, control, and operation.

    Science.gov (United States)

    Isaac-Lowry, Oran Jacob; Okamoto, Steele; Pedram, Sahba Aghajani; Woo, Russell; Berkelman, Peter

    2017-12-01

    To date a variety of teleoperated surgical robotic systems have been developed to improve a surgeon's ability to perform demanding single-port procedures. However typical large systems are bulky, expensive, and afford limited angular motion, while smaller designs suffer complications arising from limited motion range, speed, and force generation. This work was to develop and validate a simple, compact, low cost single site teleoperated laparoendoscopic surgical robotic system, with demonstrated capability to carry out basic surgical procedures. This system builds upon previous work done at the University of Hawaii at Manoa and includes instrument and endoscope manipulators as well as compact articulated instruments designed to overcome single incision geometry complications. A robotic endoscope holder was used for the base, with an added support frame for teleoperated manipulators and instruments fabricated mostly from 3D printed parts. Kinematics and control methods were formulated for the novel manipulator configuration. Trajectory following results from an optical motion tracker and sample task performance results are presented. Results indicate that the system has successfully met the goal of basic surgical functionality while minimizing physical size, complexity, and cost. Copyright © 2017 John Wiley & Sons, Ltd.

  2. System design and animal experiment study of a novel minimally invasive surgical robot.

    Science.gov (United States)

    Wang, Wei; Li, Jianmin; Wang, Shuxin; Su, He; Jiang, Xueming

    2016-03-01

    Robot-assisted minimally invasive surgery has shown tremendous advances over the traditional technique. However, currently commercialized systems are large and complicated, which vastly raises the system cost and operation room requirements. A MIS robot named 'MicroHand' was developed over the past few years. The basic principle and the key technologies are analyzed in this paper. Comparison between the proposed robot and the da Vinci system is also presented. Finally, animal experiments were carried out to test the performance of MicroHand. Fifteen animal experiments were carried out from July 2013 to December 2013. All animal experiments were finished successfully. The proposed design method is an effective way to resolve the drawbacks of previous generations of the da Vinci surgical system. The animal experiment results confirmed the feasibility of the design. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Formulation of wire control mechanism for surgical robot to create virtual reality environment aimed at conducting surgery inside the body.

    Science.gov (United States)

    Suzuki, Naoki; Hattori, Asaki; Ieiri, Satoshi; Tomikawa, Morimasa; Kenmotsu, Hajime; Hashizume, Makoto

    2013-01-01

    We here report on the process of developing a surgical robot that can conduct operation "going inside the body without spreading the operational region". The endoscopic robot that we are developing now has a flexible cylindrical body with functions of a set of human arms at the tip and also with vision and haptic sense functions. We evaluated necessary technology factor to complete this robot into categories such as, transmission of energy, adaptation to insides of the body.

  4. Comparative analysis of the functionality of simulators of the da Vinci surgical robot.

    Science.gov (United States)

    Smith, Roger; Truong, Mireille; Perez, Manuela

    2015-04-01

    The implementation of robotic technology in minimally invasive surgery has led to the need to develop more efficient and effective training methods, as well as assessment and skill maintenance tools for surgical education. Multiple simulators and procedures are available for educational and training purposes. A need for comparative evaluations of these simulators exists to aid users in selecting an appropriate device for their purposes. We conducted an objective review and comparison of the design and capabilities of all dedicated simulators of the da Vinci robot, the da Vinci Skill Simulator (DVSS) (Intuitive Surgical Inc., Sunnyvale, CA, USA), dV-Trainer (dVT) (Mimic Technologies Inc., Seattle, WA, USA), and Robotic Surgery Simulator (RoSS) (Simulated Surgical Skills, LLC, Williamsville, NY, USA). This provides base specifications of the hardware and software, with an emphasis on the training capabilities of each system. Each simulator contains a large number of training exercises, DVSS = 40, dVT = 65, and RoSS = 52 for skills development. All three offer 3D visual images but use different display technologies. The DVSS leverages the real robotic surgeon's console to provide visualization, hand controls, and foot pedals. The dVT and RoSS created simulated versions of all of these control systems. They include systems management services which allow instructors to collect, export, and analyze the scores of students using the simulators. This study is the first to provide comparative information of the three simulators functional capabilities with an emphasis on their educational skills. They offer unique advantages and capabilities in training robotic surgeons. Each device has been the subject of multiple validation experiments which have been published in the literature. But those do not provide specific details on the capabilities of the simulators which are necessary for an understanding sufficient to select the one best suited for an organization's needs.

  5. Light robotics: a new field of research

    DEFF Research Database (Denmark)

    Engay, Einstom; Chouliara, Manto; Bañas, Andrew

    2018-01-01

    After years of working on light-driven trapping and manipulation, we can see that a confluence of developments is now ripe for the emergence of a new area that can contribute to nanobiophotonics - Light Robotics - which combines advances in microfabrication and optical micromanipulation together...... with intelligent control ideas from robotics, wavefront engineering and information optics. In the Summer 2017 we are publishing a 482 pages edited Elsevier book volume covering the fundamental aspects needed for Light Robotics including optical trapping systems, microfabrication and microassembly as well...... as underlying theoretical principles and experimental illustrations for optimizing optical forces and torques for Light Robotics...

  6. Effect of Spatial Cognitive Ability on Gain in Robot-Assisted Surgical Skills of Urological Surgeons.

    Science.gov (United States)

    Teishima, Jun; Hattori, Minoru; Inoue, Shogo; Hieda, Keisuke; Kobatake, Kohei; Shinmei, Shunsuke; Egi, Hiroyuki; Ohdan, Hideki; Matsubara, Akio

    2016-01-01

    Although previous studies have demonstrated the needs for a spatial cognitive ability that can give an accurate understanding of the position, orientation, and size and form of the objects in endoscopic surgery, there has been no study on the relationship between the skills of robot-assisted surgery and spatial cognitive ability. To assess the effect of spatial cognitive ability on gain in robot-assisted surgical skills of urological surgeons. The robot-assisted surgery skills of 24 urological surgeons who had no previous experience with the Mimic dV-Trainer (MdVT) and had not been the main surgeon in robot-assisted surgery and 20 volunteer medical students who had no previous experience of the MdVT were assessed by using a program consisting of 4 kinds of tasks. Their performances were recorded using a built-in scoring algorithm. Their spatial cognitive abilities were also assessed using a mental rotation test. Although there was a significant correlation between the spatial cognitive ability and a score of 2 for the more difficult tasks for student groups using the MdVT, there was no significant correlation between them for all tasks for groups of urological surgeons. The results of the present study indicate that differences in spatial cognitive ability in urological surgeons have no effect on the gain in fundamental robot-assisted surgery skills whereas there was a significant correlation between the spatial cognitive ability and fundamental robot-assisted surgical skills in the volunteers. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  7. Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery.

    Science.gov (United States)

    Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell

    2011-06-01

    This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information.

  8. Study on real-time force feedback for a master-slave interventional surgical robotic system.

    Science.gov (United States)

    Guo, Shuxiang; Wang, Yuan; Xiao, Nan; Li, Youxiang; Jiang, Yuhua

    2018-04-13

    In robot-assisted catheterization, haptic feedback is important, but is currently lacking. In addition, conventional interventional surgical robotic systems typically employ a master-slave architecture with an open-loop force feedback, which results in inaccurate control. We develop herein a novel real-time master-slave (RTMS) interventional surgical robotic system with a closed-loop force feedback that allows a surgeon to sense the true force during remote operation, provide adequate haptic feedback, and improve control accuracy in robot-assisted catheterization. As part of this system, we also design a unique master control handle that measures the true force felt by a surgeon, providing the basis for the closed-loop control of the entire system. We use theoretical and empirical methods to demonstrate that the proposed RTMS system provides a surgeon (using the master control handle) with a more accurate and realistic force sensation, which subsequently improves the precision of the master-slave manipulation. The experimental results show a substantial increase in the control accuracy of the force feedback and an increase in operational efficiency during surgery.

  9. Mapping surgical fields by moving a laser-scanning multimodal scope attached to a robot arm

    Science.gov (United States)

    Gong, Yuanzheng; Soper, Tomothy D.; Hou, Vivian W.; Hu, Danying; Hannaford, Blake; Seibel, Eric J.

    2014-03-01

    Endoscopic visualization in brain tumor removal is challenging because tumor tissue is often visually indistinguishable from healthy tissue. Fluorescence imaging can improve tumor delineation, though this impairs reflectance-based visualization of gross anatomical features. To accurately navigate and resect tumors, we created an ultrathin/flexible, scanning fiber endoscope (SFE) that acquires reflectance and fluorescence wide-field images at high-resolution. Furthermore, our miniature imaging system is affixed to a robotic arm providing programmable motion of SFE, from which we generate multimodal surface maps of the surgical field. To test this system, synthetic phantoms of debulked tumor from brain are fabricated having spots of fluorescence representing residual tumor. Three-dimension (3D) surface maps of this surgical field are produced by moving the SFE over the phantom during concurrent reflectance and fluorescence imaging (30Hz video). SIFT-based feature matching between reflectance images is implemented to select a subset of key frames, which are reconstructed in 3D by bundle adjustment. The resultant reconstruction yields a multimodal 3D map of the tumor region that can improve visualization and robotic path planning. Efficiency of creating these maps is important as they are generated multiple times during tumor margin clean-up. By using pre-programmed vector motions of the robot arm holding the SFE, the computer vision algorithms are optimized for efficiency by reducing search times. Preliminary results indicate that the time for creating these 3D multimodal maps of the surgical field can be reduced to one third by using known trajectories of the surgical robot moving the image-guided tool.

  10. Autonomous Mobile Platform for Research in Cooperative Robotics

    Science.gov (United States)

    Daemi, Ali; Pena, Edward; Ferguson, Paul

    1998-01-01

    This paper describes the design and development of a platform for research in cooperative mobile robotics. The structure and mechanics of the vehicles are based on R/C cars. The vehicle is rendered mobile by a DC motor and servo motor. The perception of the robot's environment is achieved using IR sensors and a central vision system. A laptop computer processes images from a CCD camera located above the testing area to determine the position of objects in sight. This information is sent to each robot via RF modem. Each robot is operated by a Motorola 68HC11E micro-controller, and all actions of the robots are realized through the connections of IR sensors, modem, and motors. The intelligent behavior of each robot is based on a hierarchical fuzzy-rule based approach.

  11. New real-time MR image-guided surgical robotic system for minimally invasive precision surgery

    International Nuclear Information System (INIS)

    Hashizume, M.; Yasunaga, T.; Konishi, K.; Tanoue, K.; Ieiri, S.; Kishi, K.; Nakamoto, H.; Ikeda, D.; Sakuma, I.; Fujie, M.; Dohi, T.

    2008-01-01

    To investigate the usefulness of a newly developed magnetic resonance (MR) image-guided surgical robotic system for minimally invasive laparoscopic surgery. The system consists of MR image guidance [interactive scan control (ISC) imaging, three-dimensional (3-D) navigation, and preoperative planning], an MR-compatible operating table, and an MR-compatible master-slave surgical manipulator that can enter the MR gantry. Using this system, we performed in vivo experiments with MR image-guided laparoscopic puncture on three pigs. We used a mimic tumor made of agarose gel and with a diameter of approximately 2 cm. All procedures were successfully performed. The operator only advanced the probe along the guidance device of the manipulator, which was adjusted on the basis of the preoperative plan, and punctured the target while maintaining the operative field using robotic forceps. The position of the probe was monitored continuously with 3-D navigation and 2-D ISC images, as well as the MR-compatible laparoscope. The ISC image was updated every 4 s; no artifact was detected. A newly developed MR image-guided surgical robotic system is feasible for an operator to perform safe and precise minimally invasive procedures. (orig.)

  12. Research on micro robot for colonoscopy.

    Science.gov (United States)

    Guozheng, Yan; Kundong, Wang; Jian, Shi

    2005-01-01

    For diagnosing the colon's pathologies micro-invasively or non-invasively actively, an autonomous prototype of the earthworm-like robot for colonoscopy was designed according with the principle of the bionics and manufactured using precision process technology. In-Vitro experiments in pig colon were made. This micro robot for colonoscopy was drove directly by elecmagnetic linear driver. The mobile cells were joined with two degree-of-freedom joints and the whole body was flexible. The direction of movement and the angle of imaging can be controlled by the shape memory alloy (SMA). In experiments, locomotion efficient was analyzed carefully. In-vitro experiments in pig colon demonstrated that the micro robot can navigate though the colon by itself reliably and freely, which was useful to the application of robot for colonoscopy in the clinic.

  13. [Robot-Assisted Laparoscopic Radical Prostatectomy for Patients with Prostatic Cancer and Factors Promoting Installation of the Robotic Surgical Equipment-Questionnaire Survey].

    Science.gov (United States)

    Tsukamoto, Taiji; Tanaka, Shigeru

    2015-08-01

    We conducted a questionnaire survey of hospitals with robot-assisted surgical equipment to study changes of the surgical case loads after its installation and the managerial strategies for its purchase. The study included 154 hospitals (as of April 2014) that were queried about their radical prostatectomy case loads from January 2009 to December 2013, strategies for installation of the equipment in their hospitals, and other topics related to the study purpose. The overall response rate of hospitals was 63%, though it marginally varied according to type and area. The annual case load was determined based on the results of the questionnaire and other modalities. It increased from 3,518 in 2009 to 6,425 in 2013. The case load seemed to be concentrated in hospitals with robot equipment since the increase of their number was very minimal over the 5 years. The hospitals with the robot treated a larger number of newly diagnosed patients with the disease than before. Most of the patients were those having localized cancer that was indicated for radical surgery, suggesting again the concentration of the surgical case loads in the hospitals with robots. While most hospitals believed that installation of a robot was necessary as an option for treatment procedures, the future strategy of the hospital, and other reasons, the action of the hospital to gain prestige may be involved in the process of purchasing the equipment. In conclusion, robot-assisted laparoscopic radical prostatectomy has become popular as a surgical procedure for prostate cancer in our society. This may lead to a concentration of the surgical case load in a limited number of hospitals with robots. We also discuss the typical action of an acute-care hospital when it purchases expensive clinical medical equipment.

  14. A comparative analysis and guide to virtual reality robotic surgical simulators.

    Science.gov (United States)

    Julian, Danielle; Tanaka, Alyssa; Mattingly, Patricia; Truong, Mireille; Perez, Manuela; Smith, Roger

    2018-02-01

    Since the US Food and Drug Administration approved robotically assisted surgical devices for human surgery in 2000, the number of surgeries utilizing this innovative technology has risen. In 2015, approximately 650 000 robot-assisted procedures were performed worldwide. Surgeons must be properly trained to safely transition to using such innovative technology. Multiple virtual reality robotic simulators are now commercially available for educational and training purposes. There is a need for comparative evaluations of these simulators to aid users in selecting an appropriate device for their purposes. We conducted a comparison of the design and capabilities of all dedicated simulators of the da Vinci robot - the da Vinci Skills Simulator (dVSS), dV-Trainer (dVT), Robotic Skills Simulators (RoSS) and the RobotiX Mentor. This paper provides the base specifications of the hardware and software, with an emphasis on the training capabilities of each system. Each simulator contains a large number of training exercises for skills development: dVSS n = 40, dVT n = 65, RoSS n = 52, RobotiX Mentor n = 31. All four offer 3D visual images but use different display technologies. The dVSS leverages the real robotic surgical console to provide visualization, hand controls and foot pedals. The dVT, RoSS and RobotiX Mentor created simulated versions of all of these control systems. Each includes systems management services that allow instructors to collect, export and analyze the scores of students using the simulators. This study provides comparative information on the four simulators' functional capabilities. Each device offers unique advantages and capabilities for training robotic surgeons. Each has been the subject of validation experiments, which have been published in the literature. But those do not provide specific details on the capabilities of the simulators, which are necessary for an understanding sufficient to select the one best suited for an organization

  15. Usability Assessment of Two Different Control Modes for the Master Console of a Laparoscopic Surgical Robot

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhang

    2012-01-01

    Full Text Available The objective of this study is to evaluate potential interface control modes for a compact four-degree-of-freedom (4-DOF surgical robot. The goal is to improve robot usability by incorporating a sophisticated haptics-capable interface. Two control modes were developed using a commercially available haptic joystick: (1 a virtually point-constrained interface providing an analog for constrained laparoscopic motion (3-DOF rotation and 1-DOF translation, and (2 an unconstrained Cartesian input interface mapping more directly to the surgical tool tip motions. Subjects (n = 5 successfully performed tissue identification and manipulation tasks in an animal model in point-constrained and unconstrained control modes, respectively, with speed roughly equal to that achieved in similar manual procedures, and without a steep learning curve. The robot control was evaluated through bench-top tests and a subsequent qualitative questionnaire (n = 15. The results suggest that the unconstrained control mode was preferred for both camera guidance and tool manipulations.

  16. Vision and Task Assistance using Modular Wireless In Vivo Surgical Robots

    Science.gov (United States)

    Platt, Stephen R.; Hawks, Jeff A.; Rentschler, Mark E.

    2009-01-01

    Minimally invasive abdominal surgery (laparoscopy) results in superior patient outcomes compared to conventional open surgery. However, the difficulty of manipulating traditional laparoscopic tools from outside the body of the patient generally limits these benefits to patients undergoing relatively low complexity procedures. The use of tools that fit entirely inside the peritoneal cavity represents a novel approach to laparoscopic surgery. Our previous work demonstrated that miniature mobile and fixed-based in vivo robots using tethers for power and data transmission can successfully operate within the abdominal cavity. This paper describes the development of a modular wireless mobile platform for in vivo sensing and manipulation applications. Design details and results of ex vivo and in vivo tests of robots with biopsy grasper, staple/clamp, video, and physiological sensor payloads are presented. These types of self-contained surgical devices are significantly more transportable and lower in cost than current robotic surgical assistants. They could ultimately be carried and deployed by non-medical personnel at the site of an injury to allow a remotely located surgeon to provide critical first response medical intervention irrespective of the location of the patient. PMID:19237337

  17. Vision and task assistance using modular wireless in vivo surgical robots.

    Science.gov (United States)

    Platt, Stephen R; Hawks, Jeff A; Rentschler, Mark E

    2009-06-01

    Minimally invasive abdominal surgery (laparoscopy) results in superior patient outcomes compared to conventional open surgery. However, the difficulty of manipulating traditional laparoscopic tools from outside the body of the patient generally limits these benefits to patients undergoing relatively low complexity procedures. The use of tools that fit entirely inside the peritoneal cavity represents a novel approach to laparoscopic surgery. Our previous work demonstrated that miniature mobile and fixed-based in vivo robots using tethers for power and data transmission can successfully operate within the abdominal cavity. This paper describes the development of a modular wireless mobile platform for in vivo sensing and manipulation applications. Design details and results of ex vivo and in vivo tests of robots with biopsy grasper, staple/clamp, video, and physiological sensor payloads are presented. These types of self-contained surgical devices are significantly more transportable and lower in cost than current robotic surgical assistants. They could ultimately be carried and deployed by nonmedical personnel at the site of an injury to allow a remotely located surgeon to provide critical first response medical intervention irrespective of the location of the patient.

  18. Distance-based time series classification approach for task recognition with application in surgical robot autonomy.

    Science.gov (United States)

    Fard, Mahtab J; Pandya, Abhilash K; Chinnam, Ratna B; Klein, Michael D; Ellis, R Darin

    2017-09-01

    Robotic-assisted surgery allows surgeons to perform many types of complex operations with greater precision than is possible with conventional surgery. Despite these advantages, in current systems, a surgeon should communicate with the device directly and manually. To allow the robot to adjust parameters such as camera position, the system needs to know automatically what task the surgeon is performing. A distance-based time series classification framework has been developed which measures dynamic time warping distance between temporal trajectory data of robot arms and classifies surgical tasks and gestures using a k-nearest neighbor algorithm. Results on real robotic surgery data show that the proposed framework outperformed state-of-the-art methods by up to 9% across three tasks and by 8% across gestures. The proposed framework is robust and accurate. Therefore, it can be used to develop adaptive control systems that will be more responsive to surgeons' needs by identifying next movements of the surgeon. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. The Norwegian research programme on advanced robotic systems

    Directory of Open Access Journals (Sweden)

    Olav Egeland

    1991-04-01

    Full Text Available The Norwegian research programme on advanced robot systems has been focused on sensory control of robots for industrial applications and telerobotics for underwater operations. This paper gives an overview of experimental work and ongoing research. An exciting area in sensory control is visual servoing where camera images at video rate are used to grasp moving objects. Also compliant motion in partially unknown environments is a research topic. New robot control systems have been developed to apply sensory control to robotic manipulators at an acceptable sampling rate. In telerobotics the main work has been on the combination of remote control and local sensory loops in the manipulator. Also in this case visual servoing anti force control are important. The generation and updating of a world model used in a graphic display of the worksite using sensory information has been tested in combination with large delay times in the communication channel. The use of visual and acoustic data for the control of remotely operated vehicles and autonomous underwater vehicles is studied for use in robotic systems. Light-weight robot manipulators with redundant degrees of freedom and high performance joints are being designed for mobile robot applications.

  20. A continuum body force sensor designed for flexible surgical robotics devices.

    Science.gov (United States)

    Noh, Yohan; Secco, Emanuele Lindo; Sareh, Sina; Wurdemann, Helge; Faragasso, Angela; Back, Junghwan; Liu, Hongbin; Sklar, Elizabeth; Althoefer, Kaspar

    2014-01-01

    This paper presents a novel three-axis force sensor based on optical photo interrupters and integrated with the robot arm STIFF-FLOP (STIFFness controllable Flexible and Learnable Manipulator for Surgical Operations) to measure external interacting forces and torques. The ring-shape bio-compatible sensor presented here embeds the distributed actuation and sensing system of the STIFF-FLOP manipulator and is applicable to the geometry of its structure as well to the structure of any other similar soft robotic manipulator. Design and calibration procedures of the device are introduced: experimental results allow defining a stiffness sensor matrix for real-time estimation of force and torque components and confirm the usefulness of the proposed optical sensing approach.

  1. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.

    Science.gov (United States)

    Hu, Zhenkai; Yoon, Chae-Hyun; Park, Samuel Byeongjun; Jo, Yung-Ho

    2016-07-01

    We propose a portable haptic device providing grasp (kinesthetic) and push-pull (cutaneous) sensations for optical-motion-capture master interfaces. Although optical-motion-capture master interfaces for surgical robot systems can overcome the stiffness, friction, and coupling problems of mechanical master interfaces, it is difficult to add haptic feedback to an optical-motion-capture master interface without constraining the free motion of the operator's hands. Therefore, we utilized a Bowden cable-driven mechanism to provide the grasp and push-pull sensation while retaining the free hand motion of the optical-motion capture master interface. To evaluate the haptic device, we construct a 2-DOF force sensing/force feedback system. We compare the sensed force and the reproduced force of the haptic device. Finally, a needle insertion test was done to evaluate the performance of the haptic interface in the master-slave system. The results demonstrate that both the grasp force feedback and the push-pull force feedback provided by the haptic interface closely matched with the sensed forces of the slave robot. We successfully apply our haptic interface in the optical-motion-capture master-slave system. The results of the needle insertion test showed that our haptic feedback can provide more safety than merely visual observation. We develop a suitable haptic device to produce both kinesthetic grasp force feedback and cutaneous push-pull force feedback. Our future research will include further objective performance evaluations of the optical-motion-capture master-slave robot system with our haptic interface in surgical scenarios.

  2. A Novel Position Compensation Scheme for Cable-Pulley Mechanisms Used in Laparoscopic Surgical Robots.

    Science.gov (United States)

    Liang, Yunlei; Du, Zhijiang; Wang, Weidong; Sun, Lining

    2017-09-30

    The tendon driven mechanism using a cable and pulley to transmit power is adopted by many surgical robots. However, backlash hysteresis objectively exists in cable-pulley mechanisms, and this nonlinear problem is a great challenge in precise position control during the surgical procedure. Previous studies mainly focused on the transmission characteristics of the cable-driven system and constructed transmission models under particular assumptions to solve nonlinear problems. However, these approaches are limited because the modeling process is complex and the transmission models lack general applicability. This paper presents a novel position compensation control scheme to reduce the impact of backlash hysteresis on the positioning accuracy of surgical robots' end-effectors. In this paper, a position compensation scheme using a support vector machine based on feedforward control is presented to reduce the position tracking error. To validate the proposed approach, experimental validations are conducted on our cable-pulley system and comparative experiments are carried out. The results show remarkable improvements in the performance of reducing the positioning error for the use of the proposed scheme.

  3. Surgical approach to right colon cancer: From open technique to robot. State of art

    Science.gov (United States)

    Fabozzi, Massimiliano; Cirillo, Pia; Corcione, Francesco

    2016-01-01

    This work is a topic highlight on the surgical treatment of the right colon pathologies, focusing on the literature state of art and comparing the open surgery to the different laparoscopic and robotic procedures. Different laparoscopic procedures have been described for the treatment of right colon tumors: Totally laparoscopic right colectomy, laparoscopic assisted right colectomy, laparoscopic facilitated right colectomy, hand-assisted right colectomy, single incision laparoscopic surgery colectomy, robotic right colectomy. Two main characteristics of these techniques are the different type of anastomosis: Intracorporeal (for totally laparoscopic right colectomy, single incision laparoscopic surgery colectomy, laparoscopic assisted right colectomy and robotic technique) or extracorporeal (for laparoscopic assisted right colectomy, laparoscopic facilitated right colectomy, hand-assisted right colectomy and open right colectomy) and the different incision (suprapubic, median or transverse on the right side of abdomen). The different laparoscopic techniques meet the same oncological criteria of radicalism as the open surgery for the right colon. The totally laparoscopic right colectomy with intracorporeal anastomosis and even more the single incision laparoscopic surgery colectomy, remain a technical challenge due to the complexity of procedures (especially for the single incision laparoscopic surgery colectomy) and the particular right colon vascular anatomy but they seem to have some theoretical advantages compared to the other laparoscopic and open procedures. Data reported in literature while confirming the advantages of laparoscopic approach, do not allow to solve controversies about which is the best laparoscopic technique (Intracorporeal vs Extracorporeal Anastomosis) to treat the right colon cancer. However, the laparoscopic techniques with intracorporeal anastomosis for the right colon seem to show some theoretical advantages (functional, technical

  4. Robot-assisted laparoscopic hysterectomy in obese and morbidly obese women: surgical technique and comparison with open surgery.

    Science.gov (United States)

    Geppert, Barbara; Lönnerfors, Celine; Persson, Jan

    2011-11-01

    Comparison of surgical results on obese patients undergoing hysterectomy by robot-assisted laparoscopy or laparotomy. University hospital. All women (n=114) with a BMI ≥30 kg/m(2) who underwent a simple hysterectomy as the main surgical procedure between November 2005 and November 2009 were identified. Robot-assisted procedures (n=50) were separated into an early (learning phase) and a late (consolidated phase) group; open hysterectomy was considered an established method. Relevant data was retrieved from prospective protocols (robot) or from computerized patient charts (laparotomy) until 12 months after surgery. Complications leading to prolonged hospital stay, readmission/reoperation, intravenous antibiotic treatment or blood transfusion were considered significant. The surgical technique used for morbidly obese patients is described. Women in the late robot group (n=25) had shorter inpatient time (1.6 compared to 3.8 days, psurgery (n=64) but a longer operating time (136 compared to 110 minutes, p=0.0004). For women with a BMI ≥35 kg/m(2) , surgical time in the late robot group and the laparotomy group was equal (136 compared to 128 minutes, p=0.31). Robot-assisted laparoscopic hysterectomy in a consolidated phase in obese women is associated with shorter hospital stay, less bleeding and fewer complications compared to laparotomy but, apart from women with BMI ≥35, a longer operative time. © 2011 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2011 Nordic Federation of Societies of Obstetrics and Gynecology.

  5. Robot-Assisted Laparoscopic Radical Prostatectomy for Patients with Prostatic Cancer and Factors Promoting Installation of the Robotic Surgical Equipment-Questionnaire Survey

    OpenAIRE

    塚本, 泰司; 田中, 滋

    2015-01-01

    We conducted a questionnaire survey of hospitals with robot-assisted surgical equipment to study changes of the surgical case loads after its installation and the managerial strategies for its purchase. The study included 154 hospitals (as of April 2014) that were queried about their radical prostatectomy case loads from January 2009 to December 2013, strategies for installation of the equipment in their hospitals, and other topics related to the study purpose. The overall response rate of ho...

  6. Global scientific production of robotic surgery in medicine: A 20-year survey of research activities.

    Science.gov (United States)

    Fan, Guoxin; Zhou, Zhi; Zhang, Hailong; Gu, Xin; Gu, Guangfei; Guan, Xiaofei; Fan, Yunshan; He, Shisheng

    2016-06-01

    Robot-assisted surgery operations are being performed more frequently in the world these years. In order to have a macroscopic view of publication activities about robotic surgery, the first bibliometric analysis was conducted to investigate the publication distributions of robotic surgery. The original articles about robotic surgery were extracted from the Science Citation Index Expanded (SCI-E) on Web of Science and analyzed concerning their distributions. We also explored the potential correlations between publications of different countries and their Gross Domestic Product (GDP). The total number of original articles retrieved from SCI-E was 3362 from 1994 to 2015. The number of original articles published in the last decade has a burgeoning increase of 572.87% compared with that published in the former decade. The leading country was USA who have published 1402 pieces of articles (41.701%), followed by Germany with 342 (10.173%). The journal published the highest number of original articles was Journal of Endourology with 237 (7.049%), followed by Surgical Endoscopy and Other Interventional Techniques (188, 5.592%). There was strong correlations between publication numbers and GDP of different countries (r(2) = 0.889, p research activities has the potential to guide future trend in the field of robotic surgery. There is a skyrocket trend of robotic surgery in medical research over the last two decades, and countries with high GDP tend to make more contributions to the medical field of robotic surgery. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  7. Extending the body to virtual tools using a robotic surgical interface: evidence from the crossmodal congruency task.

    Directory of Open Access Journals (Sweden)

    Ali Sengül

    Full Text Available The effects of real-world tool use on body or space representations are relatively well established in cognitive neuroscience. Several studies have shown, for example, that active tool use results in a facilitated integration of multisensory information in peripersonal space, i.e. the space directly surrounding the body. However, it remains unknown to what extent similar mechanisms apply to the use of virtual-robotic tools, such as those used in the field of surgical robotics, in which a surgeon may use bimanual haptic interfaces to control a surgery robot at a remote location. This paper presents two experiments in which participants used a haptic handle, originally designed for a commercial surgery robot, to control a virtual tool. The integration of multisensory information related to the virtual-robotic tool was assessed by means of the crossmodal congruency task, in which subjects responded to tactile vibrations applied to their fingers while ignoring visual distractors superimposed on the tip of the virtual-robotic tool. Our results show that active virtual-robotic tool use changes the spatial modulation of the crossmodal congruency effects, comparable to changes in the representation of peripersonal space observed during real-world tool use. Moreover, when the virtual-robotic tools were held in a crossed position, the visual distractors interfered strongly with tactile stimuli that was connected with the hand via the tool, reflecting a remapping of peripersonal space. Such remapping was not only observed when the virtual-robotic tools were actively used (Experiment 1, but also when passively held the tools (Experiment 2. The present study extends earlier findings on the extension of peripersonal space from physical and pointing tools to virtual-robotic tools using techniques from haptics and virtual reality. We discuss our data with respect to learning and human factors in the field of surgical robotics and discuss the use of new

  8. Extending the body to virtual tools using a robotic surgical interface: evidence from the crossmodal congruency task.

    Science.gov (United States)

    Sengül, Ali; van Elk, Michiel; Rognini, Giulio; Aspell, Jane Elizabeth; Bleuler, Hannes; Blanke, Olaf

    2012-01-01

    The effects of real-world tool use on body or space representations are relatively well established in cognitive neuroscience. Several studies have shown, for example, that active tool use results in a facilitated integration of multisensory information in peripersonal space, i.e. the space directly surrounding the body. However, it remains unknown to what extent similar mechanisms apply to the use of virtual-robotic tools, such as those used in the field of surgical robotics, in which a surgeon may use bimanual haptic interfaces to control a surgery robot at a remote location. This paper presents two experiments in which participants used a haptic handle, originally designed for a commercial surgery robot, to control a virtual tool. The integration of multisensory information related to the virtual-robotic tool was assessed by means of the crossmodal congruency task, in which subjects responded to tactile vibrations applied to their fingers while ignoring visual distractors superimposed on the tip of the virtual-robotic tool. Our results show that active virtual-robotic tool use changes the spatial modulation of the crossmodal congruency effects, comparable to changes in the representation of peripersonal space observed during real-world tool use. Moreover, when the virtual-robotic tools were held in a crossed position, the visual distractors interfered strongly with tactile stimuli that was connected with the hand via the tool, reflecting a remapping of peripersonal space. Such remapping was not only observed when the virtual-robotic tools were actively used (Experiment 1), but also when passively held the tools (Experiment 2). The present study extends earlier findings on the extension of peripersonal space from physical and pointing tools to virtual-robotic tools using techniques from haptics and virtual reality. We discuss our data with respect to learning and human factors in the field of surgical robotics and discuss the use of new technologies in the field

  9. Robotized Warehouse Systems: Developments and Research Opportunities

    NARCIS (Netherlands)

    K. Azadeh (Kaveh); M.B.M. de Koster (René); D. Roy (Debjit)

    2017-01-01

    textabstractRobotized handling systems are increasingly applied in distribution centers. They require little space, provide flexibility in managing varying demand requirements, and are able to work 24/7. This makes them particularly fit for e-commerce operations. This paper reviews new categories of

  10. Impact of the Surgical Research Methodology Program on surgical residents' research profiles.

    Science.gov (United States)

    Farrokhyar, Forough; Amin, Nalin; Dath, Deepak; Bhandari, Mohit; Kelly, Stephan; Kolkin, Ann M; Gill-Pottruff, Catherine; Skot, Martina; Reid, Susan

    2014-01-01

    To evaluate whether implementing the formal Surgical Research Methodology (SRM) Program in the surgical residency curriculum improved research productivity compared with the preceding informal Research Seminar Series (RSS). The SRM Program replaced the RSS in July 2009. In the SRM Program, the curriculum in Year-1 consisted of 12 teaching sessions on the principles of clinical epidemiology and biostatistics, whereas the focus in Year-2 was on the design, conduct, and presentation of a research project. The RSS consisted of 8 research methodology sessions repeated annually for 2 years along with the design, conduct, and presentation of a research project. Research productivity was measured as the number of peer-reviewed publications and the generation of studies with higher levels of evidence. Outcome measures were independently assessed by 2 authors to avoid bias. Student t test and chi-square test were used for the analysis. Frequencies, mean differences with 95% CI, and effect sizes have been reported. In this study, 81 SRM residents were compared with 126 RSS residents. The performance of the SRM residents was superior on all metrics in our evaluation. They were significantly more productive and published more articles than the RSS residents (mean difference = 1.0 [95% CI: 0.5-1.5], p research performance improved 11.0 grades (95% CI: 8.5%-13.5%, p research methodology is crucial to appropriately apply evidence-based findings in clinical practice. The SRM Program has significantly improved the research productivity and performance of the surgical residents from all disciplines. The implementation of a similar research methodology program is highly recommended for the benefit of residents' future careers and ultimately, evidence-based patient care. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  11. Early experience with the da Vinci® surgical system robot in gynecological surgery at King Abdulaziz University Hospital

    Directory of Open Access Journals (Sweden)

    Sait KH

    2011-07-01

    Full Text Available Khalid H SaitObstetrics and Gynecology Department, Faculty of Medicine, Gynecology Oncology Unit, King Abdulaziz University Hospital, Jeddah, Saudi ArabiaBackground: The purpose of this study was to review our experience and the challenges of using the da Vinci® surgical system robot during gynecological surgery at King Abdulaziz University Hospital.Methods: A retrospective study was conducted to review all cases of robot-assisted gynecologic surgery performed at our institution between January 2008 and December 2010. The patients were reviewed for indications, complications, length of hospital stay, and conversion rate, as well as console and docking times.Results: Over the three-year period, we operated on 35 patients with benign or malignant conditions using the robot for a total of 62 surgical procedures. The docking times averaged seven minutes. The mean console times for simple hysterectomy, bilateral salpingo-oophorectomy, and bilateral pelvic lymphadenectomy were 125, 47, and 62 minutes, respectively. In four patients, laparoscopic procedures were converted to open procedures, giving a conversion rate of 6.5%. All of the conversions were among the first 15 procedures performed. The average hospital stay was 3 days. Complications occurred in five patients (14%, and none were directly related to the robotic system.Conclusion: Our early experience with the robot show that with proper training of the robotic team, technical difficulty with the robotic system is limited. There is definitely a learning curve that requires performance of gynecological surgical procedures using the robot.Keywords: da Vinci robot, gynecological surgery, laparoscopy

  12. Surgical insertion of transmitters and telemetry methods in fisheries research

    DEFF Research Database (Denmark)

    Rub, A. Michelle Wargo; Jepsen, Niels; Liedtke, Theresa L.

    2014-01-01

    ) will be described. Effects of surgical insertion of transmitters (ie, tagging) and aspects of the surgical implantation process where collaboration and professional exchanges among nonveterinarian researchers and veterinarians may be most fruitful will be discussed. Although this report focuses on surgical...

  13. Intuitive operability evaluation of surgical robot using brain activity measurement to determine immersive reality.

    Science.gov (United States)

    Miura, Satoshi; Kobayashi, Yo; Kawamura, Kazuya; Seki, Masatoshi; Nakashima, Yasutaka; Noguchi, Takehiko; Kasuya, Masahiro; Yokoo, Yuki; Fujie, Masakatsu G

    2012-01-01

    Surgical robots have improved considerably in recent years, but intuitive operability, which represents user inter-operability, has not been quantitatively evaluated. Therefore, for design of a robot with intuitive operability, we propose a method to measure brain activity to determine intuitive operability. The objective of this paper is to determine the master configuration against the monitor that allows users to perceive the manipulator as part of their own body. We assume that the master configuration produces an immersive reality experience for the user of putting his own arm into the monitor. In our experiments, as subjects controlled the hand controller to position the tip of the virtual slave manipulator on a target in a surgical simulator, we measured brain activity through brain-imaging devices. We performed our experiments for a variety of master manipulator configurations with the monitor position fixed. For all test subjects, we found that brain activity was stimulated significantly when the master manipulator was located behind the monitor. We conclude that this master configuration produces immersive reality through the body image, which is related to visual and somatic sense feedback.

  14. Enhancing fundamental robot-assisted surgical proficiency by using a portable virtual simulator.

    Science.gov (United States)

    Chien, Jung Hung; Suh, Irene H; Park, Shi-Hyun; Mukherjee, Mukul; Oleynikov, Dmitry; Siu, Ka-Chun

    2013-04-01

    The development of a virtual reality (VR) training platform provides an affordable interface. The learning effect of VR and the capability of skill transfer from the VR environment to clinical tasks require more investigation. Here, 14 medical students performed 2 fundamental surgical tasks-bimanual carrying (BC) and peg transfer (PT)-in actual and virtual environments. Participants in the VR group received VR training, whereas participants in the control group played a 3D game. The learning effect was examined by comparing kinematics between pretraining and posttraining in the da Vinci Surgical System. Differences between VR and playing the 3D game were also examined. Those who were trained with the VR simulator had significantly better performance in both actual PT (P = .002) and BC (P VR group compared with the 3D game group. However, playing the 3D game showed no significant enhancement of fundamental surgical skills in the actual PT task. The difference between pretraining and posttraining was significantly larger in the VR group than in the 3D game group in both the time to task completion (P = .002) and the total distance traveled (P = .027) for the actual PT task. Participants who played the 3D game seemed to perform even worse in posttraining. Training with the portable VR simulator improved robot-assisted surgical skill proficiency in comparison to playing a 3D game.

  15. Image-guided neurosurgery. Global concept of a surgical tele-assistance using obstacle detection robotics

    International Nuclear Information System (INIS)

    Desgeorges, M.; Bellegou, N.; Faillot, Th.; Cordoliani, Y.S.; Dutertre, G.; Blondet, E.; Soultrait, F. de; Boissy, J.M.

    2000-01-01

    Surgical tele-assistance significantly increases accuracy of surgical gestures, especially in the case of brain tumor neurosurgery. The robotic device is tele-operated through a microscope and the surgeon's gestures are guided by real-time overlaying of the X-ray imagery in the microscope. During the device's progression inside the brain, the focus is ensured by the microscope auto-focus feature. The surgeon can thus constantly check his position on the field workstation. Obstacles to avoid or dangerous areas can be previewed in the operation field. This system is routinely used for 5 years in the neurosurgery division of the Val de Grace hospital. More than 400 brain surgery operations have been done using it. An adaptation is used for rachis surgery. Other military hospitals begin to be equipped with similar systems. It will be possible to link them for data transfer. When it will be operational, such a network it will show what could be, in the future, a medical/surgical remote-assistance system designed to take care of wounded/critical conditions people, including assistance to surgical gestures. (authors)

  16. A robotic system for researching social integration in honeybees.

    Directory of Open Access Journals (Sweden)

    Karlo Griparić

    Full Text Available In this paper, we present a novel robotic system developed for researching collective social mechanisms in a biohybrid society of robots and honeybees. The potential for distributed coordination, as observed in nature in many different animal species, has caused an increased interest in collective behaviour research in recent years because of its applicability to a broad spectrum of technical systems requiring robust multi-agent control. One of the main problems is understanding the mechanisms driving the emergence of collective behaviour of social animals. With the aim of deepening the knowledge in this field, we have designed a multi-robot system capable of interacting with honeybees within an experimental arena. The final product, stationary autonomous robot units, designed by specificaly considering the physical, sensorimotor and behavioral characteristics of the honeybees (lat. Apis mallifera, are equipped with sensing, actuating, computation, and communication capabilities that enable the measurement of relevant environmental states, such as honeybee presence, and adequate response to the measurements by generating heat, vibration and airflow. The coordination among robots in the developed system is established using distributed controllers. The cooperation between the two different types of collective systems is realized by means of a consensus algorithm, enabling the honeybees and the robots to achieve a common objective. Presented results, obtained within ASSISIbf project, show successful cooperation indicating its potential for future applications.

  17. Development of the SAIT single-port surgical access robot--slave arm based on RCM mechanism.

    Science.gov (United States)

    Roh, Se-gon; Lee, Younbaek; Lee, Jongwon; Ha, Taesin; Sang, Taejun; Moon, Kyung-Won; Lee, Minhyong; Choi, Jung-yun

    2015-01-01

    An innovative single-port surgical robot has recently been developed by the Samsung Advanced Institute of Technology (SAIT). The robot can reach various surgical sites inside the abdominal cavity from a single incision on the body. It has two 7-DOF surgical tools, a 3-DOF endoscope, a flexible hyper-redundant 6-DOF guide tube, and a 6-DOF manipulator. This paper primarily focuses on the manipulator, called a slave arm, which is capable of setting the location of a Remote Center Motion (RCM) point. Because the surgical tools can explore the abdominal area through a small incision point when the RCM point is aligned with the incision area, the RCM mechanism is an integral part of the manipulator for single-port surgery. The mechanical feature, operational principle, control method, and the system architecture of the slave arm are introduced in this paper. In addition, manipulation experiments conducted validate its efficacy.

  18. Evaluating Robotic Surgical Skills Performance Under Distractive Environment Using Objective and Subjective Measures.

    Science.gov (United States)

    Suh, Irene H; LaGrange, Chad A; Oleynikov, Dmitry; Siu, Ka-Chun

    2016-02-01

    Distractions are recognized as a significant factor affecting performance in safety critical domains. Although operating rooms are generally full of distractions, the effect of distractions on robot-assisted surgical (RAS) performance is unclear. Our aim was to investigate the effect of distractions on RAS performance using both objective and subjective measures. Fifteen participants performed a knot-tying task using the da Vinci Surgical System and were exposed to 3 distractions: (1) passive distraction entailed listening to noise with a constant heart rate, (2) active distraction included listening to noise and acknowledging a change of random heart rate from 60 to 120 bpm, and (3) interactive distraction consisted of answering math questions. The objective kinematics of the surgical instrument tips were used to evaluate performance. Electromyography (EMG) of the forearm and hand muscles of the participants were collected. The median EMG frequency (EMG(fmed)) and the EMG envelope (EMG(env)) were analyzed. NASA Task Load Index and Fundamentals of Laparoscopic Surgery score were used to evaluate the subjective performance. One-way repeated analysis of variance was applied to examine the effects of distraction on skills performance. Spearman's correlations were conducted to compare objective and subjective measures. Significant distraction effect was found for all objective kinematics measures (P < .05). There were significant distraction effects for EMG measures (EMG(env), P < .004; EMG(fmed), P = .031). Significant distraction effects were also found for subjective measurements. Distraction impairs surgical skills performance and increases muscle work. Understanding how the surgeons cope with distractions is important in developing surgical education. © The Author(s) 2015.

  19. Robotics.

    Science.gov (United States)

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  20. Integrating information technologies as tools for surgical research.

    Science.gov (United States)

    Schell, Scott R

    2005-10-01

    Surgical research is dependent upon information technologies. Selection of the computer, operating system, and software tool that best support the surgical investigator's needs requires careful planning before research commences. This manuscript presents a brief tutorial on how surgical investigators can best select these information technologies, with comparisons and recommendations between existing systems, software, and solutions. Privacy concerns, based upon HIPAA and other regulations, now require careful proactive attention to avoid legal penalties, civil litigation, and financial loss. Security issues are included as part of the discussions related to selection and application of information technology. This material was derived from a segment of the Association for Academic Surgery's Fundamentals of Surgical Research course.

  1. A Novel Position Compensation Scheme for Cable-Pulley Mechanisms Used in Laparoscopic Surgical Robots

    Directory of Open Access Journals (Sweden)

    Yunlei Liang

    2017-09-01

    Full Text Available The tendon driven mechanism using a cable and pulley to transmit power is adopted by many surgical robots. However, backlash hysteresis objectively exists in cable-pulley mechanisms, and this nonlinear problem is a great challenge in precise position control during the surgical procedure. Previous studies mainly focused on the transmission characteristics of the cable-driven system and constructed transmission models under particular assumptions to solve nonlinear problems. However, these approaches are limited because the modeling process is complex and the transmission models lack general applicability. This paper presents a novel position compensation control scheme to reduce the impact of backlash hysteresis on the positioning accuracy of surgical robots’ end-effectors. In this paper, a position compensation scheme using a support vector machine based on feedforward control is presented to reduce the position tracking error. To validate the proposed approach, experimental validations are conducted on our cable-pulley system and comparative experiments are carried out. The results show remarkable improvements in the performance of reducing the positioning error for the use of the proposed scheme.

  2. A review of training research and virtual reality simulators for the da Vinci surgical system.

    Science.gov (United States)

    Liu, May; Curet, Myriam

    2015-01-01

    PHENOMENON: Virtual reality simulators are the subject of several recent studies of skills training for robot-assisted surgery. Yet no consensus exists regarding what a core skill set comprises or how to measure skill performance. Defining a core skill set and relevant metrics would help surgical educators evaluate different simulators. This review draws from published research to propose a core technical skill set for using the da Vinci surgeon console. Publications on three commercial simulators were used to evaluate the simulators' content addressing these skills and associated metrics. An analysis of published research suggests that a core technical skill set for operating the surgeon console includes bimanual wristed manipulation, camera control, master clutching to manage hand position, use of third instrument arm, activating energy sources, appropriate depth perception, and awareness of forces applied by instruments. Validity studies of three commercial virtual reality simulators for robot-assisted surgery suggest that all three have comparable content and metrics. However, none have comprehensive content and metrics for all core skills. INSIGHTS: Virtual reality simulation remains a promising tool to support skill training for robot-assisted surgery, yet existing commercial simulator content is inadequate for performing and assessing a comprehensive basic skill set. The results of this evaluation help identify opportunities and challenges that exist for future developments in virtual reality simulation for robot-assisted surgery. Specifically, the inclusion of educational experts in the development cycle alongside clinical and technological experts is recommended.

  3. Robot-assisted radical prostatectomy in an initial Japanese series: the impact of prior abdominal surgery on surgical outcomes.

    Science.gov (United States)

    Yumioka, Tetsuya; Iwamoto, Hideto; Masago, Toshihiko; Morizane, Shuichi; Yao, Akihisa; Honda, Masashi; Muraoka, Kuniyasu; Sejima, Takehiro; Takenaka, Atsushi

    2015-03-01

    To evaluate the influence of prior abdominal surgery on surgical outcomes of robot-assisted radical prostatectomy in an early single center experience in Japan. We reviewed medical records of patients with localized prostate cancer who underwent robot-assisted radical prostatectomy from October 2010 to September 2013 at Tottori University Faculty of Medicine, Yonago, Tottori, Japan. Patients with prior abdominal surgery were compared with those with no prior surgery with respect to total operative time, port-insertion time, console time, positive surgical margin and perioperative complication rate. Furthermore, the number of patients requiring minimal adhesion lysis was compared between the two groups. Of 150 patients who underwent robot-assisted radical prostatectomy, 94 (63%) had no prior abdominal surgery, whereas 56 patients (37%) did. The mean total operative time was 329 and 333 min (P = 0.340), mean port insertion time was 40 and 34.5 min (P = 0.003), mean console time was 255 and 238 min (P = 0.145), a positive surgical margin was observed in 17.9% and 17.0% patients (P = 0.896), and the incidence of perioperative complications was 25% and 23.4% (P = 0.825), respectively, in those with and without prior abdominal surgery. In the prior abdominal surgery group, 48 patients (80.4%) required adhesion lysis at the time of trocar placement or while operating the robotic console. Robot-assisted radical prostatectomy appears to be a safe approach for patients with prior abdominal surgery without increasing total operative time, robotic console time, positive surgical margin or the incidence of perioperative complications. © 2014 The Japanese Urological Association.

  4. [Interest of surgical companionship during the training period of robot-assisted radical prostatectomy].

    Science.gov (United States)

    du Pouget, L; Nouhaud, F X; Blah, M; Defortescu, G; Ndangang, M; Grise, P; Pfister, C

    2017-04-01

    Study of the learning curve of robot-assisted radical prostatectomy, evaluating intraoperative difficulties and postoperative complications according to Clavien-Dindo classification. Retrospective study of our first 157 consecutive patients treated with robot-assisted prostatectomy for localized prostate cancer between September 2011 and December 2014. Comparison of learning for each group of 50 procedures and then comparison between patients operated on by a pair of two seniors specially trained for robotic surgery and patients operated on by one mixed pair including a surgeon junior coached by one senior of the first group. Only postoperative complications decreased significantly from the 51st patient (P=0.04). The curves showing the evolution of the operative time decreased with a parallel trend between the two pairs, but with more variability in the mixed pair. There was no significant difference in terms of intraoperative difficulties (P=0.59), nor postoperative complications (P=0.56) mainly of grade 2. The blood loss, transfusion rate, duration of hospitalization and readmission rates did not differ. Lymph node dissection did not affect outcomes. For oncological results, the overall rate of positive surgical margins (R+) was 30.6 % in the initial pair against 24.2 % in the mixed group with no significant difference. Nevertheless, the subpopulation study objectified a R+ rate of 12.86 % for pT2 against 42.85 % for pT3. The early involvement of a junior surgeon who did not receive specific training, but benefiting from the guidance of a senior surgeon, did not compromise the results while allowing a faster learning curve with a rate of operative complications close to the one observed by the senior pair. 4. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Research and implementation of a new 6-DOF light-weight robot

    Science.gov (United States)

    Tao, Zihang; Zhang, Tao; Qi, Mingzhong; Ji, Junhui

    2017-06-01

    Traditional industrial robots have some weaknesses such as low payload-weight, high power consumption and high cost. These drawbacks limit their applications in such areas, special application, service and surgical robots. To improve these shortcomings, a new kind 6-DOF light-weight robot was designed based on modular joints and modular construction. This paper discusses the general requirements of the light-weight robots. Based on these requirements the novel robot is designed. The new robot is described from two aspects, mechanical design and control system. A prototype robot had developed and a joint performance test platform had designed. Position and velocity tests had conducted to evaluate the performance of the prototype robot. Test results showed that the prototype worked well.

  6. Outcomes of a virtual-reality simulator-training programme on basic surgical skills in robot-assisted laparoscopic surgery.

    Science.gov (United States)

    Phé, Véronique; Cattarino, Susanna; Parra, Jérôme; Bitker, Marc-Olivier; Ambrogi, Vanina; Vaessen, Christophe; Rouprêt, Morgan

    2017-06-01

    The utility of the virtual-reality robotic simulator in training programmes has not been clearly evaluated. Our aim was to evaluate the impact of a virtual-reality robotic simulator-training programme on basic surgical skills. A simulator-training programme in robotic surgery, using the da Vinci Skills Simulator, was evaluated in a population including junior and seasoned surgeons, and non-physicians. Their performances on robotic dots and suturing-skin pod platforms before and after virtual-simulation training were rated anonymously by surgeons experienced in robotics. 39 participants were enrolled: 14 medical students and residents in surgery, 14 seasoned surgeons, 11 non-physicians. Junior and seasoned surgeons' performances on platforms were not significantly improved after virtual-reality robotic simulation in any of the skill domains, in contrast to non-physicians. The benefits of virtual-reality simulator training on several tasks to basic skills in robotic surgery were not obvious among surgeons in our initial and early experience with the simulator. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. The virtual reality simulator dV-Trainer(®) is a valid assessment tool for robotic surgical skills.

    Science.gov (United States)

    Perrenot, Cyril; Perez, Manuela; Tran, Nguyen; Jehl, Jean-Philippe; Felblinger, Jacques; Bresler, Laurent; Hubert, Jacques

    2012-09-01

    Exponential development of minimally invasive techniques, such as robotic-assisted devices, raises the question of how to assess robotic surgery skills. Early development of virtual simulators has provided efficient tools for laparoscopic skills certification based on objective scoring, high availability, and lower cost. However, similar evaluation is lacking for robotic training. The purpose of this study was to assess several criteria, such as reliability, face, content, construct, and concurrent validity of a new virtual robotic surgery simulator. This prospective study was conducted from December 2009 to April 2010 using three simulators dV-Trainers(®) (MIMIC Technologies(®)) and one Da Vinci S(®) (Intuitive Surgical(®)). Seventy-five subjects, divided into five groups according to their initial surgical training, were evaluated based on five representative exercises of robotic specific skills: 3D perception, clutching, visual force feedback, EndoWrist(®) manipulation, and camera control. Analysis was extracted from (1) questionnaires (realism and interest), (2) automatically generated data from simulators, and (3) subjective scoring by two experts of depersonalized videos of similar exercises with robot. Face and content validity were generally considered high (77 %). Five levels of ability were clearly identified by the simulator (ANOVA; p = 0.0024). There was a strong correlation between automatic data from dV-Trainer and subjective evaluation with robot (r = 0.822). Reliability of scoring was high (r = 0.851). The most relevant criteria were time and economy of motion. The most relevant exercises were Pick and Place and Ring and Rail. The dV-Trainer(®) simulator proves to be a valid tool to assess basic skills of robotic surgery.

  8. A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation.

    Science.gov (United States)

    Zeng, Bowei; Meng, Fanle; Ding, Hui; Wang, Guangzhi

    2017-08-01

    Using existing stereoelectroencephalography (SEEG) electrode implantation surgical robot systems, it is difficult to intuitively validate registration accuracy and display the electrode entry points (EPs) and the anatomical structure around the electrode trajectories in the patient space to the surgeon. This paper proposes a prototype system that can realize video see-through augmented reality (VAR) and spatial augmented reality (SAR) for SEEG implantation. The system helps the surgeon quickly and intuitively confirm the registration accuracy, locate EPs and visualize the internal anatomical structure in the image space and patient space. We designed and developed a projector-camera system (PCS) attached to the distal flange of a robot arm. First, system calibration is performed. Second, the PCS is used to obtain the point clouds of the surface of the patient's head, which are utilized for patient-to-image registration. Finally, VAR is produced by merging the real-time video of the patient and the preoperative three-dimensional (3D) operational planning model. In addition, SAR is implemented by projecting the planning electrode trajectories and local anatomical structure onto the patient's scalp. The error of registration, the electrode EPs and the target points are evaluated on a phantom. The fiducial registration error is [Formula: see text] mm (max 1.22 mm), and the target registration error is [Formula: see text] mm (max 1.18 mm). The projection overlay error is [Formula: see text] mm, and the TP error after the pre-warped projection is [Formula: see text] mm. The TP error caused by a surgeon's viewpoint deviation is also evaluated. The presented system can help surgeons quickly verify registration accuracy during SEEG procedures and can provide accurate EP locations and internal structural information to the surgeon. With more intuitive surgical information, the surgeon may have more confidence and be able to perform surgeries with better outcomes.

  9. Surgical treatment of an acquired posterior urethral diverticulum with cystoscopy assisted robotic technique.

    Science.gov (United States)

    Guneri, Cagri; Kirac, Mustafa; Biri, Hasan

    2017-03-01

    A 42-year-old man with a history of recurrent urethral stenosis, recurrent urinary tract infection and macroscopic hematuria has referred to our clinic. He underwent several internal urethrotomies and currently using clean intermittent self-catheterization. During the internal urethrotomy, we noted a large posterior urethral diverticulum (UD) between verumontanum and bladder neck. His obstructive symptoms were resolved after the catheter removal. But perineal discomfort, urgency and dysuria were prolonged about 3-4 weeks. Urinalysis and urine culture confirmed recurrent urinary tract infections. Due to this conditions and symptoms, we planned a surgical approach which was planned as transperitoneal robotic-assisted laparoscopic approach. This technique is still applied for the diverticulectomy of the bladder. In addition to this we utilized the cystoscopy equipments for assistance. During this process, cystoscope was placed in the UD to help the identification of UD from adjacent tissues like seminal vesicles by its movement and translumination. Operating time was 185 min. On the post-operative third day he was discharged. Foley catheter was removed after 2 weeks. Urination was quite satisfactory. His perineal discomfort was resolved. The pathology report confirmed epidermoid (tailgut) cyst of the prostate. Urethrogram showed no radiologic signs of UD after 4 weeks. Irritative and obstructive symptoms were completely resolved after 3 months. No urinary incontinence, erectile dysfunction or retrograde ejaculation was noted. While posterior UD is an extremely rare situation, surgical treatment of posterior UD remains uncertain. To our knowledge, no above-mentioned cystoscopy assisted robotic technique for the treatment was described in the literature.

  10. The Effect of Visual-Spatial Ability on the Learning of Robot-Assisted Surgical Skills.

    Science.gov (United States)

    Abe, Takashige; Raison, Nicholas; Shinohara, Nobuo; Shamim Khan, M; Ahmed, Kamran; Dasgupta, Prokar

    The aim of this study was to determine the correlation of visual-spatial ability with progression along the learning curve for robotic surgical skills training. A total of 21 novice participants were recruited. All participants completed a training program consisting of 5 training sessions of 30 minutes of virtual reality (VR) simulation and 30 minutes of dry laboratory training. The VR simulation part was the subject of the present study. During VR simulation training, participants performed the basic skill exercises of Camera Targeting 1, Pick and Place, and Peg Board 1 followed by advanced skill exercises of Suture Sponge 1 and Thread the Rings. The visual-spatial ability was assessed using a mental rotation test (MRT). Pearson correlation coefficients were used to assess the relationship between the MRT score and simulator score for the aforementioned 5 tasks. Student t test was used to compare the simulator score between high- and low-MRT score groups. A median MRT score of 26/40 (range: 13-38) was observed. Approximately 19 participants completed the full curriculum but 2 did not complete "Thread the Rings" during the study period. A significant correlation was observed between the MRT score and simulator score only in "Suture Sponge 1" over the first 3 attempts (first: r = 0.584, p = 0.0054; second: r = 0.443, p = 0.0443; third: r = 0.4458, p = 0.0428). After the third attempt, this significant correlation was lost. Comparison of the score for "Suture Sponge 1" between the high-MRT and low-MRT scoring participants divided by a median MRT score of 26 also showed a significant difference in the score until the third trial. Our observations suggest that the spatial cognitive ability influences the initial learning of robotic suturing skills. Further studies are necessary to verify the usefulness of an individual's spatial ability to tailor the surgical training program. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Automatic Multiple-Needle Surgical Planning of Robotic-Assisted Microwave Coagulation in Large Liver Tumor Therapy.

    Directory of Open Access Journals (Sweden)

    Shaoli Liu

    Full Text Available The "robotic-assisted liver tumor coagulation therapy" (RALTCT system is a promising candidate for large liver tumor treatment in terms of accuracy and speed. A prerequisite for effective therapy is accurate surgical planning. However, it is difficult for the surgeon to perform surgical planning manually due to the difficulties associated with robot-assisted large liver tumor therapy. These main difficulties include the following aspects: (1 multiple needles are needed to destroy the entire tumor, (2 the insertion trajectories of the needles should avoid the ribs, blood vessels, and other tissues and organs in the abdominal cavity, (3 the placement of multiple needles should avoid interference with each other, (4 an inserted needle will cause some deformation of liver, which will result in changes in subsequently inserted needles' operating environment, and (5 the multiple needle-insertion trajectories should be consistent with the needle-driven robot's movement characteristics. Thus, an effective multiple-needle surgical planning procedure is needed. To overcome these problems, we present an automatic multiple-needle surgical planning of optimal insertion trajectories to the targets, based on a mathematical description of all relevant structure surfaces. The method determines the analytical expression of boundaries of every needle "collision-free reachable workspace" (CFRW, which are the feasible insertion zones based on several constraints. Then, the optimal needle insertion trajectory within the optimization criteria will be chosen in the needle CFRW automatically. Also, the results can be visualized with our navigation system. In the simulation experiment, three needle-insertion trajectories were obtained successfully. In the in vitro experiment, the robot successfully achieved insertion of multiple needles. The proposed automatic multiple-needle surgical planning can improve the efficiency and safety of robot-assisted large liver tumor

  12. Automatic Multiple-Needle Surgical Planning of Robotic-Assisted Microwave Coagulation in Large Liver Tumor Therapy.

    Science.gov (United States)

    Liu, Shaoli; Xia, Zeyang; Liu, Jianhua; Xu, Jing; Ren, He; Lu, Tong; Yang, Xiangdong

    2016-01-01

    The "robotic-assisted liver tumor coagulation therapy" (RALTCT) system is a promising candidate for large liver tumor treatment in terms of accuracy and speed. A prerequisite for effective therapy is accurate surgical planning. However, it is difficult for the surgeon to perform surgical planning manually due to the difficulties associated with robot-assisted large liver tumor therapy. These main difficulties include the following aspects: (1) multiple needles are needed to destroy the entire tumor, (2) the insertion trajectories of the needles should avoid the ribs, blood vessels, and other tissues and organs in the abdominal cavity, (3) the placement of multiple needles should avoid interference with each other, (4) an inserted needle will cause some deformation of liver, which will result in changes in subsequently inserted needles' operating environment, and (5) the multiple needle-insertion trajectories should be consistent with the needle-driven robot's movement characteristics. Thus, an effective multiple-needle surgical planning procedure is needed. To overcome these problems, we present an automatic multiple-needle surgical planning of optimal insertion trajectories to the targets, based on a mathematical description of all relevant structure surfaces. The method determines the analytical expression of boundaries of every needle "collision-free reachable workspace" (CFRW), which are the feasible insertion zones based on several constraints. Then, the optimal needle insertion trajectory within the optimization criteria will be chosen in the needle CFRW automatically. Also, the results can be visualized with our navigation system. In the simulation experiment, three needle-insertion trajectories were obtained successfully. In the in vitro experiment, the robot successfully achieved insertion of multiple needles. The proposed automatic multiple-needle surgical planning can improve the efficiency and safety of robot-assisted large liver tumor therapy

  13. Symposium on the research field of soft robotics

    CERN Document Server

    Albu-Schäffer, Alin; Brock, Oliver; Raatz, Annika; Soft Robotics : Transferring Theory to Application

    2015-01-01

    The research areas as well as the knowledge gained for the practical use of robots are growing and expanding beyond manufacturing and industrial automation, making inroads in sectors such as health care and terrain sensing, as well as general assistive systems working in close interaction with humans. In a situation like this, it is necessary for future robot systems to become less stiff and more specialized by taking inspiration from the mechanical compliance and versatility found in natural materials and organisms. At present, a new discipline is emerging in this area, called »Soft Robotics«. It particularly challenges the traditional thinking of engineers, as the confluence of technologies, ranging from new materials, sensors, actuators and production techniques to new design tools, will make it possible to create new systems whose structures are almost completely made of soft materials, which bring about entirely new functions and behaviors, similar in many ways to natural systems. These Proceedings foc...

  14. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: surgical, oncological, and functional outcomes: a systematic review.

    Science.gov (United States)

    De Carlo, Francesco; Celestino, Francesco; Verri, Cristian; Masedu, Francesco; Liberati, Emanuele; Di Stasi, Savino Mauro

    2014-01-01

    Despite the wide diffusion of minimally invasive approaches, such as laparoscopic (LRP) and robot-assisted radical prostatectomy (RALP), few studies compare the results of these techniques with the retropubic radical prostatectomy (RRP) approach. The aim of this study is to compare the surgical, functional, and oncological outcomes and cost-effectiveness of RRP, LRP, and RALP. A systematic review of the literature was performed in the PubMed and Embase databases in December 2013. A 'free-text' protocol using the term 'radical prostatectomy' was applied. A total of 16,085 records were found. The authors reviewed the records to identify comparative studies to include in the review. 44 comparative studies were identified. With regard to the perioperative outcome, LRP and RALP were more time-consuming than RRP, but blood loss, transfusion rates, catheterisation time, hospitalisation duration, and complication rates were the most optimal in the laparoscopic approaches. With regard to the functional and oncological results, RALP was found to have the best outcomes. Our study confirmed the well-known perioperative advantage of minimally invasive techniques; however, available data were not sufficient to prove the superiority of any surgical approach in terms of functional and oncologic outcomes. On the contrary, cost comparison clearly supports RRP.

  15. Comparison of fatigue accumulated during and after prolonged robotic and laparoscopic surgical methods: a cross-sectional study.

    Science.gov (United States)

    González-Sánchez, Manuel; González-Poveda, Ivan; Mera-Velasco, Santiago; Cuesta-Vargas, Antonio I

    2017-03-01

    The aim of the present study was to analyse the fatigue experienced by surgeons during and after performing robotic and laparoscopic surgery and to analyse muscle function, self-perceived fatigue and postural balance. Cross-sectional study considering two surgical protocols (laparoscopic and robotic) with two different roles (chief and assistant surgeon). Fatigue was recorded in two ways: pre- and post-surgery using questionnaires [Profile of Mood States (POMS), Quick Questionnaire Piper Fatigue Scale and Visual Analogue Scale (VAS)-related fatigue] and parametrising functional tests [handgrip and single-leg balance test (SLBT)] and during the intervention by measuring the muscle activation of eight different muscles via surface electromyography and kinematic measurement (using inertial sensors). Each surgery profile intervention (robotic/laparoscopy-chief/assistant surgeon) was measured three times, totalling 12 measured surgery interventions. The minimal duration of surgery was 180 min. Pre- and post-surgery, all questionnaires showed that the magnitude of change was higher for the chief surgeon compared with the assistant surgeon, with differences of between 10 % POMS and 16.25 % VAS (robotic protocol) and between 3.1 % POMS and 12.5 % VAS (laparoscopic protocol). In the inter-profile comparison, the chief surgeon (robotic protocol) showed a lower balance capacity during the SLBT after surgery. During the intervention, the kinematic variables showed significant differences between the chief and assistant surgeon in the robotic protocol, but not in the laparoscopic protocol. Regarding muscle activation, there was not enough muscle activity to generate fatigue. Prolonged surgery increased fatigue in the surgeon; however, the magnitude of fatigue differed between surgical profiles. The surgeon who experienced the greatest fatigue was the chief surgeon in the robotic protocol.

  16. Soft Robotics Commercialization: Jamming Grippers from Research to Product

    Science.gov (United States)

    Cheng, Nadia; Fakhouri, Sami; Culley, Bill

    2016-01-01

    Abstract Recent work in the growing field of soft robotics has demonstrated a number of very promising technologies. However, to make a significant impact in real-world applications, these new technologies must first transition out of the laboratory through successful commercialization. Commercialization is perhaps the most critical future milestone facing the field of soft robotics today, and this process will reveal whether the apparent impact we now perceive has been appropriately estimated. Since 2012, Empire Robotics has been one of the first companies to attempt to reach this milestone through our efforts to commercialize jamming-based robotic gripper technology in a product called VERSABALL®. However, in spring 2016 we are closing our doors, having not been able to develop a sustainable business around this technology. This article presents some of the key takeaways from the technical side of the commercialization process and lessons learned that may be valuable to others. We hope that sharing this information will provide a frame of reference for technology commercialization that can help others motivate research directions and maximize research impact. PMID:28078197

  17. Global curriculum in research literacy for the surgical oncologist.

    Science.gov (United States)

    Are, C; Yanala, U; Malhotra, G; Hall, B; Smith, L; Cummings, C; Lecoq, C; Wyld, L; Audisio, R A; Berman, R S

    2018-01-01

    The ability to provide optimal care to cancer patients depends on awareness of current evidence-based practices emanating from research or involvement in research where circumstances permit. The significant global variations in cancer-related research activity and its correlation to cancer-specific outcomes may have an influence on the care provided to cancer patients and their outcomes. The aim of this project is to develop a global curriculum in research literacy for the surgical oncologist. The leadership of the Society of Surgical Oncology and European Society of Surgical Oncology convened a global curriculum committee to develop a global curriculum in research literacy for the Surgical Oncologist. A global curriculum in research literacy is developed to incorporate the required domains considered to be essential to interpret the published research or become involved in research activity where circumstances permit. The purpose of this curriculum is to promote research literacy for the surgical oncologist, wherever they are based. It does not mandate direct research participation which may not be feasible due to restrictions within the local health-care delivery environment, socio-economic priorities and the educational environment of the individual institution where they work. A global curriculum in research literacy is proposed which may promote research literacy or encourage involvement in research activity where circumstances permit. It is hoped that this will enhance cancer-related research activity, promote awareness of optimal evidence-based practices and improve outcomes for cancer patients globally. Copyright © 2017 Society of Surgical Oncology, European Society of Surgical Oncology. Published by Elsevier Ltd.. All rights reserved.

  18. Impact of age on surgical staging and approaches (laparotomy, laparoscopy and robotic surgery) in endometrial cancer management.

    Science.gov (United States)

    Bourgin, C; Lambaudie, E; Houvenaeghel, G; Foucher, F; Levêque, J; Lavoué, V

    2017-04-01

    This study aims to evaluate the different surgical approaches, perioperative morbidity and surgical staging according to age in patients with endometrial cancer. Multicentre retrospective study. Cancer characteristics and perioperative data were collected for patients surgically treated for endometrial cancer. The patients were divided into 2 groups according to their age: younger or older than 75 years. Surgery was performed on 270 women surgery was performed less often in the elderly compared with their younger counterparts (58.2% vs. 74.8%; p = 0.006). Independently of the surgical approach, the rate of pelvic and para-aortic lymphadenectomy was lower in women older than 75 years old than their younger counterparts (52.7% vs. 74.8%; p laparotomy, laparoscopy or robotic surgery group. We found a shorter length of hospital stay for the women who underwent laparoscopy or robotic surgery compared with laparotomy (p surgery and optimal surgical staging to the same extent as younger women. Copyright © 2016 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  19. Advances in mechanisms, robotics and design education and research

    CERN Document Server

    Schmiedeler, James; Sreenivasan, S; Su, Hai-Jun

    2013-01-01

    This book contains papers on a wide range of topics in the area of kinematics, mechanisms, robotics, and design, addressing new research advances and innovations in design education. The content is divided into  five main categories headed ‘Historical Perspectives’, ‘Kinematics and Mechanisms’, ‘Robotic Systems’, ‘Legged Locomotion’, and ‘Design Engineering Education’. Contributions take the form of survey articles, historical perspectives, commentaries on trends on education or research, original research contributions, and papers on design education.   This volume celebrates the achievements of Professor Kenneth Waldron who has made innumerable and invaluable contributions to these fields in the last fifty years. His leadership and his pioneering work have influenced thousands of people in this discipline.

  20. Coordinated Research in Robotics and Integrated Manufacturing.

    Science.gov (United States)

    1983-07-31

    PROGRAM ELEMENT. PROJECT. TASK AREA & WORK UNIT NUMBERS College of Engineering The Univesity of Michigan 61102F Ann Arbor, Michigan 48109 2306/A3 ii...34factory of the future"); * to facilitate course and curriculum development appropriate to the education of the future engineers and researchers...tight interaction among research, education and applications. for it. is a synergism among these three that is necessary to achieve the technological

  1. Research status of multi - robot systems task allocation and uncertainty treatment

    Science.gov (United States)

    Li, Dahui; Fan, Qi; Dai, Xuefeng

    2017-08-01

    The multi-robot coordination algorithm has become a hot research topic in the field of robotics in recent years. It has a wide range of applications and good application prospects. This paper analyzes and summarizes the current research status of multi-robot coordination algorithms at home and abroad. From task allocation and dealing with uncertainty, this paper discusses the multi-robot coordination algorithm and presents the advantages and disadvantages of each method commonly used.

  2. Robot

    OpenAIRE

    Flek, O.

    2015-01-01

    The objective of this paper is to design and produce a robot based on a four wheel chassis equipped with a robotic arm capable of manipulating small objects. The robot should be able to operate in an autonomous mode controlled by a microcontroller and in a mode controlled wirelessly by an operator in real time. Precision and accuracy of the robotic arm should be sufficient for the collection of small objects, such as syringes and needles. The entire robot should be easy to operate user-friend...

  3. Comparison of surgical, functional, and oncological outcomes of open and robot-assisted partial nephrectomy

    Directory of Open Access Journals (Sweden)

    Ugur Boylu

    2015-01-01

    Full Text Available Background: We aimed to compare the surgical, oncological, and functional outcomes of robot-assisted partial nephrectomy (RAPN with open partial nephrectomy (OPN in the management of small renal masses. Materials and Methods: Between 2009 and 2013, a total of 46 RAPN patients and 20 OPN patients was included in this study. Patients′ demographics, mean operative time, estimated blood loss (EBL, warm ischemia time (WIT, length of hospital stay, pre- and post-operative renal functions, complications and oncological outcomes were recorded, prospectively. Results: Mean tumor size was 4.04 cm in OPN group and 3.56 cm in RAPN group (P = 0.27. Mean R.E.N.A.L nephrometry score was 6.35 in OPN group and 5.35 in RAPN group (P = 0.02. The mean operative time was 152 min in OPN group and 225 min in RAPN group (P = 0.006. The mean EBL in OPN and RAPN groups were 417 ml and 268 ml, respectively (P = 0.001. WIT in OPN group was significantly shorter than RAPN group (18.02 min vs. 23.33 min, P = 0.003. The mean drain removal time and the length of hospital stay were longer in OPN group. There were no significant differences in terms of renal functional outcomes and postoperative complications between groups. Conclusion: Minimally invasive surgical management of renal masses with RAPN offers better outcomes in terms of EBL and length of stay. However, the mean operative time and WIT were significantly shorter in OPN group. RAPN is a safe and effective minimally invasive alternative to OPN in terms of oncological and functional outcomes.

  4. Initial Clinical Experience With Surgical Technique of Robot-assisted Transperitoneal Laparoscopic Partial Nephrectomy

    Directory of Open Access Journals (Sweden)

    Cheng-Kuang Yang

    2009-12-01

    Conclusion: Robot-assisted LPN is feasible and may be a viable alternative to open or LPN in selected patients with small exophytic renal tumors. Compared with standard LPN, the robotic assisted LPN approach with precise renal reconstruction under a safe warm ischemia time is feasible and can be easily adopted by those with experience in robot-assisted surgery.

  5. Robotics

    International Nuclear Information System (INIS)

    Scheide, A.W.

    1983-01-01

    This article reviews some of the technical areas and history associated with robotics, provides information relative to the formation of a Robotics Industry Committee within the Industry Applications Society (IAS), and describes how all activities relating to robotics will be coordinated within the IEEE. Industrial robots are being used for material handling, processes such as coating and arc welding, and some mechanical and electronics assembly. An industrial robot is defined as a programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for a variety of tasks. The initial focus of the Robotics Industry Committee will be on the application of robotics systems to the various industries that are represented within the IAS

  6. [High-risk prostate cancer surgical margins during robot-assisted radical prostatectomy].

    Science.gov (United States)

    Duperron, C; Moulin, M; Koutlidis, N; Mourey, E; Cormier, L

    2015-06-01

    To evaluate the feasibility of robot-assisted radical prostatectomy (RARP) in high risk prostate cancer (HR). The rate of positive surgical margins (PSM) was compared between anticipated HR cancer according to D'Amico risk classification and discovered postoperative HR cancer. A retrospective study was conducted between 2006 and 2013 on patients who underwent RARP. Before surgery, patients were divided according to the D'Amico risk classification. After surgery, HR was defined as pT3a or pT3b, or Gleason score≥8 or positive lymph nodes. The rate of PSM was compared according to the D'Amico risk classification and postoperative HR. During the study, 485 patients were reviewed. Before surgery, 10 % of cancers were classified as D'Amico 3 (49/485). After surgery, 27.6 % (134/485) were classified as HR. There was a significant difference between the rate of PSM in HR/D'Amico 3 and HR/non D'Amico 3 cancer, respectively 22.9 % and 34.3 % (P<0.001). The RARP is feasible in HR with an average of 30 % of PSM as in open surgery. However, the accurate assessment of preoperative HR will allow a more adapted dissection and a decrease of rate of PSM. So it is necessary to improve the detection of HR and so to select the most suitable cancer for surgery. Level 5. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research.

    Science.gov (United States)

    Raj, Aditi; Thakur, Atul

    2016-04-13

    Underwater robot designs inspired by the behavior, physiology, and anatomy of fishes can provide enhanced maneuverability, stealth, and energy efficiency. Over the last two decades, robotics researchers have developed and reported a large variety of fish-inspired robot designs. The purpose of this review is to report different types of fish-inspired robot designs based upon their intended locomotion patterns. We present a detailed comparison of various design features like sensing, actuation, autonomy, waterproofing, and morphological structure of fish-inspired robots reported in the past decade. We believe that by studying the existing robots, future designers will be able to create new designs by adopting features from the successful robots. The review also summarizes the open research issues that need to be taken up for the further advancement of the field and also for the deployment of fish-inspired robots in practice.

  8. Robotic assisted minimally invasive surgery

    Directory of Open Access Journals (Sweden)

    Palep Jaydeep

    2009-01-01

    Full Text Available The term "robot" was coined by the Czech playright Karel Capek in 1921 in his play Rossom′s Universal Robots. The word "robot" is from the check word robota which means forced labor.The era of robots in surgery commenced in 1994 when the first AESOP (voice controlled camera holder prototype robot was used clinically in 1993 and then marketed as the first surgical robot ever in 1994 by the US FDA. Since then many robot prototypes like the Endoassist (Armstrong Healthcare Ltd., High Wycombe, Buck, UK, FIPS endoarm (Karlsruhe Research Center, Karlsruhe, Germany have been developed to add to the functions of the robot and try and increase its utility. Integrated Surgical Systems (now Intuitive Surgery, Inc. redesigned the SRI Green Telepresence Surgery system and created the daVinci Surgical System ® classified as a master-slave surgical system. It uses true 3-D visualization and EndoWrist ® . It was approved by FDA in July 2000 for general laparoscopic surgery, in November 2002 for mitral valve repair surgery. The da Vinci robot is currently being used in various fields such as urology, general surgery, gynecology, cardio-thoracic, pediatric and ENT surgery. It provides several advantages to conventional laparoscopy such as 3D vision, motion scaling, intuitive movements, visual immersion and tremor filtration. The advent of robotics has increased the use of minimally invasive surgery among laparoscopically naοve surgeons and expanded the repertoire of experienced surgeons to include more advanced and complex reconstructions.

  9. Nigerian Journal of Surgical Research: Advanced Search

    African Journals Online (AJOL)

    Search tips: Search terms are case-insensitive; Common words are ignored; By default only articles containing all terms in the query are returned (i.e., AND is implied); Combine multiple words with OR to find articles containing either term; e.g., education OR research; Use parentheses to create more complex queries; e.g., ...

  10. Robotic-assisted laparoscopic exenteration in recurrent cervical cancer Robotics improved the surgical experience for 2 women with recurrent cervical cancer.

    Science.gov (United States)

    Davis, Mitzie-Ann; Adams, Sarah; Eun, Daniel; Lee, David; Randall, Thomas C

    2010-06-01

    Pelvic exenteration can be used to cure women with a central pelvic recurrence or persistence of gynecologic malignancy after initial definitive therapy. Refinements in patient selection, operative techniques, and surgical instrumentation have significantly improved outcomes over the past 60 years, but the procedure is still associated with significant mortality, morbidity, and recovery time. New technologies have made it possible to approach radical gynecologic surgeries in a minimally invasive fashion. We present 2 patients successfully treated with robotic-assisted anterior pelvic exenteration for treatment of persistent or recurrent cervical cancer after definitive radiotherapy. Copyright 2010 Mosby, Inc. All rights reserved.

  11. Toward real-time endoscopically-guided robotic navigation based on a 3D virtual surgical field model

    Science.gov (United States)

    Gong, Yuanzheng; Hu, Danying; Hannaford, Blake; Seibel, Eric J.

    2015-03-01

    The challenge is to accurately guide the surgical tool within the three-dimensional (3D) surgical field for roboticallyassisted operations such as tumor margin removal from a debulked brain tumor cavity. The proposed technique is 3D image-guided surgical navigation based on matching intraoperative video frames to a 3D virtual model of the surgical field. A small laser-scanning endoscopic camera was attached to a mock minimally-invasive surgical tool that was manipulated toward a region of interest (residual tumor) within a phantom of a debulked brain tumor. Video frames from the endoscope provided features that were matched to the 3D virtual model, which were reconstructed earlier by raster scanning over the surgical field. Camera pose (position and orientation) is recovered by implementing a constrained bundle adjustment algorithm. Navigational error during the approach to fluorescence target (residual tumor) is determined by comparing the calculated camera pose to the measured camera pose using a micro-positioning stage. From these preliminary results, computation efficiency of the algorithm in MATLAB code is near real-time (2.5 sec for each estimation of pose), which can be improved by implementation in C++. Error analysis produced 3-mm distance error and 2.5 degree of orientation error on average. The sources of these errors come from 1) inaccuracy of the 3D virtual model, generated on a calibrated RAVEN robotic platform with stereo tracking; 2) inaccuracy of endoscope intrinsic parameters, such as focal length; and 3) any endoscopic image distortion from scanning irregularities. This work demonstrates feasibility of micro-camera 3D guidance of a robotic surgical tool.

  12. [Surgical research in Germany--an international comparison].

    Science.gov (United States)

    Fendrich, V; Rothmund, M

    2010-04-01

    Surgical research in Germany occupies a lower position in international ranking than expected. According to the size of the population, the economic impact, the gross domestic product and the research funding capacity, the impact of German surgical research should be much higher. Reasons are a more intensive commitment to patient care, structural differences and a changing lifestyle in younger doctors in comparison to many leading countries. If the situation is to be improved all factors have to be evaluated and, if possible, changed. Overall, German surgeons are underrepresented as readers and authors in the scientific market, which is mostly in the English language.

  13. [Animal experimentation, computer simulation and surgical research].

    Science.gov (United States)

    Carpentier, Alain

    2009-11-01

    We live in a digital world In medicine, computers are providing new tools for data collection, imaging, and treatment. During research and development of complex technologies and devices such as artificial hearts, computer simulation can provide more reliable information than experimentation on large animals. In these specific settings, animal experimentation should serve more to validate computer models of complex devices than to demonstrate their reliability.

  14. Biomimetic and bio-inspired robotics in electric fish research.

    Science.gov (United States)

    Neveln, Izaak D; Bai, Yang; Snyder, James B; Solberg, James R; Curet, Oscar M; Lynch, Kevin M; MacIver, Malcolm A

    2013-07-01

    Weakly electric knifefish have intrigued both biologists and engineers for decades with their unique electrosensory system and agile swimming mechanics. Study of these fish has resulted in models that illuminate the principles behind their electrosensory system and unique swimming abilities. These models have uncovered the mechanisms by which knifefish generate thrust for swimming forward and backward, hovering, and heaving dorsally using a ventral elongated median fin. Engineered active electrosensory models inspired by electric fish allow for close-range sensing in turbid waters where other sensing modalities fail. Artificial electrosense is capable of aiding navigation, detection and discrimination of objects, and mapping the environment, all tasks for which the fish use electrosense extensively. While robotic ribbon fin and artificial electrosense research has been pursued separately to reduce complications that arise when they are combined, electric fish have succeeded in their ecological niche through close coupling of their sensing and mechanical systems. Future integration of electrosense and ribbon fin technology into a knifefish robot should likewise result in a vehicle capable of navigating complex 3D geometries unreachable with current underwater vehicles, as well as provide insights into how to design mobile robots that integrate high bandwidth sensing with highly responsive multidirectional movement.

  15. Preliminary Research on Possibilities of Drilling Process Robotization

    Science.gov (United States)

    Pawel, Stefaniak; Jacek, Wodecki; Jakubiak, Janusz; Zimroz, Radoslaw

    2017-12-01

    Nowadays, drilling & blasting is crucial technique for deposit excavation using in hard rock mining. Unfortunately, such approach requires qualified staff to perform, and consequently there is a serious risk related to rock mechanics when using explosives. Negative influence of explosives usage on safety issues of underground mine is a main cause of mining demands related to elimination of people from production area. Other aspects worth taking into consideration are drilling precision according to drilling pattern, blasting effectiveness, improvement of drilling tool reliability etc. In the literature different drilling support solutions are well-known in terms of positioning support systems, anti-jamming systems or cavity detection systems. For many years, teleoperation of drilling process is also developed. Unfortunately, available technologies have so far not fully met the industries expectation in hard rock. Mine of the future is expected to incorporate robotic system instead of current approaches. In this paper we present preliminary research related to robotization of drilling process and possibilities of its application in underground mine condition. A test rig has been proposed. To simulate drilling process several key assumptions have been accepted. As a result, algorithms for automation of drilling process have been proposed and tested on the test rig. Experiences gathered so far underline that there is a need for further developing robotic system for drilling process.

  16. Animals in Medical Research | Kadima | Nigerian Journal of Surgical ...

    African Journals Online (AJOL)

    Nigerian Journal of Surgical Research. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 2 (2000) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Animals in Medical Research. K. B. Kadima, I.

  17. South African surgical registrar perceptions of the research project ...

    African Journals Online (AJOL)

    organisation and strict oversight that are well developed in clinical training.[2]. In order to improve the research capability of registrars, we suggest mandating the completion of a validated formal research methodology course for all surgical registrars within the first year of their registrar training, or as a requirement for.

  18. Robot-assisted sacrocolpopexy for pelvic organ prolapse: surgical technique and outcomes at a single high-volume institution.

    Science.gov (United States)

    Ploumidis, Achilles; Spinoit, Anne-Françoise; De Naeyer, Geert; Schatteman, Peter; Gan, Melanie; Ficarra, Vincenzo; Volpe, Alessandro; Mottrie, Alexandre

    2014-01-01

    Pelvic organ prolapse (POP) represents a common female pelvic floor disorder that has a serious impact on quality of life. Several types of procedures with different surgical approaches have been described to correct these defects, but the optimal management is still debated. To describe our surgical technique of robot-assisted sacrocolpopexy (RASC) for POP and to assess its safety and long-term outcomes. A retrospective review of the medical records of 95 consecutive patients who underwent RASC for POP at our centre from April 2006 to December 2011 was performed. RASC with use of polypropylene meshes was performed in all cases using a standardised technique with the da Vinci Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) in a four-arm configuration. Clinical data were collected in a dedicated database. Intraoperative variables, postoperative complications, and outcomes of RASC were assessed. A descriptive statistical analysis was performed. Median operative time was 101 min. No conversion to open surgery was needed. One vaginal and two bladder injuries occurred and were repaired intraoperatively. Only one Clavien grade 3 postoperative complication was observed (bowel obstruction treated laparoscopically). At a median follow-up of 34 mo, persistent POP was observed in four cases (4.2%). One mesh erosion occurred and required robot-assisted removal of the mesh. Ten (10.5%) patients complained de novo urgency after RASC, which resolved in the first few weeks after surgery. No significant de novo bowel or sexual symptoms were reported. Our technique of RASC for correction of POP is safe and effective, with limited risk of complications and good long-term results in the treatment of all types of POP. The robotic surgical system facilitates precise and accurate placement of the meshes with short operative time, thereby favouring wider diffusion of minimally invasive treatment of POP. We studied the treatment of patients with vaginal prolapse by using a robot

  19. A Comparative Study of Da Vinci Robot System with Video-assisted Thoracoscopy in the Surgical Treatment of Mediastinal Lesions

    Directory of Open Access Journals (Sweden)

    Renquan DING

    2014-07-01

    Full Text Available Background and objective In recent years, Da Vinci robot system applied in the treatment of intrathoracic surgery mediastinal diseases become more mature. The aim of this study is to summarize the clinical data about mediastinal lesions of General Hospital of Shenyang Military Region in the past 4 years, then to analyze the treatment effect and promising applications of da Vinci robot system in the surgical treatment of mediastinal lesions. Methods 203 cases of mediastinal lesions were collected from General Hospital of Shenyang Military Region between 2010 and 2013. These patients were divided into two groups da Vinci and video-assisted thoracoscopic surgery (VATS according to the selection of the treatments. The time in surgery, intraoperative blood loss, postoperative drainage amount within three days after surgery, the period of bearing drainage tubes, hospital stays and hospitalization expense were then compared. Results All patients were successfully operated, the postoperative recovery is good and there is no perioperative death. The different of the time in surgery between two groups is Robots group 82 (20-320 min and thoracoscopic group 89 (35-360 min (P>0.05. The intraoperative blood loss between two groups is robot group 10 (1-100 mL and thoracoscopic group 50 (3-1,500 mL. The postoperative drainage amount within three days after surgery between two groups is robot group 215 (0-2,220 mL and thoracoscopic group 350 (50-1,810 mL. The period of bearing drainage tubes after surgery between two groups is robot group 3 (0-10 d and thoracoscopic group: 5 (1-18 d. The difference of hospital stays between two groups is robot group 7 (2-15 d and thoracoscopic group 9 (2-50 d. The hospitalization expense between two groups is robot group (18,983.6±4,461.2 RMB and thoracoscopic group (9,351.9±2,076.3 RMB (All P<0.001. Conclusion The da Vinci robot system is safe and efficient in the treatment of mediastinal lesions compared with video

  20. Pedagogic Approach in the Surgical Learning: The First Period of "Assistant Surgeon" May Improve the Learning Curve for Laparoscopic Robotic-Assisted Hysterectomy.

    Science.gov (United States)

    Favre, Angeline; Huberlant, Stephanie; Carbonnel, Marie; Goetgheluck, Julie; Revaux, Aurelie; Ayoubi, Jean Marc

    2016-01-01

    Hysterectomy is the most frequent surgery done with robotic assistance in the world and has been widely studied since its emergence. The surgical outcomes of the robotic hysterectomy are similar to those obtained with other minimally invasive hysterectomy techniques (laparoscopic and vaginal) and appear as a promising surgical technique in gynecology surgery. The aim of this study was to observe the learning curve of robot-assisted hysterectomy in a French surgical center, and was to evaluate the impact of the surgical mentoring. We retrospectively collected the data from the files of the robot-assisted hysterectomies with the Da Vinci ® Surgical System performed between March 2010 and June 2014 at the Foch hospital in Suresnes (France). We first studied the operative time according to the number of cases, independently of the surgeon to determine two periods: the initial learning phase (Phase 1) and the control of surgical skills phase (Phase 2). The phase was defined by mastering the basic surgical tasks. Secondarily, we compared these two periods for operative time, blood losses, body mass index (BMI), days of hospitalizations, and uterine weight. We, finally, studied the difference of the learning curve between an experimented surgeon (S1) who practiced first the robot-assisted hysterectomies and a less experimented surgeon (S2) who first assisted S1 and then operated on his own patients. A total of 154 robot-assisted hysterectomies were analyzed. Twenty procedures were necessary to access to the control of surgical skills phase. There was a significant decrease of the operative time between the learning phase (156.8 min) compared to the control of surgical skills phase (125.8 min, p  = 0.003). No difference between these two periods for blood losses, BMI, days of hospitalizations and uterine weight was demonstrated. The learning curve of S1 showed 20 procedures to master the robot-assisted hysterectomies with a significant decrease of the operative

  1. Pedagogic approach in the surgical learning: The first period of “assistant surgeon” may improve the learning curve for laparoscopic robotic-assisted hysterectomy.

    Directory of Open Access Journals (Sweden)

    Angeline Favre

    2016-11-01

    Full Text Available Background: Hysterectomy is the most frequently surgery done with robotic assistance in the world and has been widely studied since its emergence. The surgical outcomes of the robotic hysterectomy are similar to those obtained with other minimally invasive hysterectomy techniques (laparoscopic and vaginal and appear as a promising surgical technique in gynaecology surgery. The aim of this study was to observe the learning curve of robot-assisted hysterectomy in a French surgical center, and was to evaluate the impact of the surgical mentoring.Methods: We retrospectively collected the data from the files of the robot-assisted hysterectomies with the Da Vinci® Surgical System performed between March 2010 and June 2014 at the Foch hospital in Suresnes (France. We first studied the operative time according to the number of cases, independently of the surgeon to determine two periods: the initial learning phase (Phase 1 and the control of surgical skills phase (Phase 2. The phase was defined by mastering the basic surgical tasks. Secondarily we compared these two periods for operative time, blood losses, Body Mass Index (BMI, days of hospitalisations and uterine weight. We finally studied the difference of the learning curve between an experimented surgeon (S1 who practised the first the robot-assisted hysterectomies and a less experimented surgeon (S2 who first assisted S1 and then operated on his own patients.Results: 154 robot-assisted hysterectomies were analysed. 20 procedures were necessary to access to the control of surgical skills phase. There was a significant decrease of the operative time between the learning phase (156.8 minutes compared to the control of surgical skills phase (125.8 minutes, p=0.003. No difference between these two periods for blood losses, BMI, days of hospitalisations and uterine weight were demonstrated. The learning curve of S1 showed 20 procedures to master the robot-assisted hysterectomies with a significant

  2. CESAR robotics and intelligent systems research for nuclear environments

    International Nuclear Information System (INIS)

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developing highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs

  3. Robotic and minimal access surgery: technology and surgical outcomes of radical prostatectomy for prostate cancer.

    Science.gov (United States)

    Müller, Stig; Grønning, Leif Erik; Nilsen, Frode S; Mygland, Vegard; Patel, Hiten R H

    2014-11-01

    Since the 1990s, minimal access surgery has been utilized in urology. In the past 15 years, robotic surgery has evolved and become a natural part of minimal access surgery. The dissemination has been fast and the opportunity of prospective trials has been missed. Nevertheless, robotic surgery has obvious benefits for the surgeon and patient. Even though the scientific evidence is not strong, robotic surgery is here to stay. However, there are lessons to learn from the implementation of the da Vinci system with regards to patient safety and prospective evaluation of the new technology. The future of surgery will include technologies derived from robotic surgery.

  4. Study of the Operational Safety of a Vascular Interventional Surgical Robotic System

    Directory of Open Access Journals (Sweden)

    Jian Guo

    2018-03-01

    Full Text Available This paper proposes an operation safety early warning system based on LabView (2014, National Instruments Corporation, Austin, TX, USA for vascular interventional surgery (VIS robotic system. The system not only provides intuitive visual feedback information for the surgeon, but also has a safety early warning function. It is well known that blood vessels differ in their ability to withstand stress in different age groups, therefore, the operation safety early warning system based on LabView has a vascular safety threshold function that changes in real-time, which can be oriented to different age groups of patients and a broader applicable scope. In addition, the tracing performance of the slave manipulator to the master manipulator is also an important index for operation safety. Therefore, we also transformed the slave manipulator and integrated the displacement error compensation algorithm in order to improve the tracking ability of the slave manipulator to the master manipulator and reduce master–slave tracking errors. We performed experiments “in vitro” to validate the proposed system. According to previous studies, 0.12 N is the maximum force when the blood vessel wall has been penetrated. Experimental results showed that the proposed operation safety early warning system based on LabView combined with operating force feedback can effectively avoid excessive collisions between the surgical catheter and vessel wall to avoid vascular puncture. The force feedback error of the proposed system is maintained between ±20 mN, which is within the allowable safety range and meets our design requirements. Therefore, the proposed system can ensure the safety of surgery.

  5. Current surgical treatment option, utilizing robot-assisted laparoscopic surgery in obese women with endometrial cancer: Farghalys technique

    International Nuclear Information System (INIS)

    Farghaly, S.A.

    2013-01-01

    Background: Endometrial cancer is the most prevalent cancer of the female genital tract in North America. Minimally invasive laparoscopic-assisted surgery and panniculectomy in obese women with endometrial cancer are associated with an improved lymph node count, and lower rate of incisional complications than laparotomy. Methods: Technique for robot-assisted laparoscopic surgery for obese women with endometrial cancer is detailed. Results: Robot-assisted laparoscopic surgical staging, pelvic and para-aortic lymphadenectomy and panniculectomy allow us to avoid the use of postoperative pelvic radiation which is recommended in women with histopathology high-risk findings: deep myometrial invasion or high grade histology. The procedure has the advantage of three-dimensional vision, ergonomic, intuitive control, and wristed instrument that approximate the motion of the human hand. Conclusion: Robot-assisted laparoscopic surgical staging, and panniculectomy in these patients are a safe, and effective alternative to laparoscopic, and laparotomy surgery. It is an ideal tool for performing the complex oncologic procedures encountered in endometrial cancer staging that requires delicate retroperitoneal, pelvic and para-aortic lymph node dissection, while maintaining the principles of oncologic surgery but in a minimally invasive fashion.

  6. Robotic-assisted partial nephrectomy: surgical technique using a 3-arm approach and sliding-clip renorrhaphy

    Directory of Open Access Journals (Sweden)

    Jose M. Cabello

    2009-04-01

    Full Text Available INTRODUCTION: For the treatment of renal tumors, minimally invasive nephron-sparing surgery has become increasingly performed due to proven efficiency and excellent functional and oncological outcomes. The introduction of robotics into urologic laparoscopic surgery has allowed surgeons to perform challenging procedures in a reliable and reproducible manner. We present our surgical technique for robotic assisted partial nephrectomy (RPN using a 3-arm approach, including a sliding-clip renorrhaphy. MATERIAL AND METHODS: Our RPN technique is presented which describes the trocar positioning, hilar dissection, tumor identification using intraoperative ultrasound for margin determination, selective vascular clamping, tumor resection, and reconstruction using a sliding-clip technique. CONCLUSION: RPN using a sliding-clip renorrhaphy is a valid and reproducible surgical technique that reduces the challenge of the procedure by taking advantage of the enhanced visualization and control afforded by the robot. The renorrhaphy described is performed under complete control of the console surgeon, and has demonstrated a reduction in the warm ischemia times in our series.

  7. Magnetic resonance imaging properties of multimodality anthropomorphic silicone rubber phantoms for validating surgical robots and image guided therapy systems

    Science.gov (United States)

    Cheung, Carling L.; Looi, Thomas; Drake, James; Kim, Peter C. W.

    2012-02-01

    The development of image guided robotic and mechatronic platforms for medical applications requires a phantom model for initial testing. Finding an appropriate phantom becomes challenging when the targeted patient population is pediatrics, particularly infants, neonates or fetuses. Our group is currently developing a pediatricsized surgical robot that operates under fused MRI and laparoscopic video guidance. To support this work, we describe a method for designing and manufacturing silicone rubber organ phantoms for the purpose of testing the robotics and the image fusion system. A surface model of the organ is obtained and converted into a mold that is then rapid-prototyped using a 3D printer. The mold is filled with a solution containing a particular ratio of silicone rubber to slacker additive to achieve a specific set of tactile and imaging characteristics in the phantom. The expected MRI relaxation times of different ratios of silicone rubber to slacker additive are experimentally quantified so that the imaging properties of the phantom can be matched to those of the organ that it represents. Samples of silicone rubber and slacker additive mixed in ratios ranging from 1:0 to 1:1.5 were prepared and scanned using inversion recovery and spin echo sequences with varying TI and TE, respectively, in order to fit curves to calculate the expected T1 and T2 relaxation times of each ratio. A set of infantsized abdominal organs was prepared, which were successfully sutured by the robot and imaged using different modalities.

  8. Research of grasping algorithm based on scara industrial robot

    Science.gov (United States)

    Peng, Tao; Zuo, Ping; Yang, Hai

    2018-04-01

    As the tobacco industry grows, facing the challenge of the international tobacco giant, efficient logistics service is one of the key factors. How to complete the tobacco sorting task of efficient economy is the goal of tobacco sorting and optimization research. Now the cigarette distribution system uses a single line to carry out the single brand sorting task, this article adopts a single line to realize the cigarette sorting task of different brands. Using scara robot special algorithm for sorting and packaging, the optimization scheme significantly enhances the indicators of smoke sorting system. Saving labor productivity, obviously improve production efficiency.

  9. A Novel Design of a Quadruped Robot for Research Purposes

    Directory of Open Access Journals (Sweden)

    Yam Geva

    2014-07-01

    Full Text Available This paper presents the design of a novel quadruped robot. The proposed design is characterized by a simple, modular design, and easy interfacing capabilities. The robot is built mostly from off-the-shelf components. The design includes four 3-DOF legs, the robot body and its electronics. The proposed robot is able to traverse rough terrain while carrying additional payloads. Such payloads can include both sensors and computational hardware. We present the robot design, the control system, and the forward and inverse kinematics of the robot, as well as experiments that are compared with simulation results.

  10. Trend on research and development of maintenance robot for nuclear power station

    International Nuclear Information System (INIS)

    Hamada, Shoichi

    1990-01-01

    The expectations for nuclear power supply will increase more and more in future. In the field of maintenance, a robot was introduced in the early stages effecting the decrease of personal exposure, shortening of plantoutage, etc., which has significantly contributed to the stable power generation by nuclear power stations. Recently, a robot is expected to handle new applications for man-like maintenance work, too. The research and development for realization of robots having high-grade specified functions or multi-purpose is now being proceeded. This paper presents the recent situation of robots and the tendency of studies on advanced basic technology of robotics. (author)

  11. Evaluation of surgical strategy of conventional vs. percutaneous robot-assisted spinal trans-pedicular instrumentation in spondylodiscitis.

    Science.gov (United States)

    Keric, Naureen; Eum, David J; Afghanyar, Feroz; Rachwal-Czyzewicz, Izabela; Renovanz, Mirjam; Conrad, Jens; Wesp, Dominik M A; Kantelhardt, Sven R; Giese, Alf

    2017-03-01

    Robot-assisted percutaneous insertion of pedicle screws is a recent technique demonstrating high accuracy. The optimal treatment for spondylodiscitis is still a matter of debate. We performed a retrospective cohort study on surgical patients treated with pedicle screw/rod placement alone without the application of intervertebral cages. In this collective, we compare conventional open to a further minimalized percutaneous robot-assisted spinal instrumentation, avoiding a direct contact of implants and infectious focus. 90 records and CT scans of patients treated by dorsal transpedicular instrumentation of the infected segments with and without decompression and antibiotic therapy were analysed for clinical and radiological outcome parameters. 24 patients were treated by free-hand fluoroscopy-guided surgery (121 screws), and 66 patients were treated by percutaneous robot-assisted spinal instrumentation (341 screws). Accurate screw placement was confirmed in 90 % of robot-assisted and 73.5 % of free-hand placed screws. Implant revision due to misplacement was necessary in 4.95 % of the free-hand group compared to 0.58 % in the robot-assisted group. The average intraoperative X-ray exposure per case was 0.94 ± 1.04 min in the free-hand group vs. 0.4 ± 0.16 min in the percutaneous group (p = 0.000). Intraoperative adverse events were observed in 12.5 % of free-hand placed pedicle screws and 6.1 % of robot robot-assisted screws. The mean postoperative hospital stay in the free-hand group was 18.1 ± 12.9 days, and in percutaneous group, 13.8 ± 5.6 days (p = 0.012). This study demonstrates that the robot-guided insertion of pedicle screws is a safe and effective procedure in lumbar and thoracic spondylodiscitis with higher accuracy of implant placement, lower radiation dose, and decreased complication rates. Percutaneous spinal dorsal instrumentation seems to be sufficient to treat lumbar and thoracic spondylodiscitis.

  12. Fable: A Modular Robot for Students, Makers and Researchers

    DEFF Research Database (Denmark)

    Pacheco, Moises; Fogh, Rune; Lund, Henrik Hautop

    2014-01-01

    The vision of the Fable modular robotic system is to transform the development of robots from a process performed mainly by experts, to an easily accessible and motivating activity that enables a large range of users to assemble and animate their own robotic ideas. To achieve this vision, the Fable...

  13. Research on the attitude detection technology of the tetrahedron robot

    Science.gov (United States)

    Gong, Hao; Chen, Keshan; Ren, Wenqiang; Cai, Xin

    2017-10-01

    The traditional attitude detection technology can't tackle the problem of attitude detection of the polyhedral robot. Thus we propose a novel algorithm of multi-sensor data fusion which is based on Kalman filter. In the algorithm a tetrahedron robot is investigated. We devise an attitude detection system for the polyhedral robot and conduct the verification of data fusion algorithm. It turns out that the minimal attitude detection system we devise could capture attitudes of the tetrahedral robot in different working conditions. Thus the Kinematics model we establish for the tetrahedron robot is correct and the feasibility of the attitude detection system is proven.

  14. Robot Aesthetics

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance Jonathan

    This paper considers art-based research practice in robotics through a discussion of our course and relevant research projects in autonomous art. The undergraduate course integrates basic concepts of computer science, robotic art, live performance and aesthetic theory. Through practice...... in robotics research (such as aesthetics, culture and perception), we believe robot aesthetics is an important area for research in contemporary aesthetics....

  15. Can teenage novel users perform as well as General Surgery residents upon initial exposure to a robotic surgical system simulator?

    Science.gov (United States)

    Mehta, A; Patel, S; Robison, W; Senkowski, T; Allen, J; Shaw, E; Senkowski, C

    2018-03-01

    New techniques in minimally invasive and robotic surgical platforms require staged curricula to insure proficiency. Scant literature exists as to how much simulation should play a role in training those who have skills in advanced surgical technology. The abilities of novel users may help discriminate if surgically experienced users should start at a higher simulation level or if the tasks are too rudimentary. The study's purpose is to explore the ability of General Surgery residents to gain proficiency on the dVSS as compared to novel users. The hypothesis is that Surgery residents will have increased proficiency in skills acquisition as compared to naive users. Six General Surgery residents at a single institution were compared with six teenagers using metrics measured by the dVSS. Participants were given two 1-h sessions to achieve an MScoreTM in the 90th percentile on each of the five simulations. MScoreTM software compiles a variety of metrics including total time, number of attempts, and high score. Statistical analysis was run using Student's t test. Significance was set at p value <0.05. Total time, attempts, and high score were compared between the two groups. The General Surgery residents took significantly less Total Time to complete Pegboard 1 (PB1) (p = 0.043). No significant difference was evident between the two groups in the other four simulations across the same MScoreTM metrics. A focused look at the energy dissection task revealed that overall score might not be discriminant enough. Our findings indicate that prior medical knowledge or surgical experience does not significantly impact one's ability to acquire new skills on the dVSS. It is recommended that residency-training programs begin to include exposure to robotic technology.

  16. Black boxes on wheels: research challenges and ethical problems in MEA-based robotics

    DEFF Research Database (Denmark)

    Bentzen, Martin Mose

    2016-01-01

    Robotic systems consisting of a neuron culture grown on a multielectrode array (MEA) which is connected to a virtual or mechanical robot have been studied for approximately 15 years. It is hoped that these MEA-based robots will be able to address the problem that robots based on conventional comp...... and that they are not likely to be solved within the field. After that, I discuss whether MEA-based robotics should be considered pop science. Finally, I investigate the ethical aspects of this research.......Robotic systems consisting of a neuron culture grown on a multielectrode array (MEA) which is connected to a virtual or mechanical robot have been studied for approximately 15 years. It is hoped that these MEA-based robots will be able to address the problem that robots based on conventional...... computer technology are not very good at adapting to surprising or unusual situations, at least not when compared to biological organisms. It is also hoped that insights gained from MEA-based robotics can have applications within human enhancement and medicine. In this paper, I argue that researchers...

  17. Basic research on intelligent robotic systems operating in hostile environments: New developments at ORNL

    International Nuclear Information System (INIS)

    Barhen, J.; Babcock, S.M.; Hamel, W.R.; Oblow, E.M.; Saridis, G.N.; deSaussure, G.; Solomon, A.D.; Weisbin, C.R.

    1984-01-01

    Robotics and artificial intelligence research carried out within the Center for Engineering Systems Advanced Research (CESAR) is presented. Activities focus on the development and demonstration of a comprehensive methodological framework for intelligent machines operating in unstructured hostile environments. Areas currently being addressed include mathematical modeling of robot dynamics, real-time control, ''world'' modeling, machine perception and strategy planning

  18. Robotics in gynecologic surgery.

    Science.gov (United States)

    Frick, A C; Falcone, T

    2009-06-01

    Robotic surgery has evolved from an investigational surgical approach to a clinically useful adjunct in multiple surgical specialties over the past decade. Advocates of robotic-assisted gynecologic surgery revere the system's wristed instrumentation, ergonomic positioning, and three-dimensional high-definition vision system as significant improvements over laparoscopic equipment's four degrees of freedom and two-dimensional laparoscope that demand the surgeon stand throughout a procedure. The cost, lack of haptic feedback, and the bulky size of the equipment make robotics less attractive to others. Studies evaluating outcomes in robotic-assisted gynecologic surgery are limited. Multiple small retrospective studies demonstrate the safety and feasibility of robotic hysterectomy. With increased surgeon experience, operative times are similar to, or shorter than, laparoscopic cases. Robotic assistance can facilitate suturing in laparoscopic myomectomies, and is associated with decreased blood loss and a shorter hospital stay, although may require longer operative times. Robotic assistance has also been applied to multiple procedures in the subspecialties of infertility, urogynecology and gynecologic oncology with good success and relatively low morbidity. However, further research is warranted to better evaluate the relative benefits and costs of robotic assisted gynecologic surgery.

  19. International Workshop and Summer School on Medical and Service Robotics

    CERN Document Server

    Bouri, Mohamed; Mondada, Francesco; Pisla, Doina; Rodic, Aleksandar; Helmer, Patrick

    2016-01-01

    Medical and Service Robotics integrate the most recent achievements in mechanics, mechatronics, computer science, haptic and teleoperation devices together with adaptive control algorithms. The book  includes topics such as surgery robotics, assist devices, rehabilitation technology, surgical instrumentation and Brain-Machine Interface (BMI) as examples for medical robotics. Autonomous cleaning, tending, logistics, surveying and rescue robots, and elderly and healthcare robots are typical examples of topics from service robotics. This is the Proceedings of the Third International Workshop on Medical and Service Robots, held in Lausanne, Switzerland in 2014. It presents an overview of current research directions and fields of interest. It is divided into three sections, namely 1) assistive and rehabilitation devices; 2) surgical robotics; and 3) educational and service robotics. Most contributions are strongly anchored on collaborations between technical and medical actors, engineers, surgeons and clinicians....

  20. Robotics in Colorectal Surgery.

    Science.gov (United States)

    Weaver, Allison; Steele, Scott

    2016-01-01

    Over the past few decades, robotic surgery has developed from a futuristic dream to a real, widely used technology. Today, robotic platforms are used for a range of procedures and have added a new facet to the development and implementation of minimally invasive surgeries. The potential advantages are enormous, but the current progress is impeded by high costs and limited technology. However, recent advances in haptic feedback systems and single-port surgical techniques demonstrate a clear role for robotics and are likely to improve surgical outcomes. Although robotic surgeries have become the gold standard for a number of procedures, the research in colorectal surgery is not definitive and more work needs to be done to prove its safety and efficacy to both surgeons and patients.

  1. Financial modeling of current surgical robotic system in outpatient laparoscopic cholecystectomy: how should we think about the expense?

    Science.gov (United States)

    Schwaitzberg, S D

    2016-05-01

    More than 500,000 robotically assisted procedures were performed worldwide in 2013. Despite broad adoption, there remains a lack of clarity concerning the added cost of the robotic system to the procedure especially in light of an increasing number of ambulatory procedures which are now marketed by hospitals, surgeons and the manufacturer. These procedures are associated with much less reimbursement than inpatient procedures. It is unclear whether these added expenses can be absorbed in these scenarios. Reports vary in opinion concerning the added net costs during robotically assisted laparoscopic hernia or cholecystectomy. The worldwide revenues, procedures, and the installed base of robotic system data were reviewed and reanalyzed from the 2013 Intuitive Surgical Investors report. This provided an opportunity to look cost per case projections from the vantage point of actual revenue. This analysis was based on revenue of 2.27 billion US dollars in the three categories of capital acquisition, instrumentation and accessories, and service revenue. These revenues were then spread across 523,000 cases with varying assumptions. Without regard to expense offsets, the additional cost ranges from $2908 to $8675 depending on what system was purchased and the ability to distribute costs against case volume. Estimates of commercial and government revenue were then compared against these expenses. The use of the extraordinary technology in the face of low-morbidity low-cost established minimally invasive procedures needs to withstand scrutiny of outcome assessment, revenue and expense considerations and appropriateness review in order to create financially viable approaches to high-volume minimally invasive procedures. Revenue estimates associated with outpatient reimbursement make it difficult to support these expenses, recognizing inpatient procedures represent a different net financial picture.

  2. Early experience with totally robotic esophagectomy for malignancy. Surgical and oncological outcomes.

    Science.gov (United States)

    Guerra, Francesco; Vegni, Alessandra; Gia, Elena; Amore Bonapasta, Stefano; Di Marino, Michele; Annecchiarico, Mario; Coratti, Andrea

    2018-03-06

    Over recent decades, minimally invasive esophagectomy has gained popularity and is increasingly performed worldwide. The aim of this work was to investigate the perioperative, clinicopathologic, and oncological outcomes of robot-assisted esophagectomy on a consecutive series of totally robotic procedures. All patients received either an Ivor Lewis or a McKeown procedure according to tumor location. Perioperative, clinicopathologic and oncological outcomes were examined. A total of 38 patients underwent robot-assisted esophagectomy procedures. All underwent surgery for primary esophageal neoplasms. Neoadjuvant therapy was given to 22 patients. R0 resections were achieved in all patients and no conversion to open surgery occurred. Overall morbidity and mortality were 42% and 10%, respectively. The 1 year disease free survival was 78.9%, whereas the 1 year overall survival was 84.2%. Robotic surgery can be employed to treat esophageal malignancy competently. Robotic esophagectomy satisfies all features of pathologic appropriateness and offers the expected oncological results. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Research on Robot Pose Control Technology Based on Kinematics Analysis Model

    Science.gov (United States)

    Liu, Dalong; Xu, Lijuan

    2018-01-01

    In order to improve the attitude stability of the robot, proposes an attitude control method of robot based on kinematics analysis model, solve the robot walking posture transformation, grasping and controlling the motion planning problem of robot kinematics. In Cartesian space analytical model, using three axis accelerometer, magnetometer and the three axis gyroscope for the combination of attitude measurement, the gyroscope data from Calman filter, using the four element method for robot attitude angle, according to the centroid of the moving parts of the robot corresponding to obtain stability inertia parameters, using random sampling RRT motion planning method, accurate operation to any position control of space robot, to ensure the end effector along a prescribed trajectory the implementation of attitude control. The accurate positioning of the experiment is taken using MT-R robot as the research object, the test robot. The simulation results show that the proposed method has better robustness, and higher positioning accuracy, and it improves the reliability and safety of robot operation.

  4. Validation, correlation, and comparison of the da Vinci trainer(™) and the daVinci surgical skills simulator(™) using the Mimic(™) software for urologic robotic surgical education.

    Science.gov (United States)

    Liss, Michael A; Abdelshehid, Corollos; Quach, Stephen; Lusch, Achim; Graversen, Joseph; Landman, Jaime; McDougall, Elspeth M

    2012-12-01

    Virtual reality simulators with self-assessment software may assist novice robotic surgeons to augment direct proctoring in robotic surgical skill acquisition. We compare and correlate the da Vinci Trainer™ (dVT) and da Vinci Surgical Skills Simulators (dVSSS) in subjects with varying robotic experience. Students, urology residents, fellows, and practicing urologists with varying robotic experience were enrolled after local institutional review board approval. Three virtual reality tasks were preformed in sequential order (pegboard 1, pegboard 2, and tubes)-initially on the dVSSS and then on the dVT. The Mimic™ software used on both systems provides raw values and percent scores that were used in statistical evaluation. Statistical analysis was performed with the two-tailed independent t-test, analysis of variance, Tukey, and the Pearson rank correlation coefficient where appropriate. Thirty-two participants were recruited for this study and separated into five groups based on robotic surgery experience. In regards to construct validity, both simulators were able to differentiate differences among the five robotic surgery experience groups in the tubes suturing task (p≤0.00). Sixty-seven percent (4/6) robotic experts thought that surgical simulation should be implemented in residency training. The overall cohort considered both platforms easy to learn and use. Although performance scores were less in the dVT compared with the dVSSS, both simulators demonstrate good content and construct validity. The simulators appear to be equivalent for assessing surgeon proficiency and either can be used for robotic skills training with self-assessment feedback.

  5. Research and development at ORNL/CESAR towards cooperating robotic systems for hazardous environments

    International Nuclear Information System (INIS)

    Mann, R.C.; Fujimura, K.; Unseren, M.A.

    1991-01-01

    One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR)at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of position and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace. 15 refs., 3 figs

  6. Research and development at ORNL/CESAR towards cooperating robotic systems for hazardous environments

    Energy Technology Data Exchange (ETDEWEB)

    Mann, R.C.; Fujimura, K.; Unseren, M.A.

    1991-01-01

    One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR)at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of position and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace. 15 refs., 3 figs.

  7. Research on a Master Manipulator Using an Isometric Interface for Translation in Robotic Surgery

    Directory of Open Access Journals (Sweden)

    In Kim

    2015-09-01

    Full Text Available In surgery with a master-slave type of surgical robot, an anisometric interface is often used. The working range of the master side is limited, so repositioning is required. Any repositioning from the master side will disturb the robot's operation. In this study, an operation interface is proposed that uses only the operator's force input for translational directions. A force sensor is used to detect this input. A gimbal mechanism is mounted on the sensor which allows for rotation. The rotation accounts for the operator's input rotation, and as a result the mechanism can now match the input. This allows the operator to concentrate on the slave side and control the robot without repositioning. The authors developed the proposed interface to control the pneumatically driven slave robot. The block transfer experiments confirmed that the proposed interface has nearly the same performance as conventional interfaces.

  8. Robotics

    Indian Academy of Sciences (India)

    computed torque method or feedback linearization. Hence, the resultant system is linear and for this the controller is easier to design. Software. Software, in addition to acting as a binding thread for the various robot subsystems, plays an important role in control. Physical devices like amplifiers, integrators, differentiators, etc.

  9. Robot-assisted laparoscopic partial nephrectomy versus laparoscopic partial nephrectomy: A propensity score-matched comparative analysis of surgical outcomes and preserved renal parenchymal volume.

    Science.gov (United States)

    Tachibana, Hidekazu; Takagi, Toshio; Kondo, Tsunenori; Ishida, Hideki; Tanabe, Kazunari

    2018-02-04

    To compare surgical outcomes, including renal function and the preserved renal parenchymal volume, between robot-assisted laparoscopic partial nephrectomy and laparoscopic partial nephrectomy using propensity score-matched analyses. In total, 253 patients, with a normal contralateral kidney, who underwent laparoscopic partial nephrectomy (n = 131) or robot-assisted laparoscopic partial nephrectomy (n = 122) with renal arterial clamping between 2010 and 2015, were included. Patients' background and tumor factors were adjusted by propensity score matching. Surgical outcomes, including postoperative renal function, complications, warm ischemia time and preserved renal parenchymal volume, evaluated by volumetric analysis, were compared between the surgical procedures. After matching, 64 patients were assigned to each group. The mean age was 56-57 years, and the mean tumor size was 22 mm. Approximately 50% of patients had low complexity tumors (RENAL nephrometry score 4-7). The incidence rate of acute kidney failure was significantly lower in the robot-assisted laparoscopic partial nephrectomy (11%) than laparoscopic partial nephrectomy (23%) group (P = 0.049), and warm ischemia time shorter in the robot-assisted laparoscopic partial nephrectomy (17 min) than laparoscopic partial nephrectomy (25 min) group (P < 0.0001). The preservation rate of renal function, measured by the estimated glomerular filtration rate, at 6 months post-surgery was 96% for robot-assisted laparoscopic partial nephrectomy and 90% for laparoscopic partial nephrectomy (P < 0.0001). The preserved renal parenchymal volume was higher for robot-assisted laparoscopic partial nephrectomy (89%) than laparoscopic partial nephrectomy (77%; P < 0.0001). The rate of perioperative complications, surgical margin status and length of hospital stay were equivalent for both techniques. Robot-assisted laparoscopic partial nephrectomy allows to achieve better preservation of renal function and parenchymal volume

  10. Research on Multi-Directional Pose Accuracy Variation to a Welding Robot

    Science.gov (United States)

    Vacarescu, V.; Lovasz, E. Ch.; Buciuman, C. F.

    Evaluation of functional characteristics of industrial robots is one aspect of their development. If one examines the many robotic applications, it is found that in most cases the performance characteristics involve aspects of positioning and orientation. Parameter analyzed in this paper refers precisely to this type of performance. In the robotics field, there are different methods and techniques in order to determine the performance characteristics of the industrial robots. In this paper the authors used a method for measuring and evaluating multi-directional pose accuracy variation performance for a welding robot, through 3D triangulation with two digital theodolite. For this purpose it uses a calibrated cube, mounted on the robot end—effector. The method allows the determination of the performances in concordance with the ISO 9283 recommendations and is validated of experimentally researches.

  11. Biomimetic Spider Leg Joints: A Review from Biomechanical Research to Compliant Robotic Actuators

    Directory of Open Access Journals (Sweden)

    Stefan Landkammer

    2016-07-01

    Full Text Available Due to their inherent compliance, soft actuated joints are becoming increasingly important for robotic applications, especially when human-robot-interactions are expected. Several of these flexible actuators are inspired by biological models. One perfect showpiece for biomimetic robots is the spider leg, because it combines lightweight design and graceful movements with powerful and dynamic actuation. Building on this motivation, the review article focuses on compliant robotic joints inspired by the function principle of the spider leg. The mechanism is introduced by an overview of existing biological and biomechanical research. Thereupon a classification of robots that are bio-inspired by spider joints is presented. Based on this, the biomimetic robot applications referring to the spider principle are identified and discussed.

  12. The research on visual industrial robot which adopts fuzzy PID control algorithm

    Science.gov (United States)

    Feng, Yifei; Lu, Guoping; Yue, Lulin; Jiang, Weifeng; Zhang, Ye

    2017-03-01

    The control system of six degrees of freedom visual industrial robot based on the control mode of multi-axis motion control cards and PC was researched. For the variable, non-linear characteristics of industrial robot`s servo system, adaptive fuzzy PID controller was adopted. It achieved better control effort. In the vision system, a CCD camera was used to acquire signals and send them to video processing card. After processing, PC controls the six joints` motion by motion control cards. By experiment, manipulator can operate with machine tool and vision system to realize the function of grasp, process and verify. It has influence on the manufacturing of the industrial robot.

  13. Vocal Production of Young Children with Disabilities during Child-Robot Interactions. Social Robots Research Reports, Number 5

    Science.gov (United States)

    Dunst, Carl J.; Hamby, Deborah W.; Trivette, Carol M.; Prior, Jeremy; Derryberry, Graham

    2013-01-01

    The effects of a socially interactive robot on the vocalization production of five children with disabilities (4 with autism, 1 with a sensory processing disorder) were the focus of the intervention study described in this research report. The interventions with each child were conducted over 4 or 5 days in the children's homes and involved…

  14. Robot-assisted laparoscopic versus open partial nephrectomy in patients with chronic kidney disease: A propensity score-matched comparative analysis of surgical outcomes.

    Science.gov (United States)

    Takagi, Toshio; Kondo, Tsunenori; Tachibana, Hidekazu; Iizuka, Junpei; Omae, Kenji; Kobayashi, Hirohito; Yoshida, Kazuhiko; Tanabe, Kazunari

    2017-07-01

    To compare surgical outcomes between robot-assisted laparoscopic partial nephrectomy and open partial nephrectomy in patients with chronic kidney disease. Of 550 patients who underwent partial nephrectomy between 2012 and 2015, 163 patients with T1-2 renal tumors who had an estimated glomerular filtration rate between 30 and 60 mL/min/1.73 m 2 , and underwent robot-assisted laparoscopic partial nephrectomy or open partial nephrectomy were retrospectively analyzed. To minimize selection bias between the two surgical methods, patient variables were adjusted by 1:1 propensity score matching. The present study included 75 patients undergoing robot-assisted laparoscopic partial nephrectomy and 88 undergoing open partial nephrectomy. After propensity score matching, 40 patients were included in each operative group. The mean preoperative estimated glomerular filtration rate was 49 mL/min/1.73 m 2 . The mean ischemia time was 21 min in robot-assisted laparoscopic partial nephrectomy (warm ischemia) and 35 min in open partial nephrectomy (cold ischemia). Preservation of the estimated glomerular filtration rate 3-6 months postoperatively was not significantly different between robot-assisted laparoscopic partial nephrectomy and open partial nephrectomy (92% vs 91%, P = 0.9348). Estimated blood loss was significantly lower in the robot-assisted laparoscopic partial nephrectomy group than in the open partial nephrectomy group (104 vs 185 mL, P = 0.0025). The postoperative length of hospital stay was shorter in the robot-assisted laparoscopic partial nephrectomy group than in the open partial nephrectomy group (P robot-assisted laparoscopic partial nephrectomy and open partial nephrectomy provide similar outcomes in terms of functional preservation and perioperative complications among patients with chronic kidney disease. However, a lower estimated blood loss and shorter postoperative length of hospital stay can be obtained with robot-assisted laparoscopic partial nephrectomy

  15. A Low Cost, Modular Robotics Tool Carrier For Precision Agriculture Research

    DEFF Research Database (Denmark)

    Nielsen, S H; Jensen, K; Bøgild, A

    18x80 cm footprint track modules each with an integrated 3.5 kW electric motor, gear and motor controller. The track modules are mounted on the side of an exchangeable tool platform which allows an adjustable width and clearing height of the robot. The 48 V lithium power pack lasts 10 hours......Current research within agricultural crop production focus on using autonomous robot technology to optimize the production efficiency, enhance sustainability and minimize tedious, monotonous and wearing tasks. But progress is slow partly because of the lack of flexible and low cost robotic...... platforms suitable for research within precision agriculture. This paper presents Armadillo, a $50k field robotic tool carrier with a modular design which makes the robot configurable and adaptable to a wide range of precision agriculture research projects. Armadillo weighs around 425 kg and consists of two...

  16. Research and development of advanced robots for nuclear power plants

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Hirukawa, Hirohisa; Kitagaki, Kosei; Liu, Yunhui; Onda, Hiromu; Nakamura, Akira

    1994-01-01

    Social and economic demands have been pressing for automation of inspection tasks, maintenance and repair jobs of nuclear power plants, which are carried out by human workers under circumstances with high radiation level. Since the plants are not always designed for introduction of automatic machinery, sophisticated robots shall play a crucial role to free workers from hostile environments. We have been studying intelligent robot systems and regarded nuclear industries as one of the important application fields where we can validate the feasibility of the methods and systems we have developed. In this paper we firstly discuss on the tasks required in nuclear power plants. Secondly we introduce current status of R and D on special purpose robots, versatile robots and intelligent robots for automatizing the tasks. Then we focus our discussions on three major functions in realizing robotized assembly tasks under such unstructured environments as in nuclear power plants; planning, vision and manipulation. Finally we depict an image of a prototype robot system for nuclear power plants based on the advanced functions. (author) 64 refs

  17. Regenerative patterning in Swarm Robots: mutual benefits of research in robotics and stem cell biology.

    Science.gov (United States)

    Rubenstein, Michael; Sai, Ying; Chuong, Cheng-Ming; Shen, Wei-Min

    2009-01-01

    This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. Self here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering.

  18. Regenerative patterning in Swarm Robots: mutual benefits of research in robotics and stem cell biology

    Science.gov (United States)

    RUBENSTEIN, MICHAEL; SAI, YING; CHUONG, CHENG-MING; SHEN, WEI-MIN

    2010-01-01

    This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. “Self” here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering. PMID:19557691

  19. A low cost, modular robotics tool carrier for precision agriculture research

    DEFF Research Database (Denmark)

    Jensen, Kjeld; Nielsen, Søren Hundevadt; Bøgild, Anders

    platforms suitable for research within precision agriculture. This paper presents Armadillo, a $50k field robotic tool carrier with a modular design which makes the robot configurable and adaptable to a wide range of precision agriculture research projects. Armadillo weighs around 425 kg and consists of two...... 18x80 cm footprint track modules each with an integrated 3.5 kW electric motor, gear and motor controller. The track modules are mounted on the side of an exchangeable tool platform which allows an adjustable width and clearing height of the robot. The 48 V lithium power pack lasts 10 hours...... of operation. Armadillos industrial grade Linux based FroboBox computer runs the FroboMind architecture which is based on the Robot Operating System (ROS) by Willow Garage. FroboMind is a novel generic architecture that has been implemented and successfully tested on different field robots. It has been...

  20. Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments.

    Science.gov (United States)

    Song, Shuang; Zhang, Changchun; Liu, Li; Meng, Max Q-H

    2018-02-01

    Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation. We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved. Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is [Formula: see text] mm, while the maximum error is 3.2 mm. The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.

  1. Central pancreatectomy: The Dagradi Serio Iacono operation. Evolution of a surgical technique from the pioneers to the robotic approach

    Science.gov (United States)

    Iacono, Calogero; Ruzzenente, Andrea; Bortolasi, Luca; Guglielmi, Alfredo

    2014-01-01

    Central pancreatectomy (CP) is a parenchyma-sparing surgical procedure. The aims are to clarify the history and the development of CP and to give credits to those from whom it came. Ehrhardt, in 1908, described segmental neck resection (SNR) followed, in 1910, by Finney without reconstructive part. In 1950 Honjyo described two cases of SNR combined with gastrectomy for gastric cancer infiltrating the neck of the pancreas. Guillemin and Bessot (1957) and Letton and Wilson (1959) dealt only with the reconstructive aspect of CP. Dagradi and Serio, in 1982, performed the first CP including the resective and reconstructive aspects. Subsequently Iacono has validated it with functional endocrine and exocrine tests and popularized it worldwide. In 2003, Baca and Bokan performed laparoscopic CP and, In 2004, Giulianotti et al performed a robotic assisted CP. CP is performed worldwide either by open surgery or by using minimally-invasive or robotic approaches. This confirms that the operation does not belong to whom introduced it but to everyone who carries out it; however credit must be given to those from whom it came. PMID:25400451

  2. Research of smart real-time robot navigation system

    Science.gov (United States)

    Rahmani, Budi; Harjoko, A.; Priyambodo, T. K.; Aprilianto, H.

    2016-02-01

    In this paper described how the humanoid robot measures its distance to the orange ball on green floor. We trained the robot camera (CMUcam5) to detect and track the block color of the orange ball. The block color also used to estimate the distance of the camera toward the ball by comparing its block color size when its in the end of field of view and when its near of the camera. Then, using the pythagoras equation we calculate the distance estimation between the whole humanoid robot toward the ball. The distance will be used to estimate how many step the robot must perform to approach the ball and doing another task like kick the ball. The result shows that our method can be used as one of smart navigation system using a camera as the only one sensor to perceive the information of environtment.

  3. Research on Associative Memory Models of Emotional Robots

    Directory of Open Access Journals (Sweden)

    Wang Yi

    2014-02-01

    Full Text Available Associative memory is essential to realize man-machine cooperation in the natural interaction between humans and robots. The establishment of associative memory model is to solve the problem. First, based on the theory of emotional energy, mood spontaneous metastasis model and stimulate metastasis model are put forward. Then we can achieve affective computing on the external excitation combining with Markov chain model which is about emotions of spontaneous metastasis and HMM model which is about stimulating metastasis. Second, based on the neural network, the associative memory model which is applied in emotional robots is put forward by calculating the emotional state of the robot's dynamic change of mind and considering their own needs at the same time. Finally, the model was applied to the emotional robot platform which we developed. The effect is validated better.

  4. Research advances in control methods of wearable walking assist robots

    Directory of Open Access Journals (Sweden)

    Xia ZHANG

    2016-04-01

    Full Text Available As the proportion of the elderly in China increases, the need for robotic assist walking is growing. The assisted-as-needed (AAN property of a wearable walking assist robot matches a user’s biological need and improves the flexibility, appetency and friendliness of a mechanical system. To realize AAN walking and aiming at realizing master/slave flexible assist, a new hybrid control method consisting of hip joint control based on central pattern generators and knee joint impedance structured control is proposed. The adaptation of a robot's master/slave motion mode to a user's physical function, the continuous switching method for knee joint impedance structured control and its stability, and the AAN effect of the Hybrid control theory are studied, which provides a new thought for the development of wearable walking assist robots.

  5. Minimally invasive videoscopic mitral valve surgery: the current role of surgical robotics.

    Science.gov (United States)

    Chitwood, W R; Nifong, L W

    2000-01-01

    Recently, the efficacy of video-assisted mitral valve surgery has been demonstrated. The evolution of this technology has been relatively rapid. In this article we review this development and predict the future of endoscopic and robotic-enabling technology for cardiac valve operations. A new video-assisted mitral valve operation is described and results discussed. The majority of each valve operation was done through assisted vision and near endoscopically. Cardiopulmonary bypass was established via femoral cannulation, and blood cardioplegic arrest induced using a new percutaneous, transthoracic cross-clamp. A 5 to 6-cm minithoracotomy was used in each patient. Videoscopy was helpful for suture placement, chord reconstruction, leaflet resection, knot tying, and valve ring or prosthesis positioning. A voice-activated robotic arm was used to direct the camera in many instances. Thus far a total of 110 patients have undergone this operation successfully with a 0.9% operative mortality. Our early series (N = 31), published with cost data, is reviewed in detail. Cardiopulmonary perfusion and cross-clamp times for all 100 patients were longer than for conventional sternotomy patients at 158 +/- 3.9 and 110 +/- 3.6 minutes, respectively, versus 121 +/- 4.6 and 90 +/- 4.6 (N = 105); however, there have been less complications. Operative, perfusion, and arrest times have fallen progressively to 144 +/- 4.5 and 90 +/- 4.5, respectively (N = 55 Aesop 3000 cases). Complex repairs and replacements have become routine with anterior leaflet pathology addressed. Bleeding, ventilatory times, blood transfusions, and hospital stay have been reduced. One patient required reoperation for a technically failed repair and two renal patients had late endocarditis. We have used voice-activated, robotic (Aesop 3000) assistance for camera control in 51 of these patients. This addition has decreased camera motion artifact and lens cleaning, while providing direct "cerebral-eye" tracking of

  6. Design based action research in the world of robot technology and learning

    DEFF Research Database (Denmark)

    Majgaard, Gunver

    2010-01-01

    Why is design based action research method important in the world of robot technology and learning? The article explores how action research and interaction-driven design can be used in development of educational robot technological tools. The actual case is the development of “Fraction Battle......” which is about learning fractions in primary school. The technology is based on robot technology. An outdoor digital playground is taken into to the classroom and then redesigned. The article argues for interaction design takes precedence to technology or goal driven design for development...

  7. The real-time learning mechanism of the Scientific Research Associates Advanced Robotic System (SRAARS)

    Science.gov (United States)

    Chen, Alexander Y.

    1990-01-01

    Scientific research associates advanced robotic system (SRAARS) is an intelligent robotic system which has autonomous learning capability in geometric reasoning. The system is equipped with one global intelligence center (GIC) and eight local intelligence centers (LICs). It controls mainly sixteen links with fourteen active joints, which constitute two articulated arms, an extensible lower body, a vision system with two CCD cameras and a mobile base. The on-board knowledge-based system supports the learning controller with model representations of both the robot and the working environment. By consecutive verifying and planning procedures, hypothesis-and-test routines and learning-by-analogy paradigm, the system would autonomously build up its own understanding of the relationship between itself (i.e., the robot) and the focused environment for the purposes of collision avoidance, motion analysis and object manipulation. The intelligence of SRAARS presents a valuable technical advantage to implement robotic systems for space exploration and space station operations.

  8. The surgical outcomes of robot-assisted laparoscopic pancreaticoduodenectomy versus laparoscopic pancreaticoduodenectomy for periampullary neoplasms: a comparative study of a single center.

    Science.gov (United States)

    Liu, Rong; Zhang, Tao; Zhao, Zhi-Ming; Tan, Xiang-Long; Zhao, Guo-Dong; Zhang, Xuan; Xu, Yong

    2017-06-01

    Pancreaticoduodenectomy (PD) is a difficult and complex operation. The introduction of robotics has opened up new angles in pancreatic surgery. This study aims to assess the surgical outcomes of robot-assisted laparoscopic pancreaticoduodenectomy relative to its laparoscopic counterpart. A retrospective study was designed to compare the surgical outcomes of 27 robot-assisted laparoscopic pancreaticoduodenectomy (RPD) and 25 laparoscopic pancreaticoduodenectomy (LPD). Perioperative data, including operating time, complication, morbidity and mortality, estimated blood loss, and postoperative length of stay, were analyzed. The robotic group exhibited significantly shorter operative time (mean 387 vs. 442 min), shorter hospital stay (mean 17 vs. 24 days), and less blood loss (mean 219 vs. 334 ml) than those in the LPD group. No statistical difference was observed between the two groups in terms of complication rate, mortality rate, R0 resection rate, and number of harvested lymph node. RPD is more efficient and secure process than LPD among properly selected patients. RPD is therefore a feasible alternative to the laparoscopic procedure. Further studies are needed to evaluate the cost effectiveness of the robotic approach for PD.

  9. Robot-assisted surgery for the radical treatment of deep infiltrating endometriosis with colorectal involvement: short- and mid-term surgical and functional outcomes.

    Science.gov (United States)

    Morelli, Luca; Perutelli, Alessandra; Palmeri, Matteo; Guadagni, Simone; Mariniello, Maria Donatella; Di Franco, Gregorio; Cela, Vito; Brundu, Benedetta; Salerno, Maria Giovanna; Di Candio, Giulio; Mosca, Franco

    2016-03-01

    Sexual and urinary dysfunctions are complications in radical treatment of deep infiltrating endometriosis (DIE) with colorectal involvement. The aim of this article is to report the preliminary results of our single-institution experience with robotic treatment of DIE, evaluating intraoperative and postoperative surgical outcomes and focusing on the impact of this surgical approach on autonomic functions such as urogenital preservation and sexual well-being. From January 2011 through December 2013, a case series of 10 patients underwent robotic radical treatment of DIE with colorectal resection using the da Vinci System. Surgical data were evaluated, together with perioperative urinary and sexual function as assessed by means of self-administered validated questionnaires. None of the patients reported significant postoperative complications. Questionnaires concerning sexual well-being, urinary function, and impact of symptoms on quality of life demonstrated a slight worsening of all parameters 1 month after surgery, while data were comparable to the preoperative period 1 year after surgery. Dyspareunia was the only exception, as it was significantly improved 12 months after surgery. Robot-assisted surgery seems to be advantageous in highly complicated procedures where extensive dissection and proper anatomy re-establishment is required, as in DIE with colorectal involvement. Our preliminary results show that robot-assisted surgery could be associated with a low risk of complications and provide good preservation of urinary function and sexual well-being.

  10. Research on Walking Wheel Slippage Control of Live Inspection Robot

    Science.gov (United States)

    Yan, Yu; Liu, Xiaqing; Guo, Hao; Li, Jinliang; Liu, Lanlan

    2017-07-01

    To solve the problem of walking wheel slippage of a live inspection robot during walking or climbing, this paper analyzes the climbing capacity of the robot with a statics method, designs a pressing wheel mechanism, and presents a method of indirectly identifying walking wheel slippage by reading speed of the pressing wheel due to the fact that the linear speed of the pressing wheel and the walking wheel at the contract point is the same; and finds that the slippage state can not be controlled through accurate mathematical models after identifying the slippage state, whereas slippage can be controlled with fuzzy control. The experiment results indicate that due to design of the pressing wheel mechanism, friction force of the walking wheel is increased, and the climbing capability of the robot is improved. Within the range of climbing capability of the robot, gradient is the key factor that has influence on slippage of robot, and slippage can be effectively eliminated through the fuzzy control method proposed in this paper.

  11. Long-reach articulated robots for inspection and mini-invasive interventions in hazardous environments: Recent robotics research, qualification testing, and tool developments

    International Nuclear Information System (INIS)

    Perrot, Yann; Kammerer, Nolwenn; Measson, Yvan; Verney, Alexandre; Gargiulo, Laurent; Houry, Michael; Keller, Delphine; Piolain, Gerard

    2012-01-01

    The Interactive Robotics Laboratory of CEA LIST is in charge of the development of remote handling technologies to meet energy industry requirements. This paper reports the research and development activities in advanced robotics systems for inspection or light intervention in hazardous environments with limited access such as blind hot cells in the nuclear industry or the thermonuclear experimental Tokamak fusion reactor. A long-reach carrier robot called the articulated inspection arm (AIA) and diagnostics and tools for inspection or intervention are described. Finally experimental field tests are presented and actual challenges in modeling the robot's flexibilities are discussed. (authors)

  12. Robot-assisted laparoscopic management of duplex renal anomaly: Comparison of surgical outcomes to traditional pure laparoscopic and open surgery.

    Science.gov (United States)

    Herz, Daniel; Smith, Jennifer; McLeod, Daryl; Schober, Megan; Preece, Janae; Merguerian, Paul

    2016-02-01

    Surgical management of duplex renal anomaly (DRA) is complex because of individual anatomic variation, competing priorities of vesicoureteral reflux (VUR) and ureteral obstruction present in the same child, the varied differential function of the different renal moieties, and the presence of voiding dysfunction and recurrent urinary tract infection (UTI). Robot-assisted laparoscopic (RAL) surgical management has been under-reported in this group of children but is becoming a viable alternative to traditional open surgery. The aim was to report the surgical outcomes of a series of children with DRA who had RAL surgery and compare these outcomes to historical cohorts of open and laparoscopic surgery. This was a retrospective analysis of a prospective series of children who had RAL surgery for DRA over an 8-year period. Forty-five RAL surgeries were performed in 47 children. RAL heminephrectomy (RAL HN) was performed in 19 children for poorly or non-functional renal moiety. One had staged bilateral RAL HN. RAL ureteroureterostomy (RAL UU) was performed in 14 children for upper pole ureteral obstruction. Thirteen RAL common sheath ureteral reimplants (RAL csUN) with or without ureteral tapering were performed in 12 children with VUR and UTI. Diagnosis and demographics, results of preoperative imaging, intraoperative time stamps, perioperative complications, success rate, and renal outcomes were recorded. Low-grade VUR present preoperatively in the RAL UU group all resolved within the follow-up period. Four (25%) children in the RAL HN group developed de novo VUR after surgery, which resolved in two (50%) and required surgery in two (50%). Grade I VUR after RAL csUR that occurred in two (14.3%) children was asymptomatic and observed when off preventative antibiotics. Most children with DRA who need surgical treatment can be offered RAL surgery. We report good outcomes and improved operative times for RAL HN and UU that approach historical open and pure laparoscopic

  13. Space Robotics Challenge

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Robotics Challenge seeks to infuse robot autonomy from the best and brightest research groups in the robotics community into NASA robots for future...

  14. Experimental Research Regarding The Motion Capacity Of A Robotic Arm

    Science.gov (United States)

    Dumitru, Violeta Cristina

    2015-09-01

    This paper refers to the development of necessary experiments which obtained dynamic parameters (force, displacement) for a modular mechanism with multiple vertebrae. This mechanism performs functions of inspection and intervention in small spaces. Mechanical structure allows functional parameters to achieve precise movements to an imposed target. Will be analyzed the dynamic of the mechanisms using simulation instruments DimamicaRobot.tst under TestPoint programming environment and the elasticity of the tension cables. It will be changes on the mechanism so that spatial movement of the robotic arm is optimal.

  15. Research on Machining Prototypes Using an Industrial Robot

    Directory of Open Access Journals (Sweden)

    Valdemar Smilgin

    2012-12-01

    Full Text Available The influence of vibrations on the quality of the processed surface is an important problem applying an industrial robot for machining prototypes. The intrinsic frequency of individual pieces of the robot may cause resonance due to vibration that appear in the machining process. The conducted experiment has investigated the activity of vibration along the process of milling wood, polypropylene and extruded polystyrene in the three-axe system. According to the influence of induced vibrations in the cutting process and considering surface roughness, feed rates for cutting taking into account every material have been chosen.Article in Lithuanian

  16. Research on Machining Prototypes Using an Industrial Robot

    Directory of Open Access Journals (Sweden)

    Valdemar Smilgin

    2013-02-01

    Full Text Available The influence of vibrations on the quality of the processed surface is an important problem applying an industrial robot for machining prototypes. The intrinsic frequency of individual pieces of the robot may cause resonance due to vibration that appear in the machining process. The conducted experiment has investigated the activity of vibration along the process of milling wood, polypropylene and extruded polystyrene in the three-axe system. According to the influence of induced vibrations in the cutting process and considering surface roughness, feed rates for cutting taking into account every material have been chosen.Article in Lithuanian

  17. Research on Duct Flow Field Optimisation of a Robot Vacuum Cleaner

    OpenAIRE

    Lai, Xiao-bo; Wang, Hai-shun; Liu, Hua-shan

    2011-01-01

    The duct of a robot vacuum cleaner is the length of the flow channel between the inlet of the rolling brush blower and the outlet of the vacuum blower. To cope with the pressure drop problem of the duct flow field in a robot vacuum cleaner, a method based on Pressure Implicit with Splitting of Operators (PRISO) algorithm is introduced and the optimisation design of the duct flow field is implemented. Firstly, the duct structure in a robot vacuum cleaner is taken as a research object, with the...

  18. Miniature in vivo robot for laparoendoscopic single-site surgery.

    Science.gov (United States)

    Dolghi, Oleg; Strabala, Kyle W; Wortman, Tyler D; Goede, Matthew R; Farritor, Shane M; Oleynikov, Dmitry

    2011-10-01

    The aim of this study was to develop a multidexterous robot capable of generating the required forces and speeds to perform surgical tasks intra-abdominally. Current laparoscopic surgical robots are expensive, bulky, and fundamentally constrained by a small entry incision. A new approach to minimally invasive surgery places the robot completely within the patient. Miniature in vivo robots may allow surgeons to overcome current laparoscopic constraints such as dexterity, orientation, and visualization. A collaborative research group from the Department of Surgery at the University of Nebraska Medical Center and the College of Engineering at the University of Nebraska-Lincoln designed and built a surgical robot prototype capable of performing specific surgical tasks within the peritoneal cavity. The basic robotic design consists of two arms each connected to a central body. Each arm has three degrees of freedom and rotational shoulder and elbow joints. This combination allows a surgeon to grasp, manipulate, cauterize, and perform intracorporeal suturing. The robot's workspace is a hollow hemisphere with an inner radius of 75 mm and an outer radius of 205 mm. Its versatility was demonstrated in four procedures performed in a porcine model: cholecystectomy, partial colectomy, abdominal exploration, and intracorporeal suturing. Miniature in vivo robots have the potential to address the limitations of using articulated instrumentation to perform advanced laparoscopic surgical procedures. Once inserted into the peritoneal cavity, the robot provides a stable platform for visualization with sufficient dexterity and speed to perform surgical tasks from multiple orientations and workspaces.

  19. Investigation of bioinspired gecko fibers to improve adhesion of HeartLander surgical robot.

    Science.gov (United States)

    Tortora, Giuseppe; Glass, Paul; Wood, Nathan; Aksak, Burak; Menciassi, Arianna; Sitti, Metin; Riviere, Cameron

    2012-01-01

    HeartLander is a medical robot proposed for minimally invasive epicardial intervention on the beating heart. To date, all prototypes have used suction to gain traction on the epicardium. Gecko-foot-inspired micro-fibers have been proposed for repeatable adhesion to surfaces. In this paper, a method for improving the traction of HeartLander on biological tissue is presented. The method involves integration of gecko-inspired fibrillar adhesives on the inner surfaces of the suction chambers of HeartLander. Experiments have been carried out on muscle tissue ex vivo assessing the traction performance of the modified HeartLander with bio-inspired adhesive. The adhesive fibers are found to improve traction on muscle tissue by 57.3 %.

  20. An FPGA based Node-on-Chip Architecture, for Rapid Robotics Research

    DEFF Research Database (Denmark)

    Falsig, Simon; Sørensen, Anders Stengaard

    2010-01-01

    with the compactness and integration associated with customized hardware. In this paper we present an FPGA based architecture and a framework of template modules for modular embedded control that has: • Dramatically reduced the time we spend on instrumentation of experimental robots. • Increased the quality......One of the major costs and inhibitors to practical robotics research is the time invested in design, implementation, integration, adjusting and debugging of the embedded control systems, that implement the discrete event control in experimental robots and robot systems. Usually researchers can...... choose between very highly integrated customized controllers, that carry a very high cost in man-hours; or instrumentation through standardized modular controllers that offer less flexibility and integration. The two traditional approaches are typically represented by the wide-spread polarity between...

  1. Medical Robotic and Telesurgical Simulation and Education Research

    Science.gov (United States)

    2016-09-01

    management virtual environment which could be used at a robotic surgeon’s leisure . This environment can include more variations in activities than can be...0.044; Time to Complete p=0.002). This suggests that as the movement to control the video game increased, the time to complete and the distance traveled

  2. Research on Hydraulic Performance of Downhole Traction Robot in Oil Field

    Science.gov (United States)

    Fang, Delei; Shang, Jianzhong; Luo, Zirong; Feng, Yong; Chen, Fang

    2018-01-01

    one hydraulic telescopic downhole traction robot is developed to increase its drawing ability and motion performance. The basic mechanical structure of tractor is introduced. Continuous movement mechanism and concrete implementation are analyzed. The robot traction performance is researched based on the analysis of support characteristic. The mathematical models of the hydraulic system are established for hydraulic component performance analysis. The simulation on tractor hydraulic system is obtained, and the synchronicity and periodicity of the whole machine movement are analyzed.

  3. Soft Robotics: Biological Inspiration, State of the Art, and Future Research

    Directory of Open Access Journals (Sweden)

    Deepak Trivedi

    2008-01-01

    Full Text Available Traditional robots have rigid underlying structures that limit their ability to interact with their environment. For example, conventional robot manipulators have rigid links and can manipulate objects using only their specialised end effectors. These robots often encounter difficulties operating in unstructured and highly congested environments. A variety of animals and plants exhibit complex movement with soft structures devoid of rigid components. Muscular hydrostats (e.g. octopus arms and elephant trunks are almost entirely composed of muscle and connective tissue and plant cells can change shape when pressurised by osmosis. Researchers have been inspired by biology to design and build soft robots. With a soft structure and redundant degrees of freedom, these robots can be used for delicate tasks in cluttered and/or unstructured environments. This paper discusses the novel capabilities of soft robots, describes examples from nature that provide biological inspiration, surveys the state of the art and outlines existing challenges in soft robot design, modelling, fabrication and control.

  4. Robot see, robot maps

    OpenAIRE

    Darmanin, Rachael N.

    2016-01-01

    The term ‘robot’ tends to conjure up images of well-known metal characters like C-3P0, R2-D2, and WALL-E. The robotics research boom has in the end enabled the introduction of real robots into our homes, workspaces, and recreational places. The pop culture icons we loved have now been replaced with the likes of robot vacuums such as the Roomba and home-automated systems for smoke detectors, or WIFI-enabled thermostats, such as the Nest. Nonetheless, building a fully autonomous mobile robot is...

  5. Three-dimensional modeling of physiological tremor for hand-held surgical robotic instruments.

    Science.gov (United States)

    Tatinati, Sivanagaraja; Yan Naing Aye; Pual, Anand; Wei Tech Ang; Veluvolu, Kalyana C

    2016-08-01

    Hand-held robotic instruments are developed to compensate physiological tremor in real-time while augmenting the required precision and dexterity into normal microsurgical work-flow. The hardware (sensors and actuators) and software (causal linear filters) employed for tremor identification and filtering introduces time-varying unknown phase-delay that adversely affects the device performance. The current techniques that focus on three-dimensions (3D) tip position control involves modeling and canceling the tremor in 3-axes (x, y, and z axes) separately. Our analysis with the tremor data recorded from surgeons and novice subjects show that there exists significant correlation in tremor motion across the dimensions. Motivated by this, a new multi-dimensional modeling approach based on extreme learning machines (ELM) is proposed in this paper to correct the phase delay and to accurately model tremulous motion in three dimensions simultaneously. A study is conducted with tremor data recorded from the microsurgeons to analyze the suitability of proposed approach.

  6. Surgical evaluation of a novel tethered robotic capsule endoscope using micro-patterned treads.

    Science.gov (United States)

    Sliker, Levin J; Kern, Madalyn D; Schoen, Jonathan A; Rentschler, Mark E

    2012-10-01

    The state-of-the-art technology for gastrointestinal (GI) tract exploration is a capsule endoscope (CE). Capsule endoscopes are pill-sized devices that provide visual feedback of the GI tract as they move passively through the patient. These passive devices could benefit from a mobility system enabling maneuverability and controllability. Potential benefits of a tethered robotic capsule endoscope (tRCE) include faster travel speeds, reaction force generation for biopsy, and decreased capsule retention. In this work, a tethered CE is developed with an active locomotion system for mobility within a collapsed lumen. Micro-patterned polydimethylsiloxane (PDMS) treads are implemented onto a custom capsule housing as a mobility method. The tRCE housing contains a direct current (DC) motor and gear train to drive the treads, a video camera for visual feedback, and two light sources (infrared and visible) for illumination. The device was placed within the insufflated abdomen of a live anesthetized pig to evaluate mobility performance on a planar tissue surface, as well as within the cecum to evaluate mobility performance in a collapsed lumen. The tRCE was capable of forward and reverse mobility for both planar and collapsed lumen tissue environments. Also, using an onboard visual system, the tRCE was capable of demonstrating visual feedback within an insufflated, anesthetized porcine abdomen. Proof-of-concept in vivo tRCE mobility using micro-patterned PDMS treads was shown. This suggests that a similar method could be implemented in future smaller, faster, and untethered RCEs.

  7. CRUSER (Consortium for Robotics and Unmanned Systems Education and Research)

    Science.gov (United States)

    2013-07-08

    Lego  League  of  Monterey   §  Nov  2010/Apr  2011   §  Monterey  Academy  of  Oceanographic  Sciences  (MAOS...Nov  2011   §  Brownie  Troop  30608  –   Mindstorm  Robots   §  Jan  2012   §  Cub  Scout  Pack  125... Mindstorm  Robots   §  Apr  2012                           §  La  Mesa

  8. Liquid-handling Lego robots and experiments for STEM education and research.

    Directory of Open Access Journals (Sweden)

    Lukas C Gerber

    2017-03-01

    Full Text Available Liquid-handling robots have many applications for biotechnology and the life sciences, with increasing impact on everyday life. While playful robotics such as Lego Mindstorms significantly support education initiatives in mechatronics and programming, equivalent connections to the life sciences do not currently exist. To close this gap, we developed Lego-based pipetting robots that reliably handle liquid volumes from 1 ml down to the sub-μl range and that operate on standard laboratory plasticware, such as cuvettes and multiwell plates. These robots can support a range of science and chemistry experiments for education and even research. Using standard, low-cost household consumables, programming pipetting routines, and modifying robot designs, we enabled a rich activity space. We successfully tested these activities in afterschool settings with elementary, middle, and high school students. The simplest robot can be directly built from the widely used Lego Education EV3 core set alone, and this publication includes building and experiment instructions to set the stage for dissemination and further development in education and research.

  9. Liquid-handling Lego robots and experiments for STEM education and research.

    Science.gov (United States)

    Gerber, Lukas C; Calasanz-Kaiser, Agnes; Hyman, Luke; Voitiuk, Kateryna; Patil, Uday; Riedel-Kruse, Ingmar H

    2017-03-01

    Liquid-handling robots have many applications for biotechnology and the life sciences, with increasing impact on everyday life. While playful robotics such as Lego Mindstorms significantly support education initiatives in mechatronics and programming, equivalent connections to the life sciences do not currently exist. To close this gap, we developed Lego-based pipetting robots that reliably handle liquid volumes from 1 ml down to the sub-μl range and that operate on standard laboratory plasticware, such as cuvettes and multiwell plates. These robots can support a range of science and chemistry experiments for education and even research. Using standard, low-cost household consumables, programming pipetting routines, and modifying robot designs, we enabled a rich activity space. We successfully tested these activities in afterschool settings with elementary, middle, and high school students. The simplest robot can be directly built from the widely used Lego Education EV3 core set alone, and this publication includes building and experiment instructions to set the stage for dissemination and further development in education and research.

  10. Medical Robotic and Telesurgical Simulation and Education Research

    Science.gov (United States)

    2013-09-01

    structures upon which he/she is operating. Frequent readjustments of the view field may be necessary during a procedure. Caution must be observed to...retracting instrument and readjust to provide adequate retraction. 4. Repeat switching to 4th arm, cutting and retraction till the entire vein’ is cut at...The number of procedures being performed by robotic surgery has been constantly rising in urology, gynecology, colorectal, pediatric and numerous

  11. Surgical trainee research collaboratives in the UK: an observational study of research activity and publication productivity.

    Science.gov (United States)

    Jamjoom, Aimun A B; Phan, Pho N H; Hutchinson, Peter J; Kolias, Angelos G

    2016-02-04

    To analyse the research activity and publication output of surgical trainee research collaboratives in the UK. Surgical trainee research collaboratives in the UK. A total of 24 collaboratives were included in this study from 33 identified organisations. We excluded one group that focused purely on systematic review of the literature and eight groups for which we could not identify suitable data sources (website or trainee committee contact). Primary data-points were identified for each collaborative including surgical subspeciality, numbers and types of projects. For published articles, secondary outcomes including study population size, journal impact factor, number of citations and evidence level were collected. A total of 24 collaboratives met our inclusion criteria with a portfolio of 80 projects. The project types included audit (46%), randomised clinical trial (16%), surveys (16%), cohort studies (10%), systematic reviews (2.5%) and other or unidentifiable (9.5%). A total of 35 publications were identified of which just over half (54%) were original research articles. The median size of studied population was 540 patients with a range from 108 to 3138. The published works provided a varied compilation of evidence levels ranging from 1b (individual RCT) to 5 (expert opinion) with a median level of 2b (individual cohort study). The West Midlands Research Collaborative had the highest number of publications (13), citations (130) and h-index (5). The experience of UK-based trainee research collaboratives provides useful insights for trainees and policymakers in global healthcare systems on the value and feasibility of trainee-driven high quality surgical research. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. The research on wing sail of a land-yacht robot

    Directory of Open Access Journals (Sweden)

    Shaorong Xie

    2015-12-01

    Full Text Available A wind-driven land-yacht robot which will be applied in polar expedition is presented in this article. As the main power of robot is provided by wing sail, improving the efficiency of wing sail is the key for its motion. Wing sail is composed of airfoil, so airfoil theory is researched first, and then several airfoils and their aerodynamic performance are compared, and a high-efficiency airfoil is selected. After that, overturning torque and start wind speed of robot are analyzed to determine the size of the wing sail. At last, the wing sail is manufactured and checked, and it is tested by start wind speed experiments, running speed experiments, steering motion, and obstacle avoidance experiments. The minimum start wind speed is 6 m/s. When wind speed is 10.3 m/s and angle of attack is 90°, running velocity of robot is 1.285 m/s. A land-yacht robot can run steering motion well and avoid obstacle to the target. The result shows that wing sail satisfies the motion requirement of land-yacht robot.

  13. Parametric design strategies : Robotic building in academic architectural research and education

    NARCIS (Netherlands)

    Bier, H.H.

    2015-01-01

    Parametric design strategies employing design-to-robotic-production (D2RP) approaches are relative new in architecture. They require trans-disciplinary research that at Hyperbody, TUD is experimentally tested in academic education and research. This paper presents and discusses trans-disciplinary

  14. UNIVERSITY RESEARCH PROGRAM IN ROBOTICS, Final Technical Annual Report, Project Period: 9/1/04 - 8/31/05

    Energy Technology Data Exchange (ETDEWEB)

    James S. Tulenko; Carl D. Crane III

    2006-02-15

    The University Research Program in Robotics (URPR) Implementation Plan is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities of robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

  15. Soft tissue modelling for applications in virtual surgery and surgical robotics.

    Science.gov (United States)

    Famaey, Nele; Vander Sloten, Jos

    2008-08-01

    Soft tissue modelling has gained a great deal of importance, for a large part due to its application in surgical training simulators for minimally invasive surgery (MIS). This article provides a structured overview of different continuum-mechanical models that have been developed over the years. It aims at facilitating model choice for specific soft tissue modelling applications. According to the complexity of the model, different features of soft biological tissue will be incorporated, i.e. nonlinearity, viscoelasticity, anisotropy, heterogeneity and finally, tissue damage during deformation. A brief summary of experimental methods for material characterisation and an introduction to methods for geometric modelling are also provided. The overview is non-exhaustive, focusing on the most important general models and models with specific biological applications. A trade-off in complexity must be made for enabling real-time simulation, but still maintaining realistic representation of the organ deformation. Depending on the organ and tissue types, different models with emphasis on certain features will prove to be more appropriate, meaning the optimal model choice is organ and tissue-dependent.

  16. Computer assisted surgical anatomy mapping : applications in surgical anatomy research, tailor-made surgery and presonalized teaching

    NARCIS (Netherlands)

    A.L.A. Kerver (Anton)

    2017-01-01

    markdownabstractThis thesis presents a novel anatomy mapping tool named Computer Assisted Surgical Anatomy Mapping (CASAM). It allows researchers to map complex anatomy of multiple specimens and compare their location and course. Renditions such as safe zones or danger zones can be visualized,

  17. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  18. Evolution of robotic arms

    OpenAIRE

    Moran, Michael E.

    2007-01-01

    The foundation of surgical robotics is in the development of the robotic arm. This is a thorough review of the literature on the nature and development of this device with emphasis on surgical applications. We have reviewed the published literature and classified robotic arms by their application: show, industrial application, medical application, etc. There is a definite trend in the manufacture of robotic arms toward more dextrous devices, more degrees-of-freedom, and capabilities beyond th...

  19. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonisation Project: I. Surgical phenotype data collection in endometriosis research

    DEFF Research Database (Denmark)

    Becker, Christian M.; Laufer, Marc R.; Stratton, Pamela

    2014-01-01

    ObjectiveTo standardize the recording of surgical phenotypic information on endometriosis and related sample collections obtained at laparoscopy, allowing large-scale collaborative research into the condition.......ObjectiveTo standardize the recording of surgical phenotypic information on endometriosis and related sample collections obtained at laparoscopy, allowing large-scale collaborative research into the condition....

  20. Research on robot navigation vision sensor based on grating projection stereo vision

    Science.gov (United States)

    Zhang, Xiaoling; Luo, Yinsheng; Lin, Yuchi; Zhu, Lei

    2016-10-01

    A novel visual navigation method based on grating projection stereo vision for mobile robot in dark environment is proposed. This method is combining with grating projection profilometry of plane structured light and stereo vision technology. It can be employed to realize obstacle detection, SLAM (Simultaneous Localization and Mapping) and vision odometry for mobile robot navigation in dark environment without the image match in stereo vision technology and without phase unwrapping in the grating projection profilometry. First, we research the new vision sensor theoretical, and build geometric and mathematical model of the grating projection stereo vision system. Second, the computational method of 3D coordinates of space obstacle in the robot's visual field is studied, and then the obstacles in the field is located accurately. The result of simulation experiment and analysis shows that this research is useful to break the current autonomous navigation problem of mobile robot in dark environment, and to provide the theoretical basis and exploration direction for further study on navigation of space exploring robot in the dark and without GPS environment.

  1. A US-Japan collaborative robotics research program

    Science.gov (United States)

    Schenker, Paul S.; Hirai, Shigeoki

    1994-01-01

    The Jet Propulsion Laboratory (JPL) and the Electrotechnical Laboratory (ETL) have recently initiated a cooperative R&D effort in telerobotics. This new effort, sponsored by the U.S. National Aeronautics and Space Administration (NASA) and Japan's Ministry of International Trade and Industry (MITI), has two major themes. First, our work broadens the outreach of space telerobotics R&D to international technical collaboration and facilities usage in the United States and Japan. Second, our work fosters development and demonstration of new operator interface technologies to improve the flexibility and reliability of ground-to-orbit telerobotic operations. This new technology is important, given the continuing imperatives to off-load platform maintenance from the extravehicular activity/intravehicular activity (EVA/IVA) crew to on-board robot assists under direct ground mission control.

  2. An evaluation of Irish general surgical research publications from 2000 to 2009.

    LENUS (Irish Health Repository)

    Robertson, I J

    2010-12-01

    Maintaining a high standard of research, and being competitive in the funding application process requires a coordinated and focused research strategy. The first step in the formulation of such a strategy is the identification of those centres, and specifically those areas of study, in which Irish surgical research has previously performed strongly. The aim of this paper was to evaluate all surgical research produced in the Republic of Ireland in the first ten years of the new millennium.

  3. An integrated multimodality image-guided robot system for small-animal imaging research

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Wen-Lin [Department of Radiology, Tzu-Chi University and Radiation Oncology, Buddhist Tzu-Chi General Hospital Hualien, Taiwan (China); Hsin Wu, Tung [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan (China); Hsu, Shih-Ming [Department of Biomedical Imaging and Radiological Sciences, China Medical University, Taichung, Taiwan (China); Chen, Chia-Lin [Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan (China); Lee, Jason J.S., E-mail: jslee@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan (China); Huang, Yung-Hui, E-mail: yhhuang@isu.edu.tw [Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, Taiwan (China)

    2011-10-01

    We design and construct an image-guided robot system for use in small-animal imaging research. This device allows the use of co-registered small-animal PET-MRI images to guide the movements of robotic controllers, which will accurately place a needle probe at any predetermined location inside, for example, a mouse tumor, for biological readouts without sacrificing the animal. This system is composed of three major components: an automated robot device, a CCD monitoring mechanism, and a multimodality registration implementation. Specifically, the CCD monitoring mechanism was used for correction and validation of the robot device. To demonstrate the value of the proposed system, we performed a tumor hypoxia study that involved FMISO small-animal PET imaging and the delivering of a pO{sub 2} probe into the mouse tumor using the image-guided robot system. During our evaluation, the needle positioning error was found to be within 0.153{+-}0.042 mm of desired placement; the phantom simulation errors were within 0.693{+-}0.128 mm. In small-animal studies, the pO{sub 2} probe measurements in the corresponding hypoxia areas showed good correlation with significant, low tissue oxygen tensions (less than 6 mmHg). We have confirmed the feasibility of the system and successfully applied it to small-animal investigations. The system could be easily adapted to extend to other biomedical investigations in the future.

  4. An integrated multimodality image-guided robot system for small-animal imaging research

    International Nuclear Information System (INIS)

    Hsu, Wen-Lin; Hsin Wu, Tung; Hsu, Shih-Ming; Chen, Chia-Lin; Lee, Jason J.S.; Huang, Yung-Hui

    2011-01-01

    We design and construct an image-guided robot system for use in small-animal imaging research. This device allows the use of co-registered small-animal PET-MRI images to guide the movements of robotic controllers, which will accurately place a needle probe at any predetermined location inside, for example, a mouse tumor, for biological readouts without sacrificing the animal. This system is composed of three major components: an automated robot device, a CCD monitoring mechanism, and a multimodality registration implementation. Specifically, the CCD monitoring mechanism was used for correction and validation of the robot device. To demonstrate the value of the proposed system, we performed a tumor hypoxia study that involved FMISO small-animal PET imaging and the delivering of a pO 2 probe into the mouse tumor using the image-guided robot system. During our evaluation, the needle positioning error was found to be within 0.153±0.042 mm of desired placement; the phantom simulation errors were within 0.693±0.128 mm. In small-animal studies, the pO 2 probe measurements in the corresponding hypoxia areas showed good correlation with significant, low tissue oxygen tensions (less than 6 mmHg). We have confirmed the feasibility of the system and successfully applied it to small-animal investigations. The system could be easily adapted to extend to other biomedical investigations in the future.

  5. 75 FR 57502 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Robotics...

    Science.gov (United States)

    2010-09-21

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Robotics Technology Consortium, Inc. Correction In notice document 2010-22215 beginning on page 54914 in the issue of Thursday, July 9, 2010, make the following corrections: 1. On page...

  6. Methodology & Themes of Human-Robot Interaction: A Growing Research Field

    Directory of Open Access Journals (Sweden)

    Kerstin Dautenhahn

    2008-11-01

    Full Text Available This article discusses challenges of Human-Robot Interaction, which is a highly inter- and multidisciplinary area. Themes that are important in current research in this lively and growing field are identified and selected work relevant to these themes is discussed.

  7. Factors associated with adoption of robotic surgical technology in US hospitals and relationship to radical prostatectomy procedure volume.

    Science.gov (United States)

    Barbash, Gabriel I; Friedman, Bernard; Glied, Sherry A; Steiner, Claudia A

    2014-01-01

    Robotic technology has diffused rapidly despite high costs and limited additive reimbursement by major payers. We aimed to identify the factors associated with hospitals' decisions to adopt robotic technology and the consequences of these decisions. This observational study used data on hospitals and market areas from 2005 to 2009. Included were hospitals in census-based statistical areas within states in the State Inpatient Database that participated in the American Hospital Association annual surveys and performed radical prostatectomies. The likelihood that a hospital would acquire a robotic facility and the rates of radical prostatectomy relative to the prevalence of robots in geographic market areas were assessed using multivariable analysis. Hospitals in areas where a higher proportion of other hospitals had already acquired a robot were more likely to acquire one (P=0.012), as were those with more than 300 beds (Phospitals (Ptechnology in the United States. Significantly more radical prostatectomies were performed in hospitals with robots and in market areas of hospitals with robotic technology.

  8. Practice Makes Perfect: Correlations Between Prior Experience in High-level Athletics and Robotic Surgical Performance Do Not Persist After Task Repetition.

    Science.gov (United States)

    Shee, Kevin; Ghali, Fady M; Hyams, Elias S

    Robotic surgical skill development is central to training in urology as well as in other surgical disciplines. Here, we describe a pilot study assessing the relationships between robotic surgery simulator performance and 3 categories of activities, namely, videogames, musical instruments, and athletics. A questionnaire was administered to preclinical medical students for general demographic information and prior experiences in surgery, videogames, musical instruments, and athletics. For follow-up performance studies, we used the Matchboard Level 1 and 2 modules on the da Vinci Skills Simulator, and recorded overall score, time to complete, economy of motion, workspace range, instrument collisions, instruments out of view, and drops. Task 1 was run once, whereas task 2 was run 3 times. All performance studies on the da Vinci Surgical Skills Simulator took place in the Simulation Center at Dartmouth-Hitchcock Medical Center. All participants were medical students at the Geisel School of Medicine. After excluding students with prior hands-on experience in surgery, a total of 30 students completed the study. We found a significant correlation between athletic skill level and performance for both task 1 (p = 0.0002) and task 2 (p = 0.0009). No significant correlations were found for videogame or musical instrument skill level. Students with experience in certain athletics (e.g., volleyball, tennis, and baseball) tended to perform better than students with experience in other athletics (e.g., track and field). For task 2, which was run 3 times, this association did not persist after the third repetition due to significant improvements in students with low-level athletic skill (levels 0-2). Our study suggests that prior experience in high-level athletics, but not videogames or musical instruments, significantly influences surgical proficiency in robot-naive students. Furthermore, our study suggests that practice through task repetition can overcome initial differences

  9. Judging surgical research: how should we evaluate performance and measure value?

    Science.gov (United States)

    Souba, W W; Wilmore, D W

    2000-07-01

    To establish criteria to evaluate performance in surgical research, and to suggest strategies to optimize research in the future. Research is an integral component of the academic mission, focusing on important clinical problems, accounting for surgical advances, and providing training and mentoring for young surgeons. With constraints on healthcare resources, there is increasing pressure to generate clinical revenues at the expense of the time and effort devoted to surgical research. An approach that would assess the value of research would allow prioritization of projects. Further, alignment of high-priority research projects with clinical goals would optimize research gains and maximize the clinical enterprise. The authors reviewed performance criteria applied to industrial research and modified these criteria to apply to surgical research. They reviewed several programs that align research objectives with clinical goals. Performance criteria were categorized along several dimensions: internal measures (quality, productivity, innovation, learning, and development), customer satisfaction, market share, and financial indices (cost and profitability). A "report card" was proposed to allow the assessment of research in an individual department or division. The department's business strategy can no longer be divorced from its research strategy. Alignment between research and clinical goals will maximize the department's objectives but will create the need to modify existing hierarchical structures and reward systems. Such alignment appears to be the best way to ensure the success of surgical research in the future.

  10. Gearing up and accelerating cross-fertilization between academic and industrial robotics research in Europe technology transfer experiments from the ECHORD project

    CERN Document Server

    Veiga, Germano; Natale, Ciro

    2014-01-01

    This monograph by Florian Röhrbein, Germano Veiga and Ciro Natale is an edited collection of 15 authoritative contributions in the area of robot technology transfer between academia and industry. It comprises three parts on Future Industrial Robotics, Robotic Grasping as well as Human-Centered Robots. The book chapters cover almost all the topics nowadays considered ‘hot’ within the robotics community, from reliable object recognition to dexterous grasping, from speech recognition to intuitive robot programming, from mobile robot navigation to aerial robotics, from safe physical human-robot interaction to body extenders. All contributions stem from the results of ECHORD – the European Clearing House for Open Robotics Development, a large-scale integrating project funded by the European Commission within the 7th Framework Programme from 2009 to 2013. ECHORD’s two main pillars were the so-called experiments, 52 small-sized industry-driven research projects, and the structured dialog, a powerful interac...

  11. Gearing up and accelerating cross-fertilization between academic and industrial robotics research in Europe technology transfer experiments from the ECHORD project

    CERN Document Server

    Veiga, Germano; Natale, Ciro

    2014-01-01

    This monograph by Florian Röhrbein, Germano Veiga and Ciro Natale is an edited collection of 15 authoritative contributions in the area of robot technology transfer between academia and industry. It comprises three parts on Future Industrial Robotics, Robotic Grasping as well as Human-Centered Robots. The book chapters cover almost all the topics nowadays considered ‘hot’ within the robotics community, from reliable object recognition to dexterous grasping, from speech recognition to intuitive robot programming, from mobile robot navigation to aerial robotics, from safe physical human-robot interaction to body extenders. All contributions stem from the results of ECHORD – the European Clearing House for Open Robotics Development, a large-scale integrating project funded by the European Commission within the 7th Framework Programme from 2009 to 2013. ECHORD’s two main pillars were the so-called experiments, 51 small-sized industry-driven research projects, and the structured dialog, a powerful interac...

  12. Presentation robot Advee

    Czech Academy of Sciences Publication Activity Database

    Krejsa, Jiří; Věchet, Stanislav; Hrbáček, J.; Ripel, T.; Ondroušek, V.; Hrbáček, R.; Schreiber, P.

    2012-01-01

    Roč. 18, 5/6 (2012), s. 307-322 ISSN 1802-1484 Institutional research plan: CEZ:AV0Z20760514 Keywords : mobile robot * human- robot interface * localization Subject RIV: JD - Computer Applications, Robot ics

  13. Micro Robotics Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Our research is focused on the challenges of engineering robotic systems down to sub-millimeter size scales. We work both on small mobile robots (robotic insects for...

  14. Robot Handcontroller

    Science.gov (United States)

    1992-01-01

    The PER-Force robotic handcontroller provides a sense of touch or "feel" to an operator manipulating robots. The force simulation and wide range of motion greatly enhances the efficiency of robotic and computer operations. The handcontroller was developed for the Space Station by Cybernet Systems Corporation under a Small Business Innovation Research (SBIR) contract. Commercial applications include underwater use, underground excavations, research laboratories, hazardous waste handling and in manufacturing operations in which it is unsafe or impractical for humans to work.

  15. Research on Duct Flow Field Optimisation of a Robot Vacuum Cleaner

    Directory of Open Access Journals (Sweden)

    Xiao-bo Lai

    2011-11-01

    Full Text Available The duct of a robot vacuum cleaner is the length of the flow channel between the inlet of the rolling brush blower and the outlet of the vacuum blower. To cope with the pressure drop problem of the duct flow field in a robot vacuum cleaner, a method based on Pressure Implicit with Splitting of Operators (PRISO algorithm is introduced and the optimisation design of the duct flow field is implemented. Firstly, the duct structure in a robot vacuum cleaner is taken as a research object, with the computational fluid dynamics (CFD theories adopted; a three-dimensional fluid model of the duct is established by means of the FLUENT solver of the CFD software. Secondly, with the k-∊ turbulence model of three-dimensional incompressible fluid considered and the PRISO pressure modification algorithm employed, the flow field numerical simulations inside the duct of the robot vacuum cleaner are carried out. Then, the velocity vector plots on the arbitrary plane of the duct flow field are obtained. Finally, an investigation of the dynamic characteristics of the duct flow field is done and defects of the original duct flow field are analysed, the optimisation of the original flow field has then been conducted. Experimental results show that the duct flow field after optimisation can effectively reduce pressure drop, the feasibility as well as the correctness of the theoretical modelling and optimisation approaches are validated.

  16. Research on Duct Flow Field Optimisation of a Robot Vacuum Cleaner

    Directory of Open Access Journals (Sweden)

    Xiao-bo Lai

    2011-11-01

    Full Text Available The duct of a robot vacuum cleaner is the length of the flow channel between the inlet of the rolling brush blower and the outlet of the vacuum blower. To cope with the pressure drop problem of the duct flow field in a robot vacuum cleaner, a method based on Pressure Implicit with Splitting of Operators (PRISO algorithm is introduced and the optimisation design of the duct flow field is implemented. Firstly, the duct structure in a robot vacuum cleaner is taken as a research object, with the computational fluid dynamics (CFD theories adopted; a three‐dimensional fluid model of the duct is established by means of the FLUENT solver of the CFD software. Secondly, with the k‐ε turbulence model of three‐ dimensional incompressible fluid considered and the PRISO pressure modification algorithm employed, the flow field numerical simulations inside the duct of the robot vacuum cleaner are carried out. Then, the velocity vector plots on the arbitrary plane of the duct flow field are obtained. Finally, an investigation of the dynamic characteristics of the duct flow field is done and defects of the original duct flow field are analysed, the optimisation of the original flow field has then been conducted. Experimental results show that the duct flow field after optimisation can effectively reduce pressure drop, the feasibility as well as the correctness of the theoretical modelling and optimisation approaches are validated.

  17. Transoral robotic surgery for residual and recurrent oropharyngeal cancers: Exploratory study of surgical innovation using the IDEAL framework for early-phase surgical studies.

    Science.gov (United States)

    Paleri, Vinidh; Fox, Hannah; Coward, Sarah; Ragbir, Maniram; McQueen, Andrew; Ahmed, Omar; Meikle, David; Saleh, Daniel; O'Hara, James; Robinson, Max

    2018-03-01

    The purpose of this study was to identify the role of transoral robotic surgery (TORS) in the management of residual and recurrent oropharyngeal cancer. IDEAL (Idea, Development, Exploration, Assessment, Long-term Follow-up) 2a framework. Of 26 patients assessed for TORS, 21 underwent the procedure, 5 underwent open resection (4 due to unsuitable anatomy/tumor extent and 1 on the basis of patient choice). Three patients underwent intraoperative ultrasound-assisted robotic resection, and 3 received robotic-assisted free flap inset. A technical refinement for TORS of residual and recurrent oropharyngeal cancer of the tongue base is described. Actuarial plots showed estimated overall survival of 48.2%, local control of 76.6%, and disease-specific survival of 77.1% at 42.6 months. TORS is a valid management option for residual and recurrent oropharyngeal cancer. Oncologic outcomes are comparable to open surgery and transoral laser microsurgery, with the added advantages of en bloc resections, facility for intraoperative ultrasound imaging, and inset of free flaps without mandibular split. © 2017 Wiley Periodicals, Inc.

  18. Predicting the long-term effects of human-robot interaction: a reflection on responsibility in medical robotics.

    Science.gov (United States)

    Datteri, Edoardo

    2013-03-01

    This article addresses prospective and retrospective responsibility issues connected with medical robotics. It will be suggested that extant conceptual and legal frameworks are sufficient to address and properly settle most retrospective responsibility problems arising in connection with injuries caused by robot behaviours (which will be exemplified here by reference to harms occurred in surgical interventions supported by the Da Vinci robot, reported in the scientific literature and in the press). In addition, it will be pointed out that many prospective responsibility issues connected with medical robotics are nothing but well-known robotics engineering problems in disguise, which are routinely addressed by roboticists as part of their research and development activities: for this reason they do not raise particularly novel ethical issues. In contrast with this, it will be pointed out that novel and challenging prospective responsibility issues may emerge in connection with harmful events caused by normal robot behaviours. This point will be illustrated here in connection with the rehabilitation robot Lokomat.

  19. DOE/NE University Program in robotics for advanced reactors research

    International Nuclear Information System (INIS)

    Trivedi, M.M.

    1990-01-01

    The document presents the bimonthly progress reports published during 1990 regarding the US Department of Energy/NE-sponsored research at the University of Tennessee Knoxville under the DOE Robitics for Advanced Reactors Research Grant. Significant accomplishments are noted in the following areas: development of edge-segment based stereo matching algorithm; vision system integration in the CESAR laboratory; evaluation of algorithms for surface characterization from range data; comparative study of data fusion techniques; development of architectural framework, software, and graphics environment for sensor-based robots; algorithms for acquiring tactile images from planer surfaces; investigations in geometric model-based robotic manipulation; investigations of non-deterministic approaches to sensor fusion; and evaluation of sensor calibration techniques. (MB)

  20. Gastrointestinal stromal tumours of stomach: Robot-assisted excision with the da Vinci Surgical System regardless of size and location site.

    Science.gov (United States)

    Furbetta, Niccolo; Palmeri, Matteo; Guadagni, Simone; Di Franco, Gregorio; Gianardi, Desirée; Latteri, Saverio; Marciano, Emanuele; Moglia, Andrea; Cuschieri, Alfred; Di Candio, Giulio; Mosca, Franco; Morelli, Luca

    2018-03-23

    The role of minimally invasive surgery of gastrointestinal stromal tumours (GISTs) of the stomach remains uncertain especially for large and/or difficult located tumours. We are hereby presenting a single-centre series of robot-assisted resections using the da Vinci Surgical System (Si or Xi). Data of patients undergoing robot-assisted treatment of gastric GIST were retrieved from the prospectively collected institutional database and a retrospective analysis was performed. Patients were stratified according to size and location of the tumour. Difficult cases (DCs) were considered for size if tumour was> 50 mm and/or for location if the tumour was Type II, III or IV sec. Privette/Al-Thani classification. Between May 2010 and February 2017, 12 consecutive patients underwent robot-assisted treatment of GIST at our institution. DCs were 10/12 cases (83.3%), of which 6/10 (50%) for location, 2/10 (25%) for size and 2/10 (25%) for both. The da Vinci Si was used in 8 patients, of which 6 (75%) were DC, and the da Vinci Xi in 4, all of which (100%) were DC. In all patients, excision was by wedge resection. All lesions had microscopically negative resection margins. There was no conversion to open surgery, no tumour ruptures or spillage and no intraoperative complications. Our experience suggests a positive role of the robot da Vinci in getting gastric GIST removal with a conservative approach, regardless of size and location site. Comparative studies with a greater number of patients are necessary for a more robust assessment.

  1. Training in robotic surgery using the da Vinci® surgical system for left pneumonectomy and lymph node dissection in an animal model.

    Science.gov (United States)

    Kajiwara, Naohiro; Kakihana, Masatoshi; Usuda, Jitsuo; Uchida, Osamu; Ohira, Tatsuo; Kawate, Norihiko; Ikeda, Norihiko

    2011-01-01

    In Japan, as of March 2010, only 13 hospitals were using the da Vinci® system and only for selected cases. Few clinical robotic lung surgery has been done in Japan, and there are no standardized training programs, although some exist in the U.S. and are under consideration by the Japanese society for thoracic surgery. We have used the da Vinci S® Surgical System for pneumonectomy and lymph node dissection in pigs. We report and review future possibilities and problems of robotic surgery, especially concerning education, training, safety management and ethical considerations for pneumonectomy and lymph node dissection in clinical practice. The da Vinci® system consists of a surgeon's console connected to a patient-side cart, a manipulator unit with three instrument arms and a central arm to guide the endoscope. The surgeon, sitting at the console, triggers highly sensitive motion sensors that transmit the surgeon's movements to the instrument arm. We experienced exactly the same sensation as when performing standard open thoracotomy. Visual recognition is 3-D, and the high manipulation potential allows free movement of the various accessory instruments, exceeding the capacity of a surgeon's hands in video-assisted thoracic surgery (VATS) or even standard thoracotomy. Robotic surgery achieves at least the same level of operation technique for pneumonectomy and lymph node dissection under standard open thoracotomy, and it seemed as safe and easily performed as conventional VATS. The training program using pigs was effective and holds promise as a system to train thoracic surgeons in robotic lung surgery.

  2. How to write a surgical clinical research protocol: literature review and practical guide.

    Science.gov (United States)

    Rosenthal, Rachel; Schäfer, Juliane; Briel, Matthias; Bucher, Heiner C; Oertli, Daniel; Dell-Kuster, Salome

    2014-02-01

    The study protocol is the core document of every clinical research project. Clinical research in studies involving surgical interventions presents some specific challenges, which need to be accounted for and described in the study protocol. The aim of this review is to provide a practical guide for developing a clinical study protocol for surgical interventions with a focus on methodologic issues. On the basis of an in-depth literature search of methodologic literature and on some cardinal published surgical trials and observational studies, the authors provides a 10-step guide for developing a clinical study protocol in surgery. This practical guide outlines key methodologic issues important when planning an ethically and scientifically sound research project involving surgical interventions, with the ultimate goal of providing high-level evidence relevant for health care decision making in surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Based on Intelligent Robot of E-business Distribution Center Operation Mode Research

    Directory of Open Access Journals (Sweden)

    Li Juntao

    2016-01-01

    Full Text Available According to E-business distribution center operation mode in domestic and advanced experience drawing lessons at home and abroad, this paper based on intelligent robot researches E-business distribution center operation mode. And it proposes the innovation logistics storage in E-business and sorting integration system, and elaborates its principle, characteristics, as well as studies its business mode and logistics process, and its parameters and working mode of AGV equipment.

  4. Initial Evaluation of the Hitachi Zosen WR-L50 Portable Welding Robot (The National Shipbuilding Research Program)

    National Research Council Canada - National Science Library

    Blasko, G. J; Moniak, D. J; Howser, B. C

    1992-01-01

    .... In December 1991, a team representing U. S. private and public shipyards and the David Taylor Research Center visited three Japanese shipyards to observe the Hitachi Zosen robots in operation and complete a technical assessment...

  5. Hand-held medical robots.

    Science.gov (United States)

    Payne, Christopher J; Yang, Guang-Zhong

    2014-08-01

    Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.

  6. Effects of a Socially Interactive Robot on the Conversational Turns between Parents and Their Young Children with Autism. Social Robots Research Reports, Number 6

    Science.gov (United States)

    Dunst, Carl J.; Hamby, Deborah W.; Trivette, Carol M.; Prior, Jeremy; Derryberry, Graham

    2013-01-01

    The effects of a socially interactive robot on the conversational turns between four young children with autism and their mothers were investigated as part of the intervention study described in this research report. The interventions with each child were conducted over 4 or 5 days in the children's homes where a practitioner facilitated…

  7. Software Systems for Robotics An Applied Research Perspective

    OpenAIRE

    Greg Broten; Simon Monckton; Jared Giesbrecht; Jack Collier

    2006-01-01

    Over the past 20 years, Defence Research and Development Canada has developed numerous teleoperated unmanned ground vehicles (UGV), many founded on the ANC?US command and control system. This paper relates how long experience with tele-operated UGVs influenced DRDC's shift in focus from tele-operated to autonomous unmanned vehicles (UV), the forces that guided DRDC's development approach and DRDC's experience adapting a specific tool set, MIRO, to a UGV implementation.

  8. Software Systems for Robotics An Applied Research Perspective

    Directory of Open Access Journals (Sweden)

    Jack Collier

    2008-11-01

    Full Text Available Over the past 20 years, Defence Research and Development Canada has developed numerous teleoperated unmanned ground vehicles (UGV, many founded on the ANC?US command and control system. This paper relates how long experience with tele-operated UGVs influenced DRDC's shift in focus from tele-operated to autonomous unmanned vehicles (UV, the forces that guided DRDC's development approach and DRDC's experience adapting a specific tool set, MIRO, to a UGV implementation.

  9. Software Systems for Robotics An Applied Research Perspective

    Directory of Open Access Journals (Sweden)

    Greg Broten

    2006-03-01

    Full Text Available Over the past 20 years, Defence Research and Development Canada has developed numerous tele-operated unmanned ground vehicles (UGV, many founded on the ANCÆUS command and control system. This paper relates how long experience with tele-operated UGVs influenced DRDC's shift in focus from tele-operated to autonomous unmanned vehicles (UV, the forces that guided DRDC's development approach and DRDC's experience adapting a specific tool set, MIRO, to a UGV implementation.

  10. Mobile robots in research and development programs at the Savannah River site

    International Nuclear Information System (INIS)

    Martin, T.P.; Byrd, J.S.; Fisher, J.J.

    1987-01-01

    Mobile robots for deployment in nuclear applications at the Savannah River Plant (SRP) have been developed. Teleoperated mobile vehicles have been successfully used for several onsite applications. Development work using two research vehicles is underway to demonstrate semi-autonomous intelligent expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes of these vehicles is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being developed at SRL to allow vehicles to autonomously navigate and perform tasks in known environments, without the need for large computer systems. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation functions, and to analyze sensory information

  11. Mobile robots in research and development programs at the Savannah River Site

    International Nuclear Information System (INIS)

    Martin, T.P.; Byrd, J.S.; Fisher, J.J.

    1987-01-01

    Savannah River Laboratory (SRL) is developing mobile robots for deployment in nuclear applications at the Savannah River Plant (SRP). Teleoperated mobile vehicles have been successfully used for several onsite applications. Development work using two research vehicles is underway to demonstrate semi-autonomous intelligent expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes of these vehicles is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being developed at SRL to allow vehicles to autonomously navigate and perform tasks in known environments, without the need for large computer systems. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation functions, and to analyze sensory information

  12. Surgical Value of Elective Minimally Invasive Gallbladder Removal: A Cost Analysis of Traditional 4-Port vs Single-Incision and Robotically Assisted Cholecystectomy.

    Science.gov (United States)

    Newman, Richard M; Umer, Affan; Bozzuto, Bethany J; Dilungo, Jennifer L; Ellner, Scott

    2016-03-01

    As the cost of health care is subjected to increasingly greater scrutiny, the assessment of new technologies must include the surgical value (SV) of the procedure. Surgical value is defined as outcome divided by cost. The cost and outcome of 50 consecutive traditional (4-port) laparoscopic cholecystectomies (TLC) were compared with 50 consecutive, nontraditional laparoscopic cholecystectomies (NTLC), between October 2012 and February 2014. The NTLC included SILS (n = 11), and robotically assisted single-incision cholecystectomies (ROBOSILS; n = 39). Our primary outcomes included minimally invasive gallbladder removal and same-day discharge. Thirty-day emergency department visits or readmissions were evaluated as a secondary outcome. The direct variable surgeon costs (DVSC) were distilled from our hospital cost accounting system and calculated on a per-case, per item basis. The average DVSC for TLC was $929 and was significantly lower than NTLC at $2,344 (p day discharge. There were no differences observed in secondary outcomes in 30-day emergency department visits (TLC [2%] vs NTLC [6%], p = 0.61) or readmissions (TLC [4%] vs NTLC [2%], p > 0.05), respectively. The relative SV was significantly higher for TLC (1) compared with NTLC (0.34) (p < 0.05), and SILS (0.66) and ROBOSILS (0.36) (p < 0.05). Nontraditional, minimally invasive gallbladder removal (SILS and ROBOSILS) offers significantly less surgical value for elective, outpatient gallbladder removal. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Surgical residency market research-what are applicants looking for?

    Science.gov (United States)

    Parker, Anna M; Petroze, Robin T; Schirmer, Bruce D; Calland, James F

    2013-01-01

    We propose that one of the integral parts of building a stronger residency program is the ability to recruit top applicants. Little is known about the factors applicants use to evaluate residency programs. Given that the top applicants are likely to be ranked highly by multiple programs, we sought to determine which factors applicants themselves used to evaluate potential residency programs. An anonymous, voluntary survey was distributed to all interviewing applicants, asking them to rank 12 factors when choosing a residency. They were additionally asked about any prior research or international medical experience. Surveys were distributed at the beginning of the interview day and collected in sealed unmarked envelopes. All applicants interviewing for general surgery residency at the University of Virginia during the 2009-2010 and 2010-2011 seasons. Resident satisfaction was rated the highest, 8.7 out of 9. In descending order of importance, applicants ranked record of the chiefs (8.0), resident case volume (7.8), academic reputation (7.6), geography (7.4), research opportunities (7.3), laparoscopic laboratory (6.2), elective time (5.4), international opportunities (5.1), benefits (4.8), and vacation (4.7), respectively. No correlation was found between prior research experience and research ranking score. A significant positive correlation was found between those applicants with prior international experience and their ranking of international opportunities during residency (p < 0.0001). Applicants rated a program on a broad range of factors and commonly cited a "gut feeling" or "esprit de corps." The ability to pursue an identified area of special interest, in this case an international opportunity, proved to be an additional major selection factor for a subset of candidates. Copyright © 2012 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  14. Robot-assisted total mesorectal excision for rectal cancer: case-matched comparison of short-term surgical and functional outcomes between the da Vinci Xi and Si.

    Science.gov (United States)

    Morelli, Luca; Di Franco, Gregorio; Guadagni, Simone; Rossi, Leonardo; Palmeri, Matteo; Furbetta, Niccolò; Gianardi, Desirée; Bianchini, Matteo; Caprili, Giovanni; D'Isidoro, Cristiano; Mosca, Franco; Moglia, Andrea; Cuschieri, Alfred

    2018-02-01

    Robotic rectal resection with da Vinci Si has some technical limitations, which could be overcome by the new da Vinci Xi. We compare short-term surgical and functional outcomes following robotic rectal resection with total mesorectal excision for cancer, with the da Vinci Xi (Xi-RobTME group) and the da Vinci Si (Si-RobTME group). The first consecutive 30 Xi-RobTME were compared with a Si-RobTME control group of 30 patients, selected using a one-to-one case-matched methodology from our prospectively collected Institutional database, comprising all cases performed between April 2010 and September 2016 by a single surgeon. Perioperative outcomes were compared. The impact of minimally invasive TME on autonomic function and quality of life was analyzed with specific questionnaires. The docking and overall operative time were shorter in the Xi-RobTME group (p  25 kg/m 2 was necessary in ten patients (45 vs. 0%, p < 0.001) and in six patients (37 vs. 0%, p < 0.05), in the Si-RobTME and Xi-RobTME groups, respectively. There were no differences in conversion rate, mean hospital stay, pathological data, and in functional outcomes between the two groups before and at 1 year after surgery. The technical advantages offered by the da Vinci Xi seem to be mainly associated with a shorter docking and operative time and with superior ability to perform a fully-robotic approach. Clinical and functional outcomes seem not to be improved, with the introduction of the new Xi platform.

  15. The development of a under-water robot system for inspection of the contaminated inner wall of nuclear research reactor

    International Nuclear Information System (INIS)

    Kim, Kyung Hoon; Kim, Byung Man; Cho, Hyung Suk; Park, Ki Yong; Park, Young Soo; Yoon, Ji Sup; Lee, Byung Jik

    1997-01-01

    In this paper, an under-water robot system is developed in order to inspect the radiation level and decontaminate the contaminated inner wall of nuclear research reactor, TRIGA MARK III. This system is composed of the mobile robot which navigates autonomously under the water and the ground control unit which monitors and commands the motion of mobile robot. The mobile robot can move on the wall surface with five thruster systems and is composed of three parts, i.e., mechanical, control, and sensory parts. The five thruster system is configured such as one main thruster, two wall adhesion thruster, and two turning/buoyancy compensation thruster. The control part has 4 CPU boards and each board is configured such that one is in charge of supervisory control mode which controls the position of mobile robot and communicates with the ground control unit and the other board is designed to have motor control mode which drives two motors simultaneously. In secondary part, the laser scanner and fluorescent reflectors and the incilinometer are designed. The laser scanner with fluorescent reflectors provides the current position of the mobile robot on the wall surface and by incilinometer, the moving direction can be obtained. This paper describes the design and configuration procedures of under-water robot in detail and presents the experimental results for characteristic test of the thruster system. 11 refs., 4 tabs., 7 figs

  16. Robotic bariatric surgery: a systematic review.

    Science.gov (United States)

    Fourman, Matthew M; Saber, Alan A

    2012-01-01

    Obesity is a nationwide epidemic, and the only evidence-based, durable treatment of this disease is bariatric surgery. This field has evolved drastically during the past decade. One of the latest advances has been the increased use of robotics within this field. The goal of our study was to perform a systematic review of the recent data to determine the safety and efficacy of robotic bariatric surgery. The setting was the University Hospitals Case Medical Center (Cleveland, OH). A PubMed search was performed for robotic bariatric surgery from 2005 to 2011. The inclusion criteria were English language, original research, human, and bariatric surgical procedures. Perioperative data were then collected from each study and recorded. A total of 18 studies were included in our review. The results of our systematic review showed that bariatric surgery, when performed with the use of robotics, had similar or lower complication rates compared with traditional laparoscopy. Two studies showed shorter operative times using the robot for Roux-en-Y gastric bypass, but 4 studies showed longer operative times in the robotic arm. In addition, the learning curve appears to be shorter when robotic gastric bypass is compared with the traditional laparoscopic approach. Most investigators agreed that robotic laparoscopic surgery provides superior imaging and freedom of movement compared with traditional laparoscopy. The application of robotics appears to be a safe option within the realm of bariatric surgery. Prospective randomized trials comparing robotic and laparoscopic outcomes are needed to further define the role of robotics within the field of bariatric surgery. Longer follow-up times would also help elucidate any long-term outcomes differences with the use of robotics versus traditional laparoscopy. Copyright © 2012 American Society for Metabolic and Bariatric Surgery. All rights reserved.

  17. Educational implications for surgical telementoring: a current review with recommendations for future practice, policy, and research.

    Science.gov (United States)

    Augestad, K M; Han, H; Paige, J; Ponsky, T; Schlachta, C M; Dunkin, B; Mellinger, J

    2017-10-01

    Surgical telementoring (ST) was introduced in the sixties, promoting videoconferencing to enhance surgical education across large distances. Widespread use of ST in the surgical community is lacking. Despite numerous surveys assessing ST, there remains a lack of high-level scientific evidence demonstrating its impact on mentorship and surgical education. Despite this, there is an ongoing paradigm shift involving remote presence technologies and their application to skill development and technique dissemination in the international surgical community. Factors facilitating this include improved access to ST technology, including ease of use and data transmission, and affordability. Several international research initiatives have commenced to strengthen the scientific foundation documenting the impact of ST in surgical education and performance. International experts on ST were invited to the SAGES Project Six Summit in August 2015. Two experts in surgical education prepared relevant questions for discussion and organized the meeting (JP and HH). The questions were open-ended, and the discussion continued until no new item appeared. The transcripts of interviews were recorded by a secretary from SAGES. In this paper, we present a summary of the work performed by the SAGES Project 6 Education Working Group. We summarize the existing evidence regarding education in ST, identify and detail conceptual educational frameworks that may be used during ST, and present a structured framework for an educational curriculum in ST. The educational impact and optimal curricular organization of ST programs are largely unexplored. We outline the critical components of a structured ST curriculum, including prerequisites, teaching modalities, and key curricular components. We also detail research strategies critical to its continued evolution as an educational tool, including randomized controlled trials, establishment of a quality registry, qualitative research, learning analytics, and

  18. [Evaluation of interest in research among surgically active medical officers in the German Armed Forces].

    Science.gov (United States)

    Back, D A; Palm, H G; Willms, A; Westerfeld, A; Hinck, D; Schulze, C; Brodauf, L; Bieler, D; Küper, M A

    2015-10-01

    Research in military medicine and in particular combat surgery is a broad field that has gained international importance during the last decade. In the context of increased NATO missions, this also holds true for the Bundeswehr (German Armed Forces); however, medical officers in surgery must balance research between their clinical work load, missions, civilian and family obligation. To evaluate engagement with and interest in research, a questionnaire was distributed among the doctors of the surgical departments of the Bundeswehr hospitals by the newly founded working group Chirurgische Forschung der Bundeswehr (surgical research of the Bundeswehr). Returned data were recorded from October 2013 to January 2014 and descriptive statistics were performed. Answers were received from 87 out of 193 military surgeons (45 %). Of these 81 % announced a general interest in research with a predominance on clinical research in preference to experimental settings. At the time of the evaluation 32 % of the participants were actively involved in research and 53 % regarded it as difficult to invest time in research activities parallel to clinical work. Potential keys to increase the interest and engagement in research were seen in the implementation of research coordinators and also in a higher amount of free time, for example by research rotation. Research can be regarded as having a firm place in the daily work of medical officers in the surgical departments of the Bundeswehr; however, the engagement is limited by time and structural factors. At the departmental level and in the command structures of the military medical service, more efforts are recommended in the future in order to enhance the engagement with surgical research. This evaluation should be repeated in the coming years as a measuring instrument and data should be compared in an international context.

  19. Haptics in Robot-Assisted Surgery: Challenges and Benefits.

    Science.gov (United States)

    Enayati, Nima; De Momi, Elena; Ferrigno, Giancarlo

    2016-01-01

    Robotic surgery is transforming the current surgical practice, not only by improving the conventional surgical methods but also by introducing innovative robot-enhanced approaches that broaden the capabilities of clinicians. Being mainly of man-machine collaborative type, surgical robots are seen as media that transfer pre- and intraoperative information to the operator and reproduce his/her motion, with appropriate filtering, scaling, or limitation, to physically interact with the patient. The field, however, is far from maturity and, more critically, is still a subject of controversy in medical communities. Limited or absent haptic feedback is reputed to be among reasons that impede further spread of surgical robots. In this paper, objectives and challenges of deploying haptic technologies in surgical robotics are discussed, and a systematic review is performed on works that have studied the effects of providing haptic information to the users in major branches of robotic surgery. It attempts to encompass both classical works and the state-of-the-art approaches, aiming at delivering a comprehensive and balanced survey both for researchers starting their work in this field and for the experts.

  20. Collaborative Robotics Design Considerations

    Science.gov (United States)

    2004-05-06

    traditional manner, by manually reviewing a large number of recent publications in multi-robot research. This effort, while able to consider the...robots." The IEEE multi-robot research groups, above, were manually created within the 354 abstracts file using terms/phrases taken from the text of...Robotics Technologies," [4] Bay, J., Borrelli , L., Chapman, K., Harrold, T., "User Interface and Display Management Design for Multiple Robot Command

  1. Medical robotics.

    Science.gov (United States)

    Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra

    2011-01-01

    Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management.

  2. Social Robots

    DEFF Research Database (Denmark)

    Social robotics is a cutting edge research area gathering researchers and stakeholders from various disciplines and organizations. The transformational potential that these machines, in the form of, for example, caregiving, entertainment or partner robots, pose to our societies and to us...... as individuals seems to be limited by our technical limitations and phantasy alone. This collection contributes to the field of social robotics by exploring its boundaries from a philosophically informed standpoint. It constructively outlines central potentials and challenges and thereby also provides a stable...... fundament for further research of empirical, qualitative or methodological nature....

  3. Developing a successful robotics program.

    Science.gov (United States)

    Luthringer, Tyler; Aleksic, Ilija; Caire, Arthur; Albala, David M

    2012-01-01

    Advancements in the robotic surgical technology have revolutionized the standard of care for many surgical procedures. The purpose of this review is to evaluate the important considerations in developing a new robotics program at a given healthcare institution. Patients' interest in robotic-assisted surgery has and continues to grow because of improved outcomes and decreased periods of hospitalization. Resulting market forces have created a solid foundation for the implementation of robotic surgery into surgical practice. Given proper surgeon experience and an efficient system, robotic-assisted procedures have been cost comparable to open surgical alternatives. Surgeon training and experience is closely linked to the efficiency of a new robotics program. Formally trained robotic surgeons have better patient outcomes and shorter operative times. Training in robotics has shown no negative impact on patient outcomes or mentor learning curves. Individual economic factors of local healthcare settings must be evaluated when planning for a new robotics program. The high cost of the robotic surgical platform is best offset with a large surgical volume. A mature, experienced surgeon is integral to the success of a new robotics program.

  4. [Robotics in pediatric surgery].

    Science.gov (United States)

    Camps, J I

    2011-10-01

    Despite the extensive use of robotics in the adult population, the use of robotics in pediatrics has not been well accepted. There is still a lack of awareness from pediatric surgeons on how to use the robotic equipment, its advantages and indications. Benefit is still controversial. Dexterity and better visualization of the surgical field are one of the strong values. Conversely, cost and a lack of small instruments prevent the use of robotics in the smaller patients. The aim of this manuscript is to present the controversies about the use of robotics in pediatric surgery.

  5. Robotic Surgery in Gynecologic Oncology

    Science.gov (United States)

    DeBernardo, Robert; Starks, David; Barker, Nichole; Armstrong, Amy; Kunos, Charles A.

    2011-01-01

    Robotic surgery for the management of gynecologic cancers allows for minimally invasive surgical removal of cancer-bearing organs and tissues using sophisticated surgeon-manipulated, robotic surgical instrumentation. Early on, gynecologic oncologists recognized that minimally invasive surgery was associated with less surgical morbidity and that it shortened postoperative recovery. Now, robotic surgery represents an effective alternative to conventional laparotomy. Since its widespread adoption, minimally invasive surgery has become an option not only for the morbidly obese but for women with gynecologic malignancy where conventional laparotomy has been associated with significant morbidity. As such, this paper considers indications for robotic surgery, reflects on outcomes from initial robotic surgical outcomes data, reviews cost efficacy and implications in surgical training, and discusses new roles for robotic surgery in gynecologic cancer management. PMID:22190946

  6. [Current Status and Future Prospect of Robot-assisted Thoracoscopic Surgery].

    Science.gov (United States)

    Nakamura, Hiroshige; Haruki, Tomohiro

    2018-01-01

    As surgical robots have widely spread, verification of their usefulness in the general thoracic surgery field is required. The most favorable advantage of robot-assisted surgery is the markedly free movement of joint-equipped robotic forceps under 3-dimensional high-vision. Accurate operation makes complex procedures straightforward and may overcome weak points of previous thoracoscopic surgery. Robot-assisted surgery for lung cancer and mediastinal disease have been safely introduced and initial results have shown favorable. It is still at the stage of clinical research, but recently a lot of merits of robot-assisted thoracic surgery are proved. Although safety management, education and significant cost are also important issues, the robotic-assisted thoracoscopic surgery will become one of the surgical options in minimally invasive surgery.

  7. Continuum Reconfigurable Parallel Robots for Surgery: Shape Sensing and State Estimation with Uncertainty.

    Science.gov (United States)

    Anderson, Patrick L; Mahoney, Arthur W; Webster, Robert J

    2017-07-01

    This paper examines shape sensing for a new class of surgical robot that consists of parallel flexible structures that can be reconfigured inside the human body. Known as CRISP robots, these devices provide access to the human body through needle-sized entry points, yet can be configured into truss-like structures capable of dexterous movement and large force application. They can also be reconfigured as needed during a surgical procedure. Since CRISP robots are elastic, they will deform when subjected to external forces or other perturbations. In this paper, we explore how to combine sensor information with mechanics-based models for CRISP robots to estimate their shapes under applied loads. The end result is a shape sensing framework for CRISP robots that will enable future research on control under applied loads, autonomous motion, force sensing, and other robot behaviors.

  8. “Reality Surgery” — A Research Ethics Perspective on the Live Broadcast of Surgical Procedures

    Science.gov (United States)

    Williams, Judson B.; Mathews, Robin; D'Amico, Thomas A.

    2013-01-01

    In recent years, the live broadcasting of medical and surgical procedures has gained worldwide popularity. While the practice has appropriately been met with concerns for patient safety and privacy, many physicians tout the merits of real time viewing as a form of investigation, accelerating the process leading to adoption or abolition of newer techniques or technologies. This view introduces a new series of ethical considerations that need to be addressed. As such, this article considers, from a research ethics perspective, the use of live surgical procedure broadcast for investigative purposes. PMID:21292217

  9. Incidence of positive surgical margins after robotic assisted radical prostatectomy: Does the surgeon's experience have an influence on all pathological stages?

    Science.gov (United States)

    Villamil, A W; Costabel, J I; Billordo Peres, N; Martínez, P F; Giudice, C R; Damia, O H

    2014-03-01

    The aim of this study is to analyze the clinical and surgical features of patients who underwent robotic-assisted radical prostatectomy (RARP) at our institution, and the impact of the surgeon's experience in the oncological results related to pathological stage. An analysis of 300 RARP consecutively performed by the same urologist was conducted. Patients were divided into 3 groups of 100 patients in chronological order, according to surgery date. All patients had organ-confined clinical stage. Variables which could impact in positive margins rates were analyzed. Finally, positive surgical margins (PSM) in regard to pathological stage and surgeon's experience were compared and analyzed. No significant differences were found in variables which could impact in PSM rates. The overall PSM rate was 21%, with 28% in the first group, 20% in the second, and 16% in the third (P = .108). Significant lineal decreasing tendency was observed (P = .024). In pT2 patients, the overall PSM rate was 16.6%, with 27%, 13.8%, and 7.3% in each group respectively (P = .009). A significant difference was found between group 1 and group 3 (P = .004). In pT3 patients, the surgeon's experience was not significantly associated with margin reductions with an overall PSM rate of 27.7% (28.2%, 28.6%, and 26.7% in each group respectively). Clinical and surgical features in our patients did not vary over time. We found a significant reduction of PSM related to surgeon's experience in pT2 patients. Contrariwise, the margin status remained stable despite increasing experience in pT3 patients. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  10. The surgical learning curve for robotic-assisted laparoscopic radical prostatectomy: experience of a single surgeon with 500 cases in Taiwan, China

    Directory of Open Access Journals (Sweden)

    Yen-Chuan Ou

    2014-10-01

    Full Text Available To analyze the learning curve for cancer control from an initial 250 cases (Group I and subsequent 250 cases (Group II of robotic-assisted laparoscopic radical prostatectomy (RALP performed by a single surgeon. Five hundred consecutive patients with clinically localized prostate cancer received RALP and were evaluated. Surgical parameters and perioperative complications were compared between the groups. Positive surgical margin (PSM and biochemical recurrence (BCR were assessed as cancer control outcomes. Patients in Group II had significantly more advanced prostate cancer than those in Group I (22.2% vs 14.2%, respectively, with Gleason score 8-10, P= 0.033; 12.8% vs 5.6%, respectively, with clinical stage T3, P= 0.017. The incidence of PSM in pT3 was decreased significantly from 49% in Group I to 32.6% in Group II. A meaningful trend was noted for a decreasing PSM rate with each consecutive group of 50 cases, including pT3 and high-risk patients. Neurovascular bundle (NVB preservation was significantly influenced by the PSM in high-risk patients (84.1% in the preservation group vs 43.9% in the nonpreservation group. The 3-year, 5-year, and 7-year BCR-free survival rates were 79.2%, 75.3%, and 70.2%, respectively. In conclusion, the incidence of PSM in pT3 was decreased significantly after 250 cases. There was a trend in the surgical learning curve for decreasing PSM with each group of 50 cases. NVB preservation during RALP for the high-risk group is not suggested due to increasing PSM.

  11. Initial Phases of Design-based Research into the Educational Potentials of NAO-Robots

    DEFF Research Database (Denmark)

    Majgaard, Gunver; Bertel, Lykke Brogaard

    2014-01-01

    robot NAO in primary and secondary schools. How does a programmable humanoid enrich teaching and how do we prepare the teachers? Ten school classes are using the robot for creative programming. So far we have experienced that the robot enriches the learning processes by combining the auditory...

  12. 76 FR 59160 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Robotics...

    Science.gov (United States)

    2011-09-23

    ... Production Act of 1993--Robotics Technology Consortium, Inc. Notice is hereby given that, on July 27, 2011... seq. (``the Act''), the Robotics Technology Consortium (``RTC'') has filed written notifications... Machining, Longmont, CA; Carnegie Robotics LLC, Pittsburgh, PA; Embry-Riddle Aeronautical University...

  13. 78 FR 13896 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Robotics...

    Science.gov (United States)

    2013-03-01

    ... Production Act of 1993--Robotics Technology Consortium, Inc. Notice is hereby given that, on February 5, 2013... seq. (``the Act''), Robotics Technology Consortium, Inc. (``RTC'') has filed written notifications... Institute LLC, Monticello, FL; Humanistic Robotics, Inc., Philadelphia, PA; Polaris Sales, Inc., Medina, MN...

  14. 77 FR 34067 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Robotics...

    Science.gov (United States)

    2012-06-08

    ... Production Act of 1993--Robotics Technology Consortium, Inc. Notice is hereby given that, on April 30, 2012... seq. (``the Act''), Robotics Technology Consortium, Inc. (``RTC'') has filed written notifications... Inc., Huntsville, AL; John H. Northrop & Associates, Inc., Burke, VA; Lithos Robotics Corporation...

  15. 76 FR 79218 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Robotics...

    Science.gov (United States)

    2011-12-21

    ... Production Act of 1993--Robotics Technology Consortium, Inc. Notice is hereby given that, on November 22....C. 4301 et seq. (``the Act''), Robotics Technology Consortium, Inc. (``RTC'') has filed written...., Arlington, VA; Jaybridge Robotics, Cambridge, MA; Klett Consulting Group, Inc., Virginia Beach, VA; and Next...

  16. Social Robots

    DEFF Research Database (Denmark)

    Social robotics is a cutting edge research area gathering researchers and stakeholders from various disciplines and organizations. The transformational potential that these machines, in the form of, for example, caregiving, entertainment or partner robots, pose to our societies and to us...... as individuals seems to be limited by our technical limitations and phantasy alone. This collection contributes to the field of social robotics by exploring its boundaries from a philosophically informed standpoint. It constructively outlines central potentials and challenges and thereby also provides a stable...

  17. Human-machine Interface for Presentation Robot

    Czech Academy of Sciences Publication Activity Database

    Krejsa, Jiří; Ondroušek, V.

    2012-01-01

    Roč. 6, č. 2 (2012), s. 17-21 ISSN 1897-8649 Institutional research plan: CEZ:AV0Z20760514 Keywords : human- robot interface * mobile robot * presentation robot Subject RIV: JD - Computer Applications, Robot ics

  18. Robot-assisted surgery: an emerging platform for human neuroscience research

    Directory of Open Access Journals (Sweden)

    Anthony Michael Jarc

    2015-06-01

    Full Text Available Classic studies in human sensorimotor control use simplified tasks to uncover fundamental control strategies employed by the nervous system. Such simple tasks are critical for isolating specific features of motor, sensory, or cognitive processes, and for inferring causality between these features and observed behavioral changes. However, it remains unclear how these theories translate to complex sensorimotor tasks or to natural behaviors. Part of the difficulty in performing such experiments has been the lack of appropriate tools for measuring complex motor skills in real-world contexts. Robot-assisted surgery (RAS provides an opportunity to overcome these challenges by enabling unobtrusive measurements of user behavior. In addition, a continuum of tasks with varying complexity – from simple tasks such as those in classic studies to highly complex tasks such as a surgical procedure – can be studied using RAS platforms. Finally, RAS includes a diverse participant population of inexperienced users all the way to expert surgeons. In this perspective, we illustrate how the characteristics of RAS systems make them compelling platforms to extend many theories in human neuroscience, as well as, to develop new theories altogether.

  19. Workshop on Requirements for Robotic Underwater Drills in U.S. Marine Geoscience Research

    Science.gov (United States)

    Sager, W. W.; Johnson, H. P.; Dick, H.; Fryer, P.

    2001-05-01

    At present, subsurface hard rock samples and sediment cores deeper than ~30 m must be acquired using a drill ship, but a drill ship has severe limitations: high cost, limited availability, and poor performance in some lithologies. Many marine geoscience studies require more sampling than can be provided by the drill ship, samples from those problem lithologies, or samples from locations where the drill ship cannot go. Robotic underwater drills may help satisfy this need. Twenty-five scientists and engineers, representing a variety of academic institutions and scientific interests, met on November 3 and 4, 2000, to discuss how to bring about the ready access to robotic underwater drills for scientists engaged in academic research. The workshop considered what science programs would benefit from robotic drills, how many drills of what specifications are needed, and how such drills should be supported. The consensus was that there is a widespread need for a several drills. Most scientists wish for a Robotic Ocean-Bottom drill (ROBO-drill) that can core 50-100 m below the seafloor, with either rotary diamond bits or hydraulic corer, and retrieve cores >5 cm diameter from water depths up to ~4500 m. Although this big ROBO-drill has the widest application, attendees also favored three "niche" drills with different configurations. On the smaller end, there is a need for mini-ROBO-drill that is simple, can work in deeper water, is easily shipped and maintained, and would likely have a single core barrel 1-2 m in length. This drill would be for projects in which small penetration is adequate but cost is a primary concern. An ROV-based drill is also needed, attached to a widely available platform. With high maneuverability and excellent imaging capability, the ROV-drill would be the equivalent of a geologist roaming the seafloor with a rock hammer. There also may be a need for a slightly larger, single-barrel drill that can core up to ~5 m depth to reach below small sediment

  20. Control Capabilities of Myoelectric Robotic Prostheses by Hand Amputees: A Scientific Research and Market Overview.

    Science.gov (United States)

    Atzori, Manfredo; Müller, Henning

    2015-01-01

    Hand amputation can dramatically affect the capabilities of a person. Cortical reorganization occurs in the brain, but the motor and somatosensorial cortex can interact with the remnant muscles of the missing hand even many years after the amputation, leading to the possibility to restore the capabilities of hand amputees through myoelectric prostheses. Myoelectric hand prostheses with many degrees of freedom are commercially available and recent advances in rehabilitation robotics suggest that their natural control can be performed in real life. The first commercial products exploiting pattern recognition to recognize the movements have recently been released, however the most common control systems are still usually unnatural and must be learned through long training. Dexterous and naturally controlled robotic prostheses can become reality in the everyday life of amputees but the path still requires many steps. This mini-review aims to improve the situation by giving an overview of the advancements in the commercial and scientific domains in order to outline the current and future chances in this field and to foster the integration between market and scientific research.

  1. Control Capabilities of Myoelectric Robotic Prostheses by Hand Amputees: A Scientific Research and Market Overview

    Directory of Open Access Journals (Sweden)

    Manfredo eAtzori

    2015-11-01

    Full Text Available Hand amputation can dramatically affect the capabilities of a person. Cortical reorganization occurs in the brain, but the motor and somatosensorial cortex can interact with the remnant muscles of the missing hand even many years after the amputation, leading to the possibility to restore the capabilities of hand amputees through myoelectric prostheses. Myoelectric hand prostheses with many degrees of freedom are commercially available and recent advances in rehabilitation robotics suggest that their natural control can be performed in real life. The first commercial products exploiting pattern recognition to recognize the movements have recently been released, however the most common control systems are still usually unnatural and must be learned through long training. Dexterous and naturally controlled robotic prostheses can become reality in the everyday life of amputees but the path still requires many steps. This mini-review aims to improve the situation by giving an overview of the advancements in the commercial and scientific domains in order to outline the current and future chances in this field and to foster the integration between market and scientific research.

  2. Robotic liver surgery

    Science.gov (United States)

    Leung, Universe

    2014-01-01

    Robotic surgery is an evolving technology that has been successfully applied to a number of surgical specialties, but its use in liver surgery has so far been limited. In this review article we discuss the challenges of minimally invasive liver surgery, the pros and cons of robotics, the evolution of medical robots, and the potentials in applying this technology to liver surgery. The current data in the literature are also presented. PMID:25392840

  3. 11th International Workshop on the Algorithmic Foundations of Robotics

    CERN Document Server

    Amato, Nancy; Isler, Volkan; Stappen, A

    2015-01-01

    This carefully edited volume is the outcome of the eleventh edition of the Workshop on Algorithmic Foundations of Robotics (WAFR), which is the premier venue showcasing cutting edge research in algorithmic robotics. The eleventh WAFR, which was held August 3-5, 2014 at Boğaziçi University in Istanbul, Turkey continued this tradition. This volume contains extended versions of the 42 papers presented at WAFR. These contributions highlight the cutting edge research in classical robotics problems (e.g.  manipulation, motion, path, multi-robot and kinodynamic planning), geometric and topological computation in robotics as well novel applications such as informative path planning, active sensing and surgical planning.  This book - rich by topics and authoritative contributors - is a unique reference on the current developments and new directions in the field of algorithmic foundations.  

  4. US Army Institute of Surgical Research Annual Research Progress Report FY 1981.

    Science.gov (United States)

    1981-10-01

    dependence of the nocturnal surge on an intact hypothalamus . Acute stress does not perturb melatonin levels. In burned soldiers, morning cortisol (and not...JM, Mason AD, Jr., and Pruitt BA, Jr.: Stress in surgical patients as a neurophysiologic reflex response. Surg Gynecol Obstet 142:257-269, 1976. 27...experimental animals is that the noct’irnal surge in melatonin synthesis depends upon an intact neural pathway from the anterior hypothalamus through the brain

  5. Robot-assisted general surgery.

    Science.gov (United States)

    Hazey, Jeffrey W; Melvin, W Scott

    2004-06-01

    With the initiation of laparoscopic techniques in general surgery, we have seen a significant expansion of minimally invasive techniques in the last 16 years. More recently, robotic-assisted laparoscopy has moved into the general surgeon's armamentarium to address some of the shortcomings of laparoscopic surgery. AESOP (Computer Motion, Goleta, CA) addressed the issue of visualization as a robotic camera holder. With the introduction of the ZEUS robotic surgical system (Computer Motion), the ability to remotely operate laparoscopic instruments became a reality. US Food and Drug Administration approval in July 2000 of the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, CA) further defined the ability of a robotic-assist device to address limitations in laparoscopy. This includes a significant improvement in instrument dexterity, dampening of natural hand tremors, three-dimensional visualization, ergonomics, and camera stability. As experience with robotic technology increased and its applications to advanced laparoscopic procedures have become more understood, more procedures have been performed with robotic assistance. Numerous studies have shown equivalent or improved patient outcomes when robotic-assist devices are used. Initially, robotic-assisted laparoscopic cholecystectomy was deemed safe, and now robotics has been shown to be safe in foregut procedures, including Nissen fundoplication, Heller myotomy, gastric banding procedures, and Roux-en-Y gastric bypass. These techniques have been extrapolated to solid-organ procedures (splenectomy, adrenalectomy, and pancreatic surgery) as well as robotic-assisted laparoscopic colectomy. In this chapter, we review the evolution of robotic technology and its applications in general surgical procedures.

  6. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper summarizes the research results on the friendly network robotics in fiscal 1996. This research assumes an android robot as an ultimate robot and the future robot system utilizing computer network technology. The robot aiming at human daily work activities in factories or under extreme environments is required to work under usual human work environments. The human robot with similar size, shape and functions to human being is desirable. Such robot having a head with two eyes, two ears and mouth can hold a conversation with human being, can walk with two legs by autonomous adaptive control, and has a behavior intelligence. Remote operation of such robot is also possible through high-speed computer network. As a key technology to use this robot under coexistence with human being, establishment of human coexistent robotics was studied. As network based robotics, use of robots connected with computer networks was also studied. In addition, the R-cube (R{sup 3}) plan (realtime remote control robot technology) was proposed. 82 refs., 86 figs., 12 tabs.

  7. Innovations in robotic surgery.

    Science.gov (United States)

    Gettman, Matthew; Rivera, Marcelino

    2016-05-01

    Developments in robotic surgery have continued to advance care throughout the field of urology. The purpose of this review is to evaluate innovations in robotic surgery over the past 18 months. The release of the da Vinci Xi system heralded an improvement on the Si system with improved docking, the ability to further manipulate robotic arms without clashing, and an autofocus universal endoscope. Robotic simulation continues to evolve with improvements in simulation training design to include augmented reality in robotic surgical education. Robotic-assisted laparoendoscopic single-site surgery continues to evolve with improvements on technique that allow for tackling previously complex pathologic surgical anatomy including urologic oncology and reconstruction. Last, innovations of new surgical platforms with robotic systems to improve surgeon ergonomics and efficiency in ureteral and renal surgery are being applied in the clinical setting. Urologic surgery continues to be at the forefront of the revolution of robotic surgery with advancements in not only existing technology but also creation of entirely novel surgical systems.

  8. Pro-Am Collaborations with research grade robotic instruments and their contribution to outreach

    Science.gov (United States)

    Howes, N.

    2014-04-01

    Robotic telescopes in both the commercial sector and outreach area have increasingly provided both professional and amateur astronomers with high quality data. Projects like the Faulkes Telescope, which is an educational and research arm of the Las Cumbres Observatory Global Telescope Network (LCOGTN) with their network of 1 and 2-metre robotic telescopes, have been directly involved in support for missions such as the European Space Agency Rosetta and Gaia missions, as well as involvement in a variety of NASA Comet missions such as the EPOXI/Comet 103P encounter. These telescope networks are unique in that they provide school students and high end amateur astronomers, with access to research grade instrumentation and equipment which may not have been affordable to them in many instances. With social media collaboration and dedicated websites, increasingly bridging the gap between the professional and amateur community, more and more amateurs are working as collaborators with scientists in not only providing data, but also in data reduction. Amateur astronomers have increasingly also been working with schools suggesting projects which have provided valuable scientific input to professional astronomers, whilst also giving young scientists in secondary education, an opportunity to work with professional instrumentation and methods, albeit at an entry level. We aim to demonstrate the long term value of these collaborations, and propose better working methodologies to help the professional community get more from amateur input. We will cite some examples of research paper collaborations, and scientifically valuable data sharing between professional and amateur astronomers, • Observations and results from the global campaign on Comet C/2007 Q3; Ref.[1] • Observations of the fragmentation of Comet 168P; Ref.[2] • Observations relating to the evolution of Comet C/2012 S1; Ref.[3

  9. Learning curve of robotic assisted pyeloplasty for pediatric urology fellows.

    Science.gov (United States)

    Tasian, Gregory E; Wiebe, Douglas J; Casale, Pasquale

    2013-10-01

    Little is known about the learning curve of robotic surgery for surgeons in training. We hypothesized that pediatric urology fellows could attain proficiency in robotic pyeloplasty, defined as operative time equivalent to that of an experienced robotic surgeon, within the 2-year time frame of fellowship. From 2006 to 2010 we performed a prospective cohort study of pediatric robotic pyeloplasty done by 4 pediatric urology fellows and 1 pediatric urology attending surgeon. We recorded operative times and surgical outcomes of the total of 20 consecutive robotic pyeloplasties performed by the 4 pediatric urology fellows (80 cases) and a random sample of 20 performed by the attending surgeon. Multivariate linear regression was used to determine the change in operative time for each case done by fellows and estimate the number of cases needed for fellows to achieve the median operative time of the attending pediatric urologist. Fellow operative time decreased at a constant average rate of 3.7 minutes per case (95% CI 3.0-4.3). Fellows were projected to achieve the median operative time of the attending surgeon after 37 cases. No operative complications or failed pyeloplasties occurred. The operative time for robotic pyeloplasty performed by fellows consistently decreased with cumulative surgical experience. These data can be used to help establish benchmarks of robotic pyeloplasty for pediatric urology, assuming appropriate exposure to robotics and adequate case volume. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Research and development of service robot platform based on artificial psychology

    Science.gov (United States)

    Zhang, Xueyuan; Wang, Zhiliang; Wang, Fenhua; Nagai, Masatake

    2007-12-01

    Some related works about the control architecture of robot system are briefly summarized. According to the discussions above, this paper proposes control architecture of service robot based on artificial psychology. In this control architecture, the robot can obtain the cognition of environment through sensors, and then be handled with intelligent model, affective model and learning model, and finally express the reaction to the outside stimulation through its behavior. For better understanding the architecture, hierarchical structure is also discussed. The control system of robot can be divided into five layers, namely physical layer, drives layer, information-processing and behavior-programming layer, application layer and system inspection and control layer. This paper shows how to achieve system integration from hardware modules, software interface and fault diagnosis. Embedded system GENE-8310 is selected as the PC platform of robot APROS-I, and its primary memory media is CF card. The arms and body of the robot are constituted by 13 motors and some connecting fittings. Besides, the robot has a robot head with emotional facial expression, and the head has 13 DOFs. The emotional and intelligent model is one of the most important parts in human-machine interaction. In order to better simulate human emotion, an emotional interaction model for robot is proposed according to the theory of need levels of Maslom and mood information of Siminov. This architecture has already been used in our intelligent service robot.

  11. "Integrative Social Robotics"

    DEFF Research Database (Denmark)

    Seibt, Johanna

    2016-01-01

    The aim of this paper is to sketch the basic motivations for “Integrative Social Robotics” (ISR), as a new paradigm for how to approach research, design, and development of social robotics applications that are culturally sustainable. I argue that social robotics saddles us with normative......-regulatory and descriptive questions that currently are kept too far apart. Currently HRI research investigates what social robots can do and robo-ethicists deliberate afterwards what robots should do. However, given the rapid pace of the robotics industry, descriptive and regulatory questions must be treated in combination....... On the ISR approach research in social robotics turns on what social robots can and should do--design and development are from the very beginning informed by value-theoretic and cultural research. ISR thus is a form of research organization that integrates robotics with empirical, conceptual, and value...

  12. Toward the art of robotic-assisted vitreoretinal surgery

    Directory of Open Access Journals (Sweden)

    Amir Molaei

    2017-01-01

    Full Text Available New technological progress in robotics has brought many beneficial clinical applications. Currently, computer integrated robotic surgery has gained clinical acceptance for several surgical procedures. Robotically assisted eye surgery is envisaged as a promising solution to overcome the shortcomings inherent to conventional surgical procedures as in vitreoretinal surgeries. Robotics by its high precision and fine mechanical control can improve dexterity, cancel tremor, and allow highly precise remote surgical capability, delicate vitreoretinal manipulation capabilities. Combined with magnified three-dimensional imaging of the surgical site, it can enhance surgical precision. Tele-manipulation can provide the ability for tele-surgery or haptic feedback of forces generated by the manipulation of intraocular tissues. It presents new solutions for some sight-threatening conditions such as retinal vein cannulation where, due to physiological limitations of the surgeon's hand, the procedure cannot be adequately performed. In this paper, we provide an overview of the research and advances in robotically assisted vitreoretinal eye surgery. Additionally the barriers to the integration of this method in the field of ocular surgery are summarized. Finally, we discuss the possible applications of the method in the area of vitreoretinal surgery.

  13. Control of repulsive force in a virtual environment using an electrorheological haptic master for a surgical robot application

    Science.gov (United States)

    Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok

    2014-01-01

    This paper presents control performances of a new type of four-degrees-of-freedom (4-DOF) haptic master that can be used for robot-assisted minimally invasive surgery (RMIS). By adopting a controllable electrorheological (ER) fluid, the function of the proposed master is realized as a haptic feedback as well as remote manipulation. In order to verify the efficacy of the proposed master and method, an experiment is conducted with deformable objects featuring human organs. Since the use of real human organs is difficult for control due to high cost and moral hazard, an excellent alternative method, the virtual reality environment, is used for control in this work. In order to embody a human organ in the virtual space, the experiment adopts a volumetric deformable object represented by a shape-retaining chain linked (S-chain) model which has salient properties such as fast and realistic deformation of elastic objects. In haptic architecture for RMIS, the desired torque/force and desired position originating from the object of the virtual slave and operator of the haptic master are transferred to each other. In order to achieve the desired torque/force trajectories, a sliding mode controller (SMC) which is known to be robust to uncertainties is designed and empirically implemented. Tracking control performances for various torque/force trajectories from the virtual slave are evaluated and presented in the time domain.

  14. Control of repulsive force in a virtual environment using an electrorheological haptic master for a surgical robot application

    International Nuclear Information System (INIS)

    Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok

    2014-01-01

    This paper presents control performances of a new type of four-degrees-of-freedom (4-DOF) haptic master that can be used for robot-assisted minimally invasive surgery (RMIS). By adopting a controllable electrorheological (ER) fluid, the function of the proposed master is realized as a haptic feedback as well as remote manipulation. In order to verify the efficacy of the proposed master and method, an experiment is conducted with deformable objects featuring human organs. Since the use of real human organs is difficult for control due to high cost and moral hazard, an excellent alternative method, the virtual reality environment, is used for control in this work. In order to embody a human organ in the virtual space, the experiment adopts a volumetric deformable object represented by a shape-retaining chain linked (S-chain) model which has salient properties such as fast and realistic deformation of elastic objects. In haptic architecture for RMIS, the desired torque/force and desired position originating from the object of the virtual slave and operator of the haptic master are transferred to each other. In order to achieve the desired torque/force trajectories, a sliding mode controller (SMC) which is known to be robust to uncertainties is designed and empirically implemented. Tracking control performances for various torque/force trajectories from the virtual slave are evaluated and presented in the time domain. (paper)

  15. Robotics in Colorectal Surgery [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Allison Weaver

    2016-09-01

    Full Text Available Over the past few decades, robotic surgery has developed from a futuristic dream to a real, widely used technology. Today, robotic platforms are used for a range of procedures and have added a new facet to the development and implementation of minimally invasive surgeries. The potential advantages are enormous, but the current progress is impeded by high costs and limited technology. However, recent advances in haptic feedback systems and single-port surgical techniques demonstrate a clear role for robotics and are likely to improve surgical outcomes. Although robotic surgeries have become the gold standard for a number of procedures, the research in colorectal surgery is not definitive and more work needs to be done to prove its safety and efficacy to both surgeons and patients.

  16. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonisation Project: I. Surgical phenotype data collection in endometriosis research

    Science.gov (United States)

    Becker, Christian M.; Laufer, Marc R.; Stratton, Pamela; Hummelshoj, Lone; Missmer, Stacey A.; Zondervan, Krina T.; Adamson, G. David; Adamson, G.D.; Allaire, C.; Anchan, R.; Becker, C.M.; Bedaiwy, M.A.; Buck Louis, G.M.; Calhaz-Jorge, C.; Chwalisz, K.; D'Hooghe, T.M.; Fassbender, A.; Faustmann, T.; Fazleabas, A.T.; Flores, I.; Forman, A.; Fraser, I.; Giudice, L.C.; Gotte, M.; Gregersen, P.; Guo, S.-W.; Harada, T.; Hartwell, D.; Horne, A.W.; Hull, M.L.; Hummelshoj, L.; Ibrahim, M.G.; Kiesel, L.; Laufer, M.R.; Machens, K.; Mechsner, S.; Missmer, S.A.; Montgomery, G.W.; Nap, A.; Nyegaard, M.; Osteen, K.G.; Petta, C.A.; Rahmioglu, N.; Renner, S.P.; Riedlinger, J.; Roehrich, S.; Rogers, P.A.; Rombauts, L.; Salumets, A.; Saridogan, E.; Seckin, T.; Stratton, P.; Sharpe-Timms, K.L.; Tworoger, S.; Vigano, P.; Vincent, K.; Vitonis, A.F.; Wienhues-Thelen, U.-H.; Yeung, P.P.; Yong, P.; Zondervan, K.T.

    2014-01-01

    Objective To standardize the recording of surgical phenotypic information on endometriosis and related sample collections obtained at laparoscopy, allowing large-scale collaborative research into the condition. Design An international collaboration involving 34 clinical/academic centers and three industry collaborators from 16 countries. Setting Two workshops were conducted in 2013, bringing together 54 clinical, academic, and industry leaders in endometriosis research and management worldwide. Patient(s) None. Intervention(s) A postsurgical scoring sheet containing general and gynecological patient and procedural information, extent of disease, the location and type of endometriotic lesion, and any other findings was developed during several rounds of review. Comments and any systematic surgical data collection tools used in the reviewers' centers were incorporated. Main Outcome Measure(s) The development of a standard recommended (SSF) and minimum required (MSF) form to collect data on the surgical phenotype of endometriosis. Result(s) SSF and MSF include detailed descriptions of lesions, modes of procedures and sample collection, comorbidities, and potential residual disease at the end of surgery, along with previously published instruments such as the revised American Society for Reproductive Medicine and Endometriosis Fertility Index classification tools for comparison and validation. Conclusion(s) This is the first multicenter, international collaboration between academic centers and industry addressing standardization of phenotypic data collection for a specific disease. The Endometriosis Phenome and Biobanking Harmonisation Project SSF and MSF are essential tools to increase our understanding of the pathogenesis of endometriosis by allowing large-scale collaborative research into the condition. PMID:25150390

  17. Review: Robot assisted laparoscopic surgery in gynaecological ...

    African Journals Online (AJOL)

    Robot technology feeds one's imagination. Called after the Czech play "robota", robot suggests "to be able to act without human interference and being able to constantly adapt to the situation and the task". As such, the term "robotic surgery" is incorrect. It would be better to refer to surgical robots as "master slave ...

  18. Research on Modeling Technology of Virtual Robot Based on LabVIEW

    Science.gov (United States)

    Wang, Z.; Huo, J. L.; Y Sun, L.; Y Hao, X.

    2017-12-01

    Because of the dangerous working environment, the underwater operation robot for nuclear power station needs manual teleoperation. In the process of operation, it is necessary to guide the position and orientation of the robot in real time. In this paper, the geometric modeling of the virtual robot and the working environment is accomplished by using SolidWorks software, and the accurate modeling and assembly of the robot are realized. Using LabVIEW software to read the model, and established the manipulator forward kinematics and inverse kinematics model, and realized the hierarchical modeling of virtual robot and computer graphics modeling. Experimental results show that the method studied in this paper can be successfully applied to robot control system.

  19. Indicators for the use of robotic labs in basic biomedical research: a literature analysis

    OpenAIRE

    Groth, Paul; Cox, Jessica

    2017-01-01

    Robotic labs, in which experiments are carried out entirely by robots, have the potential to provide a reproducible and transparent foundation for performing basic biomedical laboratory experiments. In this article, we investigate whether these labs could be applicable in current experimental practice. We do this by text mining 1,628 papers for occurrences of methods that are supported by commercial robotic labs. Using two different concept recognition tools, we find that 86%–89% of the paper...

  20. Indicators for the use of robotic labs in basic biomedical research: a literature analysis

    Directory of Open Access Journals (Sweden)

    Paul Groth

    2017-11-01

    Full Text Available Robotic labs, in which experiments are carried out entirely by robots, have the potential to provide a reproducible and transparent foundation for performing basic biomedical laboratory experiments. In this article, we investigate whether these labs could be applicable in current experimental practice. We do this by text mining 1,628 papers for occurrences of methods that are supported by commercial robotic labs. Using two different concept recognition tools, we find that 86%–89% of the papers have at least one of these methods. This and our other results provide indications that robotic labs can serve as the foundation for performing many lab-based experiments.

  1. Nonverifiable research publications among applicants to an academic trauma and surgical critical care fellowship program.

    Science.gov (United States)

    Branco, Bernardino C; Inaba, Kenji; Gausepohl, Andrew; Okoye, Obi; Teixeira, Pedro G; Breed, Wynne; Lam, Lydia; Talving, Peep; Sullivan, Maura; Demetriades, Demetrios

    2012-09-01

    The purpose of this study was to determine the incidence and predictors of nonverifiable research publications among applicants to a trauma and surgical critical care fellowship program. All complete applications submitted to our trauma and surgical critical care fellowship program were prospectively collected for 4 application cycles (2009 to 2012). All publications listed by applicants were tabulated and underwent verification using MEDLINE and direct journal search with verification by a team of professional health sciences librarians. Demographics and academic criteria were compared between applicants with nonverifiable and verifiable publications. A total of 100 applicants reported 301 publications. Of those, 20 applicants (20%) listed 32 papers (11%) that could not be verified. These applicants comprised 30% of those with 1 or more peer-reviewed publications. There were no significant differences in sex (male, 55% nonverifiable vs 60% verifiable, p = 0.684) or age (34.3 ± 6.6 years vs 34.2 ± 5.0 years, p = 0.963). There were no differences with regard to citizenship status (foreign medical graduates, 20% nonverifiable vs 28% verifiable, p = 0.495). Applicants with nonverified publications were less likely to be in the military (0% vs 14%, p = 0.079), more likely to have presented their work at surgical meetings (80% vs 58%, p = 0.064), and to be individuals with 3 or more peer-reviewed publications (55% vs 25%, p = 0.009). In this analysis of academic integrity, one-fifth of all applicants applying to a trauma and surgical critical care fellowship program and 30% of those with 1 or more peer-reviewed publications had nonverifiable publications listed in their curricula vitae. These applicants were less likely to be in the military, more likely to have presented their work at surgical meetings and to have 3 or more peer-reviewed publications. Copyright © 2012 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Soft Robotic Manipulator for Improving Dexterity in Minimally Invasive Surgery.

    Science.gov (United States)

    Diodato, Alessandro; Brancadoro, Margherita; De Rossi, Giacomo; Abidi, Haider; Dall'Alba, Diego; Muradore, Riccardo; Ciuti, Gastone; Fiorini, Paolo; Menciassi, Arianna; Cianchetti, Matteo

    2018-02-01

    Combining the strengths of surgical robotics and minimally invasive surgery (MIS) holds the potential to revolutionize surgical interventions. The MIS advantages for the patients are obvious, but the use of instrumentation suitable for MIS often translates in limiting the surgeon capabilities (eg, reduction of dexterity and maneuverability and demanding navigation around organs). To overcome these shortcomings, the application of soft robotics technologies and approaches can be beneficial. The use of devices based on soft materials is already demonstrating several advantages in all the exploitation areas where dexterity and safe interaction are needed. In this article, the authors demonstrate that soft robotics can be synergistically used with traditional rigid tools to improve the robotic system capabilities and without affecting the usability of the robotic platform. A bioinspired soft manipulator equipped with a miniaturized camera has been integrated with the Endoscopic Camera Manipulator arm of the da Vinci Research Kit both from hardware and software viewpoints. Usability of the integrated system has been evaluated with nonexpert users through a standard protocol to highlight difficulties in controlling the soft manipulator. This is the first time that an endoscopic tool based on soft materials has been integrated into a surgical robot. The soft endoscopic camera can be easily operated through the da Vinci Research Kit master console, thus increasing the workspace and the dexterity, and without limiting intuitive and friendly use.

  3. Robotic Surgery for Thyroid Disease

    OpenAIRE

    Lee, Jandee; Chung, Woong Youn

    2013-01-01

    Robotic surgery is an innovation in thyroid surgery that may compensate for the drawbacks of conventional endoscopic surgery. A surgical robot provides strong advantages, including three-dimensional imaging, motion scaling, tremor elimination, and additional degrees of freedom. We review here recent adaptations, experience and applications of robotics in thyroid surgery. Robotic thyroid surgeries include thyroid lobectomy, total thyroidectomy, central compartment neck dissection, and radical ...

  4. Investigación en especialidades quirúrgicas Surgical Research

    Directory of Open Access Journals (Sweden)

    Juan Viñas Salas

    2004-03-01

    Full Text Available En este artículo los autores revisan las características específicas de la investigación en las especialidades quirúrgicas, sus problemas y diferencias en relación al resto de la investigación biomédica. Hacen especial hincapié en los temas más frecuentes a investigar en cirugía, sus defectos y la metodología. Argumentan que los estudios prospectivos randomizados a doble ciego no deben ser sobredimensionados, ya que presentan problemas metodológicos y bioéticos al aplicarlos a la cirugía. Los estudios prospectivos son los más utilizados por los cirujanos para el avance de las especialidades quirúrgicas.In this article authors review the specific characteristics of surgical research. Its problems and differences from other biomedical research. Specially they specify the main topics for surgical investigation, its pitfalls and methodologies. They argue that randomised prospective double blind studies must not be over dimensioned, as for surgery they present many difficulties, specially ethical and practical. Prospective studies are been more used by surgeons for the advance of the different surgical specialities.

  5. Robots in the Roses

    OpenAIRE

    2014-01-01

    2014-04 Robots in the Roses A CRUSER Sponsored Event. The 4th Annual Robots in the Roses provides a venue for Faculty & NPS Students to showcase unmanned systems research (current or completed) and recruit NPS Students to join in researching on your project. Posters, robots, vehicles, videos, and even just plain humans welcome! Families are welcome to attend Robots in the Roses as we'll have a STEM activity for children to participate in.

  6. Exploratorium: Robots.

    Science.gov (United States)

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  7. Fundamentals of soft robot locomotion

    OpenAIRE

    Calisti, M.; Picardi, G.; Laschi, C.

    2017-01-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human���robot interaction and locomotion. Although field applications have emerged for soft manipulation and human���robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This p...

  8. Influence of Social Media on the Dissemination of a Traditional Surgical Research Article.

    Science.gov (United States)

    Buckarma, EeeLN H; Thiels, Cornelius A; Gas, Becca L; Cabrera, Daniel; Bingener-Casey, Juliane; Farley, David R

    Many institutions use social media to share research with the general public. However, the influence of social media on the dissemination of a surgical research article itself is unknown. Our objective was to determine whether a blog post highlighting the findings of a surgical research article would lead to increased dissemination of the article itself. We prospectively followed the online page views of an article that was published online in Surgery in May 2015 and published in print in August 2015. The authors subsequently released a blog post in October 2015 to promote the research. The number of article page views from the journal's website was obtained before and after the blog post, along with the page views from the blog post itself. Social media influence data were collected, including social activity in the form of mentions on social media sites, scholarly activity in online libraries, and scholarly commentary. The article's online activity peaked in the first month after online publication (475 page views). Online activity plateaued by 4 months after publication, with 118 monthly page views, and a blog post was subsequently published. The blog post was viewed by 1566 readers, and readers spent a mean of 2.5 minutes on the page. When compared to the projected trend, the page views increased by 33% in the month after the blog post. The blog post resulted in a 9% increase in the social media influence score and a 5% absolute increase in total article page views. Social media is an important tool for sharing surgical research. Our data suggest that social media can increase distribution of an article's message and also potentially increase dissemination of the article itself. We believe that authors should consider using social media to increase the dissemination of traditionally published articles. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  9. Space Robotics

    Directory of Open Access Journals (Sweden)

    Alex Ellery

    2004-09-01

    Full Text Available In this second of three short papers, I introduce some of the basic concepts of space robotics with an emphasis on some specific challenging areas of research that are peculiar to the application of robotics to space infrastructure development. The style of these short papers is pedagogical and the concepts in this paper are developed from fundamental manipulator robotics. This second paper considers the application of space manipulators to on-orbit servicing (OOS, an application which has considerable commercial application. I provide some background to the notion of robotic on-orbit servicing and explore how manipulator control algorithms may be modified to accommodate space manipulators which operate in the micro-gravity of space.

  10. Research on Kinematic Trajectory Simulation System of KUKA Arc Welding Robot System

    Science.gov (United States)

    Hu, Min

    2017-10-01

    In this paper, the simulation trajectory simulation of KUKA arc welding robot system is realized by means of VC platform. It is used to realize the teaching of professional training of welding robot in middle school. It provides teaching resources for the combination of work and study and integration teaching, which enriches the content of course teaching.

  11. 75 FR 54914 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Robotics...

    Science.gov (United States)

    2010-09-09

    ...; Esys Integration Corporation, Auburn Hills, MI; JADI, Inc., Troy, MI; Mobile Robots Inc., Amherst, NH... Alto, CA; Robot Worx, Marion, OH; RPU Technology, Inc., Needham, MA; Scientific Systems Company, Inc... Works, Inc. has changed its name to CyPhy Works, Inc., Framingham, MA. No other changes have been made...

  12. Nonlinear friction modelling and compensation control of hysteresis phenomena for a pair of tendon-sheath actuated surgical robots

    Science.gov (United States)

    Do, T. N.; Tjahjowidodo, T.; Lau, M. W. S.; Phee, S. J.

    2015-08-01

    Natural Orifice Transluminal Endoscopic Surgery (NOTES) is a special method that allows surgical operations via natural orifices like mouth, anus, and vagina, without leaving visible scars. The use of flexible tendon-sheath mechanism (TSM) is common in these systems because of its light weight in structure, flexibility, and easy transmission of power. However, nonlinear friction and backlash hysteresis pose many challenges to control of such systems; in addition, they do not provide haptic feedback to assist the surgeon in the operation of the systems. In this paper, we propose a new dynamic friction model and backlash hysteresis nonlinearity for a pair of TSM to deal with these problems. The proposed friction model, unlike current approaches in the literature, is smooth and able to capture the force at near zero velocity when the system is stationary or operates at small motion. This model can be used to estimate the friction force for haptic feedback purpose. To improve the system tracking performances, a backlash hysteresis model will be introduced, which can be used in a feedforward controller scheme. The controller involves a simple computation of the inverse hysteresis model. The proposed models are configuration independent and able to capture the nonlinearities for arbitrary tendon-sheath shapes. A representative experimental setup is used to validate the proposed models and to demonstrate the improvement in position tracking accuracy and the possibility of providing desired force information at the distal end of a pair of TSM slave manipulator for haptic feedback to the surgeons.

  13. Research on Dynamics and Stability in the Stairs-Climbing of a Tracked Mobile Robot

    Directory of Open Access Journals (Sweden)

    Weijun Tao

    2012-10-01

    Full Text Available Aiming at the functional requirement of climbing up the stairs, the dynamics and stability during a tracked mobile robot's climbing of stairs is studied. First, from the analysis of its cross-country performance, the mechanical structure of the tracked mobile robot is designed and the hardware composition of its control system is given. Second, based on the analysis to its stairs-climbing process, the dynamical model of stairs-climbing is established by using the classical mechanics method. Next, the stability conditions for its stairs-climbing are determined and an evaluation method of its stairs-climbing stability is proposed, based on a mechanics analysis on the robot's backwards tumbling during the stairs-climbing process. Through simulation and experiments, the effectiveness of the dynamical model and the stability evaluation method of the tracked mobile robot in stairs-climbing is verified, which can provide design and analysis foundations for the tracked mobile robots' stairs-climbing.

  14. Research on the man in the loop control system of the robot arm based on gesture control

    Science.gov (United States)

    Xiao, Lifeng; Peng, Jinbao

    2017-03-01

    The Man in the loop control system of the robot arm based on gesture control research complex real-world environment, which requires the operator to continuously control and adjust the remote manipulator, as the background, completes the specific mission human in the loop entire system as the research object. This paper puts forward a kind of robot arm control system of Man in the loop based on gesture control, by robot arm control system based on gesture control and Virtual reality scene feedback to enhance immersion and integration of operator, to make operator really become a part of the whole control loop. This paper expounds how to construct a man in the loop control system of the robot arm based on gesture control. The system is a complex system of human computer cooperative control, but also people in the loop control problem areas. The new system solves the problems that the traditional method has no immersion feeling and the operation lever is unnatural, the adjustment time is long, and the data glove mode wears uncomfortable and the price is expensive.

  15. NASA Robotic Neurosurgery Testbed

    Science.gov (United States)

    Mah, Robert

    1997-01-01

    The detection of tissue interface (e.g., normal tissue, cancer, tumor) has been limited clinically to tactile feedback, temperature monitoring, and the use of a miniature ultrasound probe for tissue differentiation during surgical operations, In neurosurgery, the needle used in the standard stereotactic CT or MRI guided brain biopsy provides no information about the tissue being sampled. The tissue sampled depends entirely upon the accuracy with which the localization provided by the preoperative CT or MRI scan is translated to the intracranial biopsy site. In addition, no information about the tissue being traversed by the needle (e.g., a blood vessel) is provided. Hemorrhage due to the biopsy needle tearing a blood vessel within the brain is the most devastating complication of stereotactic CT/MRI guided brain biopsy. A robotic neurosurgery testbed has been developed at NASA Ames Research Center as a spin-off of technologies from space, aeronautics and medical programs. The invention entitled "Robotic Neurosurgery Leading to Multimodality Devices for Tissue Identification" is nearing a state ready for commercialization. The devices will: 1) improve diagnostic accuracy and precision of general surgery, with near term emphasis on stereotactic brain biopsy, 2) automate tissue identification, with near term emphasis on stereotactic brain biopsy, to permit remote control of the procedure, and 3) reduce morbidity for stereotactic brain biopsy. The commercial impact from this work is the potential development of a whole new generation of smart surgical tools to increase the safety, accuracy and efficiency of surgical procedures. Other potential markets include smart surgical tools for tumor ablation in neurosurgery, general exploratory surgery, prostate cancer surgery, and breast cancer surgery.

  16. Research incentive program for clinical surgical faculty associated with increases in research productivity.

    Science.gov (United States)

    Schroen, Anneke T; Thielen, Monika J; Turrentine, Florence E; Kron, Irving L; Slingluff, Craig L

    2012-11-01

    To develop a research productivity scoring program within an academic department of surgery that would help realign incentives to encourage and reward research. Although research is highly valued in the academic mission, financial incentives are generally aligned to reward clinical productivity. A formula assigning points for publications and extramural grants was created and used to award a research incentive payment proportional to the research productivity score, beginning July 2007. Publication points reflect journal impact factor, author role, and manuscript type. Grant points reflect total funding and percentage of effort. Publication data were gathered from Web of Science/PubMed/Medline and grants data from the departmental grants office. An annual award is presented to the person with the greatest improvement. The research productivity score data after July 2007 were compared with control data for the 2 preceding years. A 33-question survey to 28 clinical faculty was conducted after the first year to measure satisfaction and solicit constructive feedback. The mean annual point scores increased from the preresearch productivity score to the postresearch productivity score academic years (2180 vs 3389, respectively, P = .08), with a significant change in the grant component score (272 vs 801, P = .03). Since research productivity score implementation, the operative case volumes increased 4.3% from 2006 to 2011. With a response rate of 89%, the survey indicated that 76% of the faculty wished to devote more time to research and 52% believed 1 or more research-related behaviors would change because of the research productivity score program. An objective, transparent research incentive program, through both monetary incentives and recognition, can stimulate productivity and was well-received by faculty. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  17. Anesthesia for robotic cardiac surgery: An amalgam of technology and skill

    Directory of Open Access Journals (Sweden)

    Chauhan Sandeep

    2010-01-01

    Full Text Available The surgical procedures performed with robtic assitance and the scope for its future assistance is endless. To keep pace with the developing technologies in this field it is imperative for the cardiac anesthesiologists to have aworking knowledge of these systems, recognize potential complications and formulate an anesthetic plan to provide safe patient care. Challenges posed by the use of robotic systems include, long surgical times, problems with one lung anesthesia in presence of coronary artery disease, minimally invasive percutaneous cardiopulmonary bypass management and expertise in Trans-Esophageal Echocardiography. A long list of cardiac surgeries are performed with the use of robotic assistance, and the list is continuously growing as surgical innovation crosses new boundaries. Current research in robotic cardiac surgery like beating heart off pump intracardic repair, prototype epicardial crawling device, robotic fetal techniques etc. are in the stage of animal experimentation, but holds a lot of promise in future

  18. Preliminary research of a novel center-driven robot for upper extremity rehabilitation.

    Science.gov (United States)

    Cao, Wujing; Zhang, Fei; Yu, Hongliu; Hu, Bingshan; Meng, Qiaoling

    2018-01-19

    Loss of upper limb function often appears after stroke. Robot-assisted systems are becoming increasingly common in upper extremity rehabilitation. Rehabilitation robot provides intensive motor therapy, which can be performed in a repetitive, accurate and controllable manner. This study aims to propose a novel center-driven robot for upper extremity rehabilitation. A new power transmission mechanism is designed to transfer the power to elbow and shoulder joints from three motors located on the base. The forward and inverse kinematics equations of the center-driven robot (CENTROBOT) are deduced separately. The theoretical values of the scope of joint movements are obtained with the Denavit-Hartenberg parameters method. A prototype of the CENTROBOT is developed and tested. The elbow flexion/extension, shoulder flexion/extension and shoulder adduction/abduction can be realized of the center-driven robot. The angles value of joints are in conformity with the theoretical value. The CENTROBOT reduces the overall size of the robot arm, the influence of motor noise, radiation and other adverse factors by setting all motors on the base. It can satisfy the requirements of power and movement transmission of the robot arm.

  19. Learning robotics using Python

    CERN Document Server

    Joseph, Lentin

    2015-01-01

    If you are an engineer, a researcher, or a hobbyist, and you are interested in robotics and want to build your own robot, this book is for you. Readers are assumed to be new to robotics but should have experience with Python.

  20. Reduction in surgical fog with a warm humidified gas management protocol significantly shortens procedure time in pediatric robot-assisted laparoscopic procedures.

    Science.gov (United States)

    Meenakshi-Sundaram, B; Furr, J R; Malm-Buatsi, E; Boklage, B; Nguyen, E; Frimberger, D; Palmer, B W

    2017-10-01

    The adoption of robot-assisted laparoscopic (RAL) procedures in the field of urology has occurred rapidly, but is, to date, without pediatric-specific instrumentation. Surgical fog is a significant barrier to safe and efficient laparoscopy. This appears to be a significant challenge when adapting three-dimensional 8.5-mm scopes to use in pediatric RAL surgery. The objective of the present study was to compare matched controls from a prospectively collected database to procedures that were performed utilizing special equipment and a protocol to minimize surgical fog in pediatric RAL procedures. A prospectively collected database of all patients who underwent RAL pediatric urology procedures was used to compare: procedure, age, sex, American Society of Anesthesiologists score, weight, console time, number of times the camera was removed to clean the lens during a procedure, length of hospital stay, and morphine equivalents required in the postoperative period. A uniquely developed protocol was used, it consisted of humidified (95% relative humidity) and warmed CO 2 gas (95 °F) insufflation via Insuflow® on a working trocar, with active smoke evacuation via PneuVIEW®XE on the opposite working trocar with a gas pass through of 3.5-5 l/min. The outcomes were compared with matched controls (Summary Fig). The novel gas protocol was utilized in 13 procedures (five pyeloplasties, two revision pyeloplasties, three ureteroureterostomies (UU), three nephrectomies) and compared with 13 procedures (six pyeloplasties, one revision pyeloplasty, three UU, three nephrectomies) prior to the protocol development. There was no statistical difference in age (P = 0.78), sex (P = 0.11), ASA score (P = 1.00) or weight (P = 0.69). There were no open conversions, ≥Grade 2 Clavien complications, or readmissions within 30 days in either group. This novel gas protocol yielded a statistically significant reduction in procedure time, by decreasing the number of times the camera was

  1. US Army Research Laboratory (ARL) Robotics Collaborative Technology Alliance 2014 Capstone Experiment

    Science.gov (United States)

    2016-07-01

    Hokuyo LADAR (UTM-30LX-EW) located in the front of the platform provides sensing for obstacle detection and room mapping.† An ASUS Xtion PRO LIVE...which would occlude the ASUS view of the gas can if it was in line with the approach taken by the robot. This challenged the robot in 3 regards: 1...not interfere with the ASUS vision system or the grab location calculations when the robot was in close proximity to the gas can. Clutter objects

  2. Robotic gynecologic surgery: past, present, and future.

    Science.gov (United States)

    Chen, Chi Chiung Grace; Falcone, Tommaso

    2009-09-01

    Robotic techniques are increasingly being used to perform gynecologic surgical procedures including hysterectomies, performed for benign and malignant indications, myomectomies, tubal reanastomoses, and sacrocolpopexies. Robotic procedures seem to confer the same benefits as laparoscopic surgery without additional complications. It is unclear, however, whether robotic surgery imparts any additional benefits such as decreased operative times when compared with open or conventional laparoscopic techniques. The advantages to robotic surgery include improved visualization of the operative field with increased dexterity allowing more precise movements. Disadvantages include the learning curve associated with learning a new surgical technique and the equipment and operating costs of the robot and of using the robot.

  3. RHOBOT: Radiation hardened robotics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C.; Posey, L.D. [Sandia National Labs., Albuquerque, NM (United States)

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  4. RHOBOT: Radiation hardened robotics

    International Nuclear Information System (INIS)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program

  5. University Research Program in Robotics - "Technologies for Micro-Electrical-Mechanical Systems in directed Stockpile Work (DSW) Radiation and Campaigns", Final Technical Annual Report, Project Period 9/1/06 - 8/31/07

    Energy Technology Data Exchange (ETDEWEB)

    James S. Tulenko; Carl D. Crane

    2007-12-13

    The University Research Program in Robotics (URPR) is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities in robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

  6. Towards Python-based Domain-specific Languages for Self-reconfigurable Modular Robotics Research

    DEFF Research Database (Denmark)

    Moghadam, Mikael; Johan Christensen, David; Brandt, David

    2013-01-01

    This paper explores the role of operating system and high-level languages in the development of software and domain-specific languages (DSLs) for self-reconfigurable robotics. We review some of the current trends in self-reconfigurable robotics and describe the development of a software system...... for ATRON II which utilizes Linux and Python to significantly improve software abstraction and portability while providing some basic features which could prove useful when using Python, either stand-alone or via a DSL, on a self-reconfigurable robot system. These features include transparent socket...... communication, module identification, easy software transfer and reliable module-to-module communication. The end result is a software platform for modular robots that where appropriate builds on existing work in operating systems, virtual machines, middleware and high-level languages....

  7. Towards Python-based Domain-specific Languages for Self-reconfigurable Modular Robotics Research

    DEFF Research Database (Denmark)

    Moghadam, Mikael; Christensen, David Johan; Brandt, David

    2011-01-01

    This paper explores the role of operating system and high-level languages in the development of software and domain-specific languages (DSLs) for self-reconfigurable robotics. We review some of the current trends in selfreconfigurable robotics and describe the development of a software system...... for ATRON II which utilizes Linux and Python to significantly improve software abstraction and portability while providing some basic features which could prove useful when using Python, either stand-alone or via a DSL, on a selfreconfigurable robot system. These features include transparent socket...... communication, module identification, easy software transfer and reliable module-to-module communication. The end result is a software platform for modular robots that where appropriate builds on existing work in operating systems, virtual machines, middleware and high-level languages....

  8. Research on Inverse Kinematics Program Optimization of 6R Decoupled Robot

    Directory of Open Access Journals (Sweden)

    Daode ZHANG

    2014-02-01

    Full Text Available According to complex analytic formula for the six degrees of freedom decoupled robot, a detailed analysis of the six degrees of freedom decoupled robot analytic formula of export process, as well the causes of multiple solutions. The method of increasing the local variables to avoid processor running the same statement repeatedly is proposed. The method to find the most frequency formula appeared in analytic solution replaced with local variables facilitate the use of loop to reduce the amount of code. It effectively reduces the computation time, optimize the computing process. Finally, taking PUMA560-like robot as an example, the calculation result is verified and simulated in Robotics Toolbox of MATLAB.

  9. Research regarding stiffness optimization of wires used for joints actuation from an elephant's trunk robotic arm

    Science.gov (United States)

    Ciofu, C.; Stan, G.

    2016-11-01

    Elephant's trunk robotic arms driven by wires and pulley mechanisms have issues with wires stiffness because of the entailed elastic deformations that is causing errors of positioning. Static and dynamic loads from each joint of the robotic arm affect the stiffness of driving wires and precision positioning. The influence of wires elastic deformation on precision positioning decreases with the increasing of wires stiffness by using different pre-tensioning devices. In this paper, we analyze the variation of driving wires stiffness particularly to each wire driven joint. We obtain optimum wires stiffness variation by using an analytical method that highlights the efficiency of pre-tensioning mechanism. The analysis of driving wires stiffness is necessary for taking appropriate optimization measures of robotic arm dynamic behavior and, thus, for decreasing positioning errors of the elephant's trunk robotic arm with inner actuation through wires/cables.

  10. Research and Design of a New Horizontal Lower Limb Rehabilitation Training Robot

    Directory of Open Access Journals (Sweden)

    Bingjing Guo

    2016-01-01

    Full Text Available This project focuses on the design of one robot to help long-time bedridden patients complete their daily leg rehabilitation training while lying in bed. Based on an analysis of many rehabilitation training modes and integrated with a traditional Chinese medicine (TCM massage technique, a new horizontal lower limb rehabilitation training robot with four degrees of freedom is presented in this paper. The mechanical structural design, kinematic calculation and control system are introduced in detail. A robot prototype is fabricated and rehabilitation training experiments are carried out. The experimental results show that the robot can satisfy the requirements of a variety of rehabilitation training modes and has a certain degree of rehabilitation effectiveness.

  11. University of Florida, University research program in robotics. Annual technical progress report

    International Nuclear Information System (INIS)

    Crane, C.D. III; Tulenko, J.S.

    1994-05-01

    Progress is reported in the areas of environmental hardening, database, world modeling, vision, man-machine interface, advanced liquid metal reactor inspection robot, and articulated transporter/manipulator system (ATMS) development

  12. University of Florida, University research program in robotics. Annual technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Crane, C.D. III; Tulenko, J.S.

    1994-05-01

    Progress is reported in the areas of environmental hardening, database, world modeling, vision, man-machine interface, advanced liquid metal reactor inspection robot, and articulated transporter/manipulator system (ATMS) development.

  13. Maxillary growth in a congenital cleft palate canine model for surgical research.

    Science.gov (United States)

    Paradas-Lara, Irene; Casado-Gómez, Inmaculada; Martín, Conchita; Martínez-Sanz, Elena; López-Gordillo, Yamila; González, Pablo; Rodríguez-Bobada, Cruz; Chamorro, Manuel; Arias, Pablo; Maldonado, Estela; Ortega, Ricardo; Berenguer, Beatriz; Martínez-Álvarez, Concepción

    2014-01-01

    We have recently presented the Old Spanish Pointer dog, with a 15-20% spontaneous congenital cleft palate rate, as a unique experimental model of this disease. This study aimed to describe the cleft palate of these dogs for surgical research purposes and to determine whether congenital cleft palate influences maxillofacial growth. Seven newborn Old Spanish Pointer dogs of both sexes, comprising a cleft palate group (n = 4) and a normal palate group (n = 3), were fed using the same technique. Macroscopic photographs and plaster casts from the palate, lateral radiographs and computer tomograms of the skull were taken sequentially over 41 weeks, starting at week 5. The cleft morphology, the size and the tissue characteristics in these dogs resembled the human cleft better than current available animal models. During growth, the cleft width varies. Most of the transverse and longitudinal measures of the palate were statistically lower in the cleft palate group. The cleft palate group showed hypoplasia of the naso-maxillary complex. This model of congenital cleft palate seems suitable for surgical research purposes. A reduced maxillofacial pre- and post-natal development is associated to the congenital cleft palate in the Old Spanish Pointer dog. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Gestalt Processing in Human-Robot Interaction: A Novel Account for Autism Research

    OpenAIRE

    Maya Dimitrova

    2015-01-01

    The paper presents a novel analysis focused on showing that education is possible through robotic enhancement of the Gestalt processing in children with autism, which is not comparable to alternative educational methods such as demonstration and instruction provided solely by human tutors. The paper underlines the conceptualization of cognitive processing of holistic representations traditionally named in psychology as Gestalt structures, emerging in the process of human-robot interaction in ...

  15. BRAIN Journal - Gestalt Processing in Human-Robot Interaction: A Novel Account for Autism Research

    OpenAIRE

    Maya Dimitrova

    2015-01-01

    ABSTRACT The paper presents a novel analysis focused on showing that education is possible through robotic enhancement of the Gestalt processing in children with autism, which is not comparable to alternative educational methods such as demonstration and instruction provided solely by human tutors. The paper underlines the conceptualization of cognitive processing of holistic representations traditionally named in psychology as Gestalt structures, emerging in the process of human-robot in...

  16. Research on Walking Gait of Biped Robot Based on a Modified CPG Model

    Directory of Open Access Journals (Sweden)

    Qiang Lu

    2015-01-01

    Full Text Available The neurophysiological studies of animals locomotion have verified that the fundamental rhythmic movements of animals are generated by the central pattern generator (CPG. Many CPG models have been proposed by scientific researchers. In this paper, a modified CPG model whose output function is sin(x is presented. The paper proves that the modified model has stable periodic solution and characteristics of the rhythmic movement using the Lyapunov judgement theorem and the phase diagram. A modified locomotion model is established in which the credit-assignment cerebellar model articulation controller (CA-CMAC algorithm is used to realize the pattern mapping between the CPG output and the musculoskeletal system. And a seven-link biped robot is employed to simulate cyclic walking gait in order to test the validity of the locomotion model. The main findings include the following. (1 The modified CPG model can generate spontaneous oscillations which correspond to biological signals. (2 The analysis of the modified locomotion model reveals that the CA-CMAC algorithm can be used to realize the pattern mapping between the CPG output and the musculoskeletal system.

  17. Gait Planning Research for an Electrically Driven Large-Load-Ratio Six-Legged Robot

    Directory of Open Access Journals (Sweden)

    Hong-Chao Zhuang

    2017-03-01

    Full Text Available Gait planning is an important basis for the walking of a legged robot. To improve the walking stability of multi-legged robots and to reduce the impact force between the foot and the ground, gait planning strategies are presented for an electrically driven large-load-ratio six-legged robot. First, the configuration and walking gait of the electrically driven large-load-ratio six-legged robot are designed. The higher-stable swing sequences of legs and typical walking modes are respectively obtained. Based on the Denavit–Hartenberg (D–H method, the analyses of the forward and inverse kinematics are implemented. The mathematical models of the articulated rotation angles are respectively established. In view of the buffer device installed at the end of shin to decrease the impact force between the foot and the ground, an initial lift height of the leg is brought into gait planning when the support phase changes into the transfer phase. The mathematical models of foot trajectories are established. Finally, a prototype of the electrically driven large-load-ratio six-legged robot is developed. The experiments of the prototype are carried out regarding the aspects of the walking speed and surmounting obstacle. Then, the reasonableness of gait planning is verified based on the experimental results. The proposed strategies of gait planning lay the foundation for effectively reducing the foot–ground impact force and can provide a reference for other large-load-ratio multi-legged robots.

  18. Annual Research Progress Report (U.S. Army Institute of Surgical Research)

    Science.gov (United States)

    1979-09-30

    Hasinoff C, and Sutherland WH: Impaired gluconeogenesis in dogs with E. Coli bacteremia. Surgery 76: 533-541, 1974. 34. Wilmore DW, Mason AD, Jr...INDEPENDENT RESEARCH Hepatic and Muscle Membrane Kinetics of The Endotoxemic Dog : 272 A Preliminary Study For Assessment of Membrane Function in The Septic...electrolyte excretion in anesthetized dogs . J Pharmacol Exp Ther 190(3)515-22, 1974. 6. Gemba M, Yamamoto K: Effect of diuretics on ion transport of

  19. US Army Institute of Surgical Research Annual Research Progress Report for Fiscal Year 1984.

    Science.gov (United States)

    1984-10-01

    severely burned patient, research to improve survival and function of such patients, and education and training of health care professional and para ...infarction, one with acute bacterial endocarditis, and one with extensive psoriasis with staphylococcal colonization as a contributing cause of death...Calcu- lated hemodynamic para eters were: body surface area (BSA, m 2) = 0.084 x body weight 21 3 (kg); cardiac index (CI, 1/min/m 2 ) = cardiac output

  20. An IPMC actuated robotic surgery end effector with force sensing

    Directory of Open Access Journals (Sweden)

    Kean Aw

    2013-12-01

    Full Text Available Growth in patient acceptance of robotic-assisted surgery has led to increased demand and has stimulated research in many new surgical robotic applications. In some cases, the performance of robotic surgery has proven to surpass that of human surgeons alone. A new research area which uses the inherently force-compliant and back-drivable properties of polymers, ionic polymer–metal composite (IPMC in this case, has shown potential to undertake precise surgical procedures in the delicate environments related to medical practice. This is because IPMCs have similar actuation characteristics to real biological systems, which can help ensure safety. Despite this, little has been done in developing IPMCs for a rotary joint actuator for functional surgical devices. This research proposes and demonstrates the design of a single degree of freedom (1-DOF robotic surgical instrument with one skeleton-joint mechanism actuated by IPMC with an embedded strain gauge as a feedback unit. The system performance with a developed gain-schedule PI controller is demonstrated. Despite the simplicity of the system, it was proven to be able to cut to the desired depth using the implemented force control (up to 8 gf cutting force.

  1. Compensating for Quasi-periodic Motion in Robotic Radiosurgery

    CERN Document Server

    Ernst, Floris

    2012-01-01

    Compensating for Quasi-periodic Motion in Robotic Radiosurgery outlines the techniques needed to accurately track and compensate for respiratory and pulsatory motion during robotic radiosurgery. The algorithms presented within the book aid in the treatment of tumors that move during respiration. In Chapters 1 and 2,  the book introduces the concept of stereotactic body radiation therapy, motion compensation strategies and the clinical state-of-the-art. In Chapters 3 through 5, the author describes and evaluates new methods for motion prediction, for correlating external motion to internal organ motion, and for the evaluation of these algorithms’ output based on an unprecedented amount of real clinical data. Finally, Chapter 6 provides a brief introduction into currently investigated, open questions and further fields of research. Compensating for Quasi-periodic Motion in Robotic Radiosurgery targets researchers working in the related fields of surgical oncology, artificial intelligence, robotics and more. ...

  2. Training in Robotic Surgery-an Overview.

    Science.gov (United States)

    Sridhar, Ashwin N; Briggs, Tim P; Kelly, John D; Nathan, Senthil

    2017-08-01

    There has been a rapid and widespread adoption of the robotic surgical system with a lag in the development of a comprehensive training and credentialing framework. A literature search on robotic surgical training techniques and benchmarks was conducted to provide an evidence-based road map for the development of a robotic surgical skills for the novice robotic surgeon. A structured training curriculum is suggested incorporating evidence-based training techniques and benchmarks for progress. This usually involves sequential progression from observation, case assisting, acquisition of basic robotic skills in the dry and wet lab setting along with achievement of individual and team-based non-technical skills, modular console training under supervision, and finally independent practice. Robotic surgical training must be based on demonstration of proficiency and safety in executing basic robotic skills and procedural tasks prior to independent practice.

  3. Robot maps, robot moves, robot avoids

    OpenAIRE

    Farrugia, Claire

    2014-01-01

    Robotics is a cornerstone for this century’s innovations. From robot nurses to your own personal assistant, most robots need to know: ‘where is it?’ ‘Where should it go?’ And ‘how to get there?’ Without answers to these questions a robot cannot do much. http://www.um.edu.mt/think/robot-maps-robot-moves-robot-avoids/

  4. GRACE and GEORGE: Autonomous Robots for the AAAI Robot Challenge

    National Research Council Canada - National Science Library

    Simmons, Reid; Bruce, Allison; Goldberg, Dani; Goode, Adam; Schultz, Alan; Adams, William; Horswill, Ian; Kortenkamp, David; Wolfe, Bryn; Maxwell, Bruce

    2004-01-01

    In an attempt to solve as much of the AAAI Robot Challenge as possible, five research institutions representing academia, industry and government, integrated their research on a pair of robots named GRACE and GEORGE...

  5. Robotic systems in spine surgery.

    Science.gov (United States)

    Onen, Mehmet Resid; Naderi, Sait

    2014-01-01

    Surgical robotic systems have been available for almost twenty years. The first surgical robotic systems were designed as supportive systems for laparoscopic approaches in general surgery (the first procedure was a cholecystectomy in 1987). The da Vinci Robotic System is the most common system used for robotic surgery today. This system is widely used in urology, gynecology and other surgical disciplines, and recently there have been initial reports of its use in spine surgery, for transoral access and anterior approaches for lumbar inter-body fusion interventions. SpineAssist, which is widely used in spine surgery, and Renaissance Robotic Systems, which are considered the next generation of robotic systems, are now FDA approved. These robotic systems are designed for use as guidance systems in spine instrumentation, cement augmentations and biopsies. The aim is to increase surgical accuracy while reducing the intra-operative exposure to harmful radiation to the patient and operating team personnel during the intervention. We offer a review of the published literature related to the use of robotic systems in spine surgery and provide information on using robotic systems.

  6. Robot-assisted surgery: applications in urology

    Directory of Open Access Journals (Sweden)

    Mathew C Raynor

    2010-05-01

    Full Text Available Mathew C Raynor, Raj S PruthiDivision of Urologic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USAAbstract: The past decade has seen a dramatic shift in the surgical management of certain urologic conditions with the advent of a robotic surgical platform. In fact, the surgical management of prostate cancer has seen the most dramatic shift, with the majority of cases now being performed robotically. Technical refinements over the years have led to improved outcomes regarding oncologic and functional results. Recently, robotic surgery has also been utilized for the surgical management of bladder cancer, renal cancer, and other benign conditions. As further experience is gained and longer-term outcomes are realized, robotic surgery will likely play an increasing role in the surgical management of many urologic conditions.Keywords: robot-assisted surgery, robotic surgery, cystectomy, prostatectomy, partial nephrectomy

  7. Glioma Surgical Aspirate: A Viable Source of Tumor Tissue for Experimental Research

    Directory of Open Access Journals (Sweden)

    Perry F. Bartlett

    2013-04-01

    Full Text Available Brain cancer research has been hampered by a paucity of viable clinical tissue of sufficient quality and quantity for experimental research. This has driven researchers to rely heavily on long term cultured cells which no longer represent the cancers from which they were derived. Resection of brain tumors, particularly at the interface between normal and tumorigenic tissue, can be carried out using an ultrasonic surgical aspirator (CUSA that deposits liquid (blood and irrigation fluid and resected tissue into a sterile bottle for disposal. To determine the utility of CUSA-derived glioma tissue for experimental research, we collected 48 CUSA specimen bottles from glioma patients and analyzed both the solid tissue fragments and dissociated tumor cells suspended in the liquid waste fraction. We investigated if these fractions would be useful for analyzing tumor heterogeneity, using IHC and multi-parameter flow cytometry; we also assessed culture generation and orthotopic xenograft potential. Both cell sources proved to be an abundant, highly viable source of live tumor cells for cytometric analysis, animal studies and in-vitro studies. Our findings demonstrate that CUSA tissue represents an abundant viable source to conduct experimental research and to carry out diagnostic analyses by flow cytometry or other molecular diagnostic procedures.

  8. Glioma Surgical Aspirate: A Viable Source of Tumor Tissue for Experimental Research

    International Nuclear Information System (INIS)

    Day, Bryan W.; Stringer, Brett W.; Wilson, John; Jeffree, Rosalind L.; Jamieson, Paul R.

    2013-01-01

    Brain cancer research has been hampered by a paucity of viable clinical tissue of sufficient quality and quantity for experimental research. This has driven researchers to rely heavily on long term cultured cells which no longer represent the cancers from which they were derived. Resection of brain tumors, particularly at the interface between normal and tumorigenic tissue, can be carried out using an ultrasonic surgical aspirator (CUSA) that deposits liquid (blood and irrigation fluid) and resected tissue into a sterile bottle for disposal. To determine the utility of CUSA-derived glioma tissue for experimental research, we collected 48 CUSA specimen bottles from glioma patients and analyzed both the solid tissue fragments and dissociated tumor cells suspended in the liquid waste fraction. We investigated if these fractions would be useful for analyzing tumor heterogeneity, using IHC and multi-parameter flow cytometry; we also assessed culture generation and orthotopic xenograft potential. Both cell sources proved to be an abundant, highly viable source of live tumor cells for cytometric analysis, animal studies and in-vitro studies. Our findings demonstrate that CUSA tissue represents an abundant viable source to conduct experimental research and to carry out diagnostic analyses by flow cytometry or other molecular diagnostic procedures

  9. Design of Piano -playing Robotic Hand

    OpenAIRE

    Lin Jen-Chang; Hsin-Cheng Li; Kuo-Cheng Huang; Shu-Wei Lin

    2013-01-01

    Unlike the market slowdown of industrial robots, service & entertainment robots have been highly regarded by most robotics reseach and market research agencies. In this study we developed a music playing robot (which can also work as a service robot) for public performance. The research is mainly focused on the mechanical and electrical control of piano-playing robot, the exploration of correlations among music theory, rhythm and piano keys, and eventually the research on playing skill of...

  10. Robotic surgery

    Science.gov (United States)

    Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... Robotic surgery is similar to laparoscopic surgery. It can be performed through smaller cuts than open surgery. ...

  11. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  12. Building Surgical Research Capacity Globally: Efficacy of a Clinical Research Course for Surgeons in Low-Resource Settings

    Directory of Open Access Journals (Sweden)

    Theodore A. Miclau

    2017-11-01

    Full Text Available Musculoskeletal injury confers an enormous burden of preventable disability and mortality in low- and moderate-income countries (LMICs. Appropriate orthopedic and trauma care services are lacking. Leading international health agencies emphasize the critical need to create and sustain research capacity in the developing world as a strategic factor in the establishment of functional, independent health systems. One aspect of building research capacity is partnership between developing and developed countries, and knowledge sharing via these collaborations. This study evaluated the efficacy of a short, intensive course designed to educate surgeons on fundamental aspects of clinical research using evidence-based medicine (EBM principles. Orthopedic surgeons from the United States and Canada presented a one-day course on the fundamentals of clinical research in Havana, Cuba. Knowledge acquisition was assessed on the part of course participants and surveyed current involvement with and attitudes toward clinical research. Questionnaires were presented to participants immediately preceding and following the course. The mean pre-test score was 43.9% (95% CI: 41.1–46.6%. The mean post-test score was 59.3% (95% CI: 56.5–62.1%. There were relative score increases in each subgroup based on professional level, subjective level of familiarity with EBM concepts, and subjective level of experience in research. This study establishes the short-term efficacy of an intensive course designed to impart knowledge in EBM and clinical research. Further study is necessary to determine the long-term benefits of this type of course. This may be a useful part of an overall strategy to build health research capacity in LMICs, ultimately contributing to improved access to high-quality surgical care.

  13. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot

    Directory of Open Access Journals (Sweden)

    Yongfei Feng

    2017-01-01

    Full Text Available The lower limb rehabilitation robot is an application of robotic technology for stroke people with lower limb disabilities. A new applicable and effective sitting/lying lower limb rehabilitation robot (LLR-Ro is proposed, which has the mechanical limit protection, the electrical limit protection, and the software protection to prevent the patient from the secondary damage. Meanwhile, as a new type of the rehabilitation robots, its hip joint rotation ranges are different in the patient sitting training posture and lying training posture. The mechanical leg of the robot has a variable workspace to work in both training postures. So, if the traditional mechanical limit and the electrical limit cannot be used in the hip joint mechanism design, a follow-up limit is first proposed to improve the compatibility of human-machine motion. Besides, to eliminate the accident interaction force between the patient and LLR-Ro in the process of the passive training, an amendment impedance control strategy based on the position control is proposed to improve the compliance of the LLR-Ro. A simulation experiment and an experiment with a participant show that the passive training of LLR-Ro has compliance.

  14. Research on the Integration of Bionic Geometry Modeling and Simulation of Robot Foot Based on Characteristic Curve

    Science.gov (United States)

    He, G.; Zhu, H.; Xu, J.; Gao, K.; Zhu, D.

    2017-09-01

    The bionic research of shape is an important aspect of the research on bionic robot, and its implementation cannot be separated from the shape modeling and numerical simulation of the bionic object, which is tedious and time-consuming. In order to improve the efficiency of shape bionic design, the feet of animals living in soft soil and swamp environment are taken as bionic objects, and characteristic skeleton curve, section curve, joint rotation variable, position and other parameters are used to describe the shape and position information of bionic object’s sole, toes and flipper. The geometry modeling of the bionic object is established by using the parameterization of characteristic curves and variables. Based on this, the integration framework of parametric modeling and finite element modeling, dynamic analysis and post-processing of sinking process in soil is proposed in this paper. The examples of bionic ostrich foot and bionic duck foot are also given. The parametric modeling and integration technique can achieve rapid improved design based on bionic object, and it can also greatly improve the efficiency and quality of robot foot bionic design, and has important practical significance to improve the level of bionic design of robot foot’s shape and structure.

  15. Robotic surgery: new robots and finally some real competition!

    Science.gov (United States)

    Rao, Pradeep P

    2018-02-09

    For the last 20 years, the predominant robot used in laparoscopic surgery has been Da Vinci by Intuitive Surgical. This monopoly situation has led to rising costs and relatively slow innovation. This article aims to discuss the two new robotic devices for laparoscopic surgery which have received regulatory approval for human use in different parts of the world. A short description of the Senhance Surgical Robotic System and the REVO-I Robot Platform and their pros and cons compared to the Da Vinci system is presented. A discussion about the differences between the three robotic systems now in the market is presented, as well as a short review of the present state of robotic assistance in surgery and where we are headed.

  16. Robot Actors, Robot Dramaturgies

    DEFF Research Database (Denmark)

    Jochum, Elizabeth

    This paper considers the use of tele-operated robots in live performance. Robots and performance have long been linked, from the working androids and automata staged in popular exhibitions during the nineteenth century and the robots featured at Cybernetic Serendipity (1968) and the World Expo...... discourse shapes how we perceive and use technology and also points to the ways in which emerging technologies “refashion our experience of space, time and human being filter through our art works, dreams and fantasies.” This paper considers a survey of robot dramaturgies to demonstrate how performance both...... shapes and reinforces popular awareness and misconceptions of robots. Flyvende Grise’s The Future (2013), Amit Drori’s Savanna (2010), Global Creatures’ King Kong (2013) and Louis Philip Demers’ Blind Robot (2013) each utilize tele-operated robots across a wide range of human and animal morphologies...

  17. Robot Choreography

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Heath, Damith

    2016-01-01

    We propose a robust framework for combining performance paradigms with human robot interaction (HRI) research. Following an analysis of several case studies that combine the performing arts with HRI experiments, we propose a methodology and “best practices” for implementing choreography and other...... performance paradigms in HRI experiments. Case studies include experiments conducted in laboratory settings, “in the wild”, and live performance settings. We consider the technical and artistic challenges of designing and staging robots alongside humans in these various settings, and discuss how to combine...

  18. Placebo in Surgical Research: A Case-Based Ethical Analysis and Practical Consequences.

    Science.gov (United States)

    Hostiuc, Sorin; Rentea, Irina; Drima, Eduard; Negoi, Ionut

    2016-01-01

    Placebo is a form of simulated medical treatment intended to deceive the patient/subject who believes that he/she received an active therapy. In clinical medicine, the use of placebo is allowed in particular circumstances to assure a patient that he is taken care of and that he/she receives an active drug, even if this is not the case. In clinical research placebo is widely used, as it allows a baseline comparison for the active intervention. If the use of placebo is highly regulated in pharmacological trials, surgery studies have a series of particularities that make its use extremely problematic and regarded less favorably. The purpose of this paper is to present three famous cases of placebo use in surgical trials and to perform an ethical analysis of their acceptability using the Declaration of Helsinki as a main regulatory source.

  19. Advances in robot kinematics

    CERN Document Server

    Khatib, Oussama

    2014-01-01

    The topics addressed in this book cover the whole range of kinematic analysis, synthesis and design and consider robotic systems possessing serial, parallel and cable driven mechanisms. The robotic systems range from being less than fully mobile to kinematically redundant to overconstrained.  The fifty-six contributions report the latest results in robot kinematics with emphasis on emerging areas such as design and control of humanoids or humanoid subsystems. The book is of interest to researchers wanting to bring their knowledge up to date regarding modern topics in one of the basic disciplines in robotics, which relates to the essential property of robots, the motion of mechanisms.

  20. Robots and Art

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance Jonathan

    2015-01-01

    We describe the design of an undergraduate course in art and robotics that aims to integrate basic concepts of computer science, robotics and art installation for undergraduate students within the problem-based learning model. Our methodology aims to bridge the gap that separates humanities from...... computer science and engineering education to prepare students to address real world problems in robotics, including human-robotic interaction and HCI. Given the proliferation of interactive, systems-based art works and the continued interest in human-centered factors in robotics research (such...

  1. Low cost submarine robot

    Directory of Open Access Journals (Sweden)

    Ponlachart Chotikarn

    2010-10-01

    Full Text Available A submarine robot is a semi-autonomous submarine robot used mainly for marine environmental research. We aim todevelop a low cost, semi-autonomous submarine robot which is able to travel underwater. The robot’s structure was designedand patented using a novel idea of the diving system employing a volume adjustment mechanism to vary the robot’s density.A light weight, flexibility and small structure provided by PVC can be used to construct the torpedo-liked shape robot.Hydraulic seal and O-ring rubbers are used to prevent water leaking. This robot is controlled by a wired communicationsystem.

  2. Research on direct calibration method of eye-to-hand system of robot

    Science.gov (United States)

    Hu, Xiaoping; Xie, Ke; Peng, Tao

    2013-10-01

    In the position-based visual servoing control for robot, the hand-eye calibration is very important because it can affect the control precision of the system. According to the robot with eye-to-hand stereovision system, this paper proposes a direct method of hand-eye calibration. The method utilizes the triangle measuring principle to solve the coordinates in the camera coordinate system of scene point. It calculates the estimated coordinates by the hand-eye calibration equation set which indicates the transformational relation from the robot to the camera coordinate system, and then uses the error of actual and estimated coordinates to establish the objective function. Finally the method substitutes the parameters into the function repeatedly until it converged to optimize the result. The related experiment compared the measured coordinates with the actual coordinates, shows the efficiency and the precision of it.

  3. Design and Research of Novel Industry Robot Wrist Force Multidimensional Sensor

    Directory of Open Access Journals (Sweden)

    Yuan Chuanlai

    2014-04-01

    Full Text Available The main function of the wrist force sensor in robot remote operation is to realize the force feedback, one as a necessary part of the contact force of the process itself; another is the contact force as a robot gripper with respect to the environment the exact location of the information source, wrist force sensor provides information can reduce the robot to peripheral equipment precision requirement. Remote sensing operation environment, the manipulator and the environment from the direct effect of the information, the wrist force sensor detection, conversion, transmission to the master, for the establishment of virtual environment and the main basis and real-time interactive environment. The sensor circuit system design, designed the bridge circuit is applicable, overall on the measurement system is designed, and for sensor data acquisition software programming theory.

  4. Gestalt Processing in Human-Robot Interaction: A Novel Account for Autism Research

    Directory of Open Access Journals (Sweden)

    Maya Dimitrova

    2015-12-01

    Full Text Available The paper presents a novel analysis focused on showing that education is possible through robotic enhancement of the Gestalt processing in children with autism, which is not comparable to alternative educational methods such as demonstration and instruction provided solely by human tutors. The paper underlines the conceptualization of cognitive processing of holistic representations traditionally named in psychology as Gestalt structures, emerging in the process of human-robot interaction in educational settings. Two cognitive processes are proposed in the present study - bounding and unfolding - and their role in Gestalt emergence is outlined. The proposed theoretical approach explains novel findings of autistic perception and gives guidelines for design of robot-assistants to the rehabilitation process.

  5. Research on Open-Closed-Loop Iterative Learning Control with Variable Forgetting Factor of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Hongbin Wang

    2016-01-01

    Full Text Available We propose an iterative learning control algorithm (ILC that is developed using a variable forgetting factor to control a mobile robot. The proposed algorithm can be categorized as an open-closed-loop iterative learning control, which produces control instructions by using both previous and current data. However, introducing a variable forgetting factor can weaken the former control output and its variance in the control law while strengthening the robustness of the iterative learning control. If it is applied to the mobile robot, this will reduce position errors in robot trajectory tracking control effectively. In this work, we show that the proposed algorithm guarantees tracking error bound convergence to a small neighborhood of the origin under the condition of state disturbances, output measurement noises, and fluctuation of system dynamics. By using simulation, we demonstrate that the controller is effective in realizing the prefect tracking.

  6. Partner Ballroom Dance Robot -PBDR-

    Science.gov (United States)

    Kosuge, Kazuhiro; Takeda, Takahiro; Hirata, Yasuhisa; Endo, Mitsuru; Nomura, Minoru; Sakai, Kazuhisa; Koizumi, Mizuo; Oconogi, Tatsuya

    In this research, we have developed a dance partner robot, which has been developed as a platform for realizing the effective human-robot coordination with physical interaction. The robot could estimate the next dance step intended by a human and dance the step with the human. This paper introduce the robot referred to as PBDR (Partner Ballroom Dance Robot), which has performed graceful dancing with the human in EXPO 2005, Aichi, Japan.

  7. Influences of a Socially Interactive Robot on the Affective Behavior of Young Children with Disabilities. Social Robots Research Reports, Number 3

    Science.gov (United States)

    Dunst, Carl J.; Prior, Jeremy; Hamby, Deborah W.; Trivette, Carol M.

    2013-01-01

    Findings from two studies of 11 young children with autism, Down syndrome, or attention deficit disorders investigating the effects of Popchilla, a socially interactive robot, on the children's affective behavior are reported. The children were observed under two conditions, child-toy interactions and child-robot interactions, and ratings of child…

  8. Parents' Appraisals of the Animacy and Likability of Socially Interactive Robots for Intervening with Young Children with Disabilities. Social Robots Research Reports, Number 2

    Science.gov (United States)

    Dunst, Carl J.; Trivette, Carol M.; Prior, Jeremy; Hamby, Deborah W.; Embler, Davon

    2013-01-01

    Findings from a survey of parents' ratings of seven different human-like qualities of four socially interactive robots are reported. The four robots were Popchilla, Keepon, Kaspar, and CosmoBot. The participants were 96 parents and other primary caregivers of young children with disabilities 1 to 12 years of age. Results showed that Popchilla, a…

  9. Parents' Judgments of the Acceptability and Importance of Socially Interactive Robots for Intervening with Young Children with Disabilities. Social Robots Research Reports, Number 1

    Science.gov (United States)

    Dunst, Carl J.; Trivette, Carol M.; Prior, Jeremy; Hamby, Deborah W.; Embler, Davon

    2013-01-01

    A number of different types of socially interactive robots are being used as part of interventions with young children with disabilities to promote their joint attention and language skills. Parents' judgments of two dimensions (acceptance and importance) of the social validity of four different social robots were the focus of the study described…

  10. Research on Semi-automatic Bomb Fetching for an EOD Robot

    Directory of Open Access Journals (Sweden)

    Qian Jun

    2008-11-01

    Full Text Available An EOD robot system, SUPER-PLUS, which has a novel semi-automatic bomb fetching function is presented in this paper. With limited support of human, SUPER-PLUS scans the cluttered environment with a wrist-mounted laser distance sensor and plans the manipulator a collision free path to fetch the bomb. The model construction of manipulator, bomb and environment, C-space map, path planning and the operation procedure are introduced in detail. The semi-automatic bomb fetching function has greatly improved the operation performance of EOD robot.

  11. Research on Semi-Automatic Bomb Fetching for an EOD Robot

    Directory of Open Access Journals (Sweden)

    Zeng Jian-Jun

    2007-06-01

    Full Text Available An EOD robot system, SUPER-PLUS, which has a novel semi-automatic bomb fetching function is presented in this paper. With limited support of human, SUPER-PLUS scans the cluttered environment with a wrist-mounted laser distance sensor and plans the manipulator a collision free path to fetch the bomb. The model construction of manipulator, bomb and environment, C-space map, path planning and the operation procedure are introduced in detail. The semi-automatic bomb fetching function has greatly improved the operation performance of EOD robot.

  12. The use of robotics in surgery: a review.

    Science.gov (United States)

    Hussain, A; Malik, A; Halim, M U; Ali, A M

    2014-11-01

    There is an ever-increasing drive to improve surgical patient outcomes. Given the benefits which robotics has bestowed upon a wide range of industries, from vehicle manufacturing to space exploration, robots have been highlighted by many as essential for continued improvements in surgery. The goal of this review is to outline the history of robotic surgery, and detail the key studies which have investigated its effects on surgical outcomes. Issues of cost-effectiveness and patient acceptability will also be discussed. Robotic surgery has been shown to shorten hospital stays, decrease complication rates and allow surgeons to perform finer tasks, when compared to the traditional laparoscopic and open approaches. These benefits, however, must be balanced against increased intraoperative times, vast financial costs and the increased training burden associated with robotic techniques. The outcome of such a cost-benefit analysis appears to vary depending on the procedure being conducted; indeed the strongest evidence in favour of its use comes from the fields of urology and gynaecology. It is hoped that with the large-scale, randomised, prospective clinical trials underway, and an ever-expanding research base, many of the outstanding questions surrounding robotic surgery will be answered in the near future. © 2014 John Wiley & Sons Ltd.

  13. Research regarding wires elastic deformations influence on joints positioning of a wire-driven robotic arm

    Science.gov (United States)

    Ciofu, C.; Stan, G.

    2016-08-01

    In this paper, we present the influence of driving wires deformation on positioning precision of joints from an elephant's trunk robotic arm. Robotic arms driven by wires have the joint accuracy largely depending on wires rigidity. The joint moment of resistance causes elastic deformation of wires and it is determined by: manipulated object load, weight loads previous to the analyzed joint and inherent resistance moment of joint. Static load analysis emphasizes the particular wires elastic deformation of each driven joint from an elephant's trunk robotic arm with five degrees of freedom. We consider the case of a constant manipulated load. Errors from each driving system of joints are not part of the closed loop system. Thus, precision positioning depends on wires elastic deformation which is about microns and causes angle deviation of joints about tens of minutes of sexagesimal degrees. The closer the joints to base arm the smaller positioning precision of joint. The obtained results are necessary for further compensation made by electronic corrections in the programming algorithm of the elephant's trunk robotic arm to improve accuracy.

  14. ACGME core competency training, mentorship, and research in surgical subspecialty fellowship programs.

    Science.gov (United States)

    Francesca Monn, M; Wang, Ming-Hsien; Gilson, Marta M; Chen, Belinda; Kern, David; Gearhart, Susan L

    2013-01-01

    To determine the perceived effectiveness of surgical subspecialty training programs in teaching and assessing the 6 ACGME core competencies including research. Cross-sectional survey. ACGME approved training programs in pediatric urology and colorectal surgery. Program Directors and recent trainees (2007-2009). A total of 39 program directors (60%) and 57 trainees (64%) responded. Both program directors and recent trainees reported a higher degree of training and mentorship (75%) in patient care and medical knowledge than the other core competencies (peffective to a lesser degree. Specifically, in the areas of teaching residents and medical students and team building, program directors, compared with recent trainees, perceived training to be more effective, (p = 0.004, p = 0.04). Responses to questions assessing training in systems based practice ubiquitously identified a lack of training, particularly in financial matters of running a practice. Although effective training in research was perceived as lacking by recent trainees, 81% reported mentorship in this area. According to program directors and recent trainees, the most effective method of teaching was faculty supervision and feedback. Only 50% or less of the recent trainees reported mentorship in career planning, work-life balance, and job satisfaction. Not all 6 core competencies and research are effectively being taught in surgery subspecialty training programs and mentorship in areas outside of patient care and research is lacking. Emphasis should be placed on faculty supervision and feedback when designing methods to better incorporate all 6 core competencies, research, and mentorship. Copyright © 2012 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  15. Marine Robot Autonomy

    CERN Document Server

    2013-01-01

    Autonomy for Marine Robots provides a timely and insightful overview of intelligent autonomy in marine robots. A brief history of this emerging field is provided, along with a discussion of the challenges unique to the underwater environment and their impact on the level of intelligent autonomy required.  Topics covered at length examine advanced frameworks, path-planning, fault tolerance, machine learning, and cooperation as relevant to marine robots that need intelligent autonomy.  This book also: Discusses and offers solutions for the unique challenges presented by more complex missions and the dynamic underwater environment when operating autonomous marine robots Includes case studies that demonstrate intelligent autonomy in marine robots to perform underwater simultaneous localization and mapping  Autonomy for Marine Robots is an ideal book for researchers and engineers interested in the field of marine robots.      

  16. A new application of the four-arm standard da Vinci® surgical system: totally robotic-assisted left-sided colon or rectal resection.

    Science.gov (United States)

    Koh, Dean Chi-Siong; Tsang, Charles Bih-Shou; Kim, Seon-Hahn

    2011-06-01

    The key to successful rectal cancer resection is to perform complete total mesorectal excision (TME). Laparoscopic TME can be challenging, especially in the narrow confines of the pelvis. Robotic-assisted surgery can overcome these limitations through superior three-dimensional (3-D) visualization and the increased range of movements provided by the endowrist function. To date, all totally robotic resections of the rectum have been described using da Vinci® S or Si systems. Due to the limitations of the standard system, only hybrid procedures have been described so far. To evaluate the feasibility and short-term outcomes of performing totally robotic-assisted laparoscopic colorectal resections using the standard da Vinci® system with a fourth arm extension. The standard system was docked from the patient's left hip. Four 8-mm robotic trocars were inserted. Upon completion of phase 1 (pedicle ligation, colonic mobilization, splenic flexure takedown), the two left-sided arms are repositioned to allow phase 2 (pelvic dissection), enabling the entire procedure except for the distal transection and anastomosis to be performed robotically. Twenty-one robotic procedures were performed from August 2008 to September 2009. The mean age of the patients was 61 years (13 males). The procedures performed included seven anterior resections, seven low anterior resections, five ultralow anterior resections, one abdominoperineal resection, and one resection rectopexy. The majority of the cases were performed in patients with colon or rectal cancer. Operative time ranged from 232 to 444 (mean 316) min. Postoperative morbidity occurred in three patients (14.3%) with no mortalities or conversions. Average hospital stay was 6.4 days. Mean lymph node yield for the cases with cancer was 17.8. The standard da Vinci® system with four arms can be used to perform totally robotic-assisted colorectal procedures for the left colon and rectum with short-term outcomes similar to those of

  17. Robotic-assisted laparoscopy for the excision of a pelvic leiomyosarcoma

    OpenAIRE

    Chavin, Grant; Gettman, Matthew

    2008-01-01

    The indications for robot-assisted laparoscopic surgery in Urology are expanding as surgical experience with robotic surgery mounts. We describe our experience of performing a laparoscopic robot-assisted excision of a pelvic leiomyosarcoma in an adult.

  18. Surgical data processing for smart intraoperative assistance systems

    Directory of Open Access Journals (Sweden)

    Stauder Ralf

    2017-09-01

    Full Text Available Different components of the newly defined field of surgical data science have been under research at our groups for more than a decade now. In this paper, we describe our sensor-driven approaches to workflow recognition without the need for explicit models, and our current aim is to apply this knowledge to enable context-aware surgical assistance systems, such as a unified surgical display and robotic assistance systems. The methods we evaluated over time include dynamic time warping, hidden Markov models, random forests, and recently deep neural networks, specifically convolutional neural networks.

  19. Procurement of Human Tissues for Research Banking in the Surgical Pathology Laboratory: Prioritization Practices at Washington University Medical Center

    Science.gov (United States)

    Chernock, Rebecca D.; Leach, Tracey A.; Kahn, Ajaz A.; Yip, James H.; Rossi, Joan; Pfeifer, John D.

    2011-01-01

    Academic hospitals and medical schools with research tissue repositories often derive many of their internal human specimen acquisitions from their site's surgical pathology service. Typically, such acquisitions come from appropriately consented tissue discards sampled from surgical resections. Because the practice of surgical pathology has patient care as its primary mission, competing needs for tissue inevitably arise, with the requirement to preserve adequate tissue for clinical diagnosis being paramount. A set of best-practice gross pathology guidelines are summarized here, focused on the decision for tissue banking at the time specimens are macroscopically evaluated. These reflect our collective experience at Washington University School of Medicine, and are written from the point of view of our site biorepository. The involvement of trained pathology personnel in such procurements is very important. These guidelines reflect both good surgical pathology practice (including the pathologic features characteristic of various anatomic sites) and the typical objectives of research biorepositories. The guidelines should be helpful to tissue bank directors, and others charged with the procurement of tissues for general research purposes. We believe that appreciation of these principles will facilitate the partnership between surgical pathologists and biorepository directors, and promote both good patient care and strategic, value-added banking procurements. PMID:23386925

  20. Robot and robot system

    Science.gov (United States)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  1. Robot engineering

    International Nuclear Information System (INIS)

    Jung, Seul

    2006-02-01

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  2. Advancements in robotic-assisted thoracic surgery.

    Science.gov (United States)

    Steenwyk, Brad; Lyerly, Ralph

    2012-12-01

    Advancements in robotic-assisted thoracic surgery present potential advantages for patients as well as new challenges for the anesthesia and surgery teams. This article describes the major aspects of the surgical approach for the most commonly performed robotic-assisted thoracic surgical procedures as well as the pertinent preoperative, intraoperative, and postoperative anesthetic concerns. Copyright © 2012. Published by Elsevier Inc.

  3. Robots and lattice automata

    CERN Document Server

    Adamatzky, Andrew

    2015-01-01

    The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...

  4. Soft computing in advanced robotics

    CERN Document Server

    Kobayashi, Ichiro; Kim, Euntai

    2014-01-01

    Intelligent system and robotics are inevitably bound up; intelligent robots makes embodiment of system integration by using the intelligent systems. We can figure out that intelligent systems are to cell units, while intelligent robots are to body components. The two technologies have been synchronized in progress. Making leverage of the robotics and intelligent systems, applications cover boundlessly the range from our daily life to space station; manufacturing, healthcare, environment, energy, education, personal assistance, logistics. This book aims at presenting the research results in relevance with intelligent robotics technology. We propose to researchers and practitioners some methods to advance the intelligent systems and apply them to advanced robotics technology. This book consists of 10 contributions that feature mobile robots, robot emotion, electric power steering, multi-agent, fuzzy visual navigation, adaptive network-based fuzzy inference system, swarm EKF localization and inspection robot. Th...

  5. Fundamentals of soft robot locomotion.

    Science.gov (United States)

    Calisti, M; Picardi, G; Laschi, C

    2017-05-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human-robot interaction and locomotion. Although field applications have emerged for soft manipulation and human-robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. © 2017 The Author(s).

  6. New trends in medical and service robots human centered analysis, control and design

    CERN Document Server

    Chevallereau, Christine; Pisla, Doina; Bleuler, Hannes; Rodić, Aleksandar

    2016-01-01

    Medical and service robotics integrates several disciplines and technologies such as mechanisms, mechatronics, biomechanics, humanoid robotics, exoskeletons, and anthropomorphic hands. This book presents the most recent advances in medical and service robotics, with a stress on human aspects. It collects the selected peer-reviewed papers of the Fourth International Workshop on Medical and Service Robots, held in Nantes, France in 2015, covering topics on: exoskeletons, anthropomorphic hands, therapeutic robots and rehabilitation, cognitive robots, humanoid and service robots, assistive robots and elderly assistance, surgical robots, human-robot interfaces, BMI and BCI, haptic devices and design for medical and assistive robotics. This book offers a valuable addition to existing literature.

  7. Robotics in endoscopy.

    Science.gov (United States)

    Klibansky, David; Rothstein, Richard I

    2012-09-01

    The increasing complexity of intralumenal and emerging translumenal endoscopic procedures has created an opportunity to apply robotics in endoscopy. Computer-assisted or direct-drive robotic technology allows the triangulation of flexible tools through telemanipulation. The creation of new flexible operative platforms, along with other emerging technology such as nanobots and steerable capsules, can be transformational for endoscopic procedures. In this review, we cover some background information on the use of robotics in surgery and endoscopy, and review the emerging literature on platforms, capsules, and mini-robotic units. The development of techniques in advanced intralumenal endoscopy (endoscopic mucosal resection and endoscopic submucosal dissection) and translumenal endoscopic procedures (NOTES) has generated a number of novel platforms, flexible tools, and devices that can apply robotic principles to endoscopy. The development of a fully flexible endoscopic surgical toolkit will enable increasingly advanced procedures to be performed through natural orifices. The application of platforms and new flexible tools to the areas of advanced endoscopy and NOTES heralds the opportunity to employ useful robotic technology. Following the examples of the utility of robotics from the field of laparoscopic surgery, we can anticipate the emerging role of robotic technology in endoscopy.

  8. Research and development of Ro-boat: an autonomous river cleaning robot

    Science.gov (United States)

    Sinha, Aakash; Bhardwaj, Prashant; Vaibhav, Bipul; Mohommad, Noor

    2013-12-01

    Ro-Boat is an autonomous river cleaning intelligent robot incorporating mechanical design and computer vision algorithm to achieve autonomous river cleaning and provide a sustainable environment. Ro-boat is designed in a modular fashion with design details such as mechanical structural design, hydrodynamic design and vibrational analysis. It is incorporated with a stable mechanical system with air and water propulsion, robotic arms and solar energy source and it is proceed to become autonomous by using computer vision. Both "HSV Color Space" and "SURF" are proposed to use for measurements in Kalman Filter resulting in extremely robust pollutant tracking. The system has been tested with successful results in the Yamuna River in New Delhi. We foresee that a system of Ro-boats working autonomously 24x7 can clean a major river in a city on about six months time, which is unmatched by alternative methods of river cleaning.

  9. 2016 International Symposium on Experimental Robotics

    CERN Document Server

    Nakamura, Yoshihiko; Khatib, Oussama; Venture, Gentiane

    2017-01-01

    Experimental Robotics XV is the collection of papers presented at the International Symposium on Experimental Robotics, Roppongi, Tokyo, Japan on October 3-6, 2016. 73 scientific papers were selected and presented after peer review. The papers span a broad range of sub-fields in robotics including aerial robots, mobile robots, actuation, grasping, manipulation, planning and control and human-robot interaction, but shared cutting-edge approaches and paradigms to experimental robotics. The readers will find a breadth of new directions of experimental robotics. The International Symposium on Experimental Robotics is a series of bi-annual symposia sponsored by the International Foundation of Robotics Research, whose goal is to provide a forum dedicated to experimental robotics research. Robotics has been widening its scientific scope, deepening its methodologies and expanding its applications. However, the significance of experiments remains and will remain at the center of the discipline. The ISER gatherings are...

  10. Robotic nurse duties in the urology operative room: 11 years of experience

    Directory of Open Access Journals (Sweden)

    Ali Abdel Raheem

    2017-04-01

    Full Text Available The robotic nurse plays an essential role in a successful robotic surgery. As part of the robotic surgical team, the robotic nurse must demonstrate a high level of professional knowledge, and be an expert in robotic technology and dealing with robotic malfunctions. Each one of the robotic nursing team “nurse coordinator, scrub-nurse and circulating-nurse” has a certain job description to ensure maximum patient's safety and robotic surgical efficiency. Well-structured training programs should be offered to the robotic nurse to be well prepared, feel confident, and maintain high-quality of care.

  11. [Clinical research progress of direct surgical repair of lumbar spondylolysis in young patients].

    Science.gov (United States)

    Liu, Haichao; Qian, Jixian

    2013-01-01

    To review and summarize the surgical techniques and their outcomes for the treatment of lumbar spondylolysis in young patients by direct surgical repair. Both home and abroad literature on the surgical techniques and their outcomes respectively for the treatment of lumbar spondylolysis in young patients by direct surgical repair was reviewed extensively and summarized. Direct surgical repair of lumbar spondylolysis can offer a simple reduction and fixation for the injured vertebra, which is also in accord with normal anatomy and physiology. In this way, normal anatomy of vertebra can be sustained. As reported surgical techniques of direct repair, such as single lag screw, hook screw, cerclage wire, pedicle screw cable, pedicle screw rod, and pedicle screw hook system, they all can provide acceptable results for lumbar spondylolysis in young patients. Furthermore, to comply strictly with the inclusion criteria of surgical management and select the appropriate internal fixation can also contribute to a good effectiveness. Within the various methods of internal fixation, pedicle screw hook system has been widely recognized. Pedicle screw hook system fixation is simple and safe clinically. With the gradual improvement of this method and the development of minimally invasive technologies, it will have broad application prospects.

  12. Robot 2015 : Second Iberian Robotics Conference : Advances in Robotics

    CERN Document Server

    Moreira, António; Lima, Pedro; Montano, Luis; Muñoz-Martinez, Victor

    2016-01-01

    This book contains a selection of papers accepted for presentation and discussion at ROBOT 2015: Second Iberian Robotics Conference, held in Lisbon, Portugal, November 19th-21th, 2015. ROBOT 2015 is part of a series of conferences that are a joint organization of SPR – “Sociedade Portuguesa de Robótica/ Portuguese Society for Robotics”, SEIDROB – Sociedad Española para la Investigación y Desarrollo de la Robótica/ Spanish Society for Research and Development in Robotics and CEA-GTRob – Grupo Temático de Robótica/ Robotics Thematic Group. The conference organization had also the collaboration of several universities and research institutes, including: University of Minho, University of Porto, University of Lisbon, Polytechnic Institute of Porto, University of Aveiro, University of Zaragoza, University of Malaga, LIACC, INESC-TEC and LARSyS. Robot 2015 was focussed on the Robotics scientific and technological activities in the Iberian Peninsula, although open to research and delegates from other...

  13. Field Research and Parametric Analysis in a Medical-Surgical Unit.

    Science.gov (United States)

    Nanda, Upali; Pati, Sipra; Nejati, Adeleh

    2015-01-01

    To study the workplace in a medical-surgical (med-surg) unit and to identify suboptimal environmental conditions that can be improved in the current unit and avoided in future design, through rapidly deployed field research and timely simulation. Literature emphasizes the importance of the healthcare workplace and the effect on patient outcomes. What is lacking are studies conducted on-site and used for immediate application in design to assess and improve workplace conditions. A rapidly deployed field research and simulation study was conducted in a 40-bed med-surg unit of a large healthcare system as part of the process of designing a new medical tower. Online surveys, systematic behavioral observations, semi-structured interviews, sound studies, and advanced spatial analysis through parametric modeling were conducted. The following created challenges for patient monitoring, care coordination, and management: (1) waste and variability in walking, (2) limited point-of-use access to supplies, (3) large distances traveled for minor tasks, and (4) low visibility and connectivity. The corridor is used as a workspace/communication hub. There is a distinct difference in beginning of day and night shift patterns and between walking "distance" and walking "sequence." There is a tendency for nurses to multitask, but a simulation exercise shows that for key tasks like medication delivery, multitasking may not always reduce walking distances. Co-location of medications, supplies, and nourishment; accommodation for work on wheels; and spatial and technological connectivity between care team and patients should be considered while designing a med-surg unit. Understanding the key activity sequences helps determine the proximity of spaces in relationship to patient rooms and each other. © The Author(s) 2015.

  14. The role of gender and distance mentoring in the surgical education research fellowship.

    Science.gov (United States)

    Falcone, John L; Croteau, Alfred J; Schenarts, Kimberly D

    2015-01-01

    The nature of the mentor-mentee relationship is important in the pursuit of successful research projects. The purpose of this study is to evaluate the mentor-mentee relationships in the Surgical Education Research Fellowship (SERF) based on gender and geographical distances regarding program completion. We hypothesize that there are no differences for SERF program completion rates based on gender pairs and distances between pairs. This was a retrospective study from 2006 to 2011. Mentor-mentee rosters were retrospectively reviewed for program completion, demographics, and PubMeD indexing. Time zone differences and geographic distances between pairs were found with online applications. Chi-square tests were used for categorical variables and nonparametric statistics were carried out using α = 0.05. Of the 82 individuals accepted into the SERF program, 43 (52%) completed the SERF program during the study period. There were no differences in program completion rates based on fellow gender and gender pairing (all p > 0.05). Different-gender pairs that completed the program (n = 17) were indexed more frequently on PubMed than same-gender pairs that completed the program (n = 24) (41% vs 12%, p = 0.04). There were no differences in program completion based on time zone differences (p = 0.20). The median distance between pairs completing the program (n = 35) was greater than that for pairs not completing the program (n = 36) (1741 km [IQR: 895-3117 km] vs 991 km [IQR: 676-2601 km]; p = 0.03). Completion of the SERF program was independent of mentor-mentee gender pairs and time zone differences. There was greater geographical distance separating mentor-mentee pairs that completed the SERF program compared with pairs that did not complete the program. Distance mentoring is a successful and crucial element of the SERF program. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  15. Robots as Confederates

    DEFF Research Database (Denmark)

    Fischer, Kerstin

    2016-01-01

    This paper addresses the use of robots in experimental research for the study of human language, human interaction, and human nature. It is argued that robots make excellent confederates that can be completely controlled, yet which engage human participants in interactions that allow us to study...... numerous linguistic and psychological variables in isolation in an ecologically valid way. Robots thus combine the advantages of observational studies and of controlled experimentation....

  16. Comparison of outcome and cost among open, laparoscopic, and robotic surgical treatments for rectal cancer: A propensity score matched analysis of nationwide inpatient sample data.

    Science.gov (United States)

    Chen, Szu-Ta; Wu, Meng-Che; Hsu, Tzu-Chun; Yen, Debra W; Chang, Chia-Na; Hsu, Wan-Ting; Wang, Chia-Chun; Lee, Matthew; Liu, Shing-Hwa; Lee, Chien-Chang

    2018-03-01

    Population-based studies evaluating outcomes of different approaches for rectal cancer are scarce. We conducted a retrospective cohort study using the Nationwide Inpatient Sample database between 2008 and 2012. We compared the outcomes and costs among rectal cancer patients undergoing robotic, laparoscopic, or open surgeries using propensity scores for adjusted and matched analysis. We identified 194 957 rectal cancer patients. Over the 5-year period, the annual admission number decreased by 13.9%, the in-hospital mortality rate decreased by 32.2%, while the total hospitalization cost increased by 13.6%. Compared with laparoscopic surgery, robotic surgery had significantly lower length of stay (LOS) (OR 0.69, 95%CI 0.57-0.84), comparable wound complications (OR 1.08, 95%CI 0.70-1.65) and higher cost (OR 1.42, 95%CI 1.13-1.79), while open surgery had significantly longer LOS (OR 1.38, 95%CI 1.19-1.59), more wound complications (OR 1.49, 95%CI 1.08-1.79), and comparable cost (OR 0.92, 95%CI 0.79-1.07). There were no difference in in-hospital mortality among three approaches. Laparoscopic surgery was associated with better outcomes than open surgery. Robotic surgery was associated with higher cost, but no advantage over laparoscopic surgery in terms of mortality and complications. Studies on cost-effectiveness of robotic surgery may be warranted. © 2017 Wiley Periodicals, Inc.

  17. Colias: An Autonomous Micro Robot for Swarm Robotic Applications

    Directory of Open Access Journals (Sweden)

    Farshad Arvin

    2014-07-01

    Full Text Available Robotic swarms that take inspiration from nature are becoming a fascinating topic for multi-robot researchers. The aim is to control a large number of simple robots in order to solve common complex tasks. Due to the hardware complexities and cost of robot platforms, current research in swarm robotics is mostly performed by simulation software. The simulation of large numbers of these robots in robotic swarm applications is extremely complex and often inaccurate due to the poor modelling of external conditions. In this paper, we present the design of a low-cost, open-platform, autonomous micro-robot (Colias for robotic swarm applications. Colias employs a circular platform with a diameter of 4 cm. It has a maximum speed of 35 cm/s which enables it to be used in swarm scenarios very quickly over large arenas. Long-range infrared modules with an adjustable output power allow the robot to communicate with its direct neighbours at a range of 0.5 cm to 2 m. Colias has been designed as a complete platform with supporting software development tools for robotics education and research. It has been tested in both individual and swarm scenarios, and the observed results demonstrate its feasibility for use as a micro-sized mobile robot and as a low-cost platform for robot swarm applications.

  18. Situation Assessment for Mobile Robots

    DEFF Research Database (Denmark)

    Beck, Anders Billesø

    Mobile robots have become a mature technology. The first cable guided logistics robots were introduced in the industry almost 60 years ago. In this time the market for mobile robots in industry has only experienced a very modest growth and only 2.100 systems were sold worldwide in 2011. In recent...... years, many other domains have adopted the mobile robots, such as logistics robots at hospitals and the vacuum robots in our homes. However, considering the achievements in research the last 15 years within perception and operation in natural environments together with the reductions of costs in modern...... sensor systems, the growth potential for mobile robot applications are enormous. Many new technological components are available to move the limits of commercial mobile robot applications, but a key hindrance is reliability. Natural environments are complex and dynamic, and thus the risk of robots...

  19. Conceptions of health service robots

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    2015-01-01

    Technology developments create rich opportunities for health service providers to introduce service robots in health care. While the potential benefits of applying robots in health care are extensive, the research into the conceptions of health service robot and its importance for the uptake...... of robotics technology in health care is limited. This article develops a model of the basic conceptions of health service robots that can be used to understand different assumptions and values attached to health care technology in general and health service robots in particular. The article takes...... a discursive approach in order to develop a conceptual framework for understanding the social values of health service robots. First a discursive approach is proposed to develop a typology of conceptions of health service robots. Second, a model identifying four basic conceptions of health service robots...

  20. Look to the Stars - The APUS Observatory: An Innovative Robotic Telescope for Online Astronomical Education and Research

    Science.gov (United States)

    Albin, Edward

    2018-01-01

    We report on the American Public University System’s new robotic telescope, located in Charles Town, WV -- an innovative observatory deployed in an online institution of higher education. The instrument is operated by the Department of Space Studies and is situated atop the university’s new Information Technology building. At the heart of the observatory is a Planewave CDK24 telescope, equipped with a SBIG STX-16803 CCD camera. The telescope is a key technological component in the Department's new undergraduate / graduate astronomy concentration. Since the university is a dedicated online educational institution, the acquisition of a fully remote controlled telescope ties closely into the program's philosophy of quality online instruction. Our robotic observatory is intimately integrated into our astronomy curriculum, with the telescope being utilized for original astronomical education and research purposes. For instance, not only is imagery used in the classroom and for laboratory instruction, graduate students in our MS degree program have an opportunity to collect original telescopic data for research / thesis projects. Examples of ongoing investigations with the telescope include observations of exoplanet transits and variable star photometry. When not in use for specific observing projects, the telescope is scripted to conduct autonomous supernova searches by patrolling dozens of galaxies throughout the night. Our goal is to have the instrument scheduled for continuous observing of the heavens throughout the year on all clear evenings.

  1. Theory Analysis and Experiment Research of the Leg Mechanism for the Human-Carrying Walking Chair Robot

    Directory of Open Access Journals (Sweden)

    Lingfeng Sang

    2014-01-01

    Full Text Available For the high carrying capacity of the human-carrying walking chair robot, in this paper, 2-UPS+UP parallel mechanism is selected as the leg mechanism; then kinematics, workspace, control, and experiment of the leg mechanism are researched in detail. Firstly, design of the whole mechanism is described and degrees of freedom of the leg mechanism are analyzed. Second, the forward position, inverse position, and velocity of leg mechanism are studied. Third, based on the kinematics analysis and the structural constraints, the reachable workspace of 2-UPS+UP parallel mechanism is solved, and then the optimal motion workspace is searched in the reachable workspace by choosing the condition number as the evaluation index. Fourth, according to the theory analysis of the parallel leg mechanism, its control system is designed and the compound position control strategy is studied. Finally, in optimal motion workspace, the compound position control strategy is verified by using circular track with the radius 100 mm; the experiment results show that the leg mechanism moves smoothly and does not tremble obviously. Theory analysis and experiment research of the single leg mechanism provide a theoretical foundation for the control of the quadruped human-carrying walking chair robot.

  2. Implications of the Google’s US 8,996,429 B1 Patent in Cloud Robotics Based Therapeutic Researches

    NARCIS (Netherlands)

    Fosch Villaronga, Eduard; Albo-Canals, Jordi; Neves, Antonio J.R.

    2018-01-01

    Intended for being informative to both legal and engineer communities, this chapter raises awareness on the implications of recent patents in the field of human-robot interaction (HRI) studies. Google patented the use of cloud robotics to create robot personality(-ies). The broad claims of the

  3. Research on scheduling of robotic transient survey for Antarctic Survey Telescopes (AST3)

    Science.gov (United States)

    Liu, Qiang; Wei, Peng; Shang, Zhao-Hui; Ma, Bin; Hu, Yi

    2018-01-01

    Antarctic Survey Telescopes (AST3) are designed to be fully robotic telescopes at Dome A, Antarctica, which aim for highly efficient time-domain sky surveys as well as rapid response to special transient events (e.g., gamma-ray bursts, near-Earth asteroids, supernovae, etc.). Unlike traditional observations, a well-designed real-time survey scheduler is needed in order to implement an automatic survey in a very efficient, reliable and flexible way for the unattended telescopes. We present a study of the survey strategy for AST3 and implementation of its survey scheduler, which is also useful for other survey projects.

  4. Grasping in Robotics

    CERN Document Server

    2013-01-01

    Grasping in Robotics contains original contributions in the field of grasping in robotics with a broad multidisciplinary approach. This gives the possibility of addressing all the major issues related to robotized grasping, including milestones in grasping through the centuries, mechanical design issues, control issues, modelling achievements and issues, formulations and software for simulation purposes, sensors and vision integration, applications in industrial field and non-conventional applications (including service robotics and agriculture).   The contributors to this book are experts in their own diverse and wide ranging fields. This multidisciplinary approach can help make Grasping in Robotics of interest to a very wide audience. In particular, it can be a useful reference book for researchers, students and users in the wide field of grasping in robotics from many different disciplines including mechanical design, hardware design, control design, user interfaces, modelling, simulation, sensors and hum...

  5. Autonomous military robotics

    CERN Document Server

    Nath, Vishnu

    2014-01-01

    This SpringerBrief reveals the latest techniques in computer vision and machine learning on robots that are designed as accurate and efficient military snipers. Militaries around the world are investigating this technology to simplify the time, cost and safety measures necessary for training human snipers. These robots are developed by combining crucial aspects of computer science research areas including image processing, robotic kinematics and learning algorithms. The authors explain how a new humanoid robot, the iCub, uses high-speed cameras and computer vision algorithms to track the objec

  6. Improving quality of breast cancer surgery through development of a national breast cancer surgical outcomes (BRCASO research database

    Directory of Open Access Journals (Sweden)

    Aiello Bowles Erin J

    2012-04-01

    Full Text Available Abstract Background Common measures of surgical quality are 30-day morbidity and mortality, which poorly describe breast cancer surgical quality with extremely low morbidity and mortality rates. Several national quality programs have collected additional surgical quality measures; however, program participation is voluntary and results may not be generalizable to all surgeons. We developed the Breast Cancer Surgical Outcomes (BRCASO database to capture meaningful breast cancer surgical quality measures among a non-voluntary sample, and study variation in these measures across providers, facilities, and health plans. This paper describes our study protocol, data collection methods, and summarizes the strengths and limitations of these data. Methods We included 4524 women ≥18 years diagnosed with breast cancer between 2003-2008. All women with initial breast cancer surgery performed by a surgeon employed at the University of Vermont or three Cancer Research Network (CRN health plans were eligible for inclusion. From the CRN institutions, we collected electronic administrative data including tumor registry information, Current Procedure Terminology codes for breast cancer surgeries, surgeons, surgical facilities, and patient demographics. We supplemented electronic data with medical record abstraction to collect additional pathology and surgery detail. All data were manually abstracted at the University of Vermont. Results The CRN institutions pre-filled 30% (22 out of 72 of elements using electronic data. The remaining elements, including detailed pathology margin status and breast and lymph node surgeries, required chart abstraction. The mean age was 61 years (range 20-98 years; 70% of women were diagnosed with invasive ductal carcinoma, 20% with ductal carcinoma in situ, and 10% with invasive lobular carcinoma. Conclusions The BRCASO database is one of the largest, multi-site research resources of meaningful breast cancer surgical quality data

  7. State of the art of robotic surgery related to vision: brain and eye applications of newly available devices

    Science.gov (United States)

    Nuzzi, Raffaele

    2018-01-01

    Background Robot-assisted surgery has revolutionized many surgical subspecialties, mainly where procedures have to be performed in confined, difficult to visualize spaces. Despite advances in general surgery and neurosurgery, in vivo application of robotics to ocular surgery is still in its infancy, owing to the particular complexities of microsurgery. The use of robotic assistance and feedback guidance on surgical maneuvers could improve the technical performance of expert surgeons during the initial phase of the learning curve. Evidence acquisition We analyzed the advantages and disadvantages of surgical robots, as well as the present applications and future outlook of robotics in neurosurgery in brain areas related to vision and ophthalmology. Discussion Limitations to robotic assistance remain, that need to be overcome before it can be more widely applied in ocular surgery. Conclusion There is heightened interest in studies documenting computerized systems that filter out hand tremor and optimize speed of movement, control of force, and direction and range of movement. Further research is still needed to validate robot-assisted procedures. PMID:29440943

  8. Open versus robotic cystectomy: Comparison of outcomes

    Directory of Open Access Journals (Sweden)

    Rachel B. Davis

    2016-06-01

    Full Text Available Open radical cystectomy (ORC is the current gold standard treatment for muscle invasive bladder cancer. As surgeons become more proficient in minimally invasive and robotic surgical techniques, the number of patients undergoing robotic-assisted radical cystectomy (RARC is increasing. Although minimally invasive methods are on the rise, research that critically compares open surgery with robotic methods is limited. In this review, we surveyed and appraised the current literature comparing ORC and RARC with regards to perioperative, functional, and oncologic outcomes in order to distinguish the benefits and disadvantages of each method. Here we report that RARC is associated with several perioperative advantages over ORC such as lower estimated blood loss and transfusion rate, and possibly faster gastrointestinal recovery, lower narcotic requirement, and shorter length of stay. ORC is less costly and permits less time in the operating room. Recent data suggests that there is no difference between ORC and RARC when comparing urinary continence and postoperative quality of life. Moreover, ORC and RARC are both associated with similar rates of obtaining positive surgical margins, lymph node yield, and recurrence. However, RARC patients had an increased likelihood of having distant metastases to extrapelvic lymph nodes and the peritoneum. At this point, it is unclear if ORC or RARC has superior patient outcomes, and more research is needed to ascertain management-altering conclusions.

  9. Robotics in Orthopedics: A Brave New World.

    Science.gov (United States)

    Parsley, Brian S

    2018-02-16

    Future health-care projection projects a significant growth in population by 2020. Health care has seen an exponential growth in technology to address the growing population with the decreasing number of physicians and health-care workers. Robotics in health care has been introduced to address this growing need. Early adoption of robotics was limited because of the limited application of the technology, the cumbersome nature of the equipment, and technical complications. A continued improvement in efficacy, adaptability, and cost reduction has stimulated increased interest in robotic-assisted surgery. The evolution in orthopedic surgery has allowed for advanced surgical planning, precision robotic machining of bone, improved implant-bone contact, optimization of implant placement, and optimization of the mechanical alignment. The potential benefits of robotic surgery include improved surgical work flow, improvements in efficacy and reduction in surgical time. Robotic-assisted surgery will continue to evolve in the orthopedic field. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Conceptions of health service robots

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    2015-01-01

    Technology developments create rich opportunities for health service providers to introduce service robots in health care. While the potential benefits of applying robots in health care are extensive, the research into the conceptions of health service robot and its importance for the uptake...... the two dimensions we identify four basic conceptions of health service robots, conceptualizing health service robots as critical, practical, desirable or affectionate, respectively. The article concludes with an outline of managerial concerns and points of departure for future research. Keywords: Service...... of robotics technology in health care is limited. This article develops a model of the basic conceptions of health service robots that can be used to understand different assumptions and values attached to health care technology in general and health service robots in particular. The article takes...

  11. MARYLAND ROBOTICS CENTER

    Data.gov (United States)

    Federal Laboratory Consortium — The Maryland Robotics Center is an interdisciplinary research center housed in the Institute for Systems Research (link is external)within the A. James Clark School...

  12. Current status of robot-assisted surgery.

    Science.gov (United States)

    Ng, Ada T L; Tam, P C

    2014-06-01

    The introduction of robot-assisted surgery, and specifically the da Vinci Surgical System, is one of the biggest breakthroughs in surgery since the introduction of anaesthesia, and represents the most significant advancement in minimally invasive surgery of this decade. One of the first surgical uses of the robot was in orthopaedics, neurosurgery, and cardiac surgery. However, it was the use in urology, and particularly in prostate surgery, that led to its widespread popularity. Robotic surgery, is also widely used in other surgical specialties including general surgery, gynaecology, and head and neck surgery. In this article, we reviewed the current applications of robot-assisted surgery in different surgical specialties with an emphasis on urology. Clinical results as compared with traditional open and/or laparoscopic surgery and a glimpse into the future development of robotics were also discussed. A short introduction of the emerging areas of robotic surgery were also briefly reviewed. Despite the increasing popularity of robotic surgery, except in robot-assisted radical prostatectomy, there is no unequivocal evidence to show its superiority over traditional laparoscopic surgery in other surgical procedures. Further trials are eagerly awaited to ascertain the long-term results and potential benefits of robotic surgery.

  13. Advances in Robotics and Virtual Reality

    CERN Document Server

    Hassanien, Aboul

    2012-01-01

    A beyond human knowledge and reach, robotics is strongly involved in tackling challenges of new emerging multidisciplinary fields. Together with humans, robots are busy exploring and working on the new generation of ideas and problems whose solution is otherwise impossible to find. The future is near when robots will sense, smell and touch people and their lives. Behind this practical aspect of human-robotics, there is a half a century spanned robotics research, which transformed robotics into a modern science. The Advances in Robotics and Virtual Reality is a compilation of emerging application areas of robotics. The book covers robotics role in medicine, space exploration and also explains the role of virtual reality as a non-destructive test bed which constitutes a premise of further advances towards new challenges in robotics. This book, edited by two famous scientists with the support of an outstanding team of fifteen authors, is a well suited reference for robotics researchers and scholars from related ...

  14. Socially intelligent robots: dimensions of human-robot interaction.

    Science.gov (United States)

    Dautenhahn, Kerstin

    2007-04-29

    Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.

  15. Effects of Child-Robot Interactions on the Vocalization Production of Young Children with Disabilities. Social Robots. Research Reports, Number 4

    Science.gov (United States)

    Dunst, Carl J.; Trivette, Carol M.; Hamby, Deborah W.; Prior, Jeremy; Derryberry, Graham

    2013-01-01

    Findings from two studies investigating the effects of a socially interactive robot on the vocalization production of young children with disabilities are reported. The two studies included seven children with autism, two children with Down syndrome, and two children with attention deficit disorders. The Language ENvironment Analysis (LENA)…

  16. Human-Robot Interaction

    Science.gov (United States)

    Sandor, Aniko; Cross, E. Vincent, II; Chang, Mai Lee

    2015-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces affect the human's ability to perform tasks effectively and efficiently when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. For efficient and effective remote navigation of a rover, a human operator needs to be aware of the robot's environment. However, during teleoperation, operators may get information about the environment only through a robot's front-mounted camera causing a keyhole effect. The keyhole effect reduces situation awareness which may manifest in navigation issues such as higher number of collisions, missing critical aspects of the environment, or reduced speed. One way to compensate for the keyhole effect and the ambiguities operators experience when they teleoperate a robot is adding multiple cameras and including the robot chassis in the camera view. Augmented reality, such as overlays, can also enhance the way a person sees objects in the environment or in camera views by making them more visible. Scenes can be augmented with integrated telemetry, procedures, or map information. Furthermore, the addition of an exocentric (i.e., third-person) field of view from a camera placed in the robot's environment may provide operators with the additional information needed to gain spatial awareness of the robot. Two research studies investigated possible mitigation approaches to address the keyhole effect: 1) combining the inclusion of the robot chassis in the camera view with augmented reality overlays, and 2) modifying the camera

  17. Evolutionary robotics

    Indian Academy of Sciences (India)

    In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...

  18. Filigree Robotics

    DEFF Research Database (Denmark)

    Tamke, Martin; Evers, Henrik Leander; Clausen Nørgaard, Esben

    2016-01-01

    Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture.......Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture....

  19. [Research of joint-robotics-based design of biomechanics testing device on human spine].

    Science.gov (United States)

    Deng, Guoyong; Tian, Lianfang; Mao, Zongyuan

    2009-12-01

    This paper introduces the hardware and software of a biomechanical robot-based testing device. The bottom control orders, posture and torque data transmission, and the control algorithms are integrated in a unified visual control platform by Visual C+ +, with easy control and management. By using hybrid force-displacement control method to load the human spine, we can test the organizational structure and the force state of the FSU (Functional spinal unit) well, which overcomes the shortcomings due to the separation of the force and displacement measurement, thus greatly improves the measurement accuracy. Also it is esay to identify the spinal degeneration and the load-bearing impact on the organizational structure of the FSU after various types of surgery.

  20. Evaluation of Patient Outcome and Satisfaction after Surgical Treatment of Adolescent Idiopathic Scoliosis Using Scoliosis Research Society-30

    OpenAIRE

    Ghandehari, Hasan; Mahabadi, Maryam Ameri; Mahdavi, Seyed Mani; Shahsavaripour, Ali; Seyed Tari, Hossein Vahid; Safdari, Farshad

    2015-01-01

    Background: Adolescent idiopathic scoliosis (AIS) may lead to physical and mental problems. It also can adversely affect patient satisfaction and the quality of life. In this study, we assessed the outcomes and satisfaction rate after surgical treatment of AIS using scoliosis research society-30 questionnaire (SRS-30). Methods: We enrolled 135 patients with AIS undergoing corrective surgery. Patients were followed for at least 2 years. We compared pre- and post-operative x-rays in terms of Co...

  1. Advanced robot locomotion.

    Energy Technology Data Exchange (ETDEWEB)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  2. Rehearsal for the Robot Revolution

    DEFF Research Database (Denmark)

    Jochum, Elizabeth; Goldberg, Ken

    This paper considers the use of tele-operated and autonomous robots in live performance. Theatre is a conducive to studying what makes robots compelling and engaging. Because theatre is a narrowly defined domain in which robots can excel, it is a useful test bed for exploring issues...... that are central to social robotics. However automated performances that merely substitute robotic actors for human ones do not always capture our imagination or prove entertaining. While some plays explore ambivalence to robots or “misbehaving machines” thematically (such as R.U.R.), the exigencies of live...... theatre do not allow for editing or special effects. Unlike film, robots onstage must be highly calibrated and run the risk of appearing like over-rehearsed actors. How do artists create engaging performances while ensuring reliable and robust performances? What can robot designers and researchers learn...

  3. Implementation of a Robot Hand Controlled with Android Software

    OpenAIRE

    TEZEL, Cengiz; GÜNAY, Ozan; Kayisli, Korhan

    2018-01-01

    Bionic robots intended to be used in the medical fieldare currently in the robotic sector, where many researches have been done.Bionic robot studies started with robot arm were developed as robot hands,robot legs and humanoid robots. In the medical sector, they were inspired byprosthetic arms, legs and hand products and took their place in roboticssystems. With the development of 3-D printer technology, these roboticexercises made at the medical field have gained speed. In this article, it is...

  4. A new technique for feeding dogs with a congenital cleft palate for surgical research.

    Science.gov (United States)

    Martínez-Sanz, Elena; Casado-Gómez, Inmaculada; Martín, Concepción; López-Gordillo, Yamila; González, Pablo; Rodríguez-Bobada, Cruz; Paradas, Irene; González-Meli, Beatriz; Maldonado, Estela; Maestro, Carmen; Prados, Juan Carlos; Martínez-Álvarez, Concepción

    2011-04-01

    In humans, cleft palate (CP) is one of the most common malformations. Although surgeons use palatoplasty to close CP defects in children, its consequences for subsequent facial growth have prompted investigations into other novel surgical alternatives. The animal models of CP used to evaluate new surgical treatments are frequently obtained by creating surgically induced clefts in adult dogs. This procedure has been ethically criticized due to its severity and questionable value as an animal model for human CP. Dogs born with a congenital CP would be much better for this purpose, provided they developed CP at a sufficient rate and could be fed. Up until now, feeding these pups carried the risk of aspiration pneumonia, while impeding normal suckling and chewing, and thus compromising orofacial growth. We developed a technique for feeding dog pups with CP from birth to the time of surgery using two old Spanish pointer dog pups bearing a complete CP. This dog strain develops CP in 15-20% of the offspring spontaneously. Custom-made feeding teats and palatal prostheses adapted to the pups' palates were made from thermoplastic plates. This feeding technique allowed lactation, eating and drinking in the pups with CP, with only sporadic rhinitis. To determine whether the use of this palatal prosthesis interferes with palatal growth, the palates of three littermate German shorthaired pointer pups without CP, either wearing or not wearing (controls) the prosthesis, were measured. The results showed that the permanent use of this prosthesis does not impede palatal growth in the pups.

  5. Robotic assisted andrological surgery

    Science.gov (United States)

    Parekattil, Sijo J; Gudeloglu, Ahmet

    2013-01-01

    The introduction of the operative microscope for andrological surgery in the 1970s provided enhanced magnification and accuracy, unparalleled to any previous visual loop or magnification techniques. This technology revolutionized techniques for microsurgery in andrology. Today, we may be on the verge of a second such revolution by the incorporation of robotic assisted platforms for microsurgery in andrology. Robotic assisted microsurgery is being utilized to a greater degree in andrology and a number of other microsurgical fields, such as ophthalmology, hand surgery, plastics and reconstructive surgery. The potential advantages of robotic assisted platforms include elimination of tremor, improved stability, surgeon ergonomics, scalability of motion, multi-input visual interphases with up to three simultaneous visual views, enhanced magnification, and the ability to manipulate three surgical instruments and cameras simultaneously. This review paper begins with the historical development of robotic microsurgery. It then provides an in-depth presentation of the technique and outcomes of common robotic microsurgical andrological procedures, such as vasectomy reversal, subinguinal varicocelectomy, targeted spermatic cord denervation (for chronic orchialgia) and robotic assisted microsurgical testicular sperm extraction (microTESE). PMID:23241637

  6. Medical robots in cardiac surgery - application and perspectives.

    Science.gov (United States)

    Kroczek, Karolina; Kroczek, Piotr; Nawrat, Zbigniew

    2017-03-01

    Medical robots offer new standards and opportunities for treatment. This paper presents a review of the literature and market information on the current situation and future perspectives for the applications of robots in cardiac surgery. Currently in the United States, only 10% of thoracic surgical procedures are conducted using robots, while globally this value remains below 1%. Cardiac and thoracic surgeons use robotic surgical systems increasingly often. The goal is to perform more than one hundred thousand minimally invasive robotic surgical procedures every year. A surgical robot can be used by surgical teams on a rotational basis. The market of surgical robots used for cardiovascular and lung surgery was worth 72.2 million dollars in 2014 and is anticipated to reach 2.2 billion dollars by 2021. The analysis shows that Poland should have more than 30 surgical robots. Moreover, Polish medical teams are ready for the introduction of several robots into the field of cardiac surgery. We hope that this market will accommodate the Polish Robin Heart robots as well.

  7. Feasibility of robot-assisted radical prostatectomy for very-high risk prostate cancer: surgical and oncological outcomes in men aged ≥70 years

    Directory of Open Access Journals (Sweden)

    Kyo Chul Koo

    2014-09-01

    Conclusions: RALP-PLND is a feasible option for VHPCa in elderly patients with satisfactory oncologic outcomes; however, functional outcomes were not as favorable. Patients who are unable to accept the risk of adjuvant therapy and its side effects or incontinence should be deterred from surgical treatment, and other options such as radiation therapy could be an alternative.

  8. A propensity score-matched comparison of surgical precision obtained by using volumetric analysis between robot-assisted laparoscopic and open partial nephrectomy for T1 renal cell carcinoma: a retrospective non-randomized observational study of initial outcomes.

    Science.gov (United States)

    Takagi, Toshio; Kondo, Tsunenori; Tachibana, Hidekazu; Iizuka, Junpei; Omae, Kenji; Kobayashi, Hirohito; Yoshida, Kazuhiko; Hashimoto, Yasunobu; Tanabe, Kazunari

    2016-10-01

    We compared surgical outcomes between robot-assisted laparoscopic partial nephrectomy (RAPN) and open partial nephrectomy (OPN) by using volumetric analysis in a propensity score-matched analysis. We analyzed the records of 279 patients with normal contralateral kidneys who underwent RAPN or OPN for T1 renal tumors between 2012 and 2014. Volumetric studies to assess the vascularized parenchymal volume of the operated kidney were performed 2 months preoperatively and 6 months postoperatively. Patient data, including age, body mass index, presence of hypertension and/or diabetes mellitus, American Society of Anesthesiologists score, tumor size, preoperative estimated glomerular filtration rate, and tumor complexity using the renal nephrometry score, were matched 1:1 using propensity score matching between groups. This cohort included 100 patients who underwent RAPN and 179 who underwent OPN. After matching, 48 patients were included in each group. Mean tumor diameter was 31 mm, and about 14 % were high-complexity tumors (RENAL score 10-12). The RAPN and OPN groups showed no significant differences in the rate of preservation of global renal function (95 vs. 92 %) and parenchymal volume of the operated kidney (84 vs. 79 %). Similarly, urological complications did not significantly differ between groups. Surgical margins were negative in all tumors. Patients who underwent RAPN had lower estimated blood loss (p < 0.0001) and shorter postoperative length of hospital stay (p < 0.0001) than those who underwent OPN. RAPN can offer acceptable surgical outcomes and precision, compared to OPN, with decreased estimated blood loss and hospital stay.

  9. Robotic surgery in gynecology

    Directory of Open Access Journals (Sweden)

    Jean eBouquet De Jolinière

    2016-05-01

    Full Text Available Abstract Minimally invasive surgery (MIS can be considered as the greatest surgical innovation over the past thirty years. It revolutionized surgical practice with well-proven advantages over traditional open surgery: reduced surgical trauma and incision-related complications, such as surgical-site infections, postoperative pain and hernia, reduced hospital stay, and improved cosmetic outcome. Nonetheless, proficiency in MIS can be technically challenging as conventional laparoscopy is associated with several limitations as the two-dimensional (2D monitor reduction in-depth perception, camera instability, limited range of motion and steep learning curves. The surgeon has a low force feedback which allows simple gestures, respect for tissues and more effective treatment of complications.Since 1980s several computer sciences and robotics projects have been set up to overcome the difficulties encountered with conventional laparoscopy, to augment the surgeon's skills, achieve accuracy and high precision during complex surgery and facilitate widespread of MIS. Surgical instruments are guided by haptic interfaces that replicate and filter hand movements. Robotically assisted technology offers advantages that include improved three- dimensional stereoscopic vision, wristed instruments that improve dexterity, and tremor canceling software that improves surgical precision.

  10. Research of temperature field measurement using a flexible temperature sensor array for robot sensing skin

    Science.gov (United States)

    Huang, Ying; Wu, Siyu; Li, Ruiqi; Yang, Qinghua; Zhang, Yugang; Liu, Caixia

    2013-10-01

    This paper presents a novel temperature sensor array by dispensing conductive composites on a flexible printed circuit board which is able to acquire the ambient temperature. The flexible temperature sensor array was fabricated by using carbon fiber-filled silicon rubber based composites on a flexible polyimide circuit board, which can both ensure their high flexibility. It found that CF with 12 wt% could be served as the best conductive filler for higher temperature sensitivity and better stability comparing with some other proportion for dynamic range from 30&° to 90°. The preparation of the temperature sensitive material has also been described in detail. Connecting the flexible sensor array with a data acquisition card and a personal computer (PC), some heat sources with different shapes were loaded on the sensor array; the detected results were shown in the interface by LabVIEW software. The measured temperature contours are in good agreement with the shapes and amplitudes of different heat sources. Furthermore, in consideration of the heat dissipation in the air, the relationship between the resistance and the distance of heat sources with sensor array was also detected to verify the accuracy of the sensor array, which is also a preparation for our future work. Experimental results demonstrate the effectiveness and accuracy of the developed flexible sensor array, and it can be used as humanoid artificial skin for sensation system of robots.

  11. Robot-assisted segmental resection for intralobar pulmonary sequestration

    Directory of Open Access Journals (Sweden)

    J. Konecna

    2016-01-01

    Conclusion: We highlight the role of robotic technology offering three-dimensional view and excellent dexterity enhancing the surgical performance and getting the surgical procedure more precise and safer. This could be useful especially in case of challenging sublobar resections.

  12. Open Issues in Evolutionary Robotics.

    Science.gov (United States)

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.

  13. Robotic Hand

    Science.gov (United States)

    1993-01-01

    The Omni-Hand was developed by Ross-Hime Designs, Inc. for Marshall Space Flight Center (MSFC) under a Small Business Innovation Research (SBIR) contract. The multiple digit hand has an opposable thumb and a flexible wrist. Electric muscles called Minnacs power wrist joints and the interchangeable digits. Two hands have been delivered to NASA for evaluation for potential use on space missions and the unit is commercially available for applications like hazardous materials handling and manufacturing automation. Previous SBIR contracts resulted in the Omni-Wrist and Omni-Wrist II robotic systems, which are commercially available for spray painting, sealing, ultrasonic testing, as well as other uses.

  14. Light Robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    Light Robotics - Structure-Mediated Nanobiophotonics covers the latest means of sculpting of both light and matter for achieving bioprobing and manipulation at the smallest scales. The synergy between photonics, nanotechnology and biotechnology spans the rapidly growing field of nanobiophotonics...... how nanophotonics can productively be used in both biomedical and life sciences, allowing readers to clearly see how structure-mediated nanobiophotonics can be used to increase our engineering toolbox for biology at the smallest scales. This book will be of great use to researchers and scientists...

  15. Robotics: The next step?

    Science.gov (United States)

    Broeders, Ivo A M J

    2014-02-01

    Robotic systems were introduced 15 years ago to support complex endoscopic procedures. The technology is increasingly used in gastro-intestinal surgery. In this article, literature on experimental- and clinical research is reviewed and ergonomic issues are discussed. literature review was based on Medline search using a large variety of search terms, including e.g. robot(ic), randomized, rectal, oesophageal, ergonomics. Review articles on relevant topics are discussed with preference. There is abundant evidence of supremacy in performing complex endoscopic surgery tasks when using the robot in an experimental setting. There is little high-level evidence so far on translation of these merits to clinical practice. Robotic systems may appear helpful in complex gastro-intestinal surgery. Moreover, dedicated computer based technology integrated in telepresence systems opens the way to integration of planning, diagnostics and therapy. The first high tech add-ons such as near infrared technology are under clinical evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Prolegomena to Social Robotics

    DEFF Research Database (Denmark)

    Nørskov, Marco

    2011-01-01

    We have begun to use robots in central areas of our lives, from health care to warfare, from education to entertainment—for tasks that we humans cannot perform and tasks that we simply do not wish to perform. This prospect challenges our values and cultural self-understanding. Public debate...... could qualify as a robot in some sense, depending on the definitions used. Nor does it aim to do applied ethics, although it is framed in the setting of ethics here. Its main research objective is to pose the question of how we should conceive of ourselves and our interactions with robots from......, the dissertation aims to illustrate the theoretical value of ‘intercultural philosophy of technology,’ as well as its potential practical implications for concrete design considerations of sociable robots and general attitudinal shifts in human-robot interaction....

  17. Advanced robotics and remote handling

    International Nuclear Information System (INIS)

    Abel, E.

    1987-01-01

    Applications for nuclear advance robotics include fuel fabrication, health physics surveillance, decontamination, reactor inspection and repair, refuelling, hot cell manipulation, remote maintenance, posting and transfer, reprocessing, waste drum processing, decommissioning and inspection of flasks and pipework. The major problem preventing widespread application of advanced robotics to nuclear facilities is radiation damage to robotic subsystems. Some of the robotics terminology is explained. Some of the latest equipment is described including WARRIOR, a gas-cooled reactor repair servo-manipulator and Scobotman, a heavy duty servomanipulator. The research and development of robots for use in the nuclear industry in many laboratories throughout the world is summarized. (UK)

  18. Mobile robotics for CANDU maintenance

    International Nuclear Information System (INIS)

    Lipsett, M.G.; Rody, K.H.

    1996-01-01

    Although robotics researchers have been promising that robotics would soon be performing tasks in hazardous environments, the reality has yet to live up to the hype. The presently available crop of robots suitable for deployment in industrial situations are remotely operated, requiring skilled users. This talk describes cases where mobile robots have been used successfully in CANDU stations, discusses the difficulties in using mobile robots for reactor maintenance, and provides near-term goals for achievable improvements in performance and usefulness. (author) 5 refs., 2 ills

  19. da Vinci robotic partial nephrectomy for renal cell carcinoma: an atlas of the four-arm technique

    OpenAIRE

    Bhayani, Sam B.

    2008-01-01

    da Vinci robotic surgery is becoming a standard alternative to open and laparoscopic surgical techniques. Robotic partial nephrectomy has been described in limited numbers. In this article, a surgical atlas of the transperitoneal four-arm approach to robotic partial nephrectomy is outlined. Surgical pearls, pitfalls, and limitations are reviewed.

  20. KC-135 materials handling robotics

    Science.gov (United States)

    Workman, Gary L.

    1991-01-01

    Robot dynamics and control will become an important issue for implementing productive platforms in space. Robotic operations will become necessary for man-tended stations and for efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to an anticipated increase in acceleration levels due to manipulator motion and for safety concerns. The objective of this study will be to provide baseline data to meet that need. Most texts and papers dealing with the kinematics and dynamics of robots assume that the manipulator is composed of joints separated by rigid links. However, in recent years several groups have begun to study the dynamics of flexible manipulators, primarily for applying robots in space and for improving the efficiency and precision of robotic systems. Robotic systems which are being planned for implementation in space have a number of constraints to overcome. Additional concepts which have to be worked out in any robotic implementation for a space platform include teleoperation and degree of autonomous control. Some significant results in developing a robotic workcell for performing robotics research on the KC-135 aircraft in preperation for space-based robotics applications in the future were generated. In addition, it was shown that TREETOPS can be used to simulate the dynamics of robot manipulators for both space and ground-based applications.

  1. Research on the Obstacle Negotiation Strategy for the Heavy-duty Six-legged Robot based on Force Control

    Directory of Open Access Journals (Sweden)

    Li Mantian

    2017-01-01

    Full Text Available To make heavy-duty six-legged robots without environment reconstruction system negotiate obstacles after the earthquake successfully, an obstacle negotiation strategy is described in this paper. The reflection strategy is generated by the information of plantar force sensors and Bezier Curve is used to plan trajectory. As the heavy-duty six-legged robot has a large inertia, force controller is necessary to ensure the robot not to lose stability while negotiating obstacles. Impedance control is applied to reduce the impact of collision and active force control is applied to adjust the pose of the robot. The robot can walk through zones that are filled with obstacles automatically because of force control. Finally, the algorithm is verified in a simulation environment.

  2. Robotics in medicine

    Science.gov (United States)

    Kuznetsov, D. N.; Syryamkin, V. I.

    2015-11-01

    Modern technologies play a very important role in our lives. It is hard to imagine how people can get along without personal computers, and companies - without powerful computer centers. Nowadays, many devices make modern medicine more effective. Medicine is developing constantly, so introduction of robots in this sector is a very promising activity. Advances in technology have influenced medicine greatly. Robotic surgery is now actively developing worldwide. Scientists have been carrying out research and practical attempts to create robotic surgeons for more than 20 years, since the mid-80s of the last century. Robotic assistants play an important role in modern medicine. This industry is new enough and is at the early stage of development; despite this, some developments already have worldwide application; they function successfully and bring invaluable help to employees of medical institutions. Today, doctors can perform operations that seemed impossible a few years ago. Such progress in medicine is due to many factors. First, modern operating rooms are equipped with up-to-date equipment, allowing doctors to make operations more accurately and with less risk to the patient. Second, technology has enabled to improve the quality of doctors' training. Various types of robots exist now: assistants, military robots, space, household and medical, of course. Further, we should make a detailed analysis of existing types of robots and their application. The purpose of the article is to illustrate the most popular types of robots used in medicine.

  3. Persistent Müllerian duct structures presenting as hematuria in an adult: Case report of robotic surgical removal and review of the literature

    Directory of Open Access Journals (Sweden)

    L I Smith-Harrison

    2015-01-01

    Full Text Available Persistent Müllerian duct syndrome is a rare genetic disorder characterized by a male with retained Müllerian structures. Remnant excision must be considered due to the possibility of malignant degeneration. We review a case of delayed diagnosis in a 25-year-old man presenting with hematuria. Preoperative counseling must emphasize the risk of malignancy versus the risks to fertility. The da Vinci robot offers a novel, safe approach for excision of the relevant Müllerian structures. Dissection should be limited to structures superior to the cavernosal neurovascular bundles to preserve the continence and erectile function. A semen analysis is recommended preoperatively to determine effects on fertility.

  4. Integration of New Technology for Research in the Emergency Department: Feasibility of Deploying a Robotic Assessment Tool for Mild Traumatic Brain Injury Evaluation.

    Science.gov (United States)

    Subbian, Vignesh; Ratcliff, Jonathan J; Meunier, Jason M; Korfhagen, Joseph J; Beyette, Fred R; Shaw, George J

    2015-01-01

    The objective of this paper is to demonstrate the effective deployment of a robotic assessment tool for the evaluation of mild traumatic brain injury (mTBI) patients in a busy, resource-constrained, urban emergency department (ED). Functional integration of new robotic technology for research in the ED presented several obstacles that required a multidisciplinary approach, including participation from electrical and computer engineers, emergency medicine clinicians, and clinical operations staff of the hospital. Our team addressed many challenges in deployment of this advanced technology including: 1) adapting the investigational device for the unique clinical environment; 2) acquisition and maintenance of appropriate testing space for point-of-care assessment; and 3) dedicated technical support and upkeep of the device. Upon successful placement of the robotic device in the ED, the clinical study required screening of all patients presenting to the ED with complaints of head injury. Eligible patients were enrolled and tested using a robot-assisted test battery. Three weeks after the injury, patients were contacted to complete follow-up assessments. Adapting the existing technology to meet anticipated physical constraints of the ED was performed by engineering a mobile platform. Due to the large footprint of the device, it was frequently moved before ultimately being fully integrated into the ED. Over 14 months, 1423 patients were screened. Twenty-eight patients could not be enrolled because the device was unavailable due to operations limitations. Technical problems with the device resulted in failure to include 20 patients. A total of 66 mTBI patients were enrolled and 42 of them completed both robot-assisted testing and follow-up assessment. Successful completion of screening and enrollment demonstrated that the challenges associated with integration of investigational devices into the ED can be effectively addressed through a collaborative patient

  5. The debate over robotics in benign gynecology.

    Science.gov (United States)

    Rardin, Charles R

    2014-05-01

    The debate over the role of the da Vinci surgical robotic platform in benign gynecology is raging with increasing fervor and, as product liability issues arise, greater financial stakes. Although the best currently available science suggests that, in the hands of experts, robotics offers little in surgical advantage over laparoscopy, at increased expense, the observed decrease in laparotomy for hysterectomy is almost certainly, at least in part, attributable to the availability of the robot. In this author's opinion, the issue is not whether the robot has any role but rather to define the role in an institutional environment that also supports the safe use of vaginal and laparoscopic approaches in an integrated minimally invasive surgery program. Programs engaging robotic surgery should have a clear and self-determined regulatory process and should resist pressures in place that may preferentially support robotics over other forms of minimally invasive surgery. Copyright © 2014 Mosby, Inc. All rights reserved.

  6. The evolution of robotic general surgery.

    Science.gov (United States)

    Wilson, E B

    2009-01-01

    Surgical robotics in general surgery has a relatively short but very interesting evolution. Just as minimally invasive and laparoscopic techniques have radically changed general surgery and fractionated it into subspecialization, robotic technology is likely to repeat the process of fractionation even further. Though it appears that robotics is growing more quickly in other specialties, the changes digital platforms are causing in the general surgical arena are likely to permanently alter general surgery. This review examines the evolution of robotics in minimally invasive general surgery looking forward to a time where robotics platforms will be fundamental to elective general surgery. Learning curves and adoption techniques are explored. Foregut, hepatobiliary, endocrine, colorectal, and bariatric surgery will be examined as growth areas for robotics, as well as revealing the current uses of this technology.

  7. Robotic Surgery for Lung Cancer

    Science.gov (United States)

    Ambrogi, Marcello C; Fanucchi, Olivia; Melfi, Franco; Mussi, Alfredo

    2014-01-01

    During the last decade the role of minimally invasive surgery has been increased, especially with the introduction of the robotic system in the surgical field. The most important advantages of robotic system are represented by the wristed instrumentation and the depth perception, which can overcome the limitation of traditional thoracoscopy. However, some data still exist in literature with regard to robotic lobectomy. The majority of papers are focused on its safety and feasibility, but further studies with long follow-ups are necessary in order to assess the oncologic outcomes. We reviewed the literature on robotic lobectomy, with the main aim to better define the role of robotic system in the clinical practice. PMID:25207216

  8. [Robot-assisted pancreatic resection].

    Science.gov (United States)

    Müssle, B; Distler, M; Weitz, J; Welsch, T

    2017-06-01

    Although robot-assisted pancreatic surgery has been considered critically in the past, it is nowadays an established standard technique in some centers, for distal pancreatectomy and pancreatic head resection. Compared with the laparoscopic approach, the use of robot-assisted surgery seems to be advantageous for acquiring the skills for pancreatic, bile duct and vascular anastomoses during pancreatic head resection and total pancreatectomy. On the other hand, the use of the robot is associated with increased costs and only highly effective and professional robotic programs in centers for pancreatic surgery will achieve top surgical and oncological quality, acceptable operation times and a reduction in duration of hospital stay. Moreover, new technologies, such as intraoperative fluorescence guidance and augmented reality will define additional indications for robot-assisted pancreatic surgery.

  9. Human-Robot Teams for Unknown and Uncertain Environments

    Science.gov (United States)

    Fong, Terry

    2015-01-01

    Man-robot interaction is the study of interactions between humans and robots. It is often referred as HRI by researchers. Human-robot interaction is a multidisciplinary field with contributions from human-computer interaction, artificial intelligence.

  10. Achievement report on research and development of medical and welfare equipment technology. Meal delivery robot for carrying food trays to aged and disabled persons; Iryo fukushi kiki gijutsu kenkyu kaihatsu seika hokokusho. Koreisha shogaishayo shokuji hanso jido robot system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    Research and development of a mobile robot is carried out, who steers the meal distribution wagon, serves the meal at the bedside of aged or disabled people, retrieves the dishes when the meal is over, and then carry them back. The conditions discussed in the study for the robot to simultaneously satisfy are mentioned below. It should be of the size and weight fit for the job, avoid obstacles while travelling automatically and safely, behave at a safe and proper rate not jeopardizing the patient during the feeding process, communicate with the patient through picture and voice, and capable of acting without causing people to find in it anything overbearing or wrongful. The project began with the concept design process, which was followed by the basic design process, tentative manufacture of parts, tentative manufacture of components, and finally the construction of the whole. The developed robot system, after passing functional tests conducted in a mockup facility, experiences some period of tentative employment at three medical and welfare facilities. It is then confirmed that it safely performs a series of acts including meal serving and dish retrieving and that it is excellent in terms of autonomous self-control, safety, friendliness, and work efficiency. (NEDO)

  11. Robotic environments

    NARCIS (Netherlands)

    Bier, H.H.

    2011-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic architectural environments to be implemented and tested in the last decade in virtual and physical prototypes. These prototypes are incorporating sensing-actuating

  12. Robotics in nuclear engineering

    International Nuclear Information System (INIS)

    Larcombe, M.H.E.; Halsall, J.R.

    1984-01-01

    The subject is covered in chapters, entitled: foreword and definitions; introduction; robotics state of the art 1984; potential applications; advanced remote control; robot system design principles; robot system skills; planning of remote control robotics R and D; example systems; REMCON (advanced remote control robotic systems) guidelines; robot activation; robot instrumentation; robot guidance; design of equipment for robotic maintenance; ergonomics of control. (U.K.)

  13. Present and Future of Nuclear Robotics

    International Nuclear Information System (INIS)

    Bielza Ciaz-Caneja, M.; Carmena Servet, P.; Gomez Santamaria, J.; Gonzalez Fernandez, J.; Izquierdo Mendoza, J.A.; Linares Pintos, F.; Martinez Gonzalez; Muntion Ruesgas, A.; Serna Oliveira, M.A.

    1997-01-01

    New technologies have increased the use of robotic systems in fields other than Industry. As a result, research and developers are focusing their interest in concepts like Intelligent Robotics and Robotics in Services. This paper describes the use of Robotics in Nuclear facilities, where robots can be used to protect workers in high radiation areas, to reduce total worker exposure and to minimise downtime. First, the structure of robot systems is introduced and the benefits of nuclear robots is presented. Next, the paper describes some specific nuclear applications and the families of nuclear robots present in the market. After that, a section is devoted to Nuclear Robotics in Spain, with emphasis in some of the developments being carried out at present. Finally, some reflections about the future of robots in Nuclear Industry are offered. (Author) 18 refs

  14. Robotic surgery in gynecologic oncology: impact on fellowship training.

    Science.gov (United States)

    Hoekstra, Anna V; Morgan, Jacqueline M; Lurain, John R; Buttin, Barbara M; Singh, Diljeet K; Schink, Julian C; Lowe, M Patrick

    2009-08-01

    To report the impact of a new robotic surgery program on the surgical training of gynecologic oncology fellows over a 12 month period of time. A robotic surgery program was introduced into the gynecologic oncology fellowship program at Northwestern University Feinberg School of Medicine in June 2007. A database of patients undergoing surgical management of endometrial and cervical cancer between July 2007 and July 2008 was collected and analyzed. Changes in fellow surgical training were measured and analyzed. Fellow surgical training for endometrial and cervical cancer underwent a dramatic transition in 12 months. The proportion of patients undergoing minimally invasive surgery increased from 3.3% (4/110 patients) to 43.5% (47/108 patients). Fellow training transitioned from primarily an open approach (94.4%) to a minimally invasive approach (11% laparoscopic, 49% robotic, 40% open) for endometrial cancer stagings, and from an open approach (100%) to an open (50%) and robotic (50%) approach for radical hysterectomies. Fellow participation in robotic procedures increased from 45% in the first 3 months to 72% within 6 months, and 92% by 12 months. The role of the fellow in robotic cases transitioned from bedside assistant to console operator within 3 months. Fellow surgical training underwent a dramatic change with the introduction of a robotic surgery program. The management of endometrial and cervical cancer was impacted the most by robotics. Robotic surgery broadened fellowship surgical training, but balanced surgical training and standardized fellow training modules remain challenges for fellowship programs.

  15. Industrial Robots.

    Science.gov (United States)

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  16. Basic Robotics.

    Science.gov (United States)

    Mullen, Frank

    This curriculum outline consists of instructional materials and information concerning resources for use in teaching a course in robotics. Addressed in the individual sections of the outline are the following topics: the nature of an industrial robot; the parts of an industrial robot (the manipulator, the power structure, and the control system);…

  17. Interactions between Humans and Robots

    DEFF Research Database (Denmark)

    Vlachos, Evgenios; Schärfe, Henrik

    2013-01-01

    Combining multiple scientific disciplines, robotic technology has made significant progress the last decade, and so did the interactions between humans and robots. This article updates the agenda for robotic research by highlighting the factors that affect Human – Robot Interaction (HRI......), and explains the relationships and dependencies that exist between them. The four main factors that define the properties of a robot, and therefore the interaction, are distributed in two dimensions: (1) Intelligence (Control - Autonomy), and (2) Perspective (Tool - Medium). Based on these factors, we...... introduce a generic model for comparing and contrasting robots (CCM), aiming to provide a common platform for robot designers, developers and users. The framework for HRI we propose stems mainly from the vagueness and the lack of clarity that has been observed in the definitions of both Direct and Indirect...

  18. International Conference Educational Robotics 2016

    CERN Document Server

    Moro, Michele; Menegatti, Emanuele

    2017-01-01

    This book includes papers presented at the International Conference “Educational Robotics 2016 (EDUROBOTICS)”, Athens, November 25, 2016. The papers build on constructivist and constructionist pedagogy and cover a variety of topics, including teacher education, design of educational robotics activities, didactical models, assessment methods, theater robotics, programming & making electronics with Snap4Arduino, the Duckietown project, robotics driven by tangible programming, Lego Mindstorms combined with App Inventor, the Orbital Education Platform, Anthropomorphic Robots and Human Meaning Makers in Education, and more. It provides researchers interested in educational robotics with the latest advances in the field with a focus on science, technology, engineering, arts and mathematics (STEAM) education. At the same time it offers teachers and educators from primary to secondary and tertiary education insights into how educational robotics can trigger the development of technological interest and 21st c...

  19. Probabilistic approaches to robotic perception

    CERN Document Server

    Ferreira, João Filipe

    2014-01-01

    This book tries to address the following questions: How should the uncertainty and incompleteness inherent to sensing the environment be represented and modelled in a way that will increase the autonomy of a robot? How should a robotic system perceive, infer, decide and act efficiently? These are two of the challenging questions robotics community and robotic researchers have been facing. The development of robotic domain by the 1980s spurred the convergence of automation to autonomy, and the field of robotics has consequently converged towards the field of artificial intelligence (AI). Since the end of that decade, the general public’s imagination has been stimulated by high expectations on autonomy, where AI and robotics try to solve difficult cognitive problems through algorithms developed from either philosophical and anthropological conjectures or incomplete notions of cognitive reasoning. Many of these developments do not unveil even a few of the processes through which biological organisms solve thes...

  20. Surgical and clinical safety and effectiveness of robot-assisted laparoscopic hysterectomy compared to conventional laparoscopy and laparotomy for cervical cancer: A systematic review and meta-analysis.

    Science.gov (United States)

    Park, D A; Yun, J E; Kim, S W; Lee, S H

    2017-06-01

    This study aimed to evaluate the surgical safety and clinical effectiveness of RH versus LH and laparotomy for cervical cancer. We searched Ovid-Medline, Ovid-EMBASE, and the Cochrane library through May 2015, and checked references of relevant studies. We selected the comparative studies reported the surgical safety (overall; peri-operative; and post-operative complications; death within 30 days; and specific morbidities), and clinical effectiveness (survival; recurrence; length of stay [LOS]; estimated blood loss [EBL]; operative time [OT]) and patient-reported outcomes. Fifteen studies comparing RH with OH and 11 comparing RH with LH were identified. No significant differences were found in survival outcomes. The LOS was shorter and transfusion rate was lower with RH compared to OH or LH. EBL was significantly reduced with RH compared to OH. Compared to OH, overall complications, urinary infection, wound infection, and fever were significantly less frequent with RH. The overall, peri-operative, and post-operative complications were similar in other comparisons. Several patient-reported outcomes were improved with RH, though each outcome was reported in only one study. RH appears to have a positive effect in reducing overall complications, individual adverse events including wound infection, fever, urinary tract infection, transfusion, LOS, EBL, and time to diet than OH for cervical cancer patients. Compared to LH, the current evidence is not enough to clearly determine its clinical safety and effectiveness. Further rigorous prospective studies with long-term follow-up that overcome the many limitations of the current evidence are needed. Copyright © 2016 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.